Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip.
Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T; Xuan, Yi; Leaird, Daniel E; Wang, Xi; Gan, Fuwan; Weiner, Andrew M; Qi, Minghao
2015-01-12
Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics.
Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip
Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T.; Xuan, Yi; Leaird, Daniel E.; Wang, Xi; Gan, Fuwan; Weiner, Andrew M.; Qi, Minghao
2015-01-01
Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics. PMID:25581847
Low Frequency Radio Experiment (LORE)
NASA Astrophysics Data System (ADS)
Manoharan, P. K.; Naidu, Arun; Joshi, B. C.; Roy, Jayashree; Kate, G.; Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.
2016-03-01
In this paper, we present a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii, i.e., at frequencies below 30 MHz. The LORE can be complimentary to the planned Indian solar mission, “Aditya-L1” and its other payloads as well as synergistic to ground-based interplanetary scintillation (IPS) observations, which are routinely carried out by the Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and its particular suitability for providing measurements on the detailed time and frequency structure of fast drifting type-III and slow drifting type-II radio bursts with unprecedented time and frequency resolutions. We also brief the gonio-polarimetry, which is possible with better-designed antennas and state-of-the-art electronics, employing FPGAs and an intelligent data management system. These would enable us to make a wide range of studies, such as nonlinear plasma processes in the Sun-Earth distance, in-situ radio emission from coronal mass ejections (CMEs), interplanetary CME driven shocks, nature of ICMEs driving decelerating IP shocks and space weather effects of solar wind interaction regions.
NASA Astrophysics Data System (ADS)
Springett, James C.
1994-05-01
Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later introduced as compensations adjunct to the VLBI correlation process. Accordingly, this paper examines the technique for stable frequency/time transfer within the OVLBI system, together with a critique of the types of link degradation components which must be compensated, and the figures of merit known as coherence factors.
NASA Technical Reports Server (NTRS)
Springett, James C.
1994-01-01
Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later introduced as compensations adjunct to the VLBI correlation process. Accordingly, this paper examines the technique for stable frequency/time transfer within the OVLBI system, together with a critique of the types of link degradation components which must be compensated, and the figures of merit known as coherence factors.
Exploring the Physical Conditions in Millisecond Pulsar Emission Regions
NASA Astrophysics Data System (ADS)
Rankin, Joanna M.
2017-01-01
The five-component profile of the 2.7-ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the Binary Pulsar B1913+16, B1953+29 and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations despite having radically different magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar fluxtube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars radio-emission heights are typically about 500 km where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.
Rule Based System for Medicine Inventory Control Using Radio Frequency Identification (RFID)
NASA Astrophysics Data System (ADS)
Nugraha, Joanna Ardhyanti Mita; Suryono; Suseno, dan Jatmiko Endro
2018-02-01
Rule based system is very efficient to ensure stock of drug to remain available by utilizing Radio Frequency Identification (RFID) as input means automatically. This method can ensure the stock of drugs to remain available by analyzing the needs of drug users. The research data was the amount of drug usage in hospital for 1 year. The data was processed by using ABC classification to determine the drug with fast, medium and slow movement. In each classification result, rule based algorithm was given for determination of safety stock and Reorder Point (ROP). This research yielded safety stock and ROP values that vary depending on the class of each drug. Validation is done by comparing the calculation of safety stock and reorder point both manually and by system, then, it was found that the mean deviation value at safety stock was 0,03 and and ROP was 0,08.
NASA Astrophysics Data System (ADS)
Hagen, William E.; Holtzman, Julian C.
The Army Terrain Integrated Interference Prediction System (ATIIPS), a CAD terrain based simulation tool for determining the degradation effects on a network on nonspread spectrum radios caused by a network of spread spectrum radios is presented. A brief overview of the program is given, with typical graphics displays shown. Typical results for both a link simulation of interference and for a network simulation, using a slow hopped FM/FSK spread spectrum interfering radio network on a narrow band FM/FSK fixed frequency digital radio are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankin, Joanna M.; Mitra, Dipanjan; Archibald, Anne
The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above themore » polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.« less
Observing the Plasma-Physical Processes of Pulsar Radio Emission with Arecibo
NASA Astrophysics Data System (ADS)
Rankin, Joanna M.
2017-01-01
With their enormous densities and fields, neutron stars entail some of the most exotic physics in the cosmos. Similarly, the physical mechanisms of pulsar radio emission are no less exotic, and we are only now beginning to understand them. The talk will provide an introduction to the phenomenology of radio pulsar emission and focus on those aspects of the exquisite Arecibo observations that bear on their challenging emission physics.The commonalities of the radio beamforms of most slow pulsars (and some millisecond pulsars) argue strongly that their magnetic fields have a nearly dipolar structure at the height of their radio emission regions. These heights can often be determined by aberration/retardation analyses. Similarly, measurement of the orientation of the polarized radio emission with respect to the emitting magnetic field facilitates identification of the physical(X/O) emission modes and study of the plasma coupling to the electromagnetic radiation.While the physics of primary plasma generation above the pulsar polar cap is only beginning to be understood, it is clear that the radio pulsars we see are able to generate copious amounts of electron-positron plasma in their emission regions. Within the nearly dipolar field structure of these emission regions, the plasma density is near to that of the Goldreich-Julian model, and so the physical conditions in these regions can be accurately estimated.These conditions show that the plasma frequencies in the emission regions are much higher than the frequency of the emitted radiation, such that the plasma couples most easily to the extraordinary mode as observed. Therefore, the only surviving emission mechanism is curvature radiation from charged solitons, produced by the two-stream instability. Such soliton emission has probably been observed directly in the Crab pulsar; however, a physical theory of charged soliton radiation does not yet exist.
Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare
NASA Astrophysics Data System (ADS)
Yu, S.; Chen, B.; Reeves, K.
2017-12-01
We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.
Traveling-Wave Maser for 32 GHz
NASA Technical Reports Server (NTRS)
Shell, James; Clauss, Robert
2009-01-01
The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the evanescent-wave sections to provide reverse loss needed to suppress reverse propagation of power at the signal frequency. This design is expected to afford a large gain-bandwidth product at the signal frequency and efficient coupling of the pump power into the paramagnetic spin resonances of the ruby sections. The more efficiently the pump power could be thus coupled, the more efficiently it could be utilized and the heat load on the refrigerator correspondingly reduced.
NASA Tech Briefs, January 2004
NASA Technical Reports Server (NTRS)
2004-01-01
Topics covered include: Multisensor Instrument for Real-Time Biological Monitoring; Sensor for Monitoring Nanodevice-Fabrication Plasmas; Backed Bending Actuator; Compact Optoelectronic Compass; Micro Sun Sensor for Spacecraft; Passive IFF: Autonomous Nonintrusive Rapid Identification of Friendly Assets; Finned-Ladder Slow-Wave Circuit for a TWT; Directional Radio-Frequency Identification Tag Reader; Integrated Solar-Energy-Harvesting and -Storage Device; Event-Driven Random-Access-Windowing CCD Imaging System; Stroboscope Controller for Imaging Helicopter Rotors; Software for Checking State-charts; Program Predicts Broadband Noise from a Turbofan Engine; Protocol for a Delay-Tolerant Data-Communication Network; Software Implements a Space-Mission File-Transfer Protocol; Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2; Modular Rake of Pitot Probes; Preloading To Accelerate Slow-Crack-Growth Testing; Miniature Blimps for Surveillance and Collection of Samples; Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle; Fabricating Blazed Diffraction Gratings by X-Ray Lithography; Freeze-Tolerant Condensers; The StarLight Space Interferometer; Champagne Heat Pump; Controllable Sonar Lenses and Prisms Based on ERFs; Measuring Gravitation Using Polarization Spectroscopy; Serial-Turbo-Trellis-Coded Modulation with Rate-1 Inner Code; Enhanced Software for Scheduling Space-Shuttle Processing; Bayesian-Augmented Identification of Stars in a Narrow View; Spacecraft Orbits for Earth/Mars-Lander Radio Relay; and Self-Inflatable/Self-Rigidizable Reflectarray Antenna.
DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.
Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...
IN SITU AND SOIL DECONTAMINATION BY RADIO FREQUENCY HEATING
In situ radio frequency heating is performed by applying electromagnetic energy in the radio frequency band to an array of electrodes placed in bore holes drilled through the contaminated soil. he process removes organic contaminants from large volumes of soil by volatilization, ...
2001-12-01
using TeO2 , A-O cell, slow acoustic wave). Beam deflection is a continuous function of the input voltage power spectrum; however, the spot width...than for isotropic crystals. Thus, anisotropic, A-O materials, such as TeO2 , have advantages for high RF bandwidth; slow acoustic speeds give better...112 Unfortunately, signal resolution worsened because the new TeO2 crystal was designed to operate in the longitudinal acoustic mode, ua = 5.5 Km
Oscillations and Waves in Radio Source of Drifting Pulsation Structures
NASA Astrophysics Data System (ADS)
Karlický, Marian; Rybák, Ján; Bárta, Miroslav
2018-04-01
Drifting pulsation structures (DPSs) are considered to be radio signatures of the plasmoids formed during magnetic reconnection in the impulsive phase of solar flares. In the present paper we analyze oscillations and waves in seven examples of drifting pulsation structures, observed by the 800 - 2000 MHz Ondřejov Radiospectrograph. For their analysis we use a new type of oscillation maps, which give us much more information as regards processes in DPSs than that in previous analyses. Based on these oscillation maps, made from radio spectra by the wavelet technique, we recognized quasi-periodic oscillations with periods ranging from about 1 to 108 s in all studied DPSs. This strongly supports the idea that DPSs are generated during a fragmented magnetic reconnection. Phases of most the oscillations in DPSs, especially for the period around 1 s, are synchronized ("infinite" frequency drift) in the whole frequency range of DPSs. For longer periods in some DPSs we found that the phases of the oscillations drift with the frequency drift in the interval from -17 to +287 MHz s^{-1}. We propose that these drifting phases can be caused (a) by the fast or slow magnetosonic waves generated during the magnetic reconnection and propagating through the plasmoid, (b) by a quasi-periodic structure in the plasma inflowing to the reconnection forming a plasmoid, and (c) by a quasi-periodically varying reconnection rate in the X-point of the reconnection close to the plasmoid.
DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - IIT RESEARCH INSTITUTE
Radio frequency heating (RFH) is a process that uses electromagnetic energy generated by radio waves to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by the IIT Research Institute ...
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
2006-01-01
We have developed relatively broadband K- and Ka-band phase shifters using synthetic (slow-wave) transmission lines employing coupled microstripline "varactors". The tunable coupled microstripline circuits are based on laser ablated BaSrTiO films on lanthanum aluminate substrates. A model and design criteria for these novel circuits will be presented, along with measured performance including anomalous phase delay characteristics. The critical role of phase shifter loss and transient response in reflectarray antennas will be emphasized.
Radio frequency identification-enabled capabilities in a healthcare context: An exploratory study.
Hornyak, Rob; Lewis, Mark; Sankaranarayan, Balaji
2016-09-01
Increasingly, the adoption and use of radio frequency identification systems in hospital settings is gaining prominence. However, despite the transformative impact that radio frequency identification has in healthcare settings, few studies have examined how and why this change may occur. The purpose of this study is to systematically understand how radio frequency identification can transform work practices in an operational process that directly impacts cost and operational efficiency and indirectly contributes to impacting patient safety and quality of care. We leverage an interdisciplinary framework to explore the contextual characteristics that shape the assimilation of radio frequency identification in healthcare settings. By linking the use of radio frequency identification with specific contextual dimensions in healthcare settings, we provide a data-driven account of how and why radio frequency identification can be useful in inventory management in this setting. In doing so, we also contribute to recent work by information systems scholars who argue for a reconfiguration of conventional assumptions regarding the role of technology in contemporary organizations. © The Author(s) 2015.
Relativistic and Slowing Down: The Flow in the Hotspots of Powerful Radio Galaxies and Quasars
NASA Technical Reports Server (NTRS)
Kazanas, D.
2003-01-01
The 'hotspots' of powerful radio galaxies (the compact, high brightness regions, where the jet flow collides with the intergalactic medium (IGM)) have been imaged in radio, optical and recently in X-ray frequencies. We propose a scheme that unifies their, at first sight, disparate broad band (radio to X-ray) spectral properties. This scheme involves a relativistic flow upstream of the hotspot that decelerates to the sub-relativistic speed of its inferred advance through the IGM and it is viewed at different angles to its direction of motion, as suggested by two independent orientation estimators (the presence or not of broad emission lines in their optical spectra and the core-to-extended radio luminosity). This scheme, besides providing an account of the hotspot spectral properties with jet orientation, it also suggests that the large-scale jets remain relativistic all the way to the hotspots.
Radio and white-light observations of coronal transients
NASA Technical Reports Server (NTRS)
Dulk, G. A.
1980-01-01
Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. In this paper the observed properties of coronal transients are reviewed, with concentration on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones nonthermal. The possible mechanisms involved in the radio bursts are then discussed and estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the field, provides a possible driving force for the coronal and interplanetary shock waves.
Davis, Rodeina; Geiger, Bradley; Gutierrez, Alfonso; Heaser, Julie; Veeramani, Dharmaraj
2009-07-01
Radio frequency identification (RFID) can be a key enabler for enhancing productivity and safety of the blood product supply chain. This article describes a systematic approach developed by the RFID Blood Consortium for a comprehensive feasibility and impact assessment of RFID application in blood centre operations. Our comprehensive assessment approach incorporates process-orientated and technological perspectives as well as impact analysis. Assessment of RFID-enabled process redesign is based on generic core processes derived from the three participating blood centres. The technological assessment includes RFID tag readability and performance evaluation, testing of temperature and biological effects of RF energy on blood products, and RFID system architecture design and standards. The scope of this article is limited to blood centre processes (from donation to manufacturing/distribution) for selected mainstream blood products (red blood cells and platelets). Radio frequency identification can help overcome a number of common challenges and process inefficiencies associated with identification and tracking of blood products. High frequency-based RFID technology performs adequately and safely for red blood cell and platelet products. Productivity and quality improvements in RFID-enabled blood centre processes can recoup investment cost in a 4-year payback period. Radio frequency identification application has significant process-orientated and technological implications. It is feasible and economically justifiable to incorporate RFID into blood centre processes.
Solar Radio Burst Associated with the Falling Bright EUV Blob
NASA Astrophysics Data System (ADS)
Karlický, Marian; Zemanová, Alena; Dudík, Jaroslav; Radziszewski, Krzysztof
2018-02-01
At the beginning of the 2015 November 4 flare, in the 1300–2000 MHz frequency range, we observed a very rare slow positively drifting burst. We searched for associated phenomena in simultaneous EUV observations made by IRIS, SDO/AIA, and Hinode/XRT, as well as in H α observations. We found that this radio burst was accompanied with the bright blob, visible at transition region, coronal, and flare temperatures, falling down to the chromosphere along the dark loop with a velocity of about 280 km s‑1. The dark loop was visible in H α but disappeared afterward. Furthermore, we found that the falling blob interacted with the chromosphere as expressed by a sudden change of the H α spectra at the location of this interaction. Considering different possibilities, we propose that the observed slow positively drifting burst is generated by the thermal conduction front formed in front of the falling hot EUV blob.
NASA Astrophysics Data System (ADS)
Paraskevi Moschou, Sofia; Sokolov, Igor; Cohen, Ofer; Drake, Jeremy J.; Borovikov, Dmitry; Alvarado-Gomez, Julian D.; Garraffo, Cecilia
2018-06-01
Due to their favorable atmospheric window radio waves are a useful tool for ground-based observations of astrophysical systems throughout a plethora of scales, from cosmological down to planetary ones. A wide range of physical mechanisms, from thermal processes to eruptive events linked to magnetic reconnection, can generate emission in radio frequencies. Radio waves have the distinct characteristic that they follow curved paths as they propagate in stratified environments, such as the solar corona, due to their dependence on the refraction index. Low frequency radio rays in particular are affected the most by refraction.Solar radio observations are of particular importance, since it is possible to spatially resolve the Sun and its corona and gain insights on highly dynamic and complex radio-emitting phenomena. The multi-scale problem of particle acceleration and energy partition between CMEs, flares and SEPs requires both MHD and kinetic considerations to account for the emission and mass propagation through the interplanetary space.Radio observations can play a significant role in the rapidly developing area of exoplanetary research and provide insights on the stellar environments of those systems. Even though a large number of flares has been observed for different stellar types, nevertheless there is a lack of stellar CME observations. Currently, the most promising method to incontrovertibly observe stellar CMEs is through Type II radio bursts. Low frequency radio emission can also be produced by the interaction of a magnetized planet with the stellar wind of the host star.The above mentioned characteristics of radio-waves make their integration into numerical simulations imperative for capturing and disentangling the complex radio emitting processes along the actual radio paths and provide the observers with detection limits for future Earth- and space-based missions. Radio synthetic imaging tools incorporated in realistic computational codes are already available for solar radio-emitting processes with different physical and observational characteristics.
Unknown radio emission at about 3 MHz recorded in Norway
NASA Astrophysics Data System (ADS)
Farges, T.; Blanc, E.; Strand, E.
2012-04-01
A wideband electric field antenna has been installed in Norway (at Hessdalen, 62°41' North and 11°12' East). A signal of 50 ms is automatically recorded every 5 s in order to monitor the spectral variations from 1 kHz to 5 MHz. Signals have been acquired during more than one year from September 2010 to December 2011. The measured electromagnetic spectrum is very similar to other spectra commonly measured in other places in the World. It shows emissions in numerous bands at fixed frequencies corresponding to radio transmissions in VLF, LF, MF and HF bands. However, one emission is quite different and arouses our curiosity. We find a quasi-continuous radio emission at a frequency varying from 2.7 to more than 3.4 MHz with a mean value of 3.0 MHz. The bandwidth is quite large (about 40 kHz) while it is about 9 kHz for all the other radio emissions at frequencies higher than 100 kHz. During the night, the frequency is relatively stable at about 3.1 MHz while during day-time a frequency shift of 200-300 kHz is often observed. These variations can be quick (few tens of minutes) or slow (several hours). Moreover, the emission disappears during day-time, the disappearance duration depending on the daylight duration. From November to the end of March, there is almost no disappearance while in April disappearances are more frequent and longer. From May to July, the emission disappears systematically during day-time from 6:00 UT to 20:00 UT. At the sunrise time the emission frequency suddenly decreases and systematically disappears when it reaches a threshold value (from 2.7 to 2.85 MHz). The emission (frequency and duration) is not influenced by the magnetic storms. We will show in the paper statistical results and some hypothesis on the mechanism which can produce this radio emission.
Frequency Allocation; The Radio Spectrum.
ERIC Educational Resources Information Center
Federal Communications Commission, Washington, DC.
The Federal Communications Commission (FCC) assigns segments of the radio spectrum to categories of users, and specific frequencies within each segment to individual users. Since demand for channel space exceeds supply, the process is complex. The radio spectrum can be compared to a long ruler: the portion from 10-540 kiloHertz has been set aside…
Electron acceleration to high energies at quasi-parallel shock waves in the solar corona
NASA Technical Reports Server (NTRS)
Mann, G.; Classen, H.-T.
1995-01-01
In the solar corona shock waves are generated by flares and/or coronal mass ejections. They manifest themselves in solar type 2 radio bursts appearing as emission stripes with a slow drift from high to low frequencies in dynamic radio spectra. Their nonthermal radio emission indicates that electrons are accelerated to suprathermal and/or relativistic velocities at these shocks. As well known by extraterrestrial in-situ measurements supercritical, quasi-parallel, collisionless shocks are accompanied by so-called SLAMS (short large amplitude magnetic field structures). These SLAMS can act as strong magnetic mirrors, at which charged particles can be reflected and accelerated. Thus, thermal electrons gain energy due to multiple reflections between two SLAMS and reach suprathermal and relativistic velocities. This mechanism of accelerating electrons is discussed for circumstances in the solar corona and may be responsible for the so-called 'herringbones' observed in solar type 2 radio bursts.
The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.
Portable Wireless LAN Device and Two-way Radio Threat Assessment for Aircraft Navigation Radios
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.
2003-01-01
Measurement processes, data and analysis are provided to address the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. A radiated emission measurement process is developed and spurious radiated emissions from various devices are characterized using reverberation chambers. Spurious radiated emissions in aircraft radio frequency bands from several wireless network devices are compared with baseline emissions from standard computer laptops and personal digital assistants. In addition, spurious radiated emission data in aircraft radio frequency bands from seven pairs of two-way radios are provided, A description of the measurement process, device modes of operation and the measurement results are reported. Aircraft interference path loss measurements were conducted on four Boeing 747 and Boeing 737 aircraft for several aircraft radio systems. The measurement approach is described and the path loss results are compared with existing data from reference documents, standards, and NASA partnerships. In-band on-channel interference thresholds are compiled from an existing reference document. Using these data, a risk assessment is provided for interference from wireless network devices and two-way radios to aircraft systems, including Localizer, Glideslope, Very High Frequency Omnidirectional Range, Microwave Landing System and Global Positioning System. The report compares the interference risks associated with emissions from wireless network devices and two-way radios against standard laptops and personal digital assistants. Existing receiver interference threshold references are identified as to require more data for better interference risk assessments.
NASA Astrophysics Data System (ADS)
Osipowicz, A.; Härting, M.; Hempel, M.; Britton, D. T.; Bauer-Kugelmann, W.; Triftshäuser, W.
1999-08-01
Platinum films, used in thin film technology, produced by radio-frequency sputter deposition on aluminium oxide substrates under different conditions, have been studied by positron beam and other techniques, before and after production annealing. The defect structure in the layers has been characterised using both positron lifetime and Doppler-broadening spectroscopy, and compared with X-ray studies of crystallinity and texture.
Wide band stepped frequency ground penetrating radar
Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.
1996-03-12
A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.
Conveyorized Radio Frequency Cure of Epoxy Glass Composites.
1980-05-01
a conveyorized radio frequency oven. The conveyorized radio frequency 20-kilowatt (90-100 megahertz) dielectric heater was de - designed and...Process were de - termined with reference to property requirements specified in Table three of 8MS-8-196A. Although the BM-8,196A relates to material...requirements of the 8MS and agree with the values contained in the 3M certifying report. De - tailed test results are presented as Appendix J. In addition
NASA Astrophysics Data System (ADS)
Liu, Y.; Peeters, F. J. J.; Starostin, S. A.; van de Sanden, M. C. M.; de Vries, H. W.
2018-01-01
This letter reports a novel approach to improve the uniformity of atmospheric-pressure dielectric barrier discharges using a dual-frequency excitation consisting of a low frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is temporally modulated, i.e. enhanced and suppressed during each RF cycle. As a result, the discharge development is slowed down with a lower amplitude and a longer duration of the LF discharge current. Hence, the RF electric field facilitates improved stability and uniformity simultaneously allowing a higher input power.
Radio frequency sustained ion energy
Jassby, Daniel L.; Hooke, William M.
1977-01-01
Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Molavi, Behnam; Reid, W. D.; Dumont, Guy; Macnab, Andrew J.
2010-02-01
Background: Medical and diagnostic applications of near infrared spectroscopy (NIRS) are increasing, especially in operating rooms (OR). Since NIRS is an optical technique, radio frequency (RF) interference from other instruments is unlikely to affect the raw optical data, however, NIRS data processing and signal output could be affected. Methods: We investigated the potential for three common OR instruments: an electrical cautery, an orthopaedic drill and an imaging system, to generate electromagnetic interference (EMI) that could potentially influence NIRS signals. The time of onset and duration of every operation of each device was recorded during surgery. To remove the effects of slow changing physiological variables, we first used a lowpass filter and then selected 2 windows with variable lengths around the moment of device onset. For each instant, variances (energy) and means of the signals in the 2 windows were compared. Results: Twenty patients were studied during ankle surgery. Analysis shows no statistically significant difference in the means and variance of the NIRS signals (p < 0.01) during operation of any of the three devices for all surgeries. Conclusion: This method confirms the instruments evaluated caused no significant interference. NIRS can potentially be used without EMI in clinical environments such as the OR.
Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliasson, B.; Stenflo, L.; Department of Physics, Linkoeping University, SE-581 83 Linkoeping
2008-10-15
We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuirmore » wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.« less
Solar Type II Radio Bursts and IP Type II Events
NASA Technical Reports Server (NTRS)
Cane, H. V.; Erickson, W. C.
2005-01-01
We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.
Multifrequency analysis of a decametric storm observed at Voyager 1 and ground-based observatories
NASA Technical Reports Server (NTRS)
Maeda, K.; Carr, T. D.
1989-01-01
Observations of a Jovian decametric non-Io-A noise storm made from Voyager 1, the University of Florida Radio Observatory, the University of Texas Radio Astronomy Observatory, and the Jupiter station at Goddard Space Flight Center at frequencies of 26.3, 22.2, 20.0, and 18.0 MHz were found to be correlated. The activity observed at the ground stations occurred 68 min after the corresponding activity at Voyager 1. After correction is made for propagation time differences, this delay is reduced to 34 min. It is demonstrated that at each frequency the envelope of the individual-event beams occurring during the storm (some or all of which are associated with dynamic spectral arcs) is a quasi-constant structure that corotates with the inner Jovian magnetosphere, and that the width of this envelope beam is frequency dependent. The width increases as frequency is decreased, mainly because of the change in position of the trailing-edge beam boundary. Evidence for a relatively slow temporal change in beam geometry is also presented.
Low-frequency Radio Observatory on the Lunar Surface (LROLS)
NASA Astrophysics Data System (ADS)
MacDowall, Robert; Network for Exploration and Space Science (NESS)
2018-06-01
A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and rolling them out may be a solution for solar radio observations, but it probably does not provide a sufficiently-uniform beam for other science targets.
Future Technology Themes: 2030 to 2060
2013-07-01
Rocket-Based Combined Cycle RF Radio Frequency RNA Ribonucleic Acid SA Situational Awareness SEAD Suppression of Enemy Air Defences SME...and re-routing light in information processing and optical communications ; or for processing radio signals in mobile phones [44]. UNCLASSIFIED DSTO...make use of network polymorphism technologies from 2020 onwards to create frequency -agile and adaptive14 communications links that would change network
Wide band stepped frequency ground penetrating radar
Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.
1996-01-01
A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szadkowski, Zbigniew
We present the new approach to a filtering of radio frequency interferences (RFI) in the Auger Engineering Radio Array (AERA) which study the electromagnetic part of the Extensive Air Showers. The radio stations can observe radio signals caused by coherent emissions due to geomagnetic radiation and charge excess processes. AERA observes frequency band from 30 to 80 MHz. This range is highly contaminated by human-made RFI. In order to improve the signal to noise ratio RFI filters are used in AERA to suppress this contamination. The first kind of filter used by AERA was the Median one, based on themore » Fast Fourier Transform (FFT) technique. The second one, which is currently in use, is the infinite impulse response (IIR) notch filter. The proposed new filter is a finite impulse response (FIR) filter based on a linear prediction (LP). A periodic contamination hidden in a registered signal (digitized in the ADC) can be extracted and next subtracted to make signal cleaner. The FIR filter requires a calculation of n=32, 64 or even 128 coefficients (dependent on a required speed or accuracy) by solving of n linear equations with coefficients built from the covariance Toeplitz matrix. This matrix can be solved by the Levinson recursion, which is much faster than the Gauss procedure. The filter has been already tested in the real AERA radio stations on Argentinean pampas with a very successful results. The linear equations were solved either in the virtual soft-core NIOSR processor (implemented in the FPGA chip as a net of logic elements) or in the external Voipac PXA270M ARM processor. The NIOS processor is relatively slow (50 MHz internal clock), calculations performed in an external processor consume a significant amount of time for data exchange between the FPGA and the processor. Test showed a very good efficiency of the RFI suppression for stationary (long-term) contaminations. However, we observed a short-time contaminations, which could not be suppressed either by the IIR-notch filter or by the FIR filter based on the linear predictions. For the LP FIR filter the refreshment time of the filter coefficients was to long and filter did not keep up with the changes of a contamination structure, mainly due to a long calculation time in a slow processors. We propose to use the Cyclone V SE chip with embedded micro-controller operating with 925 MHz internal clock to significantly reduce a refreshment time of the FIR coefficients. The lab results are promising. (authors)« less
Radio frequency detection assembly and method for detecting radio frequencies
Cown, Steven H.; Derr, Kurt Warren
2010-03-16
A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.
Phase Radio Engineering Systems (Selected Pages),
1983-04-28
that if on the linear network functions the delta-function, which has the uniform spectrum, then the spectrum of response repeats frequency DOC...integrator can be used, for example, chain/ network RC with the slow response. Page 222. As the being congruent/equating cascade/stage can be used, for example...the elements of the networks which are ensured with the great technical difficulties or not at all can be achieved/reached. !.( .... . 2
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1998-01-01
The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.
Formation of Radio Type II Bursts During a Multiple Coronal Mass Ejection Event
NASA Astrophysics Data System (ADS)
Al-Hamadani, Firas; Pohjolainen, Silja; Valtonen, Eino
2017-12-01
We study the solar event on 27 September 2001 that consisted of three consecutive coronal mass ejections (CMEs) originating from the same active region, which were associated with several periods of radio type II burst emission at decameter-hectometer (DH) wavelengths. Our analysis shows that the first radio burst originated from a low-density environment, formed in the wake of the first, slow CME. The frequency-drift of the burst suggests a low-speed burst driver, or that the shock was not propagating along the large density gradient. There is also evidence of band-splitting within this emission lane. The origin of the first shock remains unclear, as several alternative scenarios exist. The second shock showed separate periods of enhanced radio emission. This shock could have originated from a CME bow shock, caused by the fast and accelerating second or third CME. However, a shock at CME flanks is also possible, as the density depletion caused by the three CMEs would have affected the emission frequencies and hence the radio source heights could have been lower than usual. The last type II burst period showed enhanced emission in a wider bandwidth, which was most probably due to the CME-CME interaction. Only one shock that could reliably be associated with the investigated CMEs was observed to arrive near Earth.
Overview of Solar Radio Bursts and their Sources
NASA Astrophysics Data System (ADS)
Golla, Thejappa; MacDowall, Robert J.
2018-06-01
Properties of radio bursts emitted by the Sun at frequencies below tens of MHz are reviewed. In this frequency range, the most prominent radio emissions are those of solar type II, complex type III and solar type IV radio bursts, excited probably by the energetic electron populations accelerated in completely different environments: (1) type II bursts are due to non-relativistic electrons accelerated by the CME driven interplanetary shocks, (2) complex type III bursts are due to near-relativistic electrons accelerated either by the solar flare reconnection process or by the SEP shocks, and (3) type IV bursts are due to relativistic electrons, trapped in the post-eruption arcades behind CMEs; these relativistic electrons probably are accelerated by the continued reconnection processes occurring beneath the CME. These radio bursts, which can serve as the natural plasma probes traversing the heliosphere by providing information about various crucial space plasma parameters, are also an ideal instrument for investigating acceleration mechanisms responsible for the high energy particles. The rich collection of valuable high quality radio and high time resolution in situ wave data from the WAVES experiments of the STEREO A, STEREO B and WIND spacecraft has provided an unique opportunity to study these different radio phenomena and understand the complex physics behind their excitation. We have developed Monte Carlo simulation techniques to estimate the propagation effects on the observed characteristics of these low frequency radio bursts. We will present some of the new results and describe how one can use these radio burst observations for space weather studies. We will also describe some of the non-linear plasma processes detected in the source regions of both solar type III and type II radio bursts. The analysis and simulation techniques used in these studies will be of immense use for future space based radio observations.
NASA Astrophysics Data System (ADS)
Szadkowski, Zbigniew; Fraenkel, E. D.; van den Berg, Ad M.
2013-10-01
We present the FPGA/NIOS implementation of an adaptive finite impulse response (FIR) filter based on linear prediction to suppress radio frequency interference (RFI). This technique will be used for experiments that observe coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays. These experiments are designed to make a detailed study of the development of the electromagnetic part of air showers. Therefore, these radio signals provide information that is complementary to that obtained by water-Cherenkov detectors which are predominantly sensitive to the particle content of an air shower at ground. The radio signals from air showers are caused by the coherent emission due to geomagnetic and charge-excess processes. These emissions can be observed in the frequency band between 10-100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. A FIR filter implemented in the FPGA logic segment of the front-end electronics of a radio sensor significantly improves the signal-to-noise ratio. In this paper we discuss an adaptive filter which is based on linear prediction. The coefficients for the linear predictor (LP) are dynamically refreshed and calculated in the embedded NIOS processor, which is implemented in the same FPGA chip. The Levinson recursion, used to obtain the filter coefficients, is also implemented in the NIOS and is partially supported by direct multiplication in the DSP blocks of the logic FPGA segment. Tests confirm that the LP can be an alternative to other methods involving multiple time-to-frequency domain conversions using an FFT procedure. These multiple conversions draw heavily on the power consumption of the FPGA and are avoided by the linear prediction approach. Minimization of the power consumption is an important issue because the final system will be powered by solar panels. The FIR filter has been successfully tested in the Altera development kits with the EP4CE115F29C7 from the Cyclone IV family and the EP3C120F780C7 from the Cyclone III family at a 170 MHz sampling rate, a 12-bit I/O resolution, and an internal 30-bit dynamic range. Most of the slow floating-point NIOS calculations have been moved to the FPGA logic segments as extended fixed-point operations, which significantly reduced the refreshing time of the coefficients used in the LP. We conclude that the LP is a viable alternative to other methods such as non-adaptive methods involving digital notch filters or multiple time-to-frequency domain conversions using an FFT procedure.
The radio frequency (RF) heating process can be used to volumetrically heat and thus decontaminate uncontrolled landfills and hazardous substances from spills. After the landfills are heated, decontamination of the hazardous substances occurs due to thermal decomposition, vaporiz...
Radio-science performance analysis software
NASA Astrophysics Data System (ADS)
Morabito, D. D.; Asmar, S. W.
1995-02-01
The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.
Radio-Science Performance Analysis Software
NASA Astrophysics Data System (ADS)
Morabito, D. D.; Asmar, S. W.
1994-10-01
The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussion on operating the program set on Galileo and Ulysses data will be presented.
Radio-science performance analysis software
NASA Technical Reports Server (NTRS)
Morabito, D. D.; Asmar, S. W.
1995-01-01
The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.
Cross-Linguistic Similarity and Task Demands in Japanese-English Bilingual Processing
Allen, David B.; Conklin, Kathy
2013-01-01
Even in languages that do not share script, bilinguals process cognates faster than matched noncognates in a range of tasks. The current research more fully explores what underpins the cognate ‘advantage’ in different script bilinguals (Japanese-English). To do this, instead of the more traditional binary cognate/noncognate distinction, the current study uses continuous measures of phonological and semantic overlap, L2 (second language) proficiency and lexical variables (e.g., frequency). An L2 picture naming (Experiment 1) revealed a significant interaction between phonological and semantic similarity and demonstrates that degree of overlap modulates naming times. In lexical decision (Experiment 2), increased phonological similarity (e.g., bus/basu/vs. radio/rajio/) lead to faster response times. Interestingly, increased semantic similarity slowed response times in lexical decision. The studies also indicate how L2 proficiency and lexical variables modulate L2 word processing. These findings are explained in terms of current models of bilingual lexical processing. PMID:24015266
Oke, Olaleke O; Magony, Andor; Anver, Himashi; Ward, Peter D; Jiruska, Premysl; Jefferys, John G R; Vreugdenhil, Martin
2010-04-01
Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.
Inactivation of Lactobacillus plantarum in apple cider using radio frequency electric fields
USDA-ARS?s Scientific Manuscript database
Radio frequency electric fields (RFEF) processing is effective at inactivating Gram negative bacteria in fruit juices at moderately low temperatures, but has yet to be shown to be effective at reducing Gram positive bacteria. Lactobacillus plantarum ATCC 49445, a Gram positive bacterium, was inocula...
RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.
2006-01-01
Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.
NASA Astrophysics Data System (ADS)
Potter, William J.
2018-01-01
Blazar jets are renowned for their rapid violent variability and multiwavelength flares, however, the physical processes responsible for these flares are not well understood. In this paper, we develop a time-dependent inhomogeneous fluid jet emission model for blazars. We model optically thick radio flares for the first time and show that they are delayed with respect to the prompt optically thin emission by ∼months to decades, with a lag that increases with the jet power and observed wavelength. This lag is caused by a combination of the travel time of the flaring plasma to the optically thin radio emitting sections of the jet and the slow rise time of the radio flare. We predict two types of flares: symmetric flares - with the same rise and decay time, which occur for flares whose duration is shorter than both the radiative lifetime and the geometric path-length delay time-scale; extended flares - whose luminosity tracks the power of particle acceleration in the flare, which occur for flares with a duration longer than both the radiative lifetime and geometric delay. Our model naturally produces orphan X-ray and γ-ray flares. These are caused by flares that are only observable above the quiescent jet emission in a narrow band of frequencies. Our model is able to successfully fit to the observed multiwavelength flaring spectra and light curves of PKS1502+106 across all wavelengths, using a transient flaring front located within the broad-line region.
Coherent curvature radiation and fast radio bursts
NASA Astrophysics Data System (ADS)
Ghisellini, Gabriele; Locatelli, Nicola
2018-06-01
Fast radio bursts are extragalactic radio transient events lasting a few milliseconds with a Jy flux at 1 GHz. We propose that these properties suggest a neutron star progenitor, and focus on coherent curvature radiation as the radiation mechanism. We study for which sets of parameters the emission can fulfil the observational constraints. Even if the emission is coherent, we find that self-absorption can limit the produced luminosities at low radio frequencies and that an efficient re-acceleration process is needed to balance the dramatic energy losses of the emitting particles. Self-absorption limits the luminosities at low radio frequency, while coherence favours steep optically thin spectra. Furthermore, the magnetic geometry must have a high degree of order to obtain coherent curvature emission. Particles emit photons along their velocity vectors, thereby greatly reducing the inverse Compton mechanism. In this case we predict that fast radio bursts emit most of their luminosities in the radio band and have no strong counterpart in any other frequency bands.
47 CFR 90.623 - Limitations on the number of frequencies assignable for conventional systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations... Governing the Processing of Applications and the Selection and Assignment of Frequencies for Use in the 806... application pending for a trunked system to serve multiple subscribers within 64 km (40 miles) of the...
Radio Frequency Ablation Registration, Segmentation, and Fusion Tool
McCreedy, Evan S.; Cheng, Ruida; Hemler, Paul F.; Viswanathan, Anand; Wood, Bradford J.; McAuliffe, Matthew J.
2008-01-01
The Radio Frequency Ablation Segmentation Tool (RFAST) is a software application developed using NIH's Medical Image Processing Analysis and Visualization (MIPAV) API for the specific purpose of assisting physicians in the planning of radio frequency ablation (RFA) procedures. The RFAST application sequentially leads the physician through the steps necessary to register, fuse, segment, visualize and plan the RFA treatment. Three-dimensional volume visualization of the CT dataset with segmented 3D surface models enables the physician to interactively position the ablation probe to simulate burns and to semi-manually simulate sphere packing in an attempt to optimize probe placement. PMID:16871716
Homologous Flare-CME Events and Their Metric Type II Radio Burst Association
NASA Technical Reports Server (NTRS)
Yashiro, S.; Gopalswamy, N.; Makela, P.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Chandra, R.; Manoharan, P. K.; Mahalakshmi, K.;
2014-01-01
Active region NOAA 11158 produced many flares during its disk passage. At least two of these flares can be considered as homologous: the C6.6 flare at 06:51 UT and C9.4 flare at 12:41 UT on February 14, 2011. Both flares occurred at the same location (eastern edge of the active region) and have a similar decay of the GOES soft X-ray light curve. The associated coronal mass ejections (CMEs) were slow (334 and 337 km/s) and of similar apparent widths (43deg and 44deg), but they had different radio signatures. The second event was associated with a metric type II burst while the first one was not. The COR1 coronagraphs on board the STEREO spacecraft clearly show that the second CME propagated into the preceding CME that occurred 50 min before. These observations suggest that CME-CME interaction might be a key process in exciting the type II radio emission by slow CMEs.
Pulsar current sheet C̆erenkov radiation
NASA Astrophysics Data System (ADS)
Zhang, Fan
2018-04-01
Plasma-filled pulsar magnetospheres contain thin current sheets wherein the charged particles are accelerated by magnetic reconnections to travel at ultra-relativistic speeds. On the other hand, the plasma frequency of the more regular force-free regions of the magnetosphere rests almost precisely on the upper limit of radio frequencies, with the cyclotron frequency being far higher due to the strong magnetic field. This combination produces a peculiar situation, whereby radio-frequency waves can travel at subluminal speeds without becoming evanescent. The conditions are thus conducive to C̆erenkov radiation originating from current sheets, which could plausibly serve as a coherent radio emission mechanism. In this paper we aim to provide a portrait of the relevant processes involved, and show that this mechanism can possibly account for some of the most salient features of the observed radio signals.
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.
2016-01-01
The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administrations (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.
2016-01-01
The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.
Resonant-frequency discharge in a multi-cell radio frequency cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovic, S; Upadhyay, J; Mammosser, J
2014-11-07
We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problemsmore » related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.« less
NASA Technical Reports Server (NTRS)
Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen
2016-01-01
Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
Radio Telescopes to Keep Sharp Eye on Mars Lander
NASA Astrophysics Data System (ADS)
2008-05-01
As NASA's Phoenix Mars Lander descends through the Red Planet's atmosphere toward its landing on May 25, its progress will be scrutinized by radio telescopes from the National Radio Astronomy Observatory (NRAO). At NRAO control rooms in Green Bank, West Virginia, and Socorro, New Mexico, scientists, engineers and technicians will be tracking the faint signal from the lander, 171 million miles from Earth. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF To make a safe landing, Phoenix must make a risky descent, slowing down from nearly 13,000 mph at the top of the Martian atmosphere to only 5 mph in the final seconds before touchdown. NASA officials point out that fewer than half of all Mars landing missions have been successful, but the scientific rewards of success are worth the risk. Major events in the spacecraft's atmospheric entry, descent and landing will be marked by changes in the Doppler Shift in the frequency of the vehicle's radio signal. Doppler Shift is the change in frequency caused by relative motion between the transmitter and receiver. At Green Bank, NRAO and NASA personnel will use the giant Robert C. Byrd Green Bank Telescope (GBT) to follow the Doppler changes and verify that the descent is going as planned. The radio signal from Phoenix is designed to be received by other spacecraft in Mars orbit, then relayed to Earth. However, the GBT, a dish antenna with more than two acres of collecting surface and highly-sensitive receivers, can directly receive the transmissions from Phoenix. "We'll see the frequency change as Phoenix slows down in the Martian atmosphere, then there will be a big change when the parachute deploys," said NRAO astronomer Frank Ghigo. When the spacecraft's rocket thrusters slow it down for its final, gentle touchdown, its radio frequency will stabilize, Ghigo said. "We'll have confirmation of these major events through our direct reception several seconds earlier than the controllers at NASA's Jet Propulsion Laboratory will get the relayed information," Ghigo added. In Socorro, scientists will collect signals from Phoenix with antennas of the continent-wide Very Long Baseline Array (VLBA), which produces the sharpest images of any astronomical instrument in existence. They will use the VLBA's ability to mark the position of objects in the sky with pinpoint precision to reconstruct the craft's location relative to other spacecraft at Mars to within about 100 feet, despite its great distance from Earth. The VLBA observations will demonstrate NRAO's capability to provide extremely precise measurements of spacecraft positions. This capability may be used to improve the navigational accuracy of future interplanetary missions. NRAO telescopes have contributed to the success of several previous space missions. The VLBA Very Long Baseline Array CREDIT: NRAO/AUI/NSF In 1989, the Very Large Array (VLA) received signals from the Voyager 2 spacecraft as it flew by the distant planet Neptune. The combined collecting area of the 27 VLA antennas and their sensitive receivers made possible a higher data-transmission rate from the spacecraft, thus enabling scientists to obtain more images of Neptune, its rings, and its moons. In 1995, the VLA captured signals from the Galileo spaccraft's probe as the probe dived into the giant planet Jupiter's atmosphere. Like Phoenix, the Galileo probe was designed to send its information to the main spacecraft, which would then relay the signal to Earth. However, the VLA's direct reception of the probe's signal measured the Doppler shift in the signal's frequency and made measurements of Jovian wind speeds 10 times more accurate than they otherwise would have been. In 2005, the GBT and the VLBA snagged the signal from the Huygens probe as it descended into the atmosphere of Saturn's moon Titan. The Doppler measurements of wind speeds made by NRAO and other radio telescopes provided the only wind data from the mission, because of a malfunction in communication between Huygens and its "mother ship" Cassini. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Hidden slow pulsars in binaries
NASA Technical Reports Server (NTRS)
Tavani, Marco; Brookshaw, Leigh
1993-01-01
The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.
Update on the Commensal VLA Low-band Ionospheric and Transient Experiment (VLITE)
NASA Astrophysics Data System (ADS)
Kassim, Namir E.; Clarke, Tracy E.; Ray, Paul S.; Polisensky, Emil; Peters, Wendy M.; Giacintucci, Simona; Helmboldt, Joseph F.; Hyman, Scott D.; Brisken, Walter; Hicks, Brian; Deneva, Julia S.
2017-01-01
The JVLA Low-band Ionospheric and Transient Experiment (VLITE) is a commensal observing system on the NRAO JVLA. The separate optical path of the prime-focus sub-GHz dipole feeds and the Cassegrain-focus GHz feeds provided an opportunity to expand the simultaneous frequency operation of the JVLA through joint observations across both systems. The low-band receivers on 10 JVLA antennas are outfitted with dedicated samplers and use spare fibers to transport the 320-384 MHz band to the VLITE correlator. The initial phase of VLITE uses a custom-designed real-time DiFX software correlator to produce autocorrelations, as well as parallel and cross-hand cross-correlations from the linear dipole feeds. NRL and NRAO have worked together to explore the scientific potential of the commensal low frequency system for ionospheric remote sensing, astrophysics and transients. VLITE operates at nearly 70% wall time with roughly 6200 hours of JVLA time recorded each year.VLITE data are used in real-time for ionospheric research and are transferred daily to NRL for processing in the astrophysics and transient pipelines. These pipelines provide automated radio frequency interference excision, calibration, imaging and self-calibration of data.We will review early scientific results from VLITE across all three science focus areas, including the ionosphere, slow (> 1 sec) transients, and astrophysics. We also discuss the future of the project, that includes its planned expansion to eVLITE including the addition of more antennas, and a parallel capability to search for fast (< 1 sec), dispersed transients, such as Fast Radio Bursts and Rotating Radio Transients. We will also present early results of commissioning tests to utilize VLITE data products to complement NRAO’s 3 GHz VLA Sky Survey (VLASS). Revised pipelines are under development for operation during the on-the-fly operation mode of the sky survey.
Data multiplexing in radio interferometric calibration
NASA Astrophysics Data System (ADS)
Yatawatta, Sarod; Diblen, Faruk; Spreeuw, Hanno; Koopmans, L. V. E.
2018-03-01
New and upcoming radio interferometers will produce unprecedented amount of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations restrict several key data processing steps in radio interferometry. One such step is calibration where systematic errors in the data are determined and corrected. Accurate calibration is an essential component in reaching many scientific goals in radio astronomy and the use of consensus optimization that exploits the continuity of systematic errors across frequency significantly improves calibration accuracy. In order to reach full consensus, data at all frequencies need to be calibrated simultaneously. In the SKA regime, this can become intractable if the available compute agents do not have the resources to process data from all frequency channels simultaneously. In this paper, we propose a multiplexing scheme that is based on the alternating direction method of multipliers with cyclic updates. With this scheme, it is possible to simultaneously calibrate the full data set using far fewer compute agents than the number of frequencies at which data are available. We give simulation results to show the feasibility of the proposed multiplexing scheme in simultaneously calibrating a full data set when a limited number of compute agents are available.
Shcherbakov, Alexandre S; Arellanes, Adan Omar
2017-04-20
We present a principally new acousto-optical cell providing an advanced wideband spectrum analysis of ultra-high frequency radio-wave signals. For the first time, we apply a recently developed approach with the tilt angle to a one-phonon non-collinear anomalous light scattering. In contrast to earlier cases, now one can exploit a regime with the fixed optical wavelength for processing a great number of acoustic frequencies simultaneously in the linear regime. The chosen rutile-crystal combines a moderate acoustic velocity with low acoustic attenuation and allows us wide-band data processing within GHz-frequency acoustic waves. We have created and experimentally tested a 6-cm aperture rutile-made acousto-optical cell providing the central frequency 2.0 GHz, frequency bandwidth ∼0.52 GHz with the frequency resolution about 68.3 kHz, and ∼7620 resolvable spots. A similar cell permits designing an advanced ultra-high-frequency arm within a recently developed multi-band radio-wave acousto-optical spectrometer for astrophysical studies. This spectrometer is intended to operate with a few parallel optical arms for processing the multi-frequency data flows within astrophysical observations. Keeping all the instrument's advantages of the previous schematic arrangement, now one can create the highest-frequency arm using the developed rutile-based acousto-optical cell. It permits optimizing the performances inherent in that arm via regulation of both the central frequency and the frequency bandwidth for spectrum analysis.
Radio frequency telemetry system for sensors and actuators
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor); Miranda, Felix A. (Inventor)
2003-01-01
The present invention discloses and teaches apparatus for combining Radio Frequency (RF) technology with novel micro-inductor antennas and signal processing circuits for RF telemetry of real time, measured data, from microelectromechanical system (MEMS) sensors, through electromagnetic coupling with a remote powering/receiving device. Such technology has many applications, but is especially useful in the biomedical area.
Radio Frequency Telemetry System for Sensors and Actuators
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor); Miranda, Felix A. (Inventor)
2003-01-01
The present invention discloses and teaches apparatus for combining Radio Frequency (RF) technology with novel micro-inductor antennas and signal processing circuits for RF telemetry of real time, measured data, from microelectromechanical system (MEMS) sensors, through electromagnetic coupling with a remote poweringheceiving device. Such technology has many applications, but is especially useful in the biomedical area.
Mathematical modeling of a radio-frequency path for IEEE 802.11ah based wireless sensor networks
NASA Astrophysics Data System (ADS)
Tyshchenko, Igor; Cherepanov, Alexander; Dmitrii, Vakhnin; Popova, Mariia
2017-09-01
This article discusses the process of creating the mathematical model of a radio-frequency path for an IEEE 802.11ah based wireless sensor networks using M atLab Simulink CAD tools. In addition, it describes occurring perturbing effects and determining the presence of a useful signal in the received mixture.
Wave optics-based LEO-LEO radio occultation retrieval
NASA Astrophysics Data System (ADS)
Benzon, Hans-Henrik; Høeg, Per
2016-06-01
This paper describes the theory for performing retrieval of radio occultations that use probing frequencies in the XK and KM band. Normally, radio occultations use frequencies in the L band, and GPS satellites are used as the transmitting source, and the occultation signals are received by a GPS receiver on board a Low Earth Orbit (LEO) satellite. The technique is based on the Doppler shift imposed, by the atmosphere, on the signal emitted from the GPS satellite. Two LEO satellites are assumed in the occultations discussed in this paper, and the retrieval is also dependent on the decrease in the signal amplitude caused by atmospheric absorption. The radio wave transmitter is placed on one of these satellites, while the receiver is placed on the other LEO satellite. One of the drawbacks of normal GPS-based radio occultations is that external information is needed to calculate some of the atmospheric products such as the correct water vapor content in the atmosphere. These limitations can be overcome when a proper selected range of high-frequency waves are used to probe the atmosphere. Probing frequencies close to the absorption line of water vapor have been included, thus allowing the retrieval of the water vapor content. Selecting the correct probing frequencies would make it possible to retrieve other information such as the content of ozone. The retrieval is performed through a number of processing steps which are based on the Full Spectrum Inversion (FSI) technique. The retrieval chain is therefore a wave optics-based retrieval chain, and it is therefore possible to process measurements that include multipath. In this paper simulated LEO to LEO radio occultations based on five different frequencies are used. The five frequencies are placed in the XK or KM frequency band. This new wave optics-based retrieval chain is used on a number of examples, and the retrieved atmospheric parameters are compared to the parameters from a global European Centre for Medium-Range Weather Forecasts analysis model. This model is used in a forward propagator that simulates the electromagnetic field amplitudes and phases at the receiver on board the LEO satellite. LEO-LEO cross-link radio occultations using high frequencies are a relatively new technique, and the possibilities and advantages of the technique still need to be investigated. The retrieval of this type of radio occultations is considerably more complicated than standard GPS to LEO radio occultations, because the attenuation of the probing radio waves is used in the retrieval and the atmospheric parameters are found using a least squares solver. The best algorithms and the number of probing frequencies that is economically viable must also be determined. This paper intends to answer some of these questions using end-to-end simulations.
NASA Astrophysics Data System (ADS)
Feng, L.; Vaulin, R.; Hewitt, J. N.; Remillard, R.; Kaplan, D. L.; Murphy, Tara; Kudryavtseva, N.; Hancock, P.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Gaensler, B. M.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.
2017-03-01
Many astronomical sources produce transient phenomena at radio frequencies, but the transient sky at low frequencies (<300 MHz) remains relatively unexplored. Blind surveys with new wide-field radio instruments are setting increasingly stringent limits on the transient surface density on various timescales. Although many of these instruments are limited by classical confusion noise from an ensemble of faint, unresolved sources, one can in principle detect transients below the classical confusion limit to the extent that the classical confusion noise is independent of time. We develop a technique for detecting radio transients that is based on temporal matched filters applied directly to time series of images, rather than relying on source-finding algorithms applied to individual images. This technique has well-defined statistical properties and is applicable to variable and transient searches for both confusion-limited and non-confusion-limited instruments. Using the Murchison Widefield Array as an example, we demonstrate that the technique works well on real data despite the presence of classical confusion noise, sidelobe confusion noise, and other systematic errors. We searched for transients lasting between 2 minutes and 3 months. We found no transients and set improved upper limits on the transient surface density at 182 MHz for flux densities between ˜20 and 200 mJy, providing the best limits to date for hour- and month-long transients.
Improved Radio-Frequency Magneto-Optical Trap of SrF Molecules.
Steinecker, Matthew H; McCarron, Daniel J; Zhu, Yuqi; DeMille, David
2016-11-18
We report the production of ultracold, trapped strontium monofluoride (SrF) molecules with number density and phase-space density significantly higher than previously achieved. These improvements are enabled by three distinct changes to our recently-demonstrated scheme for radio-frequency magneto-optical trapping of SrF: modification of the slowing laser beam geometry, addition of an optical pumping laser, and incorporation of a compression stage to the magneto-optical trap. With these improvements, we observe a trapped sample of SrF molecules at density 2.5×10 5 cm -3 and phase-space density 6×10 -14 , each a factor of 4 greater than in previous work. Under different experimental conditions, we observe trapping of up to 10 4 molecules, a factor of 5 greater than in previous work. Finally, by reducing the intensity of the applied trapping light, we observe molecular temperatures as low as 250 μK. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
First muon acceleration using a radio-frequency accelerator
NASA Astrophysics Data System (ADS)
Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.
2018-05-01
Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.
Project Explorer's unique experiments: Get Away Special #007
NASA Technical Reports Server (NTRS)
Henderson, A. J., Jr.
1986-01-01
The Project Explorer payload represents the first attempt at broadcasting digitized voice signals via a Space Shuttle flight on amateur radio frequencies. These amateur ham-radio frequencies will be transmitting real time data while the experiments are operating. Experiments 1, 2, and 3 represent the work of students ranging from materials processing to the science of biology. Experiment 1 will study the solidification of two hypereutectic alloys, lead-antimony and aluminum-copper. Experiment 2 will investigate the examination and growth of radish seeds in space. Experiment 3 will examine the electrochemical growth process of potassium tetrocyonoplatinate hydrate crystals and Experiment 4 involves amateur radio transmissions, monitoring and support of the entire Get Away Special (GAS) 007 payload.
Very High Frequency Radio Emissions Associated With the Production of Terrestrial Gamma-Ray Flashes
NASA Astrophysics Data System (ADS)
Lyu, Fanchao; Cummer, Steven A.; Krehbiel, Paul R.; Rison, William; Briggs, Michael S.; Cramer, Eric; Roberts, Oliver; Stanbro, Matthew
2018-02-01
Recent studies of the close association between terrestrial gamma-ray flashes (TGFs) production and simultaneous lightning processes have shown that many TGFs are produced during the initial leader of intracloud flashes and that some low-frequency (LF) radio emissions may directly come from TGF itself. Measurements of any simultaneous very high frequency (VHF) radio emissions would give important insight into any lightning leader dynamics that are associated with TGF generation, and thus, such measurements are needed. Here we report on coordinated observations of TGFs detected simultaneously by Fermi Gamma-ray Burst Monitor, two VHF lightning mapping arrays, and Duke ground-based LF radio sensors to investigate more on the close association between TGFs and LF and VHF radio emissions. Three TGFs are analyzed here and confirm previous findings on the close association between TGF generation and lightning processes and, for the first time, provide time-aligned measurements of the VHF radio signature within a few tens of microseconds of TGF generation. Strong VHF emissions were observed essentially simultaneously with two TGFs and within a few tens of microseconds of a third TGF. Equally importantly, the VHF measurement details indicate that the TGF-associated emissions are nonimpulsive and extended in time. We conclude that the TGF-producing process is at least sometimes closely associated with strong VHF emissions, and thus, there may be a link between the generation of TGFs and active lightning streamer dynamics.
A type IV burst associated with a coronal streamer disruption event
NASA Technical Reports Server (NTRS)
Kundu, M. R.
1987-01-01
A type IV burst was observed on February 17, 1985 with the Clark Lake Radio Observatory multifrequency radioheliograph operating in the frequency range 20-125 MHz. This burst was associated with a coronal streamer disruption event. From two-dimensional images produced at 50 MHz, evidence of a type II burst and a slow moving type IV burst are shown. The observations of the moving type IV burst suggests that a plasmoid containing energetic electrons can result from the disruption of a coronal streamer.
Digital approach to stabilizing optical frequency combs and beat notes of CW lasers
NASA Astrophysics Data System (ADS)
Čížek, Martin; Číp, Ondřej; Å míd, Radek; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef
2013-10-01
In cases when it is necessary to lock optical frequencies generated by an optical frequency comb to a precise radio frequency (RF) standard (GPS-disciplined oscillator, H-maser, etc.) the usual practice is to implement phase and frequency-locked loops. Such system takes the signal generated by the RF standard (usually 10 MHz or 100 MHz) as a reference and stabilizes the repetition and offset frequencies of the comb contained in the RF output of the f-2f interferometer. These control loops are usually built around analog electronic circuits processing the output signals from photo detectors. This results in transferring the stability of the standard from RF to optical frequency domain. The presented work describes a different approach based on digital signal processing and software-defined radio algorithms used for processing the f-2f and beat-note signals. Several applications of digital phase and frequency locks to a RF standard are demonstrated: the repetition (frep) and offset frequency (fceo) of the comb, and the frequency of the beat note between a CW laser source and a single component of the optical frequency comb spectrum.
USDA-ARS?s Scientific Manuscript database
The need for a nonthermal intervention technology that can achieve microbial safety without altering nutritional quality of liquid foods led to the development of the radio frequency electric fields (RFEF) process. Previously, we documented formation of surface blebs on Escherichia coli cells treate...
NASA Astrophysics Data System (ADS)
Ide, Satoshi; Maury, Julie
2018-04-01
Tectonic tremors, low-frequency earthquakes, very low-frequency earthquakes, and slow slip events are all regarded as components of broadband slow earthquakes, which can be modeled as a stochastic process using Brownian motion. Here we show that the Brownian slow earthquake model provides theoretical relationships among the seismic moment, seismic energy, and source duration of slow earthquakes and that this model explains various estimates of these quantities in three major subduction zones: Japan, Cascadia, and Mexico. While the estimates for these three regions are similar at the seismological frequencies, the seismic moment rates are significantly different in the geodetic observation. This difference is ascribed to the difference in the characteristic times of the Brownian slow earthquake model, which is controlled by the width of the source area. We also show that the model can include non-Gaussian fluctuations, which better explains recent findings of a near-constant source duration for low-frequency earthquake families.
Brébion, Gildas; David, Anthony S; Bressan, Rodrigo A; Pilowsky, Lyn S
2007-01-01
The role of various types of slowing of processing speed, as well as the role of depressed mood, on each stage of verbal memory functioning in patients diagnosed with schizophrenia was investigated. Mixed lists of high- and low-frequency words were presented, and immediate and delayed free recall and recognition were required. Two levels of encoding were studied by contrasting the relatively automatic encoding of the high-frequency words and the more effortful encoding of the low-frequency words. Storage was studied by contrasting immediate and delayed recall. Retrieval was studied by contrasting free recall and recognition. Three tests of motor and cognitive processing speed were administered as well. Regression analyses involving the three processing speed measures revealed that cognitive speed was the only predictor of the recall and recognition of the low-frequency words. Furthermore, slowing in cognitive speed accounted for the deficit in recall and recognition of the low-frequency words relative to a healthy control group. Depressed mood was significantly associated with recognition of the low-frequency words. Neither processing speed nor depressed mood was associated with storage efficiency. It is concluded that both cognitive speed slowing and depressed mood impact on effortful encoding processes.
2017-08-01
filtering, correlation and radio- astronomy . In this report approximate transforms that closely follow the DFT have been studied and found. The approximate...communications, data networks, sensor networks, cognitive radio, radar and beamforming, imaging, filtering, correlation and radio- astronomy . FFTs efficiently...public release; distribution is unlimited. 4.3 Digital Hardware and Design Architectures Collaboration for Astronomy Signal Processing and Electronics
Slow Earthquakes in the Microseism Frequency Band (0.1-1.0 Hz) off Kii Peninsula, Japan
NASA Astrophysics Data System (ADS)
Kaneko, Lisa; Ide, Satoshi; Nakano, Masaru
2018-03-01
It is difficult to detect the signal of slow deformation in the 0.1-1.0 Hz frequency band between tectonic tremors and very low frequency events, where microseism noise is dominant. Here we provide the first evidence of slow earthquakes in this microseism band, observed by the DONET1 ocean bottom seismometer network, after an Mw 5.8 earthquake off Kii Peninsula, Japan, on 1 April 2016. The signals in the microseism band were accompanied by signals from active tremors, very low frequency events, and slow slip events that radiated from the shallow plate interface. We report the detection and locations of events across five frequency bands, including the microseism band. The locations and timing of the events estimated in the different frequency bands are similar, suggesting that these signals radiated from a common source. The observed variations in detectability for each band highlight the complexity of the slow earthquake process.
Large-N correlator systems for low frequency radio astronomy
NASA Astrophysics Data System (ADS)
Foster, Griffin
Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the development of larger correlator systems, which in turn allows for improvements in sensitivity and resolution. This requires new calibration techniques which account for a broad range of systematic effects.
Radio frequency power load and associated method
NASA Technical Reports Server (NTRS)
Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)
2010-01-01
A radio frequency power load and associated method. A radio frequency power load apparatus includes a container and a fluid having an ion source therein, the fluid being contained in the container. Two conductors are immersed in the fluid. A radio frequency transmission system includes a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus includes a fluid having an ion source therein, and two conductors immersed in the fluid. A method of dissipating power generated by a radio frequency transmission system includes the steps of: immersing two conductors of a radio frequency power load apparatus in a fluid having an ion source therein; and connecting the apparatus to an amplifier of the transmission system.
2015-08-01
and (b) physical property data collection Following film deposition (via PLD or radio frequency magnetron sputtering), to prevent unwanted...carried out using an in-house radio frequency induction hot press under vacuum at ~1 mTorr and temperatures of 650, 750 and 850 °C. Sintering time was 2...tape thickness 23 µm, lamination stack thickness 11 mm). Simulated magnetic flux density inside the core was ~0.1 T, and operating frequency was
2015-12-01
Development, Test, and Evaluation RFID Radio Frequency Identification SEP Supporting Execution Plan Strategy Strategy to Improve Asset...migration of active Radio Frequency Identification ( RFID )19 from a proprietary communication standard protocol to an international standard to...technologies enabling hands-off processing of materiel deploying through the Defense Transportation System. Materiel marked with RFID tags may be remotely
Advanced Image Processing Techniques for Maximum Information Recovery
2006-11-01
0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision...available information from an image. Some radio frequency and optical sensors collect large-scale sets of spatial imagery data whose content is often...Some radio frequency and optical sensors collect large- scale sets of spatial imagery data whose content is often obscured by fog, clouds, foliage
Radio frequency interference mitigation using deep convolutional neural networks
NASA Astrophysics Data System (ADS)
Akeret, J.; Chang, C.; Lucchi, A.; Refregier, A.
2017-01-01
We propose a novel approach for mitigating radio frequency interference (RFI) signals in radio data using the latest advances in deep learning. We employ a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. We train and assess the performance of this network using the HIDE &SEEK radio data simulation and processing packages, as well as early Science Verification data acquired with the 7m single-dish telescope at the Bleien Observatory. We find that our U-Net implementation is showing competitive accuracy to classical RFI mitigation algorithms such as SEEK's SUMTHRESHOLD implementation. We publish our U-Net software package on GitHub under GPLv3 license.
14 CFR 417.417 - Propellants and explosives.
Code of Federal Regulations, 2012 CFR
2012-01-01
... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and establish radio frequency radiation power limits or radio frequency radiation exclusion areas as required by...
14 CFR 417.417 - Propellants and explosives.
Code of Federal Regulations, 2013 CFR
2013-01-01
... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and establish radio frequency radiation power limits or radio frequency radiation exclusion areas as required by...
14 CFR 417.417 - Propellants and explosives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and establish radio frequency radiation power limits or radio frequency radiation exclusion areas as required by...
14 CFR 417.417 - Propellants and explosives.
Code of Federal Regulations, 2014 CFR
2014-01-01
... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and establish radio frequency radiation power limits or radio frequency radiation exclusion areas as required by...
Application of the GNU Radio platform in the multistatic radar
NASA Astrophysics Data System (ADS)
Szlachetko, Boguslaw; Lewandowski, Andrzej
2009-06-01
This document presents the application of the Software Defined Radio-based platform in the multistatic radar. This platform consists of four-sensor linear antenna, Universal Software Radio Peripheral (USRP) hardware (radio frequency frontend) and GNU-Radio PC software. The paper provides information about architecture of digital signal processing performed by USRP's FPGA (digital down converting blocks) and PC host (implementation of the multichannel digital beamforming). The preliminary results of the signal recording performed by our experimental platform are presented.
NASA Astrophysics Data System (ADS)
Ibrahim, M.; Pardi, C. I.; Brown, T. W. C.; McDonald, P. J.
2018-02-01
Improvement in the signal-to-noise ratio of Nuclear Magnetic Resonance (NMR) systems may be achieved either by increasing the signal amplitude or by decreasing the noise. The noise has multiple origins - not all of which are strictly "noise": incoherent thermal noise originating in the probe and pre-amplifiers, probe ring down or acoustic noise and coherent externally broadcast radio frequency transmissions. The last cannot always be shielded in open access experiments. In this paper, we show that pulsed, low radio-frequency data communications are a significant source of broadcast interference. We explore two signal processing methods of de-noising short T2∗ NMR experiments corrupted by these communications: Linear Predictive Coding (LPC) and the Discrete Wavelet Transform (DWT). Results are shown for numerical simulations and experiments conducted under controlled conditions with pseudo radio frequency interference. We show that both the LPC and DWT methods have merit.
NASA Astrophysics Data System (ADS)
Guo, Xiaohui; Huang, Ying; Wu, Can; Mao, Leidong; Wang, Yue; Xie, Zhicheng; Liu, Caixia; Zhang, Yugang
2017-10-01
We demonstrated a flexible and reversibly deformable radio-frequency antenna based on SWCNTs/PANI/Lycra conductive fabric and semipermeable film for wireless wearable communications applications. The conductive fabric fabricated by using the ‘dip and dry’ process exhibits good flexibility, electrical stability, stretchability and mechanical properties, and a high electrical conductivity (with low sheet resistance of ˜35 Ω/sq) was obtained based on the SWCNTs/PANI synergistic conductive network. The morphology of the semipermeable film was investigated to further illustrate the waterproof breathable features. Meanwhile, the modeling, fabrication procedure and radiating properties of the radio-frequency textile antenna worked at 2.45 GHz were systematically illustrated. The measured reflection coefficient, VSWR and the -10 dB bandwidth is ˜-18.6 dB, 1.58 and ˜270 MHz respectively, which agreed well with the simulation results. Furthermore, the results indicate that the design methodology for the radio-frequency textile antenna could have promising applications in flexible and reversibly deformable antennas for wearable wireless communications systems.
A radio-frequency sheath model for complex waveforms
NASA Astrophysics Data System (ADS)
Turner, M. M.; Chabert, P.
2014-04-01
Plasma sheaths driven by radio-frequency voltages occur in contexts ranging from plasma processing to magnetically confined fusion experiments. An analytical understanding of such sheaths is therefore important, both intrinsically and as an element in more elaborate theoretical structures. Radio-frequency sheaths are commonly excited by highly anharmonic waveforms, but no analytical model exists for this general case. We present a mathematically simple sheath model that is in good agreement with earlier models for single frequency excitation, yet can be solved for arbitrary excitation waveforms. As examples, we discuss dual-frequency and pulse-like waveforms. The model employs the ansatz that the time-averaged electron density is a constant fraction of the ion density. In the cases we discuss, the error introduced by this approximation is small, and in general it can be quantified through an internal consistency condition of the model. This simple and accurate model is likely to have wide application.
Multibeam Gpu Transient Pipeline for the Medicina BEST-2 Array
NASA Astrophysics Data System (ADS)
Magro, A.; Hickish, J.; Adami, K. Z.
2013-09-01
Radio transient discovery using next generation radio telescopes will pose several digital signal processing and data transfer challenges, requiring specialized high-performance backends. Several accelerator technologies are being considered as prototyping platforms, including Graphics Processing Units (GPUs). In this paper we present a real-time pipeline prototype capable of processing multiple beams concurrently, performing Radio Frequency Interference (RFI) rejection through thresholding, correcting for the delay in signal arrival times across the frequency band using brute-force dedispersion, event detection and clustering, and finally candidate filtering, with the capability of persisting data buffers containing interesting signals to disk. This setup was deployed at the BEST-2 SKA pathfinder in Medicina, Italy, where several benchmarks and test observations of astrophysical transients were conducted. These tests show that on the deployed hardware eight 20 MHz beams can be processed simultaneously for 640 Dispersion Measure (DM) values. Furthermore, the clustering and candidate filtering algorithms employed prove to be good candidates for online event detection techniques. The number of beams which can be processed increases proportionally to the number of servers deployed and number of GPUs, making it a viable architecture for current and future radio telescopes.
Characteristics of type III exciters derived from low frequency radio observations
NASA Technical Reports Server (NTRS)
Evans, L. G.; Fainberg, J.; Stone, R. G.
1973-01-01
Low-frequency radio observations (2.8 MHz to 67 kHz) from the RAE-1 and IMP-6 satellites allow the tracking of type III solar burst exciters out to large distances from the sun (of the order of 1 AU). A study of the interaction processes between the exciter and the interplanetary medium was made using the time-intensity profiles of the radio emission. The change in exciter length with distance from the sun, and the resulting exciter velocity dispersion which can be deduced from this change are investigated. From detailed measurements on 35 simple bursts it is found that the exciter length increases at a faster rate than a constant velocity dispersion would give. The damping of the radio emission is also investigated, and it is concluded that some current theories of the damping mechanism give results which are not consistent with the low-frequency observations.
The influence of polarization on millimeter wave propagation through rain. [radio signals
NASA Technical Reports Server (NTRS)
Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.
1973-01-01
The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.
NASA Astrophysics Data System (ADS)
Ivo, Penn
2004-04-01
Bluetooth is the new emerging technology for wireless communication. It can be used to connect almost any device to another device. The traditional example is to link a Personal Digital Assistant (PDA) or a laptop to a mobile phone. That way you can easily take remote connections with your PDA or laptop without getting your mobile phone from your pocket or messing around with cables. A Class 3 Bluetooth device has range of 0,1 - 10 meters. The architecture of Bluetooth is formed by the radio, the base frequency part and the Link Manager. Bluetooth uses the radio range of 2.45 GHz. The theoretical maximum bandwidth is 1 Mb/s, which is slowed down a bit by Forward Error Correction (FEC). Bluetooth specification designates the frequency hopping to be implemented with Gaussian Frequency Shift Keying (GFSK). The base frequency part of the Bluetooth architecture uses a combination of circuit and packet switching technologies. Bluetooth can support either one asynchronous data channel and up to three simultaneous synchronous speech channels, or one channel that transfers asynchronous data and synchronous speech simultaneously. The Link Manager is an essential part of the Bluetooth architecture. It uses Link Manager Protocol (LMP) to configure, authenticate and handle the connections between Bluetooth devices. Several Bluetooth devices can form an ad hoc network. In these piconets, one of the Bluetooth devices will act as a master and the others are slaves. The master sets the frequency-hopping behavior of the piconet. It is also possible to connect up to 10 piconets to each other to form so-called scatternets. Bluetooth has been designed to operate in noisy radio frequency environments, and uses a fast acknowledgement and frequency-hopping scheme to make the link robust, communication-wise. Bluetooth radio modules avoid interference from other signals by hopping to a new frequency after transmitting or receiving a packet. Compared with other systems operating in the same frequency band, the Bluetooth radio typically hops faster and uses shorter packets. This is because short packages and fast hopping limit the impact of microwave ovens and other sources of disturbances. Use of Forward Error Correction (FEC) limits the impact of random noise on long-distance links. Bluetooth transmissions are secure in a business and home environment. Bluetooth has built in sufficient encryption and authentication and is thus very secure in any environment. In addition to this, a frequency-hopping scheme with 1600 hops/sec. is employed. This is far quicker than any other competing system. This, together with an automatic output power adaption to reduce the range exactly to requirement, makes the system extremely difficult to eavesdrop. Information Integrity in Bluetooth has these components: Random Number Generation, Encryption, Encryption Key Management and Authentication.
47 CFR 90.615 - Individual channels available in the General Category in 806-824/851-869 MHz band.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations... Governing the Processing of Applications and the Selection and Assignment of Frequencies for Use in the 806...
Amateur Radio Flash Mob: Citizen Radio Science Response to a Solar Eclipse
NASA Astrophysics Data System (ADS)
Hirsch, M.; Frissell, N. A.
2017-12-01
Over a decade's worth of scientifically useful data from radio amateurs worldwide is publicly available, with momentum building in science exploitation of this data. For the 2017 solar eclipse, a "flash mob" of radio amateurs were organized in the form of a contest. Licensed radio amateurs transmitted on specific frequency bands, with awards given for a new generation of raw data collection allowing sophisticated post-processing of raw ADC data, to extract quantities such as Doppler shift due to ionospheric lifting for example. We discuss transitioning science priorities to gamified scoring procedures incentivizing the public to submit the highest quality and quantity of archival raw radio science data. The choices of frequency bands to encourage in the face of regulatory limitations is discussed. An update on initial field experiments using wideband experimental modulation specially licensed yet receivable by radio amateurs for high spatiotemporal resolution imaging of the ionosphere is given. The cost of this equipment is less than $500 per node, comparing favorably to legacy oblique ionospheric sounding networks.
Radio Frequency Power Load and Associated Method
NASA Technical Reports Server (NTRS)
Srinivasan, V. Karthik (Inventor); Freestone, Todd M. (Inventor); Sims, William Herbert, III (Inventor)
2014-01-01
A radio frequency power load and associated method. A radio frequency power load apparatus may include a container with an ionized fluid therein. The apparatus may include one conductor immersed in a fluid and another conductor electrically connected to the container. A radio frequency transmission system may include a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus may include a fluid having an ion source therein, one conductor immersed in a fluid, and another conductor electrically connected to the container. A method of dissipating power generated by a radio frequency transmission system may include constructing a waveguide with ionized fluid in a container and connecting the waveguide to an amplifier of the transmission system.
Radio Frequency Interference Detection using Machine Learning.
NASA Astrophysics Data System (ADS)
Mosiane, Olorato; Oozeer, Nadeem; Aniyan, Arun; Bassett, Bruce A.
2017-05-01
Radio frequency interference (RFI) has plagued radio astronomy which potentially might be as bad or worse by the time the Square Kilometre Array (SKA) comes up. RFI can be either internal (generated by instruments) or external that originates from intentional or unintentional radio emission generated by man. With the huge amount of data that will be available with up coming radio telescopes, an automated aproach will be required to detect RFI. In this paper to try automate this process we present the result of applying machine learning techniques to cross match RFI from the Karoo Array Telescope (KAT-7) data. We found that not all the features selected to characterise RFI are always important. We further investigated 3 machine learning techniques and conclude that the Random forest classifier performs with a 98% Area Under Curve and 91% recall in detecting RFI.
2014-09-18
radios in a cognitive radio network using a radio frequency fingerprinting based method. In IEEE International Conference on Communications (ICC...IMPROVEDWIRELESS SECURITY THROUGH PHYSICAL LAYER PROTOCOL MANIPULATION AND RADIO FREQUENCY FINGERPRINTING DISSERTATION Benjamin W. Ramsey, Captain...PHYSICAL LAYER PROTOCOL MANIPULATION AND RADIO FREQUENCY FINGERPRINTING DISSERTATION Presented to the Faculty Graduate School of Engineering and
Separating Nightside Interplanetary and Ionospheric Scintillation with LOFAR
NASA Astrophysics Data System (ADS)
Fallows, R. A.; Bisi, M. M.; Forte, B.; Ulich, Th.; Konovalenko, A. A.; Mann, G.; Vocks, C.
2016-09-01
Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Kaplan et al. presenting observations using the Murchison Widefield Array (MWA) reports evidence of nightside IPS on two radio sources within their field of view. However, the low time cadence of 2 s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To check this assumption, this Letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out. These LOFAR observations represent the first of nightside IPS using LOFAR, with solar wind speeds consistent with a slow solar wind stream in one observation and a coronal mass ejection expected to be observed in another.
Srivastava, Viranjay M
2015-01-01
In the present technological expansion, the radio frequency integrated circuits in the wireless communication technologies became useful because of the replacement of increasing number of functions, traditional hardware components by modern digital signal processing. The carrier frequencies used for communication systems, now a day, shifted toward the microwave regime. The signal processing for the multiple inputs multiple output wireless communication system using the Metal- Oxide-Semiconductor Field-Effect-Transistor (MOSFET) has been done a lot. In this research the signal processing with help of nano-scaled Cylindrical Surrounding Double Gate (CSDG) MOSFET by means of Double- Pole Four-Throw Radio-Frequency (DP4T RF) switch, in terms of Insertion loss, Isolation, Reverse isolation and Inter modulation have been analyzed. In addition to this a channel model has been presented. Here, we also discussed some patents relevant to the topic.
Intelligent cognitive radio jamming - a game-theoretical approach
NASA Astrophysics Data System (ADS)
Dabcevic, Kresimir; Betancourt, Alejandro; Marcenaro, Lucio; Regazzoni, Carlo S.
2014-12-01
Cognitive radio (CR) promises to be a solution for the spectrum underutilization problems. However, security issues pertaining to cognitive radio technology are still an understudied topic. One of the prevailing such issues are intelligent radio frequency (RF) jamming attacks, where adversaries are able to exploit on-the-fly reconfigurability potentials and learning mechanisms of cognitive radios in order to devise and deploy advanced jamming tactics. In this paper, we use a game-theoretical approach to analyze jamming/anti-jamming behavior between cognitive radio systems. A non-zero-sum game with incomplete information on an opponent's strategy and payoff is modelled as an extension of Markov decision process (MDP). Learning algorithms based on adaptive payoff play and fictitious play are considered. A combination of frequency hopping and power alteration is deployed as an anti-jamming scheme. A real-life software-defined radio (SDR) platform is used in order to perform measurements useful for quantifying the jamming impacts, as well as to infer relevant hardware-related properties. Results of these measurements are then used as parameters for the modelled jamming/anti-jamming game and are compared to the Nash equilibrium of the game. Simulation results indicate, among other, the benefit provided to the jammer when it is employed with the spectrum sensing algorithm in proactive frequency hopping and power alteration schemes.
Transient dynamics of secondary radiation from an HF pumped magnetized space plasma
NASA Astrophysics Data System (ADS)
Norin, L.; Grach, S. M.; Thidé, B.; Sergeev, E. N.; Leyser, T. B.
2007-09-01
In order to systematically analyze the transient wave and radiation processes that are excited when a high-frequency (HF) radio wave is injected into a magnetized space plasma, we have measured the secondary radiation, or stimulated electromagnetic emission (SEE), from the ionosphere, preconditioned such that geomagnetic field-aligned plasma irregularities are already present. The transient dynamics experiments were made using a duty cycle of the HF radio wave of 200 ms (180 ms on and 20 ms off) and 100 ms (80 ms on and 20 ms off) for various frequencies near the fifth harmonic of the local ionospheric electron cyclotron frequency. Within the first 10 ms after the radio pulse turn-on, frequency downshifted structures of the SEE exhibit an overshoot with a maximum at 3 ms < t < 8 ms, whereas the upshifted spectral components do not exhibit this feature. The relative magnitude of the overshoot is strongly dependent on the frequency offset of the pump from the harmonic of the electron cyclotron frequency. A transient blue-shifted frequency component is identified. This component is upshifted from the pump by 14 kHz < Δ f < 55 kHz and exists only within the first 10 ms after the radio pulse turn-on. On a longer time scale we analyze the amplitude modulation, or ``ringing,'' of the reflected radio wave, (also known as ``quasi-periodic oscillations'' or ``spikes''). The ringing has a frequency of the order 15-20 Hz and we show that this phenomenon is also present in the SEE sidebands and is synchronized with the ringing of the reflected HF wave itself.
FPGA-based RF spectrum merging and adaptive hopset selection
NASA Astrophysics Data System (ADS)
McLean, R. K.; Flatley, B. N.; Silvius, M. D.; Hopkinson, K. M.
The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many radio devices are confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within a reconfigurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this way, the radio is able to actively sense the RF spectrum, decide, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. In this paper, we present a novel solution for merging many distributed RF spectrum maps into one map and for subsequently creating an adaptive hopset. We also provide an example of our system in operation, the result of which is a pseudorandom adaptive hopset. The paper then presents a novel hardware design for the frequency merger and adaptive hopset selector, both of which are written in VHDL and implemented as a custom IP core on an FPGA-based embedded system using the Xilinx Embedded Development Kit (EDK) software tool. The design of the custom IP core is optimized for area, and it can process a high-volume digital input via a low-latency circuit architecture. The complete embedded system includes the Xilinx PowerPC microprocessor, UART serial connection, and compact flash memory card IP cores, and our custom map merging/hopset selection IP core, all of which are targeted to the Virtex IV FPGA. This system is then incorporated into a cognitive radio prototype on a Rice University Wireless Open Access Research Platform (WARP) reconfigurable radio.
Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone.
Nakano, Masaru; Hori, Takane; Araki, Eiichiro; Kodaira, Shuichi; Ide, Satoshi
2018-03-14
Recent studies of slow earthquakes along plate boundaries have shown that tectonic tremor, low-frequency earthquakes, very-low-frequency events (VLFEs), and slow-slip events (SSEs) often accompany each other and appear to share common source faults. However, the source processes of slow events occurring in the shallow part of plate boundaries are not well known because seismic observations have been limited to land-based stations, which offer poor resolution beneath offshore plate boundaries. Here we use data obtained from seafloor observation networks in the Nankai trough, southwest of Japan, to investigate shallow VLFEs in detail. Coincident with the VLFE activity, signals indicative of shallow SSEs were detected by geodetic observations at seafloor borehole observatories in the same region. We find that the shallow VLFEs and SSEs share common source regions and almost identical time histories of moment release. We conclude that these slow events arise from the same fault slip and that VLFEs represent relatively high-frequency fluctuations of slip during SSEs.
Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, K.; Zhang, Z. D.; Qian, L.
2016-02-08
The thermal and electrical properties including the permittivity spectra in radio frequency region were investigated for copper/yttrium iron garnet (Cu/YIG) composites. Interestingly, the percolation behaviors in electrical and thermal conductivity were obtained due to the formation of copper particles' networks. Beyond the electrical percolation threshold, negative permittivity was observed and plasmon frequency was reduced by several orders of magnitude. With the increase in copper content, the thermal conductivity was gradually increased; meanwhile, the phonon scattering effect and thermal resistance get enhanced, so the rate of increase in thermal conductivity gradually slows down. Hopefully, Cu/YIG composites with tunable electrical and thermalmore » properties have great potentials for electromagnetic interference shielding and electromagnetic wave attenuation.« less
Radio Observations of the Ionosphere From an Imaging Array and a CubeSat
NASA Astrophysics Data System (ADS)
Isham, B.; Gustavsson, B.; Bullett, T. W.; Bergman, J. E. S.; Rincón-Charris, A.; Bruhn, F.; Funk, P.
2017-12-01
The ionosphere is a source of many radio emissions in the various low-frequency, medium-frequency, and high-frequency bands (0 to 30 MHz). In addition to natural radio emissions, artificial emissions can be stimulated using high-power radiowave ionospheric modification facilities. Two complementary projects are underway for the purpose of improving our knowledge of the processes of radio emissions from the ionosphere. One project is the Aguadilla radio array, located in northwestern Puerto Rico. The Aguadilla array is intended to produce 2 to 25 MHz radio images of the ionosphere, as well as to perform bistatic radar imaging of the ionosphere over Puerto Rico. The array will consist of multiple antenna elements, each of which is a single active (electromagnetically short) crossed electric dipole. The elements are arranged within a roughly 200 by 300-meter core array, in a semi-random pattern providing an optimal distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. In addition, several elements are arranged in a partial ring around the central core, providing a roughly four times expanded region in u-v space for improved image resolution and quality. Phase is maintained via cabled connections to a central location. A remote array is also being developed, in which phase is maintained between elements by through the use of GPS-disciplined rubidium clocks. The other project involves the GimmeRF radio instrument, designed for 0.3 to 30 MHz vector observation of the radio electric field, and planned for launch in 2020 on a CubeSat. The data rate that can be sustained by GimmeRF far exceeds any available communication strategy. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. Radio images recorded by the radio array from below the ionosphere can be directly compared with the radio data received by GimmeRF in the topside ionosphere, with the goal of better understanding the geometry and therefore the mechanisms of the radio emission processes.
Radio-Frequency Applications for Food Processing and Safety.
Jiao, Yang; Tang, Juming; Wang, Yifen; Koral, Tony L
2018-03-25
Radio-frequency (RF) heating, as a thermal-processing technology, has been extending its applications in the food industry. Although RF has shown some unique advantages over conventional methods in industrial drying and frozen food thawing, more research is needed to make it applicable for food safety applications because of its complex heating mechanism. This review provides comprehensive information regarding RF-heating history, mechanism, fundamentals, and applications that have already been fully developed or are still under research. The application of mathematical modeling as a useful tool in RF food processing is also reviewed in detail. At the end of the review, we summarize the active research groups in the RF food thermal-processing field, and address the current problems that still need to be overcome.
RF stabilization of plasma instabilities: a note on physical mechanism
NASA Astrophysics Data System (ADS)
Sen, S.; Martinell, J.; Imadera, K.; Kishimoto, Y.; Vahala, G.
2018-02-01
In a series of recent works, we have developed models including realistic spatial profiles of both flow and radio-frequency-induced ponderomotive force. With these inclusions, the picture of stability of various plasma and fluid instabilities is expected to be changed drastically with ground-breaking consequences. The inhomogeneous parallel flow and the radio-frequency waves can actually stabilize turbulence. This is different from the prevalent notion that both parallel flow shear and radio-frequency waves are responsible for the excitation (destabilization) of plasma turbulence. This model thus aims to open-up new channels and provide a major breakthrough in our knowledge of plasma and fluid turbulence and its consequent roles in energy, space and processing technology. In this short note, we elucidate the physical mechanism behind this novel observation.
Searching for Single Pulses Using Heimdall
NASA Astrophysics Data System (ADS)
Walsh, Gregory; Lynch, Ryan
2018-01-01
In radio pulsar surveys, the interstellar medium causes a frequency dependent dispersive delay of a pulsed signal across the observing band. If not corrected, this delay substantially lowers S/N and makes most pulses undetectable. The delay is proportional to an unknown dispersion measure (DM), which must be searched over with many trial values. A number of new, GPU-accelerated codes are now available to optimize this dedispersion task, and to search for transient pulsed radio emission. We report on the use of Heimdall, one such GPU-accelerated tree dedispersion utility, to search for transient radio sources in a Green Bank Telescope survey of the Cygnus Region and North Galactic Plane. The survey is carried out at central frequency of 820 MHz with a goal of finding Fast Radio Bursts, Rotating Radio Transients, young pulsars, and millisecond pulsars. We describe the the survey, data processing pipeline, and follow-up of candidate sources.
Frame Decoder for Consultative Committee for Space Data Systems (CCSDS)
NASA Technical Reports Server (NTRS)
Reyes, Miguel A. De Jesus
2014-01-01
GNU Radio is a free and open source development toolkit that provides signal processing to implement software radios. It can be used with low-cost external RF hardware to create software defined radios, or without hardware in a simulation-like environment. GNU Radio applications are primarily written in Python and C++. The Universal Software Radio Peripheral (USRP) is a computer-hosted software radio designed by Ettus Research. The USRP connects to a host computer via high-speed Gigabit Ethernet. Using the open source Universal Hardware Driver (UHD), we can run GNU Radio applications using the USRP. An SDR is a "radio in which some or all physical layer functions are software defined"(IEEE Definition). A radio is any kind of device that wirelessly transmits or receives radio frequency (RF) signals in the radio frequency. An SDR is a radio communication system where components that have been typically implemented in hardware are implemented in software. GNU Radio has a generic packet decoder block that is not optimized for CCSDS frames. Using this generic packet decoder will add bytes to the CCSDS frames and will not permit for bit error correction using Reed-Solomon. The CCSDS frames consist of 256 bytes, including a 32-bit sync marker (0x1ACFFC1D). This frames are generated by the Space Data Processor and GNU Radio will perform the modulation and framing operations, including frame synchronization.
Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...
2014-09-17
Aims. We report amongst more than fifty blazars detected in very high energy (VHE, E> 100 GeV) γ rays, only three belong to the subclass of flat spectrum radio quasars (FSRQs). The detection of FSRQs in the VHE range is challenging, mainly because of their soft spectra in the GeV-TeV regime. MAGIC observed PKS 1510-089 (z = 0.36) starting 2012 February 3 until April 3 during a high activity state in the high energy (HE, E> 100 MeV) γ-ray band observed by AGILE and Fermi. MAGIC observations result in the detection of a source with significance of 6.0 standard deviationsmore » (σ). We study the multi-frequency behaviour of the source at the epoch of MAGIC observation, collecting quasi-simultaneous data at radio and optical (GASP-WEBT and F-Gamma collaborations, REM, Steward, Perkins, Liverpool, OVRO, and VLBA telescopes), X-ray (Swift satellite), and HE γ-ray frequencies. Methods. We study the VHE γ-ray emission, together with the multi-frequency light curves, 43 GHz radio maps, and spectral energy distribution (SED) of the source. The quasi-simultaneous multi-frequency SED from the millimetre radio band to VHE γ rays is modelled with a one-zone inverse Compton model. We study two different origins of the seed photons for the inverse Compton scattering, namely the infrared torus and a slow sheath surrounding the jet around the Very Long Baseline Array (VLBA) core. Results. We find that the VHE γ-ray emission detected from PKS 1510-089 in 2012 February-April agrees with the previous VHE observations of the source from 2009 March-April. We find no statistically significant variability during the MAGIC observations on daily, weekly, or monthly time scales, while the other two known VHE FSRQs (3C 279 and PKS 1222+216) have shown daily scale to sub-hour variability. The γ-ray SED combining AGILE, Fermi and MAGIC data joins smoothly and shows no hint of a break. The multi-frequency light curves suggest a common origin for the millimetre radio and HE γ-ray emission, and the HE γ-ray flaring starts when the new component is ejected from the 43 GHz VLBA core and the studied SED models fit the data well. However, the fast HE γ-ray variability requires that within the modelled large emitting region, more compact regions must exist. Lastly, we suggest that these observed signatures would be most naturally explained by a turbulent plasma flowing at a relativistic speed down the jet and crossing a standing conical shock.« less
Diamond deposition using a planar radio frequency inductively coupled plasma
NASA Astrophysics Data System (ADS)
Bozeman, S. P.; Tucker, D. A.; Stoner, B. R.; Glass, J. T.; Hooke, W. M.
1995-06-01
A planar radio frequency inductively coupled plasma has been used to deposit diamond onto scratched silicon. This plasma source has been developed recently for use in large area semiconductor processing and holds promise as a method for scale up of diamond growth reactors. Deposition occurs in an annulus which coincides with the area of most intense optical emission from the plasma. Well-faceted diamond particles are produced when the substrate is immersed in the plasma.
Radio-frequency capacitive discharge with flowing liquid electrodes at reduced gas pressures
NASA Astrophysics Data System (ADS)
Gaisin, Al. F.; Son, E. E.; Petryakov, S. Yu.
2017-07-01
Results are presented from experimental studies of the electrophysical and spectral characteristics of the low-temperature plasma of a radio-frequency capacitive discharge excited between two flowing liquid electrodes at gas pressures of 103-105 Pa. The plasma composition, the electron density, and the vibrational and rotational temperatures of gas molecules are estimated. The types and shapes of discharge are described, and the thermal and gas-hydrodynamic processes in the discharge zone are analyzed.
In Situ Detection of Strong Langmuir Turbulence Processes in Solar Type III Radio Bursts
NASA Technical Reports Server (NTRS)
Golla, Thejappa; Macdowall, Robert J.; Bergamo, M.
2012-01-01
The high time resolution observations obtained by the WAVES experiment of the STEREO spacecraft in solar type III radio bursts show that Langmuir waves often occur as intense localized wave packets. These wave packets are characterized by short durations of only a few ms and peak intensities, which well exceed the supersonic modulational instability (MI) thresholds. These timescales and peak intensities satisfy the criterion of the solitons collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets consist of primary spectral peaks corresponding to beam-resonant Langmuir waves, two or more sidebands corresponding to down-shifted and up-shifted daughter Langmuir waves, and low frequency enhancements below a few hundred Hz corresponding to daughter ion sound waves. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the modulational instability (MI). Moreover, the tricoherences, computed using trispectral analysis techniques show that these spectral components are coupled to each other with a high degree of coherency as expected of the MI type of four wave interactions. The high intensities, short scale lengths, sideband spectral structures and low frequency spectral enhancements and, high levels of tricoherences amongst the spectral components of these wave packets provide unambiguous evidence for the supersonic MI and related strong turbulence processes in type III radio bursts. The implication of these observations include: (1) the MI and related strong turbulence processes often occur in type III source regions, (2) the strong turbulence processes probably play very important roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation at the fundamental and second harmonic of the electron plasma frequency, fpe, and (3) the Langmuir collapse probably follows the route of MI in type III radio bursts.
A reprogrammable receiver architecture for wireless signal interception
NASA Astrophysics Data System (ADS)
Yao, Timothy S.
2003-09-01
In this paper, a re-programmable receiver architecture, based on software-defined-radio concept, for wireless signal interception is presented. The radio-frequency (RF) signal that the receiver would like to intercept may come from a terrestrial cellular network or communication satellites, which their carrier frequency are in the range from 800 MHz (civilian mobile) to 15 GHz (Ku band). To intercept signals from such a wide range of frequency in these variant communication systems, the traditional way is to deploy multiple receivers to scan and detect the desired signal. This traditional approach is obviously unattractive due to the cost, efficiency, and accuracy. Instead, we propose a universal receiver, which is software-driven and re-configurable, to intercept signals of interest. The software-defined-radio based receiver first intercepts RF energy of wide spectrum (25MHz) through antenna, performs zero-IF down conversion (homodyne architecture) to baseband, and digital channelizes the baseband signal. The channelization module is a bank of high performance digital filters. The bandwidth of the filter bank is programmable according to the wireless communication protocol under watch. In the baseband processing, high-performance digital signal processors carry out the detection process and microprocessors handle the communication protocols. The baseband processing is also re-configurable for different wireless standards and protocol. The advantages of the software-defined-radio architecture over traditional RF receiver make it a favorable technology for the communication signal interception and surveillance.
Wan, W J; Li, H; Cao, J C
2018-01-22
The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.
NASA Astrophysics Data System (ADS)
Stanislavsky, A.; Volvach, Ya.; Konovalenko, A.; Koval, A.
2017-08-01
In this paper a new sight on the study of solar bursts historically called drift pairs (DPs) is presented. Having a simple morphology on dynamic spectra of radio records (two short components separated in time, and often they are very similar) and discovered at the dawn of radio astronomy, their features remain unexplained totally up to now. Generally, the DPs are observed during the solar storms of type III bursts, but not every storm of type III bursts is linked with DPs. Detected by ground-based instruments at decameter and meter wavelengths, the DP bursts are limited in frequency bandwidth. They can drift from high frequencies to low ones and vice versa. Their frequency drift rate may be both lower and higher than typical rates of type III bursts at the same frequency range. The development of low-frequency radio telescopes and data processing provide additional possibilities in the research. In this context the fresh analysis of DPs, made from recent observations in the summer campaign of 2015, are just considered. Their study was implemented by updated tools of the UTR-2 radio telescope at 9-33 MHz. During 10-12 July of 2015, DPs forming the longest patterns on dynamic spectra are about 7% of the total number of recorded DPs. Their marvelous resemblance in frequency drift rates with the solar S-bursts is discussed.
Wavelet Based Characterization of Low Radio Frequency Solar Emissions
NASA Astrophysics Data System (ADS)
Suresh, A.; Sharma, R.; Das, S. B.; Oberoi, D.; Pankratius, V.; Lonsdale, C.
2016-12-01
Low-frequency solar radio observations with the Murchison Widefield Array (MWA) have revealed the presence of numerous short-lived, narrow-band weak radio features, even during quiet solar conditions. In their appearance in in the frequency-time plane, they come closest to the solar type III bursts, but with much shorter spectral spans and flux densities, so much so that they are not detectable with the usual swept frequency radio spectrographs. These features occur at rates of many thousand features per hour in the 30.72 MHz MWA bandwidth, and hence necessarily require an automated approach to determine robust statistical estimates of their properties, e.g., distributions of spectral widths, temporal spans, flux densities, slopes in the time-frequency plane and distribution over frequency. To achieve this, a wavelet decomposition approach has been developed for feature recognition and subsequent parameter extraction from the MWA dynamic spectrum. This work builds on earlier work by the members of this team to achieve a reliable flux calibration in a computationally efficient manner. Preliminary results show that the distribution of spectral span of these features peaks around 3 MHz, most of them last for less than two seconds and are characterized by flux densities of about 60% of the background solar emission. In analogy with the solar type III bursts, this non-thermal emission is envisaged to arise via coherent emission processes. There is also an exciting possibility that these features might correspond to radio signatures of nanoflares, hypothesized (Gold, 1964; Parker, 1972) to explain coronal heating.
47 CFR 90.621 - Selection and assignment of frequencies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the 806-824, 851-869, 896-901, and 935-940 MHz Bands Policies Governing the Processing of Applications and...
47 CFR 2.815 - External radio frequency power amplifiers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false External radio frequency power amplifiers. 2.815 Section 2.815 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.815...
47 CFR 2.815 - External radio frequency power amplifiers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false External radio frequency power amplifiers. 2.815 Section 2.815 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.815...
Array analysis of electromagnetic radiation from radio transmitters for submarine communication
NASA Astrophysics Data System (ADS)
Füllekrug, Martin; Mezentsev, Andrew; Watson, Robert; Gaffet, Stéphane; Astin, Ivan; Evans, Adrian
2014-12-01
The array analyses used for seismic and infrasound research are adapted and applied here to the electromagnetic radiation from radio transmitters for submarine communication. It is found that the array analysis enables a determination of the slowness and the arrival azimuth of the wave number vectors associated with the electromagnetic radiation. The array analysis is applied to measurements of ˜20-24 kHz radio waves from transmitters for submarine communication with an array of 10 radio receivers distributed over an area of ˜1 km ×1 km. The observed slowness of the observed wave number vectors range from ˜2.7 ns/m to ˜4.1 ns/m, and the deviations between the expected arrival azimuths and the observed arrival azimuths range from ˜-9.7° to ˜14.5°. The experimental results suggest that it is possible to determine the locations of radio sources from transient luminous events above thunderclouds with an array of radio receivers toward detailed investigations of the electromagnetic radiation from sprites.
78 FR 68813 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... planned radio frequency (RF) bands that are shared on a co-primary basis by Federal and non-Federal users... newly proposed assignment within the shared portions of the radio spectrum; and replaced the manual RF... national security. The Web-based system replaced a manual process where coordination and approval could...
47 CFR 90.631 - Trunked systems loading, construction and authorization requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations Governing Licensing and... Processing of Applications and the Selection and Assignment of Frequencies for Use in the 806-824 Mhz, 851... one hundred (100) mobile stations per channel. For purposes of determining compliance with trunked...
HIGH CURRENT RADIO FREQUENCY ION SOURCE
Abdelaziz, M.E.
1963-04-01
This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)
Digital signal processing in the radio science stability analyzer
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
1995-01-01
The Telecommunications Division has built a stability analyzer for testing Deep Space Network installations during flight radio science experiments. The low-frequency part of the analyzer operates by digitizing wave signals with bandwidths between 80 Hz and 45 kHz. Processed outputs include spectra of signal, phase, amplitude, and differential phase; time series of the same quantities; and Allan deviation of phase and differential phase. This article documents the digital signal-processing methods programmed into the analyzer.
Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks
Claver, Jose M.; Ezpeleta, Santiago
2017-01-01
Radio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.15.4 standard. But, the CSMA-CA, which is the basis for the medium access protocols in this category of communication systems, is not suitable when several users want to exchange bursts of radio packets with the same beacon to acquire the radio signal strength indicator (RSSI) values needed in the location process. Therefore, new protocols are necessary to avoid the packet collisions that appear when multiple users try to communicate with the same beacons. On the other hand, the RSSI sampling process should be carried out very quickly because some systems cannot tolerate a large delay in the location process. This is even more important when the RSSI sampling process includes measures with different signal power levels or frequency channels. The principal objective of this work is to speed up the RSSI sampling process in indoor localization systems. To achieve this objective, the main contribution is the proposal of a new MAC protocol that eliminates the medium access contention periods and decreases the number of packet collisions to accelerate the RSSI collection process. Moreover, the protocol increases the overall network throughput taking advantage of the frequency channel diversity. The presented results show the suitability of this protocol for reducing the RSSI gathering delay and increasing the network throughput in simulated and real environments. PMID:28684666
Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks.
Pérez-Solano, Juan J; Claver, Jose M; Ezpeleta, Santiago
2017-07-06
Radio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.15.4 standard. But, the CSMA-CA, which is the basis for the medium access protocols in this category of communication systems, is not suitable when several users want to exchange bursts of radio packets with the same beacon to acquire the radio signal strength indicator (RSSI) values needed in the location process. Therefore, new protocols are necessary to avoid the packet collisions that appear when multiple users try to communicate with the same beacons. On the other hand, the RSSI sampling process should be carried out very quickly because some systems cannot tolerate a large delay in the location process. This is even more important when the RSSI sampling process includes measures with different signal power levels or frequency channels. The principal objective of this work is to speed up the RSSI sampling process in indoor localization systems. To achieve this objective, the main contribution is the proposal of a new MAC protocol that eliminates the medium access contention periods and decreases the number of packet collisions to accelerate the RSSI collection process. Moreover, the protocol increases the overall network throughput taking advantage of the frequency channel diversity. The presented results show the suitability of this protocol for reducing the RSSI gathering delay and increasing the network throughput in simulated and real environments.
Radio frequency heating for in-situ remediation of DNAPL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasevich, R.S.
1996-08-01
In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.
RFID Transponders' RF Emissions in Aircraft Communication and Navigation Radio Bands
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Koppen Sandra V.; Fersch, Mariatheresa S.
2008-01-01
Radiated emission data in aircraft communication and navigation bands are presented for several active radio frequency identification (RFID) tags. The individual tags are different in design, operation and transmitting frequencies. The process for measuring the tags emissions in a reverberation chamber is discussed. Measurement issues dealing with tag interrogation, low level measurement in the presence of strong transmissions, and tags low duty factors are discussed. The results show strong emissions, far exceeding aircraft emission limits and can be of potential interference risks.
47 CFR 90.613 - Frequencies available.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the 806-824, 851-869, 896-901, and 935-940 MHz Bands Policies Governing the Processing of Applications and the Selection and..., with mobile and control station transmitting frequencies taken from the 806-824 MHz band with...
NASA Astrophysics Data System (ADS)
Maoz, Dan; Loeb, Abraham
2017-06-01
If fast radio bursts (FRBs) originate from galaxies at cosmological distances, then their all-sky rate implies that the Milky Way may host an FRB every 30-1500 yr, on average. If many FRBs persistently repeat for decades or more, a local giant FRB could be active now, with 1 GHz radio pulses of flux ˜3 × 1010 Jy, comparable with the fluxes and frequencies detectable by cellular communication devices (cell phones, Wi-Fi and GPS). We propose searching for Galactic FRBs using a global array of low-cost radio receivers. One possibility is the ˜1 GHz communication channel in cellular phones, through a Citizens-Science downloadable application. Participating phones would continuously listen for and record candidate FRBs and would periodically upload information to a central data-processing website which will identify the signature of a real, globe-encompassing, FRB from an astronomical distance. Triangulation of the GPS-based pulse arrival times reported from different Earth locations will provide the FRB sky position, potentially to arcsecond accuracy. Pulse arrival times versus frequency, from reports from phones operating at diverse frequencies, or from fast signal de-dispersion by the application, will yield the dispersion measure (DM). Compared to a Galactic DM model, it will indicate the source distance within the Galaxy. A variant approach uses the built-in ˜100 MHz FM-radio receivers present in cell phones for an FRB search at lower frequencies. Alternatively, numerous 'software-defined radio' devices, costing ˜$10 US each, could be deployed and plugged into USB ports of personal computers (particularly in radio-quiet locations) to establish the global network of receivers.
Transmission analysis for OFDM signals over hybrid RF-optical high-throughput satellite.
Kolev, Dimitar R; Toyoshima, Morio
2018-02-19
In this paper, a theoretical investigation of the performance of a communication scenario where a geostationary-orbit satellite provides radio-frequency broadband access to the users through orthogonal-frequency-division multiplexing technology and has an optical feeder link is presented. The interface between the radio frequency and the optical parts is achieved by using radio-on-fiber technology for optical-electro and electro-optical conversion onboard and no further signal processing is required. The proposed scheme has significant potential, but presents limitations related to the noise. The noise in both forward and reverse links is described, and the system performance for an example scenario with 1280 MHz bandwidth for QPSK, 16QAM, and 64QAM subcarrier modulation is estimated. The obtained results show that under certain conditions regarding link budget and components choice, the proposed solution is feasible.
NASA Astrophysics Data System (ADS)
Yang, Y. M.; Buccino, D.; Folkner, W. M.; Oudrhiri, K.; Phipps, P. H.; Parisi, M.; Kahan, D. S.
2017-12-01
Interplanetary and Earth ionosphere plasma electrons can have significant impacts on radio frequency signal propagation such as telecommunication between spacecraft and the Deep Space Network (DSN). On 27 August 2016, the first closest approach of The Juno spacecraft (Perijove 1) provided an opportunity to observe plasma electrons inside of the Io plasma torus using radio science measurements from Juno. Here, we report on the derivations of plasma electron content in the Io plasma torus by using two-way coherent radio science measurements made from Juno's Gravity Science Instrument and the Deep Space Network. During Perijove 1, Juno spacecraft passed through the inner region (perijove altitude of 1.06 Jovian Radii) between Jupiter and the Io plasma torus. Significant plasma electron variations of up to 30 TEC units were observed while the radio link between Juno and the DSN traveled through the Io plasma torus. In this research, we compare observations made by open-loop and closed-loop processes using different frequency radio signals, corresponding Io plasma torus model simulations, and other Earth ionosphere observations. The results of three-dimensional Io plasma model simulations are consistent with observations with some discrepancies. Results are shown to improve our understanding of the Io plasma torus effect on Juno gravity science measurements and its calibrations to reduce the corresponding (non-gravity field induced) radio frequency shift.
Ion cyclotron range of frequencies heating of plasma with small impurity production
Ohkawa, Tihiro
1987-01-01
Plasma including plasma ions is magnetically confined by a magnetic field. The plasma has a defined outer surface and is intersected by resonance surfaces of respective common ion cyclotron frequency of a predetermined species of plasma ions moving in the magnetic field. A radio frequency source provides radio frequency power at a radio frequency corresponding to the ion cyclotron frequency of the predetermined species of plasma ions moving in the field at a respective said resonance surface. RF launchers coupled to the radio frequency source radiate radio frequency energy at the resonance frequency onto the respective resonance surface within the plasma from a plurality of locations located outside the plasma at such respective distances from the intersections of the respective resonance surface and the defined outer surface and at such relative phases that the resulting interference pattern provides substantially null net radio frequency energy over regions near and including substantial portions of the intersections relative to the radio frequency energy provided thereby at other portions of the respective resonance surface within the plasma.
GNSS software receiver sampling noise and clock jitter performance and impact analysis
NASA Astrophysics Data System (ADS)
Chen, Jian Yun; Feng, XuZhe; Li, XianBin; Wu, GuangYao
2015-02-01
In the design of a multi-frequency multi-constellation GNSS software defined radio receivers is becoming more and more popular due to its simple architecture, flexible configuration and good coherence in multi-frequency signal processing. It plays an important role in navigation signal processing and signal quality monitoring. In particular, GNSS software defined radio receivers driving the sampling clock of analogue-to-digital converter (ADC) by FPGA implies that a more flexible radio transceiver design is possible. According to the concept of software defined radio (SDR), the ideal is to digitize as close to the antenna as possible. Whereas the carrier frequency of GNSS signal is of the frequency of GHz, converting at this frequency is expensive and consumes more power. Band sampling method is a cheaper, more effective alternative. When using band sampling method, it is possible to sample a RF signal at twice the bandwidth of the signal. Unfortunately, as the other side of the coin, the introduction of SDR concept and band sampling method induce negative influence on the performance of the GNSS receivers. ADC's suffer larger sampling clock jitter generated by FPGA; and low sampling frequency introduces more noise to the receiver. Then the influence of sampling noise cannot be neglected. The paper analyzes the sampling noise, presents its influence on the carrier noise ratio, and derives the ranging error by calculating the synchronization error of the delay locked loop. Simulations aiming at each impact factors of sampling-noise-induced ranging error are performed. Simulation and experiment results show that if the target ranging accuracy is at the level of centimeter, the quantization length should be no less than 8 and the sampling clock jitter should not exceed 30ps.
A DECAMETER STATIONARY TYPE IV BURST IN IMAGING OBSERVATIONS ON 2014 SEPTEMBER 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koval, Artem; Chen, Yao; Feng, Shiwei
2016-08-01
First-of-its-kind radio imaging of a decameter solar stationary type IV radio burst has been presented in this paper. On 2014 September 6 the observations of type IV burst radio emission were carried out with the two-dimensional heliograph based on the Ukrainian T-shaped radio telescope (UTR-2), together with other telescope arrays. Starting at ∼09:55 UT and for ∼3 hr, the radio emission was kept within the observational session of UTR-2. The interesting observation covered the full evolution of this burst, “from birth to death.” During the event lifetime, two C-class solar X-ray flares with peak times 11:29 UT and 12:24 UTmore » took place. The time profile of this burst in radio has a double-humped shape that can be explained by injection of energetic electrons, accelerated by the two flares, into the burst source. According to the heliographic observations, we suggest that the burst source was confined within a high coronal loop, which was part of a relatively slow coronal mass ejection. The latter has been developed for several hours before the onset of the event. Through analysis of about 1.5 × 10{sup 6} heliograms (3700 temporal frames with 4096 images in each frame that correspond to the number of frequency channels), the radio burst source imaging shows a fascinating dynamical evolution. Both space-based ( GOES , SDO , SOHO , STEREO ) data and various ground-based instrumentation (ORFEES, NDA, RSTO, NRH) records have been used for this study.« less
Radio Frequency Magneto-Optical Trapping of CaF with High Density.
Anderegg, Loïc; Augenbraun, Benjamin L; Chae, Eunmi; Hemmerling, Boerge; Hutzler, Nicholas R; Ravi, Aakash; Collopy, Alejandra; Ye, Jun; Ketterle, Wolfgang; Doyle, John M
2017-09-08
We demonstrate significantly improved magneto-optical trapping of molecules using a very slow cryogenic beam source and either rf modulated or dc magnetic fields. The rf magneto-optical trap (MOT) confines 1.0(3)×10^{5} CaF molecules at a density of 7(3)×10^{6} cm^{-3}, which is an order of magnitude greater than previous molecular MOTs. Near Doppler-limited temperatures of 340(20) μK are attained. The achieved density enables future work to directly load optical tweezers and create optical arrays for quantum simulation.
Tornado detection data reduction and analysis
NASA Technical Reports Server (NTRS)
Davisson, L. D.
1977-01-01
Data processing and analysis was provided in support of tornado detection by analysis of radio frequency interference in various frequency bands. Sea state determination data from short pulse radar measurements were also processed and analyzed. A backscatter simulation was implemented to predict radar performance as a function of wind velocity. Computer programs were developed for the various data processing and analysis goals of the effort.
HIDE & SEEK: End-to-end packages to simulate and process radio survey data
NASA Astrophysics Data System (ADS)
Akeret, J.; Seehars, S.; Chang, C.; Monstein, C.; Amara, A.; Refregier, A.
2017-01-01
As several large single-dish radio surveys begin operation within the coming decade, a wealth of radio data will become available and provide a new window to the Universe. In order to fully exploit the potential of these datasets, it is important to understand the systematic effects associated with the instrument and the analysis pipeline. A common approach to tackle this is to forward-model the entire system-from the hardware to the analysis of the data products. For this purpose, we introduce two newly developed, open-source Python packages: the HI Data Emulator (HIDE) and the Signal Extraction and Emission Kartographer (SEEK) for simulating and processing single-dish radio survey data. HIDE forward-models the process of collecting astronomical radio signals in a single-dish radio telescope instrument and outputs pixel-level time-ordered-data. SEEK processes the time-ordered-data, removes artifacts from Radio Frequency Interference (RFI), automatically applies flux calibration, and aims to recover the astronomical radio signal. The two packages can be used separately or together depending on the application. Their modular and flexible nature allows easy adaptation to other instruments and datasets. We describe the basic architecture of the two packages and examine in detail the noise and RFI modeling in HIDE, as well as the implementation of gain calibration and RFI mitigation in SEEK. We then apply HIDE &SEEK to forward-model a Galactic survey in the frequency range 990-1260 MHz based on data taken at the Bleien Observatory. For this survey, we expect to cover 70% of the full sky and achieve a median signal-to-noise ratio of approximately 5-6 in the cleanest channels including systematic uncertainties. However, we also point out the potential challenges of high RFI contamination and baseline removal when examining the early data from the Bleien Observatory. The fully documented HIDE &SEEK packages are available at http://hideseek.phys.ethz.ch/ and are published under the GPLv3 license on GitHub.
Holland, Tanja; Blessing, Daniel; Hellwig, Stephan; Sack, Markus
2013-10-01
Radio frequency impedance spectroscopy (RFIS) is a robust method for the determination of cell biomass during fermentation. RFIS allows non-invasive in-line monitoring of the passive electrical properties of cells in suspension and can distinguish between living and dead cells based on their distinct behavior in an applied radio frequency field. We used continuous in situ RFIS to monitor batch-cultivated plant suspension cell cultures in stirred-tank bioreactors and compared the in-line data to conventional off-line measurements. RFIS-based analysis was more rapid and more accurate than conventional biomass determination, and was sensitive to changes in cell viability. The higher resolution of the in-line measurement revealed subtle changes in cell growth which were not accessible using conventional methods. Thus, RFIS is well suited for correlating such changes with intracellular states and product accumulation, providing unique opportunities for employing systems biotechnology and process analytical technology approaches to increase product yield and quality. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems
NASA Technical Reports Server (NTRS)
Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)
2004-01-01
An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.
Battery management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2016-02-23
A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.
Advanced capability RFID system
Gilbert, Ronald W.; Steele, Kerry D.; Anderson, Gordon A.
2007-09-25
A radio-frequency transponder device having an antenna circuit configured to receive radio-frequency signals and to return modulated radio-frequency signals via continuous wave backscatter, a modulation circuit coupled to the antenna circuit for generating the modulated radio-frequency signals, and a microprocessor coupled to the antenna circuit and the modulation circuit and configured to receive and extract operating power from the received radio-frequency signals and to monitor inputs on at least one input pin and to generate responsive signals to the modulation circuit for modulating the radio-frequency signals. The microprocessor can be configured to generate output signals on output pins to associated devices for controlling the operation thereof. Electrical energy can be extracted and stored in an optional electrical power storage device.
The Lens of Power: Aerial Reconnaissance and Diplomacy in the Airpower Century
2013-01-01
participated in the search for survivors and wreckage, at one point receiving an American radio from a nearby US ship to better communicate between... Frequency ) radio distress frequency , although it is not clear exactly what frequency he was using. VHF is Very High Frequency radio ; UHF is Ultra High... Frequency radio . 121.5 and 243.0 remain the respective VHF and UHF international distress frequencies today. Osborn, Born to Fly: The Untold Story
Gollan, Tamar H.; Montoya, Rosa I.; Cera, Cynthia; Sandoval, Tiffany C.
2008-01-01
The “weaker links” hypothesis proposes that bilinguals are disadvantaged relative to monolinguals on speaking tasks because they divide frequency-of-use between two languages. To test this proposal we contrasted the effects of increased word use associated with monolingualism, language dominance, and increased age on picture naming times. In two experiments, younger and older bilinguals and monolinguals named pictures with high- or low-frequency names in English and (if bilingual) also in Spanish. In Experiment 1, slowing related to bilingualism and language dominance was greater for producing low- than high-frequency names. In Experiment 2, slowing related to aging was greater for producing low-frequency names in the dominant language, but when speaking the nondominant language, increased age attenuated frequency effects and age-related slowing was limited exclusively to high-frequency names. These results challenge competition based accounts of bilingual disadvantages in language production, and illustrate how between-group processing differences may emerge from cognitive mechanisms general to all speakers. PMID:19343088
NASA Astrophysics Data System (ADS)
Kaba, M.; Zhou, F. C.; Lim, A.; Decoster, D.; Huignard, J.-P.; Tonda, S.; Dolfi, D.; Chazelas, J.
2007-11-01
The applications of microwave optoelectronics are extremely large since they extend from the Radio-over-Fibre to the Homeland security and defence systems. Then, the improved maturity of the optoelectronic components operating up to 40GHz permit to consider new optical processing functions (filtering, beamforming, ...) which can operate over very wideband microwave analogue signals. Specific performances are required which imply optical delay lines able to exhibit large Time-Bandwidth product values. It is proposed to evaluate slow light approach through highly dispersive structures based on either uniform or chirped Bragg Gratings. Therefore, we highlight the impact of the major parameters of such structures: index modulation depth, grating length, grating period, chirp coefficient and demonstrate the high potentiality of Bragg Grating for Large RF signals bandwidth processing under slow-light propagation.
Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder.
Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru
2016-01-01
Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants' brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5-16 Hz) and slow-frequency spindle activity (10.5-12.5 Hz). Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep.
Radio Frequency Scanning and Simulation of Oriented Strand Board Material Property
NASA Astrophysics Data System (ADS)
Liu, Xiaojian; Zhang, Jilei; Steele, Philip. H.; Donohoe, J. Patrick
2008-02-01
Oriented strandboard (OSB) is a wood composite product with the largest market share in U.S. residential and commercial construction. Wood specific gravity (SG) and moisture content (MC) play an important role in the OSB manufacturing process. They are the two of the critical variables that manufacturers are required to monitor, locate, and control in order to produce a product with consistent quality. In this study, radio frequency scanning nondestructive evaluation (NDE) technologies evaluated the local area MC and SG of OSB panels following panel production by hot pressing. A finite element software simulation tool was used to optimize the sensor geometry and for investigating the interaction between electromagnetic field and wood dielectric properties. Our results indicate the RF scanning response is closely correlated to the MC and SG variations in OSB panels. Radio frequency NDE appears to have potential as an effective method for insuring OSB panel quality during manufacturing.
Graphene radio frequency receiver integrated circuit.
Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried
2014-01-01
Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.
Radio Frequency Electromagnetic Radiation From Streamer Collisions
NASA Astrophysics Data System (ADS)
Luque, Alejandro
2017-10-01
We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.
Ogirala, Ajay; Stachel, Joshua R; Mickle, Marlin H
2011-11-01
Increasing density of wireless communication and development of radio frequency identification (RFID) technology in particular have increased the susceptibility of patients equipped with cardiac rhythmic monitoring devices (CRMD) to environmental electro magnetic interference (EMI). Several organizations reported observing CRMD EMI from different sources. This paper focuses on mathematically analyzing the energy as perceived by the implanted device, i.e., voltage. Radio frequency (RF) energy transmitted by RFID interrogators is considered as an example. A simplified front-end equivalent circuit of a CRMD sensing circuitry is proposed for the analysis following extensive black-box testing of several commercial pacemakers and implantable defibrillators. After careful understanding of the mechanics of the CRMD signal processing in identifying the QRS complex of the heart-beat, a mitigation technique is proposed. The mitigation methodology introduced in this paper is logical in approach, simple to implement and is therefore applicable to all wireless communication protocols.
Radio Frequency Electromagnetic Radiation From Streamer Collisions.
Luque, Alejandro
2017-10-16
We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.
Graphene radio frequency receiver integrated circuit
NASA Astrophysics Data System (ADS)
Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A.; Haensch, Wilfried
2014-01-01
Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm2 area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.
47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... emergency radio frequencies. 76.616 Section 76.616 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.616 Operation near certain aeronautical and marine emergency radio frequencies. (a) The transmission...
A possible role for a paralemniscal auditory pathway in the coding of slow temporal information
Abrams, Daniel A.; Nicol, Trent; Zecker, Steven; Kraus, Nina
2010-01-01
Low frequency temporal information present in speech is critical for normal perception, however the neural mechanism underlying the differentiation of slow rates in acoustic signals is not known. Data from the rat trigeminal system suggest that the paralemniscal pathway may be specifically tuned to code low-frequency temporal information. We tested whether this phenomenon occurs in the auditory system by measuring the representation of temporal rate in lemniscal and paralemniscal auditory thalamus and cortex in guinea pig. Similar to the trigeminal system, responses measured in auditory thalamus indicate that slow rates are differentially represented in a paralemniscal pathway. In cortex, both lemniscal and paralemniscal neurons indicated sensitivity to slow rates. We speculate that a paralemniscal pathway in the auditory system may be specifically tuned to code low frequency temporal information present in acoustic signals. These data suggest that somatosensory and auditory modalities have parallel sub-cortical pathways that separately process slow rates and the spatial representation of the sensory periphery. PMID:21094680
A radio-pulsing white dwarf binary star.
Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J
2016-09-15
White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.
High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars
Giroletti, M.; Massaro, F.; D’Abrusco, R.; ...
2016-04-01
Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less
High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giroletti, M.; Massaro, F.; D’Abrusco, R.
Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less
Cumulative Interference to Aircraft Radios from Multiple Portable Electronic Devices
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.
2005-01-01
Cumulative interference effects from portable electronic devices (PEDs) located inside a passenger cabin are conservatively estimated for aircraft radio receivers. PEDs' emission powers in an aircraft radio frequency band are first scaled according to their locations' interference path loss (IPL) values, and the results are summed to determine the total interference power. The multiple-equipment-factor (MEF) is determined by normalizing the result against the worst case contribution from a single device. Conservative assumptions were made and MEF calculations were performed for Boeing 737's Localizer, Glide-slope, Traffic Collision Avoidance System, and Very High Frequency Communication radio systems where full-aircraft IPL data were available. The results show MEF for the systems to vary between 10 and 14 dB. The same process was also used on the more popular window/door IPL data, and the comparison show the multiple-equipment-factor results came within one decibel (dB) of each other.
Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning
NASA Technical Reports Server (NTRS)
Doran, G.
2013-01-01
In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (< 1 ms) across a broad range of frequencies, and can be confused with signals from sources of interest such as pulsars. With ever-increasing volumes of data being produced by observatories, automated strategies are required to detect, classify, and characterize these short "transient" RFI events. We investigate an active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.
2015-12-24
Ripple-Carry RCA Ripple-Carry Adder RF Radio Frequency RMS Root-Mean-Square SEU Single Event Upset SIPI Signal and Image Processing Institute SNR...correctness, where 0.5 < p < 1, and a probability (1−p) of error. Errors could be caused by noise, radio frequency (RF) interference, crosstalk...utilized in the Apollo Guidance Computer is the three input NOR Gate. . . At the time that the decision was made to use in- 11 tegrated circuits, the
2015-12-24
Ripple-Carry RCA Ripple-Carry Adder RF Radio Frequency RMS Root-Mean-Square SEU Single Event Upset SIPI Signal and Image Processing Institute SNR...correctness, where 0.5 < p < 1, and a probability (1−p) of error. Errors could be caused by noise, radio frequency (RF) interference, crosstalk...utilized in the Apollo Guidance Computer is the three input NOR Gate. . . At the time that the decision was made to use in- 11 tegrated circuits, the
Bouvignies, Guillaume; Hansen, D Flemming; Vallurupalli, Pramodh; Kay, Lewis E
2011-02-16
A method for quantifying millisecond time scale exchange in proteins is presented based on scaling the rate of chemical exchange using a 2D (15)N, (1)H(N) experiment in which (15)N dwell times are separated by short spin-echo pulse trains. Unlike the popular Carr-Purcell-Meiboom-Gill (CPMG) experiment where the effects of a radio frequency field on measured transverse relaxation rates are quantified, the new approach measures peak positions in spectra that shift as the effective exchange time regime is varied. The utility of the method is established through an analysis of data recorded on an exchanging protein-ligand system for which the exchange parameters have been accurately determined using alternative approaches. Computations establish that a combined analysis of CPMG and peak shift profiles extends the time scale that can be studied to include exchanging systems with highly skewed populations and exchange rates as slow as 20 s(-1).
NASA Astrophysics Data System (ADS)
Makhotkina, L. Yu; Khristoliubova, V. I.
2017-11-01
The main aim of the work is to solve the actual problem of increasing the competitiveness of tanning products by reducing the prime cost and improving the quality of finished products due to the increased durability of the working elements of tanneries. The impact of the low pressure radio frequency (RF) plasma in the processes of treating for modification of the materials for special purposes is considered in the article. The results of working elements of tanneries and the materials for special purposes sample processing by a RF low pressure plasma are described. As a result of leather materials nano structuring and nano modifying physical, mechanical and hygienic characteristics were increased. Processing of the technical purpose materials allows to increase operational performance of products and extend their lifespan.
Development of slow positron beam lines and applications
NASA Astrophysics Data System (ADS)
Mondal, Nagendra Nath
2018-05-01
A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.
The effect of solar radio bursts on the GNSS radio occultation signals
NASA Astrophysics Data System (ADS)
Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Zhao, Biqiang; Wan, Weixing; Ren, Zhipeng; Liu, Libo; Wei, Yong; Lei, Jiuhou; Solomon, Stan; Rocken, Christian
2013-09-01
radio burst (SRB) is the radio wave emission after a solar flare, covering a broad frequency range, originated from the Sun's atmosphere. During the SRB occurrence, some specific frequency radio wave could interfere with the Global Navigation Satellite System (GNSS) signals and therefore disturb the received signals. In this study, the low Earth orbit- (LEO-) based high-resolution GNSS radio occultation (RO) signals from multiple satellites (COSMIC, CHAMP, GRACE, SAC-C, Metop-A, and TerraSAR-X) processed in University Corporation for Atmospheric Research (UCAR) were first used to evaluate the effect of SRB on the RO technique. The radio solar telescope network (RSTN) observed radio flux was used to represent SRB occurrence. An extreme case during 6 December 2006 and statistical analysis during April 2006 to September 2012 were studied. The LEO RO signals show frequent loss of lock (LOL), simultaneous decrease on L1 and L2 signal-to-noise ratio (SNR) globally during daytime, small-scale perturbations of SNR, and decreased successful retrieval percentage (SRP) for both ionospheric and atmospheric occultations during SRB occurrence. A potential harmonic band interference was identified. Either decreased data volume or data quality will influence weather prediction, climate study, and space weather monitoring by using RO data during SRB time. Statistically, the SRP of ionospheric and atmospheric occultation retrieval shows ~4% and ~13% decrease, respectively, while the SNR of L1 and L2 show ~5.7% and ~11.7% decrease, respectively. A threshold value of ~1807 SFU of 1415 MHz frequency, which can result in observable GNSS SNR decrease, was derived based on our statistical analysis.
Code of Federal Regulations, 2010 CFR
2010-10-01
... certifies on its application that a channel will be loaded to 70 mobile stations, that channel will be made... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES... Policies Governing the Processing of Applications and the Selection and Assignment of Frequencies for Use...
A Microglitch in the Millisecond Pulsar PSR B1821-24 in M28
NASA Astrophysics Data System (ADS)
Cognard, Ismaël; Backer, Donald C.
2004-09-01
We report on the observation of a very small glitch observed for the first time in a millisecond pulsar, PSR B1821-24, located in the globular cluster M28. Timing observations were mainly conducted with the Nançay radio telescope (France), and confirmation comes from the 140 ft radio telescope at Green Bank and the new Green Bank Telescope data. This event is characterized by a rotation frequency step of 3 nHz, or 10-11 in fractional frequency change, along with a short duration limited to a few days or a week. A marginally significant frequency derivative step was also found. This glitch follows the main characteristics of those in the slow-period pulsars but is 2 orders of magnitude smaller than the smallest ever recorded. Such an event must be very rare for millisecond pulsars since no other glitches have been detected when the cumulated number of years of millisecond pulsar timing observations up to 2001 is around 500 for all these objects. However, pulsar PSR B1821-24 is one of the youngest among the old recycled ones, and there is likely a correlation between age, or a related parameter, and timing noise. While this event happens on a much smaller scale, the required adjustment of the star to a new equilibrium figure as it spins down is a likely common cause for all glitches.
The MWA Transients Survey (MWATS).
NASA Astrophysics Data System (ADS)
Bell, M.; Murphy, T.; Kaplan, D. L.; Croft, S. D.; Hancock, P.; Rowlinson, A.; Wayth, R.; Gaensler, B.; Hurley-Walker, N.; Offringa, A.; Loi, C.; Bannister, K.; Trott, C.; Marquart, J.
2017-01-01
We propose the continuation of the MWA transients survey to search for and monitor low frequency transient and variable radio sources in the southern sky. This proposal is aimed at commensally utilising data from the GLEAM-X (G0008) project in semester 2017-A. The aim of this commensal data acquisition is to commission long baseline observations for transient science. In particular this will involve studying the impact of the ionosphere on calibration and imaging, and developing the techniques needed to produce science quality data products. The proposed drift scans with LST locking (see G0008 proposal) are particularly exciting as we can test image subtraction for transient and variable identification. This survey is targeted at studying objects such as AGN (intrinsic and extrinsic variability), long duration synchrotron emitters, pulsars and transients of unknown origin. The maps generated from this survey will be analysed with the Variables and Slow Transients (VAST) detection pipeline. The motivation for this survey is as follows: (i) To obtain temporal data on an extremely large and robust sample of low frequency sources to explore and quantify both intrinsic and extrinsic variability; (ii) To search and find new classes of low frequency radio transients that previously remained undetected and obscured from multi-wavelength discovery; (iii) To place rigorous statistics on the occurrence of both transients and variables prior to the Australian SKA era.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu
In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailoredmore » diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.« less
NASA Astrophysics Data System (ADS)
Szadkowski, Zbigniew; Głas, Dariusz
2017-06-01
Radio emission from the extensive air showers (EASs), initiated by ultrahigh-energy cosmic rays, was theoretically suggested over 50 years ago. However, due to technical limitations, successful collection of sufficient statistics can take several years. Nowadays, this detection technique is used in many experiments consisting in studying EAS. One of them is the Auger Engineering Radio Array (AERA), located within the Pierre Auger Observatory. AERA focuses on the radio emission, generated by the electromagnetic part of the shower, mainly in geomagnetic and charge excess processes. The frequency band observed by AERA radio stations is 30-80 MHz. Thus, the frequency range is contaminated by human-made and narrow-band radio frequency interferences (RFIs). Suppression of contaminations is very important to lower the rate of spurious triggers. There are two kinds of digital filters used in AERA radio stations to suppress these contaminations: the fast Fourier transform median filter and four narrow-band IIR-notch filters. Both filters have worked successfully in the field for many years. An adaptive filter based on a least mean squares (LMS) algorithm is a relatively simple finite impulse response (FIR) filter, which can be an alternative for currently used filters. Simulations in MATLAB are very promising and show that the LMS filter can be very efficient in suppressing RFI and only slightly distorts radio signals. The LMS algorithm was implemented into a Cyclone V field programmable gate array for testing the stability, RFI suppression efficiency, and adaptation time to new conditions. First results show that the FIR filter based on the LMS algorithm can be successfully implemented and used in real AERA radio stations.
Large-amplitude late-time radio variability in GRB 151027B
NASA Astrophysics Data System (ADS)
Greiner, J.; Bolmer, J.; Wieringa, M.; van der Horst, A. J.; Petry, D.; Schulze, S.; Knust, F.; de Bruyn, G.; Krühler, T.; Wiseman, P.; Klose, S.; Delvaux, C.; Graham, J. F.; Kann, D. A.; Moin, A.; Nicuesa-Guelbenzu, A.; Schady, P.; Schmidl, S.; Schweyer, T.; Tanga, M.; Tingay, S.; van Eerten, H.; Varela, K.
2018-06-01
Context. Deriving physical parameters from gamma-ray burst (GRB) afterglow observations remains a challenge, even 20 years after the discovery of afterglows. The main reason for the lack of progress is that the peak of the synchrotron emission is in the sub-mm range, thus requiring radio observations in conjunction with X-ray/optical/near-infrared data in order to measure the corresponding spectral slopes and consequently remove the ambiguity with respect to slow vs. fast cooling and the ordering of the characteristic frequencies. Aims: We have embarked on a multifrequency, multi-epoch observing campaign to obtain sufficient data for a given GRB that allows us to test the simplest version of the fireball afterglow model. Methods: We observed GRB 151027B, the 1000th Swift-detected GRB, with GROND in the optical-near-IR, ALMA in the sub-millimeter, ATCA in the radio band; we combined this with public Swift/XRT X-ray data. Results: While some observations at crucial times only return upper limits or surprising features, the fireball model is narrowly constrained by our data set, and allows us to draw a consistent picture with a fully determined parameter set. Surprisingly, we find rapid, large-amplitude flux density variations in the radio band which are extreme not only for GRBs, but generally for any radio source. We interpret them as scintillation effects, though their extreme nature requires the scattering screen to be at a much smaller distance than usually assumed, multiple screens, or a combination of the two. Conclusions: The data are consistent with the simplest fireball scenario for a blast wave moving into a constant-density medium, and slow-cooling electrons. All fireball parameters are constrained at or better than a factor of 2, except for the density and the fraction of the energy in the magnetic field which has a factor of 10 uncertainty in both directions. This paper makes use of the following data: ATCA: Proposal C2955 (PI: Greiner), ALMA: ADS/JAO.ALMA#2015.1.01558.T (PI: Schulze).
47 CFR Appendix 1 to Subpart E of... - Glossary of Terms
Code of Federal Regulations, 2013 CFR
2013-10-01
... typically includes a frequency monitoring system that initiates a MedRadio communications session. MedRadio... Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... station authorized in the CB. Channel frequencies. Reference frequencies from which the carrier frequency...
47 CFR Appendix 1 to Subpart E of... - Glossary of Terms
Code of Federal Regulations, 2014 CFR
2014-10-01
... typically includes a frequency monitoring system that initiates a MedRadio communications session. MedRadio... Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... station authorized in the CB. Channel frequencies. Reference frequencies from which the carrier frequency...
The ISPM unified radio and plasma wave experiment
NASA Technical Reports Server (NTRS)
Stone, R. G.; Caldwell, J.; Deconchy, Y.; Deschanciaux, C.; Ebbett, R.; Epstein, G.; Groetz, K.; Harvey, C. C.; Hoang, S.; Howard, R.
1983-01-01
Hardware for the International Solar Polar Mission (ISPM) Unified Radio and Plasma (URAP) wave experiment is presented. The URAP determines direction and polarization of distant radio sources for remote sensing of the heliosphere, and studies local wave phenomena which determine the transport coefficients of the ambient plasma. Electric and magnetic field antennas and preamplifiers; the electromagnetic compatibility plan and grounding; radio astronomy and plasma frequency receivers; a fast Fourier transformation data processing unit waveform analyzer; dc voltage measurements; a fast envelope sampler for the solar wind, and plasmas near Jupiter; a sounder; and a power converter are described.
Detection of Ultrahigh-Energy Cosmic Rays with the Auger Engineering Radio Array
NASA Astrophysics Data System (ADS)
Krause, Raphael; Pierre Auger Collaboration
2017-02-01
Ultrahigh-energy cosmic rays interact with the Earth's atmosphere and produce great numbers of secondary particles forming an extensive air shower. These air showers emit radiation in the radio frequency range which delivers important information about the processes of radio emission in extensive air showers and properties of the primary cosmic rays, e.g. arrival direction, energy and mass with a duty cycle close to 100%. The radio extension of the world's largest cosmic-ray experiment, the Pierre Auger Observatory, is called the Auger Engineering Radio Array (AERA). In addition to the particle and fluorescence detectors of the Pierre Auger Observatory, AERA investigates the electromagnetic component of extensive air showers using 153 autonomous radio stations on an area of 17km2 .
TRI-SERVICE ELF COMMUNICATIONS - VOL. II, BIBLIOGRAPHY.
BIBLIOGRAPHIES, UNDERGROUND ANTENNAS , ELECTRICAL RESISTANCE, UNDERGROUND , COSTS, VERY LOW FREQUENCY, LOW FREQUENCY, PROPAGATION, NOISE(RADIO)....EXTREMELY LOW FREQUENCY), (*COMMAND AND CONTROL SYSTEMS, COMMUNICATION AND RADIO SYSTEMS), (* COMMUNICATION AND RADIO SYSTEMS, MILITARY RESEARCH
Vector Antenna and Maximum Likelihood Imaging for Radio Astronomy
2016-03-05
Maximum Likelihood Imaging for Radio Astronomy Mary Knapp1, Frank Robey2, Ryan Volz3, Frank Lind3, Alan Fenn2, Alex Morris2, Mark Silver2, Sarah Klein2...haystack.mit.edu Abstract1— Radio astronomy using frequencies less than ~100 MHz provides a window into non-thermal processes in objects ranging from planets...observational astronomy . Ground-based observatories including LOFAR [1], LWA [2], [3], MWA [4], and the proposed SKA-Low [5], [6] are improving access to
Limits on fast radio bursts at 145 MHz with ARTEMIS, a real-time software backend
NASA Astrophysics Data System (ADS)
Karastergiou, A.; Chennamangalam, J.; Armour, W.; Williams, C.; Mort, B.; Dulwich, F.; Salvini, S.; Magro, A.; Roberts, S.; Serylak, M.; Doo, A.; Bilous, A. V.; Breton, R. P.; Falcke, H.; Grießmeier, J.-M.; Hessels, J. W. T.; Keane, E. F.; Kondratiev, V. I.; Kramer, M.; van Leeuwen, J.; Noutsos, A.; Osłowski, S.; Sobey, C.; Stappers, B. W.; Weltevrede, P.
2015-09-01
Fast radio bursts (FRBs) are millisecond radio signals that exhibit dispersion larger than what the Galactic electron density can account for. We have conducted a 1446 h survey for FRBs at 145 MHz, covering a total of 4193 deg2 on the sky. We used the UK station of the low frequency array (LOFAR) radio telescope - the Rawlings Array - accompanied for a majority of the time by the LOFAR station at Nançay, observing the same fields at the same frequency. Our real-time search backend, Advanced Radio Transient Event Monitor and Identification System - ARTEMIS, utilizes graphics processing units to search for pulses with dispersion measures up to 320 cm-3 pc. Previous derived FRB rates from surveys around 1.4 GHz, and favoured FRB interpretations, motivated this survey, despite all previous detections occurring at higher dispersion measures. We detected no new FRBs above a signal-to-noise threshold of 10, leading to the most stringent upper limit yet on the FRB event rate at these frequencies: 29 sky-1 d-1 for five ms-duration pulses above 62 Jy. The non-detection could be due to scatter-broadening, limitations on the volume and time searched, or the shape of FRB flux density spectra. Assuming the latter and that FRBs are standard candles, the non-detection is compatible with the published FRB sky rate, if their spectra follow a power law with frequency (∝ να), with α ≳ +0.1, demonstrating a marked difference from pulsar spectra. Our results suggest that surveys at higher frequencies, including the low frequency component of the Square Kilometre Array, will have better chances to detect, estimate rates and understand the origin and properties of FRBs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...
Code of Federal Regulations, 2010 CFR
2010-07-01
... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...
Code of Federal Regulations, 2012 CFR
2012-07-01
... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...
Code of Federal Regulations, 2013 CFR
2013-07-01
... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...
Code of Federal Regulations, 2011 CFR
2011-07-01
... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...
Radio-frequency measurement in semiconductor quantum computation
NASA Astrophysics Data System (ADS)
Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing
2017-05-01
Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.
Pulsed radio frequency energy in the treatment of complex diabetic foot wounds: two cases.
Larsen, Jerrie A; Overstreet, Julia
2008-01-01
The use of radio waves (pulsed radio frequency energy) has become well accepted in the treatment of chronic wounds. We present 2 cases of complex diabetic foot wounds treated adjunctively with outpatient pulsed radio frequency energy using a solid-state, 27.12 MHz fixed power output radio frequency generator that transmits a fixed dose of nonionizing, nonthermal electromagnetic energy through an applicator pad. This therapy, in combination with offloading, debridement and advanced dressings, resulted in closure of both wounds in approximately 16 weeks.
RFI Detection and Mitigation using Independent Component Analysis as a Pre-Processor
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Gholian, Armen; Bradley, Damon C.; Wong, Mark; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.
2016-01-01
Radio-frequency interference (RFI) has negatively impacted scientific measurements of passive remote sensing satellites. This has been observed in the L-band radiometers Soil Moisture and Ocean Salinity (SMOS), Aquarius and more recently, Soil Moisture Active Passive (SMAP). RFI has also been observed at higher frequencies such as K band. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements. This work explores the use of Independent Component Analysis (ICA) as a blind source separation (BSS) technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
MASER: A Tool Box for Solar System Low Frequency Radio Astronomy
NASA Astrophysics Data System (ADS)
Cecconi, B.; Le Sidaner, P.; Savalle, R.; Bonnin, X.; Zarka, P.; Louis, C.; Coffre, A.; Lamy, L.; Denis, L.; Griessmeier, J.-M.; Faden, J.; Piker, C.; André, N.; Génot, V.; Erard, S.; King, T. A.; Mafi, J. N.; Sharlow, M.; Sky, J.; Demleitner, M.
2018-04-01
MASER (Measuring, Analysing, and Simulating Radio Emissions) is a toolbox for solar system radio astronomy. It provides tools for reading, displaying, finding, and modeling low frequency radio datasets.
Particle acceleration areas in two radio galaxies.
NASA Astrophysics Data System (ADS)
Andernach, H.
1989-04-01
Two edge-darkened, tailed radio galaxies (PKS 0123-01 and PKS 2247+11) were mapped with the VLA at 1.4 and 5 GHz at sub-arcmin resolution as well as with the Effelsberg 100-m telescope at 2.7, 5 and 10.7 GHz at arcmin resolution. With additional use of existing low-frequency maps the shape of the radio spectrum is analyzed point by point across the source extent. The shape is found to be concave (i.e. having high-frequency excess) over major parts of the source extent, in the case of 2247+11 even for a region in the far radio tail. Possible mechanisms causing this feature are proposed. Using a subset of maps at higher angular resolution most of the regions with spectral flattening turn out to coincide with bends and wiggles of the radio jets and/or tails. Polarization data are available at four frequencies and some problems in their interpretation are discussed. The following one consists of a 1-page "extended abstract" including two small figures. I attach to this message the processed postscript file which I would be happy to offer in ADS as a "scanned" paper. I include here the full extended abstract text which you could also offer as HTML code. I converted the four references to bibcodes.
48 CFR 211.275 - Radio frequency identification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Radio frequency identification. ...
76 FR 67604 - Maritime Communications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-02
... aviation and marine radio services use a marine very high frequency (VHF), medium frequency (MF), or high... aviation and marine radio services use a very high frequency (VHF) marine or aircraft radio and, as..., the Federal Communications Commission amends 47 CFR parts 2 and 80 as follows: PART 2--FREQUENCY...
An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset
Luan, Xingsheng; Huang, Yongjun; Li, Ying; McMillan, James F.; Zheng, Jiangjun; Huang, Shu-Wei; Hsieh, Pin-Chun; Gu, Tingyi; Wang, Di; Hati, Archita; Howe, David A.; Wen, Guangjun; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Wong, Chee Wei
2014-01-01
High-quality frequency references are the cornerstones in position, navigation and timing applications of both scientific and commercial domains. Optomechanical oscillators, with direct coupling to continuous-wave light and non-material-limited f × Q product, are long regarded as a potential platform for frequency reference in radio-frequency-photonic architectures. However, one major challenge is the compatibility with standard CMOS fabrication processes while maintaining optomechanical high quality performance. Here we demonstrate the monolithic integration of photonic crystal optomechanical oscillators and on-chip high speed Ge detectors based on the silicon CMOS platform. With the generation of both high harmonics (up to 59th order) and subharmonics (down to 1/4), our chipset provides multiple frequency tones for applications in both frequency multipliers and dividers. The phase noise is measured down to −125 dBc/Hz at 10 kHz offset at ~400 μW dropped-in powers, one of the lowest noise optomechanical oscillators to date and in room-temperature and atmospheric non-vacuum operating conditions. These characteristics enable optomechanical oscillators as a frequency reference platform for radio-frequency-photonic information processing. PMID:25354711
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanenko, A., E-mail: aroman@fnal.gov; Grassellino, A., E-mail: annag@fnal.gov; Melnychuk, O.
We report a strong effect of the cooling dynamics through T{sub c} on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments including electropolishing with and without 120 °C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance, while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.
A repetitive S-band long-pulse relativistic backward-wave oscillator.
Jin, Zhenxing; Zhang, Jun; Yang, Jianhua; Zhong, Huihuang; Qian, Baoliang; Shu, Ting; Zhang, Jiande; Zhou, Shengyue; Xu, Liurong
2011-08-01
This paper presents both numerical and experimental studies of a repetitive S-band long-pulse relativistic backward-wave oscillator. The dispersion relation curve of the main slow-wave structure is given by the numerical calculation. Experimental results show that a 1 GW microwaves with pulse duration of about 100 ns (full width of half magnitude) under 10 Hz repetitive operation mode are obtained. The microwave frequency is 3.6 GHz with the dominant mode of TM(01), and power conversion efficiency is about 20%. The single pulse energy is about 100 J. The experimental results are in good agreement with the simulation ones. By analyzing the experimental phenomenon, we obtain the conclusion that the explosive emission on the surface of the electrodynamics structure in intense radio frequency field mainly leads to the earlier unexpected termination of microwave output.
Analysis of type II and type III solar radio bursts
NASA Astrophysics Data System (ADS)
Wijesekera, J. V.; Jayaratne, K. P. S. C.; Adassuriya, J.
2018-04-01
Solar radio burst is an arrangement of a frequency space that variation with time. Most of radio burst can be identified in low frequency range such as below 200 MHz and depending on frequencies. Solar radio bursts were the first phenomenon identified in the field of radio astronomy field. Solar radio frequency range is from 70 MHz to 2.2 GHz. Most of the radio burst can be identified in a low frequency range such as below 200 MHz. Properties of low-frequency radio were analyzed this research. There are two types of solar radio bursts were analyzed, named as type II and type III radio bursts. Exponential decay type could be seen in type II, and a linear could be indicated in type III solar radio bursts. The results of the drift rate graphs show the values of each chosen solar radio burst. High drift rate values can be seen in type III solar flares whereas low to medium drift rate values can be seen in type II solar flares. In the second part of the research the Newkirk model electron density model was used to estimate the drift velocities of the solar radio bursts. Although the special origin of the solar radio burst is not known clearly we assumed. The chosen solar radio bursts were originated within the solar radius of 0.9 - 1.3 range from the photosphere. We used power low in the form of (x) = A × 10‑bx were that the electron density related to the height of the solar atmosphere. The calculation of the plasma velocity of each solar radio burst was done using the electron density model and drift rates. Therefore velocity of chosen type II solar radio bursts indicates low velocities. The values are 233.2499 Km s‑1, 815.9522 Km s‑1 and 369.5425 Km s‑1. Velocity of chosen type III solar radio bursts were 1443.058 Km s‑1and 1205.05Km s ‑1.
Radio Imaging Observations of Solar Activity Cycle and Its Anomaly
NASA Astrophysics Data System (ADS)
Shibasaki, K.
2011-12-01
The 24th solar activity cycle has started and relative sunspot numbers are increasing. However, their rate of increase is rather slow compared to previous cycles. Active region sizes are small, lifetime is short, and big (X-class) flares are rare so far. We study this anomalous situation using data from Nobeyama Radioheliograph (NoRH). Radio imaging observations have been done by NoRH since 1992. Nearly 20 years of daily radio images of the Sun at 17 GHz are used to synthesize a radio butterfly diagram. Due to stable operation of the instrument and a robust calibration method, uniform datasets are available covering the whole period of observation. The radio butterfly diagram shows bright features corresponding to active region belts and their migration toward low latitude as the solar cycle progresses. In the present solar activity cycle (24), increase of radio brightness is delayed and slow. There are also bright features around both poles (polar brightening). Their brightness show solar cycle dependence but peaks around solar minimum. Comparison between the last minimum and the previous one shows decrease of its brightness. This corresponds to weakening of polar magnetic field activity between them. In the northern pole, polar brightening is already weakened in 2011, which means it is close to solar maximum in the northern hemisphere. Southern pole does not show such feature yet. Slow rise of activity in active region belt, weakening of polar activity during the minimum, and large north-south asymmetry in polar activity imply that global solar activity and its synchronization are weakening.
Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields
NASA Astrophysics Data System (ADS)
Collins, Christian B.; Ackerson, Christopher J.
2018-02-01
The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.
ERIC Educational Resources Information Center
Howkins, John, Ed.
1979-01-01
This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…
Investigation on the Frequency Allocation for Radio Astronomy at the L Band
NASA Astrophysics Data System (ADS)
Abidin, Z. Z.; Umar, R.; Ibrahim, Z. A.; Rosli, Z.; Asanok, K.; Gasiprong, N.
2013-09-01
In this paper, the frequency allocation reserved for radio astronomy in the L band set by the International Telecommunication Union (ITU), which is between 1400 and 1427 MHz, is reviewed. We argue that the nearby frequencies are still very important for radio astronomers on the ground by investigating radio objects (H i sources) around 1300-1500 MHz. The L-band window is separated into a group of four windows, namely 1400-1427 MHz (window A), 1380-1400 MHz (window B), 1350-1380 MHz (window C), and 1300-1350 MHz (window D). These windows are selected according to their redshifts from a rest frequency for hydrogen spectral line at 1420.4057 MHz. Radio objects up to z ≈ 0.1 or frequency down to 1300 MHz are examined. We argue that since window B has important radio objects within the four windows, this window should also be given to radio astronomy. They are galaxies, spiral galaxies, and galaxy clusters. This underlines the significance of window B for radio astronomers on the ground. By investigating the severeness of radio frequency interference (RFI) within these windows, we have determined that window B still has significant, consistent RFI. The main RFI sources in the four windows have also been identified. We also found that the Department of Civil Aviation of Malaysia is assigned a frequency range of 1215-1427 MHz, which is transmitted within the four windows and inside the protected frequency for radio astronomy. We also investigated the RFI in the four windows on proposed sites of future radio astronomy observatories in Malaysia and Thailand and found the two best sites as Universiti Pendidikan Sultan Idris (UPSI) and Ubon Ratchathani, respectively. It has also been determined that RFI in window B increases with population density.
Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder
Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru
2016-01-01
Introduction Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Methods Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants’ brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5–16 Hz) and slow-frequency spindle activity (10.5–12.5 Hz). Result Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Conclusion Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep. PMID:26869818
Plasma characterization studies for materials processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfender, E.; Heberlein, J.
New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torchmore » model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.« less
Characteristics of the Time Variable Component of the Coronal Heating Process
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Poland, Art (Technical Monitor)
2001-01-01
The goal of the proposed study was to explore the non-steady nature of the coronal heating processes and its manifestations in the inner corona and interplanetary space by coordinating coronal SOHO observations in white light, ultraviolet, and extreme ultraviolet, with complementary radio occultation measurements during an unprecedented and rare coincidence of a total solar eclipse with the superior conjunction of a planetary spacecraft, Galileo, in February 1998. In addition, radio occultation measurements by the Mars Global Surveyor spacecraft in May 1998 spanned the inner heliosphere observed by coronal SOHO instruments and probing it to within 0.5 R(sub S), above the solar surface. Inferences of physical properties derived from these simultaneous observations were subsequently used in solar wind model computations to yield the range of plasma parameters characteristic of the fast and slow solar wind.
I. S. Shklovsky and Low-Frequency Radio Astronomy
NASA Astrophysics Data System (ADS)
Konovalenko, A. A.
2017-03-01
Purpose: Proving of the high astrophysical significance of the low-frequency radio astronomy (decameter and adjacent hectometer and meter wavelengths), demonstration of the priority results of the Ukrainian low-frequency radio astronomy as well as significant contribution of I. S. Shklovsky to its development. Design/methodology/approach: The requirements to characteristics of high efficiency radio telescopes UTR-2, URAN, GURT and to sensitive and interference immune observational methods at low frequencies are formulated by using the theoretical analysis and astrophysical predictions including those I. S. Shklovsky’s. Findings: New generation radio telescopes UTR-2, URAN, GURT are created and modernized. New observational methods at low frequencies are introduced. Large-scale investigations of the Solar system, Galaxy and Methagalaxy are carried out. They have allowed to detect new objects and phenomena for the continuum, monochromatic, pulse and sporadic cosmic radio emission. The role of I. S. Shklovsky in the development of many low-frequency radio astronomy directions is noted, too. Conclusions: The unique possibilities of the low-frequency radio astronomy which gives new information about the Universe, inaccessible with the other astrophysical methods, are shown. The progress of the low-frequency radio astronomy opens the impressive possibilities for the future. It includes modernization of the largest radio telescopes UTR-2, URAN, NDA and creation of new instruments GURT, NenuFAR, LOFAR, LWA, MWA, SKA as well as making multi-antenna and ground-space experiments. The contribution of outstanding astrophysicist of the XX century I. S. Shklovsky to this part of actual astronomical science is evident, claiming for attention and will never be forgotten.
48 CFR 211.275 - Passive radio frequency identification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Passive radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Passive radio frequency identification. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doleans, Marc
In this study, an in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface and to reduce its secondary emission yield. SNS SRF cavities are six-cell elliptical cavities and the plasma typically ignites in the cell where the electric field is the highest. This article will detail a technique that was developed to ignite and monitor the plasma in eachmore » cell of the SNS cavities.« less
Deposition of diamond-like films by ECR microwave plasma
NASA Technical Reports Server (NTRS)
Shing, Yuh-Han (Inventor); Pool, Frederick S. (Inventor)
1995-01-01
Hard amorphous hydrogenated carbon, diamond-like films are deposited using an electron cyclotron resonance microwave plasma with a separate radio frequency power bias applied to a substrate stage. The electron cyclotron resonance microwave plasma yields low deposition pressure and creates ion species otherwise unavailable. A magnetic mirror configuration extracts special ion species from a plasma chamber. Different levels of the radio frequency power bias accelerate the ion species of the ECR plasma impinging on a substrate to form different diamond-like films. During the deposition process, a sample stage is maintained at an ambient temperature of less than 100.degree. C. No external heating is applied to the sample stage. The deposition process enables diamond-like films to be deposited on heat-sensitive substrates.
Doleans, Marc
2016-12-27
In this study, an in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface and to reduce its secondary emission yield. SNS SRF cavities are six-cell elliptical cavities and the plasma typically ignites in the cell where the electric field is the highest. This article will detail a technique that was developed to ignite and monitor the plasma in eachmore » cell of the SNS cavities.« less
Particle beam injector system and method
Guethlein, Gary
2013-06-18
Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.
CONTROL AND FAULT DETECTOR CIRCUIT
Winningstad, C.N.
1958-04-01
A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.
Spectral-Temporal Evolution of Low-Frequency Pulsations in the Microwave Radiation of Solar Flares
NASA Astrophysics Data System (ADS)
Zaitsev, V. V.; Kislyakov, A. G.; Urpo, S.; Stepanov, A. V.; Shkelev, E. I.
2003-10-01
Low-frequency pulsations of 22 and 37 GHz microwave radiation detected during solar flares are analyzed. Several microwave bursts observed at the Metsähovi Radio Observatory are studied with time resolutions of 100 and 50 ms. A fast Fourier transformation with a sliding window and the Wigner-Ville method are used to obtain frequency-time diagrams for the low-frequency pulsations, which are interpreted as natural oscillations of coronal magnetic loops; the dynamical spectra of the pulsations are synthesized for the first time. Three types of low-frequency fluctuations modulating the flare microwave radiation can be distinguished in the observations. First, there are fast and slow magneto-acoustic oscillations with periods of 0.5 0.8 s and 200 280 s, respectively. The fast magneto-acoustic oscillations appear as trains of narrow-band signals with durations of 100 200 s, a positive frequency drift dν/dt=0.25 MHz/min, and frequency splitting δν=0.01 0.05 Hz. Second, there are natural oscillations of the coronal magnetic loops as equivalent electrical circuits. These oscillations have periods of 0.5 10 s and positive or negative frequency drift rates dν/dt=8×10-3 Hz/min or dν/dt=-1.3×10-2 Hz/min, depending on the phase of the radio outburst. Third, there are modulations of the microwave radiation by short periodic pulses with a period of 20 s. The dynamical spectra of the low-frequency pulsations supply important information about the parameters of the magnetic loops: the ratio of the loop radius to its length r/L≈0.1, the plasma parameter β≈10-3, the ratio of the plasma densities outside and inside the loop ρe/ρi≈10-2, and the electrical current flowing along the loop I≈1012 A.
NASA Astrophysics Data System (ADS)
Manik, T.; Sitompul, P.; Batubara, M.; Harjana, T.; Yatini, C. Y.; Monstein, C.
2016-04-01
Sumedang Observatory (6.91°S, 107,84°E) was established in 1975 and is one of the solar observation facilities of the Space Science Center of Indonesian National Institute of Aeronautics and Space (LAPAN), located around 40 km, east part of Bandung City, West Java, Indonesia. Several instrumentations for solar and space observation such as optical telescopes, radio solar spectrograph, flux gate magnetometer, etc. are operated there, together with an ionosphere sounding system (ionosonde) that was set up later. In July 2014, a standard Callisto (Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) spectrometer was installed at Sumedang Observatory for solar radio activity monitoring. Callisto has been developed in the framework of IHY2007 and ISWI, supported by UN and NASA. Callisto spectrometer has observation capability in the frequency range of 45-870 MHz. The Callisto spectrometer receives signal by using a set of 21 elements log-periodic antenna, model CLP5130-1N, pointed to the Sun and equipped with a low noise pre-amplifier. With respect to the Radio Frequency Interferences (RFI) measurements, the Callisto spectrometer is operated individually in frequency ranges of 45-80 MHz and 180-450 MHz. Observation status and data flow are monitored in on-line from center office located in Bandung. The data was transferred to central database at FHNW (Fachhochschule Nordwestschweiz) server every 15 minutes to appear on e-Callisto network subsequently. A real time data transfer and data processing based on Python software also has been developed successfully to be used as an input for Space Weather Information and Forecasting Services (SWIFtS) provided by LAPAN. On 5th November 2014, Callisto spectrometer at Sumedang observed the first clear solar radio event, a solar radio burst type II corresponding to a coronal mass ejection (CME), indicated by a strong X-ray event of M7.9 that was informed on by Space Weather Prediction Center (SWPC) NOAA. Thereafter, Callisto spectrometer at Sumedang also observed several solar radio bursts in various types. This paper describes the system configuration of Callisto spectrometer installed at Sumedang, RFI measurement and chosen observation strategy, real time data transfer and processing, as well as several samples of present results of solar radio burst monitoring at Sumedang, and future development plan of Callisto spectrometer in Indonesia which will be able to cover 14 hours of day solar observation. Keywords: Callisto spectrometer, solar radio observation, SWIFtS.
Slow Cortical Dynamics and the Accumulation of Information over Long Timescales
Honey, Christopher J.; Thesen, Thomas; Donner, Tobias H.; Silbert, Lauren J.; Carlson, Chad E.; Devinsky, Orrin; Doyle, Werner K.; Rubin, Nava; Heeger, David J.; Hasson, Uri
2012-01-01
SUMMARY Making sense of the world requires us to process information over multiple timescales. We sought to identify brain regions that accumulate information over short and long timescales and to characterize the distinguishing features of their dynamics. We recorded electrocorticographic (ECoG) signals from individuals watching intact and scrambled movies. Within sensory regions, fluctuations of high-frequency (64–200 Hz) power reliably tracked instantaneous low-level properties of the intact and scrambled movies. Within higher order regions, the power fluctuations were more reliable for the intact movie than the scrambled movie, indicating that these regions accumulate information over relatively long time periods (several seconds or longer). Slow (<0.1 Hz) fluctuations of high-frequency power with time courses locked to the movies were observed throughout the cortex. Slow fluctuations were relatively larger in regions that accumulated information over longer time periods, suggesting a connection between slow neuronal population dynamics and temporally extended information processing. PMID:23083743
High spectral purity Kerr frequency comb radio frequency photonic oscillator
Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.
2015-01-01
Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955
Brain state-dependent recruitment of high-frequency oscillations in the human hippocampus.
Billeke, Pablo; Ossandon, Tomas; Stockle, Marcelo; Perrone-Bertolotti, Marcela; Kahane, Philippe; Lachaux, Jean-Philippe; Fuentealba, Pablo
2017-09-01
Ripples are high-frequency bouts of coordinated hippocampal activity believed to be crucial for information transfer and memory formation. We used intracortical macroelectrodes to record neural activity in the human hippocampus of awake subjects undergoing surgical treatment for refractory epilepsy and distinguished two populations of ripple episodes based on their frequency spectrum. The phase-coupling of one population, slow ripples (90-110 Hz), to cortical delta oscillations was differentially modulated by cognitive task; whereas the second population, fast ripples (130-170 Hz), was not seemingly correlated to local neural activity. Furthermore, as cognitive tasks changed, the ongoing coordination of neural activity associated to slow ripples progressively augmented along the parahippocampal axis. Thus, during resting states, slow ripples were coordinated in restricted hippocampal territories; whereas during active states, such as attentionally-demanding tasks, high frequency activity emerged across the hippocampus and parahippocampal cortex, that was synchronized with slow ripples, consistent with ripples supporting information transfer and coupling anatomically distant regions. Hence, our results provide further evidence of neural diversity in hippocampal high-frequency oscillations and their association to cognitive processing in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.
ON THE BRIGHTNESS AND WAITING-TIME DISTRIBUTIONS OF A TYPE III RADIO STORM OBSERVED BY STEREO/WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastwood, J. P.; Hudson, H. S.; Krucker, S.
2010-01-10
Type III solar radio storms, observed at frequencies below {approx}16 MHz by space-borne radio experiments, correspond to the quasi-continuous, bursty emission of electron beams onto open field lines above active regions. The mechanisms by which a storm can persist in some cases for more than a solar rotation whilst exhibiting considerable radio activity are poorly understood. To address this issue, the statistical properties of a type III storm observed by the STEREO/WAVES radio experiment are presented, examining both the brightness distribution and (for the first time) the waiting-time distribution (WTD). Single power-law behavior is observed in the number distribution asmore » a function of brightness; the power-law index is {approx}2.1 and is largely independent of frequency. The WTD is found to be consistent with a piecewise-constant Poisson process. This indicates that during the storm individual type III bursts occur independently and suggests that the storm dynamics are consistent with avalanche-type behavior in the underlying active region.« less
NASA Astrophysics Data System (ADS)
Von Korff, J.; Demorest, P.; Heien, E.; Korpela, E.; Werthimer, D.; Cobb, J.; Lebofsky, M.; Anderson, D.; Bankay, B.; Siemion, A.
2013-04-01
We are performing a transient, microsecond timescale radio sky survey, called "Astropulse," using the Arecibo telescope. Astropulse searches for brief (0.4 μs to 204.8 μs ), wideband (relative to its 2.5 MHz bandwidth) radio pulses centered at 1420 MHz. Astropulse is a commensal (piggyback) survey, and scans the sky between declinations of -1.°33 and 38.°03. We obtained 1540 hr of data in each of seven beams of the ALFA receiver, with two polarizations per beam. The data are one-bit complex sampled at the Nyquist limit of 0.4 μs per sample. Examination of timescales on the order of microseconds is possible because we used coherent dedispersion, a technique that has frequently been used for targeted observations, but has never been associated with a radio sky survey. The more usual technique, incoherent dedispersion, cannot resolve signals below a minimum timescale which depends on the signal's dispersion measure (DM) and frequency. However, coherent dedispersion requires more intensive computation than incoherent dedispersion. The required processing power was provided by BOINC, the Berkeley Open Infrastructure for Network Computing. BOINC is a distributed computing system, allowing us to utilize hundreds of thousands of volunteers' computers to perform the necessary calculations for coherent dedispersion. Astrophysical events that might produce brief radio pulses include giant pulses from pulsars, rotating radio transients, exploding primordial black holes, or new sources yet to be imagined. Radio frequency interference and noise contaminate the data; these are mitigated by a number of techniques including multi-polarization correlation, DM repetition detection, and frequency profiling.
Radio frequency processing of food
USDA-ARS?s Scientific Manuscript database
The IFT 2016 food expo, which was home to 2,695 booths, was both exciting and educational for those who wished to learn more about food processing. From pumps to small-scale unit operations to commercial equipment, exhibitors highlighted both traditional and innovative food processing solutions for ...
SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY
Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency i(RF) band to heat soil in-situ, thereby potentially enhancing the performances of standard soil vapor extraction (SVE) technologies. ontaminants are removed from in situ soils and transf...
SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY
Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...
A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation
NASA Astrophysics Data System (ADS)
Barnbaum, Cecilia; Bradley, Richard F.
1998-11-01
Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have built a prototype adaptive canceler that consists of two receivers: the primary channel (input from the main beam of the telescope) and a separate reference channel. The primary channel receives the desired astronomical signal corrupted by RFI (radio-frequency interference) coming in the sidelobes of the main beam. A separate reference antenna is designed to receive only the RFI. The reference channel input is processed using a digital adaptive filter and then subtracted from the primary channel input, producing the system output. The weighting coefficients of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the canceler locks onto the RFI, and the filter adjusts itself to minimize the effect of the RFI at the system output. We have designed the adaptive canceler with an intermediate frequency (IF) of 40 MHz. This prototype system will ultimately be functional with a variety of radio astronomy receivers in the microwave band. We have also built a prototype receiver centered at 100 MHz (in the FM broadcast band) to test the adaptive canceler with actual interferers, which are well characterized. The initial laboratory tests of the adaptive canceler are encouraging, with attenuation of strong frequency-modulated (FM) interference to 72 dB (a factor of more than 10 million), which is at the performance limit of our measurements. We also consider requirements of the system and the RFI environment for effective adaptive canceling.
Tracing Chromospheric Evaporation in Radio and Soft X-rays
NASA Technical Reports Server (NTRS)
Aschwanden, Markus J.
1997-01-01
There are three publications in refereed journals and several presentations at scientific conferences resulted from this work, over a period of 6 months during 1995/1996. In the first paper, the discovery of the chromospheric evaporation process at radio wavelengths is described. In the second paper, the radio detection is used to quantify electron densities in the upflowing heated plasma in flare loops, which is then compared with independent other density measurements from soft X-rays, or the plasma frequency of electron beams originating in the acceleration region. In the third paper, the diagnostic results of the chromospheric evaporation process are embedded into a broader picture of a standard flare scenario. Abstracts of these three papers are attached.
Blind detection of giant pulses: GPU implementation
NASA Astrophysics Data System (ADS)
Ait-Allal, Dalal; Weber, Rodolphe; Dumez-Viou, Cédric; Cognard, Ismael; Theureau, Gilles
2012-01-01
Radio astronomical pulsar observations require specific instrumentation and dedicated signal processing to cope with the dispersion caused by the interstellar medium. Moreover, the quality of observations can be limited by radio frequency interference (RFI) generated by Telecommunications activity. This article presents the innovative pulsar instrumentation based on graphical processing units (GPU) which has been designed at the Nançay Radio Astronomical Observatory. In addition, for giant pulsar search, we propose a new approach which combines a hardware-efficient search method and some RFI mitigation capabilities. Although this approach is less sensitive than the classical approach, its advantage is that no a priori information on the pulsar parameters is required. The validation of a GPU implementation is under way.
NASA Astrophysics Data System (ADS)
Samodurov, V. A.; Rodin, A. E.; Kitaeva, M. A.; Isaev, E. A.; Dumsky, D. V.; Churakov, D. D.; Manzyuk, M. O.
From 2012 on radio telescope BSA FIAN multi beams diagram was started. It capable at July 2014 daily observing by 96 beams in declination -8 .. 42 degrees in the frequency band 109-111.5 MHz. The number of frequency bands are from 6 to 32, the time constant are from 0.1 to 0.0125 sec. In receiving mode with 32 band (plus one common band) with a time constant of 12.5 ms (80 times per second) respectively produced 33x96x80 four byte real and so daily we produced 87.5 Gbt (yearly to 32 Tbt). These data are enormous opportunities for both short and long-term monitoring of various classes of radio sources (including radio transients) and for space weather and the Earth's ionosphere monitoring, for search for different classes of radio sources, etc. The base aims of our work are: a) to obtain new scientific data on different classes of discrete radio sources, the construction of physical models and their evolution - obtained on the basis of the clock continuous digital sky radio monitoring at frequency 109-111.5 MHz and cross-analysis of data from third-party reviews on other frequencies; c) launch the streaming data on various types of high-performance computing systems, including to create a public system of distributed computing for thousands of users on the basis of BOINC technology. The BOINC client for astronomical data from the monitoring survey of the big part of entire sky almost have not analogies. We have some first science results (new pulsars, and some new type of radiosources).
Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931
NASA Astrophysics Data System (ADS)
Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R. J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; Wilber, A.; O'Sullivan, S.; Ensslin, T. A.; De Gasperin, F.; Hoeft, M.
2018-04-01
Extended, steep-spectrum radio synchrotron sources are pre-dominantly found in massive galaxy clusters as opposed to groups. LOFAR Two-Metre Sky Survey images have revealed a diffuse, ultra-steep spectrum radio source in the low-mass cluster Abell 1931. The source has a fairly irregular morphology with a largest linear size of about 550 kpc. The source is only seen in LOFAR observations at 143 MHz and GMRT observations at 325 MHz. The spectral index of the total source between 143 MHz and 325 MHz is α _{143}^{325} = -2.86 ± 0.36. The source remains invisible in Very Large Array (1-2 GHz) observations as expected given the spectral index. Chandra X-ray observations of the cluster revealed a bolometric luminosity of LX = (1.65 ± 0.39) × 1043 erg s-1 and a temperature of 2.92_{-0.87}^{+1.89} keV which implies a mass of around ˜1014M⊙. We conclude that the source is a remnant radio galaxy that has shut off around 200 Myr ago. The brightest cluster galaxy, a radio-loud elliptical galaxy, could be the source for this extinct source. Unlike remnant sources studied in the literature, our source has a steep spectrum at low radio frequencies. Studying such remnant radio galaxies at low radio frequencies is important for understanding the scarcity of such sources and their role in feedback processes.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Chavez Dagostino, Miguel; Arellanes, Adan O.; Aguirre Lopez, Arturo
2016-09-01
We develop a multi-band spectrometer with a few spatially parallel optical arms for the combined processing of their data flow. Such multi-band capability has various applications in astrophysical scenarios at different scales: from objects in the distant universe to planetary atmospheres in the Solar system. Each optical arm exhibits original performances to provide parallel multi-band observations with different scales simultaneously. Similar possibility is based on designing each optical arm individually via exploiting different materials for acousto-optical cells operating within various regimes, frequency ranges and light wavelengths from independent light sources. Individual beam shapers provide both the needed incident light polarization and the required apodization to increase the dynamic range of a system. After parallel acousto-optical processing, data flows are united by the joint CCD matrix on the stage of the combined electronic data processing. At the moment, the prototype combines still three bands, i.e. includes three spatial optical arms. The first low-frequency arm operates at the central frequencies 60-80 MHz with frequency bandwidth 40 MHz. The second arm is oriented to middle-frequencies 350-500 MHz with frequency bandwidth 200-300 MHz. The third arm is intended for ultra-high-frequency radio-wave signals about 1.0-1.5 GHz with frequency bandwidth <300 MHz. To-day, this spectrometer has the following preliminary performances. The first arm exhibits frequency resolution 20 KHz; while the second and third arms give the resolution 150-200 KHz. The numbers of resolvable spots are 1500- 2000 depending on the regime of operation. The fourth optical arm at the frequency range 3.5 GHz is currently under construction.
On High and Low Starting Frequencies of Type II Radio Bursts
NASA Astrophysics Data System (ADS)
Sharma, J.; Mittal, N.
2017-06-01
We have studied the characteristics of type II radio burst during the period May 1996 to March 2015, for the solar cycle 23 and 24, observed by WIND/WAVES radio instrument. A total of 642 events were recorded by the instrument during the study period. We have divided the events with two starting frequency range (high > 1 MHz; low ≤ 1MHz) as type II1 (i.e., 1-16 MHz) radio burst and type II2 (i.e., 20 KHz - 1020 KHz) radio burst which constitute the DH and km type II radio burst observed by WIND spacecraft, and determined their time and frequency characteristics. The mean drift rate of type II1 and type II2 radio bursts is 29.76 × 10-4 MHz/s and 0.17 × 10-4 MHz/s respectively, which shows that type II1 with high start frequency hase larger drift rate than the type II2 with low starting frequencies. We have also reported that the start frequency and the drift rate of type II1 are in good correlation, with a linear correlation coefficient of 0.58.
NASA Astrophysics Data System (ADS)
Naldi, G.; Bartolini, M.; Mattana, A.; Pupillo, G.; Hickish, J.; Foster, G.; Bianchi, G.; Lingua, A.; Monari, J.; Montebugnoli, S.; Perini, F.; Rusticelli, S.; Schiaffino, M.; Virone, G.; Zarb Adami, K.
In radio astronomy Field Programmable Gate Array (FPGA) technology is largely used for the implementation of digital signal processing techniques applied to antenna arrays. This is mainly due to the good trade-off among computing resources, power consumption and cost offered by FPGA chip compared to other technologies like ASIC, GPU and CPU. In the last years several digital backend systems based on such devices have been developed at the Medicina radio astronomical station (INAF-IRA, Bologna, Italy). Instruments like FX correlator, direct imager, beamformer, multi-beam system have been successfully designed and realized on CASPER (Collaboration for Astronomy Signal Processing and Electronics Research, https://casper.berkeley.edu) processing boards. In this paper we present the gained experience in this kind of applications.
High-power radio-frequency attenuation device
Kerns, Q.A.; Miller, H.W.
1981-12-30
A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.
Marine asset security and tracking (MAST) system
Hanson, Gregory Richard [Clinton, TN; Smith, Stephen Fulton [Loudon, TN; Moore, Michael Roy [Corryton, TN; Dobson, Eric Lesley [Charleston, SC; Blair, Jeffrey Scott [Charleston, SC; Duncan, Christopher Allen [Marietta, GA; Lenarduzzi, Roberto [Knoxville, TN
2008-07-01
Methods and apparatus are described for marine asset security and tracking (MAST). A method includes transmitting identification data, location data and environmental state sensor data from a radio frequency tag. An apparatus includes a radio frequency tag that transmits identification data, location data and environmental state sensor data. Another method includes transmitting identification data and location data from a radio frequency tag using hybrid spread-spectrum modulation. Another apparatus includes a radio frequency tag that transmits both identification data and location data using hybrid spread-spectrum modulation.
High power radio frequency attenuation device
Kerns, Quentin A.; Miller, Harold W.
1984-01-01
A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.
NASA Radio Frequency Spectrum Management Manual
NASA Technical Reports Server (NTRS)
1989-01-01
The Radio Frequency (RF) Spectrum Management Manual sets forth procedures and guidelines for the management requirements for controlling the use of radio frequencies by the National Aeronautics and Space Administration. It is applicable to NASA Headquarters and field installations. NASA Management Instruction 1102.3 assigns the authority for management of radio frequencies for the National Aeronautics and Space Administration to the Associate Administrator for Space Operations, NASA Headquarters. This manual is issued in loose-leaf form and will be revised by page changes.
Using Solar Radio Burst Integrated Fluxes to Predict Energetic Proton Flux Increases.
1982-08-31
Energy Density, ET, of the radio burst, an integration across the frequency interval of the time-integrated radio fluxes at each frequency, was found to...integrated flux or energy at five frequencies in the 600- to 8800-MHz frequency interval and related them to the peak proton flux of the associated... energy of the burst normalized to its peak flux. One other characteristic of the radio burst to which Croom 13 referred was the total energy density, ET
Radio frequency spectrum management
NASA Astrophysics Data System (ADS)
Sujdak, E. J., Jr.
1980-03-01
This thesis is a study of radio frequency spectrum management as practiced by agencies and departments of the Federal Government. After a brief introduction to the international agency involved in radio frequency spectrum management, the author concentrates on Federal agencies engaged in frequency management. These agencies include the National Telecommunications and Information Administration (NTIA), the Interdepartment Radio Advisory Committee (IRAC), and the Department of Defense (DoD). Based on an analysis of Department of Defense frequency assignment procedures, recommendations are given concerning decentralizing military frequency assignment by delegating broader authority to unified commanders. This proposal includes a recommendation to colocate the individual Service frequency management offices at the Washington level. This would result in reduced travel costs, lower manpower requirements, and a common tri-Service frequency management data base.
NASA Astrophysics Data System (ADS)
Huang, Guang-Li
2003-03-01
A flare-CME event on April 15, 1998 is studied with data of Nobeyama Radio Polarimeters (NoRP) and Heliograph (NoRH), the radio spectrometers of Chinese National Astronomical Observatories (1.0-2.0 GHz and 2.6-2.8 GHz), and the Astrophysical Institute of Postdam (200-800 MHz), as well as the data of YOHKOH, SOHO, BATSE, and GOES. There were strong fluctuations superposed on the initial phase of the BATSE hard X-ray burst, and the radio burst at 1.0-2.0 GHz with a group of type III-like positive and negative frequency drift pairs, which may be interpreted as the process of magnetic reconnection or particle acceleration in corona. A type II-like burst with a series of pulsations at 200-800 MHz followed the maximum phase of the radio and hard X-ray burst, and slowly drifted to lower frequencies with typical zebra feature. After 10 min of that, a similar dynamic spectrum was recorded at 2.6-3.8 GHz, where the type II-like signal drifted to higher frequencies with a series of pulsations and zebra structures. The polarization sense was strongly RCP at 2.6-3.8 GHz, and weakly LCP at 1.0-2.0 GHz, which was confirmed by the observations of NoRP. The radiation mechanism of these pulsations may be caused by the electron cyclotron maser instability. The local magnetic field strength and source height are estimated based on the gyro-synchrotron second harmonic emission. The ambient plasma density is calculated from the YOHKOH/SXT data. The ratio between the electron plasma frequency and gyro-frequency is around 1.3, which corresponds to the reversal value from extraordinary mode (LCP) to ordinary mode (RCP). Moreover, both the time scale and the modularity of an individual pulse increase statistically with the increase in the burst flux, which may be explained by the acceleration process of non-thermal electrons in the shock wave-fronts propagated upward and downward. Therefore, the radio observations may provide an important signature that flare and CME are triggered simultaneously by magnetic reconnection and are associated with the formation of bi-directional shock waves.
gr-MRI: A software package for magnetic resonance imaging using software defined radios
NASA Astrophysics Data System (ADS)
Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.
NASA Astrophysics Data System (ADS)
Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.
2013-09-01
We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.
Effects of radio frequency identification-related radiation on in vitro biologics.
Uysal, Ismail; Hohberger, Clive; Rasmussen, R Scott; Ulrich, David A; Emond, Jean-Pierre; Gutierrez, Alfonso
2012-01-01
The recent developments on the use of e-pedigree to identify the chain of custody of drugs suggests the use of advanced track and trace technologies such as two-dimensional barcodes and radio frequency identification (RFID) tags. RFID technology is used mainly for valuable commodities such as pharmaceutical products while incorporating additional functionalities like monitoring environmental variables to ensure product safety and quality. In its guidance for the use of RFID technologies for drugs (Compliance Policy Guide Section 400.210), the Food and Drug Administration outlined multiple parameters that would apply to any study or application using RFID. However, drugs approved under a Biologics License Application or protein drugs covered by a New Drug Application were excluded mainly due to concerns about the effects of radio frequency radiation (thermal and/or non-thermal) on biologics. Even though the thermal effects of radio frequency on biologics are relatively well understood, there are few studies in the literature about the non-thermal effects of radio frequency with regards to the protein structure integrity. In this paper, we analyze the non-thermal effects of radio frequency radiation by exposing a wide variety of biologics including biopharmaceuticals with vaccines, hormones, and immunoglobulins, as well as cellular blood products such as red blood cells and whole blood-derived platelets as well as fresh frozen plasma. In order to represent the majority of the frequency spectrum used in RFID applications, five different frequencies (13.56 MHz, 433 MHz, 868 MHz, 915 MHz, and 2.4 GHz) are used to account for the most commonly used international frequency bands for RFID. With the help of specialized radio frequency signal-generating hardware, magnetic and electromagnetic fields are created around the exposed products with power levels greater than Federal Communications Commission-regulated limits. The in vitro test results on more than 100 biopharmaceutical products from eight major pharmaceutical companies as well, as different blood products, show no non-thermal effect by radio frequency radiation. Forthcoming requirements, such as the California Board of Pharmacy Track and Trace initiative regarding the use of e-pedigree to identify the chain of custody of drugs, suggest the use of advanced track and trace technologies such as two-dimensional barcodes and radio frequency identification (RFID) tags. When used for pharmaceuticals, RFID technology can support additional functionalities like monitoring temperature to ensure product safety. In its guidance for the use of RFID technologies for drugs, the Food and Drug Administration outlined multiple parameters that would apply to pilot studies using RFID while excluding drugs approved under a Biologics License Application or protein drugs covered by a New Drug Application due to concerns about the effects of radio frequency radiation on biologics. Even though the effects of radio frequency on biologics due to temperature changes are relatively well understood, there are few studies in the literature about other effects of radio frequency that can occur without a noticeable change in temperature. In this paper, we expose a wide variety of biologics including biopharmaceuticals to radio frequency radiation at different frequencies, as well as cellular blood products and plasma to high frequency radiation. The in vitro test results show no detectable effect due to radio frequency radiation.
Plasma generation and processing of interstellar carbonaceous dust analogs
NASA Astrophysics Data System (ADS)
Peláez, R. J.; Maté, B.; Tanarro, I.; Molpeceres, G.; Jiménez-Redondo, M.; Timón, V.; Escribano, R.; Herrero, V. J.
2018-03-01
Interstellar (IS) dust analogs, based on amorphous hydrogenated carbon (a-C:H) were generated by plasma deposition in radio frequency discharges of CH4 + He mixtures. The a-C:H samples were characterized by means of secondary electron microscopy, infrared (IR) spectroscopy and UV-visible reflectivity. DFT calculations of structure and IR spectra were also carried out. From the experimental data, atomic compositions were estimated. Both IR and reflectivity measurements led to similar high proportions (≈50%) of H atoms, but there was a significant discrepancy in the sp2/sp3 hybridization ratios of C atoms (sp2/sp3 = 1.5 from IR and 0.25 from reflectivity). Energetic processing of the samples with 5 keV electrons led to a decay of IR aliphatic bands and to a growth of aromatic bands, which is consistent with a dehydrogenation and graphitization of the samples. The decay of the CH aliphatic stretching band at 3.4 μm upon electron irradiation is relatively slow. Estimates based on the absorbed energy and on models of cosmic ray (CR) flux indicate that CR bombardment is not enough to justify the observed disappearance of this band in dense IS clouds.
NASA Technical Reports Server (NTRS)
Gnanalingam, S.; Kane, J. A.
1973-01-01
An extensive set of ground-based measurements of the diurnal variation of medium frequency radio wave adsorption and virtual height is analyzed in terms of current understanding of the D- and lower E-region ion production and loss process. When this is done a gross discrepancy arises, the source of which is not known.
Whiteford, Kelly L; Kreft, Heather A; Oxenham, Andrew J
2017-08-01
Natural sounds can be characterized by their fluctuations in amplitude and frequency. Ageing may affect sensitivity to some forms of fluctuations more than others. The present study used individual differences across a wide age range (20-79 years) to test the hypothesis that slow-rate, low-carrier frequency modulation (FM) is coded by phase-locked auditory-nerve responses to temporal fine structure (TFS), whereas fast-rate FM is coded via rate-place (tonotopic) cues, based on amplitude modulation (AM) of the temporal envelope after cochlear filtering. Using a low (500 Hz) carrier frequency, diotic FM and AM detection thresholds were measured at slow (1 Hz) and fast (20 Hz) rates in 85 listeners. Frequency selectivity and TFS coding were assessed using forward masking patterns and interaural phase disparity tasks (slow dichotic FM), respectively. Comparable interaural level disparity tasks (slow and fast dichotic AM and fast dichotic FM) were measured to control for effects of binaural processing not specifically related to TFS coding. Thresholds in FM and AM tasks were correlated, even across tasks thought to use separate peripheral codes. Age was correlated with slow and fast FM thresholds in both diotic and dichotic conditions. The relationship between age and AM thresholds was generally not significant. Once accounting for AM sensitivity, only diotic slow-rate FM thresholds remained significantly correlated with age. Overall, results indicate stronger effects of age on FM than AM. However, because of similar effects for both slow and fast FM when not accounting for AM sensitivity, the effects cannot be unambiguously ascribed to TFS coding.
Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931
NASA Astrophysics Data System (ADS)
Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R. J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; Wilber, A.; O'Sullivan, S.; Ensslin, T. A.; De Gasperin, F.; Hoeft, M.
2018-07-01
Extended, steep-spectrum radio synchrotron sources are pre-dominantly found in massive galaxy clusters as opposed to groups. LOFAR Two-Metre Sky Survey images have revealed a diffuse, ultra-steep-spectrum radio source in the low-mass cluster Abell 1931. The source has a fairly irregular morphology with the largest linear size of about 550 kpc. The source is only seen in LOFAR observations at 143 MHz and Giant Metre Radio Telescope observations at 325 MHz. The spectral index of the total source between 143 and 325 MHz is α _{143}^{325} = -2.86 ± 0.36. The source remains invisible in Very Large Array (1-2 GHz) observations as expected given the spectral index. Chandra X-ray observations of the cluster revealed a bolometric luminosity of LX = (1.65 ± 0.39) × 1043 erg s-1 and a temperature of 2.92_{-0.87}^{+1.89} keV which implies a mass of around ˜1014 M⊙. We conclude that the source is a remnant radio galaxy that has shut off around 200 Myr ago. The brightest cluster galaxy, a radio-loud elliptical galaxy, could be the source for this extinct source. Unlike remnant sources studied in the literature, our source has a steep spectrum at low radio frequencies. Studying such remnant radio galaxies at low radio frequencies is important for understanding the scarcity of such sources and their role in feedback processes.
Method and apparatus for radio frequency ceramic sintering
Hoffman, Daniel J.; Kimrey, Jr., Harold D.
1993-01-01
Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.
Method and apparatus for radio frequency ceramic sintering
Hoffman, D.J.; Kimrey, H.D. Jr.
1993-11-30
Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents. 6 figures.
47 CFR 80.927 - Antenna radio frequency indicator.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...
47 CFR 80.927 - Antenna radio frequency indicator.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...
47 CFR 80.927 - Antenna radio frequency indicator.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...
47 CFR 80.927 - Antenna radio frequency indicator.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...
47 CFR 80.927 - Antenna radio frequency indicator.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...
Research to Operations of Ionospheric Scintillation Detection and Forecasting
NASA Astrophysics Data System (ADS)
Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.
Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of operational integration are discussed as well as lessons learned to improve performance on future projects.
Hardware Architecture Study for NASA's Space Software Defined Radios
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Scardelletti, Maximilian C.; Mortensen, Dale J.; Kacpura, Thomas J.; Andro, Monty; Smith, Carl; Liebetreu, John
2008-01-01
This study defines a hardware architecture approach for software defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general purpose processors, digital signal processors, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) in addition to flexible and tunable radio frequency (RF) front-ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and and interfaces. The modules are a logical division of common radio functions that comprise a typical communication radio. This paper describes the architecture details, module definitions, and the typical functions on each module as well as the module interfaces. Trade-offs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify the internal physical implementation within each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.
THE LOW-FREQUENCY RADIO CATALOG OF FLAT-SPECTRUM SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massaro, F.; Giroletti, M.; D'Abrusco, R.
A well known property of the γ-ray sources detected by Cos-B in the 1970s, by the Compton Gamma-Ray Observatory in the 1990s, and recently by the Fermi observations is the presence of radio counterparts, particularly for those associated with extragalactic objects. This observational evidence is the basis of the radio-γ-ray connection established for the class of active galactic nuclei known as blazars. In particular, the main spectral property of the radio counterparts associated with γ-ray blazars is that they show a flat spectrum in the GHz frequency range. Our recent analysis dedicated to search blazar-like candidates as potential counterparts formore » the unidentified γ-ray sources allowed us to extend the radio-γ-ray connection in the MHz regime. We also showed that blazars below 1 GHz maintain flat radio spectra. Thus, on the basis of these new results, we assembled a low-frequency radio catalog of flat-spectrum sources built by combining the radio observations of the Westerbork Northern Sky Survey and of the Westerbork in the southern hemisphere catalog with those of the NRAO Very Large Array Sky survey (NVSS). This could be used in the future to search for new, unknown blazar-like counterparts of γ-ray sources. First, we found NVSS counterparts of Westerbork Synthesis Radio Telescope radio sources, and then we selected flat-spectrum radio sources according to a new spectral criterion, specifically defined for radio observations performed below 1 GHz. We also described the main properties of the catalog listing 28,358 radio sources and their logN-logS distributions. Finally, a comparison with the Green Bank 6 cm radio source catalog was performed to investigate the spectral shape of the low-frequency flat-spectrum radio sources at higher frequencies.« less
Stabilized radio-frequency quadrupole
Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.
1982-09-29
A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.
Stabilized radio frequency quadrupole
Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.
1984-01-01
A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... Identification (``RFID'') Products And Components Thereof; Institution of Investigation Pursuant to 19 U.S.C... sale within the United States after importation of certain radio frequency identification (``RFID... after importation of certain radio frequency identification (``RFID'') products and components thereof...
Radio Frequency Compatibility of an RFID Tag on Glideslope Navigation Receivers
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Mielnik, John J.
2008-01-01
A process is demonstrated to show compatibility between a radio frequency identification (RFID) tag and an aircraft glideslope (GS) radio receiver. The particular tag chosen was previously shown to have significant peak spurious emission levels that far exceeded the emission limits in the GS aeronautical band. The spurious emissions are emulated in the study by capturing the RFID fundamental transmission and playing back the signal in the GS band. The signal capturing and playback are achieved with a vector signal generator and a spectrum analyzer that can output the in-phase and quadrature components (IQ). The simulated interference signal is combined with a desired GS signal before being injected into a GS receiver s antenna port for interference threshold determination. Minimum desired propagation loss values to avoid interference are then computed and compared against actual propagation losses for several aircraft.
Interaction Between Two CMEs During 14 - 15 February 2011 and Their Unusual Radio Signature
NASA Astrophysics Data System (ADS)
Shanmugaraju, A.; Prasanna Subramanian, S.; Vrsnak, Bojan; Ibrahim, M. Syed
2014-12-01
We report a detailed analysis of an interaction between two coronal mass ejections (CMEs) that were observed on 14 - 15 February 2011 and the corresponding radio enhancement, which was similar to the "CME cannibalism" reported by Gopalswamy et al. ( Astrophys. J. 548, L91, 2001). A primary CME, with a mean field-of-view velocity of 669 km s-1 in the Solar and Heliospheric Observatory (SOHO)/ Large Angle Spectrometric Coronagraph (LASCO), was more than as twice as fast as the slow CME preceding it (326 km s-1), which indicates that the two CMEs interacted. A radio-enhancement signature (in the frequency range 1 MHz - 400 kHz) due to the CME interaction was analyzed and interpreted using the CME data from LASCO and from the Solar Terrestrial Relations Observatory (STEREO) HI-1, radio data from Wind/ Radio and Plasma Wave Experiment (WAVES), and employing known electron-density models and kinematic modeling. The following results are obtained: i) The CME interaction occurred around 05:00 - 10:00 UT in a height range 20 - 25 R⊙. An unusual radio signature is observed during the time of interaction in the Wind/WAVES dynamic radio spectrum. ii) The enhancement duration shows that the interaction segment might be wider than 5 R⊙. iii) The shock height estimated using density models for the radio enhancement region is 10 - 30 R⊙. iv) Using kinematic modeling and assuming a completely inelastic collision, the decrease of kinetic energy based on speeds from LASCO data is determined to be 0.77×1023 J, and 3.67×1023 J if speeds from STEREO data are considered. vi) The acceleration, momentum, and force are found to be a=-168 m s-2, I=6.1×1018 kg m s-1, and F=1.7×1015 N, respectively, using STEREO data.
NASA Astrophysics Data System (ADS)
Schneider, Jens; Holzer, Frank; Kraus, Markus; Kopinke, Frank-Dieter; Roland, Ulf
2016-10-01
The application of radio waves with a frequency of 13.56 MHz on electrolyte solutions in a capillary reactor led to the formation of reactive hydrogen and oxygen species and finally to molecular oxygen and hydrogen. This process of water splitting can be principally used for the elimination of hazardous chemicals in water. Two compounds, namely perfluorooctanoic acid (PFOA) and tetrahydrofuran, were converted using this process. Their main decomposition products were highly volatile and therefore transferred to a gas phase, where they could be identified by GC-MS analyses. It is remarkable that the chemical reactions could benefit from both the oxidizing and reducing species formed in the plasma process, which takes place in gas bubbles saturated with water vapor. The breaking of C-C and C-F bonds was proven in the case of PFOA, probably initiated by electron impacts and radical reactions.
Pflug, Anja; Gompf, Florian; Kell, Christian Alexander
2017-08-01
In bimanual multifrequency tapping, right-handers commonly use the right hand to tap the relatively higher rate and the left hand to tap the relatively lower rate. This could be due to hemispheric specializations for the processing of relative frequencies. An extension of the double-filtering-by-frequency theory to motor control proposes a left hemispheric specialization for the control of relatively high and a right hemispheric specialization for the control of relatively low tapping rates. We investigated timing variability and rhythmic accentuation in right handers tapping mono- and multifrequent bimanual rhythms to test the predictions of the double-filtering-by-frequency theory. Yet, hemispheric specializations for the processing of relative tapping rates could be masked by a left hemispheric dominance for the control of known sequences. Tapping was thus either performed in an overlearned quadruple meter (tap of the slow rhythm on the first auditory beat) or in a syncopated quadruple meter (tap of the slow rhythm on the fourth auditory beat). Independent of syncopation, the right hand outperformed the left hand in timing accuracy for fast tapping. A left hand timing benefit for slow tapping rates as predicted by the double-filtering-by-frequency theory was only found in the syncopated tapping group. This suggests a right hemisphere preference for the control of slow tapping rates when rhythms are not overlearned. Error rates indicate that overlearned rhythms represent hierarchically structured meters that are controlled by a single timer that could potentially reside in the left hemisphere. Copyright © 2017 Elsevier B.V. All rights reserved.
A Versatile Planetary Radio Science Microreceiver
NASA Technical Reports Server (NTRS)
Fry, Craig D.; Rosenberg, T. J.
1999-01-01
We have developed a low-power. programmable radio "microreceiver" that combines the functionality of two science instruments: a Relative Ionospheric Opacity Meter (riometer) and a swept-frequency, VTF/HF radio spectrometer. The radio receiver, calibration noise source, data acquisition and processing, and command and control functions are all contained on a single circuit board. This design is suitable for miniaturizing as a complete flight instrument. Several of the subsystems were implemented in a field-programmable gate array (FPGA), including the receiver detector, the control logic, and the data acquisition and processing blocks. Considerable efforts were made to reduce the power consumption of the instrument, and eliminate or minimize RF noise and spurious emissions generated by the receiver's digital circuitry. A prototype instrument was deployed at McMurdo Station, Antarctica, and operated in parallel with a traditional riometer instrument for approximately three weeks. The attached paper (accepted for publication by Radio Science) describes in detail the microreceiver theory of operation, performance specifications and test results.
Signal Processing for a Lunar Array: Minimizing Power Consumption
NASA Technical Reports Server (NTRS)
D'Addario, Larry; Simmons, Samuel
2011-01-01
Motivation for the study is: (1) Lunar Radio Array for low frequency, high redshift Dark Ages/Epoch of Reionization observations (z =6-50, f=30-200 MHz) (2) High precision cosmological measurements of 21 cm H I line fluctuations (3) Probe universe before first star formation and provide information about the Intergalactic Medium and evolution of large scale structures (5) Does the current cosmological model accurately describe the Universe before reionization? Lunar Radio Array is for (1) Radio interferometer based on the far side of the moon (1a) Necessary for precision measurements, (1b) Shielding from earth-based and solar RFI (12) No permanent ionosphere, (2) Minimum collecting area of approximately 1 square km and brightness sensitivity 10 mK (3)Several technologies must be developed before deployment The power needed to process signals from a large array of nonsteerable elements is not prohibitive, even for the Moon, and even in current technology. Two different concepts have been proposed: (1) Dark Ages Radio Interferometer (DALI) (2)( Lunar Array for Radio Cosmology (LARC)
A digital-receiver for the MurchisonWidefield Array
NASA Astrophysics Data System (ADS)
Prabu, Thiagaraj; Srivani, K. S.; Roshi, D. Anish; Kamini, P. A.; Madhavi, S.; Emrich, David; Crosse, Brian; Williams, Andrew J.; Waterson, Mark; Deshpande, Avinash A.; Shankar, N. Udaya; Subrahmanyan, Ravi; Briggs, Frank H.; Goeke, Robert F.; Tingay, Steven J.; Johnston-Hollitt, Melanie; R, Gopalakrishna M.; Morgan, Edward H.; Pathikulangara, Joseph; Bunton, John D.; Hampson, Grant; Williams, Christopher; Ord, Stephen M.; Wayth, Randall B.; Kumar, Deepak; Morales, Miguel F.; deSouza, Ludi; Kratzenberg, Eric; Pallot, D.; McWhirter, Russell; Hazelton, Bryna J.; Arcus, Wayne; Barnes, David G.; Bernardi, Gianni; Booler, T.; Bowman, Judd D.; Cappallo, Roger J.; Corey, Brian E.; Greenhill, Lincoln J.; Herne, David; Hewitt, Jacqueline N.; Kaplan, David L.; Kasper, Justin C.; Kincaid, Barton B.; Koenig, Ronald; Lonsdale, Colin J.; Lynch, Mervyn J.; Mitchell, Daniel A.; Oberoi, Divya; Remillard, Ronald A.; Rogers, Alan E.; Salah, Joseph E.; Sault, Robert J.; Stevens, Jamie B.; Tremblay, S.; Webster, Rachel L.; Whitney, Alan R.; Wyithe, Stuart B.
2015-03-01
An FPGA-based digital-receiver has been developed for a low-frequency imaging radio interferometer, the Murchison Widefield Array (MWA). The MWA, located at the Murchison Radio-astronomy Observatory (MRO) in Western Australia, consists of 128 dual-polarized aperture-array elements (tiles) operating between 80 and 300 MHz, with a total processed bandwidth of 30.72 MHz for each polarization. Radio-frequency signals from the tiles are amplified and band limited using analog signal conditioning units; sampled and channelized by digital-receivers. The signals from eight tiles are processed by a single digital-receiver, thus requiring 16 digital-receivers for the MWA. The main function of the digital-receivers is to digitize the broad-band signals from each tile, channelize them to form the sky-band, and transport it through optical fibers to a centrally located correlator for further processing. The digital-receiver firmware also implements functions to measure the signal power, perform power equalization across the band, detect interference-like events, and invoke diagnostic modes. The digital-receiver is controlled by high-level programs running on a single-board-computer. This paper presents the digital-receiver design, implementation, current status, and plans for future enhancements.
Chasing Low Frequency Radio Bursts from Magnetically Active Stars
NASA Astrophysics Data System (ADS)
Lynch, Christene; Murphy, Tara; Kaplan, David
2017-05-01
Flaring activity is a common characteristic of magnetically active stars. These events produce emission throughout the electromagnetic spectrum, implying a range of physical processes. A number of objects exhibit short-duration, narrow band, and highly circularly polarised (reaching 100%) radio bursts. The observed polarisation and frequency-time structure of these bursts points to a coherent emission mechanism such as the electron cyclotron maser. Due to the stochastic nature of these bursts and the sensitivity of current instruments, the number of stars where coherent emission has been detected is few, with numbers limited to a few tens of objects. Observations of a wider sample of active stars are necessary in order to establish the percentage that exhibit coherent radio bursts and to relate the observed emission characteristics to stellar magnetic properties. New wide-field, low frequency radio telescopes will probe a frequency regime that is mostly unexplored for many magnetically active stars and where coherent radio emissions are expected to be more numerous. M dwarf stars are of particular interest as they are currently favoured as most likely to host habitable planets. Yet the extreme magnetic activity observed for some M dwarf stars places some doubt on the ability of orbiting planets to host life. This presentation reports the first results from a targeted Murchison Widefield Array survey of M dwarf stars that were previously detected at 100 - 200 MHz using single dish telescopes. We will discuss robust flare-rate measurements over a high dynamic range of flare properties, as well as investigate the physical mechanism(s) behind the flares.
Stabilized radio frequency quadrupole
Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.
1984-12-25
Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.
47 CFR 80.1019 - Antenna radio frequency indicator.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...
47 CFR 80.1019 - Antenna radio frequency indicator.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...
47 CFR 80.1019 - Antenna radio frequency indicator.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...
47 CFR 80.1019 - Antenna radio frequency indicator.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...
47 CFR 80.1019 - Antenna radio frequency indicator.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...
48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Identification (RFID) using passive tags. 552.211-92 Section 552.211-92 Federal Acquisition Regulations System... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...
48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Identification (RFID) using passive tags. 552.211-92 Section 552.211-92 Federal Acquisition Regulations System... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...
Optical Tunable-Based Transmitter for Multiple Radio Frequency Bands
NASA Technical Reports Server (NTRS)
Nguyen, Hung (Inventor); Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor); Freeman, Jon C. (Inventor)
2016-01-01
An optical tunable transmitter is used to transmit multiple radio frequency bands on a single beam. More specifically, a tunable laser is configured to generate a plurality of optical wavelengths, and an optical tunable transmitter is configured to modulate each of the plurality of optical wavelengths with a corresponding radio frequency band. The optical tunable transmitter is also configured to encode each of the plurality of modulated optical wavelengths onto a single laser beam for transmission of a plurality of radio frequency bands using the single laser beam.
Yang, Hao; Yang, Xiaohe; Chen, Yuquan; Pan, Min
2008-12-01
Radio frequency identification sensor network, which is a product of integrating radio frequency identification (RFID) with wireless sensor network (WSN), is introduced in this paper. The principle of radio frequency identification sensor is analyzed, and the importance of the antenna is emphasized. Then three kinds of common antennae, namely coil antenna, dipole antenna and microstrip antenna, are discussed. Subsequently, according to requirement, we have designed a microstrip antenna in a wireless temperature-monitoring and controlling system. The measurement of factual effect showed the requirement was fulfilled.
Advanced Digital Signal Processing for Hybrid Lidar
2014-10-30
obtain range measurements . A MATLAB- based system developed at Clarkson University in FY14 has been used to perform real-time FDR ranging... measurement accuracy. There have been various methods that attempt to reduce the backscatter. One method is to increase the modulation frequency beyond...an unambiguous range measurement . In general, it is desired to determine which combination of Radio Frequency (RF) modulation frequencies, modulation
mDARAL: A Multi-Radio Version for the DARAL Routing Algorithm.
Estévez, Francisco José; Castillo-Secilla, José María; González, Jesús; Olivares, Joaquín; Glösekötter, Peter
2017-02-09
Smart Cities are called to change the daily life of human beings. This concept permits improving the efficiency of our cities in several areas such as the use of water, energy consumption, waste treatment, and mobility both for people as well as vehicles throughout the city. This represents an interconnected scenario in which thousands of embedded devices need to work in a collaborative way both for sensing and modifying the environment properly. Under this scenario, the majority of devices will use wireless protocols for communicating among them, representing a challenge for optimizing the use of the electromagnetic spectrum. When the density of deployed nodes increases, the competition for using the physical medium becomes harder and, in consequence, traffic collisions will be higher, affecting data-rates in the communication process. This work presents mDARAL , a multi-radio routing algorithm based on the Dynamic and Adaptive Radio Algorithm ( DARAL ), which has the capability of isolating groups of nodes into sub-networks. The nodes of each sub-network will communicate among them using a dedicated radio frequency, thus isolating the use of the radio channel to a reduced number of nodes. Each sub-network will have a master node with two physical radios, one for communicating with its neighbours and the other for being the contact point among its group and other sub-networks. The communication among sub-networks is done through master nodes in a dedicated radio frequency. The algorithm works to maximize the overall performance of the network through the distribution of the traffic messages into unoccupied frequencies. The obtained results show that mDARAL achieves great improvement in terms of the number of control messages necessary to connect a node to the network, convergence time and energy consumption during the connection phase compared to DARAL .
mDARAL: A Multi-Radio Version for the DARAL Routing Algorithm
Estévez, Francisco José; Castillo-Secilla, José María; González, Jesús; Olivares, Joaquín; Glösekötter, Peter
2017-01-01
Smart Cities are called to change the daily life of human beings. This concept permits improving the efficiency of our cities in several areas such as the use of water, energy consumption, waste treatment, and mobility both for people as well as vehicles throughout the city. This represents an interconnected scenario in which thousands of embedded devices need to work in a collaborative way both for sensing and modifying the environment properly. Under this scenario, the majority of devices will use wireless protocols for communicating among them, representing a challenge for optimizing the use of the electromagnetic spectrum. When the density of deployed nodes increases, the competition for using the physical medium becomes harder and, in consequence, traffic collisions will be higher, affecting data-rates in the communication process. This work presents mDARAL, a multi-radio routing algorithm based on the Dynamic and Adaptive Radio Algorithm (DARAL), which has the capability of isolating groups of nodes into sub-networks. The nodes of each sub-network will communicate among them using a dedicated radio frequency, thus isolating the use of the radio channel to a reduced number of nodes. Each sub-network will have a master node with two physical radios, one for communicating with its neighbours and the other for being the contact point among its group and other sub-networks. The communication among sub-networks is done through master nodes in a dedicated radio frequency. The algorithm works to maximize the overall performance of the network through the distribution of the traffic messages into unoccupied frequencies. The obtained results show that mDARAL achieves great improvement in terms of the number of control messages necessary to connect a node to the network, convergence time and energy consumption during the connection phase compared to DARAL. PMID:28208760
DOE Office of Scientific and Technical Information (OSTI.GOV)
Von Korff, J.; Heien, E.; Korpela, E.
We are performing a transient, microsecond timescale radio sky survey, called 'Astropulse', using the Arecibo telescope. Astropulse searches for brief (0.4 {mu}s to 204.8 {mu}s ), wideband (relative to its 2.5 MHz bandwidth) radio pulses centered at 1420 MHz. Astropulse is a commensal (piggyback) survey, and scans the sky between declinations of -1. Degree-Sign 33 and 38. Degree-Sign 03. We obtained 1540 hr of data in each of seven beams of the ALFA receiver, with two polarizations per beam. The data are one-bit complex sampled at the Nyquist limit of 0.4 {mu}s per sample. Examination of timescales on the ordermore » of microseconds is possible because we used coherent dedispersion, a technique that has frequently been used for targeted observations, but has never been associated with a radio sky survey. The more usual technique, incoherent dedispersion, cannot resolve signals below a minimum timescale which depends on the signal's dispersion measure (DM) and frequency. However, coherent dedispersion requires more intensive computation than incoherent dedispersion. The required processing power was provided by BOINC, the Berkeley Open Infrastructure for Network Computing. BOINC is a distributed computing system, allowing us to utilize hundreds of thousands of volunteers' computers to perform the necessary calculations for coherent dedispersion. Astrophysical events that might produce brief radio pulses include giant pulses from pulsars, rotating radio transients, exploding primordial black holes, or new sources yet to be imagined. Radio frequency interference and noise contaminate the data; these are mitigated by a number of techniques including multi-polarization correlation, DM repetition detection, and frequency profiling.« less
Prasad, Peeyush; Wijnholds, Stefan J
2013-06-13
The Amsterdam-ASTRON Radio Transient Facility And Analysis Centre (AARTFAAC) project aims to implement an all-sky monitor (ASM), using the low-frequency array (LOFAR) telescope. It will enable real-time, 24 × 7 monitoring for low-frequency radio transients over most of the sky locally visible to the LOFAR at time scales ranging from seconds to several days, and rapid triggering of follow-up observations with the full LOFAR on detection of potential transient candidates. These requirements pose several implementation challenges: imaging of an all-sky field of view, low latencies of processing, continuous availability and autonomous operation of the ASM. The first of these has already resulted in the correlator for the ASM being the largest in the world in terms of the number of input data streams. We have carried out test observations using existing LOFAR infrastructure, in order to quantify and constrain crucial instrumental design criteria for the ASM. In this study, we present an overview of the AARTFAAC data-processing pipeline and illustrate some of the aforementioned challenges by showing all-sky images obtained from one of the test observations. These results provide quantitative estimates of the capabilities of the instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motie, Iman; Bokaeeyan, Mahyar, E-mail: Mehyar9798@gmail.com
2015-02-15
A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-calledmore » the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.« less
Experimental research of radio-frequency ion thruster
NASA Astrophysics Data System (ADS)
Antropov, N. N.; Akhmetzhanov, R. V.; Bogatyy, A. V.; Grishin, R. A.; Kozhevnikov, V. V.; Plokhikh, A. P.; Popov, G. A.; Khartov, S. A.
2016-12-01
The article is devoted to the research of low-power (300 W) radio-frequency ion thruster designed at the Moscow Aviation Institute. The main results of experimental research of the thruster using the testfacility power supplies and the power processing unit of their own design are presented. The dependence of the working fluid ionization cost on its mass flow rate at the constant ion beam current was investigated experimentally. The influence of the shape and material of the discharge chamber on the integral characteristics of the thruster was studied. The recommendations on the optimization of the thruster primary performance were developed based on the results of experimental studies.
Electromagnetic Counter-Counter Measure (ECCM) Techniques of the Digital Microwave Radio.
1982-05-01
Frequency hopping requires special synthesizers and filter banks. Large bandwidth expansion in a microwave radio relay application can best be achieved with...34 processing gain " performance as a function of jammer modulation type " pulse jammer performance • emission bandwidth and spectral shaping 0... spectral efficiency, implementation complexity, and suitability for ECCK techniques will be considered. A sumary of the requirements and characteristics of
Ultra-Wideband Impulse Radio for Tactical Ad-Hoc Military Communications
2010-09-02
Synchronization, Channel Estimation, and Detection for DS - CDMA Impulse-Radio Systems,” IEEE Transactions on Wireless Communications, vol. 4, no. 6, pp...desired user. Complex matrix operations required by other techniques found in the CDMA literature are not required in our suppression process...domain while a frequency-domain procedure for synchronization is studied in [52]. 5 In the CDMA literature, near-far resistant synchronization is studied
ON THE RADIO DETECTION OF MULTIPLE-EXOMOON SYSTEMS DUE TO PLASMA TORUS SHARING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noyola, J. P.; Satyal, S.; Musielak, Z. E., E-mail: jpnoyola@uta.edu, E-mail: ssatyal@uta.edu, E-mail: zmusielak@uta.edu
2016-04-20
The idea of single exomoon detection due to the radio emissions caused by its interaction with the host exoplanet is extended to multiple-exomoon systems. The characteristic radio emissions are made possible in part by plasma from the exomoon’s own ionosphere. In this work, it is demonstrated that neighboring exomoons and the exoplanetary magnetosphere could also provide enough plasma to generate a detectable signal. In particular, the plasma-torus-sharing phenomenon is found to be particularly well suited to facilitate the radio detection of plasma-deficient exomoons. The efficiency of this process is evaluated, and the predicted power and frequency of the resulting radiomore » signals are presented.« less
Low-Frequency Beacon Signal Strength Determination.
1980-01-01
Radio Frequency List , RIS AF-6050-12 [141. Using this value and assum- ing performance for these facilities as indicatcd in FAA Handbook 6050.10, ERP...FAA Handbook 6050. 10 for facilities of appropriate transmitter power, determined from FAA Master Radio Frequency List 6050-12, April 1979...these facilities has not been directly measured and, therefore, values corresponding to transmitter powers given in FAA Master Radio Frequency List , RIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanenko, A.; Grassellino, A.; Melnychuk, O.
We report a strong effect of the cooling dynamics throughmore » $$T_\\mathrm{c}$$ on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments including electropolishing with and without 120$$^\\circ$$C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.« less
Developing Benchmarks for Solar Radio Bursts
NASA Astrophysics Data System (ADS)
Biesecker, D. A.; White, S. M.; Gopalswamy, N.; Black, C.; Domm, P.; Love, J. J.; Pierson, J.
2016-12-01
Solar radio bursts can interfere with radar, communication, and tracking signals. In severe cases, radio bursts can inhibit the successful use of radio communications and disrupt a wide range of systems that are reliant on Position, Navigation, and Timing services on timescales ranging from minutes to hours across wide areas on the dayside of Earth. The White House's Space Weather Action Plan has asked for solar radio burst intensity benchmarks for an event occurrence frequency of 1 in 100 years and also a theoretical maximum intensity benchmark. The solar radio benchmark team was also asked to define the wavelength/frequency bands of interest. The benchmark team developed preliminary (phase 1) benchmarks for the VHF (30-300 MHz), UHF (300-3000 MHz), GPS (1176-1602 MHz), F10.7 (2800 MHz), and Microwave (4000-20000) bands. The preliminary benchmarks were derived based on previously published work. Limitations in the published work will be addressed in phase 2 of the benchmark process. In addition, deriving theoretical maxima requires additional work, where it is even possible to, in order to meet the Action Plan objectives. In this presentation, we will present the phase 1 benchmarks and the basis used to derive them. We will also present the work that needs to be done in order to complete the final, or phase 2 benchmarks.
Impact of Radio Frequency Identification (RFID) on the Marine Corps’ Supply Process
2006-09-01
Hypothetical Improvement Using a Real-Time Order Processing System Vice a Batch Order Processing System ................56 3. As-Is: The Current... Processing System Vice a Batch Order Processing System ................58 V. RESULTS ................................................69 A. SIMULATION...Time: Hypothetical Improvement Using a Real-Time Order Processing System Vice a Batch Order Processing System ................71 3. As-Is: The
Insel, Nathan; Patron, Lilian A; Hoang, Lan T; Nematollahi, Saman; Schimanski, Lesley A; Lipa, Peter; Barnes, Carol A
2012-11-14
Age-related cognitive and behavioral slowing may be caused by changes in the speed of neural signaling or by changes in the number of signaling steps necessary to achieve a given function. In the mammalian cortex, neural communication is organized by a 30-100 Hz "gamma" oscillation. There is a putative link between the gamma frequency and the speed of processing in a neural network: the dynamics of pyramidal neuron membrane time constants suggest that synaptic integration is framed by the gamma cycle, and pharmacological slowing of gamma also slows reaction times on behavioral tasks. The present experiments identify reductions in a robust 40-70 Hz gamma oscillation in the aged rat medial frontal cortex. The reductions were observed in the form of local field potentials, later peaks in fast-spiking neuron autocorrelations, and delays in the spiking of inhibitory neurons following local excitatory signals. Gamma frequency did not vary with movement speed, but rats with slower gamma also moved more slowly. Gamma frequency age differences were not observed in hippocampus. Hippocampal CA1 fast-spiking neurons exhibited interspike intervals consistent with a fast (70-100 Hz) gamma frequency, a pattern maintained across theta phases and theta frequencies independent of fluctuations in the average firing rates of the neurons. We propose that an average lengthening of the cortical 15-25 ms gamma cycle is one factor contributing to age-related slowing and that future attempts to offset cognitive declines will find a target in the response of fast-spiking inhibitory neurons to excitatory inputs.
FREQUENCY DEPENDENCE OF POLARIZATION OF ZEBRA PATTERN IN TYPE-IV SOLAR RADIO BURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneda, Kazutaka; Misawa, H.; Tsuchiya, F.
2015-08-01
We investigated the polarization characteristics of a zebra pattern (ZP) in a type-IV solar radio burst observed with AMATERAS on 2011 June 21 for the purpose of evaluating the generation processes of ZPs. Analyzing highly resolved spectral and polarization data revealed the frequency dependence of the degree of circular polarization and the delay between two polarized components for the first time. The degree of circular polarization was 50%–70% right-handed and it varied little as a function of frequency. Cross-correlation analysis determined that the left-handed circularly polarized component was delayed by 50–70 ms relative to the right-handed component over the entiremore » frequency range of the ZP and this delay increased with the frequency. We examined the obtained polarization characteristics by using pre-existing ZP models and concluded that the ZP was generated by the double-plasma-resonance process. Our results suggest that the ZP emission was originally generated in a completely polarized state in the O-mode and was partly converted into the X-mode near the source. Subsequently, the difference between the group velocities of the O-mode and X-mode caused the temporal delay.« less
The Search for Stellar Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Villadsen, Jacqueline; Hallinan, Gregg; Monroe, Ryan; Bourke, Stephen; Starburst Program Team
2017-01-01
Coronal mass ejections (CMEs) may dramatically impact habitability and atmospheric composition of planets around magnetically active stars, including young solar analogs and many M dwarfs. Theoretical predictions of such effects are limited by the lack of observations of stellar CMEs. My thesis addresses this gap through a search for the spectral and spatial radio signatures of CMEs on active M dwarfs.Solar CMEs produce radio bursts with a distinctive spectral signature, narrow-band plasma emission that drifts to lower frequency as a CME expands outward. To search for analogous events on nearby stars, I worked on system design, software, and commissioning for the Starburst project, a wideband single-baseline radio interferometry backend dedicated to stellar observations. In addition, I led a survey of nearby active M dwarfs with the Karl G. Jansky Very Large Array (JVLA), detecting 12 bright (>10 mJy) radio bursts in 58 hours. This survey’s ultra-wide bandwidth (0.23-6.0 GHz) dynamic spectroscopy, unprecedented for stellar observations, revealed diverse behavior in the time-frequency plane. Flare star UV Ceti produced complex, luminous events reminiscent of brown dwarf aurorae; AD Leo sustained long-duration, intense, narrow-band "storms"; and YZ CMi emitted a burst with substructure with rapid frequency drift, resembling solar Type III bursts, which are attributed to electrons moving at speeds of order 10% of the speed of light.To search for the spatial signature of CMEs, I led 8.5-GHz observations with the Very Long Baseline Array simultaneous to 24 hours of the JVLA survey. This program detected non-thermal continuum emission from the stars in all epochs, as well as continuum flares on AD Leo and coherent bursts on UV Ceti, enabling measurement of the spatial offset between flaring and quiescent emission.These observations demonstrate the diversity of stellar transients that can be expected in time-domain radio surveys, especially with the advent of large low-frequency radio telescopes. Wide bandwidth radio dynamic spectroscopy, complemented by high-resolution imaging of the radio corona, is a powerful technique for detecting stellar eruptions and characterizing dynamic processes in the stellar corona.
The Search for Stellar Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Villadsen, Jacqueline Rose
2017-05-01
Coronal mass ejections (CMEs) may dramatically impact habitability and atmospheric composition of planets around magnetically active stars, including young solar analogs and many M dwarfs. Theoretical predictions of such effects are limited by the lack of observations of stellar CMEs. This thesis addresses this gap through a search for the spectral and spatial radio signatures of CMEs on active M dwarfs. Solar CMEs produce radio bursts with a distinctive spectral signature, narrow-band plasma emission that drifts to lower frequency as a CME expands outward. To search for analogous events on nearby stars, I worked on system design, software, and commissioning for the Starburst project, a wideband single-baseline radio interferometry backend dedicated to stellar observations. In addition, I led a survey of nearby active M dwarfs with the Karl G. Jansky Very Large Array (VLA), detecting coherent radio bursts in 13 out of 23 epochs, over a total of 58 hours. This survey's ultra-wide bandwidth (0.23-6.0 GHz) dynamic spectroscopy, unprecedented for stellar observations, revealed diverse behavior in the time-frequency plane. Flare star UV Ceti produced complex, luminous events reminiscent of brown dwarf aurorae; AD Leo sustained long-duration, intense, narrow-band "storms"; and YZ CMi emitted a burst with substructure with rapid frequency drift, resembling solar Type III bursts, which are attributed to electrons moving at speeds of order 10% of the speed of light. To search for the spatial signature of CMEs, I led 8.5-GHz observations with the Very Long Baseline Array simultaneous to 24 hours of the VLA survey. This program detected non-thermal continuum emission from the stars in all epochs, as well as continuum flares on AD Leo and coherent bursts on UV Ceti, enabling measurement of the spatial offset between flaring and quiescent emission. These observations demonstrate the diversity of stellar transients that can be expected in time-domain radio surveys, especially with the advent of large low-frequency radio telescopes. Wide bandwidth radio dynamic spectroscopy, complemented by high-resolution imaging of the radio corona, is a powerful technique for detecting stellar eruptions and characterizing dynamic processes in the stellar corona.
Multi-time resolution analysis of speech: evidence from psychophysics
Chait, Maria; Greenberg, Steven; Arai, Takayuki; Simon, Jonathan Z.; Poeppel, David
2015-01-01
How speech signals are analyzed and represented remains a foundational challenge both for cognitive science and neuroscience. A growing body of research, employing various behavioral and neurobiological experimental techniques, now points to the perceptual relevance of both phoneme-sized (10–40 Hz modulation frequency) and syllable-sized (2–10 Hz modulation frequency) units in speech processing. However, it is not clear how information associated with such different time scales interacts in a manner relevant for speech perception. We report behavioral experiments on speech intelligibility employing a stimulus that allows us to investigate how distinct temporal modulations in speech are treated separately and whether they are combined. We created sentences in which the slow (~4 Hz; Slow) and rapid (~33 Hz; Shigh) modulations—corresponding to ~250 and ~30 ms, the average duration of syllables and certain phonetic properties, respectively—were selectively extracted. Although Slow and Shigh have low intelligibility when presented separately, dichotic presentation of Shigh with Slow results in supra-additive performance, suggesting a synergistic relationship between low- and high-modulation frequencies. A second experiment desynchronized presentation of the Slow and Shigh signals. Desynchronizing signals relative to one another had no impact on intelligibility when delays were less than ~45 ms. Longer delays resulted in a steep intelligibility decline, providing further evidence of integration or binding of information within restricted temporal windows. Our data suggest that human speech perception uses multi-time resolution processing. Signals are concurrently analyzed on at least two separate time scales, the intermediate representations of these analyses are integrated, and the resulting bound percept has significant consequences for speech intelligibility—a view compatible with recent insights from neuroscience implicating multi-timescale auditory processing. PMID:26136650
Technique to determine location of radio sources from measurements taken on spinning spacecraft
NASA Technical Reports Server (NTRS)
Fainberg, J.
1979-01-01
The procedure developed to extract average source direction and average source size from spin-modulated radio astronomy data measured on the IMP-6 spacecraft is described. Because all measurements are used, rather than just finding maxima or minima in the data, the method is very sensitive, even in the presence of large amounts of noise. The technique is applicable to all experiments with directivity characteristics. It is suitable for onboard processing on satellites to reduce the data flow to Earth. The application to spin-modulated nonpolarized radio astronomy data is made and includes the effects of noise, background, and second source interference. The analysis was tested with computer simulated data and the results agree with analytic predictions. Applications of this method with IMP-6 radio data have led to: (1) determination of source positions of traveling solar radio bursts at large distances from the Sun; (2) mapping of magnetospheric radio emissions by radio triangulation; and (3) detection of low frequency radio emissions from Jupiter and Saturn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Arti; Stawarz, Łukasz; Ostrowski, Michał
We present the results of our power spectral analysis for the BL Lac object PKS 0735+178, utilizing the Fermi -LAT survey at high-energy γ -rays, several ground-based optical telescopes, and single-dish radio telescopes operating at GHz frequencies. The novelty of our approach is that, by combining long-term and densely sampled intra-night light curves in the optical regime, we were able to construct for the first time the optical power spectrum of the blazar for a time domain extending from 23 years down to minutes. Our analysis reveals that: (1) the optical variability is consistent with a pure red noise, formore » which the power spectral density can be well approximated by a single power law throughout the entire time domain probed; (2) the slope of power spectral density at high-energy γ -rays (∼1) is significantly flatter than that found at radio and optical frequencies (∼2) within the corresponding time variability range; (3) for the derived power spectra, we did not detect any low-frequency flattening, nor do we see any evidence for cutoffs at the highest frequencies down to the noise floor levels due to measurement uncertainties. We interpret our findings in terms of a model where the blazar variability is generated by the underlying single stochastic process (at radio and optical frequencies), or a linear superposition of such processes (in the γ -ray regime). Along with the detailed PSD analysis, we also present the results of our extended (1998–2015) intra-night optical monitoring program and newly acquired optical photo-polarimetric data for the source.« less
The Applicability of Incoherent Array Processing to IMS Seismic Array Stations
NASA Astrophysics Data System (ADS)
Gibbons, S. J.
2012-04-01
The seismic arrays of the International Monitoring System for the CTBT differ greatly in size and geometry, with apertures ranging from below 1 km to over 60 km. Large and medium aperture arrays with large inter-site spacings complicate the detection and estimation of high frequency phases since signals are often incoherent between sensors. Many such phases, typically from events at regional distances, remain undetected since pipeline algorithms often consider only frequencies low enough to allow coherent array processing. High frequency phases that are detected are frequently attributed qualitatively incorrect backazimuth and slowness estimates and are consequently not associated with the correct event hypotheses. This can lead to missed events both due to a lack of contributing phase detections and by corruption of event hypotheses by spurious detections. Continuous spectral estimation can be used for phase detection and parameter estimation on the largest aperture arrays, with phase arrivals identified as local maxima on beams of transformed spectrograms. The estimation procedure in effect measures group velocity rather than phase velocity and the ability to estimate backazimuth and slowness requires that the spatial extent of the array is large enough to resolve time-delays between envelopes with a period of approximately 4 or 5 seconds. The NOA, AKASG, YKA, WRA, and KURK arrays have apertures in excess of 20 km and spectrogram beamforming on these stations provides high quality slowness estimates for regional phases without additional post-processing. Seven arrays with aperture between 10 and 20 km (MJAR, ESDC, ILAR, KSRS, CMAR, ASAR, and EKA) can provide robust parameter estimates subject to a smoothing of the resulting slowness grids, most effectively achieved by convolving the measured slowness grids with the array response function for a 4 or 5 second period signal. The MJAR array in Japan recorded high SNR Pn signals for both the 2006 and 2009 North Korea nuclear tests but, due to signal incoherence, failed to contribute to the automatic event detections. It is demonstrated that the smoothed incoherent slowness estimates for the MJAR Pn phases for both tests indicate unambiguously the correct type of phase and a backazimuth estimate within 5 degrees of the great-circle backazimuth. The detection part of the algorithm is applicable to all IMS arrays, and spectrogram-based processing may offer a reduction in the false alarm rate for high frequency signals. Significantly, the local maxima of the scalar functions derived from the transformed spectrogram beams provide good estimates of the signal onset time. High frequency energy is of greater significance for lower event magnitudes and in, for example, the cavity decoupling detection evasion scenario. There is a need to characterize propagation paths with low attenuation of high frequency energy and situations in which parameter estimation on array stations fails.
NASA Technical Reports Server (NTRS)
Cane, H. V.; Erickson, W. C.
2003-01-01
Solar energetic particle (SEP) events are well-associated with solar flares. It is observed that the delay between the time of the flare and the first-arriving particles at a spacecraft increases with increasing difference between the flare longitude and the footpoint of the field line on which the spacecraft is located. This difference we call the "connection angle" and can be as large as approximately 120 deg. Recently it has been found that all SEP events are preceded by type III radio bursts. These bursts are plasma emission caused by the propagation of 2-50 keV flare electrons through the solar corona and into the solar wind. The drift of these type III radio bursts to lower and lower frequencies enables the propagation of the flare electrons to be traced from the Sun to about 1 AU. We have made an extensive analysis of the type III bursts associated with greater than 20 MeV proton events and find that, in most cases, the radio emission extends to the local plasma frequency when the energetic particles arrive within a few hours of the flare. We conclude that this emission at the lowest possible frequency is generated close to the spacecraft. We then use the time from when the burst started at the Sun to when it reached the local plasma frequency to infer the time it took the radio producing electrons to travel to the spacecraft. We find that these delay times are organized by the connection angle and correlate with the proton delay times. We also find that the differences between the radio delays at Wind and Ulysses are matched by differences in the relative arrival times of the energetic particles at the two spacecraft. The consistent timing between the relative arrival times of energetic electrons and protons and the start of the lowest frequency radio emissions suggests that the first arriving particles of both species are accelerated as part of the flare process and that they propagate to the spacecraft along trajectories similar to those of the lower energy flare electrons. To be detected by observers at locations distant from the nominal field lines originating in the flaring regions the particles must undergo lateral transport. The continuity of the radio bursts suggests that the cross-field transport may occur in the interplanetary medium.
Manufacture of radio frequency micromachined switches with annealing.
Lin, Cheng-Yang; Dai, Ching-Liang
2014-01-17
The fabrication and characterization of a radio frequency (RF) micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS) process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM) software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.
Manufacture of Radio Frequency Micromachined Switches with Annealing
Lin, Cheng-Yang; Dai, Ching-Liang
2014-01-01
The fabrication and characterization of a radio frequency (RF) micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS) process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM) software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V. PMID:24445415
Radio Heating of Lunar Soil to Release Gases
NASA Technical Reports Server (NTRS)
Chui, Talso; Penanen, Konstantin
2006-01-01
A report proposes the development of a system to collect volatile elements and compounds from Lunar soil for use in supporting habitation and processing into rocket fuel. Prior exploratory missions revealed that H2, He, and N2 are present in Lunar soil and there are some indications that water ice may also be present. The proposed system would include a shroud that would be placed on the Lunar surface. Inside the shroud would be a radio antenna aimed downward. The antenna would be excited at a suitably high power and at a frequency chosen to optimize the depth of penetration of radio waves into the soil. The radio waves would heat the soil, thereby releasing volatiles bound to soil particles. The escaping volatiles would be retained by the shroud and collected by condensation in a radiatively cooled vessel connected to the shroud. It has been estimated that through radio-frequency heating at a power of 10 kW for one day, it should be possible to increase the temperature of a soil volume of about 1 cubic m by about 200 C -- an amount that should suffice for harvesting a significant quantity of volatile material.
Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective
NASA Technical Reports Server (NTRS)
Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee
2012-01-01
NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punjabi, Sangeeta B., E-mail: p.sangeeta@gmail.com; Department of Physics, University of Mumbai, Kalina, Santacruz; Sahasrabudhe, S. N.
2014-01-15
This paper provides 2D comparative study of results obtained using laminar and turbulent flow model for RF (radio frequency) Inductively Coupled Plasma (ICP) torch. The study was done for the RF-ICP torch operating at 50 kW DC power and 3 MHz frequency located at BARC. The numerical modeling for this RF-ICP torch is done using ANSYS software with the developed User Defined Function. A comparative study is done between laminar and turbulent flow model to investigate how temperature and flow fields change when using different operating conditions such as (a) swirl and no swirl velocity for sheath gas flow rate, (b) variationmore » in sheath gas flow rate, and (c) variation in plasma gas flow rate. These studies will be useful for different material processing applications.« less
Characteristics of magnetospheric radio noise spectra
NASA Technical Reports Server (NTRS)
Herman, J. R.
1976-01-01
Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP-6 and RAE-2 exhibit time-varying characteristics which are related to spacecraft position and magnetospheric processes. In the mid-frequency range (100-1,000 kHz) intense noise peaks rise by a factor of 100 or more above background; 80% of the peak frequencies are within the band 125 kHz to 600 kHz, and the peak occurs most often (18% of the time) at 280 kHz. This intense mid-frequency noise has been detected at radial distances from 1.3 Re to 60 Re on all sides of the Earth during magnetically quiet as well as disturbed periods. Maximum occurrence of the mid-frequency noise is in the evening to midnight hours where splash-type energetic particle precipitation takes place. ""Magnetospheric lightning'' can be invoked to explain the spectral shape of the observed spectra.
Rectenna for high-voltage applications
NASA Technical Reports Server (NTRS)
Epp, Larry W. (Inventor); Khan, Abdur R. (Inventor)
2002-01-01
An energy transfer system is disclosed. The system includes patch elements, shielding layers, and energy rectifying circuits. The patch elements receive and couple radio frequency energy. The shielding layer includes at least one opening that allows radio frequency energy to pass through. The openings are formed and positioned to receive the radio frequency energy and to minimize any re-radiating back toward the source of energy. The energy rectifying circuit includes a circuit for rectifying the radio frequency energy into dc energy. A plurality of energy rectifying circuits is arranged in an array to provide a sum of dc energy generated by the energy rectifying circuit.
Multi-mode radio frequency device
Gilbert, Ronald W [Morgan Hill, CA; Carrender, Curtis Lee [Morgan Hill, CA; Anderson, Gordon A [Benton City, WA; Steele, Kerry D [Kennewick, WA
2007-02-13
A transponder device having multiple modes of operation, such as an active mode and a passive mode, wherein the modes of operation are selected in response to the strength of a received radio frequency signal. A communication system is also provided having a transceiver configured to transmit a radio frequency signal and to receive a responsive signal, and a transponder configured to operate in a plurality of modes and to activate modes of operation in response to the radio frequency signal. Ideally, each mode of operation is activated and deactivated independent of the other modes, although two or more modes may be concurrently operational.
Comparison of filtering methods for extracellular gastric slow wave recordings.
Paskaranandavadivel, Niranchan; O'Grady, Gregory; Du, Peng; Cheng, Leo K
2013-01-01
Extracellular recordings are used to define gastric slow wave propagation. Signal filtering is a key step in the analysis and interpretation of extracellular slow wave data; however, there is controversy and uncertainty regarding the appropriate filtering settings. This study investigated the effect of various standard filters on the morphology and measurement of extracellular gastric slow waves. Experimental extracellular gastric slow waves were recorded from the serosal surface of the stomach from pigs and humans. Four digital filters: finite impulse response filter (0.05-1 Hz); Savitzky-Golay filter (0-1.98 Hz); Bessel filter (2-100 Hz); and Butterworth filter (5-100 Hz); were applied on extracellular gastric slow wave signals to compare the changes temporally (morphology of the signal) and spectrally (signals in the frequency domain). The extracellular slow wave activity is represented in the frequency domain by a dominant frequency and its associated harmonics in diminishing power. Optimal filters apply cutoff frequencies consistent with the dominant slow wave frequency (3-5 cpm) and main harmonics (up to ≈ 2 Hz). Applying filters with cutoff frequencies above or below the dominant and harmonic frequencies was found to distort or eliminate slow wave signal content. Investigators must be cognizant of these optimal filtering practices when detecting, analyzing, and interpreting extracellular slow wave recordings. The use of frequency domain analysis is important for identifying the dominant and harmonics of the signal of interest. Capturing the dominant frequency and major harmonics of slow wave is crucial for accurate representation of slow wave activity in the time domain. Standardized filter settings should be determined. © 2012 Blackwell Publishing Ltd.
Time-Frequency and Non-Laplacian Phenomena at Radio Frequencies
2017-01-22
Unlimited UU UU UU UU 22-01-2017 30-Sep-2012 30-Sep-2016 Final Report: Time -Frequency and Non-Laplacian Phenomena at Radio Frequencies The views...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data... Time ‐Frequency and Non‐Laplacian Phenomena at Radio Frequencies U.S. Army Research Office grant W911NF‐12‐1‐0526 Michael B. Steer Department of
47 CFR 2.815 - External radio frequency power amplifiers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source is capable of amplification of that signal, and (2) is not an integral part of a radio transmitter as... following: (1) The external radio frequency power amplifier shall not be capable of amplification in the...
47 CFR 2.815 - External radio frequency power amplifiers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source is capable of amplification of that signal, and (2) is not an integral part of a radio transmitter as... following: (1) The external radio frequency power amplifier shall not be capable of amplification in the...
47 CFR 2.815 - External radio frequency power amplifiers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source is capable of amplification of that signal, and (2) is not an integral part of a radio transmitter as... following: (1) The external radio frequency power amplifier shall not be capable of amplification in the...
Subarray Processing for Projection-based RFI Mitigation in Radio Astronomical Interferometers
NASA Astrophysics Data System (ADS)
Burnett, Mitchell C.; Jeffs, Brian D.; Black, Richard A.; Warnick, Karl F.
2018-04-01
Radio Frequency Interference (RFI) is a major problem for observations in Radio Astronomy (RA). Adaptive spatial filtering techniques such as subspace projection are promising candidates for RFI mitigation; however, for radio interferometric imaging arrays, these have primarily been used in engineering demonstration experiments rather than mainstream scientific observations. This paper considers one reason that adoption of such algorithms is limited: RFI decorrelates across the interferometric array because of long baseline lengths. This occurs when the relative RFI time delay along a baseline is large compared to the frequency channel inverse bandwidth used in the processing chain. Maximum achievable excision of the RFI is limited by covariance matrix estimation error when identifying interference subspace parameters, and decorrelation of the RFI introduces errors that corrupt the subspace estimate, rendering subspace projection ineffective over the entire array. In this work, we present an algorithm that overcomes this challenge of decorrelation by applying subspace projection via subarray processing (SP-SAP). Each subarray is designed to have a set of elements with high mutual correlation in the interferer for better estimation of subspace parameters. In an RFI simulation scenario for the proposed ngVLA interferometric imaging array with 15 kHz channel bandwidth for correlator processing, we show that compared to the former approach of applying subspace projection on the full array, SP-SAP improves mitigation of the RFI on the order of 9 dB. An example of improved image synthesis and reduced RFI artifacts for a simulated image “phantom” using the SP-SAP algorithm is presented.
A low frequency RFI monitoring system
NASA Astrophysics Data System (ADS)
Amiri, Shahram; Shankar, N. Udaya; Girish, B. S.; Somashekar, R.
Radio frequency interference (RFI) is a growing problem for research in radio astronomy particularly at wavelengths longer than 2m. For satisfactory operation of a radio telescope, several bands have been protected for radio astronomy observations by the International Telecommunication Union. Since the radiation from cosmic sources are typically 40 to 100 dB below the emission from services operating in unprotected bands, often the out-of-band emission limits the sensitivity of astronomical observations. Moreover, several radio spectral emissions from cosmic sources are present in the frequency range outside the allocated band for radio astronomy. Thus monitoring of RFI is essential before building a receiver system for low frequency radio astronomy. We describe the design and development of an RFI monitoring system operating in the frequency band 30 to 100 MHz. This was designed keeping in view our proposal to extend the frequency of operation of GMRT down to 40 MHz. The monitor is a PC based spectrometer recording the voltage output of a receiver connected to an antenna, capable of digitizing the low frequency RF directly with an 8 bit ADC and sampling bandwidths up to 16 MHz. The system can operate continuously in almost real-time with a loss of only 2% of data. Here we will present the systems design aspects and the results of RFI monitoring carried out at the Raman Research Institute, Bangalore and at the GMRT site in Khodad.
The Radio Synchrotron Background: Conference Summary and Report
NASA Astrophysics Data System (ADS)
Singal, J.; Haider, J.; Ajello, M.; Ballantyne, D. R.; Bunn, E.; Condon, J.; Dowell, J.; Fixsen, D.; Fornengo, N.; Harms, B.; Holder, G.; Jones, E.; Kellermann, K.; Kogut, A.; Linden, T.; Monsalve, R.; Mertsch, P.; Murphy, E.; Orlando, E.; Regis, M.; Scott, D.; Vernstrom, T.; Xu, L.
2018-03-01
We summarize the radio synchrotron background workshop that took place 2017 July 19–21 at the University of Richmond. This first scientific meeting dedicated to the topic was convened because current measurements of the diffuse radio monopole reveal a surface brightness that is several times higher than can be straightforwardly explained by known Galactic and extragalactic sources and processes, rendering it by far the least well understood photon background at present. It was the conclusion of a majority of the participants that the radio monopole level is at or near that reported by the ARCADE 2 experiment and inferred from several absolutely calibrated zero-level lower frequency radio measurements, and unanimously agreed that the production of this level of surface brightness, if confirmed, represents a major outstanding question in astrophysics. The workshop reached a consensus on the next priorities for investigations of the radio synchrotron background.
Radio Frequency Compatibility of an RFID Tag on Glideslope Navigation Receivers
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Mielnik, John J.
2008-01-01
A process is demonstrated to show compatibility between a radio frequency identification (RFID) tag and an aircraft glideslope (GS) radio r eceiver. The particular tag chosen was previously shown to have significant spurious emission levels that exceeded the emission limit in th e GS aeronautical band. The spurious emissions are emulated in the study by capturing the RFID fundamental transmission and playing back th e signal in the GS band. The signal capturing and playback are achiev ed with a vector signal generator and a spectrum analyzer that can output the in-phase and quadrature components (IQ). The simulated interf erence signal is combined with a GS signal before being injected into a GS receiver#s antenna port for interference threshold determination . Minimum desired propagation loss values to avoid interference are then computed and compared against actual propagation losses for severa l aircraft.
NASA Astrophysics Data System (ADS)
Eftekhari, T.; Berger, E.; Zauderer, B. A.; Margutti, R.; Alexander, K. D.
2018-02-01
We present continued radio and X-ray observations of the relativistic tidal disruption event Swift J164449.3+573451 extending to δt ≈ 2000 days after discovery. The radio data were obtained with the Very Large Array (VLA) as part of a long-term program to monitor the energy and dynamical evolution of the jet and to characterize the parsec-scale environment around a previously dormant supermassive black hole. We combine these data with Chandra observations and demonstrate that the X-ray emission following the sharp decline at δt ≈ 500 days is likely due to the forward shock. We constrain the synchrotron cooling frequency and the microphysical properties of the outflow for the first time. We find that the cooling frequency evolves through the optical/NIR band at δt ≈ 10–200 days, corresponding to ɛ B ≈ 10‑3, well below equipartition; the X-ray data demonstrate that this deviation from equipartition holds to at least δt ≈ 2000 days. We thus recalculate the physical properties of the jet over the lifetime of the event, no longer assuming equipartition. We find a total kinetic energy of E K ≈ 4 × 1051 erg and a transition to non-relativistic expansion on the timescale of our latest observations (700 days). The density profile is approximately R ‑3/2 at ≲0.3 pc and ≳0.7 pc, with a plateau at intermediate scales, characteristic of Bondi accretion. Based on its evolution thus far, we predict that Sw 1644+57 will be detectable at centimeter wavelengths for decades to centuries with existing and upcoming radio facilities. Similar off-axis events should be detectable to z ∼ 2, but with a slow evolution that may inhibit their recognition as transient events.
NASA Technical Reports Server (NTRS)
Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.;
2011-01-01
Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.
NASA Astrophysics Data System (ADS)
Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai
2016-01-01
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.
NASA Astrophysics Data System (ADS)
Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.
2015-10-01
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.
47 CFR 90.357 - Frequencies for LMS systems in the 902-928 MHz band.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequencies for LMS systems in the 902-928 MHz band. 90.357 Section 90.357 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio Service § 90.357 Frequencies for LMS systems in...
USDA-ARS?s Scientific Manuscript database
Radio frequency (RF) heating is a commonly used food processing technology that has been applied for drying and baking as well as thawing of frozen foods. Its use in pasteurization, as well as for sterilization and disinfection of foods, is more limited. This column will review various RF heating ap...
Performing Regulation: The FCC and Innovations in the Broadcasting Market. Publication 76-2.
ERIC Educational Resources Information Center
Mosco, Vincent
A review was made of the regulatory history of frequency modulation (FM) radio, ultra high frequency (UHF) television, cable television (CATV) and subscription television (STV), in order to appraise the Federal Communications Commission's decision-making process and the many proposals that have been made over the years to improve it. The study…
Integrated Millimeter-Wave Frequency Multiplers
NASA Astrophysics Data System (ADS)
Schoenthal, Gerhard S.; Deaver, B. S.; Crowe, T. W.; Bishop, W. L.; Saini, K.; Bradley, R. F.
2001-11-01
Many of the molecules of interest to radio astronomers and atmospheric chemists resonate at frequencies in the millimeter and submillimeter wavelength bands. To measure the spectra of these molecules scientists rely on heterodyne receivers that convert the high frequency signal to the GHz band where it is readily amplified and analyzed. One of the challenges of developing suitable receiver systems is the development of compact, reliable and affordable sources of local oscillator power at frequencies in excess of 100 GHz. One useful solution is to use GaAs Schottky diodes, in their varactor mode, to generate high frequency harmonics of lower frequency sources such as Gunn oscillators. As a part of a multi-national radio astronomy project, the Atacama Millimeter Large Array (ALMA), we have designed and fabricated a broadband frequency tripler with an output centered at 240 GHz. It is integrated on a quartz substrate to greatly reduce the parasitic capacitance and thereby improve electrical performance. The integrated circuit was designed to require no oxides or ohmic contacts, thereby easing fabrication. This talk will discuss the novel millimeter-wave integrated circuit fabrication process and the initial results.
SETI Observations of Exoplanets with the Allen Telescope Array
NASA Astrophysics Data System (ADS)
Harp, G. R.; Richards, Jon; Tarter, Jill C.; Dreher, John; Jordan, Jane; Shostak, Seth; Smolek, Ken; Kilsdonk, Tom; Wilcox, Bethany R.; Wimberly, M. K. R.; Ross, John; Barott, W. C.; Ackermann, R. F.; Blair, Samantha
2016-12-01
We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA). Observations were made over about 19000 hr from 2009 May to 2015 December. This search focused on narrowband radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their habitable zones. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1 to 9 GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrowband (0.7-100 Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from -0.3 to 0.3 m s-2. A total of 1.9 × 108 unique signals requiring immediate follow-up were detected in observations covering more than 8 × 106 star-MHz. We detected no persistent signals from extraterrestrial technology exceeding our frequency-dependent sensitivity threshold of 180-310 × 10-26 W m-2.
The Murchison Widefield Array: solar science with the low frequency SKA Precursor
NASA Astrophysics Data System (ADS)
Tingay, S. J.; Oberoi, D.; Cairns, I.; Donea, A.; Duffin, R.; Arcus, W.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Bunton, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A.; deSouza, L.; Emrich, D.; Gaensler, B. M.; R, Goeke; Greenhill, L. J.; Hazelton, B. J.; Herne, D.; Hewitt, J. N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kennewell, J. A.; Kincaid, B. B.; Koenig, R.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Ord, S. M.; Pathikulangara, J.; Prabu, T.; Remillard, R. A.; Rogers, A. E. E.; Roshi, A.; Salah, J. E.; Sault, R. J.; Udaya-Shankar, N.; Srivani, K. S.; Stevens, J.; Subrahmanyan, R.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.
2013-06-01
The Murchison Widefield Array is a low frequency (80 - 300 MHz) SKA Precursor, comprising 128 aperture array elements (known as tiles) distributed over an area of 3 km diameter. The MWA is located at the extraordinarily radio quiet Murchison Radioastronomy Observatory in the mid-west of Western Australia, the selected home for the Phase 1 and Phase 2 SKA low frequency arrays. The MWA science goals include: 1) detection of fluctuations in the brightness temperature of the diffuse redshifted 21 cm line of neutral hydrogen from the epoch of reionisation; 2) studies of Galactic and extragalactic processes based on deep, confusion-limited surveys of the full sky visible to the array; 3) time domain astrophysics through exploration of the variable radio sky; and 4) solar imaging and characterisation of the heliosphere and ionosphere via propagation effects on background radio source emission. This paper concentrates on the capabilities of the MWA for solar science and summarises some of the solar science results to date, in advance of the initial operation of the final instrument in 2013.
NASA Astrophysics Data System (ADS)
Weber, Christof; Lammer, Helmut; Shaikhislamov, Ildar F.; Erkaev, Nikolai; Chadney, Joshua M.; Khodachenko, Maxim L.; Grießmeier, Jean-Mathias; Rucker, Helmut O.; Vocks, Christian; Macher, Wolfgang; Odert, Petra; Kislyakova, Kristina G.
2017-04-01
We present a study of the plasma conditions in the atmospheres of the Hot Jupiters HD 209458b and HD 189733b and for an HD 209458b-like planet at orbit locations between 0.2-1 AU around a Sun-like star. We discuss how these conditions influence the radio emission we expect from their planetary magnetospheres. We find that the environmental conditions for the cyclotron maser instability (CMI), the process which is responsible for the generation of radio waves at magnetic planets in the solar system, most likely will not operate at Hot Jupiters. The reason for that is that hydrodynamically expanding atmospheres possess extended ionospheres whose plasma densities within the magnetosphere are so large that the plasma frequency is much higher than the cyclotron frequency, which contradicts the necessary condition for the production of radio emission and prevents the escape of radio waves from close-in extrasolar planets at distances <0.05 AU from a Sun-like host star. The upper atmosphere structure of Hot Jupiters around stars similar to the Sun changes between 0.2 and 0.5 AU from the hydrodynamic to a hydrostatic regime and this results in conditions similar to solar system planets with a region of depleted plasma between the exobase and the magnetopause where the plasma frequency can be lower than the cyclotron frequency. In such an environment a beam of highly energetic electrons accelerated along the field lines towards the planet can produce radio emission. However, even if the CMI could operate the extended ionospheres of Hot Jupiters are too dense to let the radio emission escape from the planets. We also investigate the possible radio emission of the Hot Jupiter Tau Bootis b by placing it at different orbital distances from the host star, i.e. 0.1 and 0.2 AU. In particular we check if the atmosphere of Tau Bootis b at 0.046 AU is in the hydrostatic or in the hydrodynamic regime. If it is in the hydrodynamic regime it's ionosphere is extended and will constitute an obstacle for possibly generated radio waves or the generation via the Cyclotron Maser Instability (CMI) might even be prevented completely. Furthermore we investigate at which orbital location the atmosphere undergoes the transformation from hydrodynamic to hydrostatic, i.e. the transformation to more favourable conditions for the CMI.
Probing the radio emission from air showers with polarization measurements
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration
2014-03-01
The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.
Radio-Frequency Emissions from Streamer Collisions: Implications for High-Energy Processes.
NASA Astrophysics Data System (ADS)
Luque, A.
2017-12-01
The production of energetic particles in a discharge corona is possibly linked to the collision of streamers of opposite polarities [Cooray et al. (2009), Kochkin et al. (2012), Østgaard et al. (2016)]. There is also experimental evidence linking it to radio-frequency emissions in the UHF frequency range (300 MHz-3 GHz) [Montanyà et al. (2015), Petersen and Beasley (2014)]. Here we investigate these two links by modeling the radio-frequency emissions emanating from an encounter between two counter-propagating streamers. Our numerical model combines self-consistently a conservative, high-order Finite-Volume scheme for electron transport with a Finite-Difference Time-Domain (FDTD) method for electromagnetic propagation. We also include the most relevant reactions for streamer propagation: impact ionization, dissociative attachment and photo-ionization. Our implementation benefits from massive parallelization by running on a General-Purpose Graphical Processing Unit (GPGPU). With this code we found that streamer encounters emit electromagnetic waves predominantly in the UHF range, supporting the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges. References Cooray, V., et al., J. Atm. Sol.-Terr. Phys., 71, 1890, doi:10.1016/j.jastp.2009.07.010 (2009). Kochkin, P. O., et al., J. Phys. D, 45, 425202, doi: 10.1088/0022-3727/45/42/425202 (2012). Montanyà, J., et al., J. Atm. Sol.-Terr. Phys., 136, 94, doi:10.1016/j.jastp.2015.06.009, (2015). Østgaard, N., et al., J. Geophys. Res. (Atmos.), 121, 2939, doi:10.1002/2015JD024394 (2016). Petersen, D., and W. Beasley, Atmospheric Research, 135, 314, doi:10.1016/j.atmosres.2013.02.006 (2014).
Chromospheric evaporation and decimetric radio emission in solar flares
NASA Technical Reports Server (NTRS)
Aschwanden, Markus J.; Benz, Arnold O.
1995-01-01
We have discovered decimetric signatures of the chromospheric evaporation process. Evidence for the radio detection of chromospheric evaporation is based on the radio-inferred values of (1) the electron density, (2) the propagation speed, and (3) the timing, which are found to be in good agreement with statistical values inferred from the blueshifted Ca XIX soft X-ray line. The physical basis of our model is that free-free absorption of plasma emission is strongly modified by the steep density gradient and the large temperature increase in the upflowing flare plasma. The steplike density increase at the chromospheric evaporation front causes a local discontinuity in the plasma frequency, manifested as almost infinite drift rate in decimetric type III bursts. The large temperature increase of the upflowing plasma considerably reduces the local free-free opacity (due to the T(exp -3/2) dependence) and thus enhances the brightness of radio bursts emitted at the local plasma frequency near the chromospheric evaporation front, while a high-frequency cutoff is expected in the high-density regions behind the front, which can be used to infer the velocity of the upflowing plasma. From model calculations we find strong evidence that decimetric bursts with a slowly drifting high-frequency cutoff are produced by fundamental plasma emission, contrary to the widespread belief that decimetric bursts are preferentially emitted at the harmonic plasma level. We analyze 21 flare episodes from 1991-1993 for which broadband (100-3000 MHz) radio dynamic spectra from Pheonix, hard X-ray data from (BATSE/CGRO) and soft X-ray data from Burst and Transient Source Experiment/Compton Gamma Ray Observatory (GOES) were available.
Distinct slow and fast cortical theta dynamics in episodic memory retrieval.
Pastötter, Bernhard; Bäuml, Karl-Heinz T
2014-07-01
Brain oscillations in the theta frequency band (3-8 Hz) have been shown to be critically involved in human episodic memory retrieval. In prior work, both positive and negative relationships between cortical theta power and retrieval success have been reported. This study examined the hypothesis that slow and fast cortical theta oscillations at the edges of the traditional theta frequency band are differentially related to retrieval success. Scalp EEG was recorded in healthy human participants as they performed a cued-recall episodic memory task. Slow (~3 Hz) and fast (~7 Hz) theta oscillations at retrieval were examined as a function of whether an item was recalled or not and as a function of the items' output position at test. Recall success typically declines with output position, due to increases in interference level. The results showed that slow theta power was positively related but fast theta power was negatively related to retrieval success. Concurrent positive and negative episodic memory effects for slow and fast theta oscillations were dissociable in time and space, showing different time courses and different spatial locations on the scalp. Moreover, fast theta power increased from early to late output positions, whereas slow theta power was unaffected by items' output position. Together with prior work, the results suggest that slow and fast theta oscillations have distinct functional roles in episodic memory retrieval, with slow theta oscillations being related to processes of recollection and conscious awareness, and fast theta oscillations being linked to processes of interference and interference resolution. Copyright © 2014 Elsevier Inc. All rights reserved.
Future Trends in Solar Radio Astronomy and Coronal Magnetic-Field Measurements
NASA Astrophysics Data System (ADS)
Fleishman, Gregory; Nita, Gelu; Gary, Dale
Solar radio astronomy has an amazingly rich, but yet largely unexploited, potential for probing the solar corona and chromosphere. Radio emission offers multiple ways of detecting and tracking electron beams, studying chromospheric and coronal thermal structure, plasma processes, particle acceleration, and measuring magnetic fields. To turn the mentioned potential into real routine diagnostics, two major components are needed: (1) well-calibrated observations with high spatial, spectral, and temporal resolutions and (2) accurate and reliable theoretical models and fast numerical tools capable of recovering the emission source parameters from the radio data. This report gives a brief overview of the new, expanded, and planned radio facilities, such as Expanded Owens Valley Solar Array (EOVSA), Jansky Very Large Array (JVLA), Chinese Solar Radio Heliograph (CSRH), Upgraded Siberian Solar Radio Telescope (USSRT), and Frequency Agile Solar Radiotelescope (FASR) with the emphasis on their ability to measure the coronal magnetic fields in active regions and flares. In particular, we emphasize the new tools for 3D modeling of the radio emission and forward fitting tools in development needed to derive the magnetic field data from the radio measurements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES... frequencies in order to minimize interference and obtain the most effective use of stations. See subpart E and... geographical areas. (c) Government frequencies. Frequencies allocated exclusively to federal government radio...
A Software Defined Radio Based Airplane Communication Navigation Simulation System
NASA Astrophysics Data System (ADS)
He, L.; Zhong, H. T.; Song, D.
2018-01-01
Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.
A New Method to Cancel RFI---The Adaptive Filter
NASA Astrophysics Data System (ADS)
Bradley, R.; Barnbaum, C.
1996-12-01
An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation effectiveness of the system on the 140 ft telescope at Green Bank Observatory.
Clustering-based Filtering to Detect Isolated and Intermittent Pulses in Radio Astronomy Data
NASA Astrophysics Data System (ADS)
Wagstaff, Kiri; Tang, B.; Lazio, T. J.; Spolaor, S.
2013-01-01
Radio-emitting neutron stars (pulsars) produce a series of periodic pulses at radio frequencies. Dispersion, caused by propagation through the interstellar medium, delays signals at lower frequencies more than higher frequencies. This well understood effect can be reversed though de-dispersion at the appropriate dispersion measure (DM). The periodic nature of a pulsar provides multiple samples of signals at the same DM, increasing the reliability of any candidate detection. However, existing methods for pulsar detection are ineffective for many pulse-emitting phenomena now being discovered. Sources exhibit a wide range of pulse repetition rates, from highly regular canonical pulsars to intermittent and nulling pulsars to rotating radio transients (RRATs) that may emit only a few pulses per hour. Other source types may emit only a few pulses, or even only a single pulse. We seek to broaden the scope of radio signal analysis to enable the detection of isolated and intermittent pulses. Without a requirement that detected sources be periodic, we find that a typical de-dispersion search yields results that are often dominated by spurious detections from radio frequency interference (RFI). These occur across the DM range, so filtering out DM-0 signals is insufficient. We employ DBSCAN data clustering to identify groups within the de-dispersion results, using information for each candidate about time, DM, SNR, and pulse width. DBSCAN is a density-based clustering algorithm that offers two advantages over other clustering methods: 1) the number of clusters need not to be specified, and 2) there is no model of expected cluster shape (such as the Gaussian assumption behind EM clustering). Each data cluster can be selectively masked or investigated to facilitate the process of sifting through hundreds of thousands of detections to focus on those of true interest. Using data obtained by the Byrd Green Bank Telescope (GBT), we show how this approach can help separate RFI from difficult to find single and intermittent pulses.
NASA Technical Reports Server (NTRS)
Zou, Yingyin (Inventor); Chen, Qiushui (Inventor); Zhang, Run (Inventor); Jiang, Hua (Inventor)
2006-01-01
An electro-optic Q-switch for generating sequence of laser pulses was disclosed. The Q-switch comprises a quadratic electro-optic material and is connected with an electronic unit generating a radio frequency wave with positive and negative pulses alternatively. The Q-switch is controlled by the radio frequency wave in such a way that laser pulse is generated when the radio frequency wave changes its polarity.
Electromagnetic Propagation Problems in the Tactical Environment
1982-04-01
Radio Consultative Committee of the International Telecommunications Union , Geneva 1-9 Table I Frequency Ranges Frequency Band Typical Tactical... Union , Geneva, 1978. 4. Bradley, P. A., AGARD Lecture Series No. 99, Propagation at medium and high frequencies: Practical radio systems and...International Radio Consultative Committee, Antenna Diagrams, International Telecommunication Union , Geneva, 1978. 7. Barghausen, A. F., J. W. Finney, L. L
NASA Astrophysics Data System (ADS)
Larnier, H.; Sailhac, P.; Chambodut, A.
2018-01-01
Atmospheric electromagnetic waves created by global lightning activity contain information about electrical processes of the inner and the outer Earth. Large signal-to-noise ratio events are particularly interesting because they convey information about electromagnetic properties along their path. We introduce a new methodology to automatically detect and characterize lightning-based waves using a time-frequency decomposition obtained through the application of continuous wavelet transform. We focus specifically on three types of sources, namely, atmospherics, slow tails and whistlers, that cover the frequency range 10 Hz to 10 kHz. Each wave has distinguishable characteristics in the time-frequency domain due to source shape and dispersion processes. Our methodology allows automatic detection of each type of event in the time-frequency decomposition thanks to their specific signature. Horizontal polarization attributes are also recovered in the time-frequency domain. This procedure is first applied to synthetic extremely low frequency time-series with different signal-to-noise ratios to test for robustness. We then apply it on real data: three stations of audio-magnetotelluric data acquired in Guadeloupe, oversea French territories. Most of analysed atmospherics and slow tails display linear polarization, whereas analysed whistlers are elliptically polarized. The diversity of lightning activity is finally analysed in an audio-magnetotelluric data processing framework, as used in subsurface prospecting, through estimation of the impedance response functions. We show that audio-magnetotelluric processing results depend mainly on the frequency content of electromagnetic waves observed in processed time-series, with an emphasis on the difference between morning and afternoon acquisition. Our new methodology based on the time-frequency signature of lightning-induced electromagnetic waves allows automatic detection and characterization of events in audio-magnetotelluric time-series, providing the means to assess quality of response functions obtained through processing.
Development of paper-based wireless communication modules for point-of-care diagnostic applications
NASA Astrophysics Data System (ADS)
Smith, Suzanne; Bezuidenhout, Petroné H.; Land, Kevin; Korvink, Jan G.; Mager, Dario
2016-02-01
We present an ultra-high frequency radio frequency identification based wireless communication set-up for paper-based point-of-care diagnostic applications, based on a sensing radio frequency identification chip. Paper provides a low-cost, disposable platform for ease of fluidic handling without bulky instrumentation, and is thus ideally suited for point-ofcare applications; however, result communication - a crucial aspect for healthcare to be implemented effectively - is still lacking. Printing of radio frequency identification antennas and electronic circuitry for sensing on paper are presented, with read out of the results using a radio frequency identification reader illustrated, demonstrating the feasibility of developing integrated, all-printed solutions for point-of-care diagnosis in resource-limited settings.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2003-11-25
A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.
47 CFR 95.1113 - Frequency coordinator.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1113 Frequency coordinator. (a... with radio astronomy observatories and Federal Government radar systems as specified in §§ 95.1119 and...
47 CFR 95.1113 - Frequency coordinator.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1113 Frequency coordinator. (a... with radio astronomy observatories and Federal Government radar systems as specified in §§ 95.1119 and...
47 CFR 2.801 - Radiofrequency device defined.
Code of Federal Regulations, 2011 CFR
2011-10-01
....801 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.801 Radiofrequency device..., but are not limited to: (a) The various types of radio communication transmitting devices described...
Insel, Nathan; Patron, Lilian A.; Hoang, Lan T.; Nematollahi, Saman; Schimanski, Lesley A.; Lipa, Peter; Barnes, Carol A.
2012-01-01
Age-related cognitive and behavioral slowing may be caused by changes in the speed of neural signaling or by changes in the number of signaling steps necessary to achieve a given function. In the mammalian cortex, neural communication is organized by a 30–100 Hz “gamma” oscillation. There is a putative link between the gamma frequency and the speed of processing in a neural network: the dynamics of pyramidal neuron membrane time constants suggest that synaptic integration is framed by the gamma cycle, and pharmacological slowing of gamma also slows reaction times on behavioral tasks. The present experiments identify reductions in a robust 40–70 Hz gamma oscillation in the aged rat medial frontal cortex. The reductions were observed in the form of local field potentials (LFPs), later peaks in fast-spiking neuron autocorrelations, and delays in the spiking of inhibitory neurons following local excitatory signals. Gamma frequency did not vary with movement speed, but rats with slower gamma also moved more slowly. Gamma frequency age differences were not observed in hippocampus. Hippocampal CA1 fast-spiking neurons exhibited inter-spike intervals consistent with a fast (70–100 Hz) gamma frequency, a pattern maintained across theta phases and theta frequencies independent of fluctuations in the neurons’ average firing rates. We propose that an average lengthening of the cortical 15–25 ms gamma cycle is one factor contributing to age-related slowing, and that future attempts to offset cognitive declines will find a target in the response of fast-spiking inhibitory neurons to excitatory inputs. PMID:23152616
Cross layer optimization for cloud-based radio over optical fiber networks
NASA Astrophysics Data System (ADS)
Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming
2016-07-01
To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.
Wireless Phone Threat Assessment and New Wireless Technology Concerns for Aircraft Navigation Radios
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Koppen, Sandra V.; Beggs, John H.; Salud, Maria Theresa P.
2003-01-01
To address the concern for cellular phone electromagnetic interference to aircraft radios, a radiated emission measurement process was developed for two dominant digital standards of wireless handsets. Spurious radiated emissions were efficiently characterized from devices tested in either a semi-anechoic or reverberation chamber, in terms of effective radiated power. Eight representative handsets (four from each digital standard) were commanded to operate while varying their radio transmitter parameters (power, modulation, etc.). This report provides a detailed description of the measurement process and resulting data, which may subsequently be used by others as a basis of consistent evaluation of other portable transmitters using a variety of wireless transmission protocols. Aircraft interference path loss and navigation radio interference threshold data from numerous reference documents, standards, and NASA partnerships were compiled. Using these data, a preliminary risk assessment is provided for wireless phone interference to aircraft Localizer, Glideslope, Very High Frequency Omni directional Range, and Global Positioning Satellite radio receivers on typical transport airplanes. The report identifies where existing data for device emissions, interference path loss, and navigation radio interference thresholds need to be extended for an accurate risk assessment for wireless transmitters in aircraft.
Right-hemispheric dominance for processing extended non-linguistic frequency transitions.
McKibbin, Katherine; Elias, Lorin J; Saucier, Deborah M; Engebregston, Delaine
2003-11-01
The left hemisphere is specialized for most linguistic tasks and the right hemisphere is specialized for many non-linguistic tasks, but the cause of these functional asymmetries is unknown. One of the stimulus factors that appears to influence these asymmetries is the rate at which stimuli change. In the present experiment, 41 participants completed the Fused Dichotic Words Test (FDWT) and a non-linguistic Frequency Transition Task (FTT) wherein the Frequency Transitions (FTs) were either rapid (40 ms) or relatively slow (200 ms). There was a right hemisphere advantage for slow FTs when the change was at the front of the stimulus, but no corresponding left hemisphere advantage for the rapid FTs. There was no relationship between either FTT and the left hemisphere advantage exhibited on the FDWT. This finding provides support for the position that the right hemisphere dominates tasks that require temporal processing over relatively long periods of time.
Scalable fabrication of self-aligned graphene transistors and circuits on glass.
Liao, Lei; Bai, Jingwei; Cheng, Rui; Zhou, Hailong; Liu, Lixin; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2012-06-13
Graphene transistors are of considerable interest for radio frequency (rf) applications. High-frequency graphene transistors with the intrinsic cutoff frequency up to 300 GHz have been demonstrated. However, the graphene transistors reported to date only exhibit a limited extrinsic cutoff frequency up to about 10 GHz, and functional graphene circuits demonstrated so far can merely operate in the tens of megahertz regime, far from the potential the graphene transistors could offer. Here we report a scalable approach to fabricate self-aligned graphene transistors with the extrinsic cutoff frequency exceeding 50 GHz and graphene circuits that can operate in the 1-10 GHz regime. The devices are fabricated on a glass substrate through a self-aligned process by using chemical vapor deposition (CVD) grown graphene and a dielectrophoretic assembled nanowire gate array. The self-aligned process allows the achievement of unprecedented performance in CVD graphene transistors with a highest transconductance of 0.36 mS/μm. The use of an insulating substrate minimizes the parasitic capacitance and has therefore enabled graphene transistors with a record-high extrinsic cutoff frequency (> 50 GHz) achieved to date. The excellent extrinsic cutoff frequency readily allows configuring the graphene transistors into frequency doubling or mixing circuits functioning in the 1-10 GHz regime, a significant advancement over previous reports (∼20 MHz). The studies open a pathway to scalable fabrication of high-speed graphene transistors and functional circuits and represent a significant step forward to graphene based radio frequency devices.
Radiosurgical fistulotomy; an alternative to conventional procedure in fistula in ano.
Gupta, Pravin J
2003-01-01
Most surgeons continue to prefer the classic lay open technique [fistulotomy] as the gold standard of treatment in anal fistula. In this randomized study, a comparison is made between conventional fistulotomy and fistulotomy performed by a radio frequency device. One hundred patients of low anal fistula posted for fistulotomy were randomized prospectively to either a conventional or radio frequency technique. Parameters measured included time taken for the procedure, amount of blood loss, postoperative pain, return to work, and recurrence rate. The patient demographic was comparable in 2 groups. The radio frequency fistulotomy was quicker as compared to a conventional one [22 versus 37 minutes, p = 0.001], amount of bleeding was significantly less [47 ml versus 134 ml, p = 0.002], and hospital stay was less when patient was operated by radio frequency method [37 hours versus 56 hours in conventional method, p = 0.001]. The postoperative pain in the first 24 hours was more in conventional group [2 to 5 versus 0 to 3 on visual analogue scale]. The patients from radio frequency group resumed their duties early with a reduced healing period of the wounds [47 versus 64 days, p = 0.01]. The recurrence or failure rates were comparable in the radio frequency and conventional groups [2% versus 6%]. Fistulotomy procedure using a radio frequency technique has significant advantages over a conventional procedure with regard to operation time, blood loss, return to normal activity, and healing time of the wound.
Type II Radio Bursts Observed by STEREO/Waves and Wind/Waves instruments
NASA Astrophysics Data System (ADS)
Krupar, V.; Magdalenic, J.; Zhukov, A.; Rodriguez, L.; Mierla, M.; Maksimovic, M.; Cecconi, B.; Santolik, O.
2013-12-01
Type II radio bursts are slow-drift emissions triggered by suprathermal electrons accelerated on shock fronts of propagating CMEs. We present several events at kilometric wavelengths observed by radio instruments onboard the STEREO and Wind spacecraft. The STEREO/Waves and Wind/Waves have goniopolarimetric (GP, also referred to as direction finding) capabilities that allow us to triangulate radio sources when an emission is observed by two or more spacecraft. As the GP inversion has high requirements on the signal-to-noise ratio we only have a few type II radio bursts with sufficient intensity for this analysis. We have compared obtained radio sources with white-light observations of STEREO/COR and STEREO/HI instruments. Our preliminary results indicate that radio sources are located at flanks of propagating CMEs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yancey, Cregg C.; Shawhan, Peter; Bear, Brandon E.
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may bemore » tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ∼30 s time window and ∼200–500 deg{sup 2} sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ∼2. For some models, we also map the parameter space that may be constrained by non-detections.« less
LOFAR/H-ATLAS: the low-frequency radio luminosity-star formation rate relation
NASA Astrophysics Data System (ADS)
Gürkan, G.; Hardcastle, M. J.; Smith, D. J. B.; Best, P. N.; Bourne, N.; Calistro-Rivera, G.; Heald, G.; Jarvis, M. J.; Prandoni, I.; Röttgering, H. J. A.; Sabater, J.; Shimwell, T.; Tasse, C.; Williams, W. L.
2018-04-01
Radio emission is a key indicator of star formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies, the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of Sloan Digital Sky Survey galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity-star formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity (L150) and SFR. Interestingly, we find that a single power-law relationship between L150 and SFR is not a good description of all SFGs: a broken power-law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects that were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.
A flexible surface wetness sensor using a RFID technique.
Yang, Cheng-Hao; Chien, Jui-Hung; Wang, Bo-Yan; Chen, Ping-Hei; Lee, Da-Sheng
2008-02-01
This paper presents a flexible wetness sensor whose detection signal, converted to a binary code, is transmitted through radio-frequency (RF) waves from a radio-frequency identification integrated circuit (RFID IC) to a remote reader. The flexible sensor, with a fixed operating frequency of 13.56 MHz, contains a RFID IC and a sensor circuit that is fabricated on a flexible printed circuit board (FPCB) using a Micro-Electro-Mechanical-System (MEMS) process. The sensor circuit contains a comb-shaped sensing area surrounded by an octagonal antenna with a width of 2.7 cm. The binary code transmitted from the RFIC to the reader changes if the surface conditions of the detector surface changes from dry to wet. This variation in the binary code can be observed on a digital oscilloscope connected to the reader.
gr-MRI: A software package for magnetic resonance imaging using software defined radios.
Hasselwander, Christopher J; Cao, Zhipeng; Grissom, William A
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs. Copyright © 2016. Published by Elsevier Inc.
The Jansky VLA: Rebuilt for 21st Century Astronomy
NASA Astrophysics Data System (ADS)
Hallinan, Gregg
2016-01-01
At the start of this decade, the Very Large Array underwent a transformative upgrade. While retaining its original 27 antennas, the signal transmission and processing systems, originally developed and built in the 1970s, have been replaced with state of the art wideband receivers and a new data transmission system, as well as one of the most powerful correlators yet built. With a ten-fold increase in continuum sensitivity, up to 4 million frequency channels and complete frequency coverage from 1-50 GHz, the resulting increase in capability and versatility is analogous to the transition from photographic plate to CCD technology that revolutionized optical astronomy in the 1980s. Post upgrade, the Jansky VLA will be the most sensitive radio interferometer in the world for this decade, probing the sub-uJy radio sky for the first time, and will remain the most versatile, frequency-agile radio telescope for the foreseeable future. Underscoring this versatility, is the VLA's capability to trace both thermal and non-thermal emission over a wide range of spatial, time and velocity resolution. At the highest frequencies, this includes imaging cool gas in high redshift galaxies and dusty disks in nearby protoplanetary systems, while at the lowest frequencies tracing AGN activity and star formation back to the epoch of reionization. In the time domain, the VLA can respond to external triggers within 15 minutes to provide an instantaneous broadband radio spectrum of explosive events. I will review some of the exciting science emerging from the Jansky VLA as well as the range of science-ready data products that will make the VLA increasingly accessible to the wider astronomical community. Finally, I will briefly introduce the new VLA Sky Survey (VLASS), a community-driven project to image 80% of the sky over multiple epochs with the VLA, reaching a depth of ~70 uJy and detecting ~10 million radio sources at high spatial and spectral resolution with full polarization information.
Constraints on the source parameters of low-frequency earthquakes on the San Andreas Fault
Thomas, Amanda M.; Beroza, Gregory C.; Shelly, David R.
2016-01-01
Low-frequency earthquakes (LFEs) are small repeating earthquakes that occur in conjunction with deep slow slip. Like typical earthquakes, LFEs are thought to represent shear slip on crustal faults, but when compared to earthquakes of the same magnitude, LFEs are depleted in high-frequency content and have lower corner frequencies, implying longer duration. Here we exploit this difference to estimate the duration of LFEs on the deep San Andreas Fault (SAF). We find that the M ~ 1 LFEs have typical durations of ~0.2 s. Using the annual slip rate of the deep SAF and the average number of LFEs per year, we estimate average LFE slip rates of ~0.24 mm/s. When combined with the LFE magnitude, this number implies a stress drop of ~104 Pa, 2 to 3 orders of magnitude lower than ordinary earthquakes, and a rupture velocity of 0.7 km/s, 20% of the shear wave speed. Typical earthquakes are thought to have rupture velocities of ~80–90% of the shear wave speed. Together, the slow rupture velocity, low stress drops, and slow slip velocity explain why LFEs are depleted in high-frequency content relative to ordinary earthquakes and suggest that LFE sources represent areas capable of relatively higher slip speed in deep fault zones. Additionally, changes in rheology may not be required to explain both LFEs and slow slip; the same process that governs the slip speed during slow earthquakes may also limit the rupture velocity of LFEs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hales, C. A.; Max-Moerbeck, W.; Roshi, D. A.
2016-06-01
We empirically evaluate the scheme proposed by Lieu and Duan in which the light curve of a time-steady radio source is predicted to exhibit increased variability on a characteristic timescale set by the sightline’s electron column density. Application to extragalactic sources is of significant appeal, as it would enable a unique and reliable probe of cosmic baryons. We examine temporal power spectra for 3C 84, observed at 1.7 GHz with the Karl G. Jansky Very Large Array and the Robert C. Byrd Green Bank Telescope. These data constrain the ratio between standard deviation and mean intensity for 3C 84 tomore » less than 0.05% at temporal frequencies ranging between 0.1 and 200 Hz. This limit is 3 orders of magnitude below the variability predicted by Lieu and Duan and is in accord with theoretical arguments presented by Hirata and McQuinn rebutting electron density dependence. We identify other spectral features in the data consistent with the slow solar wind, a coronal mass ejection, and the ionosphere.« less
Solar observations with a low frequency radio telescope
NASA Astrophysics Data System (ADS)
Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.
2012-01-01
We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.
NASA Astrophysics Data System (ADS)
Hramov, Alexander E.; Sitnikova, Evgenija Y.; Pavlov, Alexey N.; Grubov, Vadim V.; Koronovskii, Alexey A.; Khramova, Marina V.
2015-03-01
Sleep spindles are known to appear spontaneously in the thalamocortical neuronal network of the brain during slow-wave sleep; pathological processes in the thalamocortical network may be the reason of the absence epilepsy. The aim of the present work is to study developed changes in the time-frequency structure of sleep spindles during the progressive development of the absence epilepsy in WAG/Rij rats. EEG recordings were made at age 7 and 9 months. Automatic recognition and subsequent analysis of sleep spindles on the EEG were performed using the continuous wavelet transform. The duration of epileptic discharges and the total duration of epileptic activity were found to increase with age, while the duration of sleep spindles, conversely, decreased. In terms of the mean frequency, sleep spindles could be divided into three classes: `slow' (mean frequency 9.3Hz), `medium' (11.4Hz), and `fast' (13.5Hz). Slow and medium (transitional) spindles in five-month-old animals showed increased frequency from the beginning to the end of the spindle. The more intense the epilepsy is, the shorter are the durations of spindles of all types. The mean frequencies of `medium' and `fast' spindles were higher in rats with more intense signs of epilepsy. Overall, high epileptic activity in WAG/Rij rats was linked with significant changes in spindles of the transitional type, with less marked changes in the two traditionally identified types of spindle, slow and fast.
Stable radio frequency dissemination by simple hybrid frequency modulation scheme.
Yu, Longqiang; Wang, Rong; Lu, Lin; Zhu, Yong; Wu, Chuanxin; Zhang, Baofu; Wang, Peizhang
2014-09-15
In this Letter, we propose a fiber-based stable radio frequency transfer system by a hybrid frequency modulation scheme. Creatively, two radio frequency signals are combined and simultaneously transferred by only one laser diode. One frequency component is used to detect the phase fluctuation, and the other one is the derivative compensated signal providing a stable frequency for the remote end. A proper ratio of the frequencies of the components is well maintained by parameter m to avoid interference between them. Experimentally, a stable 200 MHz signal is transferred over 100 km optical fiber with the help of a 1 GHz detecting signal, and fractional instability of 2×10(-17) at 10(5) s is achieved.
TIME SIGNALS, * SYNCHRONIZATION (ELECTRONICS)), NETWORKS, FREQUENCY, STANDARDS, RADIO SIGNALS, ERRORS, VERY LOW FREQUENCY, PROPAGATION, ACCURACY, ATOMIC CLOCKS, CESIUM, RADIO STATIONS, NAVAL SHORE FACILITIES
47 CFR Appendix 1 to Subpart E of... - Glossary of Terms
Code of Federal Regulations, 2010 CFR
2010-10-01
... which also typically includes a frequency monitoring system that initiates a MedRadio communications... Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... station authorized in the CB. Channel frequencies. Reference frequencies from which the carrier frequency...
47 CFR Appendix 1 to Subpart E of... - Glossary of Terms
Code of Federal Regulations, 2011 CFR
2011-10-01
... which also typically includes a frequency monitoring system that initiates a MedRadio communications... Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... station authorized in the CB. Channel frequencies. Reference frequencies from which the carrier frequency...
47 CFR 15.105 - Information to the user.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.105... generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this...
47 CFR 15.105 - Information to the user.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.105... generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this...
47 CFR 15.105 - Information to the user.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.105... generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this...
47 CFR 15.105 - Information to the user.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.105... generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this...
The two-component giant radio halo in the galaxy cluster Abell 2142
NASA Astrophysics Data System (ADS)
Venturi, T.; Rossetti, M.; Brunetti, G.; Farnsworth, D.; Gastaldello, F.; Giacintucci, S.; Lal, D. V.; Rudnick, L.; Shimwell, T. W.; Eckert, D.; Molendi, S.; Owers, M.
2017-07-01
Aims: We report on a spectral study at radio frequencies of the giant radio halo in A 2142 (z = 0.0909), which we performed to explore its nature and origin. The optical and X-ray properties of the cluster suggest that A 2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. Methods: We performed deep radio observations of A 2142 with the Giant Metrewave Radio Telescope (GMRT) at 608 MHz, 322 MHz, and 234 MHz and with the Very Large Array (VLA) in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions, from the galaxy scale, I.e. 5'', up to 60'' to image the diffuse cluster-scale emission. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A 2142, about 1 Mpc away from the cluster centre. We studied the spectral index in two regions: the central part of the halo, where the X-ray emission peaks and the two brightest dominant galaxies are located; and a second region, known as the ridge (in the direction of the most distant south-eastern cold front), selected to follow the bright part of the halo and X-ray emission. We complemented our deep observations with a preliminary LOw Frequency ARray (LOFAR) image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. Results: The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, I.e. α1.78 GHz118 MHz = 1.33 ± 0.08 . The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, I.e. α1.78 GHz118 MHz 1.5. We propose that the brightest part of the radio halo is powered by the central sloshing in A 2142, in a process similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On the other hand, the steeper ridge may probe particle re-acceleration by turbulence generated either by stirring the gas and magnetic fields on a larger scale or by less energetic mechanisms, such as continuous infall of galaxy groups or an off-axis (minor) merger.
Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapińska, A. D.; Staveley-Smith, L.; Meurer, G. R.
We present new radio continuum observations of NGC 253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC 253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy, is best modeled as an internally free–free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the spectrum of NGCmore » 253 is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC 253 in our radio images. At 154–231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ∼8 kpc in the z -direction (from the major axis).« less
NASA Astrophysics Data System (ADS)
Ishihara, Y.; Yamamoto, Y.; Arai, R.
2017-12-01
Recently slow or low frequency seismic and geodetic events are focused under recognition of important role in tectonic process. The most western region of Ryukyu trench, Yaeyama Islands, is very active area of these type events. It has semiannual-like slow slip (Heki et.al., 2008; Nishimura et.al.,2014) and very frequent shallow very low frequency earthquakes near trench zone (Ando et.al.,2012; Nakamura et.al.,2014). Arai et.al.(2016) identified clear reverse phase discontinuity along plate boundary by air-gun survey, suggesting existence of low velocity layer including fluid. The subducting fluid layer is considered to control slip characteristics. On the other hand, deep low frequency earthquake and tremor observed at south-western Honshu and Shikoku of Japan are not identified well due to lack of high-quality seismic network. A broadband seismic station(ISG/PS) of Pacific21 network is operating in last 20 years that locates on occurrence potential area of low frequency earthquake. We tried to review continuous broadband record, searching low frequency earthquakes. In pilot survey, we found three very low frequency seismic events which are dominant in less than 0.1Hz component and are not listed in earthquake catalogue. Source locates about 50km depth and at transition area between slow slip event and active area of general earthquake along plate boundary. To detect small and/or hidden very low frequency earthquake, we applied matched filter analysis to continuous three components waveform data using pre-reviewed seismogram as template signal. 12 events with high correlation are picked up in last 10 years. Most events have very similar waveform, which means characteristics of repeating deep very low frequency earthquake. The event history of very low frequency earthquake is not related with one of slow slip event in this region. In Yaeyama region, low frequency earthquake, general earthquake and slow slip event occur dividing in space and have apparent independent activity. Further 3D survey around plate boundary may take us important understanding of controlling feature of seismic and geodetic slip.
Characterization of an Outdoor Ambient Radio Frequency Environment
2016-02-16
radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization, locations can be selected to avoid RF...spectrum analyzer, ambient RF noise floor, RF interference 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...environment (sometimes referred to as “radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization
2014-12-22
Radio frequency identification ( RFID ) based corrosion monitoring sensors: Part II Application and testing of the coating materials Youliang He1...email: yohe@nrcan.gc.ca Keywords: Corrosion monitoring; Wireless sensor; RFID ; Electromagnetic interference; Coating. Abstract Cost-effective...Radio Frequency Identification ( RFID ) transponders (tags) were investigated for wireless corrosion monitoring by applying a metal-filled conductive
Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure
NASA Technical Reports Server (NTRS)
Hallett, Michael P.; Reddell, Jerry P.
1997-01-01
This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.
Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments.
Gennarelli, Gianluca; Al Khatib, Obada; Soldovieri, Francesco
2017-10-27
Indoor positioning of mobile devices plays a key role in many aspects of our daily life. These include real-time people tracking and monitoring, activity recognition, emergency detection, navigation, and numerous location based services. Despite many wireless technologies and data-processing algorithms have been developed in recent years, indoor positioning is still a problem subject of intensive research. This paper deals with the active radio-frequency (RF) source localization in indoor scenarios. The localization task is carried out at the physical layer thanks to receiving sensor arrays which are deployed on the border of the surveillance region to record the signal emitted by the source. The localization problem is formulated as an imaging one by taking advantage of the inverse source approach. Different measurement configurations and data-processing/fusion strategies are examined to investigate their effectiveness in terms of localization accuracy under both line-of-sight (LOS) and non-line of sight (NLOS) conditions. Numerical results based on full-wave synthetic data are reported to support the analysis.
Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments
Gennarelli, Gianluca; Al Khatib, Obada; Soldovieri, Francesco
2017-01-01
Indoor positioning of mobile devices plays a key role in many aspects of our daily life. These include real-time people tracking and monitoring, activity recognition, emergency detection, navigation, and numerous location based services. Despite many wireless technologies and data-processing algorithms have been developed in recent years, indoor positioning is still a problem subject of intensive research. This paper deals with the active radio-frequency (RF) source localization in indoor scenarios. The localization task is carried out at the physical layer thanks to receiving sensor arrays which are deployed on the border of the surveillance region to record the signal emitted by the source. The localization problem is formulated as an imaging one by taking advantage of the inverse source approach. Different measurement configurations and data-processing/fusion strategies are examined to investigate their effectiveness in terms of localization accuracy under both line-of-sight (LOS) and non-line of sight (NLOS) conditions. Numerical results based on full-wave synthetic data are reported to support the analysis. PMID:29077071
Cížek, Martin; Hucl, Václav; Hrabina, Jan; Smíd, Radek; Mikel, Břetislav; Lazar, Josef; Cíp, Ondřej
2014-01-20
A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. A stabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF) oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more) with the relative stability better than 1.6 × 10(-11).
Čížek, Martin; Hucl, Václav; Hrabina, Jan; Šmíd, Radek; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej
2014-01-01
A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. Astabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF) oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more) with the relative stability better than 1.6 × 10−11. PMID:24448169
A frequency standard via spectrum analysis and direct digital synthesis
NASA Astrophysics Data System (ADS)
Li, Dawei; Shi, Daiting; Hu, Ermeng; Wang, Yigen; Tian, Lu; Zhao, Jianye; Wang, Zhong
2014-11-01
We demonstrated a frequency standard based on a detuned coherent population beating phenomenon. In this phenomenon, the beat frequency of the radio frequency for laser modulation and the hyperfine splitting can be obtained by digital signal processing technology. After analyzing the spectrum of the beat frequency, the fluctuation information is obtained and applied to compensate for the frequency shift to generate the standard frequency by the digital synthesis method. Frequency instability of 2.6 × 1012 at 1000 s is observed in our preliminary experiment. By eliminating the phase-locking loop, the method will enable us to achieve a full-digital frequency standard with remarkable stability.
Oscillator metrology with software defined radio.
Sherman, Jeff A; Jördens, Robert
2016-05-01
Analog electrical elements such as mixers, filters, transfer oscillators, isolating buffers, dividers, and even transmission lines contribute technical noise and unwanted environmental coupling in time and frequency measurements. Software defined radio (SDR) techniques replace many of these analog components with digital signal processing (DSP) on rapidly sampled signals. We demonstrate that, generically, commercially available multi-channel SDRs are capable of time and frequency metrology, outperforming purpose-built devices by as much as an order-of-magnitude. For example, for signals at 10 MHz and 6 GHz, we observe SDR time deviation noise floors of about 20 fs and 1 fs, respectively, in under 10 ms of averaging. Examining the other complex signal component, we find a relative amplitude measurement instability of 3 × 10(-7) at 5 MHz. We discuss the scalability of a SDR-based system for simultaneous measurement of many clocks. SDR's frequency agility allows for comparison of oscillators at widely different frequencies. We demonstrate a novel and extreme example with optical clock frequencies differing by many terahertz: using a femtosecond-laser frequency comb and SDR, we show femtosecond-level time comparisons of ultra-stable lasers with zero measurement dead-time.
USDA-ARS?s Scientific Manuscript database
In this chapter, definitions of dielectric properties, or permittivity, of materials and a brief discussion of the fundamental principles governing their behavior with respect to influencing factors are presented. The basic physics of the influence of frequency of the electric fields and temperatur...
Multi-carrier transmission for hybrid radio frequency with optical wireless communications
NASA Astrophysics Data System (ADS)
Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.
2015-05-01
Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.
Low-frequency radio absorption in Cassiopeia A
NASA Astrophysics Data System (ADS)
Arias, M.; Vink, J.; de Gasperin, F.; Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; van Amesfoort, A. S.; Anderson, J.; Beck, R.; Bell, M. E.; Bentum, M. J.; Best, P.; Blaauw, R.; Breitling, F.; Broderick, J. W.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; de Geus, E.; Deller, A.; van Dijk, P. C. G.; Duscha, S.; Eislöffel, J.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; van Haarlem, M. P.; Heald, G.; Hessels, J.; Hörandel, J.; Holties, H. A.; van der Horst, A. J.; Iacobelli, M.; Juette, E.; Krankowski, A.; van Leeuwen, J.; Mann, G.; McKay-Bukowski, D.; McKean, J. P.; Mulder, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pekal, R.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H. J. A.; Rothkaehl, H.; Schwarz, D. J.; Smirnov, O.; Soida, M.; Steinmetz, M.; Tagger, M.; Thoudam, S.; Toribio, M. C.; Vocks, C.; van der Wiel, M. H. D.; Wijers, R. A. M. J.; Wucknitz, O.; Zarka, P.; Zucca, P.
2018-05-01
Context. Cassiopeia A is one of the best-studied supernova remnants. Its bright radio and X-ray emission is due to shocked ejecta. Cas A is rather unique in that the unshocked ejecta can also be studied: through emission in the infrared, the radio-active decay of 44Ti, and the low-frequency free-free absorption caused by cold ionised gas, which is the topic of this paper. Aims: Free-free absorption processes are affected by the mass, geometry, temperature, and ionisation conditions in the absorbing gas. Observations at the lowest radio frequencies can constrain a combination of these properties. Methods: We used Low Frequency Array (LOFAR) Low Band Antenna observations at 30-77 MHz and Very Large Array (VLA) L-band observations at 1-2 GHz to fit for internal absorption as parametrised by the emission measure. We simultaneously fit multiple UV-matched images with a common resolution of 17″ (this corresponds to 0.25 pc for a source at the distance of Cas A). The ample frequency coverage allows us separate the relative contributions from the absorbing gas, the unabsorbed front of the shell, and the absorbed back of the shell to the emission spectrum. We explored the effects that a temperature lower than the 100-500 K proposed from infrared observations and a high degree of clumping can have on the derived physical properties of the unshocked material, such as its mass and density. We also compiled integrated radio flux density measurements, fit for the absorption processes that occur in the radio band, and considered their effect on the secular decline of the source. Results: We find a mass in the unshocked ejecta of M = 2.95 ± 0.48 M⊙ for an assumed gas temperatureof T = 100 K. This estimate is reduced for colder gas temperatures and, most significantly, if the ejecta are clumped. We measure the reverse shock to have a radius of 114″± 6″ and be centred at 23:23:26, +58:48:54 (J2000). We also find that a decrease in the amount of mass in the unshocked ejecta (as more and more material meets the reverse shock and heats up) cannot account for the observed low-frequency behaviour of the secular decline rate. Conclusions: To reconcile our low-frequency absorption measurements with models that reproduce much of the observed behaviour in Cas A and predict little mass in the unshocked ejecta, the ejecta need to be very clumped or the temperature in the cold gas needs to be low ( 10 K). Both of these options are plausible and can together contribute to the high absorption value that we find. The 9 LBA narrow-band images and the VLA image are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A110
Observing Solar Radio Bursts from the Lunar Surface
NASA Technical Reports Server (NTRS)
MacDowall, R. J.; Gopalswamy, N.; Kaiser, M. L.; Lazio, T. J.; Jones, D. L.; Bale, S. D.; Burns, J.; Kasper, J. C.; Weiler, K. W.
2011-01-01
Locating low frequency radio observatories on the lunar surface has a number of advantages, including fixes locations for the antennas and no terrestrial interference on the far side of the moon. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays designed for faint sources.
Planck intermediate results: XLV. Radio spectra of northern extragalactic radio sources
Ade, P. A. R.; Aghanim, N.; Aller, H. D.; ...
2016-12-12
Continuum spectra covering centimetre to submillimetre wavelengths are presented in this paper for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at highmore » frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Finally, variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts.« less
Planck intermediate results. XLV. Radio spectra of northern extragalactic radio sources
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Calabrese, E.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gurwell, M. A.; Hansen, F. K.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hobson, M.; Hornstrup, A.; Hovatta, T.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Järvelä, E.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Max-Moerbeck, W.; Meinhold, P. R.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mingaliev, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Nieppola, E.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Ramakrishnan, V.; Rastorgueva-Foi, E. A.; S Readhead, A. C.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Richards, J. L.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savelainen, M.; Savini, G.; Scott, D.; Sotnikova, Y.; Stolyarov, V.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tammi, J.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tristram, M.; Tucci, M.; Türler, M.; Valenziano, L.; Valiviita, J.; Valtaoja, E.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wehrle, A. E.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-12-01
Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at high frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts.
Planck intermediate results: XLV. Radio spectra of northern extragalactic radio sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aghanim, N.; Aller, H. D.
Continuum spectra covering centimetre to submillimetre wavelengths are presented in this paper for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at highmore » frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Finally, variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts.« less
The CERTO Beacon on CASSIOPE/e-POP and Experiments Using High-Power HF Ionospheric Heaters
NASA Astrophysics Data System (ADS)
Siefring, Carl L.; Bernhardt, Paul A.; James, H. Gordon; Parris, Richard Todd
2015-06-01
A new Coherent Electromagnetic Radio Tomography (CERTO) beacon is on the CASSIOPE satellite and part of the enhanced-Polar Outflow Probe (e-POP) suite of scientific instruments. CERTO signals can be used to measure ionospheric Total Electron Content (TEC) and radio scintillations along propagation paths between CERTO and receivers. The combination of CERTO and the array of e-POP in-situ diagnostics form a powerful tool for studying ionospheric plasma processes that have not been previously possible. Of note, the combination CERTO and the Radio Receiver Instrument (RRI), a modern digital receiver, which measures between 10 Hz to 18 MHz in selectable bands allows for innovative High Frequency (HF) radio propagation experiments. The use of high-power HF ionospheric heating facilities for such experiments further allows for repeatable studies of a number of important plasma processes. The new CERTO beacon transmits un-modulated, phase-coherent waves at 150, 400, and 1067 MHz with either right-hand-circular or linear polarization and TEC is measured using either differential phase and/or Faraday rotation. With a linear array of CERTO receivers, TEC data can be used for tomographic imaging of the ionosphere yielding two-dimensional maps of the plasma below the satellite orbit. In addition, the three CERTO frequencies cover a wide range for determination of radio scintillation effects caused by diffraction from propagation through ionospheric irregularities. We will describe the CERTO beacon and several potential innovative experiments using HF heating facilities in conjunction with CERTO, the RRI and other e-POP instruments.
Space Weather Action Plan Solar Radio Burst Phase 1 Benchmarks and the Steps to Phase 2
NASA Astrophysics Data System (ADS)
Biesecker, D. A.; White, S. M.; Gopalswamy, N.; Black, C.; Love, J. J.; Pierson, J.
2017-12-01
Solar radio bursts, when at the right frequency and when strong enough, can interfere with radar, communication, and tracking signals. In severe cases, radio bursts can inhibit the successful use of radio communications and disrupt a wide range of systems that are reliant on Position, Navigation, and Timing services on timescales ranging from minutes to hours across wide areas on the dayside of Earth. The White House's Space Weather Action Plan asked for solar radio burst intensity benchmarks for an event occurrence frequency of 1 in 100 years and also a theoretical maximum intensity benchmark. The benchmark team has developed preliminary (phase 1) benchmarks for the VHF (30-300 MHz), UHF (300-3000 MHz), GPS (1176-1602 MHz), F10.7 (2800 MHz), and Microwave (4000-20000) bands. The preliminary benchmarks were derived based on previously published work. Limitations in the published work will be addressed in phase 2 of the benchmark process. In addition, deriving theoretical maxima requires additional work, where it is even possible to, in order to meet the Action Plan objectives. In this presentation, we will present the phase 1 benchmarks, the basis used to derive them, and the limitations of that work. We will also discuss the work that needs to be done to complete the phase 2 benchmarks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei
2013-11-15
An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperaturemore » of atmospheric pressure plasma could also be obtained using dual-frequency excitation.« less
Visualization of Pulsar Search Data
NASA Astrophysics Data System (ADS)
Foster, R. S.; Wolszczan, A.
1993-05-01
The search for periodic signals from rotating neutron stars or pulsars has been a computationally taxing problem to astronomers for more than twenty-five years. Over this time interval, increases in computational capability have allowed ever more sensitive searches, covering a larger parameter space. The volume of input data and the general presence of radio frequency interference typically produce numerous spurious signals. Visualization of the search output and enhanced real-time processing of significant candidate events allow the pulsar searcher to optimally processes and search for new radio pulsars. The pulsar search algorithm and visualization system presented in this paper currently runs on serial RISC based workstations, a traditional vector based super computer, and a massively parallel computer. A description of the serial software algorithm and its modifications for massively parallel computing are describe. The results of four successive searches for millisecond period radio pulsars using the Arecibo telescope at 430 MHz have resulted in the successful detection of new long-period and millisecond period radio pulsars.
NASA Astrophysics Data System (ADS)
Qiu, Shenjie; Guo, Ying; Han, Qianhan; Bao, Yun; Zhang, Jing; Shi, J. J.
2018-01-01
A pulsed discharge is introduced between two sequential pulse-modulated radio frequency glow discharges in atmospheric helium. The dependence of radio frequency discharge ignition on pulsed discharge intensity is investigated experimentally with the pulse voltage amplitudes of 650, 850, and 1250 V. The discharge characteristics and dynamics are studied in terms of voltage and current waveforms, and spatial-temporal evolution of optical emission. With the elevated pulsed discharge intensity of two orders of magnitude, the ignition of radio frequency discharge is enhanced by reducing the ignition time and achieving the stable operation with a double-hump spatial profile. The ignition time of radio frequency discharge is estimated to be 2.0 μs, 1.5 μs, and 1.0 μs with the pulse voltage amplitudes of 650, 850, and 1250 V, respectively, which is also demonstrated by the spatial-temporal evolution of optical emission at 706 and 777 nm.
Polarized point sources in the LOFAR Two-meter Sky Survey: A preliminary catalog
NASA Astrophysics Data System (ADS)
Van Eck, C. L.; Haverkorn, M.; Alves, M. I. R.; Beck, R.; Best, P.; Carretti, E.; Chyży, K. T.; Farnes, J. S.; Ferrière, K.; Hardcastle, M. J.; Heald, G.; Horellou, C.; Iacobelli, M.; Jelić, V.; Mulcahy, D. D.; O'Sullivan, S. P.; Polderman, I. M.; Reich, W.; Riseley, C. J.; Röttgering, H.; Schnitzeler, D. H. F. M.; Shimwell, T. W.; Vacca, V.; Vink, J.; White, G. J.
2018-06-01
The polarization properties of radio sources at very low frequencies (<200 MHz) have not been widely measured, but the new generation of low-frequency radio telescopes, including the Low Frequency Array (LOFAR: a Square Kilometre Array Low pathfinder), now gives us the opportunity to investigate these properties. In this paper, we report on the preliminary development of a data reduction pipeline to carry out polarization processing and Faraday tomography for data from the LOFAR Two-meter Sky Survey (LOTSS) and present the results of this pipeline from the LOTSS preliminary data release region (10h45m-15h30m right ascension, 45°-57° declination, 570 square degrees). We have produced a catalog of 92 polarized radio sources at 150 MHz at 4.'3 resolution and 1 mJy rms sensitivity, which is the largest catalog of polarized sources at such low frequencies. We estimate a lower limit to the polarized source surface density at 150 MHz, with our resolution and sensitivity, of 1 source per 6.2 square degrees. We find that our Faraday depth measurements are in agreement with previous measurements and have significantly smaller errors. Most of our sources show significant depolarization compared to 1.4 GHz, but there is a small population of sources with low depolarization indicating that their polarized emission is highly localized in Faraday depth. We predict that an extension of this work to the full LOTSS data would detect at least 3400 polarized sources using the same methods, and probably considerably more with improved data processing.
Plasma processing of large curved surfaces for superconducting rf cavity modification
Upadhyay, J.; Im, Do; Popović, S.; ...
2014-12-15
In this study, plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl 2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simplemore » cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl 2/Ar gas mixtures, residence time of reactive species and temperature of the cavity. Using cylindrical electrodes with variable radius, large-surface ring-shaped samples and d.c. bias implementation in the external circuit we have demonstrated substantial average etching rates and outlined the possibility to optimize plasma properties with respect to maximum surface processing effect.« less
Revisiting Absolute Radio Backgrounds in Light of Juno Cruise Data
NASA Astrophysics Data System (ADS)
Chang, Tzu-Ching
Radio backgrounds have played a critical role in recent progress in astronomy and cosmology. Major amongst them, the Cosmic Microwave Background (CMB) is currently our most precise window on the physics of the early universe. Both its near perfect blackbody spectrum and its angular fluctuations led to unique cosmological inferences. Beyond the CMB, radio backgrounds have offered golden insights to Galactic and extragalactic astrophysics. In this proposal, we take note of the recently released "cruise data" collected over five years by the MicroWave Radiometer (MWR) instrument on board the Juno planetary mission to construct new, unprecedented and well-characterized full-sky maps at 6 frequencies ranging from 0.6 to 22 GHz. We propose to generate, validate and release these full-sky maps and investigate their rich and unique astrophysical implications. In particular, we expect the use of Juno data to shed light on the "ARCADE excess" and lead to new insights on Galactic and extragalactic radio signals. Over the past several years, evidence indicating the existence of a significant isotropic radio background has been hinted at by a number of instruments. In 2011, the Absolute Radiometer for Cosmology, Astrophysics and Diffuse Emission (ARCADE 2) collaboration reported measurements of the absolute sky temperature at a number of frequencies between 3 and 90 GHz (Fixsen et al. 2011). While these measurements are dominated by the CMB at frequencies above several GHz, they reveal the presence of significant excess power at the lowest measured frequencies (Seiffert et al. 2011). This conclusion is strengthened by a number of observations at lower frequencies, reported at 22 MHz, 45 MHz, 408 MHz and 1.42 GHz: the emission observed by each of these groups appears to be in significant excess to what can be attributed to Galactic emission, or to unresolved members of known extragalactic radio source populations. In addition, it appears to be anomalously spatially smooth to be extragalactic. Six years after the report of this excess, this situation remains unsettled and has not evolved due to the lack of new observations at these frequencies. For this reason, and for the intrinsic value of the unprecedented full-sky maps, the astrophysics impact of MWR Juno cruise observations will be very important. Our program will be articulated along five projects (labeled P1 to P5), loosely corresponding to research papers: (P1) We will generate well characterized full-sky maps at the Juno MWR six frequencies starting from the timestream data, released in September 2016 on the Planetary Data System (PDS) archive. We will validate these maps using cross-correlations with WMAP and Planck public maps at low frequencies. We will release our maps to the community via the NASA LAMBDA archive. This analysis will set the basis for the following projects. (P2) We will investigate the implication of these new maps for foreground modeling with a focus on CMB foreground separation. This analysis will be performed jointly with now standard WMAP and Planck component separation tools and products. (P3) We will investigate the implication of these new maps for foreground modeling with a focus on radio 21 cm intensity mapping signals, extending in the process current community foreground models. This analysis will be improve our understanding and characterization of radio foregrounds, and guide current and future redshifted 21 cm line mapping experiments. (P4) Using the above maps, we will revisit the ARCADE excess and perform absolute temperature measurement of the extragalactic radio backgrounds at multiple frequencies and angular positions over the sky. (P5) Using the above maps, we will revisit the ARCADE excess and perform absolute temperature measurement of the Galactic radio backgrounds at multiple frequencies and angular positions in the Galactic plane, using multiple other line surveys to guide our interpretation.
Architecture Analysis of Wireless Power Transmission for Lunar Outposts
2015-09-01
through his work on wireless communication using radio wave propagation for both transmitting and receiving high frequency electricity using a focusing...Administration nm nanometers NRC National Research Council PGT platform generic technologies PMAD power management and distribution RF radio frequency xiv...GHz (Marzwell 2008). While the slot antenna can handle frequencies between 70 GHz and 150 GHz, it has been optimized for 94 GHz and has a radio
2012-02-07
circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The asobtained thin-film transistors ( TFTs ) exhibit... flexible substrates for digital, analog and radio frequency applications. The as- obtained thin-film transistors ( TFTs ) exhibit highly uniform device...LCD) and organic light- emitting diode ( OLED ) displays lack the transparency and flexibility and are thus unsuitable for flexible electronic
Variability of fractal dimension of solar radio flux
NASA Astrophysics Data System (ADS)
Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om
2018-04-01
In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).
47 CFR 2.1204 - Import conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... generations of a particular model under development are considered to be separate devices. (4) The radio... particular model under development are considered to be separate devices. (5) The radio frequency device is... offered for sale or marketed. (9) The radio frequency device is a medical implant transmitter inserted in...
47 CFR 2.1204 - Import conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... generations of a particular model under development are considered to be separate devices. (4) The radio... particular model under development are considered to be separate devices. (5) The radio frequency device is... offered for sale or marketed. (9) The radio frequency device is a medical implant transmitter inserted in...
47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Operation near certain aeronautical and marine emergency radio frequencies. 76.616 Section 76.616 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norin, L.; Leyser, T. B.; Nordblad, E.
2009-02-13
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M
2009-02-13
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James
2017-01-01
Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.
NASA Astrophysics Data System (ADS)
Tucci, M.; Toffolatti, L.; de Zotti, G.; Martínez-González, E.
2011-09-01
We present models to predict high-frequency counts of extragalactic radio sources using physically grounded recipes to describe the complex spectral behaviour of blazars that dominate the mm-wave counts at bright flux densities. We show that simple power-law spectra are ruled out by high-frequency (ν ≥ 100 GHz) data. These data also strongly constrain models featuring the spectral breaks predicted by classical physical models for the synchrotron emission produced in jets of blazars. A model dealing with blazars as a single population is, at best, only marginally consistent with data coming from current surveys at high radio frequencies. Our most successful model assumes different distributions of break frequencies, νM, for BL Lacs and flat-spectrum radio quasars (FSRQs). The former objects have substantially higher values of νM, implying that the synchrotron emission comes from more compact regions; therefore, a substantial increase of the BL Lac fraction at high radio frequencies and at bright flux densities is predicted. Remarkably, our best model is able to give a very good fit to all the observed data on number counts and on distributions of spectral indices of extragalactic radio sources at frequencies above 5 and up to 220 GHz. Predictions for the forthcoming sub-mm blazar counts from Planck, at the highest HFI frequencies, and from Herschel surveys are also presented. Appendices are available in electronic form at http://www.aanda.org
Proposal for Definitive Survey for Fast Radio Bursts at the Allen Telescope Array
NASA Astrophysics Data System (ADS)
Harp, Gerald; Tarter, J. C.; Welch, W. J.; Allen Telescope Array Team
2014-01-01
The Allen Telescope Array, a 42-dish radio interferometer in Northern California is now being upgraded with new, more sensitive receivers covering 0.9-18 GHz continuously. Leveraging this frequency coverage and wide field of view, the ATA is a unique and ideal instrument for the discovery and characterization of fast radio bursts (FRBs, discovered at Parkes and Arecibo) and other short-time domain radio phenomena. The field of view (nearly 10 sq. deg. at 1 GHz) allows for a rapid search of 3π steradians with many lookbacks over a period of 2.5 years. The instantaneous wide-frequency range of the upgraded ATA receivers allows sensitive observations at 4 simultaneous frequency ranges (for example, 0.9 - 1.5 GHz, 1.6-2.2 GHz, 2.5-3.1 GHz, and 4.6-5.2 GHz, full Stokes); something not possible at any other major telescope. This enables very accurate dispersion measure and spectral index characterization of ms-timescale bursts (or other time-variable activity) with a localization accuracy ~20" for SNR > 10 (all FRBs discovered to date would meet this criterium). We discuss the new digital processing system required to perform this survey, with a plan to capture ~400 FRB events during the survey period of performance , based on current event-rate estimates of 10^4 events/sky/day.
High Dynamic Range Cognitive Radio Front Ends: Architecture to Evaluation
NASA Astrophysics Data System (ADS)
Ashok, Arun; Subbiah, Iyappan; Varga, Gabor; Schrey, Moritz; Heinen, Stefan
2016-07-01
Advent of TV white space digitization has released frequencies from 470 MHz to 790 MHz to be utilized opportunistically. The secondary user can utilize these so called TV spaces in the absence of primary users. The most important challenge for this coexistence is mutual interference. While the strong TV stations can completely saturate the receiver of the cognitive radio (CR), the cognitive radio spurious tones can disturb other primary users and white space devices. The aim of this paper is to address the challenges for enabling cognitive radio applications in WLAN and LTE. In this process, architectural considerations for the design of cognitive radio front ends are discussed. With high-IF converters, faster and flexible implementation of CR enabled WLAN and LTE are shown. The effectiveness of the architecture is shown by evaluating the CR front ends for compliance of standards namely 802.11b/g (WLAN) and 3GPP TS 36.101 (LTE).
Lay, Aaron H; Stewart, Jeremy; Canvasser, Noah E; Cadeddu, Jeffrey A; Gahan, Jeffrey C
2016-07-01
Larger size and clear cell histopathology are associated with worse outcomes for malignant renal tumors treated with radio frequency ablation. We hypothesize that greater tumor enhancement may be a risk factor for radio frequency ablation failure due to increased vascularity. A retrospective review of patients who underwent radio frequency ablation for renal tumors with contrast enhanced imaging available was performed. The change in Hounsfield units (HU) of the tumor from the noncontrast phase to the contrast enhanced arterial phase was calculated. Radio frequency ablation failure rates for biopsy confirmed malignant tumors were compared using the chi-squared test. Multivariate logistic analysis was performed to assess predictive variables for radio frequency ablation failure. Disease-free survival was calculated using Kaplan-Meier analysis. A total of 99 patients with biopsy confirmed malignant renal tumors and contrast enhanced imaging were identified. The incomplete ablation rate was significantly lower for tumors with enhancement less than 60 vs 60 HU or greater (0.0% vs 14.6%, p=0.005). On multivariate logistic regression analysis tumor enhancement 60 HU or greater (OR 1.14, p=0.008) remained a significant predictor of incomplete initial ablation. The 5-year disease-free survival for size less than 3 cm was 100% vs 69.2% for size 3 cm or greater (p <0.01), while 5-year disease-free survival for HU change less than 60 was 100% vs 92.4% for HU change 60 or greater (p=0.24). Biopsy confirmed malignant renal tumors, which exhibit a change in enhancement of 60 HU or greater, experience a higher rate of incomplete initial tumor ablation than tumors with enhancement less than 60 HU. Size 3 cm or greater portends worse 5-year disease-free survival after radio frequency ablation. The degree of enhancement should be considered when counseling patients before radio frequency ablation. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zichner, Ralf; Baumann, Reinhard R.
2013-05-01
Vehicle tracking systems based on ultra high frequency (UHF) radio frequency identification (RFID) technology are already introduced to control the access to car parks and corporate premises. For this field of application so-called Windshield RFID transponder labels are used, which are applied to the inside of the windshield. State of the art for manufacturing these transponder antennas is the traditional lithography/etching approach. Furthermore the performance of these transponders is limited to a reading distance of approximately 5 m which results in car speed limit of 5 km/h for identification. However, to achieve improved performance compared to existing all-purpose transponders and a dramatic cost reduction, an optimized antenna design is needed which takes into account the special dielectric and in particular metallic car environment of the tag and an roll-to-roll (R2R) printing manufacturing process. In this paper we focus on the development of a customized UHF RFID transponder antenna design, which is adopted for vehicle geometry as well as R2R screen printing manufacturing processes.
HamSCI: The Ham Radio Science Citizen Investigation
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Moses, M. L.; Earle, G. D.; McGwier, R. W.; Miller, E. S.; Kaeppler, S. R.; Silver, H. W.; Ceglia, F.; Pascoe, D.; Sinanis, N.; Smith, P.; Williams, R.; Shovkoplyas, A.; Gerrard, A. J.
2016-12-01
Amateur (or "ham") radio operators are individuals with a non-pecuniary interest in radio technology, engineering, communications, science, and public service. They are licensed by their national governments to transmit on amateur radio frequencies. In many jurisdictions, there is no age requirement for a ham radio license, and operators from diverse backgrounds participate. There are more than 740,000 hams in the US, and over 3 million (estimated) worldwide. Many amateur communications are conducted using transionospheric links and thus affected by space weather and ionospheric processes. Recent technological advances have enabled the development of automated ham radio observation networks (e.g. the Reverse Beacon Network, www.reversebeacon.net) and specialized operating modes for the study of weak-signal propagation. The data from these networks have been shown to be useful for the study of ionospheric processes. In order to connect professional researchers with the volunteer-based ham radio community, HamSCI (Ham Radio Science Citizen Investigation, www.hamsci.org) has been established. HamSCI is a platform for publicizing and promoting projects that are consistent with the following objectives: (1) Advance scientific research and understanding through amateur radio activities. (2) Encourage the development of new technologies to support this research. (3) Provide educational opportunities for the amateur community and the general public. HamSCI researchers are working with the American Radio Relay League (ARRL, www.arrl.org) to publicize these objectives and recruit interested hams. The ARRL is the US national organization for amateur radio with a membership of over 170,000 and a monthly magazine, QST. HamSCI is currently preparing to support ionospheric research connected to the 21 Aug 2017 Total Solar Eclipse by expanding coverage of the Reverse Beacon Network and organizing a large-scale ham radio operating event ("QSO Party") to generate data during the eclipse.
Radio Frequency Interference Mitigation
NASA Astrophysics Data System (ADS)
An, T.; Chen, X.; Mohan, P.; Lao, B. Q.
2017-09-01
The observational facilities of radio astronomy keep constant upgrades and developments to achieve better capabilities including increasing the time of the data recording and frequency resolutions, and increasing the receiving and recording bandwidth. However in contrast, only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, resulting in that the radio observational instrumentations are inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from the terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of data and even lead to invalid data. The impact of RFIs on scientific outcome becomes more and more serious. In this article, the requirement for RFI mitigation is motivated, and the RFI characteristics, mitigation techniques, and strategies are reviewed. The mitigation strategies adopted at some representative observatories, telescopes, and arrays are also introduced. The advantages and shortcomings of the four classes of RFI mitigation strategies are discussed and presented, applicable at the connected causal stages: preventive, pre-detection, pre-correlation, and post-correlation. The proper identification and flagging of RFI is the key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation technique. This can be achieved through a strategy involving a combination of the discussed techniques in stages. The recent advances in the high speed digital signal processing and high performance computing allow for performing RFI excision of the large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.
Negishi, Michiro; Abildgaard, Mark; Laufer, Ilan; Nixon, Terry; Constable, Robert Todd
2008-01-01
Simultaneous EEG-fMRI (Electroencephalography-functional Magnetic Resonance Imaging) recording provides a means for acquiring high temporal resolution electrophysiological data and high spatial resolution metabolic data of the brain in the same experimental runs. Carbon wire electrodes (not metallic EEG electrodes with carbon wire leads) are suitable for simultaneous EEG-fMRI recording, because they cause less RF (radio-frequency) heating and susceptibility artifacts than metallic electrodes. These characteristics are especially desirable for recording the EEG in high field MRI scanners. Carbon wire electrodes are also comfortable to wear during long recording sessions. However, carbon electrodes have high electrode-electrolyte potentials compared to widely used Ag/AgCl (silver/silver-chloride) electrodes, which may cause slow voltage drifts. This paper introduces a prototype EEG recording system with carbon wire electrodes and a circuit that suppresses the slow voltage drift. The system was tested for the voltage drift, RF heating, susceptibility artifact, and impedance, and was also evaluated in a simultaneous ERP (event-related potential)-fMRI experiment. PMID:18588913
NASA Technical Reports Server (NTRS)
1974-01-01
Radio noise continuum emission observed in metric and decametric wave frequencies is discussed. The radio noise is associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. It is shown that the S-component emission in microwave frequencies generally occurs several days before the emission of the noise continuum storms of lower frequencies. It is likely that energetic electrons, 10 to 100 Kev, accelerated in association with the variation of sunspot magnetic fields, are the sources of the radio emissions. A model is considered to explain the relation of burst storms on radio noise. An analysis of the role of energetic electrons on the emissions of both noise continuum and type III burst storms is presented. It is shown that instabilities associated with the electrons and their relation to their own stabilizing effects are important in interpreting both of these storms.
100 Gbps Wireless System and Circuit Design Using Parallel Spread-Spectrum Sequencing
NASA Astrophysics Data System (ADS)
Scheytt, J. Christoph; Javed, Abdul Rehman; Bammidi, Eswara Rao; KrishneGowda, Karthik; Kallfass, Ingmar; Kraemer, Rolf
2017-09-01
In this article mixed analog/digital signal processing techniques based on parallel spread-spectrum sequencing (PSSS) and radio frequency (RF) carrier synchronization for ultra-broadband wireless communication are investigated on system and circuit level.
Signal Identification and Isolation Utilizing Radio Frequency Photonics
2017-09-01
analyzers can measure the frequency of signals and filters can be used to separate the signals apart from one another. This report will review...different techniques for spectrum analysis and isolation. 15. SUBJECT TERMS radio frequency, photonics, spectrum analyzer, filters 16. SECURITY CLASSIFICATION...Analyzers .......................................................................................... 3 3.2 Frequency Identification using Filters
78 FR 58487 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... display units (DUs). These DUs exhibited susceptibility to radio frequency emissions in WiFi frequency... certification of WiFi system installations. The phase 3 DUs provide primary flight information including... flickering and blanking when subjected to radio frequency emissions in WiFi frequency bands at radiated power...
47 CFR 90.275 - Selection and assignment of frequencies in the 421-430 MHz band.
Code of Federal Regulations, 2010 CFR
2010-10-01
... specify the frequencies in which the proposed system will operate pursuant to a recommendation by a...) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Standards for Special Frequencies or...
47 CFR 90.275 - Selection and assignment of frequencies in the 421-430 MHz band.
Code of Federal Regulations, 2011 CFR
2011-10-01
... specify the frequencies in which the proposed system will operate pursuant to a recommendation by a...) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Standards for Special Frequencies or...
Northoff, Georg
2017-09-01
Consciousness research has much focused on faster frequencies like alpha or gamma while neglecting the slower ones in the infraslow (0.001-0.1Hz) and slow (0.1-1Hz) frequency range. These slower frequency ranges have a "bad reputation" though; their increase in power can observed during the loss of consciousness as in sleep, anesthesia, and vegetative state. However, at the same time, slower frequencies have been conceived instrumental for consciousness. The present paper aims to resolve this paradox which I describe as "paradox of slow frequencies". I first show various data that suggest a central role of slower frequencies in integrating faster ones, i.e., "temporo-spatial integration and nestedness". Such "temporo-spatial integration and nestedness" is disrupted during the loss of consciousness as in anesthesia and sleep leading to "temporo-spatial fragmentation and isolation" between slow and fast frequencies. Slow frequencies are supposedly mediated by neural activity in upper cortical layers in higher-order associative regions as distinguished from lower cortical layers that are related to faster frequencies. Taken together, slower and faster frequencies take on different roles for the level/state of consciousness. Faster frequencies by themselves are sufficient and thus a neural correlate of consciousness (NCC) while slower frequencies are a necessary non-sufficient condition of possible consciousness, e.g., a neural predisposition of the level/state of consciousness (NPC). This resolves the "paradox of slow frequencies" in that it assigns different roles to slower and faster frequencies in consciousness, i.e., NCC and NPC. Taken as NCC and NPC, fast and slow frequencies including their relation as in "temporo-spatial integration and nestedness" can be considered a first "building bloc" of a future "temporo-spatial theory of consciousness" (TTC) (Northoff, 2013; Northoff, 2014b; Northoff & Huang, 2017). Copyright © 2017 Elsevier Inc. All rights reserved.
Aatrokoski, J.
2011-12-01
Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativisticmore » jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.« less
Tzur, Gabriel; Berger, Andrea
2009-03-17
Theta rhythm has been connected to ERP components such as the error-related negativity (ERN) and the feedback-related negativity (FRN). The nature of this theta activity is still unclear, that is, whether it is related to error detection, conflict between responses or reinforcement learning processes. We examined slow (e.g., theta) and fast (e.g., gamma) brain rhythms related to rule violation. A time-frequency decomposition analysis on a wide range of frequencies band (0-95 Hz) indicated that the theta activity relates to evaluation processes, regardless of motor/action processes. Similarities between the theta activities found in rule-violation tasks and in tasks eliciting ERN/FRN suggest that this theta activity reflects the operation of general evaluation mechanisms. Moreover, significant effects were found also in fast brain rhythms. These effects might be related to the synchronization between different types of cognitive processes involving the fulfillment of a task (e.g., working memory, visual perception, mathematical calculation, etc.).
Graphene integrated circuits: new prospects towards receiver realisation.
Saeed, Mohamed; Hamed, Ahmed; Wang, Zhenxing; Shaygan, Mehrdad; Neumaier, Daniel; Negra, Renato
2017-12-21
This work demonstrates a design approach which enables the fabrication of fully integrated radio frequency (RF) and millimetre-wave frequency direct-conversion graphene receivers by adapting the frontend architecture to exploit the state-of-the-art performance of the recently reported wafer-scale CVD metal-insulator-graphene (MIG) diodes. As a proof-of-concept, we built a fully integrated microwave receiver in the frequency range 2.1-2.7 GHz employing the strong nonlinearity and the high responsivity of MIG diodes to successfully receive and demodulate complex, digitally modulated communication signals at 2.45 GHz. In addition, the fabricated receiver uses zero-biased MIG diodes and consumes zero dc power. With the flexibility to be fabricated on different substrates, the prototype receiver frontend is fabricated on a low-cost, glass substrate utilising a custom-developed MMIC process backend which enables the high performance of passive components. The measured performance of the prototype makes it suitable for Internet-of-Things (IoT) and Radio Frequency Identification (RFID) systems for medical and communication applications.
Radio interference in the near-earth environment
NASA Technical Reports Server (NTRS)
Erickson, W. C.
1988-01-01
Natural and man-made radio frequency interference (RFI) are potentially serious obstacles to the successful operation of an array of spacecraft used for low frequency (1 to 30 MHz) radio interferometry in the near-earth environment. Several satellites and planetary probes have carried radio astronomy experiments, and the moderate data base that they provide are examined to help understand the near-earth RFI environment. The general conclusion is that the region of space within 100 earth-radii of the earth is a hostile environment for any radio astronomy experiment. If a low frequency array in earth orbit is to yield useful astronomical results, severe interference problems must be anticipated and overcome. A number of recommendations are made to further examine the feasibility of such an array.
Sn-doped β-Ga2O3 nanowires deposited by radio frequency powder sputtering
NASA Astrophysics Data System (ADS)
Lee, Su Yong; Kang, Hyon Chol
2018-01-01
We report the synthesis and characterization of Sn-doped β-Ga2O3 nanowires (NWs) deposited using radio frequency powder sputtering. The growth sequence of Sn-doped β-Ga2O3 NWs is similar to that of the undoped β-Ga2O3 NWs. Self-assembled Ga clusters act as seeds for initiating the growth of Sn-doped β-Ga2O3 NWs through a vapor-liquid-solid process, while Sn atoms are incorporated into the trunk of NWs uniformly. Different from the straight shape of undoped NWs, the conical shape of NWs is observed, which is attributed to the change in supersaturation conditions and the diffusion of the catalyst tip and reaction species.
Electric discharge for treatment of trace contaminants
NASA Technical Reports Server (NTRS)
Flamm, D. L.; Wydeven, T. J. (Inventor)
1978-01-01
A radio frequency glow discharge reactor is described for removing trace oxidizable contaminants from an oxygen bearing atmosphere. The reaction chamber is defined by an inner metal electrode facing a dielectric backed by an outer conductive electrode. In one embodiment, a conductive liquid forms the conductor of an outer electrode and cools the dielectric. A resonator coupled to a variable radio frequency source generates the high voltages for creating a glow discharge in the chamber at a predetermined pressure whereby the trace contaminants are oxidized into a few simple non-toxic products that may be easily recovered. The corresponding process for removal of trace contaminants from an oxygen-bearing atmosphere with high efficiency independent of the concentration level is also disclosed.
Electrochemical system and method for electropolishing superconductive radio frequency cavities
Taylor, E. Jennings; Inman, Maria E.; Hall, Timothy
2015-04-14
An electrochemical finishing system for super conducting radio frequency (SCRF) cavities including a low viscosity electrolyte solution that is free of hydrofluoric acid, an electrode in contact with the electrolyte solution, the SCRF cavity being spaced apart from the electrode and in contact with the electrolyte solution and a power source including a first electrical lead electrically coupled to the electrode and a second electrical lead electrically coupled to the cavity, the power source being configured to pass an electric current between the electrode and the workpiece, wherein the electric current includes anodic pulses and cathodic pulses, and wherein the cathodic pulses are interposed between at least some of the anodic pulses. The SCRF cavity may be vertically oriented during the finishing process.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the 806-824, 851-869, 896-901, and 935-940 MHz Bands Policies Governing the Processing of Applications and the Selection and... 70 mobile and control stations per channel. [47 FR 41032, Sept. 16, 1982, as amended at 48 FR 44559...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, G. R.; Richards, Jon; Tarter, Jill C.
We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA). Observations were made over about 19000 hr from 2009 May to 2015 December. This search focused on narrowband radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their habitable zones. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1 to 9 GHzmore » in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrowband (0.7–100 Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from −0.3 to 0.3 m s{sup −2}. A total of 1.9 × 10{sup 8} unique signals requiring immediate follow-up were detected in observations covering more than 8 × 10{sup 6} star-MHz. We detected no persistent signals from extraterrestrial technology exceeding our frequency-dependent sensitivity threshold of 180–310 × 10{sup −26} W m{sup −2}.« less
NASA Astrophysics Data System (ADS)
James, H. G.; Frolov, V. L.; Padokhin, A. M.; Siefring, C. L.
2015-12-01
High-frequency pump waves have been transmitted from the Russian heating facility Sura to the Radio Receiver Instrument (RRI) in the e-POP payload on the Canadian small satellite CASSIOPE. This experiment has been carried out 24 times, under a variety of circumstances. In some cases, the ePOP VHF-UHF beacon CERTO was on, and ground receivers near Sura recorded total electron content. Subsequent tomographic processing has allowed the two-dimensional electron density distribution to be determined in the altitude-latitude space between Sura and CASSIOPE. We present some details from a night-time pass on 9 Sept. 2014 when the fixed pump frequency 4.3 MHz was slightly smaller than foF2 above Sura. This was an instance in which conversion between the O and Z cold plasma modes may have been required to achieve transmission. Explanation could be elaborated in terms of underdense, heater-created, field-aligned irregularities that are "artificial radio windows". The Sura heater radiation pattern maximum was tilted 12° south of the vertical, toward the terrestrial magnetic field axis, potentially enhancing the power transmitted through radio windows. The observations are interpreted in the light of competing concepts of transmission.
NASA Technical Reports Server (NTRS)
Werthimer, D.; Tarter, J.; Bowyer, S.
1985-01-01
Serendip II is an automated system designed to perform a real time search for narrow band radio signals in the spectra of sources in a regularly scheduled, non-Seti, astronomical observing program. Because Serendip II is expected to run continuously without requiring dedicated observing time, it is hoped that a large portion of the sky will be surveyed at high sensitivity and low cost. Serendip II will compute the power spectrum using a 65,536 channel fast Fourier transform processor with a real time bandwidth of 128 KHz and 2 Hz per channel resolution. After searching for peaks in a 100 KHz portion of the radio telescope's IF band, Serendip II will move to the next 100 KHz portion using a programmable frequency synthesizer; when the whole IF band has been scanned, the process will start again. Unidentified peaks in the power spectra are candidates for further study and their celestial coordinates will be recorded along with the time and power, IF and RF frequency, and bandwidth of the peak.
47 CFR 90.175 - Frequency coordinator requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... a frequency and/or transmitter site location. (18) Applications for base, mobile, or control... Section 90.175 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Policies Governing the Assignment of Frequencies § 90.175...
47 CFR 90.175 - Frequency coordinator requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... a frequency and/or transmitter site location. (18) Applications for base, mobile, or control... Section 90.175 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Policies Governing the Assignment of Frequencies § 90.175...
The evolving interaction of low-frequency earthquakes during transient slip.
Frank, William B; Shapiro, Nikolaï M; Husker, Allen L; Kostoglodov, Vladimir; Gusev, Alexander A; Campillo, Michel
2016-04-01
Observed along the roots of seismogenic faults where the locked interface transitions to a stably sliding one, low-frequency earthquakes (LFEs) primarily occur as event bursts during slow slip. Using an event catalog from Guerrero, Mexico, we employ a statistical analysis to consider the sequence of LFEs at a single asperity as a point process, and deduce the level of time clustering from the shape of its autocorrelation function. We show that while the plate interface remains locked, LFEs behave as a simple Poisson process, whereas they become strongly clustered in time during even the smallest slow slip, consistent with interaction between different LFE sources. Our results demonstrate that bursts of LFEs can result from the collective behavior of asperities whose interaction depends on the state of the fault interface.
Characteristics of Radio-Frequency Circuits Utilizing Ferroelectric Capacitors
NASA Technical Reports Server (NTRS)
Eskridge, Michael; Gui, Xiao; MacLeod, Todd; Ho, Fat D.
2011-01-01
Ferroelectric capacitors, most commonly used in memory circuits and variable components, were studied in simple analog radio-frequency circuits such as the RLC resonator and Colpitts oscillator. The goal was to characterize the RF circuits in terms of frequency of oscillation, gain, etc, using ferroelectric capacitors. Frequencies of oscillation of both circuits were measured and studied a more accurate resonant frequency can be obtained using the ferroelectric capacitors. Many experiments were conducted and data collected. A model to simulate the experimental results will be developed. Discrepancies in gain and frequency in these RF circuits when conventional capacitors are replaced with ferroelectric ones were studied. These results will enable circuit designers to anticipate the effects of using ferroelectric components in their radio- frequency applications.
Hydro turbine governor’s power control of hydroelectric unit with sloping ceiling tailrace tunnel
NASA Astrophysics Data System (ADS)
Fu, Liang; Wu, Changli; Tang, Weiping
2018-02-01
The primary frequency regulation and load regulation transient process when the hydro turbine governor is under the power mode of hydropower unit with sloping ceiling tailrace are analysed by field test and numerical simulation in this paper. A simulation method based on “three-zone model” to simulate small fluctuation transient process of the sloping ceiling tailrace is proposed. The simulation model of hydraulic turbine governor power mode is established by governor’s PLC program identification and parameter measurement, and the simulation model is verified by the test. The slow-fast-slow “three-stage regulation” method which can improve the dynamic quality of hydro turbine governor power mode is proposed. The power regulation strategy and parameters are optimized by numerical simulation, the performance of primary frequency regulation and load regulation transient process when the hydro turbine governor is under power mode are improved significantly.
47 CFR 18.101 - Basis and purpose.
Code of Federal Regulations, 2012 CFR
2012-10-01
... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...
47 CFR 18.101 - Basis and purpose.
Code of Federal Regulations, 2013 CFR
2013-10-01
... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...
47 CFR 18.101 - Basis and purpose.
Code of Federal Regulations, 2010 CFR
2010-10-01
... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...
47 CFR 18.101 - Basis and purpose.
Code of Federal Regulations, 2011 CFR
2011-10-01
... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...
47 CFR 18.101 - Basis and purpose.
Code of Federal Regulations, 2014 CFR
2014-10-01
... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...
Automated nystagmus analysis. [on-line computer technique for eye data processing
NASA Technical Reports Server (NTRS)
Oman, C. M.; Allum, J. H. J.; Tole, J. R.; Young, L. R.
1973-01-01
Several methods have recently been used for on-line analysis of nystagmus: A digital computer program has been developed to accept sampled records of eye position, detect fast phase components, and output cumulative slow phase position, continuous slow phase velocity, instantaneous fast phase frequency, and other parameters. The slow phase velocity is obtained by differentiation of the calculated cumulative position rather than the original eye movement record. Also, a prototype analog device has been devised which calculates the velocity of the slow phase component during caloric testing. Examples of clinical and research eye movement records analyzed with these devices are shown.
Parallel-Processing Equalizers for Multi-Gbps Communications
NASA Technical Reports Server (NTRS)
Gray, Andrew; Ghuman, Parminder; Hoy, Scott; Satorius, Edgar H.
2004-01-01
Architectures have been proposed for the design of frequency-domain least-mean-square complex equalizers that would be integral parts of parallel- processing digital receivers of multi-gigahertz radio signals and other quadrature-phase-shift-keying (QPSK) or 16-quadrature-amplitude-modulation (16-QAM) of data signals at rates of multiple gigabits per second. Equalizers as used here denotes receiver subsystems that compensate for distortions in the phase and frequency responses of the broad-band radio-frequency channels typically used to convey such signals. The proposed architectures are suitable for realization in very-large-scale integrated (VLSI) circuitry and, in particular, complementary metal oxide semiconductor (CMOS) application- specific integrated circuits (ASICs) operating at frequencies lower than modulation symbol rates. A digital receiver of the type to which the proposed architecture applies (see Figure 1) would include an analog-to-digital converter (A/D) operating at a rate, fs, of 4 samples per symbol period. To obtain the high speed necessary for sampling, the A/D and a 1:16 demultiplexer immediately following it would be constructed as GaAs integrated circuits. The parallel-processing circuitry downstream of the demultiplexer, including a demodulator followed by an equalizer, would operate at a rate of only fs/16 (in other words, at 1/4 of the symbol rate). The output from the equalizer would be four parallel streams of in-phase (I) and quadrature (Q) samples.
Vydevska-Chichova, M; Mileva, K; Radicheva, N
2007-04-01
The electrical activity of different muscle fibre types during fatigue at varying stimulation frequency and fibre stretch was studied. Extracellular action potentials (ECAPs) were recorded from isolated frog muscle fibres at initial length and stretched by 15%, 25% and 35% and stimulated for 180 s by suprathreshold pulses with frequencies of 5, 6.7 and 10Hz. The changes in ECAP negative phase duration (T(0)), propagation velocity of excitation (PV), potential power spectrum and its median frequency (MDF) were analysed for the period of uninterrupted activity (endurance time, ET). Slow (SMF) and fast (FMF) fatigable muscle fibre types were distinguished by the rate of PV decrease during ET. With the increase of stimulation frequency and fibre stretch, the rate of ECAP parameter changes increased and was larger in FMF, but this proportion was reversed with stretching over 25% and 10Hz stimulation. In both fibre types the power spectrum shift to lower frequencies during continuous activity was more pronounced with higher stimulation frequency. In FMFs the rates of MDF changes were positively and more strongly correlated with the rates of PV changes, whilst in SMFs the inverse correlation between the rates of changes of MDF and T(0) was stronger. The results indicate specific adaptation of slow and fast fatigable muscle fibres to stretch and activation frequency due to the differences in their membrane processes.
The Mobile Laboratory for Radio-Frequency Interference Monitoring at the Sardinia Radio Telescope
NASA Astrophysics Data System (ADS)
Bolli, Pietro; Gaudiomonte, Francesco; Ambrosini, Roberto; Bortolotti, Claudio; Roma, Mauro; Barberi, Carlo; Piccoli, Fabrizio
2013-10-01
In this paper, a quite unique mobile laboratory for monitoring radio-frequency interference with a radio-astronomical observatory is described. The unit is fully operational at the new Sardinia Radio Telescope, a 64-m antenna now in the commissioning phase in Italy. The mobile laboratory is mainly used to identify the source of interference with the radio astronomy service using iterative triangulations in the azimuth directions. Both the design and realization of this prototype were handled with outstanding care to limit the emission of self-interference as much as possible. The laboratory was equipped with excellent microwave instruments in terms of sensitivity, frequency coverage, dynamic range, and various demodulation and signal-analysis facilities. The unit can be quickly switched to different RF and power-supply configurations, while offering operators a safe and efficient workplace, even in adverse meteorological and driving conditions. In the past months, the mobile laboratory has proven to be successful in detecting and identifying many radio interferers. Two examples of measurement campaigns are described.
Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU
NASA Technical Reports Server (NTRS)
Bougeret, J.-L.; Fainberg, J.; Stone, R. G.
1984-01-01
Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.
tf_unet: Generic convolutional neural network U-Net implementation in Tensorflow
NASA Astrophysics Data System (ADS)
Akeret, Joel; Chang, Chihway; Lucchi, Aurelien; Refregier, Alexandre
2016-11-01
tf_unet mitigates radio frequency interference (RFI) signals in radio data using a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. The code is not tied to a specific segmentation and can be used, for example, to detect radio frequency interference (RFI) in radio astronomy or galaxies and stars in widefield imaging data. This U-Net implementation can outperform classical RFI mitigation algorithms.
NASA Astrophysics Data System (ADS)
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-07-01
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-07-28
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-01-01
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes. PMID:27465296
Solar Electron Beams Detected in Hard X-Rays and Radio Waves
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.; Benz, Arnold O.; Dennis, Brian R.; Schwartz, Richard A.
1995-12-01
We present a statistical survey of electron beam signatures that are detected simultaneously at hard X-ray (HXR) and radio wavelengths during solar flares. For the identification of a simultaneous event we require a type III (normal-drifting or reverse-slope-drifting) radio burst that coincides (within ± 1 s) with a significant (≥ 3 σ HXR pulse of similar duration (≥ 1 s). Our survey covers all HXRBS/SMM and BATSE/CGRO flares that were simultaneously observed with the 0.1-1 GHz spectrometer Ikarus or the 0.1-3 GHz spectrometer Phoenix of ETH Zurich during 1980-1993. The major results and conclusions are as follows: 1. We identified 233 HXR pulses (out of 882) to be correlated with type III-like radio bursts: 77% with normal-drifting type III bursts, 34% with reverse-slope (RS)-drifting bursts, and 13% with oppositely drifting (III + RS) burst pairs. The majority of these cases provide evidence for acceleration of bidirectional electron beams. 2. The detailed correlation with type III-like radio bursts suggests that most of the subsecond fluctuations detectable in ≥ 25 keV HXR emission are related to discrete electron injections. This is also supported by the proportionality of the HXR pulse duration with the radio burst duration. The distribution of HXR pulse durations WX is found to have an exponential distribution, i.e., N(WX) ∝ exp (-WX/0.25 s) in the measured range of WX ≍ 0.5-1.5 s. 3. From oppositely drifting radio burst pairs we infer electron densities of ne = 109-1010 cm-3 at the acceleration site. From the absence of a frequency gap between the simultaneous start frequencies of upward and downward drifting radio bursts, we infer an upper limit of L ≤ 2000 km for the extent of the acceleration site and an acceleration time of Δt ≤ 3 ms for the (≥ 5 keV) radio-emitting electrons (in the case of parallel electric fields). 4. The relative timing between HXR pulses and radio bursts is best at the start frequency (of earliest radio detection), with a coincidence of ≲0.1 s in the statistical average, while the radio bursts are delayed at all other frequencies (in the statistical average). The timing is consistent with the scenario of electron injection at a mean coronal height of h ≍ 104 km. The radio-emitting electrons are found to have lower energies (≳ 5 keV) than the ≥ 25 keV HXR-emitting electrons. 5. The modulated HXR flux that correlates with electron beam signatures in radio amounts to 2%-6% of the total HXR count rate (for BATSE flares). The associated kinetic energy in electrons is estimated to be E = 4 × 1022-1027 ergs per beam, or Ne = 4 × 1028-1033 electrons per beam, considering the spread from the smallest to the largest flare detected by HXRBS. 6. The average drift rate of propagating electron beams is found here to be [dv/dt] = 0.10ν1.4 MHz km s-1 in the frequency range of ν = 200-3000 MHz, which is lower than expected from the Alvarez & Haddock relation for frequencies ≤ 550 MHz. 7. The frequency distributions of HXR fluxes (Fx) and radio type III burst fluxes (FR), which both can be characterized by a power law, are found to have a significantly different slope, i.e., N(Fx) ∝ Fx-1.87 versus N(FR) ∝ FR-1.28. The difference in the slope is attributed to the fundamental difference between incoherent and coherent emission processes. In summary, these findings suggest a flare scenario in which bidirectional streams of electrons are accelerated during solar flares at heights of 10 km above the photosphere in rather compact regions (L ≲ 2000 km). The acceleration site is likely to be located near the top of flare loops (defined by HXR double footpoints) or in the cusp above, where electrons have also access to open field lines or larger arches. The observed bidirectionality of electron beams favors acceleration mechanisms with oppositely directed electric fields or stochastic acceleration in an X-type reconnection geometry.
Calculus, Radio Dials and the Straight-Line Frequency Variable Capacitor
ERIC Educational Resources Information Center
Boyadzhiev, Khristo N.
2010-01-01
Most often radio dials of analogue radios are not uniformly graded; the frequencies are cramped on the left side or on the right side. This makes tuning more difficult. Why are dials made this way? We shall see here that simple calculus can help understand this problem and solve it. (Contains 7 figures.)
75 FR 9850 - Tank Level Probing Radars in the Frequency Band 77-81 GHz
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... National Radio Astronomy Observatory (NRAO) states that it would not object to the Ohmart/VEGA waiver if it Frequency Band of Operation. Authorized operations in the 77-81 GHz band currently include radio astronomy... operations in this band would have on authorized services. Regarding radio astronomy, the Commission observes...
BLAZAR SPECTRAL PROPERTIES AT 74 MHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massaro, F.; Funk, S.; Giroletti, M.
2013-10-01
Blazars are the most extreme class of active galactic nuclei. Despite a previous investigation at 102 MHz for a small sample of BL Lac objects and our recent analysis of blazars detected in the Westerbork Northern Sky Survey, a systematic study of the blazar spectral properties at frequencies below 100 MHz has been never carried out. In this paper, we present the first analysis of the radio spectral behavior of blazars based on the recent Very Large Array Low-frequency Sky Survey (VLSS) at 74 MHz. We search for blazar counterparts in the VLSS catalog, confirming that they are detected atmore » 74 MHz. We then show that blazars present radio-flat spectra (i.e., radio spectral indices of ∼0.5) when evaluated, which also about an order of magnitude in frequency lower than previous analyses. Finally, we discuss the implications of our findings in the context of the blazars-radio galaxies connection since the low-frequency radio data provide a new diagnostic tool to verify the expectations of the unification scenario for radio-loud active galaxies.« less
47 CFR 74.503 - Frequency selection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Frequency selection. 74.503 Section 74.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... § 74.503 Frequency selection. (a) Each application for a new station or change in an existing station...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacon, L. D.
Hybrid Band{trademark} (H-band) is a Lockheed Martin Missiles and Fire Control (LMMFC) designation for a specific RF modulation that causes disruption of select electronic components and circuits. H-Band enables conventional high-power microwave (HPM) effects (with a center frequency of 1 to 2 GHz, for example) using a higher frequency carrier signal. The primary technical objective of this project was to understand the fundamental physics of Hybrid Band{trademark} Radio Frequency effects on electronic systems. The follow-on objective was to develop and validate a Hybrid Band{trademark} effects analysis process.
Digital Receiver for Microwave Radiometry
NASA Technical Reports Server (NTRS)
Ellingson, Steven W.; Hampson, Grant A.; Johnson, Joel T.
2005-01-01
A receiver proposed for use in L-band microwave radiometry (for measuring soil moisture and sea salinity) would utilize digital signal processing to suppress interfering signals. Heretofore, radio frequency interference has made it necessary to limit such radiometry to a frequency band about 20 MHz wide, centered at .1,413 MHz. The suppression of interference in the proposed receiver would make it possible to expand the frequency band to a width of 100 MHz, thereby making it possible to obtain greater sensitivity and accuracy in measuring moisture and salinity
Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, S. J.; See, A. M.; Keane, Z. K.
2014-01-06
Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However, these devices require a large top-gate, which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here, we demonstrate that rf reflectometry is possible in an undoped SET.
Magnetic-field-dependent slow light in strontium atom-cavity system
NASA Astrophysics Data System (ADS)
Liu, Zeng-Xing; Wang, Bao; Kong, Cui; Xiong, Hao; Wu, Ying
2018-03-01
Realizing and controlling a long-lived slow light is of fundamental importance in physics and may find applications in quantum router and quantum information processing. In this work, we propose a feasible scheme to realize the slow light in a strontium atom-cavity system, in which the value of group delay can be continuously adjusted within a range of different Zeeman splittings and vacuum Rabi frequencies by varying the applied static magnetic field and the atom number instead of a strong coherent field. In our scheme, the major limitations of the slow-light structure, namely, dispersion and loss, can be effectively resolved, and so our scheme may help to achieve the practical application of slow light relevant to the optical communication network.
NASA Astrophysics Data System (ADS)
Peng, Shi-Guo; Liu, Xia-Ji; Hu, Hui; Jiang, Kaijun
2012-12-01
We theoretically investigate the momentum-resolved radio-frequency spectroscopy of a harmonically trapped atomic Fermi gas near a Feshbach resonance in the presence of equal Rashba and Dresselhaus spin-orbit coupling. The system is qualitatively modeled as an ideal gas mixture of atoms and molecules, in which the properties of molecules, such as the wave function, binding energy, and effective mass, are determined from the two-particle solution of two interacting atoms. We calculate separately the radio-frequency response from atoms and molecules at finite temperatures by using the standard Fermi golden rule and take into account the effect of harmonic traps within local density approximation. The total radio-frequency spectroscopy is discussed as functions of temperature and spin-orbit coupling strength. Our results give a qualitative picture of radio-frequency spectroscopy of a resonantly interacting spin-orbit-coupled Fermi gas and can be directly tested in atomic Fermi gases of 40K atoms at Shanxi University and 6Li atoms at the Massachusetts Institute of Technology.
RF lockout circuit for electronic locking system
NASA Astrophysics Data System (ADS)
Becker, Earl M., Jr.; Miller, Allen
1991-02-01
An electronics lockout circuit was invented that includes an antenna adapted to receive radio frequency signals from a transmitter, and a radio frequency detector circuit which converts the radio frequency signals into a first direct current voltage indicative of the relative strength of the field resulting from the radio frequency signals. The first direct current voltage is supplied to a trigger circuit which compares this direct current voltage to an adjustable direct current reference voltage. This provides a second direct current voltage at the output whenever the amplitude of the first direct current voltage exceeds the amplitude of the reference voltage provided by the comparator circuit. This is supplied to a disconnect relay circuit which, upon receiving a signal from the electronic control unit of an electronic combination lock during the time period at which the second direct current voltage is present, isolates the door strike coil of a security door from the electronic control unit. This prevents signals falsely generated by the electronic control unit because of radio frequency signals in the vicinity of the electronic control unit energizing the door strike coil and accidentally opening a security door.
The South Pole, Antarctica, Solar Radio Telescope (SPASRT) System
NASA Astrophysics Data System (ADS)
Gerrard, A. J.; Weatherwax, A. T.; Gary, D. E.; Kujawski, J. T.; Nita, G. M.; Melville, R.; Stillinger, A.; Jeffer, G.
2014-12-01
The study of the sun in the radio portion of the electromagnetic spectrum furthers our understanding of fundamental solar processes observed in the X-ray, UV, and visible regions of the spectrum. For example, the study of solar radio bursts, which have been shown to cause serious disruptions of technologies at Earth, are essential for advancing our knowledge and understanding of solar flares and their relationship to coronal mass ejections and solar energetic particles, as well as the underlying particle acceleration mechanisms associated with these processes. In addition, radio coverage of the solar atmosphere could yield completely new insights into the variations of output solar energy, including Alfven wave propagation through the solar atmosphere and into the solar wind, which can potentially modulate and disturb the solar wind and Earth's geospace environment. In this presentation we discuss the development, construction, and testing of the South Pole, Antarctica, Solar Radio Telescope that is planned for installation at South Pole. The system will allow for 24-hour continuous, long-term observations of the sun across the 1-18 GHz frequency band and allow for truly continuous solar observations. We show that this system will enable unique scientific investigations of the solar atmosphere.
Methods for magnetic resonance analysis using magic angle technique
Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA
2011-11-22
Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.
Modelling and mitigating refractive propagation effects in precision pulsar timing observations
NASA Astrophysics Data System (ADS)
Shannon, R. M.; Cordes, J. M.
2017-01-01
To obtain the most accurate pulse arrival times from radio pulsars, it is necessary to correct or mitigate the effects of the propagation of radio waves through the warm and ionized interstellar medium. We examine both the strength of propagation effects associated with large-scale electron-density variations and the methodology used to estimate infinite frequency arrival times. Using simulations of two-dimensional phase-varying screens, we assess the strength and non-stationarity of timing perturbations associated with large-scale density variations. We identify additional contributions to arrival times that are stochastic in both radio frequency and time and therefore not amenable to correction solely using times of arrival. We attribute this to the frequency dependence of the trajectories of the propagating radio waves. We find that this limits the efficacy of low-frequency (metre-wavelength) observations. Incorporating low-frequency pulsar observations into precision timing campaigns is increasingly problematic for pulsars with larger dispersion measures.
NASA Astrophysics Data System (ADS)
Charles, Christine; Boswell, Roderick; Bish, Andrew; Khayms, Vadim; Scholz, Edwin
2016-05-01
Gas flow heating using radio frequency plasmas offers the possibility of depositing power in the centre of the flow rather than on the outside, as is the case with electro-thermal systems where thermal wall losses lower efficiency. Improved systems for space propulsion are one possible application and we have tested a prototype micro-thruster on a thrust balance in vacuum. For these initial tests, a fixed component radio frequency matching network weighing 90 grams was closely attached to the thruster in vacuum with the frequency agile radio frequency generator power being delivered via a 50 Ohm cable. Without accounting for system losses (estimated at around 50%), for a few 10s of Watts from the radio frequency generator the specific impulse was tripled to ˜48 seconds and the thrust tripled from 0.8 to 2.4 milli-Newtons.
Flight deck benefits of integrated data link communication
NASA Technical Reports Server (NTRS)
Waller, Marvin C.
1992-01-01
A fixed-base, piloted simulation study was conducted to determine the operational benefits that result when air traffic control (ATC) instructions are transmitted to the deck of a transport aircraft over a digital data link. The ATC instructions include altitude, airspeed, heading, radio frequency, and route assignment data. The interface between the flight deck and the data link was integrated with other subsystems of the airplane to facilitate data management. Data from the ATC instructions were distributed to the flight guidance and control system, the navigation system, and an automatically tuned communication radio. The co-pilot initiated the automation-assisted data distribution process. Digital communications and automated data distribution were compared with conventional voice radio communication and manual input of data into other subsystems of the simulated aircraft. Less time was required in the combined communication and data management process when data link ATC communication was integrated with the other subsystems. The test subjects, commercial airline pilots, provided favorable evaluations of both the digital communication and data management processes.
47 CFR 73.682 - TV transmission standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
....682 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO... frequency shall be nominally 1.25 MHz above the lower boundary of the channel. (3) The aural center frequency shall be 4.5 MHz higher than the visual carrier frequency. (4) The visual transmission amplitude...
47 CFR 73.682 - TV transmission standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
....682 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO... frequency shall be nominally 1.25 MHz above the lower boundary of the channel. (3) The aural center frequency shall be 4.5 MHz higher than the visual carrier frequency. (4) The visual transmission amplitude...
47 CFR 73.682 - TV transmission standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
....682 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO... frequency shall be nominally 1.25 MHz above the lower boundary of the channel. (3) The aural center frequency shall be 4.5 MHz higher than the visual carrier frequency. (4) The visual transmission amplitude...
47 CFR 73.682 - TV transmission standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
....682 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO... frequency shall be nominally 1.25 MHz above the lower boundary of the channel. (3) The aural center frequency shall be 4.5 MHz higher than the visual carrier frequency. (4) The visual transmission amplitude...
47 CFR 73.682 - TV transmission standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
....682 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO... frequency shall be nominally 1.25 MHz above the lower boundary of the channel. (3) The aural center frequency shall be 4.5 MHz higher than the visual carrier frequency. (4) The visual transmission amplitude...
Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band
NASA Technical Reports Server (NTRS)
Tarter, J.
1989-01-01
Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.
Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band.
Tarter, J
1989-01-01
Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.
The Contribution of "Around the Dial" to American Music Radio Announcing Culture.
ERIC Educational Resources Information Center
Shields, Steven O.; Ogles, Robert M.
Shared conventions of the modern radio industry should allow radio announcers and other producers of radio content to distinguish "good radio" from "bad radio." To help in making this distinction, a study delineated some of the basic conventions used in the production of radio content and analyzed the frequency of their…
Combined Radio and Space-Based Solar Observations: From Techniques to New Results - Preface
NASA Astrophysics Data System (ADS)
Kontar, Eduard P.; Nindos, Alexander
2018-06-01
The phenomena observed at the Sun have a variety of unique radio signatures that can be used to diagnose the processes in the solar atmosphere. The insights provided by radio observations are further enhanced when they are combined with observations from space-based telescopes. This Topical collection demonstrates the power of combination methodology at work and provides new results on i) type I solar radio bursts and thermal emission to study active regions; ii) type II and IV bursts to better understand the structure of coronal mass ejections; and iii) non-thermal gyro-synchrotron and/or type III bursts to improve the characterisation of particle acceleration in solar flares. The ongoing improvements in time, frequency, and spatial resolutions of ground-based telescopes reveal new levels in the complexity of solar phenomena and pose new questions.
A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.
Farajidavar, Aydin; O'Grady, Gregory; Rao, Smitha M N; Cheng, Leo K; Abell, Thomas; Chiao, J-C
2012-06-01
Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical userinter face. The front-end module conditions the analogue signals, then digitizes and loads the data into a radio for transmission. Data receipt at the backend is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35 × 35 × 27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124 h operation when utilizing a 560 mAh, 3 V battery. In vivo,slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles min−1), automated activation time detection was modestly better for the wireless system (5% versus 14% FP rate), and signal amplitudes were modestly higher via the wireless system (462 versus 3 86μV; p<0.001). This telemetric system for slow wave acquisition is reliable,power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients.0967-3334/
A miniature bidirectional telemetry system for in-vivo gastric slow wave recordings
Farajidavar, Aydin; O’Grady, Gregory; Rao, Smitha M.N.; Cheng, Leo K; Abell, Thomas; Chiao, J.-C.
2012-01-01
Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical user interface. The front-end module conditions the analog signals, then digitizes and loads the data into a radio for transmission. Data receipt at the back-end is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in-vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35×35×27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124-hour operation when utilizing a 560-mAh, 3-V battery. In-vivo, slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles/min), automated activation time detection was modestly better for the wireless system (5% vs 14% false positive rate), and signal amplitudes were modestly higher via the wireless system (462 vs 386 μV; p<0.001). This telemetric system for slow wave acquisition is reliable, power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients. PMID:22635054
NORSAR detection processing system
NASA Astrophysics Data System (ADS)
Loughran, L. B.
1987-05-01
This Semiannual Technical Summary describes the operation, maintenance and research activities at the Norwegian Seismic Array (NORSAR). Investigations into further potential improvements in the NORSAR array processing system have continued. A new Detection Processor (DP) program has developed and tested in an off-line mode. This program is flexible enough to conduct both NORSAR and NORESS detection processing as is done today, besides incorporating improved algorithms. A wide-band slowness estimation technique has been investigated by processing data from several events from the same location. Ten quarry blasts at a dam construction site in western Russia and sixteen Semipalatinsk nuclear explosions were selected. The major conclusion from this study is that employing a wider frequency band clearly tends to increase the stability of the slowness estimates, provided the signal-to-noise ratio is adequate over the band of interest. The stability was found, particularly for Pn, to be remarkably good for the western Norway quarry blasts when using a fixed frequency band for each phase for all ten events.
Pulsar-aided SETI experimental observations
NASA Technical Reports Server (NTRS)
Heidmann, J.; Biraud, F.; Tarter, J.
1989-01-01
The rotational frequencies of pulsars are used to select preferred radio frequencies for SETI. Pulsar rotational frequencies are converted into SETI frequencies in the 1-10 GHz Galactic radio window. Experimental observations using the frequencies are conducted for target stars closer than 25 parsecs, unknown targets in a globular cluster, and unknown targets in the Galaxy closer than 2.5 kpc. The status of these observations is discussed.
Low frequency radio synthesis imaging of the galactic center region
NASA Astrophysics Data System (ADS)
Nord, Michael Evans
2005-11-01
The Very Large Array radio interferometer has been equipped with new receivers to allow observations at 330 and 74 MHz, frequencies much lower than were previously possible with this instrument. Though the VLA dishes are not optimal for working at these frequencies, the system is successful and regular observations are now taken at these frequencies. However, new data analysis techniques are required to work at these frequencies. The technique of self- calibration, used to remove small atmospheric effects at higher frequencies, has been adapted to compensate for ionospheric turbulence in much the same way that adaptive optics is used in the optical regime. Faceted imaging techniques are required to compensate for the noncoplanar image distortion that affects the system due to the wide fields of view at these frequencies (~2.3° at 330 MHz and ~11° at 74 MHz). Furthermore, radio frequency interference is a much larger problem at these frequencies than in higher frequencies and novel approaches to its mitigation are required. These new techniques and new system are allowing for imaging of the radio sky at sensitivities and resolutions orders of magnitude higher than were possible with the low frequency systems of decades past. In this work I discuss the advancements in low frequency data techniques required to make high resolution, high sensitivity, large field of view measurements with the new Very Large Array low frequency system and then detail the results of turning this new system and techniques on the center of our Milky Way Galaxy. At 330 MHz I image the Galactic center region with roughly 10 inches resolution and 1.6 mJy beam -1 sensitivity. New Galactic center nonthermal filaments, new pulsar candidates, and the lowest frequency detection to date of the radio source associated with our Galaxy's central massive black hole result. At 74 MHz I image a region of the sky roughly 40° x 6° with, ~10 feet resolution. I use the high opacity of H II regions at 74 MHz to extract three-dimensional data on the distribution of Galactic cosmic ray emissivity, a measurement possible only at low radio frequencies.
48 CFR 211.275-1 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Documents 211.275-1 Definitions. Bulk commodities, case, palletized unit load, passive RFID tag, and radio frequency identification are defined in the clause at 252.211-7006, Passive Radio Frequency Identification...
NASA Astrophysics Data System (ADS)
Kitauchi, H.; Nozaki, K.; Ito, H.; Kondo, T.; Tsuchiya, S.; Imamura, K.; Nagatsuma, T.; Ishii, M.
2014-12-01
We present our recent efforts on an evaluation of the numerical prediction method of electric field strength for ionospheric propagation of low frequency (LF) radio waves based on a wave-hop propagation theory described in Section 2.4 of Recommendation ITU-R P.684-6 (2012), "Prediction of field strength at frequencies below about 150 kHz," made by International Telecommunication Union Radiocommunication Sector (ITU-R). As part of the Japanese Antarctic Research Expedition (JARE), we conduct on-board measurements of the electric field strengths and phases of LF 40 kHz and 60 kHz of radio signals (call sign JJY) continuously along both the ways between Tokyo, Japan and Syowa Station, the Japanese Antarctic station, at 69° 00' S, 39° 35' E on East Ongul Island, Lützow-Holm Bay, East Antarctica. The measurements are made by a newly developed, highly sensitive receiving system installed on board the Japanese Antarctic research vessel (RV) Shirase. We obtained new data sets of the electric field strength up to approximately 13,000-14,000 km propagation of LF JJY 40 kHz and 60 kHz radio waves by utilizing a newly developed, highly sensitive receiving system, comprised of an orthogonally crossed double-loop antenna and digital-signal-processing lock-in amplifiers, on board RV Shirase during the 55th JARE from November 2013 to April 2014. We have made comparisons between those on-board measurements and the numerical predictions of field strength for long-range propagation of low frequency radio waves based on a wave-hop propagation theory described in Section 2.4 of Recommendation ITU-R P.684-6 (2012) to show that our results qualitatively support the recommended wave-hop theory for the great-circle paths approximately 7,000-8,000 km and 13,000-14,000 km propagations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margaryan, Amur
2011-10-01
A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.
New advanced netted ground based and topside radio diagnostics for Space Weather Program
NASA Astrophysics Data System (ADS)
Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii
2014-05-01
To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. All they will be connected via PIONIER dedicated links to Poznan. Each site will host one LOFAR station (96 high-band+96 low-band antennas). They will most time work as a part of European network, however, when less charged, they can operate as a national network The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. This two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. The RFA on board the RELEC satellite is the first in a series of experiments which is planned to be launched into the near-Earth environment. In order to improve and validate the large scales and small scales ionospheric structures we will used the GPS observations collected at IGS/EPN network employed to reconstruct diurnal variations of TEC using all satellite passes over individual GPS stations and the data retrieved from FORMOSAT-3/COSMIC radio occultation measurements. The main purpose of this presentation is to describe new advanced diagnostic techniques of the near-Earth space plasma and point out the scientific challenges of the radio frequency analyser located on board of low orbiting satellites and LOFAR facilities. This research is partly supported by grant O N517 418440
Chromospheric Evaporation and Decimetric Radio Emission in Solar Flares
NASA Technical Reports Server (NTRS)
Aschwanden, Markus J.; Benz, Arnold O.
1995-01-01
We have discovered decimetric signatures of the chromospheric evaporation process. Evidence for the radio detection of chromospheric evaporation is based on the radio-inferred values of (1) the electron density, (2) the propagation speed, and (3) the timing, which are found to be in good agreement with statistical values inferred from the blueshifted Ca xix soft X-ray line. The physical basis of our model is that free-free absorption of plasma emission is strongly modified by the steep density gradient and the large temperature increase in the upflowing flare plasma. The steplike density increase at the chromospheric evaporation front causes a local discontinuity in the plasma frequency, manifested as almost infinite drift rate in decimetric type III bursts. The large temperature increase of the upflowing plasma considerably reduces the local free-free opacity (due to the T-(exp -3/2) dependence) and thus enhances the brightness of radio bursts emitted at the local plasma frequency near the chromospheric evaporation front, while a high-frequency cutoff is expected in the high-density regions behind the front, which can be used to infer the velocity of the upflowing plasma. From model calculations we find strong evidence that decimetric bursts with a slowly drifting high-frequency cutoff are produced by fundamental plasma emission, contrary to the widespread belief that decimetric bursts are preferentially emitted at the harmonic plasma level. We analyzed 21 flare episodes from 1991-1993 for which broadband (100-3000 MHz) radio dynamic spectra from Phoenix, hard X-ray data from BATSE/CGRO, and soft X-ray data from GOES were available. We detected slowly drifting high-frequency cutoffs between 1.1 and 3.0 GHz, with drift rates of -41 +/- 32 MHz/s, extending over time intervals of 24 +/- 23 s. Developing a density model for type III-emitting flare loops based on the statistically observed drift rate of type III bursts by Alvarez & Haddock, we infer velocities of up to 360 km/s for the upflowing plasma, with an average of v(sub CE) = 236 +/- 130 km /s for episodes with 5-15 s duration. The mean electron density of the upflowing plasma is n(sub e) = 5.2(+/-3.1) x 10(exp 10) /cu cm when it is first detected in radio, at coronal altitudes of h(sub 0) = 9.2 +/- 2.3 Mm.
Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves
von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean
2015-01-01
Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated (‘down’, hyperpolarized) and an activated state (‘up’, depolarized). The ‘up’ state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the ‘up’ state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the ‘up’ and ‘down’ states. Spike and high frequency oscillation density was highest during the transition from the ‘up’ to the ‘down’ state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the ‘down’ to the ‘up’ state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not continuous, during this state of sleep. Both epileptic spikes and high frequency oscillations do not predominate, like physiological activity, during the ‘up’ state but during the transition from the ‘up’ to the ‘down’ state of the slow wave, a period of high synchronization. Epileptic discharges appear therefore more associated with synchronization than with excitability. Furthermore, high frequency oscillations in channels devoid of epileptic activity peak differently during the slow wave cycle from those in channels with epileptic activity. This property may allow differentiating physiological from pathological high frequency oscillations, a problem that is unresolved until now. PMID:25792528
Code of Federal Regulations, 2011 CFR
2011-10-01
... authority under 47 U.S.C. 901 et seq. and Executive Order 12046 (March 27, 1978). (b) The federal agencies... Regulations and Procedures for Federal Radio Frequency Management. 300.1 Section 300.1 Telecommunication... AND PROCEDURES FOR FEDERAL RADIO FREQUENCY MANAGEMENT § 300.1 Incorporation by reference of the Manual...
Code of Federal Regulations, 2010 CFR
2010-10-01
... authority under 47 U.S.C. 901 et seq. and Executive Order 12046 (March 27, 1978). (b) The federal agencies... Regulations and Procedures for Federal Radio Frequency Management. 300.1 Section 300.1 Telecommunication... AND PROCEDURES FOR FEDERAL RADIO FREQUENCY MANAGEMENT § 300.1 Incorporation by reference of the Manual...
Code of Federal Regulations, 2014 CFR
2014-10-01
... authority under 47 U.S.C. 901 et seq. and Executive Order 12046 (March 27, 1978). (b) The Federal agencies... Regulations and Procedures for Federal Radio Frequency Management. 300.1 Section 300.1 Telecommunication... AND PROCEDURES FOR FEDERAL RADIO FREQUENCY MANAGEMENT § 300.1 Incorporation by reference of the Manual...
Code of Federal Regulations, 2013 CFR
2013-10-01
... authority under 47 U.S.C. 901 et seq. and Executive Order 12046 (March 27, 1978). (b) The Federal agencies... Regulations and Procedures for Federal Radio Frequency Management. 300.1 Section 300.1 Telecommunication... AND PROCEDURES FOR FEDERAL RADIO FREQUENCY MANAGEMENT § 300.1 Incorporation by reference of the Manual...
Code of Federal Regulations, 2012 CFR
2012-10-01
... authority under 47 U.S.C. 901 et seq. and Executive Order 12046 (March 27, 1978). (b) The federal agencies... Regulations and Procedures for Federal Radio Frequency Management. 300.1 Section 300.1 Telecommunication... AND PROCEDURES FOR FEDERAL RADIO FREQUENCY MANAGEMENT § 300.1 Incorporation by reference of the Manual...