Sample records for slow wave frequency

  1. Comparison of filtering methods for extracellular gastric slow wave recordings.

    PubMed

    Paskaranandavadivel, Niranchan; O'Grady, Gregory; Du, Peng; Cheng, Leo K

    2013-01-01

    Extracellular recordings are used to define gastric slow wave propagation. Signal filtering is a key step in the analysis and interpretation of extracellular slow wave data; however, there is controversy and uncertainty regarding the appropriate filtering settings. This study investigated the effect of various standard filters on the morphology and measurement of extracellular gastric slow waves. Experimental extracellular gastric slow waves were recorded from the serosal surface of the stomach from pigs and humans. Four digital filters: finite impulse response filter (0.05-1 Hz); Savitzky-Golay filter (0-1.98 Hz); Bessel filter (2-100 Hz); and Butterworth filter (5-100 Hz); were applied on extracellular gastric slow wave signals to compare the changes temporally (morphology of the signal) and spectrally (signals in the frequency domain). The extracellular slow wave activity is represented in the frequency domain by a dominant frequency and its associated harmonics in diminishing power. Optimal filters apply cutoff frequencies consistent with the dominant slow wave frequency (3-5 cpm) and main harmonics (up to ≈ 2 Hz). Applying filters with cutoff frequencies above or below the dominant and harmonic frequencies was found to distort or eliminate slow wave signal content. Investigators must be cognizant of these optimal filtering practices when detecting, analyzing, and interpreting extracellular slow wave recordings. The use of frequency domain analysis is important for identifying the dominant and harmonics of the signal of interest. Capturing the dominant frequency and major harmonics of slow wave is crucial for accurate representation of slow wave activity in the time domain. Standardized filter settings should be determined. © 2012 Blackwell Publishing Ltd.

  2. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves

    PubMed Central

    von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean

    2015-01-01

    Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated (‘down’, hyperpolarized) and an activated state (‘up’, depolarized). The ‘up’ state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the ‘up’ state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the ‘up’ and ‘down’ states. Spike and high frequency oscillation density was highest during the transition from the ‘up’ to the ‘down’ state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the ‘down’ to the ‘up’ state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not continuous, during this state of sleep. Both epileptic spikes and high frequency oscillations do not predominate, like physiological activity, during the ‘up’ state but during the transition from the ‘up’ to the ‘down’ state of the slow wave, a period of high synchronization. Epileptic discharges appear therefore more associated with synchronization than with excitability. Furthermore, high frequency oscillations in channels devoid of epileptic activity peak differently during the slow wave cycle from those in channels with epileptic activity. This property may allow differentiating physiological from pathological high frequency oscillations, a problem that is unresolved until now. PMID:25792528

  3. Plasma production by helicon and slow waves.

    PubMed

    Sakawa, Youichi; Kunimatsu, Hiroyuki; Kikuchi, Hideki; Fukui, Yasuaki; Shoji, Tatsuo

    2003-03-14

    The observation of slow-wave sustained (SW) discharge in a whistler- or helicon-wave range of frequency is made using high-frequency and very-high-frequency bands of rf. The SW discharge occurs at an extremely low rf power and plasma density, which are lower than a capacitive-coupling discharge region.

  4. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone

    PubMed Central

    Groopman, Amber M.; Katz, Jonathan I.; Holland, Mark R.; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A.; Miller, James G.

    2015-01-01

    Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable. PMID:26328678

  5. Gastric dysrhythmias and the current status of electrogastrography

    NASA Technical Reports Server (NTRS)

    Koch, K. L.

    1989-01-01

    Myoelectrical activity recorded simultaneously from mucosal, serosal, and cutaneous electrodes has confirmed that the 3-cpm signal from such electrodes reflects gastric slow-wave activity. Now, the observation that patients with unexplained nausea and vomiting may have very rapid slow-wave frequencies (tachygastrias) and very slow, slow-wave frequencies (bradygastrias) suggests that electrogastrography, a reliable and noninvasive technique, may be useful in the diagnosis and management of patients with upper abdominal symptoms and gastroparesis.

  6. Slow wave contraction frequency plateaus in the small intestine are composed of discrete waves of interval increase associated with dislocations.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2018-06-03

    What is the central question of this study? What is the nature of slow wave driven contraction frequency gradients in the small intestine? What is the main finding and its importance? Frequency plateaus are composed of discrete waves of increased interval, each wave associated with a contraction dislocation. Smooth frequency gradients are generated by localised neural modulation of wave frequency, leading to functionally important wave turbulence. Both patterns are emergent properties of a network of coupled oscillators, the interstitial cells of Cajal. A gut-wide network of interstitial cells of Cajal (ICC) generate electrical oscillations (slow waves) that orchestrate waves of muscle contraction. In the small intestine there is a gradient in slow wave frequency from high at the duodenum to low at the terminal ileum. Time-averaged measurements of frequency have suggested either a smooth or stepped (plateaued) gradient. We measured individual contraction intervals from diameter maps of the mouse small intestine to create interval maps (IMaps). IMaps showed that each frequency plateau was composed of discrete waves of increased interval. Each interval wave originated at a terminating contraction wave, a "dislocation", at the plateau's proximal boundary. In a model chain of coupled phase oscillators, interval wave frequency increased as coupling decreased or as the natural frequency gradient or noise increased. Injuring the intestine at a proximal point to destroy coupling, suppressed distal steps which then reappeared with gap junction block by carbenoxolone. This lent further support to our previous hypothesis that lines of dislocations were fixed by points of low coupling strength. Dislocations induced by electrical field pulses in the intestine and by equivalent phase shift in the model, were associated with interval waves. When the enteric nervous system was active, IMaps showed a chaotic, turbulent pattern of interval change with no frequency steps or plateaus. This probably resulted from local, stochastic release of neurotransmitters. Plateaus, dislocations, interval waves and wave turbulence arise from a dynamic interplay between natural frequency and coupling in the ICC network. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Effect of bowel decontamination with metronidazole and vancomycin on gastroduodenal myoelectric activity.

    PubMed

    Królczyk, Grzegorz; Czupryna, Antoni; Sobocki, Jacek; Nowak, Lukasz; Zurowski, Daniel; Szatyłowiczi, Jadwiga; Strus, Magdalena; Thor, Piotr J

    2004-01-01

    It is well recognized that prolonged antibiotic therapy leading to gut decontamination often results in side effects and may lead to colonization of gut with pathologic bacteria. Changes of a gut microflora could play a role in dysmotility of gastrointestinal tract. The aim of the study was to evaluate influence of intraluminal colon anaerobic and aerobic bacterial flora on myoelectric activity of duodenum and stomach. A myoelectric activity recordings using electrodes implanted on small bowel of the conscious rats were performed. Group I was scheduled for control recording, group II for recordings in 4th day after metronidazole (M) administration (30 mg/kg) and group III for recordings after vancomycin (V) administration (15 mg/kg) respectively. Rat's stools were cultured for confirmation of changes in colon flora composition. Recordings were previously filtered digitally with bandwidth filter 0.01-0.1 Hz and 0.1-1.0 Hz to extract gastric and duodenal slow wave respectively and than analyzed with Fast Fourier Transformation. Baseline duodenal slow wave frequency in control group revealed 0.60 +/- 0.05 Hz. M increased slow waves frequency to 0.64 +/- 0.13 Hz and V did not 0.58 +/- 0.09 Hz (p > 0.05). Slow wave dominant frequency of the stomach showed decrease of frequency from control 0.035 +/- 0.04 to 0.025 +/- 0.06 Hz after M (p < 0.05). Pretreatment with V also did not influence slow wave dominant frequency in comparison to control group (0.036 +/- 0.07 Hz, p > 0.05). Only pretreatment with M significantly decreased gastric slow wave frequency. One can speculate that M effects are related not only to gut decontamination but also directly affects ENS. We propose hypothesis that M influence on slow wave frequency may be related not only to its antimicrobial activity but to its potential neurotoxic action on intramural ENS neurons.

  8. Scatterplot analysis of EEG slow-wave magnitude and heart rate variability: an integrative exploration of cerebral cortical and autonomic functions.

    PubMed

    Kuo, Terry B J; Yang, Cheryl C H

    2004-06-15

    To explore interactions between cerebral cortical and autonomic functions in different sleep-wake states. Active waking (AW), quiet sleep (QS), and paradoxical sleep (PS) of adult male Wistar-Kyoto rats (WKY) on their daytime sleep were compared. Ten WKY. All rats had electrodes implanted for polygraphic recordings. One week later, a 6-hour daytime sleep-wakefulness recording session was performed. A scatterplot analysis of electroencephalogram (EEG) slow-wave magnitude (0.5-4 Hz) and heart rate variability (HRV) was applied in each rat. The EEG slow-wave-RR interval scatterplot from all of the recordings revealed a propeller-like pattern. If the scatterplot was divided into AW, PS, and QS according to the corresponding EEG mean power frequency and nuchal electromyogram, the EEG slow wave-RR interval relationship became nil, negative, and positive for AW, PS, and QS, respectively. A significant negative relationship was found for EEG slow-wave and high-frequency power of HRV (HF) coupling during PS and for EEG slow wave and low-frequency power of HRV to HF ratio (LF/HF) coupling during QS. The optimal time lags for the slow wave-LF/HF relationship were different between PS and QS. Bradycardia noted in QS and PS was related to sympathetic suppression and vagal excitation, respectively. The EEG slow wave-HRV scatterplot may provide unique insights into studies of sleep, and such a relationship may delineate the sleep-state-dependent fluctuations in autonomic nervous system activity.

  9. Every slow-wave impulse is associated with motor activity of the human stomach.

    PubMed

    Hocke, Michael; Schöne, Ulrike; Richert, Hendryk; Görnert, Peter; Keller, Jutta; Layer, Peter; Stallmach, Andreas

    2009-04-01

    Using a newly developed high-resolution three-dimensional magnetic detector system (3D-MAGMA), we observed periodical movements of a small magnetic marker in the human stomach at the typical gastric slow-wave frequency, that is 3 min(-1). Thus we hypothesized that each gastric slow wave induces a motor response that is not strong enough to be detected by conventional methods. Electrogastrographies (EGG, Medtronic, Minneapolis, MN) for measurement of gastric slow waves and 3D-MAGMA (Innovent, Jena, Germany) measurements were simultaneously performed in 21 healthy volunteers (10 men, 40.4+/-13.6 yr; 11 women, 35.8+/-11.6 yr). The 3D-MAGMA system contains 27 highly sensitive magnetic field sensors that are able to locate a magnetic pill inside a human body with an accuracy of +/-5 mm or less in position and +/-2 degrees in orientation at a frequency of 50 Hz. Gastric transit time of the magnetic marker ranged from 19 to 154 min. The mean dominant EGG frequency while the marker was in the stomach was 2.87+/-0.15 cpm. The mean dominant 3D-MAGMA frequency during this interval was nearly identical; that is, 2.85+/-0.15 movements per minute. We observed a strong linear correlation between individual dominant EGG and 3D-MAGMA frequency (R=0.66, P=0.0011). Our findings suggest that each gastric slow wave induces a minute contraction that is too small to be detected by conventional motility investigations but can be recorded by the 3D-MAGMA system. The present slow-wave theory that assumes that the slow wave is a pure electrical signal should be reconsidered.

  10. Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine.

    PubMed

    Angeli, T R; O'Grady, G; Du, P; Paskaranandavadivel, N; Pullan, A J; Bissett, I P; Cheng, L K

    2013-05-01

    Slow-waves modulate the pattern of small intestine contractions. However, the large-scale spatial organization of intestinal slow-wave pacesetting remains uncertain because most previous studies have had limited resolution. This study applied high-resolution (HR) mapping to evaluate intestinal pacesetting mechanisms and propagation patterns in vivo. HR serosal mapping was performed in anesthetized pigs using flexible arrays (256 electrodes; 32 × 8; 4 mm spacing), applied along the jejunum. Slow-wave propagation patterns, frequencies, and velocities were calculated. Slow-wave initiation sources were identified and analyzed by animation and isochronal activation mapping. Analysis comprised 32 recordings from nine pigs (mean duration 5.1 ± 3.9 min). Slow-wave propagation was analyzed, and a total of 26 sources of slow-wave initiation were observed and classified as focal pacemakers (31%), sites of functional re-entry (23%) and circumferential re-entry (35%), or indeterminate sources (11%). The mean frequencies of circumferential and functional re-entry were similar (17.0 ± 0.3 vs 17.2 ± 0.4 cycle min(-1) ; P = 0.5), and greater than that of focal pacemakers (12.7 ± 0.8 cycle min(-1) ; P < 0.001). Velocity was anisotropic (12.9 ± 0.7 mm s(-1) circumferential vs 9.0 ± 0.7 mm s(-1) longitudinal; P < 0.05), contributing to the onset and maintenance of re-entry. This study has shown multiple patterns of slow-wave initiation in the jejunum of anesthetized pigs. These results constitute the first description and analysis of circumferential re-entry in the gastrointestinal tract and functional re-entry in the in vivo small intestine. Re-entry can control the direction, pattern, and frequency of slow-wave propagation, and its occurrence and functional significance merit further investigation. © 2013 Blackwell Publishing Ltd.

  11. Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.

    2007-01-01

    A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.

  12. Photonic Crystal-Based High-Power Backward Wave Oscillator

    DOE PAGES

    Poole, Brian R.; Harris, John R.

    2017-12-01

    An electron beam traversing a slow wave structure can be used to either generate or amplify electromagnetic radiation through the interaction of the slow space charge wave on the beam with the slow wave structure modes. Here, a cylindrical waveguide with a periodic array of conducting loops is used for the slow wave structure. This paper considers operation as a backward wave oscillator. The dispersion properties of the structure are determined using a frequency-domain eigenmode solver. The interaction of the electron beam with the structure modes is investigated using a 2-D particle-in-cell (PIC) code. In conclusion, the operating frequency andmore » growth rate dependence on beam energy and beam current are investigated using the PIC code and compared with analytic and scaling estimates where possible.« less

  13. Photonic Crystal-Based High-Power Backward Wave Oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, Brian R.; Harris, John R.

    An electron beam traversing a slow wave structure can be used to either generate or amplify electromagnetic radiation through the interaction of the slow space charge wave on the beam with the slow wave structure modes. Here, a cylindrical waveguide with a periodic array of conducting loops is used for the slow wave structure. This paper considers operation as a backward wave oscillator. The dispersion properties of the structure are determined using a frequency-domain eigenmode solver. The interaction of the electron beam with the structure modes is investigated using a 2-D particle-in-cell (PIC) code. In conclusion, the operating frequency andmore » growth rate dependence on beam energy and beam current are investigated using the PIC code and compared with analytic and scaling estimates where possible.« less

  14. The new wave-ring helical (WRH) slow-wave structure for traveling wave tube amplifiers

    NASA Astrophysics Data System (ADS)

    Panahi, Nasser; Saviz, S.; Ghorannevis, M.

    2017-12-01

    In this paper, the new slow-wave structure called wave-ring helix to enhance the power of the traveling wave tubes is introduced. In this new structure, without increasing the length and radius of the helix, the wave motion path can be increased to radiofrequency wave in phase with the electron beam. The results show that in the special frequency range the output power and gain are greater than conventional helix. In this paper, optimization results are presented in cold and hot tests on the new structure. The software CST is used in S-band frequency range.

  15. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.

    PubMed

    Nelson, Amber M; Hoffman, Joseph J; Anderson, Christian C; Holland, Mark R; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G

    2011-10-01

    Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. © 2011 Acoustical Society of America

  16. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone

    PubMed Central

    Nelson, Amber M.; Hoffman, Joseph J.; Anderson, Christian C.; Holland, Mark R.; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G.

    2011-01-01

    Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. PMID:21973378

  17. Traveling-Wave Maser for 32 GHz

    NASA Technical Reports Server (NTRS)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the evanescent-wave sections to provide reverse loss needed to suppress reverse propagation of power at the signal frequency. This design is expected to afford a large gain-bandwidth product at the signal frequency and efficient coupling of the pump power into the paramagnetic spin resonances of the ruby sections. The more efficiently the pump power could be thus coupled, the more efficiently it could be utilized and the heat load on the refrigerator correspondingly reduced.

  18. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission

    NASA Astrophysics Data System (ADS)

    Yang, Jieun; Lee, Joong Seok; Lee, Hyeong Rae; Kang, Yeon June; Kim, Yoon Young

    2018-02-01

    Sound transmission reduction is typically governed by the mass law, requiring thicker panels to handle lower frequencies. When open holes must be inserted in panels for heat transfer, ventilation, or other purposes, the efficient reduction of sound transmission through holey panels becomes difficult, especially in the low-frequency ranges. Here, we propose slow-wave metamaterial open panels that can dramatically lower the working frequencies of sound transmission loss. Global resonances originating from slow waves realized by multiply inserted, elaborately designed subwavelength rigid partitions between two thin holey plates contribute to sound transmission reductions at lower frequencies. Owing to the dispersive characteristics of the present metamaterial panels, local resonances that trap sound in the partitions also occur at higher frequencies, exhibiting negative effective bulk moduli and zero effective velocities. As a result, low-frequency broadened sound transmission reduction is realized efficiently in the present metamaterial panels. The theoretical model of the proposed metamaterial open panels is derived using an effective medium approach and verified by numerical and experimental investigations.

  19. Using COMSOL Multiphysics Software to Model Anisotropic Dielectric and Metamaterial Effects in Folded-Waveguide Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Starinshak, David P.; Smith, Nathan D.; Wilson, Jeffrey D.

    2008-01-01

    The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented.

  20. A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry.

    PubMed

    Du, Peng; Paskaranandavadivel, Niranchan; O'Grady, Greg; Tang, Shou-Jiang; Cheng, Leo K

    2015-12-01

    Gastric slow wave dysrhythmias are associated with motility disorders. Periods of tachygastria associated with slow wave re-entry were recently recognized as one important dysrhythmia mechanism, but factors promoting and sustaining gastric re-entry are currently unknown. This study reports two experimental forms of gastric re-entry and presents a series of multi-scale models that define criteria for slow wave re-entry initiation, maintenance and termination. High-resolution electrical mapping was conducted in porcine and canine models and two spatiotemporal patterns of re-entrant activities were captured: single-loop rotor and double-loop figure-of-eight. Two separate multi-scale mathematical models were developed to reproduce the velocity and entrainment frequency of these experimental recordings. A single-pulse stimulus was used to invoke a rotor re-entry in the porcine model and a figure-of-eight re-entry in the canine model. In both cases, the simulated re-entrant activities were found to be perpetuated by tachygastria that was accompanied by a reduction in the propagation velocity in the re-entrant pathways. The simulated re-entrant activities were terminated by a single-pulse stimulus targeted at the tip of re-entrant wave, after which normal antegrade propagation was restored by the underlying intrinsic frequency gradient. (i) the stability of re-entry is regulated by stimulus timing, intrinsic frequency gradient and conductivity; (ii) tachygastria due to re-entry increases the frequency gradient while showing decreased propagation velocity; (iii) re-entry may be effectively terminated by a targeted stimulus at the core, allowing the intrinsic slow wave conduction system to re-establish itself. © The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  1. A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry

    PubMed Central

    Du, Peng; Paskaranandavadivel, Niranchan; O’Grady, Greg; Tang, Shou-Jiang; Cheng, Leo K.

    2015-01-01

    Gastric slow wave dysrhythmias are associated with motility disorders. Periods of tachygastria associated with slow wave re-entry were recently recognized as one important dysrhythmia mechanism, but factors promoting and sustaining gastric re-entry are currently unknown. This study reports two experimental forms of gastric re-entry and presents a series of multi-scale models that define criteria for slow wave re-entry initiation, maintenance and termination. High-resolution electrical mapping was conducted in porcine and canine models and two spatiotemporal patterns of re-entrant activities were captured: single-loop rotor and double-loop figure-of-eight. Two separate multi-scale mathematical models were developed to reproduce the velocity and entrainment frequency of these experimental recordings. A single-pulse stimulus was used to invoke a rotor re-entry in the porcine model and a figure-of-eight re-entry in the canine model. In both cases, the simulated re-entrant activities were found to be perpetuated by tachygastria that was accompanied by a reduction in the propagation velocity in the re-entrant pathways. The simulated re-entrant activities were terminated by a single-pulse stimulus targeted at the tip of re-entrant wave, after which normal antegrade propagation was restored by the underlying intrinsic frequency gradient. Main findings: (i) the stability of re-entry is regulated by stimulus timing, intrinsic frequency gradient and conductivity; (ii) tachygastria due to re-entry increases the frequency gradient while showing decreased propagation velocity; (iii) re-entry may be effectively terminated by a targeted stimulus at the core, allowing the intrinsic slow wave conduction system to re-establish itself. PMID:25552487

  2. Role of the sodium pump in pacemaker generation in dog colonic smooth muscle.

    PubMed Central

    Barajas-López, C; Chow, E; Den Hertog, A; Huizinga, J D

    1989-01-01

    1. The role of the Na+ pump in the generation of slow wave activity in circular muscle of the dog colon was investigated using a partitioned 'Abe-Tomita' type chamber for voltage control. 2. Blockade of the Na+ pump by omission of extracellular K+, by ouabain, or the combination of 0 mM-Na+ and ouabain, depolarized the membrane up to approximately -40 mV and abolished the slow wave activity. Repolarization back to the control membrane potential by hyperpolarizing current restored the slow wave activity. 3. Slow waves continued to be present in 0 Na+, Li+ HEPES solution. 4. The depolarization induced by the procedures to block Na+ pump activity was associated with an increase in input membrane resistance. 5. Voltage-current relationships show the presence of an inward rectification. 6. Reduction of temperature depolarized the membrane, and decreased the slow wave frequency and amplitude. The slow wave amplitude was restored by repolarization of the membrane. 7. Brief depolarizing pulses evoked premature slow waves. Brief hyperpolarizing pulses terminated the slow waves. 8. We conclude that abolition of slow wave activity by Na+ pump blockade is a direct effect of membrane depolarization and that the Na+ pump is not responsible for the generation of the slow wave. 9. Our results are consistent with the hypothesis that pacemaker activity in smooth muscle is a consequence of membrane conductance changes which are metabolically dependent. PMID:2607455

  3. Advances in wave turbulence: rapidly rotating flows

    NASA Astrophysics Data System (ADS)

    Cambon, C.; Rubinstein, R.; Godeferd, F. S.

    2004-07-01

    At asymptotically high rotation rates, rotating turbulence can be described as a field of interacting dispersive waves by the general theory of weak wave turbulence. However, rotating turbulence has some complicating features, including the anisotropy of the wave dispersion relation and the vanishing of the wave frequency on a non-vanishing set of 'slow' modes. These features prevent straightforward application of existing theories and lead to some interesting properties, including the transfer of energy towards the slow modes. This transfer competes with, and might even replace, the transfer to small scales envisioned in standard turbulence theories. In this paper, anisotropic spectra for rotating turbulence are proposed based on weak turbulence theory; some evidence for their existence is given based on numerical calculations of the wave turbulence equations. Previous arguments based on the properties of resonant wave interactions suggest that the slow modes decouple from the others. Here, an extended wave turbulence theory with non-resonant interactions is proposed in which all modes are coupled; these interactions are possible only because of the anisotropy of the dispersion relation. Finally, the vanishing of the wave frequency on the slow modes implies that these modes cannot be described by weak turbulence theory. A more comprehensive approach to rotating turbulence is proposed to overcome this limitation.

  4. Time-domain separation of interfering waves in cancellous bone using bandlimited deconvolution: simulation and phantom study.

    PubMed

    Wear, Keith A

    2014-04-01

    In through-transmission interrogation of cancellous bone, two longitudinal pulses ("fast" and "slow" waves) may be generated. Fast and slow wave properties convey information about material and micro-architectural characteristics of bone. However, these properties can be difficult to assess when fast and slow wave pulses overlap in time and frequency domains. In this paper, two methods are applied to decompose signals into fast and slow waves: bandlimited deconvolution and modified least-squares Prony's method with curve-fitting (MLSP + CF). The methods were tested in plastic and Zerdine(®) samples that provided fast and slow wave velocities commensurate with velocities for cancellous bone. Phase velocity estimates were accurate to within 6 m/s (0.4%) (slow wave with both methods and fast wave with MLSP + CF) and 26 m/s (1.2%) (fast wave with bandlimited deconvolution). Midband signal loss estimates were accurate to within 0.2 dB (1.7%) (fast wave with both methods), and 1.0 dB (3.7%) (slow wave with both methods). Similar accuracies were found for simulations based on fast and slow wave parameter values published for cancellous bone. These methods provide sufficient accuracy and precision for many applications in cancellous bone such that experimental error is likely to be a greater limiting factor than estimation error.

  5. Teleseismic surface wave study of S-wave velocity structure in Southern California

    NASA Astrophysics Data System (ADS)

    Prindle-Sheldrake, K. L.; Tanimoto, T.

    2002-12-01

    We report on a 3D S-wave velocity structure derived from teleseismic Rayleigh and Love waves using TriNet broadband seismic data. Phase velocity maps, constructed between 20 and 55 mHz for Rayleigh waves and between 25 and 45 mHz for Love waves, were inverted for S-wave velocity structure at depth. Our starting model is SCEC 2.2, which has detailed crustal structure, but laterally homogeneous upper mantle structure. Depth resolution from the data set is good from the surface to approximately 100 km, but deteriorates rapidly beyond this depth. Our analysis indicates that, while Rayleigh wave data are mostly sensitive to mantle structure, Love wave data require some modifications of crustal structure from SCEC 2.2 model. Various regions in Southern California have different seismic-velocity signatures in terms of fast and slow S-wave velocities: In the Southern Sierra, both the crust and mantle are slow. In the Mojave desert, mid-crustal depths tend to show slow velocities, which are already built into SCEC 2.2. In the Transverse Ranges, the lower crust and mantle are both fast. Our Love wave results require much faster crustal velocity than those in SCEC 2.2 in this region. In the Peninsular ranges, both the crust and mantle are fast with mantle fast velocity extending to about 70 km. This is slightly more shallow than the depth extent under the Transverse Ranges, yet it is surprisingly deep. Under the Salton Sea, the upper crust is very slow and the upper mantle is also slow. However, these two slow velocity layers are separated by faster velocity lower crust which creates a distinct contrast with respect to the adjacent slow velocity regions. Existence of such a relatively fast layer, sandwiched by slow velocities, are related to features in phase velocity maps, especially in the low frequency Love wave phase velocity map (25 mHz) and the high frequency Rayleigh wave phase velocity maps (above 40 mHz). Such a feature may be related to partial melting processes under the Salton Sea.

  6. Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities

    PubMed Central

    Du, Peng; Calder, Stefan; Angeli, Timothy R.; Sathar, Shameer; Paskaranandavadivel, Niranchan; O'Grady, Gregory; Cheng, Leo K.

    2018-01-01

    Gastrointestinal (GI) motility is regulated in part by electrophysiological events called slow waves, which are generated by the interstitial cells of Cajal (ICC). Slow waves propagate by a process of “entrainment,” which occurs over a decreasing gradient of intrinsic frequencies in the antegrade direction across much of the GI tract. Abnormal initiation and conduction of slow waves have been demonstrated in, and linked to, a number of GI motility disorders. A range of mathematical models have been developed to study abnormal slow waves and applied to propose novel methods for non-invasive detection and therapy. This review provides a general outline of GI slow wave abnormalities and their recent classification using multi-electrode (high-resolution) mapping methods, with a particular emphasis on the spatial patterns of these abnormal activities. The recently-developed mathematical models are introduced in order of their biophysical scale from cellular to whole-organ levels. The modeling techniques, main findings from the simulations, and potential future directions arising from notable studies are discussed. PMID:29379448

  7. Phase and frequency structure of superradiance pulses generated by relativistic Ka-band backward-wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.

    2016-08-15

    Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.

  8. A current drive by using the fast wave in frequency range higher than two timeslower hybrid resonance frequency on tokamaks

    NASA Astrophysics Data System (ADS)

    Kim, Sun Ho; Hwang, Yong Seok; Jeong, Seung Ho; Wang, Son Jong; Kwak, Jong Gu

    2017-10-01

    An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh) could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.

  9. Slow wave structures integrated with ferromagnetic and ferro-electric thin films for smart RF applications

    NASA Astrophysics Data System (ADS)

    Rahman, B. M. Farid

    Modern communications systems are following a common trend to increase the operational frequency, level of integration and number of frequency bands. Although 90-95% components in a cell phone are passives which take 80% of the total board area. High performance RF passive components play limited role and are desired towards this technological advancement. Slow wave structure is one of the most promising candidates to design compact RF and mm-Wave passive components. Slow wave structures are the specially designed transmission line realized by placing the alternate narrow and wide signal conductors in order to reduce the physical size of the components. This dissertation reports multiband slow wave structures integrated with ferromagnetic and ferroelectric thin films and their RF applications. A comparative study on different types of coplanar wave-guide (CPW) slow wave structures (SWS) has been demonstrated for the first time. Slow wave structures with various shapes have been investigated and optimized with various signal conductor shapes, ground conductor shapes and pitch of the sections. Novel techniques i.e. the use of the defected ground structure and the different signal conductor length has been implemented to achieve higher slow wave effect with minimum loss. The measured results have shown the reduction of size over 43.47% and 37.54% in the expense of only 0.27dB and 0.102dB insertion loss respectively which can reduce the area of a designed branch line coupler by 68% and 61% accordingly. Permalloy (Py) is patterned on top of the developed SWS for the first time to further increase the slow wave effect and provide tunable inductance value. High frequency applications of Py are limited by its ferro-magnetic resonance frequency since the inductance value decreases beyond that. Sub-micrometer patterning of Py has increased FMR frequency until 6.3GHz and 3.2GHz by introducing the shape anisotropy. For the SWS with patterned Py, the size of the quarter wavelength has been reduced from 14.86mm to 4.7mm at 2GHz. DC current which is the most convenient and available tuning parameter in a practical circuit board has been used, the developed SWS can function as quarter wave transmission line from 2GHz to 1.80GHz (i.e. 10%). Lead Zirconium Titanate (PZT) is grown and patterned on top of the section with standard sol-gel method to increase capacitance value. The inter digit capacitor type structure along with PZT thin film has been adopted and results showed capacitance value increment by 36%. An electric field between signal and ground has been applied to change the polarization of the thin film which resulted in a tuning of center frequency by 15% (1.75GHz to 2GHz). In addition, a novel approach has been implemented by integrating both the ferromagnetic and the ferroelectric thin films simultaneously to achieve higher slow wave effect, wider tuning range and smaller variation in Characteristics Impedance. The size of the final structure for a quarter wavelengths has been reduced from 14.86mm to 3.98mm while the center frequency has been tuned from 2GHz to 1.5GHz (i.e. 25%). Tunable RF applications of the ferro-magnetic thin films are also demonstrated as a DC current band pass filter, tunable noise suppressor and meander line inductor. A well designed frequency tunable band pass filter (BPF) is implemented at 4GHz with patterned Permalloy. The pass band frequency of a band pass filter has been tuned from 4GHz to 4.02GHz by applying a DC current. The suppression frequency of the developed noise suppressor is tuned from 4.8GHz to 6GHz and 4GHz to 6GHz by changing the aspect ratio of the Py bars and the gap in between them. Moreover, a novel way of tuning the stop band frequency of the noise suppressor by using an external direct current changed the suppression frequency from 6GHz to 4.3GHz. A pass band loss of 1.5%, less than 2° transmitted signal phase distortion, and 3 dB extra return loss of the designed noise suppressor showed the promise the noise suppressors. The increase in the number of turns of a meander line inductor has increased the inductance density from 2565nH/m to 3396nH/m while application of the patterned Py has increased the inductance density from 2565nH/m to 3060nH/m. The tuning of the meander line inductor has been performed by applying DC current until the FMR frequency 4.51GHz.

  10. The Effect of Saturation on Shear Wave Anisotropy in a Transversely Isotropic Medium

    NASA Astrophysics Data System (ADS)

    Li, W.; Pyrak-Nolte, L. J.

    2010-12-01

    Seismic monitoring of fluid distributions in the subsurface requires an understanding of the effect of fluid saturation on the anisotropic properties of layered media. Austin Chalk is a carbonate rock composed mainly of calcite (99.9%) with fine bedding caused by a weakly-directed fabric. In this paper, we assess the shear-wave anisotropy of Austin Chalk and the effect of saturation on interpreting anisotropy based on shear wave velocity, attenuation and spectral content as a function of saturation. In the laboratory, we performed full shear-waveform measurements on several dry cubic samples of Austin Chalk with dimensions 50mm x 50mm x 50mm. Two shear-wave contact transducers (central Frequency 1 MHz) were use to send and receive signals. Data was collected for three orthogonal orientations of the sample and as a function of shear wave polarization relative to the layers in the sample. For the waves propagated parallel to the layers, both fast and slow shear waves were observed with velocities of 3444 m/s and 3193 m/s, respectively. It was noted that the minimum and maximum shear wave velocities did not occur when the shear wave polarization were perpendicular or parallel to the layering in the sample but occurred at an orientation of ~25 degrees from the normal to the layers. The sample was then vacuum saturated with water for approximately ~15 hours. The same measurements were performed on the saturated sample as those on the dry sample. Both shear wave velocities observed decreased upon water-saturation with corresponding velocities of 3155 m/s and 2939 m/s, respectively. In the dry condition the difference between the fast and slow shear wave velocities was 250 m/s. This difference decreased to 215 m/s after fluid saturation. In both the dry and saturated condition, the shear wave velocity for waves propagated perpendicularly to the layers was independent of polarization and had the same magnitude as that of the slow shear wave. A wavelet analysis was performed to determine changes in the spectral content of the signals upon saturation as well velocity dispersion. We found that (1) low frequency components exhibit a larger difference in time delay between the fast and slow shear waves for the water-saturated condition than for the dry condition; (2) that high frequency components have relatively small differences in time delay between the dry and saturated conditions; and (3) the dominant frequency shifted to lower frequencies for the fast shear wave upon saturation while no change in dominant frequency was observed for the slow shear wave upon saturation. Thus, fluid saturation affects shear velocity as well as the spectral content of the signal. Acknowledgments: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022), by Exxon Mobil Upstream Research Company and the GeoMathematical Imaging Group at Purdue University.

  11. Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  12. Experimental observation of sub-terahertz backward-wave amplification in a multi-level microfabricated slow-wave circuit

    NASA Astrophysics Data System (ADS)

    Baik, Chan-Wook; Ahn, Ho Young; Kim, Yongsung; Lee, Jooho; Hong, Seogwoo; Lee, Sang Hun; Choi, Jun Hee; Kim, Sunil; Jeon, So-Yeon; Yu, SeGi; Collins, George; Read, Michael E.; Lawrence Ives, R.; Kim, Jong Min; Hwang, Sungwoo

    2015-11-01

    In our earlier paper dealing with dispersion retrieval from ultra-deep, reactive-ion-etched, slow-wave circuits on silicon substrates, it was proposed that splitting high-aspect-ratio circuits into multilevels enabled precise characterization in sub-terahertz frequency regime. This achievement prompted us to investigate beam-wave interaction through a vacuum-sealed integration with a 15-kV, 85-mA, thermionic, electron gun. Our experimental study demonstrates sub-terahertz, backward-wave amplification driven by an external oscillator. The measured output shows a frequency downshift, as well as power amplification, from beam loading even with low beam perveance. This offers a promising opportunity for the development of terahertz radiation sources, based on silicon technologies.

  13. Experimental observation of sub-terahertz backward-wave amplification in a multi-level microfabricated slow-wave circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baik, Chan-Wook, E-mail: cw.baik@samsung.com; Ahn, Ho Young; Kim, Yongsung

    2015-11-09

    In our earlier paper dealing with dispersion retrieval from ultra-deep, reactive-ion-etched, slow-wave circuits on silicon substrates, it was proposed that splitting high-aspect-ratio circuits into multilevels enabled precise characterization in sub-terahertz frequency regime. This achievement prompted us to investigate beam-wave interaction through a vacuum-sealed integration with a 15-kV, 85-mA, thermionic, electron gun. Our experimental study demonstrates sub-terahertz, backward-wave amplification driven by an external oscillator. The measured output shows a frequency downshift, as well as power amplification, from beam loading even with low beam perveance. This offers a promising opportunity for the development of terahertz radiation sources, based on silicon technologies.

  14. Surface Current Density Mapping for Identification of Gastric Slow Wave Propagation

    PubMed Central

    Bradshaw, L. A.; Cheng, L. K.; Richards, W. O.; Pullan, A. J.

    2009-01-01

    The magnetogastrogram records clinically relevant parameters of the electrical slow wave of the stomach noninvasively. Besides slow wave frequency, gastric slow wave propagation velocity is a potentially useful clinical indicator of the state of health of gastric tissue, but it is a difficult parameter to determine from noninvasive bioelectric or biomagnetic measurements. We present a method for computing the surface current density (SCD) from multichannel magnetogastrogram recordings that allows computation of the propagation velocity of the gastric slow wave. A moving dipole source model with hypothetical as well as realistic biomagnetometer parameters demonstrates that while a relatively sparse array of magnetometer sensors is sufficient to compute a single average propagation velocity, more detailed information about spatial variations in propagation velocity requires higher density magnetometer arrays. Finally, the method is validated with simultaneous MGG and serosal EMG measurements in a porcine subject. PMID:19403355

  15. Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Wagner, Alexander; Schülein, Erich; Petervari, René; Hannemann, Klaus; Ali, Syed R. C.; Cerminara, Adriano; Sandham, Neil D.

    2018-05-01

    Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels were conducted by means of a slender wedge probe and direct numerical simulation. The study comprises comparative tunnel noise measurements at Mach 3, 6 and 7.4 in two Ludwieg tube facilities and a shock tunnel. Surface pressure fluctuations were measured over a wide range of frequencies and test conditions including harsh test environments not accessible to measurement techniques such as pitot probes and hot-wire anemometry. Quantitative results of the tunnel noise are provided in frequency ranges relevant for hypersonic boundary layer transition. In combination with the experimental studies, direct numerical simulations of the leading-edge receptivity to fast and slow acoustic waves were performed for the slender wedge probe at conditions corresponding to the experimental free-stream conditions. The receptivity to fast acoustic waves was found to be characterized by an early amplification of the induced fast mode. For slow acoustic waves an initial decay was found close to the leading edge. At all Mach numbers, and for all considered frequencies, the leading-edge receptivity to fast acoustic waves was found to be higher than the receptivity to slow acoustic waves. Further, the effect of inclination angles of the acoustic wave with respect to the flow direction was investigated. The combined numerical and experimental approach in the present study confirmed the previous suggestion that the slow acoustic wave is the dominant acoustic mode in noisy hypersonic wind tunnels.

  16. Slow waves in microchannel metal waveguides and application to particle acceleration

    NASA Astrophysics Data System (ADS)

    Steinhauer, L. C.; Kimura, W. D.

    2003-06-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  17. Memory improvement via slow-oscillatory stimulation during sleep in older adults.

    PubMed

    Westerberg, Carmen E; Florczak, Susan M; Weintraub, Sandra; Mesulam, M-Marsel; Marshall, Lisa; Zee, Phyllis C; Paller, Ken A

    2015-09-01

    We examined the intriguing but controversial idea that disrupted sleep-dependent consolidation contributes to age-related memory decline. Slow-wave activity during sleep may help strengthen neural connections and provide memories with long-term stability, in which case decreased slow-wave activity in older adults could contribute to their weaker memories. One prediction from this account is that age-related memory deficits should be reduced by artificially enhancing slow-wave activity. In young adults, applying transcranial current oscillating at a slow frequency (0.75 Hz) during sleep improves memory. Here, we tested whether this procedure can improve memory in older adults. In 2 sessions separated by 1 week, we applied either slow-oscillatory stimulation or sham stimulation during an afternoon nap in a double-blind, crossover design. Memory tests were administered before and after sleep. A larger improvement in word-pair recall and higher slow-wave activity was observed with slow-oscillatory stimulation than with sham stimulation. This is the first demonstration that this procedure can improve memory in older adults, suggesting that declarative memory performance in older adults is partly dependent on slow-wave activity during sleep. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Zhenhua; Yu, Lingyu

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less

  19. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

    DOE PAGES

    Tian, Zhenhua; Yu, Lingyu

    2017-01-05

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less

  20. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates.

    PubMed

    Tian, Zhenhua; Yu, Lingyu

    2017-01-05

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.

  1. Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide

    NASA Astrophysics Data System (ADS)

    Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu

    2018-05-01

    A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.

  2. Rg-Lg coupling as a Lg-wave excitation mechanism

    NASA Astrophysics Data System (ADS)

    Ge, Z.; Xie, X.

    2003-12-01

    Regional phase Lg is predominantly comprised of shear wave energy trapped in the crust. Explosion sources are expected to be less efficient for excitation of Lg phases than earthquakes to the extent that the source can be approximated as isotropic. Shallow explosions generate relatively large surface wave Rg compared to deeper earthquakes, and Rg is readily disrupted by crustal heterogeneity. Rg energy may thus scatter into trapped crustal S-waves near the source region and contribute to low-frequency Lg wave. In this study, a finite-difference modeling plus the slowness analysis are used for investigating the above mentioned Lg-wave excitation mechanism. The method allows us to investigate near source energy partitioning in multiple domains including frequency, slowness and time. The main advantage of this method is that it can be applied at close range, before Lg is actually formed, which allows us to use very fine near source velocity model to simulate the energy partitioning process. We use a layered velocity structure as the background model and add small near source random velocity patches to the model to generate the Rg to Lg coupling. Two types of simulations are conducted, (1) a fixed shallow explosion source vs. randomness at different depths and (2) a fixed shallow randomness vs. explosion sources at different depths. The results show apparent couplings between the Rg and Lg waves at lower frequencies (0.3-1.5 Hz). A shallow source combined with shallow randomness generates the maximum Lg-wave, which is consistent with the Rg energy distribution of a shallow explosion source. The Rg energy and excited Lg energy show a near linear relationship. The numerical simulation and slowness analysis suggest that the Rg to Lg coupling is an effective excitation mechanism for low frequency Lg-waves from a shallow explosion source.

  3. Novel high-gain, improved-bandwidth, finned-ladder V-band Traveling-Wave Tube slow-wave circuit design

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1994-01-01

    The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.

  4. Three-Dimensional Simulation of Traveling-Wave Tube Cold-Test Characteristics Using MAFIA

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1995-01-01

    The three-dimensional simulation code MAFIA was used to compute the cold-test parameters - frequency-phase dispersion, beam on-axis interaction impedance, and attenuation - for two types of traveling-wave tube (TWT) slow-wave circuits. The potential for this electromagnetic computer modeling code to reduce the time and cost of TWT development is demonstrated by the high degree of accuracy achieved in calculating these parameters. Generalized input files were developed for ferruled coupled-cavity and TunneLadder slow-wave circuits. These files make it easy to model circuits of arbitrary dimensions. The utility of these files was tested by applying each to a specific TWT slow-wave circuit and comparing the results with experimental data. Excellent agreement was obtained.

  5. Generalized three-dimensional simulation of ferruled coupled-cavity traveling-wave-tube dispersion and impedance characteristics

    NASA Technical Reports Server (NTRS)

    Maruschek, Joseph W.; Kory, Carol L.; Wilson, Jeffrey D.

    1993-01-01

    The frequency-phase dispersion and Pierce on-axis interaction impedance of a ferruled, coupled-cavity, traveling-wave tube (TWT), slow-wave circuit were calculated using the three-dimensional simulation code Micro-SOS. The utilization of the code to reduce costly and time-consuming experimental cold tests is demonstrated by the accuracy achieved in calculating these parameters. A generalized input file was developed so that ferruled coupled-cavity TWT slow-wave circuits of arbitrary dimensions could be easily modeled. The practicality of the generalized input file was tested by applying it to the ferruled coupled-cavity slow-wave circuit of the Hughes Aircraft Company model 961HA TWT and by comparing the results with experimental results.

  6. 3D Modeling of Antenna Driven Slow Waves Excited by Antennas Near the Plasma Edge

    NASA Astrophysics Data System (ADS)

    Smithe, David; Jenkins, Thomas

    2016-10-01

    Prior work with the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas has highlighted the possibility of slow wave excitation at the very low end of the SOL density range, and thus the prudent need for a slow-time evolution model to treat SOL density modifications due to the RF itself. At higher frequency, the DIII-D helicon antenna has much easier access to a parasitic slow wave excitation, and in this case the Faraday screen provides the dominant means of controlling the content of the launched mode, with antenna end-effects remaining a concern. In both cases, the danger is the same, with the slow-wave propagating into a lower-hybrid resonance layer a short distance ( cm) away from the antenna, which would parasitically absorb power, transferring energy to the SOL edge plasma, primarily through electron-neutral collisions. We will present 3D modeling of antennas at both ICRF and helicon frequencies. We've added a slow-time evolution capability for the SOL plasma density to include ponderomotive force driven rarefaction from the strong fields in the vicinity of the antenna, and show initial application to NSTX antenna geometry and plasma configurations. The model is based on a Scalar Ponderomotive Potential method, using self-consistently computed local field amplitudes from the 3D simulation.

  7. A theoretical analysis of anatomical and functional intestinal slow wave re-entry.

    PubMed

    Du, Peng; O'Grady, Gregory; Cheng, Leo K

    2017-07-21

    Intestinal bioelectrical slow waves are a key regulator of intestinal motility. Peripheral pacemakers, ectopic initiations and sustained periods of re-entrant activities have all been experimentally observed to be important factors in setting the frequency of intestinal slow waves, but the tissue-level mechanisms underpinning these activities are unclear. This theoretical analysis aimed to define the initiation, maintenance, and termination criteria of two classes of intestinal re-entrant activities: anatomical re-entry and functional re-entry. Anatomical re-entry was modeled in a three-dimensional (3D) cylindrical model, and functional rotor was modeled in a 2D rectangle model. A single-pulse stimulus was used to invoke an anatomical re-entry and a prolonged refractory block was used to invoke the rotor. In both cases, the simulated re-entrant activities operated at frequencies above the baseline entrainment frequency. The anatomical re-entry simulation results demonstrated that a temporary functional refractory block would be required to initiate the re-entrant activity in a single direction around the cylindrical model. The rotor could be terminated by a single-pulse stimulus delivered around the core of the rotor. In conclusion, the simulation results provide the following new insights into the mechanisms of intestinal re-entry: (i) anatomical re-entry is only maintained within a specific range of velocities, outside of which the re-entrant activities become either an ectopic activity or simultaneous activations of the intestinal wall; (ii) a maintained rotor entrained slow waves faster in the antegrade direction than in the retrograde direction. Simulations are shown to be a valuable tool for achieving novel insights into the mechanisms of intestinal slow wave dysrhythmia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Lower hybrid accessibility in a large, hot reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziubek, R.A.

    1995-02-01

    Recent theoretical and experimental results indicate that driving a current in the outer radius of an RPF suppresses sawtooth activity and increases particle and energy confinement times. One candidate for a form of steady state current drive is the slow wave at the lower hybrid frequency. Here, the accessibility of such a wave in an RFP plasma is investigated theoretically, with focus on the RFX machine of Padua, Italy. To drive current, the slow wave with frequency between 1.0--1.5 GHz is considered where optimal Landau damping is desired at r/a {approximately} 0.7. By numerically determining the values of the wave`smore » perpendicular index of refraction which satisfy the hot plasma dispersion relation, regions of propagation and evanescence can be found. The path of the wave can then be traced over a contour map of these regions so that accessibility can be clearly seen. The possibility of mode conversion events can be ascertained by plotting the values of the perpendicular index of refraction for the fast and slow wave and observing convergence points. To locate regions of maximum Landau damping, a technique developed by Stix was adapted for use with the slow wave in an RFP plasma. Results show that the slow wave is accessible to the target region without mode conversion so long as the value of the parallel index of refraction is correctly chosen at the edge of the plasma. Landau damping can also be optimized with this method. In an RFP, 2--20% of the electron population consists of fast electrons. Because this species alters the total electron distribution function and raises the effective temperature in the outer regions of the plasma, its presence is expected to shift the location of ideal Landau damping.« less

  9. Is There a Relation between EEG-Slow Waves and Memory Dysfunction in Epilepsy? A Critical Appraisal

    PubMed Central

    Höller, Yvonne; Trinka, Eugen

    2015-01-01

    Is there a relationship between peri-ictal slow waves, loss of consciousness, memory, and slow-wave sleep, in patients with different forms of epilepsy? We hypothesize that mechanisms, which result in peri-ictal slow-wave activity as detected by the electroencephalogram, could negatively affect memory processes. Slow waves (≤4 Hz) can be found in seizures with impairment of consciousness and also occur in focal seizures without impairment of consciousness but with inhibited access to memory functions. Peri-ictal slow waves are regarded as dysfunctional and are probably caused by mechanisms, which are essential to disturb the consolidation of memory entries in these patients. This is in strong contrast to physiological slow-wave activity during deep sleep, which is thought to group memory-consolidating fast oscillatory activity. In patients with epilepsy, slow waves may not only correlate with the peri-ictal clouding of consciousness, but could be the epiphenomenon of mechanisms, which interfere with normal brain function in a wider range. These mechanisms may have transient impacts on memory, such as temporary inhibition of memory systems, altered patterns of hippocampal–neocortical interactions during slow-wave sleep, or disturbed cross-frequency coupling of slow and fast oscillations. In addition, repeated tonic–clonic seizures over the years in uncontrolled chronic epilepsy may cause a progressive cognitive decline. This hypothesis can only be assessed in long-term prospective studies. These studies could disentangle the reversible short-term impacts of seizures, and the impacts of chronic uncontrolled seizures. Chronic uncontrolled seizures lead to irreversible memory impairment. By contrast, short-term impacts do not necessarily lead to a progressive cognitive decline but result in significantly impaired peri-ictal memory performance. PMID:26124717

  10. Kinetic theory and Vlasov simulation of nonlinear ion-acoustic waves in multi-ion species plasmas.

    PubMed

    Chapman, T; Berger, R L; Brunner, S; Williams, E A

    2013-05-10

    The theory of damping and nonlinear frequency shifts from particles resonant with ion-acoustic waves (IAWs) is presented for multi-ion species plasma and compared to driven wave Vlasov simulations. Two distinct IAW modes may be supported in multi-ion species plasmas, broadly classified as fast and slow by their phase velocity relative to the constituent ion thermal velocities. In current fusion-relevant long pulse experiments, the ion to electron temperature ratio, T(i)/T(e), is expected to reach a level such that the least damped and thus more readily driven mode is the slow mode, with both linear and nonlinear properties that are shown to differ significantly from the fast mode. The lighter ion species of the slow mode is found to make no significant contribution to the IAW frequency shift despite typically being the dominant contributor to the Landau damping.

  11. Detection of changes of high-frequency activity by statistical time-frequency analysis in epileptic spikes

    PubMed Central

    Kobayashi, Katsuhiro; Jacobs, Julia; Gotman, Jean

    2013-01-01

    Objective A novel type of statistical time-frequency analysis was developed to elucidate changes of high-frequency EEG activity associated with epileptic spikes. Methods The method uses the Gabor Transform and detects changes of power in comparison to background activity using t-statistics that are controlled by the false discovery rate (FDR) to correct type I error of multiple testing. The analysis was applied to EEGs recorded at 2000 Hz from three patients with mesial temporal lobe epilepsy. Results Spike-related increase of high-frequency oscillations (HFOs) was clearly shown in the FDR-controlled t-spectra: it was most dramatic in spikes recorded from the hippocampus when the hippocampus was the seizure onset zone (SOZ). Depression of fast activity was observed immediately after the spikes, especially consistently in the discharges from the hippocampal SOZ. It corresponded to the slow wave part in case of spike-and-slow-wave complexes, but it was noted even in spikes without apparent slow waves. In one patient, a gradual increase of power above 200 Hz preceded spikes. Conclusions FDR-controlled t-spectra clearly detected the spike-related changes of HFOs that were unclear in standard power spectra. Significance We developed a promising tool to study the HFOs that may be closely linked to the pathophysiology of epileptogenesis. PMID:19394892

  12. The origin of SH-wave resonance frequencies in sedimentary layers

    NASA Astrophysics Data System (ADS)

    van der Baan, Mirko

    2009-09-01

    Resonance frequencies are often analysed in geo-engineering studies to evaluate seismic risk and microzonation in urban areas. The Nakamura technique constitutes a popular approach that computes the spectral ratio of horizontal-to-vertical ground motion in ambient noise recordings to reveal the existence of any site resonance frequencies. Its theoretical basis remains however unclear with some authors arguing that the method de-emphasizes any Rayleigh-wave contributions and that the resonance frequencies are solely caused by vertically incident SH waves. Other authors explain the same resonance frequencies by the ellipticity of the fundamental Rayleigh wave. Recent numerical simulations reveal that the magnitude of the peak frequency is proportional to the relative portion of Love waves present. This study demonstrates that Love waves alone can be responsible for any observed resonance frequencies in sedimentary layers. Yet sharp SH-wave resonance frequencies are only excited by a source in the bedrock. These resonance frequencies are caused by inhomogeneous waves excited by the bedrock source that tunnel through the high-velocity bedrock to emerge in the low-velocity sediments with a very reduced range of slownesses. The resulting SH waves are then free to interfere constructively thereby creating the observed resonance frequencies. This general trigger mechanism leads to resonances that are almost offset independent. The resulting resonance frequencies map onto points of maximum curvature in the Love-wave phase-velocity dispersion curves at or just beyond the critical horizontal slowness. They can be analysed with the quarter-wavelength law if a large velocity contrast exists between the unconsolidated sediments and the bedrock. A minor modification of the quarter-wavelength law provides more accurate predictions, also for smaller velocity contrasts. Multisource simulations show that site amplification factors as determined by horizontal-over-vertical (H/V) spectral ratios would not only depend on the relative portion of Love waves in the total wavefield but also on the depth distribution and the relative strength of the SH sources inside the bedrock compared with those in the sediments. An accurate interpretation of site amplification factors by means of H/V peak frequencies would thus require in-depth knowledge of the causes and origins of the local microseismic noise field.

  13. Finite-frequency wave propagation through outer rise fault zones and seismic measurements of upper mantle hydration

    USGS Publications Warehouse

    Miller, Nathaniel; Lizarralde, Daniel

    2016-01-01

    Effects of serpentine-filled fault zones on seismic wave propagation in the upper mantle at the outer rise of subduction zones are evaluated using acoustic wave propagation models. Modeled wave speeds depend on azimuth, with slowest speeds in the fault-normal direction. Propagation is fastest along faults, but, for fault widths on the order of the seismic wavelength, apparent wave speeds in this direction depend on frequency. For the 5–12 Hz Pn arrivals used in tomographic studies, joint-parallel wavefronts are slowed by joints. This delay can account for the slowing seen in tomographic images of the outer rise upper mantle. At the Middle America Trench, confining serpentine to fault zones, as opposed to a uniform distribution, reduces estimates of bulk upper mantle hydration from ~3.5 wt % to as low as 0.33 wt % H2O.

  14. An observation related to directional attenuation of SKS waves propagating in anisotropic media

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xue, Mei

    2015-04-01

    Azimuthal anisotropy of attenuation is a physical phenomenon related to the directional change of attenuation. This study examines the frequency properties and directional attenuation of SKS waves. The directional frequency-dependent characteristics of SKS waves are investigated in the frequency band of 0.02-0.5 Hz using data from 53 permanent seismic stations located throughout the northern Yangtze Craton, the southern North China Craton and adjacent areas. In addition to normal splitting behavior, the analysis reveals that many SKS splitting measurements exhibit a lemniscate shape, reflecting frequency differences along fast and slow polarization directions. Frequency analysis shows that spectral ratios between fast/slow components of the lemniscate-type splitting results fluctuate strongly in a higher frequency band of 0.2-0.5 Hz, and fluctuate less within the main frequency band of 0.02-0.2 Hz. For each station, the ratio of the peak amplitude of the fast/slow components can be represented as a cotangential function of event backazimuth multiplying with a constant = 0.42 ± 0.10. This transformation shows that the regional average angles consistently fall within the relatively narrow range of -46.5 ± 3° with respect to the north, suggesting that a regional tectonic controlling factor dictates the relatively uniform directional attenuation of SKS waves within the frequency band of 0.02-0.2 Hz. Further analysis is performed by projecting the SKS waves onto the components along and perpendicular to the regional average angles. The calculation also shows that, in the 0.02-0.2 Hz band, the relationship between amplitude ratio and event backazimuth matches a cotangential functions with the same best matching angles and constant a < 1. Synthetic calculations demonstrate that although different filters influence the splitting parameters, attenuation anisotropy cannot be explained by elastic anisotropic media, including multilayer anisotropy and anisotropy with a tilting symmetrical axis. This observed behavior of the SKS wave may arise from the combined effects of frequency-dependent attenuation anisotropy and small-scale heterogeneities in the crust and the upper mantle.

  15. Properties of slow oscillation during slow-wave sleep and anesthesia in cats.

    PubMed

    Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor

    2011-10-19

    Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine-xylazine anesthesia.

  16. Relationship between delta power and the electrocardiogram-derived cardiopulmonary spectrogram: possible implications for assessing the effectiveness of sleep.

    PubMed

    Thomas, Robert Joseph; Mietus, Joseph E; Peng, Chung-Kang; Guo, Dan; Gozal, David; Montgomery-Downs, Hawley; Gottlieb, Daniel J; Wang, Cheng-Yen; Goldberger, Ary L

    2014-01-01

    The physiologic relationship between slow-wave activity (SWA) (0-4 Hz) on the electroencephalogram (EEG) and high-frequency (0.1-0.4 Hz) cardiopulmonary coupling (CPC) derived from electrocardiogram (ECG) sleep spectrograms is not known. Because high-frequency CPC appears to be a biomarker of stable sleep, we tested the hypothesis that that slow-wave EEG power would show a relatively fixed-time relationship to periods of high-frequency CPC. Furthermore, we speculated that this correlation would be independent of conventional nonrapid eye movement (NREM) sleep stages. We analyzed selected datasets from an archived polysomnography (PSG) database, the Sleep Heart Health Study I (SHHS-I). We employed the cross-correlation technique to measure the degree of which 2 signals are correlated as a function of a time lag between them. Correlation analyses between high-frequency CPC and delta power (computed both as absolute and normalized values) from 3150 subjects with an apnea-hypopnea index (AHI) of ≤5 events per hour of sleep were performed. The overall correlation (r) between delta power and high-frequency coupling (HFC) power was 0.40±0.18 (P=.001). Normalized delta power provided improved correlation relative to absolute delta power. Correlations were somewhat reduced in the second half relative to the first half of the night (r=0.45±0.20 vs r=0.34±0.23). Correlations were only affected by age in the eighth decade. There were no sex differences and only small racial or ethnic differences were noted. These results support a tight temporal relationship between slow wave power, both within and outside conventional slow wave sleep periods, and high frequency cardiopulmonary coupling, an ECG-derived biomarker of "stable" sleep. These findings raise mechanistic questions regarding the cross-system integration of neural and cardiopulmonary control during sleep. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory

    PubMed Central

    Wang, Kaier; Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Wilson, Marcus T.; Sleigh, Jamie W.

    2014-01-01

    The electroencephalogram (EEG) patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations during transition to unconsciousness may help us to identify drug-induced alterations of the underlying brain state, and provide insight into the mechanisms of general anesthesia. Although cellular-based mechanisms have been proposed, the origin of the slow oscillation has not yet been unambiguously established. A recent theoretical study by Steyn-Ross et al. (2013) proposes that the slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious state signposted by emergent low-frequency oscillations with chaotic dynamics in space and time. They suggest that anesthetic slow-waves arise from a competitive interaction between symmetry-breaking instabilities in space (Turing) and time (Hopf), modulated by gap-junction coupling strength. A significant prediction of their model is that EEG phase coherence will decrease as the cortex transits from Turing–Hopf balance (wake) to Hopf-dominated chaotic slow-waves (unconsciousness). Here, we investigate changes in phase coherence during induction of general anesthesia. After examining 128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia, we report a significant drop in sub-delta band (0.05–1.5 Hz) slow-wave coherence between frontal, occipital, and frontal–occipital electrode pairs, with the most pronounced wake-vs.-unconscious coherence changes occurring at the frontal cortex. PMID:25400558

  18. Low-Frequency Waves in Cold Three-Component Plasmas

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong

    2016-09-01

    The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS

  19. Extracellular Cl- regulates electrical slow waves and setting of smooth muscle membrane potential by interstitial cells of Cajal in mouse jejunum.

    PubMed

    Saravanaperumal, Siva Arumugam; Gibbons, Simon J; Malysz, John; Sha, Lei; Linden, David R; Szurszewski, Joseph H; Farrugia, Gianrico

    2018-01-01

    What is the central question of this study? The aim was to investigate the roles of extracellular chloride in electrical slow waves and resting membrane potential of mouse jejunal smooth muscle by replacing chloride with the impermeant anions gluconate and isethionate. What is the main finding and its importance? The main finding was that in smooth muscle cells, the resting Cl - conductance is low, whereas transmembrane Cl - movement in interstitial cells of Cajal (ICCs) is a major contributor to the shape of electrical slow waves. Furthermore, the data confirm that ICCs set the smooth muscle membrane potential and that altering Cl - homeostasis in ICCs can alter the smooth muscle membrane potential. Intracellular Cl - homeostasis is regulated by anion-permeable channels and transporters and contributes to excitability of many cell types, including smooth muscle and interstitial cells of Cajal (ICCs). Our aims were to investigate the effects on electrical activity in mouse jejunal muscle strips of replacing extracellular Cl - (Cl - o ) with the impermeant anions gluconate and isethionate. On reducing Cl - o , effects were observed on electrical slow waves, with small effects on smooth muscle membrane voltage (E m ). Restoration of Cl - hyperpolarized smooth muscle E m proportional to the change in Cl - o concentration. Replacement of 90% of Cl - o with gluconate reversibly abolished slow waves in five of nine preparations. Slow waves were maintained in isethionate. Gluconate and isethionate substitution had similar concentration-dependent effects on peak amplitude, frequency, width at half peak amplitude, rise time and decay time of residual slow waves. Gluconate reduced free ionized Ca 2+ in Krebs solutions to 0.13 mm. In Krebs solutions containing normal Cl - and 0.13 mm free Ca 2+ , slow wave frequency was lower, width at half peak amplitude was smaller, and decay time was faster. The transient hyperpolarization following restoration of Cl - o was not observed in W/W v mice, which lack pacemaker ICCs in the small intestine. We conclude that in smooth muscle cells, the resting Cl - conductance is low, whereas transmembrane Cl - movement in ICCs plays a major role in generation or propagation of slow waves. Furthermore, these data support a role for ICCs in setting smooth muscle E m and that altering Cl - homeostasis in ICCs can alter smooth muscle E m . © 2017 Mayo Clinic. Experimental Physiology © 2017 The Physiological Society.

  20. Study of guided modes in three-dimensional composites

    NASA Astrophysics Data System (ADS)

    Baste, S.; Gerard, A.

    The propagation of elastic waves in a three-dimensional carbon-carbon composite is modeled with a mixed variational method, using the Bloch or Floquet theories and the Hellinger-Reissner function for two independent fields. The model of the equivalent homogeneous material only exists below a cut-off frequency of about 600 kHz. The existence below the cut-off frequency of two guided waves can account for the presence of a slow guided wave on either side of the cut-off frequency. Optical modes are generated at low frequencies, and can attain high velocites (rapid guided modes of 15,000 m/sec).

  1. Are Slow Waves of Intracranial Pressure Suppressed by General Anaesthesia?

    PubMed

    Lalou, Despina Afroditi; Czosnyka, Marek; Donnelly, Joseph; Lavinio, Andrea; Pickard, John D; Garnett, Matthew; Czosnyka, Zofia

    2018-01-01

    Slow waves of intracranial pressure (ICP) are spontaneous oscillations with a frequency of 0.3-4 cycles/min. They are often associated with pathological conditions, following vasomotor activity in the cranial enclosure. This study quantifies the effects of general anaesthesia (GA) on the magnitude of B-waves compared with natural sleep and the conscious state. Four groups of 30 patients each were formed to assess the magnitude of slow waves. Group A and group B consisted of normal pressure hydrocephalus (NPH) patients, each undergoing cerebrospinal fluid (CSF) infusion studies, conscious and under GA respectively. Group C comprised conscious, naturally asleep hydrocephalic patients undergoing overnight ICP monitoring; group D, which included deeply sedated head injury patients monitored in the intensive care unit (ICU), was compared with group C. The average amplitude for group A patients was higher (0.23 ± 0.10 mmHg) than that of group B (0.15 ± 0.10 mmHg; p = 0.01). Overnight magnitude of slow waves was higher in group C (0.20 ± 0.13 mmHg) than in group D (0.11 ± 0.09 mmHg; p = 0.002). Slow waves of ICP are suppressed by GA and deep sedation. When using slow waves in clinical decision-making, it is important to consider the patients' level of consciousness to avoid incorrect therapeutic and management decisions.

  2. Experimental and Automated Analysis Techniques for High-resolution Electrical Mapping of Small Intestine Slow Wave Activity

    PubMed Central

    Angeli, Timothy R; O'Grady, Gregory; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; Du, Peng; Pullan, Andrew J; Bissett, Ian P

    2013-01-01

    Background/Aims Small intestine motility is governed by an electrical slow wave activity, and abnormal slow wave events have been associated with intestinal dysmotility. High-resolution (HR) techniques are necessary to analyze slow wave propagation, but progress has been limited by few available electrode options and laborious manual analysis. This study presents novel methods for in vivo HR mapping of small intestine slow wave activity. Methods Recordings were obtained from along the porcine small intestine using flexible printed circuit board arrays (256 electrodes; 4 mm spacing). Filtering options were compared, and analysis was automated through adaptations of the falling-edge variable-threshold (FEVT) algorithm and graphical visualization tools. Results A Savitzky-Golay filter was chosen with polynomial-order 9 and window size 1.7 seconds, which maintained 94% of slow wave amplitude, 57% of gradient and achieved a noise correction ratio of 0.083. Optimized FEVT parameters achieved 87% sensitivity and 90% positive-predictive value. Automated activation mapping and animation successfully revealed slow wave propagation patterns, and frequency, velocity, and amplitude were calculated and compared at 5 locations along the intestine (16.4 ± 0.3 cpm, 13.4 ± 1.7 mm/sec, and 43 ± 6 µV, respectively, in the proximal jejunum). Conclusions The methods developed and validated here will greatly assist small intestine HR mapping, and will enable experimental and translational work to evaluate small intestine motility in health and disease. PMID:23667749

  3. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip.

    PubMed

    Shelly, David R; Beroza, Gregory C; Ide, Satoshi; Nakamula, Sho

    2006-07-13

    Non-volcanic seismic tremor was discovered in the Nankai trough subduction zone in southwest Japan and subsequently identified in the Cascadia subduction zone. In both locations, tremor is observed to coincide temporally with large, slow slip events on the plate interface downdip of the seismogenic zone. The relationship between tremor and aseismic slip remains uncertain, however, largely owing to difficulty in constraining the source depth of tremor. In southwest Japan, a high quality borehole seismic network allows identification of coherent S-wave (and sometimes P-wave) arrivals within the tremor, whose sources are classified as low-frequency earthquakes. As low-frequency earthquakes comprise at least a portion of tremor, understanding their mechanism is critical to understanding tremor as a whole. Here, we provide strong evidence that these earthquakes occur on the plate interface, coincident with the inferred zone of slow slip. The locations and characteristics of these events suggest that they are generated by shear slip during otherwise aseismic transients, rather than by fluid flow. High pore-fluid pressure in the immediate vicinity, as implied by our estimates of seismic P- and S-wave speeds, may act to promote this transient mode of failure. Low-frequency earthquakes could potentially contribute to seismic hazard forecasting by providing a new means to monitor slow slip at depth.

  4. Populations of striatal medium spiny neurons encode vibrotactile frequency in rats: modulation by slow wave oscillations

    PubMed Central

    Hawking, Thomas G.

    2013-01-01

    Dorsolateral striatum (DLS) is implicated in tactile perception and receives strong projections from somatosensory cortex. However, the sensory representations encoded by striatal projection neurons are not well understood. Here we characterized the contribution of DLS to the encoding of vibrotactile information in rats by assessing striatal responses to precise frequency stimuli delivered to a single vibrissa. We applied stimuli in a frequency range (45–90 Hz) that evokes discriminable percepts and carries most of the power of vibrissa vibration elicited by a range of complex fine textures. Both medium spiny neurons and evoked potentials showed tactile responses that were modulated by slow wave oscillations. Furthermore, medium spiny neuron population responses represented stimulus frequency on par with previously reported behavioral benchmarks. Our results suggest that striatum encodes frequency information of vibrotactile stimuli which is dynamically modulated by ongoing brain state. PMID:23114217

  5. Relationships between gastric slow wave frequency, velocity, and extracellular amplitude studied by a joint experimental-theoretical approach.

    PubMed

    Wang, T H-H; Du, P; Angeli, T R; Paskaranandavadivel, N; Erickson, J C; Abell, T L; Cheng, L K; O'Grady, G

    2018-01-01

    Gastric slow wave dysrhythmias are accompanied by deviations in frequency, velocity, and extracellular amplitude, but the inherent association between these parameters in normal activity still requires clarification. This study quantified these associations using a joint experimental-theoretical approach. Gastric pacing was conducted in pigs with simultaneous high-resolution slow wave mapping (32-256 electrodes; 4-7.6 mm spacing). Relationships between period, velocity, and amplitude were quantified and correlated for each wavefront. Human data from two existing mapping control cohorts were analyzed to extract and correlate these same parameters. A validated biophysically based ICC model was also applied in silico to quantify velocity-period relationships during entrainment simulations and velocity-amplitude relationships from membrane potential equations. Porcine pacing studies identified positive correlations for velocity-period (0.13 mm s -1 per 1 s, r 2 =.63, P<.001) and amplitude-velocity (74 μV per 1 mm s -1 , r 2 =.21, P=.002). In humans, positive correlations were also quantified for velocity-period (corpus: 0.11 mm s -1 per 1 s, r 2 =.16, P<.001; antrum: 0.23 mm s -1 per 1 s, r 2 =.55; P<.001), and amplitude-velocity (94 μV per 1 mm s -1 , r 2 =.56; P<.001). Entrainment simulations matched the experimental velocity-period relationships and demonstrated dependence on the slow wave recovery phase. Simulated membrane potential relationships were close to these experimental results (100 μV per 1 mm s -1 ). These data quantify the relationships between slow wave frequency, velocity, and extracellular amplitude. The results from both human and porcine studies were in keeping with biophysical models, demonstrating concordance with ICC biophysics. These relationships are important in the regulation of gastric motility and will help to guide interpretations of dysrhythmias. © 2017 John Wiley & Sons Ltd.

  6. Properties of slow oscillation during slow-wave sleep and anesthesia in cats

    PubMed Central

    Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor

    2011-01-01

    Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat, to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, while under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were largely uniform across cortical areas under anesthesia, but in SWS they were most pronounced in associative and visual areas, but smaller and less regular in somatosensory and motor cortices. We conclude that although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS as compared to ketamine-xylazine anesthesia. PMID:22016533

  7. Seismic noise frequency dependent P and S wave sources

    NASA Astrophysics Data System (ADS)

    Stutzmann, E.; Schimmel, M.; Gualtieri, L.; Farra, V.; Ardhuin, F.

    2013-12-01

    Seismic noise in the period band 3-10 sec is generated in the oceans by the interaction of ocean waves. Noise signal is dominated by Rayleigh waves but body waves can be extracted using a beamforming approach. We select the TAPAS array deployed in South Spain between June 2008 and September 2009 and we use the vertical and horizontal components to extract noise P and S waves, respectively. Data are filtered in narrow frequency bands and we select beam azimuths and slownesses that correspond to the largest continuous sources per day. Our procedure automatically discard earthquakes which are localized during short time durations. Using this approach, we detect many more noise P-waves than S-waves. Source locations are determined by back-projecting the detected slowness/azimuth. P and S waves are generated in nearby areas and both source locations are frequency dependent. Long period sources are dominantly in the South Atlantic and Indian Ocean whereas shorter period sources are rather in the North Atlantic Ocean. We further show that the detected S-waves are dominantly Sv-waves. We model the observed body waves using an ocean wave model that takes into account all possible wave interactions including coastal reflection. We use the wave model to separate direct and multiply reflected phases for P and S waves respectively. We show that in the South Atlantic the complex source pattern can be explained by the existence of both coastal and pelagic sources whereas in the North Atlantic most body wave sources are pelagic. For each detected source, we determine the equivalent source magnitude which is compared to the model.

  8. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  9. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation.

    PubMed

    Wear, Keith A

    2010-10-01

    The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.

  10. High-frequency waves in the corona due to null points

    NASA Astrophysics Data System (ADS)

    Santamaria, I. C.; Khomenko, E.; Collados, M.; de Vicente, A.

    2017-06-01

    This work aims to understand the behavior of non-linear waves in the vicinity of a coronal null point. In previous works we have shown that high-frequency waves are generated in such a magnetic configuration. This paper studies those waves in detail in order to provide a plausible explanation of their generation. We demonstrate that slow magneto-acoustic shock waves generated in the chromosphere propagate through the null point and produce a train of secondary shocks that escape along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 mHz. We speculate that this frequency may be sensitive to the atmospheric parameters in the corona and therefore can be used to probe the structure of this solar layer. Movies attached to Figs 2 and 4 are available at http://www.aanda.org

  11. Measurement of airborne ultrasonic slow waves in calcaneal cancellous bone.

    PubMed

    Strelitzki, R; Paech, V; Nicholson, P H

    1999-05-01

    Measurements of an airborne ultrasonic wave were made in defatted cancellous bone from the human calcaneus using standard ultrasonic equipment. The wave propagating under these conditions was consistent with a decoupled Biot slow wave travelling in the air alone, as previously reported in gas-saturated foams. Reproducible measurements of phase velocity and attenuation coefficient were possible, and an estimate of the tortuosity of the trabecular framework was derived from the high frequency limit of the phase velocity. Thus the method offers a new approach to the acoustic characterisation of bone in vitro which, in contrast to existing techniques, has the potential to yield information directly characterising the trabecular structure.

  12. The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, S. Krishna; Jess, D. B.; Doorsselaere, T. Van

    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which themore » oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.« less

  13. Comparison of shear-wave slowness profiles at 10 strong-motion sites from noninvasive SASW measurements and measurements made in boreholes

    USGS Publications Warehouse

    Brown, L.T.; Boore, D.M.; Stokoe, K.H.

    2002-01-01

    The spectral-analysis-of-surface-waves (SASW) method is a relatively new in situ method for determining shear-wave slownesses. All measurements are made on the ground surface, making it much less costly than methods that require boreholes. The SASW method uses a number of active sources (ranging from a commercial Vibroseis truck to a small handheld hammer for the study conducted here) and different receiver spacings to map a curve of apparent phase velocity versus frequency. With the simplifying assumption that the phase velocities correspond to fundamental mode surface waves, forward modeling yields an estimate of the sub-surface shear-wave slownesses. To establish the reliability of this indirect technique, we conducted a blind evaluation of the SASW method. SASW testing was performed at 10 strong-motion stations at which borehole seismic measurements were previously or subsequently made; if previously made, the borehole results were not used for the interpretation of the SASW data, and vice-versa. Comparisons of the shear-wave slownesses from the SASW and borehole measurements are generally very good. The differences in predicted ground-motion amplifications are less than about 15% for most frequencies. In addition, both methods gave the same NEHRP site classification for seven of the sites. For the other three sites the average velocities from the downhole measurements were only 5-13 m/sec larger than the velocity defining the class C/D boundary. This study demonstrates that in many situations the SASW method can provide subsurface information suitable for site response predictions.

  14. Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting.

    PubMed

    Helfrich, Randolph F; Mander, Bryce A; Jagust, William J; Knight, Robert T; Walker, Matthew P

    2018-01-03

    The coupled interaction between slow-wave oscillations and sleep spindles during non-rapid-eye-movement (NREM) sleep has been proposed to support memory consolidation. However, little evidence in humans supports this theory. Moreover, whether such dynamic coupling is impaired as a consequence of brain aging in later life, contributing to cognitive and memory decline, is unknown. Combining electroencephalography (EEG), structural MRI, and sleep-dependent memory assessment, we addressed these questions in cognitively normal young and older adults. Directional cross-frequency coupling analyses demonstrated that the slow wave governs a precise temporal coordination of sleep spindles, the quality of which predicts overnight memory retention. Moreover, selective atrophy within the medial frontal cortex in older adults predicted a temporal dispersion of this slow wave-spindle coupling, impairing overnight memory consolidation and leading to forgetting. Prefrontal-dependent deficits in the spatiotemporal coordination of NREM sleep oscillations therefore represent one pathway explaining age-related memory decline. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, T.; Yokoyama, T.; Goossens, M.

    2015-10-20

    In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation acrossmore » the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.« less

  16. Nonlinear extraordinary wave in dense plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.

    2013-10-15

    Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. Themore » possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.« less

  17. Resting-state slow wave power, healthy aging and cognitive performance.

    PubMed

    Vlahou, Eleni L; Thurm, Franka; Kolassa, Iris-Tatjana; Schlee, Winfried

    2014-05-29

    Cognitive functions and spontaneous neural activity show significant changes over the life-span, but the interrelations between age, cognition and resting-state brain oscillations are not well understood. Here, we assessed performance on the Trail Making Test and resting-state magnetoencephalographic (MEG) recordings from 53 healthy adults (18-89 years old) to investigate associations between age-dependent changes in spontaneous oscillatory activity and cognitive performance. Results show that healthy aging is accompanied by a marked and linear decrease of resting-state activity in the slow frequency range (0.5-6.5 Hz). The effects of slow wave power on cognitive performance were expressed as interactions with age: For older (>54 years), but not younger participants, enhanced delta and theta power in temporal and central regions was positively associated with perceptual speed and executive functioning. Consistent with previous work, these findings substantiate further the important role of slow wave oscillations in neurocognitive function during healthy aging.

  18. Constraints on the source parameters of low-frequency earthquakes on the San Andreas Fault

    USGS Publications Warehouse

    Thomas, Amanda M.; Beroza, Gregory C.; Shelly, David R.

    2016-01-01

    Low-frequency earthquakes (LFEs) are small repeating earthquakes that occur in conjunction with deep slow slip. Like typical earthquakes, LFEs are thought to represent shear slip on crustal faults, but when compared to earthquakes of the same magnitude, LFEs are depleted in high-frequency content and have lower corner frequencies, implying longer duration. Here we exploit this difference to estimate the duration of LFEs on the deep San Andreas Fault (SAF). We find that the M ~ 1 LFEs have typical durations of ~0.2 s. Using the annual slip rate of the deep SAF and the average number of LFEs per year, we estimate average LFE slip rates of ~0.24 mm/s. When combined with the LFE magnitude, this number implies a stress drop of ~104 Pa, 2 to 3 orders of magnitude lower than ordinary earthquakes, and a rupture velocity of 0.7 km/s, 20% of the shear wave speed. Typical earthquakes are thought to have rupture velocities of ~80–90% of the shear wave speed. Together, the slow rupture velocity, low stress drops, and slow slip velocity explain why LFEs are depleted in high-frequency content relative to ordinary earthquakes and suggest that LFE sources represent areas capable of relatively higher slip speed in deep fault zones. Additionally, changes in rheology may not be required to explain both LFEs and slow slip; the same process that governs the slip speed during slow earthquakes may also limit the rupture velocity of LFEs.

  19. Detection and characterization of lightning-based sources using continuous wavelet transform: application to audio-magnetotellurics

    NASA Astrophysics Data System (ADS)

    Larnier, H.; Sailhac, P.; Chambodut, A.

    2018-01-01

    Atmospheric electromagnetic waves created by global lightning activity contain information about electrical processes of the inner and the outer Earth. Large signal-to-noise ratio events are particularly interesting because they convey information about electromagnetic properties along their path. We introduce a new methodology to automatically detect and characterize lightning-based waves using a time-frequency decomposition obtained through the application of continuous wavelet transform. We focus specifically on three types of sources, namely, atmospherics, slow tails and whistlers, that cover the frequency range 10 Hz to 10 kHz. Each wave has distinguishable characteristics in the time-frequency domain due to source shape and dispersion processes. Our methodology allows automatic detection of each type of event in the time-frequency decomposition thanks to their specific signature. Horizontal polarization attributes are also recovered in the time-frequency domain. This procedure is first applied to synthetic extremely low frequency time-series with different signal-to-noise ratios to test for robustness. We then apply it on real data: three stations of audio-magnetotelluric data acquired in Guadeloupe, oversea French territories. Most of analysed atmospherics and slow tails display linear polarization, whereas analysed whistlers are elliptically polarized. The diversity of lightning activity is finally analysed in an audio-magnetotelluric data processing framework, as used in subsurface prospecting, through estimation of the impedance response functions. We show that audio-magnetotelluric processing results depend mainly on the frequency content of electromagnetic waves observed in processed time-series, with an emphasis on the difference between morning and afternoon acquisition. Our new methodology based on the time-frequency signature of lightning-induced electromagnetic waves allows automatic detection and characterization of events in audio-magnetotelluric time-series, providing the means to assess quality of response functions obtained through processing.

  20. Particle simulations of mode conversion between slow mode and fast mode in lower hybrid range of frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Guozhang; Xiang, Nong; Huang, Yueheng

    2016-01-15

    The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparablemore » to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ∼ 3ω{sub LH}, where ω{sub LH} represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ∼ 1.3ω{sub LH}), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.« less

  1. Simulation and development of novel slow-wave structures for miniaturized THz-band vacuum-tube devices

    NASA Astrophysics Data System (ADS)

    Benedik, Andrey I.; Karetnikova, Tatiana A.; Torgashov, Roman A.; Terentyuk, Artem G.; Rozhnev, Andrey G.; Torgashov, Gennadiy V.; Ryskin, Nikita M.

    2018-04-01

    Microfabricated vacuum-tube millimeter- and THz-band sources are of great interest for numerous applications such as communications, radar, sensors, imaging, etc. Recently, miniaturized sheet-beam traveling-wave tubes for sub-THz and THz operation have attracted a considerable interest. In this paper, we present the results of modeling and development of slow-wave structures (SWS) for medium power (10-100 W) traveling-wave tube (TWT) amplifiers and backwardwave oscillators (BWO) in near-THz frequency band. Different types of SWSs are considered, such as double-vane SWS for TWT with a sheet electron beam, a folded-waveguide SWS, and novel planar SWSs on dielectric substrates.

  2. The component structure of ERP subsequent memory effects in the Von Restorff paradigm and the word frequency effect in recall.

    PubMed

    Kamp, Siri-Maria; Brumback, Ty; Donchin, Emanuel

    2013-11-01

    We examined the degree to which ERP components elicited by items that are isolated from their context, either by their font size ("size isolates") or by their frequency of usage, are correlated with subsequent immediate recall. Study lists contained (a) 15 words including a size isolate, (b) 14 high frequency (HF) words with one low frequency word ("LF isolate"), or (c) 14 LF words with one HF word. We used spatiotemporal PCA to quantify ERP components. We replicated previously reported P300 subsequent memory effects for size isolates and found additional correlations with recall in the novelty P3, a right lateralized positivity, and a left lateralized slow wave that was distinct from the slow wave correlated with recall for nonisolates. LF isolates also showed evidence of a P300 subsequent memory effect and also elicited the left lateralized subsequent memory effect, supporting a role of distinctiveness in word frequency effects in recall. Copyright © 2013 Society for Psychophysiological Research.

  3. Theoretical, Experimental, and Computational Evaluation of Several Vane-Type Slow-Wave Structures

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.; Qureshi, A. Haq

    1994-01-01

    Several types of periodic vane slow-wave structures were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the MAFIA code. Computer-generated characteristics agreed to approximately within 2 percent of the experimental characteristics for all structures. The theoretical characteristics, however, deviated increasingly as the width to height ratio became smaller. Interaction impedances were also computed based on the experimental and computer-generated resonance frequency shifts due to the introduction of a perturbing dielectric rod.

  4. Enhanced traveling wave amplification of co-planar slow wave structure by extended phase-matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palm, Andrew; Sirigiri, Jagadishwar; Shin, Young-Min, E-mail: yshin@niu.edu

    2015-09-15

    The electron beam co-propagating with slow waves in a staggered double grating array (SDGA) efficiently amplifies millimeter and sub-millimeter waves over a wide spectrum. Our theoretical and numerical analyses show that the power amplification in the fundamental passband is enhanced by the extended beam-wave phase-matching. Particle-in-cell simulations on the SDGA slow wave structure, designed with 10.4 keV and 50–100 mA sheet beam, indicate that maintaining beam-wave synchronization along the entire length of the circuit improves the gain by 7.3% leading to a total gain of 28 dB, corresponding to 62 W saturated power at the middle of operating band, and a 3-dB bandwidthmore » of 7 GHz with 10.5% at V-band (73.5 GHz center frequency) with saturated peak power reaching 80 W and 28 dB at 71 GHz. These results also show a reasonably good agreement with analytic calculations based on Pierce small signal gain theory.« less

  5. Simulation studies of plasma waves in the electron foreshock - The generation of downshifted oscillations

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    The generation of waves with frequencies downshifted from the plasma frequency, as observed in the electron foreshock, is analyzed by particle simulation. Wave excitation differs fundamentally from the familiar excitation of the plasma eigenmodes by a gentle bump-on-tail electron distribution. Beam modes are destabilized by resonant interaction with bulk electrons, provided the beam velocity spread is very small. These modes are stabilized, starting with the higher frequencies, as the beam is broadened and slowed down by the interaction with the wave spectrum. Initially a very cold beam is also capable of exciting frequencies considerably above the plasma frequency, but such oscillations are quickly stabilized. Low-frequency modes persist for a long time, until the bump in the electron distribution is completely 'ironed' out. This diffusion process also is quite different from the familiar case of well-separated beam and bulk electrons. A quantitative analysis of these processes is carried out.

  6. Probing slow dynamics of consolidated granular multicomposite materials by diffuse acoustic wave spectroscopy.

    PubMed

    Tremblay, Nicolas; Larose, Eric; Rossetto, Vincent

    2010-03-01

    The stiffness of a consolidated granular medium experiences a drop immediately after a moderate mechanical solicitation. Then the stiffness rises back toward its initial value, following a logarithmic time evolution called slow dynamics. In the literature, slow dynamics has been probed by macroscopic quantities averaged over the sample volume, for instance, by the resonant frequency of vibrational eigenmodes. This article presents a different approach based on diffuse acoustic wave spectroscopy, a technique that is directly sensitive to the details of the sample structure. The parameters of the dynamics are found to depend on the damage of the medium. Results confirm that slow dynamics is, at least in part, due to tiny structural rearrangements at the microscopic scale, such as inter-grain contacts.

  7. Tuning the group delay of optical wave packets in liquid-crystal light valves

    NASA Astrophysics Data System (ADS)

    Bortolozzo, U.; Residori, S.; Huignard, J. P.

    2009-05-01

    By performing two-wave mixing experiments in a liquid-crystal light valve, optical pulses are slowed down to group velocities as slow as a few tenths of mm/s, corresponding to a very large group index. We present experiments and model of the slow-light process occurring in the liquid-crystal light valve, showing that this is characterized by multiple-beam diffraction in the Raman-Nath regime. Depending on the initial frequency detuning between pump and signal, the different output order beams are distinguished by different group delays. The group delay can be tuned by changing the main parameters of the experiment: the detuning between the pump and the input wave packet, the strength of the nonlinearity, and the intensity of the pump beam.

  8. Simulation of TunneLadder traveling-wave tube cold-test characteristics: Implementation of the three-dimensional, electromagnetic circuit analysis code micro-SOS

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1993-01-01

    The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive time-consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion characteristics and beam interaction impedance of a TunneLadder traveling-wave tube slow-wave structure were simulated using the code. When reasonable dimensional adjustments are made, computer results agree closely with experimental data. Modifications to the circuit geometry that would make the TunneLadder TWT easier to fabricate for higher frequency operation are explored.

  9. Analysis of Helical Waveguide.

    DTIC Science & Technology

    1985-12-23

    tube Efficiency Helix structure Backward wave oscillation Gain 19. ABSTRACT (Continue on reverse if necessary and identofy by block number) The...4,vailabilitY CCdes -vai aidIorDist spec a ." iii "- -. .5- S.. . ANALYSIS OF HELICAL WAVEGUIDE I. INTRODUCTION High power (- 10 kW) and broadband ...sys- tems. The frequency range of interest is 60-100 GHz. In this frequency range, the conventional slow wave circuits such as klystrons and TWTs have

  10. Ava[L-Pro9,N-MeLeu10] substance P(7-11) (GR 73632) and Sar9, Met(O2)11 increase distention-induced peristalsis through activation of neurokinin-1 receptors on smooth muscle and interstitial cells of cajal.

    PubMed

    Nieuwmeyer, Florentine; Ye, Jing; Huizinga, Jan D

    2006-04-01

    Substance P is generally considered an excitatory neurotransmitter related to gut motor activity, although an inhibitory influence of neurokinin-1 (NK1) receptor activation on peristalsis has also been reported. With an optimized in vitro method to assess distention-induced peristalsis, our aim was to clarify the effect of NK1 receptor activation on peristaltic activity and to reveal the mechanisms by which NK1 activation alters peristalsis. Distention of the small intestine of the mouse and guinea pig induced periodic occurrence of rhythmic waves of propagating rings of circular muscle contraction, associated with slow waves and superimposed action potentials, that propelled intestinal contents aborally. Activation of NK1 receptors by Ava[l-Pro(9),N-MeLeu10] substance P(7-11) (GR 73632) and Sar(9), Met(O(2))(11) on smooth muscle cells resulted in prolongation of the activity periods and increased action potential generation occurring superimposed on the intestinal slow wave activity. Activation of NK1 receptors on interstitial cells of Cajal resulted in an increase in slow wave frequency. Slow wave amplitude increased, likely by increased cell-to-cell coupling. The NK1 antagonist (S)-1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)piperidin-3-yl]ethyl)-4-phenyl-1-azoniabicyclo[2.2.2]octane chloride (SR 140333) induced a decrease in the slow wave frequency and duration of the activity periods evoked by distention, which makes it likely that NK1 receptor activation plays a role in the normal physiological distention-induced generation of peristaltic motor patterns. In summary, NK1 receptors play a role in normal development of peristalsis and NK1 receptor activation markedly increases propulsive peristaltic contractile activity.

  11. Simultaneous anterior and posterior serosal mapping of gastric slow-wave dysrhythmias induced by vasopressin.

    PubMed

    Du, Peng; O'Grady, Gregory; Paskaranandavadivel, Niranchan; Tang, Shou-Jiang; Abell, Thomas; Cheng, Leo K

    2016-06-06

    What is the central question of this study? This study aimed to provide the first comparison of simultaneous high-resolution mapping of anterior and posterior gastric serosa over sustained periods. What is the main finding and its importance? Episodes of spontaneous gastric slow-wave dysrhythmias increased significantly following intravenous infusion of vasopressin compared with the baseline state. A number of persistent dysrhythmias were defined, including ectopic activation, conduction block, rotor, retrograde and collision/merger of wavefronts. Slow-wave dysrhythmias could occur either simultaneously or independently on the anterior and posterior gastric serosa, and interacted depending on activation-repolarization and frequency dynamics. High-resolution mapping enables mechanistic insights into gastric slow-wave dysrhythmias and is now achieving clinical translation. However, previous studies have focused mainly on dysrhythmias occurring on the anterior gastric wall. The present study simultaneously mapped the anterior and posterior gastric serosa during episodes of dysrhythmias induced by vasopressin to aid understanding of dysrhythmia initiation, maintenance and termination. High-resolution mapping (8 × 16 electrodes on each serosa; 20-74 cm 2 ) was performed in anaesthetized dogs. Baseline recordings (21 ± 8 min) were followed by intravenous infusion of vasopressin (0.1-0.5 IU ml -1 at 60-190 ml h -1 ) and further recordings (22 ± 13 min). Slow-wave activation maps, amplitudes, velocity, interval and frequency were calculated, and differences compared between baseline and postinfusion. All dogs demonstrated an increased prevalence of dysrhythmic events following infusion of vasopressin (17 versus 51%). Both amplitude and velocity demonstrated significant differences (baseline versus postinfusion: 3.6 versus 2.2 mV; 7.7 versus 6.5 mm s -1 ; P < 0.05 for both). Dysrhythmias occurred simultaneously or independently on the anterior and posterior serosa, and then interacted according to frequency dynamics. A number of persistent dysrhythmias were compared, including the following: ectopic activation (n = 2 animals), conduction block (n = 1), rotor (n = 2), retrograde (n = 3) and collision/merger of wavefronts (n = 2). We conclude that infusion of vasopressin induces gastric dysrhythmias, which occur across a heterogeneous range of frequencies and patterns. The results demonstrate that different classes of gastric dysrhythmias may arise simultaneously or independently in one or both surfaces of the serosa, then interact according to their relative frequencies. These results will help to inform interpretation of clinical dysrhythmia. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  12. Influence of general anaesthesia on slow waves of intracranial pressure.

    PubMed

    Lalou, Despina A; Czosnyka, Marek; Donnelly, Joseph; Lavinio, Andrea; Pickard, John D; Garnett, Matthew; Czosnyka, Zofia

    2016-07-01

    Slow vasogenic intracranial pressure (ICP) waves are spontaneous ICP oscillations with a low frequency bandwidth of 0.3-4 cycles/min (B-waves). B-waves reflect dynamic oscillations in cerebral blood volume associated with autoregulatory cerebral vasodilation and vasoconstriction. This study quantifies the effects of general anaesthesia (GA) on the magnitude of B-waves compared to natural sleep and conscious state. The magnitude of B-waves was assessed in 4 groups of 30 patients each with clinical indications for ICP monitoring. Normal pressure hydrocephalus patients undergoing Cerebrospinal Fluid (CSF) infusion studies in the conscious state (GROUP A) and under GA (GROUP B), and hydrocephalus patients undergoing overnight ICP monitoring during physiological sleep (GROUP C) were compared to deeply sedated traumatic brain injury (TBI) patients with well-controlled ICP during the first night of Intensive Care Unit (ICU) stay (GROUP D). A total of 120 patients were included. During CSF infusion studies, the magnitude of slow waves was higher in conscious patients ( 0.23+/-0.10 mm Hg) when compared to anaesthetised patients ( 0.15+/-0.10 mm Hg; p = 0.011). Overnight magnitude of slow waves was higher in patients during natural sleep (GROUP C: 0.20+/-0.13 mm Hg) when compared to TBI patients under deep sedation (GROUP D: 0.11+/- 0.09 mm Hg; p = 0.002). GA and deep sedation are associated with a reduced magnitude of B-waves. ICP monitoring carried out under GA is affected by iatrogenic suppression of slow vasogenic waves of ICP. Accounting for the effects of anaesthesia on vasogenic waves may prevent the misidentification of potential shunt-responders as non-responders.

  13. Effect of strain wave shape on low-cycle fatigue crack propagation of SUS 304 stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Okazaki, Masakazu; Hattori, Ichiro; Shiraiwa, Fujio; Koizumi, Takashi

    1983-08-01

    Effect of strain wave shape on strain-controlled low-cycle fatigue crack propagation of SUS 304 stainless steel was investigated at 600 and 700 °C. It was found that the rate of crack propagation in a cycle-dependent region was successfully correlated with the range of cyclic J-integral, Δ Jf, regardless of the strain wave shape, frequency, and test temperature. It was also shown that the rate of crack propagation gradually increased from cycle-dependent curve to time-dependent one with decreasing frequency and slow-fast strain wave shape, and that one of the factors governing the rate of crack propagation in such a region was the ratio of the range of creep J-integral to that of total J-integral, Δ J c/Δ JT. Based on the results thus obtained, an interaction damage rule proposed semi-empirically was interpreted, with regard to crack propagation. Furthermore, fatigue crack initiation mechanism in slow-fast strain wave shape was studied, and it was shown that grain boundary sliding took an important role in it.

  14. Synchrony of two uncoupled neurons under half wave sine current stimulation

    NASA Astrophysics Data System (ADS)

    Peng, Yueping; Wang, Jue; Jian, Zhong

    2009-04-01

    Two uncoupled Hindmarsh-Rose neurons under different initial discharge patterns are stimulated by the half wave sine current; and the synchronization mechanism of the two neurons is discussed by analyzing their membrane potentials and their interspike interval (ISI) distribution. Under the half wave sine current stimulation, the two uncoupled neurons under different initial conditions, whose parameter r (the parameter r is related to the membrane penetration of calcium ion, and reflects the changing speed of the slow adaptation current) is different or the same, can realize discharge synchronization (phase synchronization) or the full synchronization (state synchronization). The synchronization characteristics are mainly related to the frequency and the amplitude of the half wave sine current, and are little related to the parameter r and the initial state of the two neurons. This investigation shows the mechanism of the current's amplitude and its frequency affecting the synchronization process of neurons, and the neurons' discharge patterns and synchronization process can be adjusted and controlled by the current's amplitude and its frequency. This result is of far reaching importance to study synchronization and encode of many neurons or neural network, and provides the theoretic basis for studying the mechanism of some nervous diseases such as epilepsy and Alzheimer's disease by the slow wave of EEG.

  15. Establishment of a radiotelemetric recording technique in mice to investigate gastric slow waves: Modulatory role of putative neurotransmitter systems.

    PubMed

    Wang, Huichuan; Lu, Zengbing; Liu, Yuen Hang; Sun, Yayi; Tu, Longlong; Ngan, Man P; Yeung, Chi-Kong; Rudd, John A

    2018-06-01

    What is the central question of this study? Gastric slow waves originating from the interstitial cells of Cajal-smooth muscle syncytium are usually studied in culture or in tissue segments, but nobody has described recordings of slow waves from awake, freely moving mice. Can radiotelemetry be used to record slow waves, and do they respond predictably to drug treatment? What is the main finding and its importance? Radiotelemetry can be used to record slow waves from awake, freely moving mice, permitting an examination of drug actions in vivo, which is crucial to drug discovery projects for characterizing the effects of drugs and metabolites on gastrointestinal function. The mouse is the most commonly used species in preclinical research, and isolated tissues are used to study slow waves from the interstitial cells of Cajal-smooth muscle syncytium of the gastrointestinal tract. The aim of this study was to establish a radiotelemetric technique in awake mice to record gastric myoelectric activity from the antrum to gain insight into the effects of endogenous modulatory systems on slow waves. Under general anaesthesia, two biopotential wires from a telemetry transmitter were sutured into the antrum of male ICR (imprinting control region) mice. The animals were allowed 1 week to recover from surgery before the i.p. administration of drugs to stimulate or inhibit slow waves. The basal dominant frequency of slow waves was 6.96 ± 0.43 c.p.m., and the percentages of power in the bradygastric, normogastric and tachygastric ranges were 6.89 ± 0.98, 37.32 ± 1.72 and 34.38 ± 0.77%, respectively (n = 74). Nicotine at 1 mg kg -1 increased normogastric power, but at 3 mg kg -1 it increased bradygastric power (P < 0.05). Metoclopramide at 10 mg kg -1 increased normogastric power; sodium nitroprusside at 10 mg kg -1 had latent effects on tachygastric power (P < 0.05); and l-NAME at 10 mg kg -1 had no effect (P > 0.05). Nicotine and bethanechol also caused varying degrees of hypothermia (>1°C reductions; P < 0.05). In conclusion, radiotelemetry can be used to record slow waves from awake, freely moving mice. In light of our findings, we recommend that studies assessing slow waves should also assess body temperature simultaneously. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

  16. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves.

    PubMed

    Shera, Christopher A; Cooper, Nigel P

    2013-04-01

    At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves.

  17. The Direct Digital Modulation of Traveling Wave Tubes

    NASA Technical Reports Server (NTRS)

    Radhamohan, Ranjan S.

    2004-01-01

    Traveling wave tube (TWT) technology, first described by Rudolf Kompfner in the early 1940s, has been a key component of space missions from the earliest communication satellites in the 1960s to the Cassini probe today. TWTs are essentially signal amplifiers that have the special capability of operating at microwave frequencies. The microwave frequency range, which spans from approximately 500 MHz to 300 GHz, is shared by many technologies including cellular phones, satellite television, space communication, and radar. TWT devices are superior in reliability, weight, and efficiency to solid-state amplifiers at the high power and frequency levels required for most space missions. TWTs have three main components -an electron gun, slow wave structure, and collector. The electron gun generates an electron beam that moves along the length of the tube axis, inside of the slow wave circuit. At the same time, the inputted signal is slowed by its travel through the coils of the helical slow wave circuit. The interaction of the electron beam and this slowed signal produces a transfer of kinetic energy to the signal, and in turn, amplification. At the end of its travel, the spent electron beam moves into the collector where its remaining energy is dissipated as heat or harnessed for reuse. TWTs can easily produce gains in the tens of decibels, numbers that are suitable for space missions. To date, however, TWTs have typically operated at fixed levels of gain. This gain is determined by various, unchanging, physical factors of the tube. Traditionally, to achieve varying gain, an input signal s amplitude has had to first be modulated by a separate device before being fed into the TWT. This is not always desirable, as significant distortion can occur in certain situations. My mentor, Mr. Dale Force, has proposed an innovative solution to this problem called direct digital modulation . The testing and implementation of this solution is the focus of my summer internship. The direct digital modulation of a TWT removes the need for a separate amplitude modulation device. Instead, different levels of gain are achieved by varying the electron beam current. The lower the current, the less kinetic energy is available to be transferred to the signal. To vary the current, a grid is placed in-between the electron gun and the slow wave circuit. By changing the voltage across the grid, the electron beam current can be controlled. Grid technology has mostly been used in pulse applications such as radar, where only two voltage states are necessary. For direct digital modulation, however, a continuous range of voltages is required.

  18. Analysis of dispersion and attenuation of surface waves in poroelastic media in the exploration-seismic frequency band

    USGS Publications Warehouse

    Zhang, Y.; Xu, Y.; Xia, J.

    2011-01-01

    We analyse dispersion and attenuation of surface waves at free surfaces of possible vacuum/poroelastic media: permeable-'open pore', impermeable-'closed pore' and partially permeable boundaries, which have not been previously reported in detail by researchers, under different surface-permeable, viscous-damping, elastic and fluid-flowing conditions. Our discussion is focused on their characteristics in the exploration-seismic frequency band (a few through 200 Hz) for near-surface applications. We find two surface-wave modes exist, R1 waves for all conditions, and R2 waves for closed-pore and partially permeable conditions. For R1 waves, velocities disperse most under partially permeable conditions and least under the open-pore condition. High-coupling damping coefficients move the main dispersion frequency range to high frequencies. There is an f1 frequency dependence as a constant-Q model for attenuation at high frequencies. R1 waves for the open pore are most sensitive to elastic modulus variation, but least sensitive to tortuosities variation. R1 waves for partially permeable surface radiate as non-physical waves (Im(k) < 0) at low frequencies. For R2 waves, velocities are slightly lower than the bulk slow P2 waves. At low frequencies, both velocity and attenuation are diffusive of f1/2 frequency dependence, as P2 waves. It is found that for partially permeable surfaces, the attenuation displays -f1 frequency dependence as frequency increasing. High surface permeability, low-coupling damping coefficients, low Poisson's ratios, and low tortuosities increase the slope of the -f1 dependence. When the attenuation coefficients reach 0, R2 waves for partially permeable surface begin to radiate as non-physical waves. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.

  19. The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake

    NASA Astrophysics Data System (ADS)

    Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena

    2017-04-01

    Recently our understanding of tectonic faulting has been shaken by the discoveries of seismic tremor, low frequency earthquakes, slow slip events, and other models of fault slip. These phenomenas represent models of failure that were thought to be non-existent and theoretically impossible only a few years ago. Slow earthquakes are seismic phenomena in which the rupture of geological faults in the earth's crust occurs gradually without creating strong tremors. Despite the growing number of observations of slow earthquakes their origin remains unresolved. Studies show that the duration of slow earthquakes ranges from a few seconds to a few hundred seconds. The regular earthquakes with which most people are familiar release a burst of built-up stress in seconds, slow earthquakes release energy in ways that do little damage. This study focus on the characteristics of the Mw5.6 earthquake occurred in Sofia seismic zone on May 22nd, 2012. The Sofia area is the most populated, industrial and cultural region of Bulgaria that faces considerable earthquake risk. The Sofia seismic zone is located in South-western Bulgaria - the area with pronounce tectonic activity and proved crustal movement. In 19th century the city of Sofia (situated in the centre of the Sofia seismic zone) has experienced two strong earthquakes with epicentral intensity of 10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64).The 2012 quake occurs in an area characterized by a long quiescence (of 95 years) for moderate events. Moreover, a reduced number of small earthquakes have also been registered in the recent past. The Mw5.6 earthquake is largely felt on the territory of Bulgaria and neighbouring countries. No casualties and severe injuries have been reported. Mostly moderate damages were observed in the cities of Pernik and Sofia and their surroundings. These observations could be assumed indicative for a very low rupture velocity. The low rupture velocity can mean slow-faulting, which brings to slow release of accumulated seismic energy. The slow release energy does principally little to moderate damages. Additionally wave form of the earthquake shows low frequency content of P-waves (the maximum P-wave is at 1.19 Hz) and the specific P- wave displacement spectral is characterise with not expressed spectrum plateau and corner frequency. These and other signs suggest us to the conclusion, that the 2012 Mw5.6 earthquake can be considered as types of slow earthquake, like a low frequency quake. The study is based on data from Bulgarian seismological network (NOTSSI), the local network (LSN) deployed around Kozloduy NPP and System of Accelerographs for Seismic Monitoring of Equipment and Structures (SASMES) installed in the Kozloduy NPP. NOTSSI jointly with LSN and SASMES provide reliable information for multiple studies on seismicity in regional scale.

  20. Slowing of Bessel light beam group velocity

    NASA Astrophysics Data System (ADS)

    Alfano, Robert R.; Nolan, Daniel A.

    2016-02-01

    Bessel light beams experience diffraction-limited propagation. A different basic spatial property of a Bessel beam is reported and investigated. It is shown a Bessel beam is a natural waveguide causing its group velocity can be subluminal (slower than the speed of light) when the optical frequency ω approaches a critical frequency ωc. A free space dispersion relation for a Bessel beam, the dependence of its wave number on its angular frequency, is developed from which the Bessel beam's subluminal group velocity is derived. It is shown under reasonable laboratory conditions that a Bessel light beam has associated parameters that allow slowing near a critical frequency. The application of Bessel beams with 1 μm spot size to slow down 100 ps to 200 ps over 1 cm length for a natural optical buffer in free space is presented.

  1. GPS Detection of Biot's Slow Wave in the Earth's Crust Triggered by Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Holt, W. E.; Zhang, J. H.; Blewitt, G.; Yao, Z.

    2017-12-01

    Here we show, using 5-minute GPS data observed in northeast USA around the landfall of Hurricane Sandy of October 29-30, 2012, evidence of a highly-attenuated wave propagating in the Earth's crust over hundreds of km inland at 65 m/s with peak amplitudes as great as 12 cm. Such a phenomenon is consistent with Biot's slow wave being triggered by the associated 4-m storm surge, then propagating in a highly permeable crust with abundant fluid-saturated interconnected cracks. The vertical displacement field recorded on a dense network of continuous GPS stations (CORS network) shows strong attenuation with distance, and occurs at frequencies too low to be recorded by broad-band seismic sensors. To our knowledge, such a unique wave, with ultra-low frequency, slow wave speed, high amplitude, and strong attenuation, has never been measured before. The zenith tropospheric varies slowly over the 24 hours that bracket Hurricane Sandy landfall and there is no apparent relationship to the timing or duration of the downward displacement field that initiates during peak storm surge loading. Amplitudes are a factor of 10 higher than predicted by elastic models of static loading of the 4-m storm surge. Numerical simulations of a low frequency impulse (with duration of storm surge loading) on a homogenous porous medium filled with viscous fluid show an amplification of displacements 10 times larger than for a homogeneous elastic material with the same elastic properties as the poroelastic matrix. The low wave speed of 65 m/s and long period of 4 hours, requires an extremely high permeability (10-6 10-8 m2). Such a high permeability can exist in high-porosity media containing vast interconnected fractures. The high amplitude displacements generated by the dynamic influences of Hurricane Sandy, and other large magnitude storms, would generate significant time-dependent stress changes in the crust that might contribute to the observations of seismicity rate changes and slow slip phenomenon described previously for this and other major storm disturbances.

  2. Properties of short-wavelength oblique Alfvén and slow waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J. S.; Wu, D. J.; Voitenko, Y.

    Linear properties of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) are studied in the framework of two-fluid magnetohydrodynamics. We obtain the wave dispersion relations that are valid in a wide range of the wave frequency ω and plasma-to-magnetic pressure ratio β. The KAW frequency can reach and exceed the ion-cyclotron frequency at ion kinetic scales, whereas the KSW frequency remains sub-cyclotron. At β ∼ 1, the plasma and magnetic pressure perturbations of both modes are in anti-phase, so that there is nearly no total pressure perturbations. However, these modes also exhibit several opposite properties. At high β, themore » electric polarization ratios of KAWs and KSWs are opposite at the ion gyroradius scale, where KAWs are polarized in the sense of electron gyration (right-hand polarized) and KSWs are left-hand polarized. The magnetic helicity σ ∼ 1 for KAWs and σ ∼ –1 for KSWs, and the ion Alfvén ratio R{sub Ai} << 1 for KAWs and R{sub Ai} >> 1 for KSWs. We also found transition wavenumbers where KAWs change their polarization from left-handed to right-handed. These new properties can be used to discriminate KAWs and KSWs when interpreting kinetic-scale electromagnetic fluctuations observed in various solar-terrestrial plasmas. This concerns, in particular, identification of modes responsible for kinetic-scale pressure-balanced fluctuations and turbulence in the solar wind.« less

  3. Slow-Wave Phase Shifters, Based on Thin Ferroelectric Films, for Reflectarray Antennas. Frequency-Agile Radio: Systems and Technlogies, WMG 139

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2006-01-01

    We have developed relatively broadband K- and Ka-band phase shifters using synthetic (slow-wave) transmission lines employing coupled microstripline "varactors". The tunable coupled microstripline circuits are based on laser ablated BaSrTiO films on lanthanum aluminate substrates. A model and design criteria for these novel circuits will be presented, along with measured performance including anomalous phase delay characteristics. The critical role of phase shifter loss and transient response in reflectarray antennas will be emphasized.

  4. Electrostatic waves driven by electron beam in lunar wake plasma

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2018-05-01

    A linear analysis of electrostatic waves propagating parallel to the ambient field in a four component homogeneous, collisionless, magnetised plasma comprising fluid protons, fluid He++, electron beam, and suprathermal electrons following kappa distribution is presented. In the absence of electron beam streaming, numerical analysis of the dispersion relation shows six modes: two electron acoustic modes (modes 1 and 6), two fast ion acoustic modes (modes 2 and 5), and two slow ion acoustic modes (modes 3 and 4). The modes 1, 2 and 3 and modes 4, 5, and 6 have positive and negative phase speeds, respectively. With an increase in electron beam speed, the mode 6 gets affected the most and the phase speed turns positive from negative. The mode 6 thus starts to merge with modes 2 and 3 and generates the electron beam driven fast and slow ion acoustic waves unstable with a finite growth. The electron beam driven slow ion-acoustic waves occur at lower wavenumbers, whereas fast ion-acoustic waves occur at a large value of wavenumbers. The effect of various other parameters has also been studied. We have applied this analysis to the electrostatic waves observed in lunar wake during the first flyby of the ARTEMIS mission. The analysis shows that the low (high) frequency waves observed in the lunar wake could be the electron beam driven slow (fast) ion-acoustic modes.

  5. High-power broadband plasma maser with magnetic self-insulation

    NASA Astrophysics Data System (ADS)

    Litvin, Vitaliy O.; Loza, Oleg T.

    2018-01-01

    Presented in this paper are the results of a particle-in-cell modelling of a novel high-power microwave (HPM) source which combines the properties of two devices. The first prototype is a magnetically insulated transmission line oscillator (MILO), an HPM self-oscillator which does not need an external magnetic field and irradiates a narrow spectrum depending on its iris-loaded slow-wave structure. The second prototype is a plasma maser, a Cherenkov HPM amplifier driven by a high-current relativistic electron beam propagating in a strong external magnetic field in plasma which acts as a slow-wave structure. The radiation frequency of plasma masers mainly depends on an easily variable plasma concentration; hence, their spectrum may overlap a few octaves. The plasma-based HPM device described in this paper operates without an external magnetic field: it looks like an MILO in which the iris-loaded slow-wave structure is substituted by a hollow plasma tube. The small pulse duration of ˜1.5 ns prevents a feedback rise in the 20-cm long generation section so that the device operates as a noise amplifier. Unlike conventional ultra wideband generators, the spectrum depends not only on the pulse duration but mainly on plasma, so the operation frequency of the device ranges within 12 GHz. For irradiated frequencies above 2 GHz, the total pulse energy efficiency of 7% is demonstrated at the HPM power level ˜1 GW.

  6. A Ka-band radial relativistic backward wave oscillator with GW-class output power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiaxin; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Dang, Fangchao

    A novel radial relativistic backward wave oscillator with a reflector is proposed and designed to generate GW-level high power microwaves at Ka-band. The segmented radial slow wave structure and the reflector are matched to enhance interaction efficiency. We choose the volume wave TM{sub 01} mode as the working mode due to the volume wave characteristic. The main structural parameters of the novel device are optimized by particle-in-cell simulation. High power microwaves with power of 2 GW and a frequency of 29.4 GHz are generated with 30% efficiency when the electron beam voltage is 383 kV, the beam current is 17 kA, and themore » guiding magnetic field is only 0.6 T. Simultaneously, the highest electric field in the novel Ka-band device is just about 960 kV/cm in second slow wave structure.« less

  7. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  8. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  9. Breathing Bright Solitons in a Bose Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Chong, Gui-Shu; Hai, Wen-Hua; Xie, Qiong-Tao

    2003-12-01

    A Bose-Einstein condensate with time varying scattering length in time-dependent harmonic trap is analytically investigated and soliton-like solutions of the Gross-Pitaeviskii equation are obtained to describe single soliton, bisoliton and N-soliton properties of the matter wave. The influences of the geometrical property and modulate frequency of trapping potential on soliton behaviour are discussed. When the trap potential has a very small trap aspect ratio or oscillates with a high frequency, the matter wave preserves its shape nearly like a soliton train in propagation, while the breathing behaviour, which displays the periodic collapse and revival of the matter wave, is found for a relatively large aspect ratio or slow varying potential. Meanwhile mass centre of the matter wave translates and/or oscillates for different trap aspect ratio and trap frequencies.

  10. Slow oscillating transcranial direct current stimulation during sleep has a sleep-stabilizing effect in chronic insomnia: a pilot study.

    PubMed

    Saebipour, Mohammad R; Joghataei, Mohammad T; Yoonessi, Ali; Sadeghniiat-Haghighi, Khosro; Khalighinejad, Nima; Khademi, Soroush

    2015-10-01

    Recent evidence suggests that lack of slow-wave activity may play a fundamental role in the pathogenesis of insomnia. Pharmacological approaches and brain stimulation techniques have recently offered solutions for increasing slow-wave activity during sleep. We used slow (0.75 Hz) oscillatory transcranial direct current stimulation during stage 2 of non-rapid eye movement sleeping insomnia patients for resonating their brain waves to the frequency of sleep slow-wave. Six patients diagnosed with either sleep maintenance or non-restorative sleep insomnia entered the study. After 1 night of adaptation and 1 night of baseline polysomnography, patients randomly received sham or real stimulation on the third and fourth night of the experiment. Our preliminary results show that after termination of stimulations (sham or real), slow oscillatory transcranial direct current stimulation increased the duration of stage 3 of non-rapid eye movement sleep by 33 ± 26 min (P = 0.026), and decreased stage 1 of non-rapid eye movement sleep duration by 22 ± 17.7 min (P = 0.028), compared with sham. Slow oscillatory transcranial direct current stimulation decreased stage 1 of non-rapid eye movement sleep and wake time after sleep-onset durations, together, by 55.4 ± 51 min (P = 0.045). Slow oscillatory transcranial direct current stimulation also increased sleep efficiency by 9 ± 7% (P = 0.026), and probability of transition from stage 2 to stage 3 of non-rapid eye movement sleep by 20 ± 17.8% (P = 0.04). Meanwhile, slow oscillatory transcranial direct current stimulation decreased transitions from stage 2 of non-rapid eye movement sleep to wake by 12 ± 6.7% (P = 0.007). Our preliminary results suggest a sleep-stabilizing role for the intervention, which may mimic the effect of sleep slow-wave-enhancing drugs. © 2015 European Sleep Research Society.

  11. Very low frequency earthquakes in Tohoku-Oki recorded by short-period ocean bottom seismographs

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Hino, R.; Ohta, Y.; Uchida, N.; Suzuki, S.; Shinohara, M.; Nakatani, Y.; Matsuzawa, T.

    2017-12-01

    Various kind of slow earthquakes have been found along many plate boundary zones in the world (Obara, and Kato, 2016). In the Tohoku subduction zone where slow event activities have been considered insignificant, slow slip events associated with low frequency tremors were identified prior to the 2011 Tohoku-Oki earthquake based on seafloor geodetic and seismographical observations. Recently very low frequency earthquakes (VLFEs) have been discovered by inspecting onshore broad-band seismograms. Although the activity of the detected VLFEs is low and the VLFEs occurred in the limited area, VLFEs tends to occur successively in a short time period. In this study, we try to characterize the VLFEs along the Japan Trench based on the seismograms obtained by the instruments deployed near the estimated epicenters.Temporary seismic observations using Ocean Bottom Seismometers (OBSs) have been carried out several times after the 2011 Tohoku-Oki earthquake, and several VLFE activities were observed during the deployments of the OBSs. Amplitudes of horizontal component seismograms of the OBSs grow shortly after the estimated origin times of the VLFEs identified by the onshore seismograms, even though the sensors are 4.5 Hz geophones. It is difficult to recognize evident onsets of P or S waves, correspondence between order of arrivals of discernible wave packets and their amplitudes suggests that these wave packets are seismic signals radiated from the VLFE sources. The OBSs detect regular local earthquakes of the similar magnitudes as the VLFEs. Signal powers of the possible VLFE seismograms are comparable to the regular earthquakes in the frequency range < 1 Hz, while significant deficiency of higher frequency components are observed.

  12. [EFFECTS OF ELECTRICAL STIMULATION OF NUCLEUS RETICULARIS PONTIS ORALIS ON THE SLEEP-WAKING STATES IN KRUSHINSKII-MOLODKINA STRAIN RATS].

    PubMed

    Vataev, S I; Malgina, N A; Oganesyan, G A

    2015-07-01

    The effects of electrical stimulation of nucleus reticularis pontis oralis on the behavior and brain electrical activity during all phases of the sleep-waking cycle was studied in Krushinskii-Molodkina strain rats, which have an inherited predisposition to audiogenic seizures. Electrical stimulation with 7 Hz frequency in the deep stage of slow-wave sleep cause appearance the fast-wave sleep. Similar stimulation during fast-wave sleep periods did not effects on the electrographic patterns and EEG spectral characteristics of hippocampus, visual, auditory and somatocnen nrnrenc nf the cnrtey ThPe sfimul1stinns did nnt break a fast-wave sleenhut increased almost twice due the duration of these sleep episodes. After electrical stimulation by same frequency during the wakeftlness and superficial slow-wave sleep states, the patterns and spectral characteristics of brain electrical activity in rats showed no significant changes as compared with controls. The results of this study indicate that the state of the animals sleep-waking cycle at the time of stimulation is a critical variable that influences the responses which are induced by electrical stimulation of the nucleus reticularis pontis oralis.

  13. Nonlinear modulation of an extraordinary wave under the conditions of parametric decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.

    2012-06-15

    A self-consistent set of Hamilton equations describing nonlinear saturation of the amplitude of oscillations excited under the conditions of parametric decay of an elliptically polarized extraordinary wave in cold plasma is solved analytically and numerically. It is shown that the exponential increase in the amplitude of the secondary wave excited at the half-frequency of the primary wave changes into a reverse process in which energy is returned to the primary wave and nonlinear oscillations propagating across the external magnetic field are generated. The system of 'slow' equations for the amplitudes, obtained by averaging the initial equations over the high-frequency period,more » is used to describe steady-state nonlinear oscillations in plasma.« less

  14. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.

    PubMed

    Angeli, T R; Du, P; Paskaranandavadivel, N; Sathar, S; Hall, A; Asirvatham, S J; Farrugia, G; Windsor, J A; Cheng, L K; O'Grady, G

    2017-05-01

    Gastric motility is coordinated by bioelectrical slow waves, and gastric dysrhythmias are reported in motility disorders. High-resolution (HR) mapping has advanced the accurate assessment of gastric dysrhythmias, offering promise as a diagnostic technique. However, HR mapping has been restricted to invasive surgical serosal access. This study investigates the feasibility of HR mapping from the gastric mucosal surface. Experiments were conducted in vivo in 14 weaner pigs. Reference serosal recordings were performed with flexible-printed-circuit (FPC) arrays (128-192 electrodes). Mucosal recordings were performed by two methods: (i) FPC array aligned directly opposite the serosal array, and (ii) cardiac mapping catheter modified for gastric mucosal recordings. Slow-wave propagation and morphology characteristics were quantified and compared between simultaneous serosal and mucosal recordings. Slow-wave activity was consistently recorded from the mucosal surface from both electrode arrays. Mucosally recorded slow-wave propagation was consistent with reference serosal activation pattern, frequency (P≥.3), and velocity (P≥.4). However, mucosally recorded slow-wave morphology exhibited reduced amplitude (65-72% reduced, P<.001) and wider downstroke width (18-31% wider, P≤.02), compared to serosal data. Dysrhythmias were successfully mapped and classified from the mucosal surface, accorded with serosal data, and were consistent with known dysrhythmic mechanisms in the porcine model. High-resolution gastric electrical mapping was achieved from the mucosal surface, and demonstrated consistent propagation characteristics with serosal data. However, mucosal signal morphology was attenuated, demonstrating necessity for optimized electrode designs and analytical algorithms. This study demonstrates feasibility of endoscopic HR mapping, providing a foundation for advancement of minimally invasive spatiotemporal gastric mapping as a clinical and scientific tool. © 2016 John Wiley & Sons Ltd.

  15. Excitation of slow waves in front of an ICRF antenna in a basic plasma experiment

    NASA Astrophysics Data System (ADS)

    Soni, Kunal; van Compernolle, Bart; Crombe, Kristel; van Eester, Dirk

    2017-10-01

    Recent results of ICRF experiments at the Large Plasma Device (LAPD) indicate parasitic coupling to the slow wave by the fast wave antenna. Plasma parameters in LAPD are similar to the scrape-off layer of current fusion devices. The machine has a 17 m long, 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B0 1000 G. It was found that coupling to the slow mode occurs when the plasma density in front of the antenna is low enough such that the lower hybrid resonance is present in the plasma. The radial density profile is tailored to allow for fast mode propagation in the high density core and slow mode propagation in the low density edge region. Measurements of the wave fields clearly show two distinct modes, one long wavelength m=1 fast wave mode in the core and a short wavelength backward propagating mode in the edge. Perpendicular wave numbers compare favorably to the predicted values. The experiment was done for varying frequencies, ω /Ωi = 25 , 6 and 1.5. Future experiments will investigate the dependence on antenna tilt angle with respect to the magnetic field, with and without Faraday screen. This work is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF.

  16. Tympanal travelling waves in migratory locusts.

    PubMed

    Windmill, James F C; Göpfert, Martin C; Robert, Daniel

    2005-01-01

    Hearing animals, including many vertebrates and insects, have the capacity to analyse the frequency composition of sound. In mammals, frequency analysis relies on the mechanical response of the basilar membrane in the cochlear duct. These vibrations take the form of a slow vibrational wave propagating along the basilar membrane from base to apex. Known as von Békésy's travelling wave, this wave displays amplitude maxima at frequency-specific locations along the basilar membrane, providing a spatial map of the frequency of sound--a tonotopy. In their structure, insect auditory systems may not be as sophisticated at those of mammals, yet some are known to perform sound frequency analysis. In the desert locust, this analysis arises from the mechanical properties of the tympanal membrane. In effect, the spatial decomposition of incident sound into discrete frequency components involves a tympanal travelling wave that funnels mechanical energy to specific tympanal locations, where distinct groups of mechanoreceptor neurones project. Notably, observed tympanal deflections differ from those predicted by drum theory. Although phenomenologically equivalent, von Békésy's and the locust's waves differ in their physical implementation. von Békésy's wave is born from interactions between the anisotropic basilar membrane and the surrounding incompressible fluids, whereas the locust's wave rides on an anisotropic membrane suspended in air. The locust's ear thus combines in one structure the functions of sound reception and frequency decomposition.

  17. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santavicca, Daniel F., E-mail: daniel.santavicca@unf.edu; Adams, Jesse K.; Grant, Lierd E.

    2016-06-21

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires asmore » inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.« less

  18. Slow earthquakes in microseism frequency band (0.1-2 Hz) off the Kii peninsula

    NASA Astrophysics Data System (ADS)

    Kaneko, L.; Ide, S.; Nakano, M.

    2017-12-01

    Slow earthquakes are divided into deep tectonic tremors, very low frequency (VLF) events, and slow slip events (SSE), each of which is observed in a different frequency band. Tremors are observed above 2 Hz, and VLF signals are visible mainly in 0.01-0.05 Hz. It was generally very difficult to find signals of slow underground deformation at frequencies between them, i.e., 0.1-2Hz, where microseism noise is dominant. However, after a Mw 5.9 plate boundary earthquake off the Kii peninsula on April 1st, 2016, sufficiently large signals have been observed in the microseism band, accompanied with signals from active tremors, VLFEs, and SSEs by the ocean bottom seismometer network DONET maintained by JAMSTEC and NIED. This is the first observation of slow earthquakes in the microseism frequency band. Here we report the detection and location of events in this band, and compare them with the spatial and temporal distributions of ordinary tectonic tremors above 2 Hz and VLF events. We used continuous records of 20 broadband seismometers of DONET from April 1st to 12th. We detected events by calculating arrival time differences between stations using an envelope correlation method of Ide (2010). Unlike ordinary applications, we repeated analyses for seismograms bandpass-filtered in four separated frequency bands, 0.1-1, 1-2, 2-4, and 4-8 Hz. For each band, we successfully detected events and determined their hypocenter locations. Many VLF events have also been detected in this region in the frequency band of 0.03-0.05 Hz, with location and focal mechanism using a method of Nakano et al. (2008). In the 0.1-1 Hz microseism band, hypocenters were determined mainly on April 10th, when microseism noises are small and signal amplitudes are quite large. In several time windows, events were detected in all four bands, and located within the 2-sigma error ellipses, with similar source time functions. Sometimes, events were detected in two or three bands, suggesting wide variations of in wave radiation at different frequencies. Although the location errors are not always small enough to confirm the collocation of sources, due to uncertainty in structure, we can confirm seismic wave are radiated in the microseism band from slow earthquake, which is considered as a continuous, broadband, and complicated phenomenon.

  19. Giant frequency down-conversion of the dancing acoustic bubble

    PubMed Central

    Deymier, P. A.; Keswani, M.; Jenkins, N.; Tang, C.; Runge, K.

    2016-01-01

    We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu’s equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave. PMID:27857217

  20. Giant frequency down-conversion of the dancing acoustic bubble

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Keswani, M.; Jenkins, N.; Tang, C.; Runge, K.

    2016-11-01

    We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu’s equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave.

  1. Acute effect of carbamazepine on corticothalamic 5-9-Hz and thalamocortical spindle (10-16-Hz) oscillations in the rat.

    PubMed

    Zheng, Thomas W; O'Brien, Terence J; Kulikova, Sofya P; Reid, Christopher A; Morris, Margaret J; Pinault, Didier

    2014-03-01

    A major side effect of carbamazepine (CBZ), a drug used to treat neurological and neuropsychiatric disorders, is drowsiness, a state characterized by increased slow-wave oscillations with the emergence of sleep spindles in the electroencephalogram (EEG). We conducted cortical EEG and thalamic cellular recordings in freely moving or lightly anesthetized rats to explore the impact of CBZ within the intact corticothalamic (CT)-thalamocortical (TC) network, more specifically on CT 5-9-Hz and TC spindle (10-16-Hz) oscillations. Two to three successive 5-9-Hz waves were followed by a spindle in the cortical EEG. A single systemic injection of CBZ (20 mg/kg) induced a significant increase in the power of EEG 5-9-Hz oscillations and spindles. Intracellular recordings of glutamatergic TC neurons revealed 5-9-Hz depolarizing wave-hyperpolarizing wave sequences prolonged by robust, rhythmic spindle-frequency hyperpolarizing waves. This hybrid sequence occurred during a slow hyperpolarizing trough, and was at least 10 times more frequent under the CBZ condition than under the control condition. The hyperpolarizing waves reversed at approximately -70 mV, and became depolarizing when recorded with KCl-filled intracellular micropipettes, indicating that they were GABAA receptor-mediated potentials. In neurons of the GABAergic thalamic reticular nucleus, the principal source of TC GABAergic inputs, CBZ augmented both the number and the duration of sequences of rhythmic spindle-frequency bursts of action potentials. This indicates that these GABAergic neurons are responsible for the generation of at least the spindle-frequency hyperpolarizing waves in TC neurons. In conclusion, CBZ potentiates GABAA receptor-mediated TC spindle oscillations. Furthermore, we propose that CT 5-9-Hz waves can trigger TC spindles. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. High frequency generation in the corona: Resonant cavities

    NASA Astrophysics Data System (ADS)

    Santamaria, I. C.; Van Doorsselaere, T.

    2018-03-01

    Aims: Null points are prominent magnetic field singularities in which the magnetic field strength strongly decreases in very small spatial scales. Around null points, predicted to be ubiquitous in the solar chromosphere and corona, the wave behavior changes considerably. Null points are also responsible for driving very energetic phenomena, and for contributing to chromospheric and coronal heating. In previous works we demonstrated that slow magneto-acoustic shock waves were generated in the chromosphere propagate through the null point, thereby producing a train of secondary shocks escaping along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 MHz. The present work aims to investigate this high frequency region around a coronal null point to give a plausible explanation to its generation at that particular frequency. Methods: We carried out a set of two-dimensional numerical simulations of wave propagation in the neighborhood of a null point located in the corona. We varied both the amplitude of the driver and the atmospheric properties to investigate the sensitivity of the high frequency waves to these parameters. Results: We demonstrate that the wave frequency is sensitive to the atmospheric parameters in the corona, but it is independent of the strength of the driver. Thus, the null point behaves as a resonant cavity generating waves at specific frequencies that depend on the background equilibrium model. Moreover, we conclude that the high frequency wave train generated at the null point is not necessarily a result of the interaction between the null point and a shock wave. This wave train can be also developed by the interaction between the null point and fast acoustic-like magneto-acoustic waves, that is, this interaction within the linear regime.

  3. Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry.

    PubMed

    Ren, Tianying; He, Wenxuan; Barr-Gillespie, Peter G

    2016-01-06

    It is generally believed that the remarkable sensitivity and frequency selectivity of mammalian hearing depend on outer hair cell-generated force, which amplifies sound-induced vibrations inside the cochlea. This 'reverse transduction' force production has never been demonstrated experimentally, however, in the living ear. Here by directly measuring microstructure vibrations inside the cochlear partition using a custom-built interferometer, we demonstrate that electrical stimulation can evoke both fast broadband and slow sharply tuned responses of the reticular lamina, but only a slow tuned response of the basilar membrane. Our results indicate that outer hair cells can generate sufficient force to drive the reticular lamina over all audible frequencies in living cochleae. Contrary to expectations, the cellular force causes a travelling wave rather than an immediate local vibration of the basilar membrane; this travelling wave vibrates in phase with the reticular lamina at the best frequency, and results in maximal vibration at the apical ends of outer hair cells.

  4. Human cortical–hippocampal dialogue in wake and slow-wave sleep

    PubMed Central

    Mitra, Anish; Hacker, Carl D.; Pahwa, Mrinal; Tagliazucchi, Enzo; Laufs, Helmut; Leuthardt, Eric C.; Raichle, Marcus E.

    2016-01-01

    Declarative memory consolidation is hypothesized to require a two-stage, reciprocal cortical–hippocampal dialogue. According to this model, higher frequency signals convey information from the cortex to hippocampus during wakefulness, but in the reverse direction during slow-wave sleep (SWS). Conversely, lower-frequency activity propagates from the information “receiver” to the “sender” to coordinate the timing of information transfer. Reversal of sender/receiver roles across wake and SWS implies that higher- and lower-frequency signaling should reverse direction between the cortex and hippocampus. However, direct evidence of such a reversal has been lacking in humans. Here, we use human resting-state fMRI and electrocorticography to demonstrate that δ-band activity and infraslow activity propagate in opposite directions between the hippocampus and cerebral cortex. Moreover, both δ activity and infraslow activity reverse propagation directions between the hippocampus and cerebral cortex across wake and SWS. These findings provide direct evidence for state-dependent reversals in human cortical–hippocampal communication. PMID:27791089

  5. Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. II - Structure and propagation of mobile wave-CISK modes and their modification by lower boundary forcings

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Lau, Ka-Ming

    1989-01-01

    An improved treatment of diabatic heating due to moist convection is introduced into the dynamical model of Lau and Peng (1987) to study the origin of intraseasonal oscillations in the tropics. It is found that the periods of slow-moving wave-CISK disturbances in the tropical troposphere with fixed sea surface temperature vary from 20 to 50 days. The results suggest that heating in the lower troposphere may be important in slowing down the wave-CISK modes. Also, it is shown that the intraseasonal oscillation can propagate around the globe even when the associated deep convection is only confined over warm sea surface temperatures.

  6. Biophysically based mathematical modeling of interstitial cells of Cajal slow wave activity generated from a discrete unitary potential basis.

    PubMed

    Faville, R A; Pullan, A J; Sanders, K M; Koh, S D; Lloyd, C M; Smith, N P

    2009-06-17

    Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations.

  7. Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy

    2013-09-01

    Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.

  8. Lower Mantle S-wave Velocity Model under the Western United States

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Grand, S. P.

    2016-12-01

    Deep mantle plumes created by thermal instabilities at the core-mantle boundary has been an explanation for intraplate volcanism since the 1970's. Recently, broad slow velocity conduits in the lower mantle underneath some hotspots have been observed (French and Romanowicz, 2015), however the direct detection of a classical thin mantle plume using seismic tomography has remained elusive. Herein, we present a seismic tomography technique designed to image a deep mantle plume under the Yellowstone Hotspot located in the western United States utilizing SKS and SKKS waves in conjunction with finite frequency tomography. Synthetic resolution tests show the technique can resolve a 235 km diameter lower mantle plume with a 1.5% Gaussian velocity perturbation even if a realistic amount of random noise is added to the data. The Yellowstone Hotspot presents a unique opportunity to image a thin plume because it is the only hotspot with a purported deep origin that has a large enough aperture and density of seismometers to accurately sample the lower mantle at the length scales required to image a plume. Previous regional tomography studies largely based on S wave data have imaged a cylindrically shaped slow anomaly extending down to 900km under the hotspot, however they could not resolve it any deeper (Schmandt et al., 2010; Obrebski et al., 2010).To test if the anomaly extends deeper, we measured and inverted over 40,000 SKS and SKKS waves' travel times in two frequency bands recorded at 2400+ stations deployed during 2006-2012. Our preliminary model shows narrow slow velocity anomalies in the lower mantle with no fast anomalies. The slow anomalies are offset from the Yellowstone hotspot and may be diapirs rising from the base of the mantle.

  9. Increase in slow-wave vasomotion by hypoxia and ischemia in lowlanders and highlanders.

    PubMed

    Salvi, Paolo; Faini, Andrea; Castiglioni, Paolo; Brunacci, Fausto; Montaguti, Luca; Severi, Francesca; Gautier, Sylvie; Pretolani, Enzo; Benetos, Athanase; Parati, Gianfranco

    2018-06-21

    The physiological relevance of slow-wave vasomotion is still unclear, even it has been hypothesized it could be a compensatory mechanism enhancing tissue oxygenation in conditions of reduced oxygen supply. Aim of our study was to explore the effects of hypoxia and ischemia on slow-wave vasomotion in microcirculation. Peripheral oxygen saturation and forearm microcirculation flow (laser-Doppler flowmetry) were recorded at baseline and during post-occlusive reactive hyperemia in the Himalaya region from 8 European lowlanders (6 males; aged 29-39yrs) at 1350, 3400 and 5050m, and from 10 Nepalese male highlanders (aged 21-39yrs) at 3400 and 5050m of altitude. The same measurements were also performed at sea level in 16 healthy volunteers (aged 23-61yrs) during a short-term exposure to normobaric hypoxia. In lowlanders, exposure to progressively higher altitude under baseline flow conditions progressively increased 0.06-0.15Hz vasomotion amplitude [power spectral density % expressed as geometric means (geometric standard deviation) =14.0(3.6) at 1350m; 87.0(2.3) at 3400m and 249.8(3.6) at 5050m, p=0.006 and p<0.001 vs 1350m, respectively]. In highlanders, low frequency vasomotion amplitude was similarly enhanced at different altitudes [power spectral density % =183.4(4.1) at 3400m vs 236.0(3.0) at 5050m, p=0.139]. In both groups at altitude it was further increased after ischemic stimulus (p<0.001). At baseline, acute short lasting normobaric hypoxia did not induce low frequency vasomotion, which was conversely induced by ischemia even under normal oxygenation and barometric pressure. This study offers the demonstration of a significant increase in slow-wave vasomotion under prolonged hypobaric-hypoxia exposure at high altitude, with a further enhancement after ischemia induction.

  10. Simultaneous Anterior and Posterior Serosal Mapping of Gastric Slow Wave Dysrhythmias Induced by Vasopressin

    PubMed Central

    Du, Peng; O'Grady, Greg; Paskaranandavadivel, Niranchan; Tang, Shou-jiang; Abell, Thomas; Cheng, Leo K

    2016-01-01

    Background High-resolution (HR) mapping enables mechanistic insights into gastric slow wave dysrhythmias and is now achieving clinical translation. However, previous studies have focused mainly on dysrhythmias occurring on the anterior gastric wall. The present study simultaneously mapped the anterior and posterior gastric serosa during episodes of dysrhythmias induced by vasopressin to aid understanding of dysrhythmia initiation, maintenance and termination.. Methods HR mapping (8×16 electrodes on each serosa; 20-74 cm2) was performed in anesthetized subjects. Baseline recordings (21±8 min) were followed by intravenous vasopressin infusion (0.1-0.5 IU/mL at 60-190 mL/hour) and further recordings (22±13 min). Slow wave activation maps, amplitudes, velocity, interval, and frequency were calculated, and differences compared between baseline and post-infusion. Results All subjects demonstrated and increased prevalence of dysrhythmic events following infusion of vasopressin (17% vs 51%).Both amplitude and velocity demonstrated significant differences (baseline vs. post-infusion: 3.6 vs. 2.2 mV; 7.7 vs. 6.5 mm s−1; P < 0.05 for both). Dysrhythmias occurred simultaneously or independently on anterior and posterior serosa, and then interacted according to frequency dynamics. A number of persistent dysrhythmias were compared, including: ectopic activation (n=2 subjects), conduction block (n=1), rotor (n=2), retrograde (n=3), collision/merge of wavefronts (n=2). Conclusions Infusion of vasopressin induces gastric dysrhythmias, which occurred across a heterogeneous range of frequencies and patterns. The results demonstrated that different classes of gastric dysrhythmias may arise simultaneously or independently in one or both surfaces of the serosa, then interact according to their relative frequencies. These results will help inform clinical dysrhythmia interpretations. PMID:27265885

  11. The role of fast and slow EEG activity during sleep in males and females with Major Depressive Disorder

    PubMed Central

    Cheng, Philip; Goldschmied, Jennifer; Deldin, Patricia; Hoffmann, Robert; Armitage, Roseanne

    2015-01-01

    Sleep difficulties are highly prevalent in depression, and appears to be a contributing factor in the development and maintenance of symptoms. However, despite the generally acknowledged relationship between sleep and depression, the neurophysiological substrates underlying this relationship still remain unclear. Two main hypotheses were tested in this study. The first hypothesis states that sleep in depression is characterized by inadequate generation of restorative sleep, as indexed by reduced amounts of slow-wave activity. Conversely, the second hypothesis states that poor sleep in depression is due to intrusions of fast-frequency activity that may be reflective of a hyperaroused central nervous system. This study aimed to test both hypotheses in a large sample of individuals with clinically validated depression, as well as examine sex as a moderator. Results suggest that depression is better characterized by an overall decrease in slow-wave activity, which is related to elevated anxious and depressed mood the following morning. Results also suggest that females may be more likely to experience fast frequency activity related to depression symptom severity. PMID:26175101

  12. Sleep spindles in humans: insights from intracranial EEG and unit recordings

    PubMed Central

    Andrillon, Thomas; Nir, Yuval; Staba, Richard J.; Ferrarelli, Fabio; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak

    2012-01-01

    Sleep spindles are an electroencephalographic (EEG) hallmark of non-rapid eye movement (NREM) sleep and are believed to mediate many sleep-related functions, from memory consolidation to cortical development. Spindles differ in location, frequency, and association with slow waves, but whether this heterogeneity may reflect different physiological processes and potentially serve different functional roles remains unclear. Here we utilized a unique opportunity to record intracranial depth EEG and single-unit activity in multiple brain regions of neurosurgical patients to better characterize spindle activity in human sleep. We find that spindles occur across multiple neocortical regions, and less frequently also in the parahippocampal gyrus and hippocampus. Most spindles are spatially restricted to specific brain regions. In addition, spindle frequency is topographically organized with a sharp transition around the supplementary motor area between fast (13-15Hz) centroparietal spindles often occurring with slow wave up-states, and slow (9-12Hz) frontal spindles occurring 200ms later on average. Spindle variability across regions may reflect the underlying thalamocortical projections. We also find that during individual spindles, frequency decreases within and between regions. In addition, deeper sleep is associated with a reduction in spindle occurrence and spindle frequency. Frequency changes between regions, during individual spindles, and across sleep may reflect the same phenomenon, the underlying level of thalamocortical hyperpolarization. Finally, during spindles neuronal firing rates are not consistently modulated, although some neurons exhibit phase-locked discharges. Overall, anatomical considerations can account well for regional spindle characteristics, while variable hyperpolarization levels can explain differences in spindle frequency. PMID:22159098

  13. Broad-band High-Frequency Sound Interaction With the Seafloor

    DTIC Science & Technology

    1998-01-01

    interface, propagation within and scattering from the seafloor. OBJECTIVES Resolution of modeling issues through experimental measurement of acoustic ...approximation, particularly the roughness scattering mechanism for propagating and evanescent waves, offer alternative models of the observed acoustic ...applicability of each model and it’s relative merits. The candidate models of acoustic penetration include: 1. Biot slow wave 2. Scattering of in-water

  14. Resonant triad in boundary-layer stability. Part 1: Fully nonlinear interaction

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1991-01-01

    A first principles theory is developed to study the nonlinear spatial evolution of a near-resonance triad of instability waves in boundary layer transition. This triad consists of a plane wave at fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low frequency, high Reynolds number asymptotic scaling leads to a distinct critical layer where nonlinearity first becomes important; the development of the triad's waves is determined by the critical layer's nonlinear, viscous dynamics. The resulting theory is fully nonlinear in that all nonlinearly generated oscillatory and nonoscillatory components are accounted for. The presence of the plane wave initially causes exponential of exponential growth of the oblique waves. However, the plane wave continues to follow the linear theory, even when the oblique waves' amplitude attains the same order of magnitude as that of the plane wave. A fully interactive stage then comes into effect when the oblique waves exceed a certain level compared to that of the plane wave. The oblique waves react back on the fundamental, slowing its growth rate. The oblique waves' saturation results from their self-interaction - a mechanism that does not require the presence of the plane wave. The oblique waves' saturation level is independent of their initial level, but decreases as the obliqueness angle increases.

  15. Modeling and characterization of shielded low loss CPWs on 65 nm node silicon

    NASA Astrophysics Data System (ADS)

    Hongrui, Wang; Dongxu, Yang; Li, Zhang; Lei, Zhang; Zhiping, Yu

    2011-06-01

    Coplanar waveguides (CPWs) are promising candidates for high quality passive devices in millimeter-wave frequency bands. In this paper, CPW transmission lines with and without ground shields have been designed and fabricated on 65 nm CMOS technology. A physical-based model is proposed to describe the frequency-dependent per-unit-length L, C, R and G parameters. Starting with a basic CPW structure, the slow-wave effect and ground-shield influence have been analyzed and incorporated into the general model. The accuracy of the model is confirmed by experimental results.

  16. Dynamic Interaction of Spindles and Gamma Activity during Cortical Slow Oscillations and Its Modulation by Subcortical Afferents

    PubMed Central

    Valencia, Miguel; Artieda, Julio; Bolam, J. Paul; Mena-Segovia, Juan

    2013-01-01

    Slow oscillations are a hallmark of slow wave sleep. They provide a temporal framework for a variety of phasic events to occur and interact during sleep, including the expression of high-frequency oscillations and the discharge of neurons across the entire brain. Evidence shows that the emergence of distinct high-frequency oscillations during slow oscillations facilitates the communication among brain regions whose activity was correlated during the preceding waking period. While the frequencies of oscillations involved in such interactions have been identified, their dynamics and the correlations between them require further investigation. Here we analyzed the structure and dynamics of these signals in anesthetized rats. We show that spindles and gamma oscillations coexist but have distinct temporal dynamics across the slow oscillation cycle. Furthermore, we observed that spindles and gamma are functionally coupled to the slow oscillations and between each other. Following the activation of ascending pathways from the brainstem by means of a carbachol injection in the pedunculopontine nucleus, we were able to modify the gain in the gamma oscillations that are independent of the spindles while the spindle amplitude was reduced. Furthermore, carbachol produced a decoupling of the gamma oscillations that are dependent on the spindles but with no effect on their amplitude. None of the changes in the high-frequency oscillations affected the onset or shape of the slow oscillations, suggesting that slow oscillations occur independently of the phasic events that coexist with them. Our results provide novel insights into the regulation, dynamics and homeostasis of cortical slow oscillations. PMID:23844020

  17. Long-term survey of lion-roar emissions inside the terrestrial magnetosheath obtained from the STAFF-SA measurements onboard the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Pisa, D.; Krupar, V.; Kruparova, O.; Santolik, O.

    2017-12-01

    Intense whistler-mode emissions known as 'lion-roars' are often observed inside the terrestrial magnetosheath, where the solar wind plasma flow slows down, and the local magnetic field increases ahead of a planetary magnetosphere. Plasma conditions in this transient region lead to the electron temperature anisotropy, which can result in the whistler-mode waves. The lion-roars are narrow-band emissions with typical frequencies between 0.1-0.5 Fce, where Fce is the electron cyclotron frequency. We present results of a long-term survey obtained by the Spatio Temporal Analysis Field Fluctuations - Spectral Analyzer (STAFF-SA) instruments on board the four Cluster spacecraft between 2001 and 2010. We have visually identified the time-frequency intervals with the intense lion-roar signature. Using the Singular Value Decomposition (SVD) method, we analyzed the wave propagation properties. We show the spatial, frequency and wave power distributions. Finally, the wave properties as a function of upstream solar wind conditions are discussed.

  18. Normal compression wave scattering by a permeable crack in a fluid-saturated poroelastic solid

    NASA Astrophysics Data System (ADS)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2017-04-01

    A mathematical formulation is presented for the dynamic stress intensity factor (mode I) of a finite permeable crack subjected to a time-harmonic propagating longitudinal wave in an infinite poroelastic solid. In particular, the effect of the wave-induced fluid flow due to the presence of a liquid-saturated crack on the dynamic stress intensity factor is analyzed. Fourier sine and cosine integral transforms in conjunction with Helmholtz potential theory are used to formulate the mixed boundary-value problem as dual integral equations in the frequency domain. The dual integral equations are reduced to a Fredholm integral equation of the second kind. It is found that the stress intensity factor monotonically decreases with increasing frequency, decreasing the fastest when the crack width and the slow wave wavelength are of the same order. The characteristic frequency at which the stress intensity factor decays the fastest shifts to higher frequency values when the crack width decreases.

  19. Numerical Study of Transmission Loss Through a Slow Gas Layer Adjacent to a Plate

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Beck, Benjamin S.; Slagle, Adam C.

    2013-01-01

    This paper describes a systematic numerical investigation of the sound transmission loss through a multilayer system consisting of a bagged gas and lightweight panel. The goal of the study is to better understand the effect of the gas on transmission loss and determine whether a gas with a slow speed of sound is beneficial for noise control applications. As part of the study, the density and speed of sound of the gas are varied independently to assess the impact of each on transmission loss. Results show that near grazing incidence the plane wave transmission loss through the multilayer system is more sensitive to the speed of sound than the density of the gas. In addition, it was found that a slow wave speed in the bagged gas provides more low-frequency transmission loss benefit than a fast wave speed. At low angles of incidence, close to the plate normal, the benefit is due to the reduction of the characteristic impedance of the gas. At high angles of incidence, the benefit is attributed to the fact that the incident waves at the air/gas interface are bent towards the surface normal. Since transmission loss is angle dependent, refraction in the slow gas layer results in a significant improvement in the transmission loss at high angles of incidence.

  20. Source and path effects in the wave fields of tremor and explosions at Stromboli Volcano, Italy

    USGS Publications Warehouse

    Chouet, B.; Saccorotti, G.; Martini, M.; Dawson, P.; De Luca, G.; Milana, G.; Scarpa, R.

    1997-01-01

    The wave fields generated by Strombolian activity are investigated using data from small-aperture seismic arrays deployed on the north flank of Stromboli and data from seismic and pressure transducers set up near the summit crater. Measurements of slowness and azimuth as a function of time clearly indicate that the sources of tremor and explosions are located beneath the summit crater at depths shallower than 200 m with occasional bursts of energy originating from sources extending to a depth of 3 km. Slowness, azimuth, and particle motion measurements reveal a complex composition of body and surface waves associated with topography, structure, and source properties. Body waves originating at depths shallower than 200 m dominate the wave field at frequencies of 0.5-2.5 Hz, and surface waves generated by the surficial part of the source and by scattering sources distributed around the island dominate at frequencies above 2.5 Hz. The records of tremor and explosions are both dominated by SH motion. Far-field records from explosions start with radial motion, and near-field records from those events show dominantly horizontal motion and often start with a low-frequency (1-2 Hz) precursor characterized by elliptical particle motion, followed within a few seconds by a high-frequency radial phase (1-10 Hz) accompanying the eruption of pyroclastics. The dominant component of the near- and far-field particle motions from explosions, and the timing of air and body wave phases observed in the near field, are consistent with a gaspiston mechanism operating on a shallow (<200 m deep), vertical crack-like conduit. Models of a degassing fluid column suggest that noise emissions originating in the collective oscillations of bubbles ascending in the magma conduit may provide an adequate self-excitation mechanism for sustained tremor generation at Stromboli. Copyright 1997 by the American Geophysical Union.

  1. Prediction of the characteristics of two types of pressure waves in the cochlea: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Andoh, Masayoshi; Wada, Hiroshi

    2004-07-01

    The aim of this study was to predict the characteristics of two types of cochlear pressure waves, so-called fast and slow waves. A two-dimensional finite-element model of the organ of Corti (OC), including fluid-structure interaction with the surrounding lymph fluid, was constructed. The geometry of the OC at the basal turn was determined from morphological measurements of others in the gerbil hemicochlea. As far as mechanical properties of the materials within the OC are concerned, previously determined mechanical properties of portions within the OC were adopted, and unknown mechanical features were determined from the published measurements of static stiffness. Time advance of the fluid-structure scheme was achieved by a staggered approach. Using the model, the magnitude and phase of the fast and slow waves were predicted so as to fit the numerically obtained pressure distribution in the scala tympani with what is known about intracochlear pressure measurement. When the predicted pressure waves were applied to the model, the numerical result of the velocity of the basilar membrane showed good agreement with the experimentally obtained velocity of the basilar membrane documented by others. Thus, the predicted pressure waves appeared to be reliable. Moreover, it was found that the fluid-structure interaction considerably influences the dynamic behavior of the OC at frequencies near the characteristic frequency.

  2. Changes in gastric myoelectric activity during space flight

    NASA Technical Reports Server (NTRS)

    Harm, Deborah L.; Sandoz, Gwenn R.; Stern, Robert M.

    2002-01-01

    The purpose of the present study was to examine postprandial myoelectric activity of the stomach and gastric activity associated with space motion sickness using electrogastrography. Three crewmembers participated in this investigation. Preflight, subjects exhibited normal postprandial responses to the ingestion of a meal. Inflight, crewmembers exhibited an abnormal decrease in the power of the normal gastric slow wave after eating on flight day 1, but had a normal postprandial response by flight day 3. Prior to and during episodes of nausea and vomiting, the electrical activity of the stomach became dysrhythmic with 60-80% of the spectral power in the bradygastric and tachygastric frequency ranges. These findings indicate that gastric motility may be decreased during the first few days of space flight. In addition, changes in the frequency of the gastric slow wave associated with space motion sickness symptoms are consistent with those reported for laboratory-induced motion sickness.

  3. Measurement of anal pressure and motility.

    PubMed Central

    Hancock, B D

    1976-01-01

    A fine open perfused system and a closed balloon system for the measurement of anal pressure and motility have been compared. Measurements were made in 40 normal subjects and 84 patients with haemorrhoids. The rate of perfusion had a marked effect on the recorded pressure and motility details. The motility pattern was seen most clearly with the balloon probe and the pressure recorded was reproducible and easy to measure, making this a convenient method for recording activity of the internal anal sphincter. Anal motility in normal subjects was characterised by slow pressure waves (10-20/min). The frequency was fastest in the distal anal canal and this frequency gradient may represent a normal mechanism to keep the anal canal empty. Ultra slow pressure waves (0-6-1-9/min) were seen in 42% of patients with haemorrhoids and 5% of normal subjects and arose from a synchronous contraction of the whole internal sphincter. Images Fig. 1 PMID:976803

  4. Identifying the effects of microsaccades in tripolar EEG signals.

    PubMed

    Bellisle, Rachel; Steele, Preston; Bartels, Rachel; Lei Ding; Sunderam, Sridhar; Besio, Walter

    2017-07-01

    Microsaccades are tiny, involuntary eye movements that occur during fixation, and they are necessary to human sight to maintain a sharp image and correct the effects of other fixational movements. Researchers have theorized and studied the effects of microsaccades on electroencephalography (EEG) signals to understand and eliminate the unwanted artifacts from EEG. The tripolar concentric ring electrode (TCRE) sensors are used to acquire TCRE EEG (tEEG). The tEEG detects extremely focal signals from directly below the TCRE sensor. We have noticed a slow wave frequency found in some tEEG recordings. Therefore, we conducted the current work to determine if there was a correlation between the slow wave in the tEEG and the microsaccades. This was done by analyzing the coherence of the frequency spectrums of both tEEG and eye movement in recordings where microsaccades are present. Our preliminary findings show that there is a correlation between the two.

  5. Helicon wave coupling in KSTAR plasmas for off-axis current drive in high electron pressure plasmas

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Wi, H. H.; Kim, H. J.; Kim, J.; Jeong, J. H.; Kwak, J. G.

    2017-04-01

    A helicon wave current drive is proposed as an efficient off-axis current drive in the high electron β plasmas that are expected in fusion reactors. A high frequency helicon wave coupling was analyzed using the surface impedance at a plasma boundary. A slow wave coupling, which may compete with the helicon wave coupling at a frequency of 500 MHz, is estimated to be lower than the fast wave coupling by an order of magnitude in the KSTAR edge plasma density and in practical Faraday shield misalignment with the magnetic pitch. A traveling wave antenna, which is a two port combline antenna, was analyzed using a simplified lumped element model. The results show that the traveling wave antenna provides load resiliency because of its insensitivity to loading resistance, provided that the loading resistance at a radiating element is limited within a practical range. The combline antenna is attractive because it does not require a matching system and exhibits a high selectivity of parallel refractive index. Based on the analysis, a seven element combline antenna was fabricated and installed at an off-mid-plane offset of 30 cm from the mid-plane in KSTAR. The low power RF characteristics measured during several plasma discharges showed no evidence of slow wave coupling. This is consistent with the expectation made through the surface impedance analysis which predicted low slow wave coupling. The wave coupling to the plasma is easily controlled by a radial outer-gap control and gas puffing. No plasma confinement degradation was observed during the radial outer-gap control of up to 3 cm in H-mode discharges. In a ELMy plasmas, only a small reflection peak was observed during a very short portion of the ELM bursting period. If the number of radiating elements is increased for high power operation, then complete load resiliency can be expected. A very large coupling can be problematic for maintaining a parallel refractive index, although this issue can be mitigated by increasing the number of elements.

  6. Electroencephalographic Variation during End Maintenance and Emergence from Surgical Anesthesia

    PubMed Central

    MacColl, Jono N.; Illing, Sam; Sleigh, Jamie W.

    2014-01-01

    The re-establishment of conscious awareness after discontinuing general anesthesia has often been assumed to be the inverse of loss of consciousness. This is despite the obvious asymmetry in the initiation and termination of natural sleep. In order to characterize the restoration of consciousness after surgery, we recorded frontal electroencephalograph (EEG) from 100 patients in the operating room during maintenance and emergence from general anesthesia. We have defined, for the first time, 4 steady-state patterns of anesthetic maintenance based on the relative EEG power in the slow-wave (<14 Hz) frequency bands that dominate sleep and anesthesia. Unlike single-drug experiments performed in healthy volunteers, we found that surgical patients exhibited greater electroencephalographic heterogeneity while re-establishing conscious awareness after drug discontinuation. Moreover, these emergence patterns could be broadly grouped according to the duration and rapidity of transitions amongst these slow-wave dominated brain states that precede awakening. Most patients progressed gradually from a pattern characterized by strong peaks of delta (0.5–4 Hz) and alpha/spindle (8–14 Hz) power (‘Slow-Wave Anesthesia’) to a state marked by low delta-spindle power (‘Non Slow-Wave Anesthesia’) before awakening. However, 31% of patients transitioned abruptly from Slow-Wave Anesthesia to waking; they were also more likely to express pain in the post-operative period. Our results, based on sleep-staging classification, provide the first systematized nomenclature for tracking brain states under general anesthesia from maintenance to emergence, and suggest that these transitions may correlate with post-operative outcomes such as pain. PMID:25264892

  7. Multi-scale analysis of compressible fluctuations in the solar wind

    NASA Astrophysics Data System (ADS)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-01-01

    Compressible plasma turbulence is investigated in the fast solar wind at proton kinetic scales by the combined use of electron density and magnetic field measurements. Both the scale-dependent cross-correlation (CC) and the reduced magnetic helicity (σm) are used in tandem to determine the properties of the compressible fluctuations at proton kinetic scales. At inertial scales the turbulence is hypothesised to contain a mixture of Alfvénic and slow waves, characterised by weak magnetic helicity and anti-correlation between magnetic field strength B and electron density ne. At proton kinetic scales the observations suggest that the fluctuations have stronger positive magnetic helicities as well as strong anti-correlations within the frequency range studied. These results are interpreted as being characteristic of either counter-propagating kinetic Alfvén wave packets or a mixture of anti-sunward kinetic Alfvén waves along with a component of kinetic slow waves.

  8. A Low Cost Traveling Wave Tube for Wireless Communications

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard Kenneth; Wintucky, Edwin G.; Williams, W. D. (Technical Monitor)

    2002-01-01

    Demand for high data rate wireless communications is pushing up amplifier power, bandwidth and frequency requirements. Some systems are using vacuum electron devices again because solid-state power amplifiers are not able to efficiently meet the new requirements. The traveling wave tube is the VED of choice because of its excellent broadband capability as well as high power efficiency and frequency. But TWTs are very expensive on a per watt basis below about 200 watts of output power. We propose a new traveling wave tube that utilizes cathode ray tube construction technology and electrostatic focusing. We believe the tube can be built in quantity for under $1,000 each. We discuss several traveling wave tube slow wave circuits that lend themselves to the new construction. We will present modeling results and data on prototype devices.

  9. Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves

    PubMed Central

    Ford, Kevin J.; Félix, Aude L.; Feller, Marla B.

    2012-01-01

    Prior to vision, a transient network of recurrently connected cholinergic interneurons, called starburst amacrine cells (SACs), generates spontaneous retinal waves. Despite an absence of robust inhibition, cholinergic retinal waves initiate infrequently and propagate within finite boundaries. Here we combine a variety of electrophysiological and imaging techniques and computational modeling to elucidate the mechanisms underlying these spatial and temporal properties of waves in developing mouse retina. Waves initiate via rare spontaneous depolarizations of SACs. Waves propagate through recurrent cholinergic connections between SACs and volume release of ACh as demonstrated using paired recordings and a cell-based ACh optical sensor. Perforated patch recordings and two-photon calcium imaging reveal that individual SACs have slow afterhyperpolarizations that induce SACs to have variable depolarizations during sequential waves. Using a computational model in which the properties of SACs are based on these physiological measurements, we reproduce the slow frequency, speed, and finite size of recorded waves. This study represents a detailed description of the circuit that mediates cholinergic retinal waves and indicates that variability of the interneurons that generate this network activity may be critical for the robustness of waves across different species and stages of development. PMID:22262883

  10. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    NASA Astrophysics Data System (ADS)

    Santos, J. E.; Savioli, G. B.

    2018-04-01

    Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  11. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Hongxiang; Faculty of Science, Jiangsu University, Zhenjiang 212013; Zhang Shuyi

    2011-04-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coatingmore » on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.« less

  12. Nonlinear wave interaction in a plasma column

    NASA Technical Reports Server (NTRS)

    Larsen, J.

    1972-01-01

    Two particular cases of nonlinear wave interaction in a plasma column were investigated. The frequencies of the waves were on the order of magnitude of the electron plasma frequency, and ion motion was neglected. The nonlinear coupling of slow waves on a plasma column was studied by means of cold plasma theory, and the case of a plasma column surrounded by an infinite dielectric in the absence of a magnetic field was also examined. Nonlinear scattering from a plasma column in an electromagnetic field having it's magnetic field parallel to the axis of the column was investigated. Some experimental results on mode conversion in the presence of loss are presented along with some observations of nonlinear scattering, The effect of the earth's magnetic field and of discharge symmetry on the radiation pattern are discussed.

  13. Nonlinear Waves in the Terrestrial Quasiparallel Foreshock.

    PubMed

    Hnat, B; Kolotkov, D Y; O'Connell, D; Nakariakov, V M; Rowlands, G

    2016-12-02

    We provide strongly conclusive evidence that the cubic nonlinearity plays an important part in the evolution of the large amplitude magnetic structures in the terrestrial foreshock. Large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency are identified after nonharmonic slow variations are filtered out by applying the empirical mode decomposition. Numerical solutions of the derivative nonlinear Schrödinger equation, predicted analytically by the use of a pseudopotential approach, are found to be consistent with the observed wave forms. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfvén speed. We suggest that the feedback of the large amplitude fluctuations on background plasma is reflected in the evolution of the pseudopotential.

  14. Biophysically Based Mathematical Modeling of Interstitial Cells of Cajal Slow Wave Activity Generated from a Discrete Unitary Potential Basis

    PubMed Central

    Faville, R.A.; Pullan, A.J.; Sanders, K.M.; Koh, S.D.; Lloyd, C.M.; Smith, N.P.

    2009-01-01

    Abstract Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations. PMID:19527643

  15. Kinetic scale structure of low-frequency waves and fluctuations

    NASA Astrophysics Data System (ADS)

    Lopez Herrera, R. A.; Figueroa-Vinas, A.; Araneda, J. A.; Yoon, P. H.

    2017-12-01

    The dissipation of solar wind turbulence at kinetic scales is believed to be important for heating the corona and accelerating the wind. Linear Vlasov kinetic theory is a useful tool in identifying various wave modes, including kinetic Alfvén, fast magnetosonic/whistler, ion-acoustic (or kinetic slow mode), and their possible roles in the dissipation. However, kinetic mode structure near the vicinity of ion cyclotron modes is not clearly understood. The present poster aims to further elucidate the structure of these low-frequency waves by introducing discrete particle effects through hybrid simulations and Klimontovich formalism of spontaneous emission theory. The theory and simulation of spontaneously emitted low-frequency fluctuations are employed to identify and distinguish the detailed mode structures associated with ion Bernstein versus quasi modes. The spontaneous emission theory and simulation also confirm the findings of Vlasov theory in that the kinetic Alfvén wave can be defined over a wide range of frequencies, including the proton cyclotron frequency and its harmonics, especially for high beta plasmas. This implies that these low-frequency modes may play predominant roles even in the fully kinetic description of kinetic scale turbulence and dissipation despite the fact that cyclotron harmonic and Bernstein modes may also play important roles in wave-particle interactions.

  16. Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.

    PubMed

    Mansour, Omar; Poepping, Tamie L; Lacefield, James C

    2016-07-21

    Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.

  17. Evidence of Biot Slow Waves in Electroseismic Measurementss on Laboratory-Scale

    NASA Astrophysics Data System (ADS)

    Devi, M. S.

    2015-12-01

    Electroseismic methods which are the opposite of seismo-electric methods have only been little investigated up to now especially in the near surface scale. These methods can generate the solid-fluid relative movement induced by the electric potential in fluid-filled porous media. These methods are the response of electro-osmosis due to the presence of the electrical double layer. Laboratory experiments and numerical simulations of electroseismic studies have been performed. Electroseismic measurements conducted in micro glass beads saturated with demineralized water. Pair of 37 x 37 mm square aluminium grids with 2 mm of aperture and 4 mm of spacing is used as the electric dipole that connected to the electric power source with the voltage output 150 V. A laser doppler vibrometer is the system used to measure velocity of vibrating objects during measurements by placing a line of reflective paper on the surface of media that scattered back a helium-neon laser. The results in homogeneous media shows that the compressional waves induced by an electric signal. We confirm that the results are not the effects of thermal expansion. We also noticed that there are two kinds of the compressional waves are recorded: fast and slow P-waves. The latter, Biot slow waves, indicate the dominant amplitude. Moreover, we found that the transition frequency (ωc) of Biot slow waves depends on mechanical parameters such as porosity and permeability. The ωc is not affected when varying conductivity of the fluid from 25 - 320 μS/cm, although the amplitude slightly changed. For the results in two layer media by placing a sandstone as a top layer shows that a large amount of transmission seismic waves (apparently as Biot slow waves) rather than converted electromagnetic-to-seismic waves. These properties have also been simulated with full waveform numerical simulations relying on Pride's (1994) using our computer code (Garambois & Dietrich, 2002). If it is true that the electric source in the safe voltage range generates seismic waves dominantly, it may be a reason of electro-osmosis dewatering technique to transport liquids. And this source may be used an alternative as a seismic source in geophysical exploration.

  18. Induction of slow oscillations by rhythmic acoustic stimulation.

    PubMed

    Ngo, Hong-Viet V; Claussen, Jens C; Born, Jan; Mölle, Matthias

    2013-02-01

    Slow oscillations are electrical potential oscillations with a spectral peak frequency of ∼0.8 Hz, and hallmark the electroencephalogram during slow-wave sleep. Recent studies have indicated a causal contribution of slow oscillations to the consolidation of memories during slow-wave sleep, raising the question to what extent such oscillations can be induced by external stimulation. Here, we examined whether slow oscillations can be effectively induced by rhythmic acoustic stimulation. Human subjects were examined in three conditions: (i) with tones presented at a rate of 0.8 Hz ('0.8-Hz stimulation'); (ii) with tones presented at a random sequence ('random stimulation'); and (iii) with no tones presented in a control condition ('sham'). Stimulation started during wakefulness before sleep and continued for the first ∼90 min of sleep. Compared with the other two conditions, 0.8-Hz stimulation significantly delayed sleep onset. However, once sleep was established, 0.8-Hz stimulation significantly increased and entrained endogenous slow oscillation activity. Sleep after the 90-min period of stimulation did not differ between the conditions. Our data show that rhythmic acoustic stimulation can be used to effectively enhance slow oscillation activity. However, the effect depends on the brain state, requiring the presence of stable non-rapid eye movement sleep. © 2012 European Sleep Research Society.

  19. A stochastic model with a low-frequency amplification feedback for the stratospheric northern annular mode

    NASA Astrophysics Data System (ADS)

    Yu, Yueyue; Cai, Ming; Ren, Rongcai

    2017-08-01

    We consider three indices to measure the polar stratospheric mass and stratospheric meridional mass circulation variability: anomalies of (1) total mass in the polar stratospheric cap (60-90°N, above the isentropic surface 400 K, PSM), (2) total adiabatic mass transport across 60°N into the polar stratosphere cap (AMT), (3) and total diabetic mass transport across 400 K from the polar stratosphere into the troposphere below (DMT). It is confirmed that the negative stratospheric Northern Annular Mode (NAM) and PSM indices have a nearly indistinguishable temporal evolution and a similar red-noise-like spectrum with a de-correlation timescale of 4 weeks. This enables us to examine the low-frequency nature of the NAM in the framework of mass circulation, namely, d/{dt}{PSM}={AMT} - {DMT} . The DMT index tends to be positively correlated with the PSM with a red-noise-like spectrum, representing slow radiative cooling processes giving rise to a de-correlation timescale of 3-4 weeks. The AMT is nearly perfectly correlated with the day-to-day tendency of PSM, reflecting a robust quasi 90° out-of-phase relation between the AMT and PSM at all frequency bands. Variations of vertically westward tilting of planetary waves contribute mainly to the high-frequency portion of AMT. It is the wave amplitude's slow vacillation that plays the leading role in the quasi 90° out-of-phase relation between the AMT and PSM. Based on this, we put forward a linear stochastic model with a low-frequency amplification feedback from low-frequency amplitude vacillations of planetary waves to explain the amplified low-frequency response of PSM/NAM to a stochastic forcing from the westward tilting variability.

  20. On the Motion of an Annular Film in Microgravity Gas-Liquid Flow

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.

    2002-01-01

    Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.

  1. Effects of viscosity and constraints on the dispersion and dissipation of waves in large blood vessels. I.

    NASA Technical Reports Server (NTRS)

    Jones, E.; Anliker, M.; Chang, I.

    1971-01-01

    Investigation of the effects of blood viscosity on dissipation as well as dispersion of small waves in arteries and veins by means of a parametric study. A linearized analysis of axisymmetric waves in a cylindrical membrane that contains a viscous fluid indicates that there are two families of waves: a family of slow waves and one of fast waves. The faster waves are shown to be more sensitive to variations in the elastic properties of the medium surrounding the blood vessels and at high values of the frequency parameter alpha. At low values of alpha the effects of viscosity on attenuation are reversed.

  2. A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.

    PubMed

    Farajidavar, Aydin; O'Grady, Gregory; Rao, Smitha M N; Cheng, Leo K; Abell, Thomas; Chiao, J-C

    2012-06-01

    Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical userinter face. The front-end module conditions the analogue signals, then digitizes and loads the data into a radio for transmission. Data receipt at the backend is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35 × 35 × 27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124 h operation when utilizing a 560 mAh, 3 V battery. In vivo,slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles min−1), automated activation time detection was modestly better for the wireless system (5% versus 14% FP rate), and signal amplitudes were modestly higher via the wireless system (462 versus 3 86μV; p<0.001). This telemetric system for slow wave acquisition is reliable,power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients.0967-3334/

  3. A miniature bidirectional telemetry system for in-vivo gastric slow wave recordings

    PubMed Central

    Farajidavar, Aydin; O’Grady, Gregory; Rao, Smitha M.N.; Cheng, Leo K; Abell, Thomas; Chiao, J.-C.

    2012-01-01

    Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical user interface. The front-end module conditions the analog signals, then digitizes and loads the data into a radio for transmission. Data receipt at the back-end is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in-vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35×35×27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124-hour operation when utilizing a 560-mAh, 3-V battery. In-vivo, slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles/min), automated activation time detection was modestly better for the wireless system (5% vs 14% false positive rate), and signal amplitudes were modestly higher via the wireless system (462 vs 386 μV; p<0.001). This telemetric system for slow wave acquisition is reliable, power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients. PMID:22635054

  4. Effect of acute gastric dilatation on gastric myoelectic and motor activity in dogs.

    PubMed

    Hall, J A; Solie, T N; Seim, H B; Twedt, D C

    1999-05-01

    To investigate the effects of experimentally induced acute gastric dilatation on electrical and mechanical activities of the stomach in dogs. 7 healthy dogs. Electrodes and strain-gauge force transducers were implanted on the serosal surface of the antrum and pylorus. Eight days later, baseline gastric electrical and contractile activities were recorded. The dogs were anesthetized and mechanically ventilated to maintain normocapnia while the stomach was distended (intragastric pressure, 30 mm Hg) for 180 minutes, using a thin compliant bag. Gastric electrical and contractile activities were recorded again on days 1 and 10 after dilatation. Recordings were analyzed to determine gastric slow-wave frequency, slow-wave dysrhythmia, propagation velocity of slow-waves, coupling of contractions to slow waves, motility index on the basis of relative contractile amplitudes, and onset of contractions after a standardized meal. Electrical or contractile activities were not significantly different 18 hours after acute gastric dilatation (day 1). Arrhythmias were evident before and after gastric dilatation in dogs from which food was withheld and in dogs after consumption of a meal. Variables for assessing gastric electrical and contractile activities were unaffected 18 hours after acute gastric dilatation. Analysis of results of this study indicated that altered electrical and contractile activities in dogs with short-term gastric dilatation are not likely to be secondary to the process of acute gastric dilatation.

  5. RF absorption and ion heating in helicon sources.

    PubMed

    Kline, J L; Scime, E E; Boivin, R F; Keesee, A M; Sun, X; Mikhailenko, V S

    2002-05-13

    Experimental data are presented that are consistent with the hypothesis that anomalous rf absorption in helicon sources is due to electron scattering arising from parametrically driven ion-acoustic waves downstream from the antenna. Also presented are ion temperature measurements demonstrating anisotropic heating (T( perpendicular)>T(parallel)) at the edge of the discharge. The most likely explanation is ion-Landau damping of electrostatic slow waves at a local lower-hybrid-frequency resonance.

  6. Infrasonic Influences of Tornados and Cyclonic Weather Systems

    NASA Astrophysics Data System (ADS)

    Cook, Tessa

    2014-03-01

    Infrasound waves travel through the air at approximately 340 m/s at sea level, while experiencing low levels of friction, allowing the waves to travel over larger distances. When seismic waves travel through unconsolidated soil, the waves slow down to approximately 340 m/s. Because the speeds of waves in the air and ground are similar, a more effective transfer of energy from the atmosphere to the ground can occur. Large ring lasers can be utilized for detecting sources of infrasound traveling through the ground by measuring anomalies in the frequency difference between their two counter-rotating beams. Sources of infrasound include tornados and other cyclonic weather systems. The way systems create waves that transfer to the ground is unknown and will be continued in further research; this research has focused on attempting to isolate the time that the ring laser detected anomalies in order to investigate if these anomalies may be contributed to isolatable weather systems. Furthermore, this research analyzed the frequencies detected in each of the anomalies and compared the frequencies with various characteristics of each weather system, such as tornado width, wind speeds, and system development. This research may be beneficial for monitoring gravity waves and weather systems.

  7. On the coupled evolution of oceanic internal waves and quasi-geostrophic flow

    NASA Astrophysics Data System (ADS)

    Wagner, Gregory LeClaire

    Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic that transfers energy to the small near-inertial vertical scales of wave breaking and mixing.

  8. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves.

    PubMed

    Schwalm, Miriam; Schmid, Florian; Wachsmuth, Lydia; Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo; Faber, Cornelius; Stroh, Albrecht

    2017-09-15

    Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses.

  9. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves

    PubMed Central

    Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo

    2017-01-01

    Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses. PMID:28914607

  10. Growth of electron plasma waves above and below f(p) in the electron foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Fung, Shing F.

    1988-01-01

    This paper investigates the conditions required for electron beams to drive wave growth significantly above and below the electron plasma frequency, f(p), by numerically solving the linear dispersion equation. It is shown that kinetic growth well below f(p) may occur over a broad range of frequencies due to the beam instability, when the electron beam is slow, dilute, and relatively cold. Alternatively, a cold or sharp feature at low parallel velocities in the distribution function may drive kinetic growth significantly below f(p). Kinetic broadband growth significantly above f(p) is explained in terms of faster warmer beams. A unified qualitative theory for the narrow-band and broad-band waves is proposed.

  11. High-frequency waves following PKP-CDIFF at distances greater than 155°

    NASA Astrophysics Data System (ADS)

    Nakanishi, Ichiro

    1990-04-01

    Using a seismic network in Hokkaido-Tohoku region, Japan we observe PKP waves in the distance range 152 to 157°from a deep earthquake in Argentina. The seismic network consists of 26 stations and provides us with a data set of dense distance sampling. The examination of amplitude variation of PKP-BC and PKP-Cdiff with distance locates the C-cusp at about 155.5° for a surface source for the path from Argentina to Japan. This C-cusp position suggests a P velocity of 10.27 km/s at the bottom of the outer core. The bandpass filtering of the data shows that high-frequency waves are observed following PKP-Cdiff at distances beyond the C-cusp. The waves are characterized by a dominant frequency of about 2 to 3 Hz, a long duration of oscillation until the arrival of PKP-AB, and an apparent onset slowness of about 4 s/deg, which is approximately equal to that of PKP-AB in the distance range. The onset time of the high-frequency waves seems to be consistent with the least time of the scattering of PKP-BC on the receiver side near the bottom of the upper mantle.

  12. A SURVEY OF MAGNETIC WAVES EXCITED BY NEWBORN INTERSTELLAR He{sup +} OBSERVED BY THE ACE SPACECRAFT AT 1 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Meghan K.; Argall, Matthew R.; Joyce, Colin J., E-mail: mkl54@wildcats.unh.edu, E-mail: Matthew.Argall@unh.edu, E-mail: cjl46@wildcats.unh.edu

    We report observations of low-frequency waves at 1 au by the magnetic field instrument on the Advanced Composition Explorer ( ACE /MAG) and show evidence that they arise due to newborn interstellar pickup He{sup +}. Twenty-five events are studied. They possess the generally predicted attributes: spacecraft-frame frequencies slightly greater than the He{sup +} cyclotron frequency, left-hand polarization in the spacecraft frame, and transverse fluctuations with minimum variance directions that are quasi-parallel to the mean magnetic field. Their occurrence spans the first 18 years of ACE operations, with no more than 3 such observations in any given year. Thus, the eventsmore » are relatively rare. As with past observations by the Ulysses and Voyager spacecraft, we argue that the waves are seen only when the background turbulence is sufficiently weak as to allow for the slow accumulation of wave energy over many hours.« less

  13. Slow oscillation of membrane currents mediated by glutamatergic inputs of rat somatosensory cortical neurons: in vivo patch-clamp analysis.

    PubMed

    Doi, Atsushi; Mizuno, Masaharu; Katafuchi, Toshihiko; Furue, Hidemasa; Koga, Kohei; Yoshimura, Megumu

    2007-11-01

    Using in vivo patch-clamp technique, the slow oscillation of membrane currents was characterized by its synaptic nature, correlation with electroencephalogram (EEG) and responses to different anesthetic agents, in primary somatosensory cortex (SI) neurons in urethane-anesthetized rats. In more than 90% of the SI neurons, the slow oscillation of the inward currents (0.1-2.5 Hz) with the duration of several hundreds of a millisecond was observed at the holding membrane potential of -70 mV. The reversal potential of the inward currents was approximately 0 mV and was suppressed by application of an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor antagonist. In most cases (> 90%) the inward current was synchronized with positive wave of the surface EEG recorded from ipsilateral and even contralateral cortical regions. The frequency as well as duration of the slow oscillation decreased by a volatile anesthetic agent, isoflurane (1.5-5.0%), and excitatory postsynaptic currents (EPSCs) were almost abolished at the highest concentration. Intraperitoneal injection of pentobarbital (25 mg/kg) also decreased the frequency of the slow oscillation without affecting short EPSCs. When gamma-aminobutyric acid A (GABA(A)) receptors were activated by local microinjection of muscimol (3 x 10(-3) m, 1-10 microL) into the thalamus, the frequency of the slow oscillation markedly decreased, but was not abolished completely. These findings suggest that the slow oscillation of the inward currents is generated by the summation of glutamatergic EPSCs, and affected by isoflurane and pentobarbital differently. In addition, GABAergic system in the thalamus can affect the frequency, but is not essentially implicated in the genesis of the slow oscillation.

  14. Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2015-02-15

    Waves of contraction in the small intestine correlate with slow waves generated by the myenteric network of interstitial cells of Cajal. Coupled oscillator theory has been used to explain steplike gradients in the frequency (frequency plateaux) of contraction waves along the length of the small intestine. Inhibition of gap junction coupling between oscillators should lead to predictable effects on these plateaux and the wave dislocation (wave drop) phenomena associated with their boundaries. It is these predictions that we wished to test. We used a novel multicamera diameter-mapping system to measure contraction along 25- to 30-cm lengths of murine small intestine. There were typically two to three plateaux per length of intestine. Dislocations could be limited to the wavefronts immediately about the terminated wave, giving the appearance of a three-pronged fork, i.e., a fork dislocation; additionally, localized decreases in velocity developed across a number of wavefronts, ending with the terminated wave, which could appear as a fork, i.e., slip dislocations. The gap junction inhibitor carbenoxolone increased the number of plateaux and dislocations and decreased contraction wave velocity. In some cases, the usual frequency gradient was reversed, with a plateau at a higher frequency than its proximal neighbor; thus fork dislocations were inverted, and the direction of propagation was reversed. Heptanol had no effect on the frequency or velocity of contractions but did reduce their amplitude. To understand intestinal motor patterns, the pacemaker network of the interstitial cells of Cajal is best evaluated as a system of coupled oscillators. Copyright © 2015 the American Physiological Society.

  15. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators.

    PubMed

    Wei, Ruihan; Parsons, Sean P; Huizinga, Jan D

    2017-03-01

    What is the central question of this study? What are the effects of interstitial cells of Cajal (ICC) network perturbations on intestinal pacemaker activity and motor patterns? What is the main finding and its importance? Two-dimensional modelling of the ICC pacemaker activity according to a phase model of weakly coupled oscillators showed that network properties (coupling strength between oscillators, frequency gradient and frequency noise) strongly influence pacemaker network activity and subsequent motor patterns. The model explains motor patterns observed in physiological conditions and provides predictions and testable hypotheses for effects of ICC loss and frequency modulation on the motor patterns. Interstitial cells of Cajal (ICC) are the pacemaker cells of gut motility and are associated with motility disorders. Interstitial cells of Cajal form a network, but the contributions of its network properties to gut physiology and dysfunction are poorly understood. We modelled an ICC network as a two-dimensional network of weakly coupled oscillators with a frequency gradient and showed changes over time in video and graphical formats. Model parameters were obtained from slow-wave-driven contraction patterns in the mouse intestine and pacemaker slow-wave activities from the cat intestine. Marked changes in propagating oscillation patterns (including changes from propagation to non-propagating) were observed by changing network parameters (coupling strength between oscillators, the frequency gradient and frequency noise), which affected synchronization, propagation velocity and occurrence of dislocations (termination of an oscillation). Complete uncoupling of a circumferential ring of oscillators caused the proximal and distal section to desynchronize, but complete synchronization was maintained with only a single oscillator connecting the sections with high enough coupling. The network of oscillators could withstand loss; even with 40% of oscillators lost randomly within the network, significant synchronization and anterograde propagation remained. A local increase in pacemaker frequency diminished anterograde propagation; the effects were strongly dependent on location, frequency gradient and coupling strength. In summary, the model puts forth the hypothesis that fundamental changes in oscillation patterns (ICC slow-wave activity or circular muscle contractions) can occur through physiological modulation of network properties. Strong evidence is provided to accept the ICC network as a system of coupled oscillators. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  16. Stability of an ion-ring distribution in a multi-ion component plasma

    NASA Astrophysics Data System (ADS)

    Mithaiwala, Manish; Rudakov, Leonid; Ganguli, Gurudas

    2010-04-01

    The stability of a cold ion-ring velocity distribution in a thermal plasma is analyzed. In particular, the effect of plasma temperature and density on the instability is considered. A high ring density (compared to the background plasma) neutralizes the stabilizing effect of the warm background plasma and the ring is unstable to the generation of waves below the lower-hybrid frequency even for a very high temperature plasma. For ring densities lower than the background plasma density, there is a slow instability where the growth rate is less than the background-ion cyclotron frequency and, consequently, the background-ion response is magnetized. This is in addition to the widely discussed fast instability where the wave growth rate exceeds the background-ion cyclotron frequency and hence the background ions are effectively unmagnetized. Thus, even a low density ring is unstable to waves around the lower-hybrid frequency range for any ring speed. This implies that effectively there is no velocity threshold for a sufficiently cold ring.

  17. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K

    2006-09-20

    An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization.

  18. Harmonic generation and parametric decay in the ion cyclotron frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skiff, F.N.; Wong, K.L.; Ono, M.

    1984-06-01

    Harmonic generation and parametric decay are examined in a toroidal ACT-I plasma using electrostatic plate antennas. The harmonic generation, which is consistent with sheath rectification, is sufficiently strong that the nonlinearly generated harmonic modes themselves decay parametrically. Resonant and nonresonant parametric decay of the second harmonic are observed and compared with uniform pump theory. Resonant decay of lower hybrid waves into lower hybrid waves and slow ion cyclotron waves is seen for the first time. Surprisingly, the decay processes are nonlinearly saturated, indicating absolute instability.

  19. Novel Optical Processor for Phased Array Antenna.

    DTIC Science & Technology

    1992-10-20

    parallel glass slide into the signal beam optical loop. The parallel glass acts like a variable phase shifter to the signal beam simulating phase drift...A list of possible designs are given as follows , _ _ Velocity fa (100dB/cm) Lumit Wavelength I M2I1 TeO2 Longi 4.2 /m/ns about 3 GHz 1.4 4m 34 Fast...subject to achievable acoustic frequency, the preferred materials are the slow shear wave in TeO2 , the fast shear wave in TeO2 or the shear waves in

  20. Observation and excitation of magnetohydrodynamic waves in numerical models of Earth's core

    NASA Astrophysics Data System (ADS)

    Teed, R.; Hori, K.; Tobias, S.; Jones, C. A.

    2017-12-01

    Several types of magnetohydrodynamic waves are theorised to operate in Earth's outer core but their detection is limited by the inability to probe the fluid core directly. Secular variation data and periodic changes in Earth's length-of-day provide evidence for the possible existence of waves. Numerical simulations of core dynamics enable us to search directly for waves and determine their properties. With this information it is possible to consider whether they can be the origin of features observed in observational data. We focus on two types of wave identified in our numerical experiments: i) torsional waves and ii) slow magnetic Rossby waves. Our models display periodic, Earth-like torsional waves that travel outwards from the tangent cylinder circumscribing the inner core. We discuss the properties of these waves and their similarites to observational data. Excitation is via a matching of the Alfvén frequency with that of small modes of convection focused at the tangent cylinder. The slow magnetic Rossby waves observed in our simulations show that these waves may account for some geomagnetic westward drifts observed at mid-latitudes. We present analysis showing excitation of waves by the convective instability and we discuss how the detection of these waves could also provide an estimate of the strength of the toroidal component of the magnetic field within the planetary fluid core.

  1. Investigation of Slow-wave Activity Saturation during Surgical Anesthesia Reveals a Signature of Neural Inertia in Humans.

    PubMed

    Warnaby, Catherine E; Sleigh, Jamie W; Hight, Darren; Jbabdi, Saad; Tracey, Irene

    2017-10-01

    Previously, we showed experimentally that saturation of slow-wave activity provides a potentially individualized neurophysiologic endpoint for perception loss during anesthesia. Furthermore, it is clear that induction and emergence from anesthesia are not symmetrically reversible processes. The observed hysteresis is potentially underpinned by a neural inertia mechanism as proposed in animal studies. In an advanced secondary analysis of 393 individual electroencephalographic data sets, we used slow-wave activity dose-response relationships to parameterize slow-wave activity saturation during induction and emergence from surgical anesthesia. We determined whether neural inertia exists in humans by comparing slow-wave activity dose responses on induction and emergence. Slow-wave activity saturation occurs for different anesthetics and when opioids and muscle relaxants are used during surgery. There was wide interpatient variability in the hypnotic concentrations required to achieve slow-wave activity saturation. Age negatively correlated with power at slow-wave activity saturation. On emergence, we observed abrupt decreases in slow-wave activity dose responses coincident with recovery of behavioral responsiveness in ~33% individuals. These patients are more likely to have lower power at slow-wave activity saturation, be older, and suffer from short-term confusion on emergence. Slow-wave activity saturation during surgical anesthesia implies that large variability in dosing is required to achieve a targeted potential loss of perception in individual patients. A signature for neural inertia in humans is the maintenance of slow-wave activity even in the presence of very-low hypnotic concentrations during emergence from anesthesia.

  2. Effects of oral temazepam on slow waves during non-rapid eye movement sleep in healthy young adults: A high-density EEG investigation.

    PubMed

    Plante, D T; Goldstein, M R; Cook, J D; Smith, R; Riedner, B A; Rumble, M E; Jelenchick, L; Roth, A; Tononi, G; Benca, R M; Peterson, M J

    2016-03-01

    Slow waves are characteristic waveforms that occur during non-rapid eye movement (NREM) sleep that play an integral role in sleep quality and brain plasticity. Benzodiazepines are commonly used medications that alter slow waves, however, their effects may depend on the time of night and measure used to characterize slow waves. Prior investigations have utilized minimal scalp derivations to evaluate the effects of benzodiazepines on slow waves, and thus the topography of changes to slow waves induced by benzodiazepines has yet to be fully elucidated. This study used high-density electroencephalography (hdEEG) to evaluate the effects of oral temazepam on slow wave activity, incidence, and morphology during NREM sleep in 18 healthy adults relative to placebo. Temazepam was associated with significant decreases in slow wave activity and incidence, which were most prominent in the latter portions of the sleep period. However, temazepam was also associated with a decrease in the magnitude of high-amplitude slow waves and their slopes in the first NREM sleep episode, which was most prominent in frontal derivations. These findings suggest that benzodiazepines produce changes in slow waves throughout the night that vary depending on cortical topography and measures used to characterize slow waves. Further research that explores the relationships between benzodiazepine-induced changes to slow waves and the functional effects of these waveforms is indicated. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k//) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (ktor). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k// as strap phasing is moved away from the dipole configuration. This result is the opposite of the ktor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k//, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  4. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade.

    PubMed

    Ochoukov, R; Bobkov, V; Faugel, H; Fünfgelder, H; Noterdaeme, J-M

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k(//)) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k(tor)). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k(//) as strap phasing is moved away from the dipole configuration. This result is the opposite of the k(tor) trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k(//), as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  5. How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep.

    PubMed

    Spiess, Mathilde; Bernardi, Giulio; Kurth, Salome; Ringli, Maya; Wehrle, Flavia M; Jenni, Oskar G; Huber, Reto; Siclari, Francesca

    2018-05-17

    Slow waves, the hallmarks of non-rapid eye-movement (NREM) sleep, are thought to reflect maturational changes that occur in the cerebral cortex throughout childhood and adolescence. Recent work in adults has revealed evidence for two distinct synchronization processes involved in the generation of slow waves, which sequentially come into play in the transition to sleep. In order to understand how these two processes are affected by developmental changes, we compared slow waves between children and young adults in the falling asleep period. The sleep onset period (starting 30s before end of alpha activity and ending at the first slow wave sequence) was extracted from 72 sleep onset high-density EEG recordings (128 electrodes) of 49 healthy subjects (age 8-25). Using an automatic slow wave detection algorithm, the number, amplitude and slope of slow waves were analyzed and compared between children (age 8-11) and young adults (age 20-25). Slow wave number and amplitude increased linearly in the falling asleep period in children, while in young adults, isolated high-amplitude slow waves (type I) dominated initially and numerous smaller slow waves (type II) with progressively increasing amplitude occurred later. Compared to young adults, children displayed faster increases in slow wave amplitude and number across the falling asleep period in central and posterior brain regions, respectively, and also showed larger slow waves during wakefulness immediately prior to sleep. Children do not display the two temporally dissociated slow wave synchronization processes in the falling asleep period observed in adults, suggesting that maturational factors underlie the temporal segregation of these two processes. Our findings provide novel perspectives for studying how sleep-related behaviors and dreaming differ between children and adults. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    NASA Astrophysics Data System (ADS)

    Santos, J. E.; Savioli, G. B.

    2018-07-01

    Seismic waves travelling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency-dependent Pwave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The Pwave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyse their effect on the mesoscopic loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  7. Cortical activity during cued picture naming predicts individual differences in stuttering frequency

    PubMed Central

    Mock, Jeffrey R.; Foundas, Anne L.; Golob, Edward J.

    2016-01-01

    Objective Developmental stuttering is characterized by fluent speech punctuated by stuttering events, the frequency of which varies among individuals and contexts. Most stuttering events occur at the beginning of an utterance, suggesting neural dynamics associated with stuttering may be evident during speech preparation. Methods This study used EEG to measure cortical activity during speech preparation in men who stutter, and compared the EEG measures to individual differences in stuttering rate as well as to a fluent control group. Each trial contained a cue followed by an acoustic probe at one of two onset times (early or late), and then a picture. There were two conditions: a speech condition where cues induced speech preparation of the picture’s name and a control condition that minimized speech preparation. Results Across conditions stuttering frequency correlated to cue-related EEG beta power and auditory ERP slow waves from early onset acoustic probes. Conclusions The findings reveal two new cortical markers of stuttering frequency that were present in both conditions, manifest at different times, are elicited by different stimuli (visual cue, auditory probe), and have different EEG responses (beta power, ERP slow wave). Significance The cue-target paradigm evoked brain responses that correlated to pre-experimental stuttering rate. PMID:27472545

  8. Cortical activity during cued picture naming predicts individual differences in stuttering frequency.

    PubMed

    Mock, Jeffrey R; Foundas, Anne L; Golob, Edward J

    2016-09-01

    Developmental stuttering is characterized by fluent speech punctuated by stuttering events, the frequency of which varies among individuals and contexts. Most stuttering events occur at the beginning of an utterance, suggesting neural dynamics associated with stuttering may be evident during speech preparation. This study used EEG to measure cortical activity during speech preparation in men who stutter, and compared the EEG measures to individual differences in stuttering rate as well as to a fluent control group. Each trial contained a cue followed by an acoustic probe at one of two onset times (early or late), and then a picture. There were two conditions: a speech condition where cues induced speech preparation of the picture's name and a control condition that minimized speech preparation. Across conditions stuttering frequency correlated to cue-related EEG beta power and auditory ERP slow waves from early onset acoustic probes. The findings reveal two new cortical markers of stuttering frequency that were present in both conditions, manifest at different times, are elicited by different stimuli (visual cue, auditory probe), and have different EEG responses (beta power, ERP slow wave). The cue-target paradigm evoked brain responses that correlated to pre-experimental stuttering rate. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Adolescent Changes in Homeostatic Regulation of EEG Activity in the Delta and Theta Frequency Bands during NREM Sleep

    PubMed Central

    Campbell, Ian G.; Darchia, Nato; Higgins, Lisa M.; Dykan, Igor V.; Davis, Nicole M.; de Bie, Evan; Feinberg, Irwin

    2011-01-01

    Study Objectives: Slow wave EEG activity in NREM sleep decreases by more than 60% between ages 10 and 20 years. Slow wave EEG activity also declines across NREM periods (NREMPs) within a night, and this decline is thought to represent the dynamics of sleep homeostasis. We used longitudinal data to determine whether these homeostatic dynamics change across adolescence. Design: All-night sleep EEG was recorded semiannually for 6 years. Setting: EEG was recorded with ambulatory recorders in the subjects' homes. Participants: Sixty-seven subjects in 2 cohorts, one starting at age 9 and one starting at age 12 years. Measurements and Results: For NREM delta (1-4 Hz) and theta (4-8 Hz) EEG, we tested whether the proportion of spectral energy contained in the first NREMP changes with age. We also tested for age changes in the parameters of the process S exponential decline. For both delta and theta, the proportion of energy in the first NREMP declined significantly across ages 9 to 18 years. Process S parameters SWA0 and TWA0, respectively, represent slow wave (delta) activity and theta wave activity at the beginning of the night. SWA0 and TWA0 declined significantly (P < 0.0001) across ages 9 to 18. Conclusions: These declines indicate that the intensity of the homeostatic or restorative processes at the beginning of sleep diminished across adolescence. We propose that this change in sleep regulation is caused by the synaptic pruning that occurs during adolescent brain maturation. Citation: Campbell IG; Darchia N; Higgins LM; Dykan IV; Davis NM; de Bie E; Feinberg I. Adolescent changes in homeostatic regulation of EEG activity in the delta and theta frequency bands during NREM sleep. SLEEP 2011;34(1):83-91. PMID:21203377

  10. The Role of Adaptive Photorefractive Power Limiting on Acousto-Optic Radio Frequency (RF) Signal Excision

    DTIC Science & Technology

    2001-12-01

    using TeO2 , A-O cell, slow acoustic wave). Beam deflection is a continuous function of the input voltage power spectrum; however, the spot width...than for isotropic crystals. Thus, anisotropic, A-O materials, such as TeO2 , have advantages for high RF bandwidth; slow acoustic speeds give better...112 Unfortunately, signal resolution worsened because the new TeO2 crystal was designed to operate in the longitudinal acoustic mode, ua = 5.5 Km

  11. Time-frequency dynamics during sleep spindles on the EEG in rodents with a genetic predisposition to absence epilepsy (WAG/Rij rats)

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Sitnikova, Evgenija Y.; Pavlov, Alexey N.; Grubov, Vadim V.; Koronovskii, Alexey A.; Khramova, Marina V.

    2015-03-01

    Sleep spindles are known to appear spontaneously in the thalamocortical neuronal network of the brain during slow-wave sleep; pathological processes in the thalamocortical network may be the reason of the absence epilepsy. The aim of the present work is to study developed changes in the time-frequency structure of sleep spindles during the progressive development of the absence epilepsy in WAG/Rij rats. EEG recordings were made at age 7 and 9 months. Automatic recognition and subsequent analysis of sleep spindles on the EEG were performed using the continuous wavelet transform. The duration of epileptic discharges and the total duration of epileptic activity were found to increase with age, while the duration of sleep spindles, conversely, decreased. In terms of the mean frequency, sleep spindles could be divided into three classes: `slow' (mean frequency 9.3Hz), `medium' (11.4Hz), and `fast' (13.5Hz). Slow and medium (transitional) spindles in five-month-old animals showed increased frequency from the beginning to the end of the spindle. The more intense the epilepsy is, the shorter are the durations of spindles of all types. The mean frequencies of `medium' and `fast' spindles were higher in rats with more intense signs of epilepsy. Overall, high epileptic activity in WAG/Rij rats was linked with significant changes in spindles of the transitional type, with less marked changes in the two traditionally identified types of spindle, slow and fast.

  12. Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics.

    PubMed

    Kale, Sushrut S; Olson, Elizabeth S

    2015-12-15

    Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics

    PubMed Central

    Kale, Sushrut S.; Olson, Elizabeth S.

    2015-01-01

    Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models. PMID:26682824

  14. Nonlinear Decay of Alfvén Waves Driven by Interplaying Two- and Three-dimensional Nonlinear Interactions

    NASA Astrophysics Data System (ADS)

    Zhao, J. S.; Voitenko, Y.; De Keyser, J.; Wu, D. J.

    2018-04-01

    We study the decay of Alfvén waves in the solar wind, accounting for the joint operation of two-dimensional (2D) scalar and three-dimensional (3D) vector nonlinear interactions between Alfvén and slow waves. These interactions have previously been studied separately in long- and short-wavelength limits where they lead to 2D scalar and 3D vector decays, correspondingly. The joined action of the scalar and vector interactions shifts the transition between 2D and 3D decays to significantly smaller wavenumbers than was predicted by Zhao et al. who compared separate scalar and vector decays. In application to the broadband Alfvén waves in the solar wind, this means that the vector nonlinear coupling dominates in the extended wavenumber range 5 × 10‑4 ≲ ρ i k 0⊥ ≲ 1, where the decay is essentially 3D and nonlocal, generating product Alfvén and slow waves around the ion gyroscale. Here ρ i is the ion gyroradius, and k 0⊥ is the pump Alfvén wavenumber. It appears that, except for the smallest wavenumbers at and below {ρ }i{k}0\\perp ∼ {10}-4 in Channel I, the nonlinear decay of magnetohydrodynamic Alfvén waves propagating from the Sun is nonlocal and cannot generate counter-propagating Alfvén waves with similar scales needed for the turbulent cascade. Evaluation of the nonlinear frequency shift shows that product Alfvén waves can still be approximately described as normal Alfvénic eigenmodes. On the contrary, nonlinearly driven slow waves deviate considerably from normal modes and are therefore difficult to identify on the basis of their phase velocities and/or polarization.

  15. An integrated perspective of the continuum between earthquakes and slow-slip phenomena

    USGS Publications Warehouse

    Peng, Zhigang; Gomberg, Joan

    2010-01-01

    The discovery of slow-slip phenomena has revolutionized our understanding of how faults accommodate relative plate motions. Faults were previously thought to relieve stress either through continuous aseismic sliding, or as earthquakes resulting from instantaneous failure of locked faults. In contrast, slow-slip events proceed so slowly that slip is limited and only low-frequency (or no) seismic waves radiate. We find that slow-slip phenomena are not unique to the depths (tens of kilometres) of subduction zone plate interfaces. They occur on faults in many settings, at numerous scales and owing to various loading processes, including landslides and glaciers. Taken together, the observations indicate that slowly slipping fault surfaces relax most of the accrued stresses through aseismic slip. Aseismic motion can trigger more rapid slip elsewhere on the fault that is sufficiently fast to generate seismic waves. The resulting radiation has characteristics ranging from those indicative of slow but seismic slip, to those typical of earthquakes. The mode of seismic slip depends on the inherent characteristics of the fault, such as the frictional properties. Slow-slip events have previously been classified as a distinct mode of fault slip compared with that seen in earthquakes. We conclude that instead, slip modes span a continuum and are of common occurrence.

  16. Slow-wave propagation on monolithic microwave integrated circuits with layered and non-layered structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzuang, C.K.C.

    1986-01-01

    Various MMIC (monolithic microwave integrated circuit) planar waveguides have shown possible existence of a slow-wave propagation. In many practical applications of these slow-wave circuits, the semiconductor devices have nonuniform material properties that may affect the slow-wave propagation. In the first part of the dissertation, the effects of the nonuniform material properties are studied by a finite-element method. In addition, the transient pulse excitations of these slow-wave circuits also have great theoretical and practical interests. In the second part, the time-domain analysis of a slow-wave coplanar waveguide is presented.

  17. Shorter duration of non-rapid eye movement sleep slow waves in EphA4 knockout mice.

    PubMed

    Freyburger, Marlène; Poirier, Gaétan; Carrier, Julie; Mongrain, Valérie

    2017-10-01

    Slow waves occurring during non-rapid eye movement sleep have been associated with neurobehavioural performance and memory. In addition, the duration of previous wakefulness and sleep impacts characteristics of these slow waves. However, molecular mechanisms regulating the dynamics of slow-wave characteristics remain poorly understood. The EphA4 receptor regulates glutamatergic transmission and synaptic plasticity, which have both been linked to sleep slow waves. To investigate if EphA4 regulates slow-wave characteristics during non-rapid eye movement sleep, we compared individual parameters of slow waves between EphA4 knockout mice and wild-type littermates under baseline conditions and after a 6-h sleep deprivation. We observed that, compared with wild-type mice, knockout mice display a shorter duration of positive and negative phases of slow waves under baseline conditions and after sleep deprivation. However, the mutation did not change slow-wave density, amplitude and slope, and did not affect the sleep deprivation-dependent changes in slow-wave characteristics, suggesting that EphA4 is not involved in the response to elevated sleep pressure. Our present findings suggest a role for EphA4 in shaping cortical oscillations during sleep that is independent from sleep need. © 2017 European Sleep Research Society.

  18. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder.

    PubMed

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2016-01-01

    Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants' brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5-16 Hz) and slow-frequency spindle activity (10.5-12.5 Hz). Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep.

  19. Wave steering effects in anisotropic composite structures: Direct calculation of the energy skew angle through a finite element scheme.

    PubMed

    Chronopoulos, D

    2017-01-01

    A systematic expression quantifying the wave energy skewing phenomenon as a function of the mechanical characteristics of a non-isotropic structure is derived in this study. A structure of arbitrary anisotropy, layering and geometric complexity is modelled through Finite Elements (FEs) coupled to a periodic structure wave scheme. A generic approach for efficiently computing the angular sensitivity of the wave slowness for each wave type, direction and frequency is presented. The approach does not involve any finite differentiation scheme and is therefore computationally efficient and not prone to the associated numerical errors. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.

    PubMed

    Sheroziya, Maxim; Timofeev, Igor

    2015-09-23

    Reduction in temperature depolarizes neurons by a partial closure of potassium channels but decreases the vesicle release probability within synapses. Compared with cooling, neuromodulators produce qualitatively similar effects on intrinsic neuronal properties and synapses in the cortex. We used this similarity of neuronal action in ketamine-xylazine-anesthetized mice and non-anesthetized mice to manipulate the thalamocortical activity. We recorded cortical electroencephalogram/local field potential (LFP) activity and intracellular activities from the somatosensory thalamus in control conditions, during cortical cooling and on rewarming. In the deeply anesthetized mice, moderate cortical cooling was characterized by reversible disruption of the thalamocortical slow-wave pattern rhythmicity and the appearance of fast LFP spikes, with frequencies ranging from 6 to 9 Hz. These LFP spikes were correlated with the rhythmic IPSP activities recorded within the thalamic ventral posterior medial neurons and with depolarizing events in the posterior nucleus neurons. Similar cooling of the cortex during light anesthesia rapidly and reversibly eliminated thalamocortical silent states and evoked thalamocortical persistent activity; conversely, mild heating increased thalamocortical slow-wave rhythmicity. In the non-anesthetized head-restrained mice, cooling also prevented the generation of thalamocortical silent states. We conclude that moderate cortical cooling might be used to manipulate slow-wave network activity and induce neuromodulator-independent transition to activated states. Significance statement: In this study, we demonstrate that moderate local cortical cooling of lightly anesthetized or naturally sleeping mice disrupts thalamocortical slow oscillation and induces the activated local field potential pattern. Mild heating has the opposite effect; it increases the rhythmicity of thalamocortical slow oscillation. Our results demonstrate that slow oscillation can be influenced by manipulations to the properties of cortical neurons without changes in neuromodulation. Copyright © 2015 the authors 0270-6474/15/3513006-14$15.00/0.

  1. Wave properties near the subsolar magnetopause - Pc 3-4 energy coupling for northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Song, P.; Russell, C. T.; Strangeway, R. J.; Wygant, J. R.; Cattell, C. A.; Fitzenreiter, R. J.; Anderson, R. R.

    1993-01-01

    Strong slow mode waves in the Pc 3-4 frequency range are found in the magnetosheath close to the magnetopause. We have studied these waves at one of the ISEE subsolar magnetopause crossings using the magnetic field, electric field, and plasma measurements. We use the pressure balance at the magnetopause to calibrate the Fast Plasma Experiment data versus the magnetometer data. When we perform such a calibration and renormalization, we find that the slow mode structures are not in pressure balance and small scale fluctuations in the total pressure still remain in the Pc 3-4 range. Energy in the total pressure fluctuations can be transmitted through the magnetopause by boundary motions. The Poynting flux calculated from the electric and magnetic field measurements suggests that a net Poynting flux is transmitted into the magnetopause. The two independent measurements show a similar energy transmission coefficient. The transmitted energy flux is about 18 percent of the magnetic energy flux of the waves in the magnetosheath. Part of this transmitted energy is lost in the sheath transition layer before it enters the closed field line region. The waves reaching the boundary layer decay rapidly. Little wave power is transmitted into the magnetosphere.

  2. Nonlinear helicons bearing multi-scale structures

    NASA Astrophysics Data System (ADS)

    Abdelhamid, Hamdi M.; Yoshida, Zensho

    2017-02-01

    The helicon waves exhibit varying characters depending on plasma parameters, geometry, and wave numbers. Here, we elucidate an intrinsic multi-scale property embodied by the combination of the dispersive effect and nonlinearity. The extended magnetohydrodynamics model (exMHD) is capable of describing a wide range of parameter space. By using the underlying Hamiltonian structure of exMHD, we construct an exact nonlinear solution, which turns out to be a combination of two distinct modes, the helicon and Trivelpiece-Gould (TG) waves. In the regime of relatively low frequency or high density, however, the combination is made of the TG mode and an ion cyclotron wave (slow wave). The energy partition between these modes is determined by the helicities carried by the wave fields.

  3. High-frequency waves following PKP-C sub diff at distances greater than 155 degree

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Ichiro

    Using a seismic network in Hokkaido-Tohoku region, Japan the author observes PKP waves in the distance range 152 to 157{degree} from a deep earthquake in Argentina. The seismic network consists of 26 stations and provides a data set of dense distance sampling. The examination of amplitude variation of PKP-BC and PKP-C{sub diff} with distance locates the C-cusp at about 155.5{degree} for a surface source for the path from Argentina to Japan. This C-cusp position suggests a P velocity of 10.27 km/s at the bottom of the outer core. The bandpass filtering of the data shows that high-frequency waves are observedmore » following PKP-C{sub diff} at distances beyond the C-cusp. The waves are characterized by a dominant frequency of about 29 to 3 Hz, a long duration of oscillation until the arrival of PKP-AB, and an apparent onset slowness of about 4 s/deg, which is approximately equal to that of PKP-AB in the distance range. The onset time of the high-frequency waves seems to be consistent with the least time of the scattering of PKP-BC on the receiver side near the bottom of the upper mantle.« less

  4. On ballooning instability in current sheets

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoliy; Kozlov, Daniil

    2015-06-01

    The problem of instability of the magnetotail current sheet to azimuthally small-scale Alfvén and slow magnetosonic (SMS) waves is solved. The solutions describe unstable oscillations in the presence of a current sheet and correspond to the region of stretched closed field lines of the magnetotail. The spectra of eigen-frequencies of several basic harmonics of standing Alfvén and SMS waves are found in the local and WKB approximation, which are compared. It is shown that the oscillation properties obtained in these approximations differ radically. In the local approximation, the Alfvén waves are stable in the entire range of magnetic shells. SMS waves go into the aperiodic instability regime (the regime of the "ballooning" instability), on magnetic shells crossing the current sheet. In the WKB approximation, both the Alfvén and SMS oscillations go into an unstable regime with a non-zero real part of their eigen-frequency, on magnetic shells crossing the current sheet. The structure of azimuthally small-scale Alfvén waves across magnetic shells is determined.

  5. Non-linear Evolution of Velocity Ring Distributions: Generation of Whistler Waves

    NASA Astrophysics Data System (ADS)

    Mithaiwala, M.; Rudakov, L.; Ganguli, G.

    2010-12-01

    Although it is typically believed that an ion ring velocity distribution has a stability threshold, we find that they are universally unstable. This can substantially impact the understanding of dynamics in both laboratory and space plasmas. A high ring density neutralizes the stabilizing effect of ion Landau damping in a warm plasma and the ring is unstable to the generation of waves below the lower hybrid frequency- even for a very high temperature plasma. For ring densities lower than the background plasma density there is a slow instability with growth rate less than the background ion cyclotron frequency and consequently the background ion response is magnetized. This is in addition to the widely discussed fast instability where the wave growth rate exceeds the background ion cyclotron frequency and hence the background ions are effectively unmagnetized. Thus, even a low density ring is unstable to waves around the lower hybrid frequency range for any ring speed. This implies that effectively there is no velocity threshold for a sufficiently cold ring. The importance of these conclusions on the nonlinear evolution of space plasmas, in particular to solar wind-comet interaction, post-magnetospheric storm conditions, and chemical release experiments in the ionosphere will be discussed.

  6. Thalamic Atrophy Contributes to Low Slow Wave Sleep in Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Su, Lei; Han, Yujuan; Xue, Rong; Wood, Kristofer; Shi, Fu-Dong; Liu, Yaou; Fu, Ying

    2016-12-01

    Slow wave sleep abnormality has been reported in neuromyelitis optica spectrum disorder (NMOSD), but mechanism for such abnormality is unknown. To determine the structural defects in the brain that account for the decrease of slow wave sleep in NMOSD patients. Thirty-three NMOSD patients and 18 matched healthy controls (HC) were enrolled. Polysomnography was used to monitor slow wave sleep and three-dimensional T1-weighted MRIs were obtained to assess the alterations of grey matter volume. The percentage of deep slow wave sleep decreased in 93% NMOSD patients. Compared to HC, a reduction of grey matter volume was found in the bilateral thalamus of patients with a lower percentage of slow wave sleep (FWE corrected at cluster-level, p < 0.05, cluster size > 400 voxels). Furthermore, the right thalamic fraction was positively correlated with the decrease in the percentage of slow wave sleep in NMOSD patients (p < 0.05, FDR corrected, cluster size > 200 voxels). Our study identified that thalamic atrophy is associated with the decrease of slow wave sleep in NMOSD patients. Further studies should evaluate whether neurotransmitters or hormones which stem from thalamus are involved in the decrease of slow wave sleep.

  7. Low frequency electromagnetic fluctuations in Kappa magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Sunjung; Lazar, M.; Schlickeiser, R.; López, R. A.; Yoon, P. H.

    2018-07-01

    The present paper provides a theoretical approach for the evaluation of the low frequency spontaneously emitted electromagnetic (EM) fluctuations in Kappa magnetized plasmas, which include the kinetic Alfvén, fast magnetosonic/whistler, kinetic slow mode, ion Bernstein cyclotron modes, and higher-order modes. The model predictions are consistent with particle-in-cell simulations. Effects of suprathermal particles on low frequency fluctuations are studied by varying the power index, either for ions (κ i) or for electrons (κ e). Computations for an arbitrary wave vector orientation and wave polarization provide the intensity of spontaneous emissions to be enhanced in the presence of suprathermal populations. These results strongly suggest that spontaneous fluctuations may significantly contribute to the EM fluctuations observed in space plasmas, where suprathermal Kappa distributed particles are ubiquitous.

  8. Reconstruction of gastric slow wave from finger photoplethysmographic signal using radial basis function neural network.

    PubMed

    Mohamed Yacin, S; Srinivasa Chakravarthy, V; Manivannan, M

    2011-11-01

    Extraction of extra-cardiac information from photoplethysmography (PPG) signal is a challenging research problem with significant clinical applications. In this study, radial basis function neural network (RBFNN) is used to reconstruct the gastric myoelectric activity (GMA) slow wave from finger PPG signal. Finger PPG and GMA (measured using Electrogastrogram, EGG) signals were acquired simultaneously at the sampling rate of 100 Hz from ten healthy subjects. Discrete wavelet transform (DWT) was used to extract slow wave (0-0.1953 Hz) component from the finger PPG signal; this slow wave PPG was used to reconstruct EGG. A RBFNN is trained on signals obtained from six subjects in both fasting and postprandial conditions. The trained network is tested on data obtained from the remaining four subjects. In the earlier study, we have shown the presence of GMA information in finger PPG signal using DWT and cross-correlation method. In this study, we explicitly reconstruct gastric slow wave from finger PPG signal by the proposed RBFNN-based method. It was found that the network-reconstructed slow wave provided significantly higher (P < 0.0001) correlation (≥ 0.9) with the subject's EGG slow wave than the correlation obtained (≈0.7) between the PPG slow wave from DWT and the EEG slow wave. Our results showed that a simple finger PPG signal can be used to reconstruct gastric slow wave using RBFNN method.

  9. Ground roll attenuation using polarization analysis in the t-f-k domain

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, Y.

    2017-07-01

    S waves travel slower than P waves and have a lower dominant frequency. Therefore, applying common techniques such as time-frequency filtering and f-k filtering to separate S waves from ground roll is difficult because ground roll is also characterized by slow velocity and low frequency. In this study, we present a method for attenuating ground roll using a polarization filtering method based on the t-f-k transform. We describe the particle motion of the waves by complex vector signals. Each pair of frequency components, whose frequencies have the same absolute value but different signs, of the complex signal indicate an elliptical or linear motion. The polarization parameters of the elliptical or linear motion are explicitly related to the two Fourier coefficients. We then extend these concepts to the t-f-k domain and propose a polarization filtering method for ground roll attenuation based on the t-f-k transform. The proposed approach can define automatically the time-varying reject zones on the f-k panel at different times as a function of the reciprocal ellipticity. Four attributes, time, frequency, apparent velocity and polarization are used to identify and extract the ground roll simultaneously. Thus, the ground roll and body waves can be separated as long as they are dissimilar in one of these attributes. We compare our method with commonly used filtering techniques by applying the methods to synthetic and real seismic data. The results indicate that our method can attenuate ground roll while preserving body waves more effectively than the other methods.

  10. Improvement of Frequency Locking Algorithm for Atomic Frequency Standards

    NASA Astrophysics Data System (ADS)

    Park, Young-Ho; Kang, Hoonsoo; Heyong Lee, Soo; Eon Park, Sang; Lee, Jong Koo; Lee, Ho Seong; Kwon, Taeg Yong

    2010-09-01

    The authors describe a novel method of frequency locking algorithm for atomic frequency standards. The new algorithm for locking the microwave frequency to the Ramsey resonance is compared with the old one that had been employed in the cesium atomic beam frequency standards such as NIST-7 and KRISS-1. Numerical simulations for testing the performance of the algorithm show that the new method has a noise filtering performance superior to the old one by a factor of 1.2 for the flicker signal noise and 1.4 for random-walk signal noise. The new algorithm can readily be used to enhance the frequency stability for a digital servo employing the slow square wave frequency modulation.

  11. Three-Dimensional Simulation of Traveling-Wave Tube Cold-Test Characteristics Using CST MICROWAVE STUDIO

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Herrmann, Kimberly A.; Kory, Carol L.; Wilson, Jeffrey D.; Cross, Andrew W.; Santana , Samuel

    2003-01-01

    The electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS) was used to compute the cold-test parameters - frequency-phase dispersion, on-axis impedance, and attenuation - for a traveling-wave tube (TWT) slow-wave circuit. The results were compared to experimental data, as well as to results from MAFIA, another three-dimensional simulation code from CST currently used at the NASA Glenn Research Center (GRC). The strong agreement between cold-test parameters simulated with MWS and those measured experimentally demonstrates the potential of this code to reduce the time and cost of TWT development.

  12. Existence domain of electrostatic solitary waves in the lunar wake

    NASA Astrophysics Data System (ADS)

    Rubia, R.; Singh, S. V.; Lakhina, G. S.

    2018-03-01

    Electrostatic solitary waves (ESWs) and double layers are explored in a four-component plasma consisting of hot protons, hot heavier ions (He++), electron beam, and suprathermal electrons having κ-distribution using the Sagdeev pseudopotential method. Three modes exist: slow and fast ion-acoustic modes and electron-acoustic mode. The occurrence of ESWs and their existence domain as a function of various plasma parameters, such as the number densities of ions and electron beam, the spectral index, κ, the electron beam velocity, the temperatures of ions, and electron beam, are analyzed. It is observed that both the slow and fast ion-acoustic modes support both positive and negative potential solitons as well as their coexistence. Further, they support a "forbidden gap," the region in which the soliton ceases to propagate. In addition, slow ion-acoustic solitons support the existence of both positive and negative potential double layers. The electron-acoustic mode is only found to support negative potential solitons for parameters relevant to the lunar wake plasma. Fast Fourier transform of a soliton electric field produces a broadband frequency spectrum. It is suggested that all three soliton types taken together can provide a good explanation for the observed electrostatic waves in the lunar wake.

  13. High power microwave source with a three dimensional printed metamaterial slow-wave structure.

    PubMed

    French, David M; Shiffler, Don

    2016-05-01

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  14. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, David M.; Shiffler, Don

    2016-05-15

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for buildingmore » these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.« less

  15. High Resolution Topography of Age-Related Changes in Non-Rapid Eye Movement Sleep Electroencephalography

    PubMed Central

    Sprecher, Kate E.; Riedner, Brady A.; Smith, Richard F.; Tononi, Giulio; Davidson, Richard J.; Benca, Ruth M.

    2016-01-01

    Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to use high density (256 channel) electroencephalography (EEG) during sleep to characterize topographic changes in sleep EEG power across normal aging, with high spatial resolution. Sleep was evaluated in 92 healthy adults aged 18–65 years old using full polysomnography and high density EEG. After artifact removal, spectral power density was calculated for standard frequency bands for all channels, averaged across the NREM periods of the first 3 sleep cycles. To quantify topographic changes with age, maps were generated of the Pearson’s coefficient of the correlation between power and age at each electrode. Significant correlations were determined by statistical non-parametric mapping. Absolute slow wave power declined significantly with increasing age across the entire scalp, whereas declines in theta and sigma power were significant only in frontal regions. Power in fast spindle frequencies declined significantly with increasing age frontally, whereas absolute power of slow spindle frequencies showed no significant change with age. When EEG power was normalized across the scalp, a left centro-parietal region showed significantly less age-related decline in power than the rest of the scalp. This partial preservation was particularly significant in the slow wave and sigma bands. The effect of age on sleep EEG varies substantially by region and frequency band. This non-uniformity should inform the design of future investigations of aging and sleep. This study provides normative data on the effect of age on sleep EEG topography, and provides a basis from which to explore the mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk factor. PMID:26901503

  16. Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Yu, S.; Chen, B.; Reeves, K.

    2017-12-01

    We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.

  17. Z mode radiation in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Chen, R. F.; Moses, S. L.; Coroniti, F.; Kurth, W. S.

    1987-01-01

    Results of a survey of the Voyager plasma wave instrument wide-band frames that exhibit a narrow-band emission below the low-frequency cutoff of the continuum band are discussed. The analysis of these waves made it possible to identify them as the slow branch of the X mode, the so-called Z mode. As the Voyager 1 spacecraft approached the plasma sheet on March 8, 1979, the Z mode intensified and then disappeared on plasma sheet entry. This observation is interpreted as evidence of local Z mode generation.

  18. Infrasonic induced ground motions

    NASA Astrophysics Data System (ADS)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body wave refraction and Rayleigh wave dispersion data. Theoretical standard high-frequency and air-coupled Rayleigh wave dispersion calculated by the inferred site structure match the observed dispersion curves. Our study suggests that natural or controlled air-borne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.

  19. Inverse cascades and resonant triads in rotating and stratified turbulence

    NASA Astrophysics Data System (ADS)

    Oks, D.; Mininni, P. D.; Marino, R.; Pouquet, A.

    2017-11-01

    Kraichnan's seminal ideas on inverse cascades yielded new tools to study common phenomena in geophysical turbulent flows. In the atmosphere and the oceans, rotation and stratification result in a flow that can be approximated as two-dimensional at very large scales but which requires considering three-dimensional effects to fully describe turbulent transport processes and non-linear phenomena. Motions can thus be classified into two classes: fast modes consisting of inertia-gravity waves and slow quasi-geostrophic modes for which the Coriolis force and horizontal pressure gradients are close to balance. In this paper, we review previous results on the strength of the inverse cascade in rotating and stratified flows and then present new results on the effect of varying the strength of rotation and stratification (measured by the inverse Prandtl ratio N/f, of the Coriolis frequency to the Brunt-Väisäla frequency) on the amplitude of the waves and on the flow quasi-geostrophic behavior. We show that the inverse cascade is more efficient in the range of N/f for which resonant triads do not exist, 1 /2 ≤N /f ≤2 . We then use the spatio-temporal spectrum to show that in this range slow modes dominate the dynamics, while the strength of the waves (and their relevance in the flow dynamics) is weaker.

  20. Obliquely propagating low frequency electromagnetic shock waves in two dimensional quantum magnetoplasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.

    2009-04-15

    Linear and nonlinear propagation characteristics of low frequency magnetoacoustic waves in quantum magnetoplasmas are studied employing the quantum magnetohydrodynamic model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived using the small amplitude expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation in the fast and slow magnetoacoustic shock profiles with the quantum Bohm potential via increasing number density, obliqueness angle {theta}, magnetic field, and the resistivity are also investigated. It is observed that themore » aforementioned plasma parameters significantly modify the propagation characteristics of nonlinear magnetoacoustic shock waves in quantum magnetoplasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less

  1. Parametric decay of an extraordinary electromagnetic wave in relativistic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorofeenko, V. G.; Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.

    2015-03-15

    Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations showsmore » that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.« less

  2. A repetitive S-band long-pulse relativistic backward-wave oscillator.

    PubMed

    Jin, Zhenxing; Zhang, Jun; Yang, Jianhua; Zhong, Huihuang; Qian, Baoliang; Shu, Ting; Zhang, Jiande; Zhou, Shengyue; Xu, Liurong

    2011-08-01

    This paper presents both numerical and experimental studies of a repetitive S-band long-pulse relativistic backward-wave oscillator. The dispersion relation curve of the main slow-wave structure is given by the numerical calculation. Experimental results show that a 1 GW microwaves with pulse duration of about 100 ns (full width of half magnitude) under 10 Hz repetitive operation mode are obtained. The microwave frequency is 3.6 GHz with the dominant mode of TM(01), and power conversion efficiency is about 20%. The single pulse energy is about 100 J. The experimental results are in good agreement with the simulation ones. By analyzing the experimental phenomenon, we obtain the conclusion that the explosive emission on the surface of the electrodynamics structure in intense radio frequency field mainly leads to the earlier unexpected termination of microwave output.

  3. Kinetic Scale Structure of Low-frequency Waves and Fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, Rodrigo A.; Yoon, Peter H.; Viñas, Adolfo F.

    The dissipation of solar wind turbulence at kinetic scales is believed to be important for the heating of the corona and for accelerating the wind. The linear Vlasov kinetic theory is a useful tool for identifying various wave modes, including kinetic Alfvén, fast magnetosonic/whistler, and ion-acoustic (or kinetic slow), and their possible roles in the dissipation. However, the kinetic mode structure in the vicinity of ion-cyclotron modes is not clearly understood. The present paper aims to further elucidate the structure of these low-frequency waves by introducing discrete particle effects through hybrid simulations and Klimontovich formalism of spontaneous emission theory. Themore » theory and simulation of spontaneously emitted low-frequency fluctuations are employed to identify and distinguish the detailed mode structures associated with ion-Bernstein modes versus quasi-modes. The spontaneous emission theory and simulation also confirm the findings of the Vlasov theory in that the kinetic Alfvén waves can be defined over a wide range of frequencies, including the proton cyclotron frequency and its harmonics, especially for high-beta plasmas. This implies that these low-frequency modes may play predominant roles even in the fully kinetic description of kinetic scale turbulence and dissipation despite the fact that cyclotron harmonic and Bernstein modes may also play important roles in wave–particle interactions.« less

  4. Seismic shear waves as Foucault pendulum

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko

    2016-03-01

    Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.

  5. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man

    PubMed Central

    Modarres, Mo; Kuzma, Nicholas N.; Kretzmer, Tracy; Pack, Allan I.; Lim, Miranda M.

    2016-01-01

    Objective Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). Methods We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Results Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Conclusion and implications Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms. PMID:28018987

  6. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.

    PubMed

    Modarres, Mo; Kuzma, Nicholas N; Kretzmer, Tracy; Pack, Allan I; Lim, Miranda M

    2016-07-01

    Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.

  7. Analysis of Slow-Wave Activity and Slow-Wave Oscillations Prior to Somnambulism

    PubMed Central

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-01-01

    Study Objectivies: Several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. Participants: Twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. Results: Analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. Conclusions: The specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined. Citation: Jaar O; Pilon M; Carrier J; Montplaisir J; Zadra A. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism. SLEEP 2010;33(11):1511-1516. PMID:21102993

  8. Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 Mw 8.8 Maule, Chile, earthquake

    NASA Astrophysics Data System (ADS)

    Zigone, Dimitri; Rivet, Diane; Radiguet, Mathilde; Campillo, Michel; Voisin, Christophe; Cotte, Nathalie; Walpersdorf, Andrea; Shapiro, Nikolai M.; Cougoulat, Glenn; Roux, Philippe; Kostoglodov, Vladimir; Husker, Allen; Payero, Juan S.

    2012-09-01

    We investigate the triggering of seismic tremor and slow slip event in Guerrero (Mexico) by the February 27, 2010 Maule earthquake (Mw 8.8). Triggered tremors start with the arrival of S wave generated by the Maule earthquake, and keep occurring during the passing of ScS, SS, Love and Rayleigh waves. The Rayleigh wave dispersion curve footprints the high frequency energy envelope of the triggered tremor, indicating a strong modulation of the source of tremors by the passing surface wave. This correlation and modulation by the passing waves is progressively lost with time over a few hours. The tremor activity continues during the weeks/months after the earthquake. GPS time series suggest that the second sub-event of the 2009-2010 SSE in Guerrero is actually triggered by the Maule earthquake. The southward displacement of the GPS stations starts coincidently with the earthquake and tremors. The long duration of tremors indicate a continuing deformation process at depth, which we propose to be the second sub-event of the 2009-2010 SSE. We show a quasi-systematic correlation between surface displacement rate measured by GPS and tremor activity, suggesting that the NVT are controlled by the variations in the slip history of the SSE. This study shows that two types of tremors emerge: (1) Those directly triggered by the passing waves and (2) those triggered by the stress variations associated with slow slip. This indicates the prominent role of aseismic creep in the Mexican subduction zone response to a large teleseismic earthquake, possibly leading to large-scale stress redistribution.

  9. Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness.

    PubMed

    Grønli, Janne; Rempe, Michael J; Clegern, William C; Schmidt, Michelle; Wisor, Jonathan P

    2016-06-01

    Markers of sleep drive (<10 Hz; slow-wave activity and theta) have been identified in the course of slow-wave sleep and wakefulness. So far, higher frequencies in the waking electroencephalogram have not been examined thoroughly as a function of sleep drive. Here, electroencephalogram dynamics were measured in epochs of active wake (wake characterized by high muscle tone) or quiet wake (wake characterized by low muscle tone). It was hypothesized that the higher beta oscillations (15-35 Hz, measured by local field potential and electroencephalography) represent fundamentally different processes in active wake and quiet wake. In active wake, sensory stimulation elevated beta activity in parallel with gamma (80-90 Hz) activity, indicative of cognitive processing. In quiet wake, beta activity paralleled slow-wave activity (1-4 Hz) and theta (5-8 Hz) in tracking sleep need. Cerebral lactate concentration, a measure of cerebral glucose utilization, increased during active wake whereas it declined during quiet wake. Mathematical modelling of state-dependent dynamics of cortical lactate concentration was more precisely predictive when quiet wake and active wake were included as two distinct substates rather than a uniform state of wakefulness. The extent to which lactate concentration declined in quiet wake and increased in active wake was proportionate to the amount of beta activity. These data distinguish quiet wake from active wake. Quiet wake, particularly when characterized by beta activity, is permissive to metabolic and electrophysiological changes that occur in slow-wave sleep. These data urge further studies on state-dependent beta oscillations across species. © 2016 European Sleep Research Society.

  10. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder

    PubMed Central

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2016-01-01

    Introduction Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Methods Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants’ brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5–16 Hz) and slow-frequency spindle activity (10.5–12.5 Hz). Result Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Conclusion Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep. PMID:26869818

  11. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW

    NASA Astrophysics Data System (ADS)

    Wan, Yong; Jiang, Li-Jun; Xu, Sheng; Li, Meng-Xue; Liu, Meng-Nan; Jiang, Cheng-Yi; Yuan, Feng

    2018-04-01

    Slow light with high group index and wideband is achieved in photonic crystal coupled-resonator optical waveguides (PC-CROWs). According to the eye-shaped scatterers and various microcavities, saddle-like curves between the normalized frequency f and wave number k can be obtained by adjusting the parameters of the scatterers, parameters of the coupling microcavities, and positions of the scatterers. Slow light with decent flat band and group index can then be achieved by optimizing the parameters. Simulations prove that the maximal value of the group index is > 104, and the normalized delay bandwidth product within a new varying range of n g > 102 or n g > 103 can be a new and effective criterion of evaluation for the slow light in PC-CROWs.

  12. Ferruleless coupled-cavity traveling-wave tube cold-test characteristics simulated with micro-SOS

    NASA Technical Reports Server (NTRS)

    Schroeder, Dana L.; Wilson, Jeffrey D.

    1993-01-01

    The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive and time consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion and beam interaction impedance characteristics of a ferruleless coupled-cavity traveling-wave tube slow-wave circuit were simulated using the code. Computer results agree closely with experimental data. Variations in the cavity geometry dimensions of period length and gap-to-period ratio were modeled. These variations can be used in velocity taper designs to reduce the radiofrequency (RF) phase velocity in synchronism with the decelerating electron beam. Such circuit designs can result in enhanced TWT power and efficiency.

  13. Two-wave propagation in in vitro swine distal ulna

    NASA Astrophysics Data System (ADS)

    Mano, Isao; Horii, Kaoru; Matsukawa, Mami; Otani, Takahiko

    2015-07-01

    Ultrasonic transmitted waves were obtained in an in vitro swine distal ulna specimen, which mimics a human distal radius, that consists of interconnected cortical bone and cancellous bone. The transmitted waveforms appeared similar to the fast waves, slow waves, and overlapping fast and slow waves measured in the specimen after removing the surface cortical bone (only cancellous bone). In addition, the circumferential waves in the cortical bone and water did not affect the fast and slow waves. This suggests that the fast-and-slow-wave phenomenon can be observed in an in vivo human distal radius.

  14. Propagating Neural Source Revealed by Doppler Shift of Population Spiking Frequency

    PubMed Central

    Zhang, Mingming; Shivacharan, Rajat S.; Chiang, Chia-Chu; Gonzalez-Reyes, Luis E.

    2016-01-01

    Electrical activity in the brain during normal and abnormal function is associated with propagating waves of various speeds and directions. It is unclear how both fast and slow traveling waves with sometime opposite directions can coexist in the same neural tissue. By recording population spikes simultaneously throughout the unfolded rodent hippocampus with a penetrating microelectrode array, we have shown that fast and slow waves are causally related, so a slowly moving neural source generates fast-propagating waves at ∼0.12 m/s. The source of the fast population spikes is limited in space and moving at ∼0.016 m/s based on both direct and Doppler measurements among 36 different spiking trains among eight different hippocampi. The fact that the source is itself moving can account for the surprising direction reversal of the wave. Therefore, these results indicate that a small neural focus can move and that this phenomenon could explain the apparent wave reflection at tissue edges or multiple foci observed at different locations in neural tissue. SIGNIFICANCE STATEMENT The use of novel techniques with an unfolded hippocampus and penetrating microelectrode array to record and analyze neural activity has revealed the existence of a source of neural signals that propagates throughout the hippocampus. The source itself is electrically silent, but its location can be inferred by building isochrone maps of population spikes that the source generates. The movement of the source can also be tracked by observing the Doppler frequency shift of these spikes. These results have general implications for how neural signals are generated and propagated in the hippocampus; moreover, they have important implications for the understanding of seizure generation and foci localization. PMID:27013678

  15. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak

    PubMed Central

    Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.

    2016-01-01

    Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the biphasic decay was replaced by slow decay. We conclude that, in the presence of adrenergic stimulation, Ca leak can produce biphasic decay; the slow phase results from the leak opposing Ca uptake by SERCA. The degree of leak determines whether decay of Ca waves, biphasic or monophasic, occurs. PMID:26537441

  16. Ice shelf structure from dispersion curve analysis of passive-source seismic data, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D.

    2015-12-01

    An L-shaped array of three-component short period seismic stations was deployed at the Ross Ice Shelf, Antarctica approximately 100 km south of the ice edge, near 180° longitude, from November 18 through 28, 2014. Polarization analysis of data from these stations clearly shows propagating waves from below the ice shelf for frequencies below 2 Hz. Energy above 2 Hz is dominated by Rayleigh and Love waves propagating from the north. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile, from which we derive a density profile. The derived shear wave velocity profiles differ within the firn for the inversions using Rayleigh and Love wave dispersion curves. This difference is attributed to an effective anisotropy due to fine layering. The layered structure of firn, ice, water, and ocean floor results in a characteristic dispersion curve pattern below 7 Hz. We investigate the observed structures in more detail by forward modeling of Rayleigh wave dispersion curves for representative firn, ice, water, sediment structures. Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. Our results show that the analysis of high frequency Rayleigh waves on an ice shelf has the ability to resolve ice shelf thickness, water column thickness, and the physical properties of the underlying ocean floor using passive-source seismic data.

  17. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochoukov, R.; Bobkov, V.; Faugel, H.

    2015-11-15

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k{sub //}) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performedmore » on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k{sub tor}). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k{sub //} as strap phasing is moved away from the dipole configuration. This result is the opposite of the k{sub tor} trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k{sub //}, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas’ operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.« less

  18. Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning

    PubMed Central

    Eschenko, Oxana; Ramadan, Wiâm; Mölle, Matthias; Born, Jan; Sara, Susan J.

    2008-01-01

    High-frequency oscillations, known as sharp-wave/ripple (SPW-R) complexes occurring in hippocampus during slow-wave sleep (SWS), have been proposed to promote synaptic plasticity necessary for memory consolidation. We recorded sleep for 3 h after rats were trained on an odor-reward association task. Learning resulted in an increased number SPW-Rs during the first hour of post-learning SWS. The magnitude of ripple events and their duration were also elevated for up to 2 h after the newly formed memory. Rats that did not learn the discrimination during the training session did not show any change in SPW-Rs. Successful retrieval from remote memory was likewise accompanied by an increase in SPW-R density and magnitude, relative to the previously recorded baseline, but the effects were much shorter lasting and did not include increases in ripple duration and amplitude. A short-lasting increase of ripple activity was also observed when rats were rewarded for performing a motor component of the task only. There were no increases in ripple activity after habituation to the experimental environment. These experiments show that the characteristics of hippocampal high-frequency oscillations during SWS are affected by prior behavioral experience. Associative learning induces robust and sustained (up to 2 h) changes in several SPW-R characteristics, while after retrieval from remote memory or performance of a well-trained procedural aspect of the task, only transient changes in ripple density were induced. PMID:18385477

  19. Detection and analysis of a transient energy burst with beamforming of multiple teleseismic phases

    NASA Astrophysics Data System (ADS)

    Retailleau, Lise; Landès, Matthieu; Gualtieri, Lucia; Shapiro, Nikolai M.; Campillo, Michel; Roux, Philippe; Guilbert, Jocelyn

    2018-01-01

    Seismological detection methods are traditionally based on picking techniques. These methods cannot be used to analyse emergent signals where the arrivals cannot be picked. Here, we detect and locate seismic events by applying a beamforming method that combines multiple body-wave phases to USArray data. This method explores the consistency and characteristic behaviour of teleseismic body waves that are recorded by a large-scale, still dense, seismic network. We perform time-slowness analysis of the signals and correlate this with the time-slowness equivalent of the different body-wave phases predicted by a global traveltime calculator, to determine the occurrence of an event with no a priori information about it. We apply this method continuously to one year of data to analyse the different events that generate signals reaching the USArray network. In particular, we analyse in detail a low-frequency secondary microseismic event that occurred on 2010 February 1. This event, that lasted 1 d, has a narrow frequency band around 0.1 Hz, and it occurred at a distance of 150° to the USArray network, South of Australia. We show that the most energetic phase observed is the PKPab phase. Direct amplitude analysis of regional seismograms confirms the occurrence of this event. We compare the seismic observations with models of the spectral density of the pressure field generated by the interferences between oceanic waves. We attribute the observed signals to a storm-generated microseismic event that occurred along the South East Indian Ridge.

  20. Viscoelastic representation of surface waves in patchy saturated poroelastic media

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Yixian; Xia, Jianghai; Ping, Ping; Zhang, Shuangxi

    2014-08-01

    Wave-induced flow is observed as the dominated factor for P wave propagation at seismic frequencies. This mechanism has a mesoscopic scale nature. The inhomogeneous unsaturated patches are regarded larger than the pore size, but smaller than the wavelength. Surface wave, e.g., Rayleigh wave, which propagates along the free surface, generated by the interfering of body waves is also affected by the mesoscopic loss mechanisms. Recent studies have reported that the effect of the wave-induced flow in wave propagation shows a relaxation behavior. Viscoelastic equivalent relaxation function associated with the wave mode can describe the kinetic nature of the attenuation. In this paper, the equivalent viscoelastic relaxation functions are extended to take into account the free surface for the Rayleigh surface wave propagation in patchy saturated poroelastic media. Numerical results for the frequency-dependent velocity and attenuation and the time-dependent dynamical responses for the equivalent Rayleigh surface wave propagation along an interface between vacuum and patchy saturated porous media are reported in the low-frequency range (0.1-1,000 Hz). The results show that the dispersion and attenuation and kinetic characteristics of the mesoscopic loss effect for the surface wave can be effectively represented in the equivalent viscoelastic media. The simulation of surface wave propagation within mesoscopic patches requires solving Biot's differential equations in very small grid spaces, involving the conversion of the fast P wave energy diffusion into the Biot slow wave. This procedure requires a very large amount of computer consumption. An efficient equivalent approach for this patchy saturated poroelastic media shows a more convenient way to solve the single phase viscoelastic differential equations.

  1. Thalamic reticular nucleus induces fast and local modulation of arousal state

    PubMed Central

    Lewis, Laura D; Voigts, Jakob; Flores, Francisco J; Schmitt, L Ian; Wilson, Matthew A

    2015-01-01

    During low arousal states such as drowsiness and sleep, cortical neurons exhibit rhythmic slow wave activity associated with periods of neuronal silence. Slow waves are locally regulated, and local slow wave dynamics are important for memory, cognition, and behaviour. While several brainstem structures for controlling global sleep states have now been well characterized, a mechanism underlying fast and local modulation of cortical slow waves has not been identified. Here, using optogenetics and whole cortex electrophysiology, we show that local tonic activation of thalamic reticular nucleus (TRN) rapidly induces slow wave activity in a spatially restricted region of cortex. These slow waves resemble those seen in sleep, as cortical units undergo periods of silence phase-locked to the slow wave. Furthermore, animals exhibit behavioural changes consistent with a decrease in arousal state during TRN stimulation. We conclude that TRN can induce rapid modulation of local cortical state. DOI: http://dx.doi.org/10.7554/eLife.08760.001 PMID:26460547

  2. Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption Without Cyclotron Resonances

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.

    2014-10-01

    In hot magnetized plasmas, two types of linear collisionless absorption processes are used to heat and drive noninductive current: absorption at ion or electron cyclotron resonances and their harmonics, and absorption by Landau damping and the transit-time-magnetic-pumping (TTMP) interactions. This tutorial discusses the latter process, i.e., parallel interactions between rf waves and electrons in which cyclotron resonance is not involved. Electron damping by the parallel interactions can be important in the ICRF, particularly in the higher harmonic region where competing ion cyclotron damping is weak, as well as in the Lower Hybrid Range of Frequencies (LHRF), which is in the neighborhood of the geometric mean of the ion and electron cyclotron frequencies. On the other hand, absorption by parallel processes is not significant in conventional ECRF schemes. Parallel interactions are especially important for the realization of high current drive efficiency with rf waves, and an application of particular recent interest is current drive with the whistler or helicon wave at high to very high (i.e., the LHRF) ion cyclotron harmonics. The scaling of absorption by parallel interactions with wave frequency is examined and the advantages and disadvantages of fast (helicons/whistlers) and slow (lower hybrid) waves in the LHRF in the context of reactor-grade tokamak plasmas are compared. In this frequency range, both wave modes can propagate in a significant fraction of the discharge volume; the ways in which the two waves can interact with each other are considered. The use of parallel interactions to heat and drive current in practice will be illustrated with examples from past experiments; also looking forward, this tutorial will provide an overview of potential applications in tokamak reactors. Supported by the US Department of Energy under DE-FC02-04ER54698.

  3. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: A high density EEG investigation.

    PubMed

    Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J

    2016-02-01

    Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Self-consistent Langmuir waves in resonantly driven thermal plasmas

    NASA Astrophysics Data System (ADS)

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.

    2007-12-01

    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter.

  5. Polarization-independent transparent effect in windmill-like metasurface

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Dong, Liang; Guo, Jing; Meng, Fan Yi; He, Xun Jun; Hao Wu, Tian

    2018-07-01

    A windmill-like metasurface featuring a polarization-independent electromagnetically induced transparency (EIT) at microwave frequencies is numerically and experimentally demonstrated. The unit cell of the metasurface consists of four rotated identical metal wires, with a 45° angle between the adjacent wires. Destructive coupling between the resonance modes of the metal wires results in the emergence of a transparent window. By combining the metal wires with different degrees of symmetry, EIT effects in the metasurface show polarization-independent properties to incident linear and circular polarization waves. In addition, it is numerically demonstrated that the metasurface possesses a low-loss slow wave property with a group index of 125 and sensing capability based on the refractive index with a figure of merit of 8.73. Such a scheme may lead to many potential applications in areas of slow light and sensing.

  6. Investigating Dielectric and Metamaterial Effects in a Terahertz Traveling-Wave Tube Amplifier

    NASA Technical Reports Server (NTRS)

    Starinshak, David P.; Wilson, Jeffrey D.

    2008-01-01

    Adding material enhancements to a terahertz traveling-wave tube amplifier is investigated. Isotropic dielectrics, negative-index metamaterials, and anisotropic crystals are simulated, and plans to increase the efficiency of the device are discussed. Early results indicate that adding dielectric to the curved sections of the serpentine-shaped slow-wave circuit produce optimal changes in the cold-test characteristics of the device and a minimal drop in operating frequency. Additional results suggest that materials with simultaneously small relative permittivities and electrical conductivities are best suited for increasing the efficiency of the device. More research is required on the subject, and recommendations are given to determine the direction.

  7. Gravitational waves from rotating and precessing rigid bodies. 2: General solutions and computationally useful formulae

    NASA Technical Reports Server (NTRS)

    Zimmerman, M.

    1979-01-01

    The classical mechanics results for free precession which are needed in order to calculate the weak field, slow-motion, quadrupole-moment gravitational waves are reviewed. Within that formalism, algorithms are given for computing the exact gravitational power radiated and waveforms produced by arbitrary rigid-body freely-precessing sources. The dominant terms are presented in series expansions of the waveforms for the case of an almost spherical object precessing with a small wobble angle. These series expansions, which retain the precise frequency dependence of the waves, may be useful for gravitational astronomers when freely-precessing sources begin to be observed.

  8. SLOW MAGNETOACOUSTIC WAVES OBSERVED ABOVE A QUIET-SUN REGION IN A DARK CAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Jiajia; Zhou Zhenjun; Wang Yuming

    Waves play a crucial role in diagnosing the plasma properties of various structures in the solar corona and coronal heating. Slow magnetoacoustic (MA) waves are one of the important types of magnetohydrodynamic waves. In past decades, numerous slow MA waves were detected above active regions and coronal holes, but were rarely found elsewhere. Here, we investigate a 'tornado'-like structure consisting of quasi-periodic streaks within a dark cavity at about 40-110 Mm above a quiet-Sun region on 2011 September 25. Our analysis reveals that these streaks are actually slow MA wave trains. The properties of these wave trains, including phase speed,more » compression ratio, and kinetic energy density, are similar to those of the reported slow MA waves, except that the period of these waves is about 50 s, much shorter than the typical reported values (3-5 minutes).« less

  9. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats☆

    PubMed Central

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested. PMID:25685416

  10. THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qing; Xu, Jin; Zhang, Wenchao

    The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of themore » beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.« less

  11. Plasma wave excitation by intense microwave transmission from a space vehicle

    NASA Astrophysics Data System (ADS)

    Kimura, I.; Matsumoto, H.; Kaya, N.; Miyatake, S.

    An impact of intense microwave upon the ionospheric plasma was empirically investigated by an active rocket experiment (MINIX). The rocket carried two high-power (830W) transmitters of 2.45 GHz microwave on the mother section of the rocket. The ionospheric plasma response to the intense microwave was measured by a diagnostic package installed on both mother and daughter sections. The daughter section was separated from the mother with a slow speed of 15 cm/sec. The plasma wave analyzers revealed that various plasma waves are nonlinearly excited by the microwave. Among them, the most intense are electron cyclotron waves, followed by electron plasma waves. Extremely low frequency waves (several tens of Hz) are also found. The results of the data analysis as well as comparative computer simulations are given in this paper.

  12. A tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Lamba, R. P.; Hossain, A. M.; Pal, U. N.; Phelps, A. D. R.; Prakash, R.

    2017-11-01

    The experimental study of a tapered, multi-gap, multi-aperture pseudospark-sourced electron gun based X-band plasma assisted slow wave oscillator is presented. The designed electron gun is based on the pseudospark discharge concept and has been used to generate a high current density and high energy electron beam simultaneously. The distribution of apertures has been arranged such that the field penetration potency inside the backspace of the hollow-cathode is different while passing through the tapered gap region. This leads to non-concurrent ignition of the discharge through all the channels which is, in general, quite challenging in the case of multi-aperture plasma cathode electron gun geometries. Multiple and successive hollow cathode phases are reported from this electron gun geometry, which have been confirmed using simulations. This geometry also has led to the achievement of ˜71% fill factor inside the slow wave oscillator for an electron beam of energy of 20 keV and a beam current density in the range of 115-190 A/cm2 at a working argon gas pressure of 18 Pa. The oscillator has generated broadband microwave output in the frequency range of 10-11.7 GHz with a peak power of ˜10 kW for ˜50 ns.

  13. Bradycardia from flash stimulation.

    PubMed

    Einspenner, Michael; Brunet, Donald G; Boissé Lomax, Lysa; Spiller, Allison E

    2015-12-01

    This case study documents a patient who experienced bradycardia brought on by flash stimulation during a routine outpatient EEG recording. The patient had known photosensitive seizures in the past. During this routine EEG, the patient's heart rate dropped to about 12 beats per minute with the EEG displaying slow-delta-frequency waves with no epileptiform spikes or sharp waves. During immediate follow-up, in our emergency department, the patient had a brief asystolic event, followed by bradycardia. Cardiology examinations were normal. We propose that this response was a photic-triggered reflex vasovagal reaction.

  14. High Frequency Aircraft Antennas

    DTIC Science & Technology

    1968-05-03

    is ob- tained if the current on the loop is assunned to be a superposition of two oppositely directed uniform traveling -wave currents of equal...effect will be to slow down the traveling wave currents on the loop and thus make the loop appear larger in size. Equations (6), (7), and (IÜ...18C/NDT + 1 NTRAN3=ü L»0 CALL LINSEG<NWIRE.L»X.Y.Z.5I . SALP ,CAB.SAB) N = L NN=N+1 WR|TE(6«11) IF(N-100) 4 1,41.500 41 CONTINUE Jl = l J2

  15. Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D. A.

    2016-05-01

    An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ˜150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.

  16. Modeling the propagation of electromagnetic waves over the surface of the human body

    NASA Astrophysics Data System (ADS)

    Vendik, I. B.; Vendik, O. G.; Kirillov, V. V.; Pleskachev, V. V.; Tural'chuk, P. A.

    2016-12-01

    The results of modeling and an experimental study of electromagnetic (EM) waves in microwave range propagating along the surface of the human body have been presented. The parameters of wave propagation, such as the attenuation and phase velocity, have also been investigated. The calculation of the propagation of EM waves by the numerical method FDTD (finite difference time domain), as well as the use of the analytical model of the propagation of the EM wave along flat and curved surfaces has been fulfilled. An experimental study on a human body has been conducted. It has been shown that creeping waves are slow and exhibit a noticeable dispersion, while the surface waves are dispersionless and propagate at the speed of light in free space. A comparison of the results of numerical simulation, analytical calculation, and experimental investigations at a frequency of 2.55 GHz has been carried out.

  17. Propagation and Dissipation of MHD Waves in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2006-11-01

    bholadwivedi@gmail.com In view of the landmark result on the solar wind outflow, starting between 5 Mm and 20 Mm above the photosphere in magnetic funnels, we investigate the propagation and dissipation of MHD waves in coronal holes. We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts. We also consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfvén waves.

  18. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism.

    PubMed

    Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio

    2010-11-01

    STUDY OBJECTIVIES: several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. the specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined.

  19. Spatial extent of a hydrothermal system at Kilauea Volcano, Hawaii, determined from array analyses of shallow long-period seismicity 1. Method

    USGS Publications Warehouse

    Almendros, J.; Chouet, B.; Dawson, P.

    2001-01-01

    We present a probabilistic method to locate the source of seismic events using seismic antennas. The method is based on a comparison of the event azimuths and slownesses derived from frequency-slowness analyses of array data, with a slowness vector model. Several slowness vector models are considered including both homogeneous and horizontally layered half-spaces and also a more complex medium representing the actual topography and three-dimensional velocity structure of the region under study. In this latter model the slowness vector is obtained from frequency-slowness analyses of synthetic signals. These signals are generated using the finite difference method and include the effects of topography and velocity structure to reproduce as closely as possible the behavior of the observed wave fields. A comparison of these results with those obtained with a homogeneous half-space demonstrates the importance of structural and topographic effects, which, if ignored, lead to a bias in the source location. We use synthetic seismograms to test the accuracy and stability of the method and to investigate the effect of our choice of probability distributions. We conclude that this location method can provide the source position of shallow events within a complex volcanic structure such as Kilauea Volcano with an error of ??200 m. Copyright 2001 by the American Geophysical Union.

  20. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    PubMed Central

    Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C.

    2016-01-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic faults fail in a spectrum of modes and little is known about precursors for those modes3. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real time monitoring of active faults may be a means to detect earthquake precursors. PMID:27597879

  1. High frequency guided wave propagation in monocrystalline silicon wafers

    NASA Astrophysics Data System (ADS)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  2. Low-Frequency Waves in the Near-Earth Magnetotail before Substorm Expansion Onsets

    NASA Astrophysics Data System (ADS)

    Miyashita, Y.; Saito, M. H.; Hiraki, Y.; Machida, S.

    2013-12-01

    Magnetic reconnection and dipolarization, which occur in the near-Earth magnetotail just before substorm expansion onsets, are important processes for the substorm triggering. To understand the triggering of these processes, we have investigated low-frequency waves that were observed in the near-Earth magnetotail before onsets, by performing statistical analysis based on Geotail observations and case studies based on multi-point THEMIS and Geotail observations. Here we focused our examination on ~10 min interval before onsets. We find that small-amplitude Alfven and slow-mode magnetosonic waves with a period of ~1 to 2 min continuously exist for more than 10 min before onsets. Such waves are seen not only in the initial dipolarization region but also midway between the magnetic reconnection and initial dipolarization regions. It seems that the amplitudes of the waves are larger in the off-equator plasma sheet and the plasma sheet boundary layer than at the magnetic equator and in the lobe. After onsets the waves considerably amplify in the plasma sheet. These results may imply that instabilities already begin to grow gradually in a wide region during the substorm growth phase, while their explosive growth begins in localized regions just before onsets.

  3. Wave drift damping acting on multiple circular cylinders (model tests)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Takeshi; Sunahara, Shunji; Bao, W.

    1995-12-31

    The wave drift damping for the slow drift motion of a four-column platform is experimentally investigated. The estimation of damping force of the slow drift motion of moored floating structures in ocean waves, is one of the most important topics. Bao et al. calculated an interaction of multiple circular cylinders based on the potential flow theory, and showed that the wave drift damping is significantly influenced by the interaction between cylinders. This calculation method assumes that the slow drift motion is approximately replaced by steady current, that is, structures on slow drift motion are supposed to be equivalent to onesmore » in both regular waves and slow current. To validate semi-analytical solutions of Bao et al., experiments were carried out. At first, added resistance due to waves acting on a structure composed of multiple (four) vertical circular cylinders fixed to a slowly moving carriage, was measured in regular waves. Next, the added resistance of the structure moored by linear spring to the slowly moving carriage were measured in regular waves. Furthermore, to validate the assumption that the slow drift motion is replaced by steady current, free decay tests in still water and in regular waves were compared with the simulation of the slow drift motion using the wave drift damping coefficient obtained by the added resistance tests.« less

  4. Ultrasonic Tomography of Fractured Rocks to Characterize Elastic Weakening Induced by Finite-Amplitude Waves

    NASA Astrophysics Data System (ADS)

    Riviere, J.; Roux, P.

    2017-12-01

    The use of seismic noise in seismology enables one to detect small velocity changes induced by earthquakes, earth tides or volcanic activity. In particular, co-seismic drops in velocity followed by a slow relaxation back (or partially back) to the original velocity have been observed across various tectonic regions. The co-seismic drop is typically attributed to the creation of damage within the fault zone, while the slow recovery is attributed to post-seismic healing processes. At the laboratory scale, a dynamic perturbation of strain amplitude as low as 10-6 in rocks also results in a transient elastic softening, followed by a log(t)-type relaxation back to the initial state once the perturbation is turned off. This suggests that radiated waves produced during unstable slip are partially responsible for the co-seismic velocity drops. The main objective of this work is to help interpret the elastic changes observed in the field and in particular to disentangle velocity drops that originate from damage creation along the slip surface from the ones produced during radiation of finite-amplitude waves. To do so, we use a technique called Dynamic Acousto-Elastic Testing that provides comprehensive details on the nonlinear elastic response of consolidated granular media (e.g. rocks), including tension/compression asymmetry, hysteretic behaviors as well as conditioning and relaxation effects. Such technique uses a pump-probe scheme where a high frequency, low amplitude wave probes the state of a sample that is dynamically disturbed by a low frequency, large amplitude pump wave. While previous work typically involved a single pair of probing transducers, here we use two dense arrays of ultrasonic transducers to image a sample of Westerly granite with a complex fracture. We apply double beamforming to disentangle complex arrivals and conduct ray-based and finite-frequency tomography using both travel time and amplitude information. By comparing images obtained before, during and after the pump wave disturbance, we are able to locate and characterize elastic changes within the sample. We discuss their locations with regard to low velocity/high attenuation zones and relate our observations to large-scale data.

  5. Universally Unstable Nature of Velocity Ring Distributions

    NASA Astrophysics Data System (ADS)

    Mithaiwala, Manish

    2010-11-01

    Although it is typically believed that an ion ring velocity distribution has a stability threshold, we find that they are universally unstable. This can substantially impact the understanding of dynamics in both laboratory and space plasmas. A high ring density neutralizes the stabilizing effect of ion Landau damping in a warm plasma and the ring is unstable to the generation of waves below the lower hybrid frequency- even for a very high temperature plasma. For ring densities lower than the background plasma density there is a slow instability with growth rate less than the background ion cyclotron frequency and consequently the background ion response is magnetized. This is in addition to the widely discussed fast instability where the wave growth rate exceeds the background ion cyclotron frequency and hence the background ions are effectively unmagnetized. Thus, even a low density ring is unstable to waves around the lower hybrid frequency range for any ring speed. This implies that effectively there is no velocity threshold for a sufficiently cold ring. The importance of these conclusions on the nonlinear evolution of space plasmas, in particular to solar wind-comet interaction, post-magnetospheric storm conditions, and chemical release experiments in the ionosphere will be discussed.

  6. Slow wave sleep in the chronically fatigued: Power spectra distribution patterns in chronic fatigue syndrome and primary insomnia.

    PubMed

    Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Le Bon, Olivier

    2015-10-01

    To investigate slow wave sleep (SWS) spectral power proportions in distinct clinical conditions sharing non-restorative sleep and fatigue complaints without excessive daytime sleepiness (EDS), namely the chronic fatigue syndrome (CFS) and primary insomnia (PI). Impaired sleep homeostasis has been suspected in both CFS and PI. We compared perceived sleep quality, fatigue and sleepiness symptom-intensities, polysomnography (PSG) and SWS spectral power distributions of drug-free CFS and PI patients without comorbid sleep or mental disorders, with a good sleeper control group. Higher fatigue without EDS and impaired perceived sleep quality were confirmed in both patient groups. PSG mainly differed in sleep fragmentation and SWS durations. Spectral analysis revealed a similar decrease in central ultra slow power (0.3-0.79Hz) proportion during SWS for both CFS and PI and an increase in frontal power proportions of faster frequencies during SWS in PI only. The latter was correlated to affective symptoms whereas lower central ultra slow power proportions were related to fatigue severity and sleep quality impairment. In combination with normal (PI) or even increased SWS durations (CFS), we found consistent evidence for lower proportions of slow oscillations during SWS in PI and CFS. Observing normal or increased SWS durations but lower proportions of ultra slow power, our findings suggest a possible quantitative compensation of altered homeostatic regulation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Influence of wall plasma on microwave frequency and power in relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jun; Cao, Yibing; Teng, Yan

    2015-07-15

    The RF breakdown of the slow wave structure (SWS), which will lead to the generation of the wall plasma, is an important cause for pulse shortening in relativistic backward wave oscillators. Although many researchers have performed profitable studies about this issue, the influence mechanism of this factor on the microwave generation still remains not-so-clear. This paper simplifies the wall plasma with an “effective” permittivity and researches its influence on the microwave frequency and power. The dispersion relation of the SWS demonstrates that the introduction of the wall plasma will move the dispersion curves upward to some extent, which is confirmedmore » by particle-in-cell (PIC) simulations and experiments. The plasma density and volume mainly affect the dispersion relation at the upper and lower frequency limits of each mode, respectively. Meanwhile, PIC simulations show that even though no direct power absorption exists since the wall plasma is assumed to be static, the introduction of the wall plasma may also lead to the decrease in microwave power by changing the electrodynamic property of the SWS.« less

  8. The occurrence of individual slow waves in sleep is predicted by heart rate

    PubMed Central

    Mensen, Armand; Zhang, Zhongxing; Qi, Ming; Khatami, Ramin

    2016-01-01

    The integration of near-infrared spectroscopy and electroencephalography measures presents an ideal method to study the haemodynamics of sleep. While the cortical dynamics and neuro-modulating influences affecting the transition from wakefulness to sleep is well researched, the assumption has been that individual slow waves, the hallmark of deep sleep, are spontaneously occurring cortical events. By creating event-related potentials from the NIRS recording, time-locked to the onset of thousands of individual slow waves, we show the onset of slow waves is phase-locked to an ongoing oscillation in the NIRS recording. This oscillation stems from the moment to moment fluctuations of light absorption caused by arterial pulsations driven by the heart beat. The same oscillating signal can be detected if the electrocardiogram is time-locked to the onset of the slow wave. The ongoing NIRS oscillation suggests that individual slow wave initiation is dependent on that signal, and not the other way round. However, the precise causal links remain speculative. We propose several potential mechanisms: that the heart-beat or arterial pulsation acts as a stimulus which evokes a down-state; local fluctuations in energy supply may lead to a network effect of hyperpolarization; that the arterial pulsations lead to corresponding changes in the cerebral-spinal-fluid which evokes the slow wave; or that a third neural generator, regulating heart rate and slow waves may be involved. PMID:27445083

  9. Transverse eV Ion Heating by Random Electric Field Fluctuations in the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Artemyev, A. V.; Mourenas, D.; Agapitov, O. V.; Blum, L.

    2017-01-01

    Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2-3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse heating of H+ and O+ ions in the inner magnetosphere. The essential element of the proposed model of ion heating is the presence of trains of random whistler (hiss) wave packets, with significant amplitude modulations produced by strong wave damping, rapid wave growth, or a superposition of wave packets of different frequencies, phases, and amplitudes. Such characteristics correspond to measured characteristics of hiss waves in this region. Using test particle simulations with typical wave and plasma parameters, we demonstrate that the corresponding stochastic transverse ion heating reaches 0.07-0.2 eV/h for protons and 0.007-0.015 eV/h for O+ ions. This global temperature increase of the Maxwellian ion population from an initial Ti approx. 0.3 eV could potentially explain the observations.

  10. The family of anisotropically scaled equatorial waves

    NASA Astrophysics Data System (ADS)

    RamíRez GutiéRrez, Enver; da Silva Dias, Pedro Leite; Raupp, Carlos; Bonatti, Jose Paulo

    2011-04-01

    In the present work we introduce the family of anisotropic equatorial waves. This family corresponds to equatorial waves at intermediate states between the shallow water and the long wave approximation model. The new family is obtained by using anisotropic time/space scalings on the linearized, unforced and inviscid shallow water model. It is shown that the anisotropic equatorial waves tend to the solutions of the long wave model in one extreme and to the shallow water model solutions in the other extreme of the parameter dependency. Thus, the problem associated with the completeness of the long wave model solutions can be asymptotically addressed. The anisotropic dispersion relation is computed and, in addition to the typical dependency on the equivalent depth, meridional quantum number and zonal wavenumber, it also depends on the anisotropy between both zonal to meridional space and velocity scales as well as the fast to slow time scales ratio. For magnitudes of the scales compatible with those of the tropical region, both mixed Rossby-gravity and inertio-gravity waves are shifted to a moderately higher frequency and, consequently, not filtered out. This draws attention to the fact that, for completeness of the long wave like solutions, it is necessary to include both the anisotropic mixed Rossby-gravity and inertio-gravity waves. Furthermore, the connection of slow and fast manifolds (distinguishing feature of equatorial dynamics) is preserved, though modified for the equatorial anisotropy parameters used δ ∈ < 1]. New possibilities of horizontal and vertical scale nonlinear interactions are allowed. Thus, the anisotropic shallow water model is of fundamental importance for understanding multiscale atmosphere and ocean dynamics in the tropics.

  11. Increased Alpha (8-12 Hz) Activity during Slow Wave Sleep as a Marker for the Transition from Implicit Knowledge to Explicit Insight

    ERIC Educational Resources Information Center

    Yordanova, Juliana; Kolev, Vasil; Wagner, Ullrich; Born, Jan; Verleger, Rolf

    2012-01-01

    The number reduction task (NRT) allows us to study the transition from implicit knowledge of hidden task regularities to explicit insight into these regularities. To identify sleep-associated neurophysiological indicators of this restructuring of knowledge representations, we measured frequency-specific power of EEG while participants slept during…

  12. The gravitational waves from the first-order phase transition with a dimension-six operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Rong-Gen; Wang, Shao-Jiang; Sasaki, Misao, E-mail: cairg@itp.ac.cn, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: schwang@itp.ac.cn

    We investigate in details the gravitational wave (GW) from the first-order phase transition (PT) in the extended standard model of particle physics with a dimension-six operator, which is capable of exhibiting the recently discovered slow first-order PT in addition to the usually studied fast first-order PT. To simplify the discussion, it is sufficient to work with an example of a toy model with the sextic term, and we propose an unified description for both slow and fast first-order PTs. We next study the full one-loop effective potential of the model with fixed/running renormalization-group (RG) scales. Compared to the prediction ofmore » GW energy density spectrum from the fixed RG scale, we find that the presence of running RG scale could amplify the peak amplitude by amount of one order of magnitude while shift the peak frequency to the lower frequency regime, and the promising regime of detection within the sensitivity ranges of various space-based GW detectors shrinks down to a lower cut-off value of the sextic term rather than the previous expectation.« less

  13. Effect of Velocity of Detonation of Explosives on Seismic Radiation

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2014-12-01

    We studied seismic body wave generation from four fully contained explosions of approximately the same yields (68 kg of TNT equivalent) conducted in anisotropic granite in Barre, VT. The explosions were detonated using three types of explosives with different velocities of detonation (VOD): Black Powder (BP), Ammonium Nitrate Fuel Oil/Emulsion (ANFO), and Composition B (COMP B). The main objective of the experiment was to study differences in seismic wave generation among different types of explosives, and to determine the mechanism responsible for these differences. The explosives with slow burn rate (BP) produced lower P-wave amplitude and lower corner frequency, which resulted in lower seismic efficiency (0.35%) in comparison with high burn rate explosives (2.2% for ANFO and 3% for COMP B). The seismic efficiency estimates for ANFO and COMP B agree with previous studies for nuclear explosions in granite. The body wave radiation pattern is consistent with an isotropic explosion with an added azimuthal component caused by vertical tensile fractures oriented along pre-existing micro-fracturing in the granite, although the complexities in the P- and S-wave radiation patterns suggest that more than one fracture orientation could be responsible for their generation. High S/P amplitude ratios and low P-wave amplitudes suggest that a significant fraction of the BP source mechanism can be explained by opening of the tensile fractures as a result of the slow energy release.

  14. Electroencephalographic slow waves prior to sleepwalking episodes.

    PubMed

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2014-12-01

    Recent studies have suggested that the onset of sleepwalking episodes may be preceded by fluctuations in slow-wave sleep electroencephalographic characteristics. However, whether or not such fluctuations are specific to sleepwalking episodes or generalized to all sleep-wake transitions in sleepwalkers remains unknown. The goal of this study was to compare spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) as well as slow oscillation density before the onset of somnambulistic episodes versus non-behavioral awakenings recorded from the same group of sleepwalkers. A secondary aim was to describe the time course of observed changes in slow-wave activity and slow oscillations during the 3 min immediately preceding the occurrence of somnambulistic episodes. Twelve adult sleepwalkers were investigated polysomnographically during the course of one night. Slow-wave activity and slow oscillation density were significantly greater prior to patients' somnambulistic episodes as compared with non-behavioral awakenings. However, there was no evidence for a gradual increase over the 3 min preceding the episodes. Increased slow-wave activity and slow oscillation density appear to be specific to sleepwalking episodes rather than generalized to all sleep-wake transitions in sleepwalkers. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Dynamics of wave packets in two-dimensional random systems with anisotropic disorder.

    PubMed

    Samelsohn, Gregory; Gruzdev, Eugene

    2008-09-01

    A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain "lucky shots" associated with the long-living resonant modes localized inside the sample.

  16. Dynamics of wave packets in two-dimensional random systems with anisotropic disorder

    NASA Astrophysics Data System (ADS)

    Samelsohn, Gregory; Gruzdev, Eugene

    2008-09-01

    A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain “lucky shots” associated with the long-living resonant modes localized inside the sample.

  17. Different Effects of Sleep Deprivation and Torpor on EEG Slow-Wave Characteristics in Djungarian Hamsters

    PubMed Central

    Palchykova, S.; Achermann, P.; Tobler, I.; Deboer, T.

    2017-01-01

    Abstract It has been shown previously in Djungarian hamsters that the initial electroencephalography (EEG) slow-wave activity (power in the 0.5–4.0 Hz band; SWA) in non-rapid eye movement (NREM) sleep following an episode of daily torpor is consistently enhanced, similar to the SWA increase after sleep deprivation (SD). However, it is unknown whether the network mechanisms underlying the SWA increase after torpor and SD are similar. EEG slow waves recorded in the neocortex during sleep reflect synchronized transitions between periods of activity and silence among large neuronal populations. We therefore set out to investigate characteristics of individual cortical EEG slow waves recorded during NREM sleep after 4 h SD and during sleep after emergence from an episode of daily torpor in adult male Djungarian hamsters. We found that during the first hour after both SD and torpor, the SWA increase was associated with an increase in slow-wave incidence and amplitude. However, the slopes of single slow waves during NREM sleep were steeper in the first hour after SD but not after torpor, and, in contrast to sleep after SD, the magnitude of change in slopes after torpor was unrelated to the changes in SWA. Furthermore, slow-wave slopes decreased progressively within the first 2 h after SD, while a progressive increase in slow-wave slopes was apparent during the first 2 h after torpor. The data suggest that prolonged waking and torpor have different effects on cortical network activity underlying slow-wave characteristics, while resulting in a similar homeostatic sleep response of SWA. We suggest that sleep plays an important role in network homeostasis after both waking and torpor, consistent with a recovery function for both states. PMID:28168294

  18. Continuous Beam Steering Through Broadside Using Asymmetrically Modulated Goubau Line Leaky-Wave Antennas.

    PubMed

    Tang, Xiao-Lan; Zhang, Qingfeng; Hu, Sanming; Zhuang, Yaqiang; Kandwal, Abhishek; Zhang, Ge; Chen, Yifan

    2017-09-15

    Goubau line is a single-conductor transmission line, featuring easy integration and low-loss transmission properties. Here, we propose a periodic leaky-wave antenna (LWA) based on planar Goubau transmission line on a thin dielectric substrate. The leaky-wave radiations are generated by introducing periodic modulations along the Goubau line. In this way, the surface wave, which is slow-wave mode supported by the Goubau line, achieves an additional momentum and hence enters the fast-wave region for radiations. By employing the periodic modulations, the proposed Goubau line LWAs are able to continuously steer the main beam from backward to forward within the operational frequency range. However, the LWAs usually suffer from a low radiation efficiency at the broadside direction. To overcome this drawback, we explore both transversally and longitudinally asymmetrical modulations to the Goubau line. Theoretical analysis, numerical simulations and experimental results are given in comparison with the symmetrical LWAs. It is demonstrated that the asymmetrical modulations significantly improve the radiation efficiency of LWAs at the broadside. Furthermore, the measurement results agree well with the numerical ones, which experimentally validates the proposed LWA structures. These novel Goubau line LWAs, experimentally demonstrated and validated at microwave frequencies, show also great potential for millimeter-wave and terahertz systems.

  19. Magnetohydrodynamic motion of a two-fluid plasma

    DOE PAGES

    Burby, Joshua W.

    2017-07-21

    Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less

  20. Triggered tremor sweet spots in Alaska

    NASA Astrophysics Data System (ADS)

    Gomberg, Joan; Prejean, Stephanie

    2013-12-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor "sweet spots"—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (< 0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  1. Magnetohydrodynamic motion of a two-fluid plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burby, Joshua W.

    Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less

  2. Triggered tremor sweet spots in Alaska

    USGS Publications Warehouse

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (<~0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  3. Explosion source strong ground motions in the Mississippi embayment

    USGS Publications Warehouse

    Langston, C.A.; Bodin, P.; Powell, C.; Withers, M.; Horton, S.; Mooney, W.

    2006-01-01

    Two strong-motion arrays were deployed for the October 2002 Embayment Seismic Excitation Experiment to study the spatial variation of strong ground motions in the deep, unconsolidated sediments of the Mississippi embayment because there are no comparable strong-motion data from natural earthquakes in the area. Each linear array consisted of eight three-component K2 accelerographs spaced 15 m apart situated 1.2 and 2.5 kin from 2268-kg and 1134-kg borehole explosion sources, respectively. The array data show distinct body-wave and surface-wave arrivals that propagate within the thick, unconsolidated sedimentary column, the high-velocity basement rocks, and small-scale structure near the surface. Time-domain coherence of body-wave and surface-wave arrivals is computed for acceleration, velocity, and displacement time windows. Coherence is high for relatively low-frequency verticalcomponent Rayleigh waves and high-frequency P waves propagating across the array. Prominent high-frequency PS conversions seen on radial components, a proxy for the direct S wave from earthquake sources, lose coherence quickly over the 105-m length of the array. Transverse component signals are least coherent for any ground motion and appear to be highly scattered. Horizontal phase velocity is computed by using the ratio of particle velocity to estimates of the strain based on a plane-wave-propagation model. The resulting time-dependent phase-velocity map is a useful way to infer the propagation mechanisms of individual seismic phases and time windows of three-component waveforms. Displacement gradient analysis is a complementary technique for processing general spatial-array data to obtain horizontal slowness information.

  4. Association between ICP pulse waveform morphology and ICP B waves.

    PubMed

    Kasprowicz, Magdalena; Bergsneider, Marvin; Czosnyka, Marek; Hu, Xiao

    2012-01-01

    The study aimed to investigate changes in the shape of ICP pulses associated with different patterns of the ICP slow waves (0.5-2.0 cycles/min) during ICP overnight monitoring in hydrocephalus. Four patterns of ICP slow waves were characterized in 44 overnight ICP recordings (no waves - NW, slow symmetrical waves - SW, slow asymmetrical waves - AS, slow waves with plateau phase - PW). The morphological clustering and analysis of ICP pulse (MOCAIP) algorithm was utilized to calculate a set of metrics describing ICP pulse morphology based on the location of three sub-peaks in an ICP pulse: systolic peak (P(1)), tidal peak (P(2)) and dicrotic peak (P(3)). Step-wise discriminant analysis was applied to select the most characteristic morphological features to distinguish between different ICP slow waves. Based on relative changes in variability of amplitudes of P(2) and P(3) we were able to distinguish between the combined groups NW + SW and AS + PW (p < 0.000001). The AS pattern can be differentiated from PW based on respective changes in the mean curvature of P(2) and P(3) (p < 0.000001); however, none of the MOCAIP feature separates between NW and SW. The investigation of ICP pulse morphology associated with different ICP B waves may provide additional information for analysing recordings of overnight ICP.

  5. Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    NASA Astrophysics Data System (ADS)

    Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Sleigh, J. W.

    2013-04-01

    Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the possible consequences of chaotic dynamics for memory processing and learning.

  6. Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry

    DOE PAGES

    Zhang, Yiwei; Ye, Fei; Qi, Bing; ...

    2016-07-12

    We demonstrate that multiple-site sensing along an optical fiber can be done with incoherent continuous-wave light. Here, using a broadband low-coherence noise source, a slow detector, and an optical modulator, we construct a single-arm frequency-shifted interferometer (SA-FSI) capable of simultaneously sensing multiple weak-reflection sites distributed either in parallel or in series along fiber links. By scanning the driving frequency of an electro-optic amplitude modulator in the range of 2.7–3.2 GHz at steps of 41.7 KHz, we demonstrate a spatial resolution of 0.3 m and a measurement range of over 1 km.

  7. Of dipole antennas in a magnetized plasma in the resonance frequency band

    NASA Astrophysics Data System (ADS)

    Shirokov, E. A.; Chugunov, Yu. V.

    2011-12-01

    We consider characteristics of slow quasielectrostatic waves excited in the resonance frequency band by a source whose dimensions are much less than the wavelength of the electromagnetic wave. We primarily focus on the analysis of the radiation of a harmonic wave in pulsed mode by a dipole source. Firstly, we study the influence of electromagnetic, dispersive, and collisional corrections in the dispersion relation on the field shape. Secondly, we analyze the field structure near the resonance cone. In particular, the effects of the group delay and anomalous spreading of the wave are considered. The developed theory is used to interpret the "OEDIPUS-C" experiment. For example, a delay of 10-4 s and a significant (severalfold) spreading of the pulse were observed at a distance of about ten wavelengths. Finally, some aspects of the inverse problem of electrodynamics are examined. Namely, the role of the smoothness of the antenna charge distribution in the field structure formation is shown and a class of smooth charge distributions creating a given field structure is found.

  8. DENSITY PERTURBATION BY ALFVÉN WAVES IN MAGNETO-PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Moon, Y.-J.; Sharma, R. P.

    In this article, we attempt to investigate the density perturbations along magnetic field by ponderomotive effects due to inertial Alfvén waves (AWs) in auroral ionosphere. For this study, we take high-frequency inertial AWs (pump) and their nonlinear interactions with low-frequency slow modes of AWs in that region. The dynamical equations representing these wave modes are known as the Zakharov like equation, and are solved numerically. From the results presented here, we notice the density perturbations in the direction of background magnetic fields. We also find that the deepest density cavity is associated with the strongest magnetic fields. The main reasonmore » for these nonlinear structures could be the ponderomotive effects due to the pump waves. The amplitude of these density structures varies with time until the modulation instability saturates. From our results, we estimate the amplitude of most intense cavity as ∼15% of the unperturbed plasma number density n {sub 0}, which is consistent with the observations. These density structures could be the locations for particle energizations in this region.« less

  9. Alternating currents and shear waves in viscous electronics

    NASA Astrophysics Data System (ADS)

    Semenyakin, M.; Falkovich, G.

    2018-02-01

    Strong interaction among charge carriers can make them move like viscous fluid. Here we explore alternating current (ac) effects in viscous electronics. In the Ohmic case, incompressible current distribution in a sample adjusts fast to a time-dependent voltage on the electrodes, while in the viscous case, momentum diffusion makes for retardation and for the possibility of propagating slow shear waves. We focus on specific geometries that showcase interesting aspects of such waves: current parallel to a one-dimensional defect and current applied across a long strip. We find that the phase velocity of the wave propagating along the strip respectively increases/decreases with the frequency for no-slip/no-stress boundary conditions. This is so because when the frequency or strip width goes to zero (alternatively, viscosity go to infinity), the wavelength of the current pattern tends to infinity in the no-stress case and to a finite value in a general case. We also show that for dc current across a strip with a no-stress boundary, there are only one pair of vortices, while there is an infinite vortex chain for all other types of boundary conditions.

  10. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft ormore » to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.« less

  11. Equatorial Kelvin waves: A UARS MLS view

    NASA Technical Reports Server (NTRS)

    Canziani, Pablo O.; Holton, James R.; Fishbein, Evan; Froidevaux, Lucien; Waters, Joe W.

    1994-01-01

    Data from the Microwave Limb Sounder (MLS) instrument on the Upper Atmosphere Research Satellite (UARS) are used to compare two periods of Kelvin wave activity during different stages of the equatorial quasi-biennial oscillation. The analysis is carried out using an asynoptic mapping technique. A wide bandpass filter is used to isolate the frequency bands where Kelvin waves have been identified in previous studies. Time-height and time-latitude plots of the bandpassed data are used to identify Kelvin wave activity in the temperature and ozone fields. Frequency spectra of temperature and ozone amplitudes are constructed to further analyze the latitudinal and meridional distribution of Kelvin wave activity in zonal wavenumbers 1 and 2. The characteristics identified in these plots agree well with theoretical predictions and previous observations of middle atmosphere Kelvin waves. The time-height and time-latitude plots support the existence of Kelvin waves in discrete frequency bands; the slow, fast, and ultrafast Kelvin modes are all identified in the data. The characteristics of these modes do not vary much despite different mean flow conditions in the two periods examined. For the Kelvin wave-induced perturbations in ozone, the change from a transport-dominated regime below 10 hPa to a photochemically controlled regime above 10 hPa is clearly apparent in the height dependence of the phase difference between temperature and ozone. The ratios of the ozone perturbation amplitude to the temperature perturbation amplitude for the various observed Kelvin wave modes are in agreement with model estimates and LIMS (Limb Infrared Monitor of the Stratosphere) observations in the lower half of the region sampled but appear to be too large in the upper stratosphere and lower mesosphere.

  12. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.

    PubMed

    Funk, Chadd M; Peelman, Kayla; Bellesi, Michele; Marshall, William; Cirelli, Chiara; Tononi, Giulio

    2017-09-20

    During non-rapid eye-movement (NREM) sleep, cortical and thalamic neurons oscillate every second or so between ON periods, characterized by membrane depolarization and wake-like tonic firing, and OFF periods, characterized by membrane hyperpolarization and neuronal silence. Cortical slow waves, the hallmark of NREM sleep, reflect near-synchronous OFF periods in cortical neurons. However, the mechanisms triggering such OFF periods are unclear, as there is little evidence for somatic inhibition. We studied cortical inhibitory interneurons that express somatostatin (SOM), because ∼70% of them are Martinotti cells that target diffusely layer I and can block excitatory transmission presynaptically, at glutamatergic terminals, and postsynaptically, at apical dendrites, without inhibiting the soma. In freely moving male mice, we show that SOM+ cells can fire immediately before slow waves and their optogenetic stimulation during ON periods of NREM sleep triggers long OFF periods. Next, we show that chemogenetic activation of SOM+ cells increases slow-wave activity (SWA), slope of individual slow waves, and NREM sleep duration; whereas their chemogenetic inhibition decreases SWA and slow-wave incidence without changing time spent in NREM sleep. By contrast, activation of parvalbumin+ (PV+) cells, the most numerous population of cortical inhibitory neurons, greatly decreases SWA and cortical firing, triggers short OFF periods in NREM sleep, and increases NREM sleep duration. Thus SOM+ cells, but not PV+ cells, are involved in the generation of sleep slow waves. Whether Martinotti cells are solely responsible for this effect, or are complemented by other classes of inhibitory neurons, remains to be investigated. SIGNIFICANCE STATEMENT Cortical slow waves are a defining feature of non-rapid eye-movement (NREM) sleep and are thought to be important for many of its restorative benefits. Yet, the mechanism by which cortical neurons abruptly and synchronously cease firing, the neuronal basis of the slow wave, remains unknown. Using chemogenetic and optogenetic approaches, we provide the first evidence that links a specific class of inhibitory interneurons-somatostatin-positive cells-to the generation of slow waves during NREM sleep in freely moving mice. Copyright © 2017 the authors 0270-6474/17/379132-17$15.00/0.

  13. Vagus Nerve Stimulation for Electrographic Status Epilepticus in Slow-Wave Sleep.

    PubMed

    Carosella, Christopher M; Greiner, Hansel M; Byars, Anna W; Arthur, Todd M; Leach, James L; Turner, Michele; Holland, Katherine D; Mangano, Francesco T; Arya, Ravindra

    2016-07-01

    Electrographic status epilepticus in slow sleep or continuous spike and waves during slow-wave sleep is an epileptic encephalopathy characterized by seizures, neurocognitive regression, and significant activation of epileptiform discharges during nonrapid eye movement sleep. There is no consensus on the diagnostic criteria and evidence-based optimal treatment algorithm for children with electrographic status epilepticus in slow sleep. We describe a 12-year-old girl with drug-resistant electrographic status epilepticus in slow wave sleep that was successfully treated with vagus nerve stimulation. Her clinical presentation, presurgical evaluation, decision-making, and course after vagus nerve stimulator implantation are described in detail. After vagus nerve stimulator implantation, the girl remained seizure free for more than a year, resolved the electrographic status epilepticus in slow sleep pattern on electroencephalography, and exhibited significant cognitive improvement. Vagus nerve stimulation may be considered for electrographic status epilepticus in slow sleep. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Regional Slow Waves and Spindles in Human Sleep

    PubMed Central

    Nir, Yuval; Staba, Richard J.; Andrillon, Thomas; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Fried, Itzhak; Tononi, Giulio

    2011-01-01

    SUMMARY The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions—are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions. PMID:21482364

  15. Parametric instability, inverse cascade and the range of solar-wind turbulence

    NASA Astrophysics Data System (ADS)

    Chandran, Benjamin D. G.

    2018-02-01

    In this paper, weak-turbulence theory is used to investigate the nonlinear evolution of the parametric instability in three-dimensional low- plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy +\\gg e-$ , where +$ and -$ are the frequency ( ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If +$ initially has a peak frequency 0$ (at which +$ is maximized) and an `infrared' scaling p$ at smaller with , then +$ acquires an -1$ scaling throughout a range of frequencies that spreads out in both directions from 0$ . At the same time, -$ acquires an -2$ scaling within this same frequency range. If the plasma parameters and infrared +$ spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an +$ spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed -1$ scaling at -4~\\text{Hz}$ . The results of this paper suggest that the -1$ spectrum seen by Helios in the fast solar wind at -4~\\text{Hz}$ is produced in situ by parametric decay and that the -1$ range of +$ extends over an increasingly narrow range of frequencies as decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe.

  16. On the generation of internal wave modes by surface waves

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  17. Electrogastrography in experimental pigs: the influence of gastrointestinal injury induced by dextran sodium sulphate on porcine gastric erythromycin-stimulated myoelectric activity.

    PubMed

    Tachecí, Ilja; Kvetina, Jaroslav; Kunes, Martin; Edakkanambeth Varayil, Jithinraj; Ali, Shahzad Marghoob; Pavlik, Michal; Kopacova, Marcela; Rejchrt, Stanislav; Bures, Jan; Pleskot, Miloslav

    2011-01-01

    Electrogastrography (EGG) is a non-invasive investigation of gastric myoelectrical activity. The aim of study was to evaluate the impact of erythromycin on EGG in gastrointestinal toxic injury induced by dextran sodium sulphate (DSS) in experimental pigs. The experiments were carried out on 12 adult pigs (weighing 30-35 kg). EGG was recorded using Digitrapper equipment (Synectics Medical AB, Stockholm). Running spectrum activity was used for EGG evaluation. There were two groups of animals: Group I: 6 controls with erythromycin administration (1,600 mg intragastrically); Group II: 6 animals treated with DSS (for 5 days, 0.25 g/kg per day in a dietary bolus) followed by erythromycin administration. Baseline and subsequent six separate 30-minute EGG-recordings (from time 0 to 360 min) were accomplished in each animal. A total of 84 records were analysed. Baseline dominant frequency of slow waves was fully comparable in both groups. In Group I, there was a significant increase in dominant frequency after erythromycin administration (maximum between 240-360 min). There was a flat non-significant and delayed increase in dominant frequency after erythromycin administration in Group II. The difference between Group I and II at particular time intervals was not significant but a diverse trend was evident. EGG recording enables us to register a gastric myoelectrical effect of prokinetic drugs. Erythromycin induced a significant increase in the dominant frequency of slow waves. DSS caused toxic injury to the porcine gastrointestinal tract responsible for the delayed and weaker myoelectrical effect of erythromycin in experimental animals.

  18. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data ofmore » the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.« less

  19. Statistical Detection of Propagating Waves in a Polar Coronal Hole

    NASA Astrophysics Data System (ADS)

    Gupta, G. R.; O'Shea, E.; Banerjee, D.; Popescu, M.; Doyle, J. G.

    Waves are important in the heating of the solar corona and the acceleration of the solar wind. We have examined a long spectral time series sampling a southern coronal hole, observed on the 25 February 1997 using the SUMER spectrometer onboard SoHO. The observations used the spectra lines NIV 765Å, formed in the transition region, and Ne VIII 770Å, formed in the low corona. The spectra indicate the presence of compressional waves with periods of about 18 min, and also significant power at shorter periods. Using Fourier techniques, we measured the phase delays between the intensity as well as the velocity oscillations in the two lines as a function of frequency. From these measurements we derive the travel time of the propagating oscillations and so the propagation speeds of the waves producing the oscillations. As the measured propagation speeds are subsonic, we conclude that the observed waves are slow magneto-acoustic ones.

  20. Studying gas-sheared liquid film in horizontal rectangular duct with laser-induced fluorescence technique

    NASA Astrophysics Data System (ADS)

    Cherdantsev, Andrey; Hann, David; Azzopardi, Barry

    2013-11-01

    High-speed LIF-technique is applied to study gas-sheared liquid film in horizontal rectangular duct with 161 mm width. Instantaneous distributions of film thickness resolved in both longitudinal and transverse coordinates were obtained with a frequency of 10 kHz and spatial resolution from 0.125 mm to 0.04 mm. Processes of generation of fast and slow ripples by disturbance waves are the same as described in literature for downwards annular pipe flow. Disturbance waves are often localized by transverse coordinate and may have curved or slanted fronts. Fast ripples, covering disturbance waves, are typically horseshoe-shaped and placed in staggered order. Their characteristic transverse size is of order 1 cm and it decreases with gas velocity. Entrainment of liquid from film surface can also be visualized. Mechanisms of ripple disruption, known as ``bag break-up'' and ``ligament break-up,'' were observed. Both mechanisms may occur on the same disturbance waves. Various scenarios of droplet deposition on the liquid film are observed, including the impact, slow sinking and bouncing, characterized by different outcome of secondary droplets or entrapped bubbles. Number and size of bubbles increase greatly inside the disturbance waves. Both quantities increase with gas and liquid flow rates. EPSRC Programme Grant MEMPHIS (EP/K003976/1), and Roll-Royce UTC (Nottingham, for access to flow facility).

  1. Monitoring of ionospheric turbulence spatial features by SEE diagnostic tools

    NASA Astrophysics Data System (ADS)

    Sergeev, E. N.; Boiko, G. N.; Shvarts, M. M.; Grach, S. M.; Kotov, P. V.

    Spatial features of HF pumped ionospheric F-region are investigated experimentally at the SURA facility by means of the stimulated electromagnetic emission (SEE). SEE, recall, appears as a result of conversion (or scattering) of HF pump-driven plasma waves off the geomagnetic field aligned electron density irregularities (striations). A specially designed pumping scheme was elaborated to study an influence of the perturbations of the electron density and temperature, created by powerful pump wave at frequency f_h and occupying quite extended altitude range (range-I), on spectral and temporal evolution of the diagnostic SEE (DSEE) generated by a weak continuous or pulse diagnostic wave at a frequency f_d in an altitude range-II, spatially shifted from the centre of the range-I. New two-channel digital receiver allowed to analyze the SEE from both ranges (around both frequencies f_h and f_d) simultaneously. A combination of the SEE diagnostics and computer simulations allowed to study:% (a) dependences of striation spectrum and dynamics on the frequency shift |f_h-f_d| (which can be easily translated to the altitude displacement), powers of the pump and diagnostic waves, offsets of the frequencies f_h and f_d from electron gyroharmonics, and on the daily conditions. It is found that a slow (time scale of 1--10 s) dynamics of DSEE, namely, characteristics of its slow overshoot and undershoot effects are determined by the spectral shape and intensity of the striations at, respectively, the development and relaxation stages. It is shown that the striation spectrum flattens in meter scale range for f_h between 3th and 4th gyroharmonics in comparison with larger f_h, in the centre of the range-I in comparison with its periphery, that the range-I extension increases with its altitude and with a transition from day to night conditions;% (b) an influence of the powerful pumping on ``diagnostic'' HF plasma wave evolution by measurements of growth and decay times of the DSEE. It is found that a shape and fast (time scale of 1--10 ms) dynamics of the DSEE spectrum is determined by efficiency of interaction between different HF modes (determined, particularly, by f_d offset from a gyroharmonic), but not by striation characteristics. Besides, during the powerful pumping the DSEE decay rates always exceed the collision values observed for purely diagnostic schedule at nighttime conditions.% The work was supported by INTAS grant 03-515583, RFBR grants 04-02-17544 and 03-02-16309, grant E02-3.2-36 of Education Ministry of Russian Federation.

  2. Effects of a facial nerve lesion on responses in forehead microvessels to conjunctival irritation and paced breathing.

    PubMed

    Drummond, Peter D

    2012-08-16

    To investigate parasympathetic influences on the forehead microvasculature, blood flow was monitored bilaterally in seven participants with a unilateral facial nerve lesion during conjunctival irritation with Schirmer's strips and while breathing at 0.15 Hz. Blood flow and slow-wave frequency increased on the intact side of the forehead during Schirmer's test but did not change on the denervated side. However, a 0.15 Hz vascular wave strengthened during paced breathing, particularly on the denervated side. These findings indicate that parasympathetic activity in the facial nerve increases forehead blood flow during minor conjunctival irritation, but may interfere with the 0.15 Hz vascular wave. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Improved Visualization of Gastrointestinal Slow Wave Propagation Using a Novel Wavefront-Orientation Interpolation Technique.

    PubMed

    Mayne, Terence P; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; OGrady, Gregory; Cheng, Leo K; Angeli, Timothy R

    2018-02-01

    High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation. The novel method of "wavefront-orientation" interpolation was created to account for the planar movement of the slow wave wavefront, negate any need for distance calculations, remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation boundary. The wavefront-orientation method determines the orthogonal wavefront direction and calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity. Animation accuracy of 17 human high-resolution slow wave recordings (64-256 electrodes) was verified by visual comparison to the prior method showing a clear improvement in wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an assessment of clinical applicability performed by eight GI clinicians. Quantitatively, the new method produced accurate interpolation values compared to experimental data (mean difference 0.02 ± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per wave. These novel methods provide a validated visualization platform that will improve analysis of high-resolution GI mapping in research and clinical translation.

  4. The sleep slow oscillation as a traveling wave.

    PubMed

    Massimini, Marcello; Huber, Reto; Ferrarelli, Fabio; Hill, Sean; Tononi, Giulio

    2004-08-04

    During much of sleep, virtually all cortical neurons undergo a slow oscillation (<1 Hz) in membrane potential, cycling from a hyperpolarized state of silence to a depolarized state of intense firing. This slow oscillation is the fundamental cellular phenomenon that organizes other sleep rhythms such as spindles and slow waves. Using high-density electroencephalogram recordings in humans, we show here that each cycle of the slow oscillation is a traveling wave. Each wave originates at a definite site and travels over the scalp at an estimated speed of 1.2-7.0 m/sec. Waves originate more frequently in prefrontal-orbitofrontal regions and propagate in an anteroposterior direction. Their rate of occurrence increases progressively reaching almost once per second as sleep deepens. The pattern of origin and propagation of sleep slow oscillations is reproducible across nights and subjects and provides a blueprint of cortical excitability and connectivity. The orderly propagation of correlated activity along connected pathways may play a role in spike timing-dependent synaptic plasticity during sleep.

  5. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.

    PubMed

    Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei

    2018-01-24

    An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.

  6. Effect of medullary cavity in cancellous bone on two-wave phenomenon

    NASA Astrophysics Data System (ADS)

    Hachiken, Takuma; Nakanishi, Shoko; Matsukawa, Mami

    2016-07-01

    Osteoporotic patients have a larger medullary cavity in their cancellous bone than healthy people. In this study, the effect of the medullary cavity on the two-wave phenomenon was experimentally investigated using a cancellous bone model and a radius bone model. In the cancellous bone model, with the increase in hole (medullary cavity) diameter, the amplitudes of the fast waves became smaller, whereas the amplitudes of the slow waves became larger. In the radius bone model, the fast wave overlapped with the circumferential wave. The slow wave became larger with increasing hole diameter. The analysis of the slow wave thus seems to be useful for the in vivo diagnosis of the degree of osteoporosis.

  7. Measurement of the speed and attenuation of the Biot slow wave using a large ultrasonic transmitter

    NASA Astrophysics Data System (ADS)

    Bouzidi, Youcef; Schmitt, Douglas R.

    2009-08-01

    Two compressional wave modes, a fast P1 and a slow P2, propagate through fluid-saturated porous and permeable media. This contribution focuses on new experimental tests of existing theories describing wave propagation in such media. Updated observations of this P2 mode are obtained through a water-loaded, porous sintered glass bead plate with a novel pair of ultrasonic transducers consisting of a large transmitter and a near-point receiver. The properties of the porous plate are measured in independent laboratory experiments. Waveforms are acquired as a function of the angle of incidence over the range from -50° to +50° with respect to the normal. The porous plate is fully characterized, and the physical properties are used to calculate the wave speeds and attenuations of the P1, the P2, and the shear S waves. Comparisons of theory and observation are further facilitated by numerically modeling the observed waveforms. This modeling method incorporates the frequency and angle of incidence-dependent reflectivity, transmissivity, and transducer edge effects; the modeled waveforms match well those observed. Taken together, this study provides further support for existing poroelastic bulk wave propagation and boundary condition theory. However, observed transmitted P1 and S mode amplitudes could not be adequately described unless the attenuation of the medium's frame was also included. The observed P2 amplitudes could be explained without any knowledge of the solid frame attenuation.

  8. Sensitivity of wave propagation in the LHRF to initial poloidal position in finite-aspect-ratio toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Larson, J. J.; Pinsker, R. I.; Bonoli, P. T.; Porkolab, M.

    2017-10-01

    The important effect of varying the initial poloidal wave-launching location to the core accessibility of lower hybrid slow waves in a torus of finite aspect ratio has been understood for many years. Since the qualitative properties of the wave propagation of the other branch in this regime, known as the `whistler', `helicon' or simply the `fast wave', are similar in some ways to those of the slow wave, we expect a dependence on launch position for this wave also. We study this problem for both slow and fast waves, first with simplified analytic models and then using the ray-tracing code GENRAY for realistic plasma equilibria. We assess the prospects of inside, top, bottom or conventional outside launch of waves on each of the two branches. Although the slow wave has been the focus of research for LHRF heating and current drive in the past, the fast wave will play a major role in burning plasmas beyond ITER where Te(0) = 10-20 keV. The stronger electron Landau damping of the slow wave will restrict the power deposition to the outer third of the plasma, while the fast wave's weaker damping allows the wave to penetrate to the hot plasma core before depositing its power. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698 and DE-FG02-91-ER54109.

  9. Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey N.; Uralov, Arkadiy M.

    2016-11-01

    Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.

  10. Rock anelasticity due to patchy saturation and fabric heterogeneity: A double double-porosity model of wave propagation

    NASA Astrophysics Data System (ADS)

    Ba, Jing; Xu, Wenhao; Fu, Li-Yun; Carcione, José M.; Zhang, Lin

    2017-03-01

    Heterogeneity of rock's fabric can induce heterogeneous distribution of immiscible fluids in natural reservoirs, since the lithological variations (mainly permeability) may affect fluid migration in geological time scales, resulting in patchy saturation of fluids. Therefore, fabric and saturation inhomogeneities both affect wave propagation. To model the wave effects (attenuation and velocity dispersion), we introduce a double double-porosity model, where pores saturated with two different fluids overlap with pores having dissimilar compressibilities. The governing equations are derived by using Hamilton's principle based on the potential energy, kinetic energy, and dissipation functions, and the stiffness coefficients are determined by gedanken experiments, yielding one fast P wave and four slow Biot waves. Three examples are given, namely, muddy siltstones, clean dolomites, and tight sandstones, where fabric heterogeneities at three different spatial scales are analyzed in comparison with experimental data. In muddy siltstones, where intrapore clay and intergranular pores constitute a submicroscopic double-porosity structure, wave anelasticity mainly occurs in the frequency range (104-107 Hz), while in pure dolomites with microscopic heterogeneity of grain contacts and tight sandstones with mesoscopic heterogeneity of less consolidated sands, it occurs at 103-107 Hz and 101-103 Hz (seismic band), respectively. The predicted maximum quality factor of the fast compressional wave for the sandstone is the lowest (approximately 8), and that of the dolomite is the highest. The results of the diffusive slow waves are affected by the strong friction effects between solids and fluids. The model describes wave propagation in patchy-saturated rocks with fabric heterogeneity at different scales, and the relevant theoretical predictions agree well with the experimental data in fully and partially saturated rocks.

  11. A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; He, Jun-Tao; Zhang, Jian-De; Li, Zhi-Qiang; Ling, Jun-Pu

    2016-12-01

    In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode. Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).

  12. A Combined Methodology to Eliminate Artifacts in Multichannel Electrogastrogram Based on Independent Component Analysis and Ensemble Empirical Mode Decomposition.

    PubMed

    Sengottuvel, S; Khan, Pathan Fayaz; Mariyappa, N; Patel, Rajesh; Saipriya, S; Gireesan, K

    2018-06-01

    Cutaneous measurements of electrogastrogram (EGG) signals are heavily contaminated by artifacts due to cardiac activity, breathing, motion artifacts, and electrode drifts whose effective elimination remains an open problem. A common methodology is proposed by combining independent component analysis (ICA) and ensemble empirical mode decomposition (EEMD) to denoise gastric slow-wave signals in multichannel EGG data. Sixteen electrodes are fixed over the upper abdomen to measure the EGG signals under three gastric conditions, namely, preprandial, postprandial immediately, and postprandial 2 h after food for three healthy subjects and a subject with a gastric disorder. Instantaneous frequencies of intrinsic mode functions that are obtained by applying the EEMD technique are analyzed to individually identify and remove each of the artifacts. A critical investigation on the proposed ICA-EEMD method reveals its ability to provide a higher attenuation of artifacts and lower distortion than those obtained by the ICA-EMD method and conventional techniques, like bandpass and adaptive filtering. Characteristic changes in the slow-wave frequencies across the three gastric conditions could be determined from the denoised signals for all the cases. The results therefore encourage the use of the EEMD-based technique for denoising gastric signals to be used in clinical practice.

  13. Differential block of nicotinic synapses on B versus C neurones in sympathetic ganglia of frog by alpha-conotoxins MII and ImI.

    PubMed

    Tavazoie, S F; Tavazoie, M F; McIntosh, J M; Olivera, B M; Yoshikami, D

    1997-03-01

    1. The effects of two new acetylcholine receptor antagonists, alpha-conotoxin MII and alpha-conotoxin ImI, on nicotinic synaptic transmission in the 10th paravertebral sympathetic ganglion of the leopard frog (Rana pipiens) were examined. The preganglionic nerve was electrically stimulated (at low frequency, < or = 1 min-1, to avoid use-dependent changes) while compound action potentials of B and C neurones were monitored from the postganglionic nerve. 2. alpha-Conotoxins MII and ImI, at low micromolar concentrations, reversibly blocked both B and C waves, alpha-Conotoxin MII blocked the C wave more effectively than the B wave, whereas the potency of alpha-conotoxin ImI was opposite that of MII. The observation that nicotinic antagonists can differentially block synaptic transmission of B versus C neurones with opposite selectivities strongly suggests that these neurones possess distinct nicotinic receptors. 3. In addition to fast and slow B waves described by others. C waves with two temporally distinguishable components were present in our recordings. Each alpha-conotoxin affected fast and slow B waves similarly. Likewise, toxins did not discriminate between the two components of C waves. This suggests that all neurones within each major class (B or C) may have the same nicotinic receptors. 4. Synthetic forms of alpha-conotoxins MII and ImI were used in the present study. Their ease of synthesis and their specificities should make these toxins useful probes to investigate the various subtypes of neuronal nicotinic acetylcholine receptors.

  14. Dispersion features of complex waves in a graphene-coated semiconductor nanowire

    NASA Astrophysics Data System (ADS)

    Yu, Pengchao; Fesenko, Volodymyr I.; Tuz, Vladimir R.

    2018-05-01

    The dispersion features of a graphene-coated semiconductor nanowire operating in the terahertz frequency band are consistently studied in the framework of a special theory of complex waves. Detailed classification of the waveguide modes was carried out based on the analysis of characteristics of the phase and attenuation constants obtained from the complex roots of characteristic equation. With such a treatment, the waves are attributed to the group of either "proper" or "improper" waves, wherein their type is determined as the trapped surface waves, fast and slow leaky waves, and surface plasmons. The dispersion curves of axially symmetric TM0n and TE0n modes, as well as nonsymmetric hybrid EH1n and HE1n modes, were plotted and analyzed in detail, and both radiative regime of leaky waves and guided regime of trapped surface waves are identified. The peculiarities of propagation of the TM modes of surface plasmons were revealed. Two subregions of existence of surface plasmons were found out where they appear as propagating and reactive waves. The cutoff conditions for higher-order TM modes of surface plasmons were correctly determined.

  15. Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy.

    PubMed

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2013-05-06

    We demonstrate a fiber Bragg grating (FBG) strain sensor with optical frequency combs. To precisely characterize the optical response of the FBG when strain is applied, dual-comb spectroscopy is used. Highly sensitive dual-comb spectroscopy of the FBG enabled strain measurements with a resolution of 34 nε. The optical spectral bandwidth of the measurement exceeds 1 THz. Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy.

  16. Effects of imatinib mesylate on the spontaneous activity generated by the guinea-pig prostate.

    PubMed

    Lam, Michelle; Dey, Anupa; Lang, Richard J; Exintaris, Betty

    2013-08-01

    What's known on the subject? and what does the study add?: Several studies have examined the functional role of tyrosine kinase receptors in the generation of spontaneous activity in various segments of the gastrointestinal and urogenital tracts through the application of its inhibitor, imatinib mesylate (Glivec®), but results are fairly inconsistent. This is the first study detailing the effects of imatinib mesylate on the spontaneous activity in the young and ageing prostate gland. As spontaneous electrical activity underlies the spontaneous rhythmic prostatic contractions that occur at rest, elucidating the mechanisms involved in the regulation of the spontaneous electrical activity and the resultant phasic contractions could conceivably lead to the identification of better targets and the development of more specific therapeutic agents to treat prostate conditions. To investigate the effect of imatinib mesylate, a tyrosine kinase receptor inhibitor, in the generation of spontaneous electrical and contractile activity in the young and ageing guinea-pig prostate. Standard tension and intracellular recording were used to measure spontaneous contractions and slow waves, respectively from the guinea-pig prostate at varying concentrations of imatinib mesylate (1-50 μm). Imatinib mesylate (1-10 μm), did not significantly affect slow waves recorded in the prostate of both age groups but at 50 μm, the amplitude of slow waves from the ageing guinea-pig prostate was significantly reduced (P < 0.05, n = 5). In contrast, the amplitude of contractions across all concentrations in the young guinea-pig prostate was reduced to between 35% and 41% of control, while the frequency was reduced to 15.7% at 1 μm (n = 7), 49.8% at 5 μm (n = 10), 46.2% at 10 μm (n = 7) and 53.1% at 50 μm (n = 5). Similarly, imatinib mesylate attenuated the amplitude and slowed the frequency of contractions in ageing guinea-pigs to 5.15% and 3.3% at 1 μm (n = 6); 21.1% and 20.8% at 5 μm (n = 8); 58.4% and 8.8% at 10 μm (n = 11); 72.7% and 60% at 50 μm (n = 5). A significant reduction in contractions but persistence of slow waves suggests imatinib mesylate may affect the smooth muscle contractile mechanism. Imatinib mesylate also significantly reduced contractions in the prostates of younger guinea pigs more than older ones, which is consistent with the notion that the younger guinea-pig prostate is more reliant on the tyrosine-dependent pacemaker ability of interstitial cells of Cajal-like prostatic interstitial cells. © 2013 The Authors BJU International © 2013 BJU International.

  17. Propofol Anesthesia and Sleep: A High-Density EEG Study

    PubMed Central

    Murphy, Michael; Bruno, Marie-Aurelie; Riedner, Brady A.; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C.; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Melanie

    2011-01-01

    Study Objectives: The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. Design: 256-channel EEG recordings in humans during propofol anesthesia. Setting: Hospital operating room. Patients or Participants: 8 healthy subjects (4 males) Interventions: N/A Measurements and Results: Initially, propofol induced increases in EEG power from 12–25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25–40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Conclusions: Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity. Citation: Murphy M; Bruno MA; Riedner BA; Boveroux P; Noirhomme Q; Landsness EC; Brichant JF; Phillips C; Massimini M; Laureys S; Tononi G; Boly M. Propofol anesthesia and sleep: a high-density EEG study. SLEEP 2011;34(3):283-291. PMID:21358845

  18. Relativistic electromagnetic ion cyclotron instabilities

    NASA Astrophysics Data System (ADS)

    Chen, K. R.; Huang, R. D.; Wang, J. C.; Chen, Y. Y.

    2005-03-01

    The relativistic instabilities of electromagnetic ion cyclotron waves driven by MeV ions are analytically and numerically studied. As caused by wave magnetic field and in sharp contrast to the electrostatic case, interesting characteristics such as Alfvénic behavior and instability transition are discovered and illuminated in detail. The instabilities are reactive and are raised from the coupling of slow ions’ first-order resonance and fast ions’ second-order resonance, that is an essential extra mechanism due to relativistic effect. Because of the wave magnetic field, the nonresonant plasma dielectric is usually negative and large, that affects the instability conditions and scaling laws. A negative harmonic cyclotron frequency mismatch between the fast and slow ions is required for driving a cubic (and a coupled quadratic) instability; the cubic (square) root scaling of the peak growth rate makes the relativistic effect more important than classical mechanism, especially for low fast ion density and Lorentz factor being close to unity. For the cubic instability, there is a threshold (ceiling) on the slow ion temperature and density (the external magnetic field and the fast ion energy); the Alfvén velocity is required to be low. This Alfvénic behavior is interesting in physics and important for its applications. The case of fast protons in thermal deuterons is numerically studied and compared with the analytical results. When the slow ion temperature or density (the external magnetic field or the fast ion energy) is increased (reduced) to about twice (half) the threshold (ceiling), the same growth rate peak transits from the cubic instability to the coupled quadratic instability and a different cubic instability branch appears. The instability transition is an interesting new phenomenon for instability.

  19. Characteristics of Tremor During the Entire July 2004 Cascadia Episodic Tremor and Slip event

    NASA Astrophysics Data System (ADS)

    McCausland, W. A.; Malone, S.; La Rocca, M.; Creager, K.

    2005-12-01

    The July 2004 Cascadia episodic tremor and slip (ETS) event was recorded and analyzed using three geographically distributed small aperture seismic arrays (600m) located near Sooke, BC, Sequim, WA, and on Lopez Island, WA. We analyzed the tremor sequence in the 1 to 6 Hz frequency band in overlapping windows (12s length)using zero-lag cross correlation and polarization analysis in order to obtain a continuous record of the back-azimuth, slowness, and particle motion of tremor sources throughout the ETS episode. During periods without tremor, the average interstation correlations for each array range between 0.2 and 0.4, and observed azimuths are randomly distributed. During periods of strong tremor, the average correlation for each array is typically between 0.5 and 0.8, and azimuths are stable over periods of minutes. Observed apparent velocities are greater than 4 km/s and polarization analysis indicates that the wave-field is composed primarily of SH-waves, both of which are consistent with a deep source of shear wave energy. Azimuths and slownesses are consistent with previously obtained hypocentral locations and apparent velocities calculated using the relative arrival times of energy bursts on Pacific Northwest Seismograph Network.

  20. Polarization-independent electromagnetically induced transparency-like metasurface

    NASA Astrophysics Data System (ADS)

    Jia, Xiuli; Wang, Xiaoou

    2018-01-01

    A classical electromagnetically induced transparency-like (EIT-like) metasurface is numerically simulated. This metasurface is composed of two identical and orthogonal double-end semitoroidals (DESTs) metal resonators. Under the excitation of the normal incidence waves, each of the two DESTs structure exhibits electromagnetic dipole responses at different frequencies, which leads to the polarization-independent EIT-like effect. The features of the EIT-like effect are qualitatively analyzed based on the surface current and magnetic field distribution. In addition, the large index is extracted to verify the slow-light property within the transmission window. The EIT-like metasurface structure with the above-mentioned characteristics may have potential applications in some areas, such as sensing, slow light, and filtering devices.

  1. Averaged variational principle for autoresonant Bernstein-Greene-Kruskal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khain, P.; Friedland, L.

    2010-10-15

    Whitham's averaged variational principle is applied in studying dynamics of formation of autoresonant (continuously phase-locked) Bernstein-Greene-Kruskal (BGK) modes in a plasma driven by a chirped frequency ponderomotive wave. A flat-top electron velocity distribution is used as a model allowing a variational formulation within the water bag theory. The corresponding Lagrangian, averaged over the fast phase variable yields evolution equations for the slow field variables, allows uniform description of all stages of excitation of driven-chirped BGK modes, and predicts modulational stability of these nonlinear phase-space structures. Numerical solutions of the system of slow variational equations are in good agreement with Vlasov-Poissonmore » simulations.« less

  2. Global Intracellular Slow-Wave Dynamics of the Thalamocortical System

    PubMed Central

    Sheroziya, Maxim

    2014-01-01

    It is widely accepted that corticothalamic neurons recruit the thalamus in slow oscillation, but global slow-wave thalamocortical dynamics have never been experimentally shown. We analyzed intracellular activities of neurons either from different cortical areas or from a variety of specific and nonspecific thalamic nuclei in relation to the phase of global EEG signal in ketamine-xylazine anesthetized mice. We found that, on average, slow-wave active states started off within frontal cortical areas as well as higher-order and intralaminar thalamus (posterior and parafascicular nuclei) simultaneously. Then, the leading edge of active states propagated in the anteroposterior/lateral direction over the cortex at ∼40 mm/s. The latest structure we recorded within the slow-wave cycle was the anterior thalamus, which followed active states of the retrosplenial cortex. Active states from different cortical areas tended to terminate simultaneously. Sensory thalamic ventral posterior medial and lateral geniculate nuclei followed cortical active states with major inhibitory and weak tonic-like “modulator” EPSPs. In these nuclei, sharp-rising, large-amplitude EPSPs (“drivers”) were not modulated by cortical slow waves, suggesting their origin in ascending pathways. The thalamic active states in other investigated nuclei were composed of depolarization: some revealing “driver”- and “modulator”-like EPSPs, others showing “modulator”-like EPSPs only. We conclude that sensory thalamic nuclei follow the propagating cortical waves, whereas neurons from higher-order thalamic nuclei display “hub dynamics” and thus may contribute to the generation of cortical slow waves. PMID:24966387

  3. Modeling resting-state functional networks when the cortex falls asleep: local and global changes.

    PubMed

    Deco, Gustavo; Hagmann, Patric; Hudetz, Anthony G; Tononi, Giulio

    2014-12-01

    The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Neural timing signal for precise tactile timing judgments

    PubMed Central

    Watanabe, Junji; Nishida, Shin'ya

    2016-01-01

    The brain can precisely encode the temporal relationship between tactile inputs. While behavioural studies have demonstrated precise interfinger temporal judgments, the underlying neural mechanism remains unknown. Computationally, two kinds of neural responses can act as the information source. One is the phase-locked response to the phase of relatively slow inputs, and the other is the response to the amplitude change of relatively fast inputs. To isolate the contributions of these components, we measured performance of a synchrony judgment task for sine wave and amplitude-modulation (AM) wave stimuli. The sine wave stimulus was a low-frequency sinusoid, with the phase shifted in the asynchronous stimulus. The AM wave stimulus was a low-frequency sinusoidal AM of a 250-Hz carrier, with only the envelope shifted in the asynchronous stimulus. In the experiment, three stimulus pairs, two synchronous ones and one asynchronous one, were sequentially presented to neighboring fingers, and participants were asked to report which one was the asynchronous pair. We found that the asynchrony of AM waves could be detected as precisely as single impulse pair, with the threshold asynchrony being ∼20 ms. On the other hand, the asynchrony of sine waves could not be detected at all in the range from 5 to 30 Hz. Our results suggest that the timing signal for tactile judgments is provided not by the stimulus phase information but by the envelope of the response of the high-frequency-sensitive Pacini channel (PC), although they do not exclude a possible contribution of the envelope of non-PCs. PMID:26843600

  5. Temporal coordination of olfactory cortex sharp-wave activity with up- and downstates in the orbitofrontal cortex during slow-wave sleep.

    PubMed

    Onisawa, Naomi; Manabe, Hiroyuki; Mori, Kensaku

    2017-01-01

    During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. Copyright © 2017 the American Physiological Society.

  6. Temporal coordination of olfactory cortex sharp-wave activity with up- and downstates in the orbitofrontal cortex during slow-wave sleep

    PubMed Central

    Onisawa, Naomi; Mori, Kensaku

    2016-01-01

    During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. NEW & NOTEWORTHY Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. PMID:27733591

  7. Age-Dependency of Location of Epileptic Foci in "Continuous Spike-and-Waves during Sleep": A Parallel to the Posterior-Anterior Trajectory of Slow Wave Activity.

    PubMed

    Bölsterli Heinzle, Bigna Katrin; Bast, Thomas; Critelli, Hanne; Huber, Reto; Schmitt, Bernhard

    2017-02-01

    Epileptic encephalopathy with continuous spike-and-waves during sleep (CSWS) occurs during childhood and is characterized by an activation of spike wave complexes during slow wave sleep. The location of epileptic foci is variable, as is etiology. A relationship between the epileptic focus and age has been shown in various focal epilepsies following a posterior-anterior trajectory, and a link to brain maturation has been proposed. We hypothesize that in CSWS, maximal spike wave activity, corresponding to the epileptic focus, is related to age and shows a posterior-anterior evolution. In a retrospective cross-sectional study on CSWS (22 EEGs of 22 patients aged 3.1–13.5 years), the location of the epileptic focus is related to age and follows a posterior-anterior course. Younger patients are more likely to have posterior foci than older ones. We propose that the posterior-anterior trajectory of maximal spike waves in CSWS might reflect maturational changes of maximal expression of sleep slow waves, which follow a comparable course. Epileptic spike waves, that is, “hyper-synchronized slow waves” may occur at the place where the highest and therefore most synchronized slow waves meet brain tissue with an increased susceptibility to synchronization. Georg Thieme Verlag KG Stuttgart · New York.

  8. Plasma-field Coupling at Small Length Scales in Solar Wind Near 1 AU

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; Desai, M. I.

    2016-10-01

    In collisionless plasmas such as the solar wind, the coupling between plasma constituents and the embedded magnetic field occurs on various temporal and spatial scales, and is primarily responsible for the transfer of energy between waves and particles. Recently, it was shown that the transfer of energy between solar wind plasma particles and waves is governed by a new and unique relationship: the ratio between the magnetosonic energy and the plasma frequency is constant, E ms/ω pl ˜ ℏ*. This paper examines the variability and substantial departure of this ratio from ℏ* observed at ˜1 au, which is caused by a dispersion of fast magnetosonic (FMS) waves. In contrast to the efficiently transferred energy in the fast solar wind, the lower efficiency of the slow solar wind can be caused by this dispersion, whose relation and characteristics are derived and studied. In summary, we show that (I) the ratio E ms/ω pl transitions continuously from the slow to the fast solar wind, tending toward the constant ℏ* (II) the transition is more efficient for larger thermal, Alfvén, or FMS speeds; (III) the fast solar wind is almost dispersionless, characterized by quasi-constant values of the FMS speed, while the slow wind is subject to dispersion that is less effective for larger wind or magnetosonic speeds; and (IV) the constant ℏ* is estimated with the best known precision, ℏ* ≈ (1.160 ± 0.083) × 10-22 Js.

  9. Two Distinct Synchronization Processes in the Transition to Sleep: A High-Density Electroencephalographic Study

    PubMed Central

    Siclari, Francesca; Bernardi, Giulio; Riedner, Brady A.; LaRocque, Joshua J.; Benca, Ruth M.; Tononi, Giulio

    2014-01-01

    Objectives: To assess how the characteristics of slow waves and spindles change in the falling-asleep process. Design: Participants undergoing overnight high-density electroencephalographic recordings were awakened at 15- to 30-min intervals. One hundred forty-one falling-asleep periods were analyzed at the scalp and source level. Setting: Sleep laboratory. Participants: Six healthy participants. Interventions: Serial awakenings. Results: The number and amplitude of slow waves followed two dissociated, intersecting courses during the transition to sleep: slow wave number increased slowly at the beginning and rapidly at the end of the falling-asleep period, whereas amplitude at first increased rapidly and then decreased linearly. Most slow waves occurring early in the transition to sleep had a large amplitude, a steep slope, involved broad regions of the cortex, predominated over frontomedial regions, and preferentially originated from the sensorimotor and the posteromedial parietal cortex. Most slow waves occurring later had a smaller amplitude and slope, involved more circumscribed parts of the cortex, and had more evenly distributed origins. Spindles were initially sparse, fast, and involved few cortical regions, then became more numerous and slower, and involved more areas. Conclusions: Our results provide evidence for two types of slow waves, which follow dissociated temporal courses in the transition to sleep and have distinct cortical origins and distributions. We hypothesize that these two types of slow waves result from two distinct synchronization processes: (1) a “bottom-up,” subcorticocortical, arousal system-dependent process that predominates in the early phase and leads to type I slow waves, and (2) a “horizontal,” corticocortical synchronization process that predominates in the late phase and leads to type II slow waves. The dissociation between these two synchronization processes in time and space suggests that they may be differentially affected by experimental manipulations and sleep disorders. Citation: Siclari F, Bernardi G, Riedner BA, LaRocque JJ, Benca RM, Tononi G. Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study. SLEEP 2014;37(10):1621-1637. PMID:25197810

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Deng, Yuqun; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-longmore » SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited.« less

  11. Overmoded subterahertz surface wave oscillator with pure TM{sub 01} mode output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guangqiang; Zeng, Peng; Wang, Dongyang

    2016-02-15

    Overmoded O-type Cerenkov generators using annular electron beams are facing the problem of multi-modes output due to the inevitable structural discontinuities. A simple but effective method to achieve the pure TM{sub 01} mode output is applied on the 0.14 THz overmoded surface wave oscillator (SWO) in this paper. In spite of still using an overmoded slow wave structure to ensure the easy fabrication, the followed smooth circular waveguide is shrinkingly tapered to the output waveguide with appropriate radius that it cuts off other higher modes except TM{sub 01} mode. Moreover, the modified device here has the same power capacity as themore » previous one according to the numerical analysis. By optimized lengths of the transition waveguide and tapered waveguide, particle-in-cell simulation results indicate that the subterahertz wave with output power increased 14.2% at the same frequency is obtained from the proposed SWO under the previous input conditions, and importantly, the output power is all carried by TM{sub 01} mode as expected. Further simulation results in the pulse regime confirm the feasibility of the optimized structure in the actual experiments. This simple and viable design is also applicable to overmoded devices in the lower frequency band of subterahertz wave.« less

  12. Numerical Simulations of Slow Stick Slip Events with PFC, a DEM Based Code

    NASA Astrophysics Data System (ADS)

    Ye, S. H.; Young, R. P.

    2017-12-01

    Nonvolcanic tremors around subduction zone have become a fascinating subject in seismology in recent years. Previous studies have shown that the nonvolcanic tremor beneath western Shikoku is composed of low frequency seismic waves overlapping each other. This finding provides direct link between tremor and slow earthquakes. Slow stick slip events are considered to be laboratory scaled slow earthquakes. Slow stick slip events are traditionally studied with direct shear or double direct shear experiment setup, in which the sliding velocity can be controlled to model a range of fast and slow stick slips. In this study, a PFC* model based on double direct shear is presented, with a central block clamped by two side blocks. The gauge layers between the central and side blocks are modelled as discrete fracture networks with smooth joint bonds between pairs of discrete elements. In addition, a second model is presented in this study. This model consists of a cylindrical sample subjected to triaxial stress. Similar to the previous model, a weak gauge layer at a 45 degrees is added into the sample, on which shear slipping is allowed. Several different simulations are conducted on this sample. While the confining stress is maintained at the same level in different simulations, the axial loading rate (displacement rate) varies. By varying the displacement rate, a range of slipping behaviour, from stick slip to slow stick slip are observed based on the stress-strain relationship. Currently, the stick slip and slow stick slip events are strictly observed based on the stress-strain relationship. In the future, we hope to monitor the displacement and velocity of the balls surrounding the gauge layer as a function of time, so as to generate a synthetic seismogram. This will allow us to extract seismic waveforms and potentially simulate the tremor-like waves found around subduction zones. *Particle flow code, a discrete element method based numerical simulation code developed by Itasca Inc.

  13. Ion heating and short wavelength fluctuations in a helicon plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scime, E. E.; Carr, J. Jr.; Galante, M.

    2013-03-15

    For typical helicon source parameters, the driving antenna can couple to two plasma modes; the weakly damped 'helicon' wave, and the strongly damped, short wavelength, slow wave. Here, we present direct measurements, obtained with two different techniques, of few hundred kHz, short wavelength fluctuations that are parametrically driven by the primary antenna and localized to the edge of the plasma. The short wavelength fluctuations appear for plasma source parameters such that the driving frequency is approximately equal to the lower hybrid frequency. Measurements of the steady-state ion temperature and fluctuation amplitude radial profiles suggest that the anomalously high ion temperaturesmore » observed at the edge of helicon sources result from damping of the short wavelength fluctuations. Additional measurements of the time evolution of the ion temperature and fluctuation profiles in pulsed helicon source plasmas support the same conclusion.« less

  14. Spontaneous long-range calcium waves in developing butterfly wings.

    PubMed

    Ohno, Yoshikazu; Otaki, Joji M

    2015-03-25

    Butterfly wing color patterns emerge as the result of a regular arrangement of scales produced by epithelial scale cells at the pupal stage. These color patterns and scale arrangements are coordinated throughout the wing. However, the mechanism by which the development of scale cells is controlled across the entire wing remains elusive. In the present study, we used pupal wings of the blue pansy butterfly, Junonia orithya, which has distinct eyespots, to examine the possible involvement of Ca(2+) waves in wing development. Here, we demonstrate that the developing pupal wing tissue of the blue pansy butterfly displayed spontaneous low-frequency Ca(2+) waves in vivo that propagated slowly over long distances. Some waves appeared to be released from the immediate peripheries of the prospective eyespot and discal spot, though it was often difficult to identify the specific origins of these waves. Physical damage, which is known to induce ectopic eyespots, led to the radiation of Ca(2+) waves from the immediate periphery of the damaged site. Thapsigargin, which is a specific inhibitor of Ca(2+)-ATPases in the endoplasmic reticulum, induced an acute increase in cytoplasmic Ca(2+) levels and halted the spontaneous Ca(2+) waves. Additionally, thapsigargin-treated wings showed incomplete scale development as well as other scale and color pattern abnormalities. We identified a novel form of Ca(2+) waves, spontaneous low-frequency slow waves, which travel over exceptionally long distances. Our results suggest that spontaneous Ca(2+) waves play a critical role in the coordinated development of scale arrangements and possibly in color pattern formation in butterflies.

  15. Simulation of propagation of the HPM in the low-pressure argon plasma

    NASA Astrophysics Data System (ADS)

    Zhigang, LI; Zhongcai, YUAN; Jiachun, WANG; Jiaming, SHI

    2018-02-01

    The propagation of the high-power microwave (HPM) with a frequency of 6 GHz in the low-pressure argon plasma was studied by the method of fluid approximation. The two-dimensional transmission model was built based on the wave equation, the electron drift-diffusion equations and the heavy species transport equations, which were solved by means of COMSOL Multiphysics software. The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma. The attenuation of the transmitted wave increased nonlinearly with the electron density. Specifically, the growth of the attenuation slowed down as the electron density increased uniformly. In addition, the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.

  16. Optimizing detection and analysis of slow waves in sleep EEG.

    PubMed

    Mensen, Armand; Riedner, Brady; Tononi, Giulio

    2016-12-01

    Analysis of individual slow waves in EEG recording during sleep provides both greater sensitivity and specificity compared to spectral power measures. However, parameters for detection and analysis have not been widely explored and validated. We present a new, open-source, Matlab based, toolbox for the automatic detection and analysis of slow waves; with adjustable parameter settings, as well as manual correction and exploration of the results using a multi-faceted visualization tool. We explore a large search space of parameter settings for slow wave detection and measure their effects on a selection of outcome parameters. Every choice of parameter setting had some effect on at least one outcome parameter. In general, the largest effect sizes were found when choosing the EEG reference, type of canonical waveform, and amplitude thresholding. Previously published methods accurately detect large, global waves but are conservative and miss the detection of smaller amplitude, local slow waves. The toolbox has additional benefits in terms of speed, user-interface, and visualization options to compare and contrast slow waves. The exploration of parameter settings in the toolbox highlights the importance of careful selection of detection METHODS: The sensitivity and specificity of the automated detection can be improved by manually adding or deleting entire waves and or specific channels using the toolbox visualization functions. The toolbox standardizes the detection procedure, sets the stage for reliable results and comparisons and is easy to use without previous programming experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  18. Effect of Local Thermal Equilibrium Misbalance on Long-wavelength Slow Magnetoacoustic Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakariakov, V. M.; Afanasyev, A. N.; Kumar, S.

    Evolution of slow magnetoacoustic waves guided by a cylindrical magnetic flux tube that represents a coronal loop or plume, is modeled accounting for the effects of finite gas pressure, weak nonlinearity, dissipation by thermal conduction and viscosity, and the misbalance between the cooling by optically thin radiation and unspecified heating of the plasma. An evolutionary equation of the Burgers–Malthus type is derived. It is shown that the cooling/heating misbalance, determined by the derivatives of the combined radiative cooling and heating function, with respect to the density, temperature, and magnetic field at the thermal equilibrium affect the wave rather strongly. Thismore » effect may either cause additional damping, or counteract it, or lead to the gradual amplification of the wave. In the latter case, the coronal plasma acts as an active medium for the slow magnetoacoustic waves. The effect of the cooling/heating misbalance could be important for coronal slow waves, and could be responsible for certain discrepancies between theoretical results and observations, in particular, the increased or decreased damping lengths and times, detection of the waves at certain heights only, and excitation of compressive oscillations. The results obtained open up a possibility for the diagnostics of the coronal heating function by slow magnetoacoustic waves.« less

  19. Wavelet analysis can sensitively describe dynamics of ethanol evoked local field potentials of the slug (Limax marginatus) brain.

    PubMed

    Schütt, Atsuko; Ito, Iori; Rosso, Osvaldo A; Figliola, Alejandra

    2003-10-30

    Odorants evoke characteristic, but complex, local field potentials (LFPs) in the molluscan brain. Wavelet tools in combination with Fourier analysis can detect and characterize hitherto unknown discrete, slow potentials underlying the conspicuous oscillations. Ethanol was one of the odorants that we have extensively studied (J. Neurosci. Methods, 119 (2002) 89). To detect new features and to elucidate their functions, we tested the wavelet tools on the ethanol-evoked LFP responses of the slug (Limax) procerebrum. Recordings were made in vitro from the neuropile and the cell layer. The present study led to the following findings: (i) Mutual exclusion. Energy concentrated mainly in two ranges, (a) 0.1-0.4 Hz and (b) 1.56-12.5 Hz, and the sum of energy remained constant throughout experiments regardless of the condition. A redistribution of relative energy within this sum seemed to occur in the course of main, possible interactions between the two components excluding each other ('mutual exclusion'). (ii) Transient signal ordering and disordering. Ethanol stimulation alternatingly evoked periods of strongly time evolving oscillation dominated by the energy of 1.56-12.5 Hz (increase of entropy=disordered or complexly ordered state) and those of near-silence were predominated by the energy of 0.1-0.4 Hz (decrease of entropy=ordered state). (iii) About 0.1 Hz slow wave oscillation. It was robust. The dominant energy oscillation and the resulting large entropy fluctuation were negatively correlated to each other, and revealed strong frequency-tuning or synchronization at this frequency. Our findings suggest that discrete slow waves play functionally important roles in the invertebrate brain, as widely known in vertebrate EEG. Wavelet tools allow an easy interpretation of several minutes of frequency variations in a single display and give precise information on stimulus-evoked complex change of the neural system describing the new state 'more ordered' or 'non-ordered or more complexly ordered'.

  20. Characterization of ictal slow waves in epileptic spasms.

    PubMed

    Honda, Ryoko; Saito, Yoshiaki; Okumura, Akihisa; Abe, Shinpei; Saito, Takashi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki

    2015-12-01

    We characterized the clinico-neurophysiological features of epileptic spasms, particularly focusing on high-voltage slow waves during ictal EEG. We studied 22 patients with epileptic spasms recorded during digital video-scalp EEG, including five individuals who still had persistent spasms after callosotomy. We analysed the duration, amplitude, latency to onset of electromyographic bursts, and distribution of the highest positive and negative peaks of slow waves in 352 spasms. High-voltage positive slow waves preceded the identifiable muscle contractions of spasms. The mean duration of these positive waves was 569±228 m, and the mean latency to electromyographic onset was 182±127 m. These parameters varied markedly even within a patient. The highest peak of the positive component was distributed in variable regions, which was not consistent with the location of lesions on MRI. The peak of the negative component following the positivity was distributed in the neighbouring or opposite areas of the positive peak distribution. No changes were evident in the pre- or post-surgical distributions of the positive peak, or in the interhemispheric delay between both hemispheres, in individuals with callosotomy. Our data imply that ictal positive slow waves are the most common EEG changes during spasms associated with a massive motor component. Plausible explanations for these widespread positive slow waves include the notion that EEG changes possibly reflect involvement of both cortical and subcortical structures.

  1. Soliton wave-speed management: Slowing, stopping, or reversing a solitary wave

    NASA Astrophysics Data System (ADS)

    Baines, Luke W. S.; Van Gorder, Robert A.

    2018-06-01

    While dispersion management is a well-known tool to control soliton properties such as shape or amplitude, far less effort has been directed toward the theoretical control of the soliton wave speed. However, recent experiments concerning the stopping or slowing of light demonstrate that the control of the soliton wave speed is of experimental interest. Motivated by these and other studies, we propose a management approach for modifying the wave speed of a soliton (or of other nonlinear wave solutions, such as periodic cnoidal waves) under the nonlinear Schrödinger equation. Making use of this approach, we are able to slow, stop, or even reverse a solitary wave, and we give several examples to bright solitons, dark solitons, and periodic wave trains, to demonstrate the method. An extension of the approach to spatially heterogeneous media, for which the wave may propagate differently at different spatial locations, is also discussed.

  2. Slow Wave Sleep Induced by GABA Agonist Tiagabine Fails to Benefit Memory Consolidation

    PubMed Central

    Feld, Gordon B.; Wilhelm, Ines; Ma, Ying; Groch, Sabine; Binkofski, Ferdinand; Mölle, Matthias; Born, Jan

    2013-01-01

    Study Objectives: Slow wave sleep (SWS) plays a pivotal role in consolidating memories. Tiagabine has been shown to increase SWS in favor of REM sleep without impacting subjective sleep. However, it is unknown whether this effect is paralleled by an improved sleep-dependent consolidation of memory. Design: This double-blind within-subject crossover study tested sensitivity of overnight retention of declarative neutral and emotional materials (word pairs, pictures) as well as a procedural memory task (sequence finger tapping) to oral administration of placebo or 10 mg tiagabine (at 22:30). Participants: Fourteen healthy young men aged 21.9 years (range 18-28 years). Measurements and Results: Tiagabine significantly increased the time spent in SWS and decreased REM sleep compared to placebo. Tiagabine also enhanced slow wave activity (0.5-4.0 Hz) and density of < 1 Hz slow oscillations during NREM sleep. Fast (12-15 Hz) and slow (9-12 Hz) spindle activity, in particular that occurring phase-locked to the slow oscillation cycle, was decreased following tiagabine. Despite signs of deeper and more SWS, overnight retention of memory tested after sleep the next evening (19:30) was generally not improved after tiagabine, but on average even lower than after placebo, with this impairing effect reaching significance for procedural sequence finger tapping. Conclusions: Our data show that increasing slow wave sleep with tiagabine does not improve memory consolidation. Possibly this is due to functional differences from normal slow wave sleep, i.e., the concurrent suppressive influence of tiagabine on phase-locked spindle activity. Citation: Feld GB; Wilhelm I; Ma Y; Groch S; Binkofski F; Mölle M; Born J. Slow wave sleep induced by GABA agonist tiagabine fails to benefit memory consolidation. SLEEP 2013;36(9):1317-1326. PMID:23997364

  3. Cardiovascular Stress Reactivity and Carotid Intima-Media Thickness: The Buffering Role of Slow-Wave Sleep.

    PubMed

    Brindle, Ryan C; Duggan, Katherine A; Cribbet, Matthew R; Kline, Christopher E; Krafty, Robert T; Thayer, Julian F; Mulukutla, Suresh R; Hall, Martica H

    2018-04-01

    Exaggerated cardiovascular reactivity to acute psychological stress has been associated with increased carotid intima-media thickness (IMT). However, interstudy variability in this relationship suggests the presence of moderating factors. The current study aimed to test the hypothesis that poor nocturnal sleep, defined as short total sleep time or low slow-wave sleep, would moderate the relationship between cardiovascular reactivity and IMT. Participants (N = 99, 65.7% female, age = 59.3 ± 9.3 years) completed a two-night laboratory sleep study and cardiovascular examination where sleep and IMT were measured. The multisource interference task was used to induce acute psychological stress, while systolic and diastolic blood pressure and heart rate were monitored. Moderation was tested using the PROCESS framework in SPSS. Slow-wave sleep significantly moderated the relationship between all cardiovascular stress reactivity variables and IMT (all pinteraction ≤ .048, all ΔRinteraction ≥ .027). Greater stress reactivity was associated with higher IMT values in the low slow-wave sleep group and lower IMT values in the high slow-wave sleep group. No moderating effects of total sleep time were observed. The results provide evidence that nocturnal slow-wave sleep moderates the relationship between cardiovascular stress reactivity and IMT and may buffer the effect of daytime stress-related disease processes.

  4. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.

    PubMed

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5-4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep.

  5. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation

    PubMed Central

    Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori

    2017-01-01

    Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5–4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep. PMID:29213231

  6. Thunder-induced ground motions: 1. Observations

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2009-04-01

    Acoustic pressure from thunder and its induced ground motions were investigated using a small array consisting of five three-component short-period surface seismometers, a three-component borehole seismometer, and five infrasound microphones. We used the array to constrain wave parameters of the incident acoustic and seismic waves. The incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Using slowness inferred from ground motions is preferable to obtain the seismic source parameters. We propose a source equalization procedure for acoustic/seismic deconvolution to generate the time domain transfer function, a procedure similar to that of obtaining teleseismic earthquake receiver functions. The time domain transfer function removes the incident pressure time history from the seismogram. An additional vertical-to-radial ground motion transfer function was used to identify the Rayleigh wave propagation mode of induced seismic waves complementing that found using the particle motions and amplitude variations in the borehole. The initial motions obtained by the time domain transfer functions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series at frequencies near 5 Hz. This gives an empirical measure of site resonance that depends on the ratio of the layer velocity to layer thickness for earthquake P and S waves. The time domain transfer function approach by transferring a spectral division into the time domain provides an alternative method for studying acoustic-to-seismic coupling.

  7. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples with varying water-to-cement ratios are presented in the dissertation. The third part concerns the ultrasonic characterization of air-saturated porous materials. Using airborne reflected and transmitted ultrasonic experimental data, the open porosity and tortuosity value of a porous acrylic plate with graded void content and a polyimide foam are determined simultaneously. Experimental and numerical results of the method are presented.

  8. Effect of dynamical phase on the resonant interaction among tsunami edge wave modes

    USGS Publications Warehouse

    Geist, Eric L.

    2018-01-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  9. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.

    2018-02-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  10. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.

    2018-04-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange ( φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  11. Clustering of Ca2+ transients in interstitial cells of Cajal defines slow wave duration

    PubMed Central

    Drumm, Bernard T.; Hennig, Grant W.; Battersby, Matthew J.; Sung, Tae Sik

    2017-01-01

    Interstitial cells of Cajal (ICC) in the myenteric plexus region (ICC-MY) of the small intestine are pacemakers that generate rhythmic depolarizations known as slow waves. Slow waves depend on activation of Ca2+-activated Cl− channels (ANO1) in ICC, propagate actively within networks of ICC-MY, and conduct to smooth muscle cells where they generate action potentials and phasic contractions. Thus, mechanisms of Ca2+ regulation in ICC are fundamental to the motor patterns of the bowel. Here, we characterize the nature of Ca2+ transients in ICC-MY within intact muscles, using mice expressing a genetically encoded Ca2+ sensor, GCaMP3, in ICC. Ca2+ transients in ICC-MY display a complex firing pattern caused by localized Ca2+ release events arising from multiple sites in cell somata and processes. Ca2+ transients are clustered within the time course of slow waves but fire asynchronously during these clusters. The durations of Ca2+ transient clusters (CTCs) correspond to slow wave durations (plateau phase). Simultaneous imaging and intracellular electrical recordings revealed that the upstroke depolarization of slow waves precedes clusters of Ca2+ transients. Summation of CTCs results in relatively uniform Ca2+ responses from one slow wave to another. These Ca2+ transients are caused by Ca2+ release from intracellular stores and depend on ryanodine receptors as well as amplification from IP3 receptors. Reduced extracellular Ca2+ concentrations and T-type Ca2+ channel blockers decreased the number of firing sites and firing probability of Ca2+ transients. In summary, the fundamental electrical events of small intestinal muscles generated by ICC-MY depend on asynchronous firing of Ca2+ transients from multiple intracellular release sites. These events are organized into clusters by Ca2+ influx through T-type Ca2+ channels to sustain activation of ANO1 channels and generate the plateau phase of slow waves. PMID:28592421

  12. Long-term history and immediate preceding state affect EEG slow wave characteristics at NREM sleep onset in C57BL/6 mice.

    PubMed

    Cui, N; Mckillop, L E; Fisher, S P; Oliver, P L; Vyazovskiy, V V

    2014-01-01

    The dynamics of cortical activity across the 24-h day and at vigilance state transitions is regulated by an interaction between global subcortical neuromodulatory influences and local shifts in network synchrony and excitability. To address the role of long-term and immediate preceding history in local and global cortical dynamics, we investigated cortical EEG recorded from both frontal and occipital regions during an undisturbed 24-h recording in mice. As expected, at the beginning of the light period, under physiologically increased sleep pressure, EEG slow waves were more frequent and had higher amplitude and slopes, compared to the rest of the light period. Within discrete NREM sleep episodes, the incidence, amplitude and slopes of individual slow waves increased progressively after episode onset in both derivations by approximately 10-30%. Interestingly, at the beginning of NREM sleep episodes slow waves in the frontal and occipital derivations frequently occurred in isolation, as quantified by longer latencies between consecutive slow waves in the two regions. Notably, slow waves during the initial period of NREM sleep following REM sleep episodes were significantly less frequent, lower in amplitude and exhibited shallower slopes, compared to those that occurred in NREM episodes after prolonged waking. Moreover, the latencies between consecutive frontal and occipital NREM slow waves were substantially longer when they occurred directly after REM sleep compared to following consolidated wakefulness. Overall these data reveal a complex picture, where both time of day and preceding state contribute to the characteristics and dynamics of slow waves within NREM sleep. These findings suggest that NREM sleep initiates in a more "local" fashion when it occurs following REM sleep episodes as opposed to sustained waking bouts. While the mechanisms and functional significance of such a re-setting of brain state after individual REM sleep episodes remains to be investigated, we suggest that it may be an essential feature of physiological sleep regulation.

  13. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Frank, L. A.; Huang, C. Y.

    1988-01-01

    Plasma data from ISEE-1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electron beam and the ion beam excite ion acoustic waves with a given Doppler-shifted real frequency. However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion bean is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points of the simulations show turbulence generated by growing waves.

  14. Deploying dengue-suppressing Wolbachia : Robust models predict slow but effective spatial spread in Aedes aegypti.

    PubMed

    Turelli, Michael; Barton, Nicholas H

    2017-06-01

    A novel strategy for controlling the spread of arboviral diseases such as dengue, Zika and chikungunya is to transform mosquito populations with virus-suppressing Wolbachia. In general, Wolbachia transinfected into mosquitoes induce fitness costs through lower viability or fecundity. These maternally inherited bacteria also produce a frequency-dependent advantage for infected females by inducing cytoplasmic incompatibility (CI), which kills the embryos produced by uninfected females mated to infected males. These competing effects, a frequency-dependent advantage and frequency-independent costs, produce bistable Wolbachia frequency dynamics. Above a threshold frequency, denoted pˆ, CI drives fitness-decreasing Wolbachia transinfections through local populations; but below pˆ, infection frequencies tend to decline to zero. If pˆ is not too high, CI also drives spatial spread once infections become established over sufficiently large areas. We illustrate how simple models provide testable predictions concerning the spatial and temporal dynamics of Wolbachia introductions, focusing on rate of spatial spread, the shape of spreading waves, and the conditions for initiating spread from local introductions. First, we consider the robustness of diffusion-based predictions to incorporating two important features of wMel-Aedes aegypti biology that may be inconsistent with the diffusion approximations, namely fast local dynamics induced by complete CI (i.e., all embryos produced from incompatible crosses die) and long-tailed, non-Gaussian dispersal. With complete CI, our numerical analyses show that long-tailed dispersal changes wave-width predictions only slightly; but it can significantly reduce wave speed relative to the diffusion prediction; it also allows smaller local introductions to initiate spatial spread. Second, we use approximations for pˆ and dispersal distances to predict the outcome of 2013 releases of wMel-infected Aedes aegypti in Cairns, Australia, Third, we describe new data from Ae. aegypti populations near Cairns, Australia that demonstrate long-distance dispersal and provide an approximate lower bound on pˆ for wMel in northeastern Australia. Finally, we apply our analyses to produce operational guidelines for efficient transformation of vector populations over large areas. We demonstrate that even very slow spatial spread, on the order of 10-20 m/month (as predicted), can produce area-wide population transformation within a few years following initial releases covering about 20-30% of the target area. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Estimation of fast and slow wave properties in cancellous bone using Prony's method and curve fitting.

    PubMed

    Wear, Keith A

    2013-04-01

    The presence of two longitudinal waves in poroelastic media is predicted by Biot's theory and has been confirmed experimentally in through-transmission measurements in cancellous bone. Estimation of attenuation coefficients and velocities of the two waves is challenging when the two waves overlap in time. The modified least squares Prony's (MLSP) method in conjuction with curve-fitting (MLSP + CF) is tested using simulations based on published values for fast and slow wave attenuation coefficients and velocities in cancellous bone from several studies in bovine femur, human femur, and human calcaneus. The search algorithm is accelerated by exploiting correlations among search parameters. The performance of the algorithm is evaluated as a function of signal-to-noise ratio (SNR). For a typical experimental SNR (40 dB), the root-mean-square errors (RMSEs) for one example (human femur) with fast and slow waves separated by approximately half of a pulse duration were 1 m/s (slow wave velocity), 4 m/s (fast wave velocity), 0.4 dB/cm MHz (slow wave attenuation slope), and 1.7 dB/cm MHz (fast wave attenuation slope). The MLSP + CF method is fast (requiring less than 2 s at SNR = 40 dB on a consumer-grade notebook computer) and is flexible with respect to the functional form of the parametric model for the transmission coefficient. The MLSP + CF method provides sufficient accuracy and precision for many applications such that experimental error is a greater limiting factor than estimation error.

  16. High power broadband millimeter wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1999-05-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  17. High Power Broadband Millimeter Wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1998-04-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  18. Traveling wave tube and method of manufacture

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard K. (Inventor)

    2004-01-01

    A traveling wave tube includes a glass or other insulating envelope having a plurality of substantially parallel glass rods supported therewithin which in turn support an electron gun, a collector and an intermediate slow wave structure. The slow wave structure itself provides electrostatic focussing of a central electron beam thereby eliminating the need for focussing magnetics and materially decreasing the cost of construction as well as enabling miniaturization. The slow wave structure advantageously includes cavities along the electron beam through which the r.f. energy is propagated, or a double, interleaved ring loop structure supported by dielectric fins within a ground plane cylinder disposed coaxially within the glass envelope.

  19. A Comparison of Three-Dimensional Simulations of Traveling-Wave Tube Cold-Test Characteristics Using CST MICROWAVE STUDIO and MAFIA

    NASA Technical Reports Server (NTRS)

    Chevalier, C. T.; Herrmann, K. A.; Kory, C. L.; Wilson, J. D.; Cross, A. W.; Williams, W. D. (Technical Monitor)

    2001-01-01

    Previously, it was shown that MAFIA (solutions of Maxwell's equations by the Finite Integration Algorithm), a three-dimensional simulation code, can be used to produce accurate cold-test characteristics including frequency-phase dispersion, interaction impedance, and attenuation for traveling-wave tube (TWT) slow-wave structures. In an effort to improve user-friendliness and simulation time, a model was developed to compute the cold-test parameters using the electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS). Cold-test parameters were calculated for several slow-wave circuits including a ferruled coupled-cavity, a folded waveguide, and a novel finned-ladder circuit using both MWS and MAFIA. Comparisons indicate that MWS provides more accurate cold-test data with significantly reduced simulation times. Both MAFIA and MWS are based on the finite integration (FI) method; however, MWS has several advantages over MAFIA. First, it has a Windows based interface for PC operation, making it very user-friendly, whereas MAFIA is UNIX based. MWS uses a new Perfect Boundary Approximation (PBA), which increases the accuracy of the simulations by avoiding stair step approximations associated with MAFIA's representation of structures. Finally, MWS includes a Visual Basic for Applications (VBA) compatible macro language that enables the simulation process to be automated and allows for the optimization of user-defined goal functions, such as interaction impedance.

  20. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2013-01-01

    Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.

  1. A More Accurate and Efficient Technique Developed for Using Computational Methods to Obtain Helical Traveling-Wave Tube Interaction Impedance

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made in the analysis were addressed and fully investigated for their accuracy by using the three-dimensional electromagnetic simulation code MAFIA (Solution of Maxwell's Equations by the Finite Integration Algorithm) (refs. 3 and 4). We found that several approximations introduced significant error (ref. 5).

  2. High-frequency Oscillations in the Atmosphere above a Sunspot Umbra

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Deng, Hui; Li, Bo; Feng, Song; Bai, Xianyong; Deng, Linhua; Yang, Yunfei; Xue, Zhike; Wang, Rui

    2018-03-01

    We use high spatial and temporal resolution observations, simultaneously obtained with the New Vacuum Solar Telescope and Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, to investigate the high-frequency oscillations above a sunspot umbra. A novel time–frequency analysis method, namely, the synchrosqueezing transform (SST), is employed to represent their power spectra and to reconstruct the high-frequency signals at different solar atmospheric layers. A validation study with synthetic signals demonstrates that SST is capable of resolving weak signals even when their strength is comparable to the high-frequency noise. The power spectra, obtained from both SST and the Fourier transform, of the entire umbral region indicate that there are significant enhancements between 10 and 14 mHz (labeled as 12 mHz) at different atmospheric layers. Analyzing the spectrum of a photospheric region far away from the umbra demonstrates that this 12 mHz component exists only inside the umbra. The animation based on the reconstructed 12 mHz component in AIA 171 Å illustrates that an intermittently propagating wave first emerges near the footpoints of coronal fan structures, and then propagates outward along the structures. A time–distance diagram, coupled with a subsonic wave speed (∼49 km s‑1), highlights the fact that these coronal perturbations are best described as upwardly propagating magnetoacoustic slow waves. Thus, we first reveal the high-frequency oscillations with a period around one minute in imaging observations at different height above an umbra, and these oscillations seem to be related to the umbral perturbations in the photosphere.

  3. Role of entrainment in convectively-coupled equatorial waves in an aquaplanet model

    NASA Astrophysics Data System (ADS)

    Peatman, Simon; Methven, John; Woolnough, Steve

    2016-04-01

    Equatorially-trapped waves are known to be one of the key phenomena in determining the distribution of convective precipitation in the tropics as well as being crucial to the dynamics of the Madden-Julian Oscillation. However, numerical weather prediction models struggle to sustain such waves for a realistic length of time, which has a significant impact on forecasting precipitation for regions such as equatorial Africa. It has been found in the past that enhancing the rate of moisture entrainment can improve certain aspects of parametrized tropical convection in climate models. A parameter F controls the rate of entrainment into the convective plume for deep- and mid-level convection, with F = 1 denoting the control case. Here it is found in an aquaplanet simulation that F > 1 produces more convective precipitation at all zonal wavenumbers. Furthermore, Kelvin wave activity increases for waves with low frequency and zonal wavenumber but is slightly suppressed for shorter, higher-frequency waves, and vice versa for westward-propagating waves. A change in entrainment rate also brings about a change in the basic state wind and humidity fields. Therefore, the question arises as to whether changes in wave activity are due directly to changes in the coupling to the humidity in the waves by entrainment or due to changes in the basic state. An experiment was devised in which the convective parametrization scheme is allowed to entrain a weighted sum of the environmental humidity and a prescribed zonally-symmetric climatology, with a parameter α controlling the extent of the decoupling from the environment. Experiments with this new mechanism in the parametrization scheme reveal a complex relationship. For long waves at low frequency (period > ˜13 days), removing zonal asymmetry in the humidity seen by the entrainment scheme has very little influence on the ratio of eastward- to westward-propagating power. At higher frequencies and zonal wavenumbers, removing this zonal asymmetry acts to suppress wave activity. Enhanced entrainment rate relative to the control case is also shown to slow the phase speed of Kelvin waves by around 20%. The phase speed depends also on the decoupling parameter α, with the minimum speed occurring around the special case α = 1 - 1/F , when the basic state humidity is entrained at the enhanced rate and perturbations from it are entrained at the control rate.

  4. Mode competition and selection in overmoded surface wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guangqiang; Zeng, Peng; Wang, Dongyang

    2016-05-15

    The overmoded surface wave oscillator (SWO) is one of the promising devices to generate high-power millimeter and subterahertz waves for its merits of high efficiency and easy fabrication. But the employed slow wave structure with large diameter may introduce mode competition as the adverse effects. Therefore, the mode competition and selection in the overmoded surface wave oscillator are investigated in detail in this paper. By using the theoretical analysis and particle-in-cell simulation, the potential transverse mode and axial mode competition is pointed out, and the physical mechanisms and methods for mode selection are investigated. At last, the results are verifiedmore » in the design of a 0.14 THz overmoded SWO without mode competition, which can generate the output power up to 70 MW at the frequency of 146.3 GHz with conversion efficiency almost 20% when beam voltage and current are, respectively, about 313 kV and 1.13 kA.« less

  5. The Role of Organ of Corti Mass in Passive Cochlear Tuning

    PubMed Central

    de La Rochefoucauld, Ombeline; Olson, Elizabeth S.

    2007-01-01

    The mechanism for passive cochlear tuning remains unsettled. Early models considered the organ of Corti complex (OCC) as a succession of spring-mass resonators. Later, traveling wave models showed that passive tuning could arise through the interaction of cochlear fluid mass and OCC stiffness without local resonators. However, including enough OCC mass to produce local resonance enhanced the tuning by slowing and thereby growing the traveling wave as it approached its resonant segment. To decide whether the OCC mass plays a role in tuning, the frequency variation of the wavenumber of the cochlear traveling wave was measured (in vivo, passive cochleae) and compared to theoretical predictions. The experimental wavenumber was found by taking the phase difference of basilar membrane motion between two longitudinally spaced locations and dividing by the distance between them. The theoretical wavenumber was a solution of the dispersion relation of a three-dimensional cochlear model with OCC mass and stiffness as the free parameters. The experimental data were only well fit by a model that included OCC mass. However, as the measurement position moved from a best-frequency place of 40 to 12 kHz, the role of mass was diminished. The notion of local resonance seems to only apply in the very high-frequency region of the cochlea. PMID:17905841

  6. Spatial organization and coordination of slow waves in the mouse anorectum

    PubMed Central

    Hall, K A; Ward, S M; Cobine, C A; Keef, K D

    2014-01-01

    The internal anal sphincter (IAS) develops tone and is important for maintaining a high anal pressure while tone in the rectum is less. The mechanisms responsible for tone generation in the IAS are still uncertain. The present study addressed this question by comparing the electrical properties and morphology of the mouse IAS and distal rectum. The amplitude of tone and the frequency of phasic contractions was greater in the IAS than in rectum while membrane potential (Em) was less negative in the IAS than in rectum. Slow waves (SWs) were of greatest amplitude and frequency at the distal end of the IAS, declining in the oral direction. Dual microelectrode recordings revealed that SWs were coordinated over a much greater distance in the circumferential direction than in the oral direction. The circular muscle layer of the IAS was divided into five to eight ‘minibundles’ separated by connective tissue septa whereas few septa were present in the rectum. The limited coordination of SWs in the oral direction suggests that the activity in adjacent minibundles is not coordinated. Intramuscular interstitial cells of Cajal and platelet-derived growth factor receptor alpha-positive cells were present in each minibundle suggesting a role for one or both of these cells in SW generation. In summary, three important properties distinguish the IAS from the distal rectum: (1) a more depolarized Em; (2) larger and higher frequency SWs; and (3) the multiunit configuration of the muscle. All of these characteristics may contribute to greater tone generation in the IAS than in the distal rectum. PMID:24951622

  7. Oscillating square wave Transcranial Direct Current Stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: A randomized sham controlled crossover study

    PubMed Central

    Sahlem, Gregory L.; Badran, Bashar W.; Halford, Jonathan J.; Williams, Nolan R.; Korte, Jeffrey E.; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L.; Runion, Jennifer; Bachman, David L.; Uhde, Thomas W.; Borckardt, Jeffery J.; George, Mark S.

    2015-01-01

    Background A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current wave form (square in our study, nearly sinusoidal in the original). Objective/Hypothesis Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Methods Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517mA/CM2, and oscillated between zero and maximal current at a frequency of 0.75Hz. Stimulation occurred during five-five minute blocks with one-minute inter-block intervals (25 minutes total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. Results There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1±3.0SD more associations) (sham = 3.8±3.1S.D more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6±2.7 S.D. correctly typed sequences) compared to sham stimulation (2.3± 2.2 S.D. correctly typed sequences)]. Conclusion In this study, we failed to find improvements in declarative or performance memory and could not replicate an earlier study using nearly identical settings. Specifically we failed to find a beneficial effect on either overnight declarative or non-declarative memory consolidation via square-wave oscillating tDCS intervention applied bi-frontally during early NREM sleep. It is unclear if the morphology of the tDCS pulse is critical in any memory related improvements. PMID:25795621

  8. Wavefield properties of a shallow long-period event and tremor at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Saccorotti, G.; Chouet, B.; Dawson, P.

    2001-01-01

    The wavefields of tremor and a long-period (LP) event associated with the ongoing eruptive activity at Kilauea Volcano, Hawaii, are investigated using a combination of dense small-aperture (300 m) and sparse large-aperture (5 km) arrays deployed in the vicinity of the summit caldera. Measurements of azimuth and slowness for tremor recorded on the small-aperture array indicate a bimodal nature of the observed wavefield. At frequencies below 2 Hz, the wavefield is dominated by body waves impinging the array with steep incidence. These arrivals are attributed to the oceanic microseismic noise. In the 2-6 Hz band, the wavefield is dominated by waves propagating from sources located at shallow depths (<1 km) beneath the eastern edge of the Halemaumau pit crater. The hypocenter of the LP event, determined from frequency-slowness analyses combined with phase picks, appears to be located close to the source of tremor but at a shallower depth (<0.1 km). The wavefields of tremor and LP event are characterized by a complex composition of body and surface waves, whose propagation and polarization properties are strongly affected by topographic and structural features in the summit caldera region. Analyses of the directional properties of the wavefield in the 2-6 Hz band point to the directions of main scattering sources, which are consistent with pronounced velocity contrasts imaged in a high-resolution three-dimensional velocity model of the caldera region. The frequency and Q of the dominant peak observed in the spectra of the LP event may be explained as the dominant oscillation mode of a crack with scale length 20-100 m and aperture of a few centimeters filled with bubbly water. The mechanism driving the shallow tremor appears to be consistent with a sustained excitation originating in the oscillations of a bubbly cloud resulting from vesiculation and degassing in the magma. ?? 2001 Elsevier Science B.V. All rights reserved.

  9. Wave induced density modification in RF sheaths and close to wave launchers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eester, D., E-mail: d.van.eester@fz-juelich.de; Crombé, K.; Department of Applied Physics, Ghent University, Ghent

    2015-12-10

    With the return to full metal walls - a necessary step towards viable fusion machines - and due to the high power densities of current-day ICRH (Ion Cyclotron Resonance Heating) or RF (radio frequency) antennas, there is ample renewed interest in exploring the reasons for wave-induced sputtering and formation of hot spots. Moreover, there is experimental evidence on various machines that RF waves influence the density profile close to the wave launchers so that waves indirectly influence their own coupling efficiency. The present study presents a return to first principles and describes the wave-particle interaction using a 2-time scale modelmore » involving the equation of motion, the continuity equation and the wave equation on each of the time scales. Through the changing density pattern, the fast time scale dynamics is affected by the slow time scale events. In turn, the slow time scale density and flows are modified by the presence of the RF waves through quasilinear terms. Although finite zero order flows are identified, the usual cold plasma dielectric tensor - ignoring such flows - is adopted as a first approximation to describe the wave response to the RF driver. The resulting set of equations is composed of linear and nonlinear equations and is tackled in 1D in the present paper. Whereas the former can be solved using standard numerical techniques, the latter require special handling. At the price of multiple iterations, a simple ’derivative switch-on’ procedure allows to reformulate the nonlinear problem as a sequence of linear problems. Analytical expressions allow a first crude assessment - revealing that the ponderomotive potential plays a role similar to that of the electrostatic potential arising from charge separation - but numerical implementation is required to get a feeling of the full dynamics. A few tentative examples are provided to illustrate the phenomena involved.« less

  10. High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehiasarian, A. P.; New, R.; Hecimovic, A.

    We report on instabilities in high power impulse magnetron sputtering plasmas which are likely to be of the generalized drift wave type. They are characterized by well defined regions of high and low plasma emissivity along the racetrack of the magnetron and cause periodic shifts in floating potential. The azimuthal mode number m depends on plasma current, plasma density, and gas pressure. The structures rotate in E-vectorxB-vector direction at velocities of {approx}10 km s{sup -1} and frequencies up to 200 kHz. Collisions with residual gas atoms slow down the rotating wave, whereas increasing ionization degree of the gas and plasmamore » conductivity speeds it up.« less

  11. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventionalmore » Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.« less

  12. Parametric Instability, Inverse Cascade, and the 1/f Range of Solar-Wind Turbulence.

    PubMed

    Chandran, Benjamin D G

    2018-02-01

    In this paper, weak turbulence theory is used to investigate the nonlinear evolution of the parametric instability in 3D low- β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e + ≫ e - , where e + and e - are the frequency ( f ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e + initially has a peak frequency f 0 (at which fe + is maximized) and an "infrared" scaling f p at smaller f with -1 < p < 1, then e + acquires an f -1 scaling throughout a range of frequencies that spreads out in both directions from f 0 . At the same time, e - acquires an f -2 scaling within this same frequency range. If the plasma parameters and infrared e + spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an e + spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed f -1 scaling at f ≳ 3 × 10 -4 Hz. The results of this paper suggest that the f -1 spectrum seen by Helios in the fast solar wind at f ≳ 3 × 10 -4 Hz is produced in situ by parametric decay and that the f -1 range of e + extends over an increasingly narrow range of frequencies as r decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe .

  13. Battling Fatigue in Aviation: Recent Advancements in Research and Practice

    DTIC Science & Technology

    2012-01-01

    During both baseline assessment and recovery sleep after acute total sleep de- privation, those with the G/A genotype exhibited greater levels of...low-frequency delta activity during non-REM sleep and slow-wave sleep than did subjects with the G/ G genotype . Similar research has been reported by...Tam PY, Dinges DF. Controlled breaks as a fatigue coun- termeasure on the flight deck. Aviat Space Environ Med. 2002;73:654-664. 66. Angus RG

  14. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder

    PubMed Central

    Munz, Manuel T.; Prehn-Kristensen, Alexander; Thielking, Frederieke; Mölle, Matthias; Göder, Robert; Baving, Lioba

    2015-01-01

    Background: Behavioral inhibition, which is a later-developing executive function (EF) and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD). While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM) slow-wave sleep. Recently, slow oscillations (SO) during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective:By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz) during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: Fourteen boys (10–14 years) diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness, and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD. PMID:26321911

  15. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder.

    PubMed

    Munz, Manuel T; Prehn-Kristensen, Alexander; Thielking, Frederieke; Mölle, Matthias; Göder, Robert; Baving, Lioba

    2015-01-01

    Behavioral inhibition, which is a later-developing executive function (EF) and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD). While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM) slow-wave sleep. Recently, slow oscillations (SO) during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz) during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Fourteen boys (10-14 years) diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness, and motor memory performance were not improved by so-tDCS. Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.

  16. Radiation reflection from star surface reveals the mystery of interpulse shift and appearance of high frequency components in the Crab pulsar

    NASA Astrophysics Data System (ADS)

    Kontorovich, V. M.; Trofymenko, S. V.

    2017-12-01

    A new mechanism of radiation emission in the polar gap of a pulsar is discussed. It is based on the curvature radiation which is emitted by positrons moving towards the surface of neutron star along field lines of the inclined magnetic field and reflects from the surface. This mechanism explains the mystery of the interpulse shift and appearance of additional components in the emission of Crab pulsar at high frequencies discovered by Moffett and Hankins twenty years ago. We discuss coherence, energy flux and spectrum of the reflected radiation, appearance and disappearance of the interpulse position shift with the frequency increase. It is also possible that a nonlinear reflection (stimulated scattering) from the star surface is observed in the form of HF components. The frequency drift of these components, discovered by Hankins, Jones and Eilek, is discussed. The nonlinear reflection is associated with “Wood’s anomaly” at the diffracted waves grazing along the star surface. Two components can arise due to slow and fast waves which are present in the magnetospheric plasma. The possible scheme of their appearance due to birefringence at the reflection is also proposed.

  17. Experimental realization of extraordinary acoustic transmission using Helmholtz resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crow, Brian C.; Cullen, Jordan M.; McKenzie, William W.

    2015-02-15

    The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR) is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted soundmore » as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.« less

  18. Stabilizing effect of elasticity on the inertial instability of submerged viscoelastic liquid jets

    NASA Astrophysics Data System (ADS)

    Keshavarz, Bavand; McKinley, Gareth

    2017-11-01

    The stability of submerged Newtonian and viscoelastic liquid jets is studied experimentally using flow visualization. Precise control of the amplitude and frequency of the imposed linear perturbations is achieved through a piezoelectric actuator attached to the nozzle. By illuminating the jet with a strobe light driven at a frequency slightly less than the frequency of the perturbation we slow down the apparent motion by large factors ( 100 , 000) and capture the phenomena with high temporal and spatial resolution. Newtonian liquid jets become unstable at moderate Reynolds numbers (Rej 150) and sinuous or varicose patterns emerge and grow in amplitude. As the jet moves downstream, the varicose waves gradually pile up in the sinuous ones due to the difference in their corresponding wave speeds, leading to a unique chevron-like morphology. Experiments with model viscoelastic polymer solutions show that this inertial instability is fully stabilized sufficiently large levels of elasticity. We compare our experimental results with the theoretical predictions of an elastic Rayleigh equation for an axisymmetric jet and show that the presence of streamline tension is indeed the stabilizing effect for inertioelastic jets.

  19. Guided Z mode propagation observed in the OEDIPUS A tethered rocket experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, H.G.

    1991-10-01

    The tethered sounding rocket payload OEDIPUS A conducted bistatic propagation experiments on plasma waves in the auroral ionosphere. Synchronized sweeps of the frequency range 0-5 MHz by the 2-W transmitter high-frequency exciter (HEX) on the upper end of the tether and its associated receiver for exciter (REX) on the lower end have produced signatures of quasi-electrostatic waves guided along field-aligned depletions of ambient density. The propagation is in the slow Z mode, between the plasma frequency f{sub p} and the upper hybrid resonance frequency f{sub uhr} when f{sub p} is greater than the cyclotron frequency. The mode identification is basedmore » on payload measurements of f{sub p}. These waves have signal delays of about 1 ms. The delays are much greater than expected for free-space propagation over the transmitter-receiver separation distance which varies up to 960 m during the flight. The transmitted pulses typically appear inside a frequency bandwidth of about 100 kHz just above the plasma frequency, but occasionally occupy most of the available bandwidth, {approx equal}300 kHz, between f{sub p} and f{sub uhr}. The observed delays and the stretching by a factor of 3 of the transmitted 300-{mu}s pulses are accounted for with two-dimensional ray tracing using a complete electromagnetic solution of the hot plasma dispersion relation. Delayed Z mode pulses appear in about 20% of the ionograms. Given the weakness of the HEX transmitter and the abundance of examples obtained during the flight, guiding of natural Z mode emissions in the auroral ionosphere may be efficient and widespread.« less

  20. Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point

    NASA Astrophysics Data System (ADS)

    Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.

    2018-05-01

    The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.

  1. Time-dependent Tonks-Langmuir model is unstable

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.; Baalrud, S. D.

    2017-11-01

    We investigate a time-dependent extension of the Tonks-Langmuir model for a one-dimensional plasma discharge with collisionless kinetic ions and Boltzmann electrons. Ions are created uniformly throughout the volume and flow from the center of the discharge to the boundary wall due to a self-consistent, zero-order electric field. Solving this model using a particle-in-cell simulation, we observe coherent low-frequency, long-wavelength unstable ion waves which move toward the boundary with a speed below both the ion acoustic speed and the average ion velocity. The maximum amplitude of the wave potential fluctuations peaks at ≈0.09 Te near the wall, where Te is the electron temperature in electron volts. Using linear kinetic theory, we identify this instability as slow ion-acoustic wave modes which are destabilized by the zero-order electric field.

  2. The photoacoustic effect generated by an incompressible sphere.

    PubMed

    Diebold, Gerald J; Beveridge, Andrew C; Hamilton, Theron J

    2002-11-01

    An incompressible sphere with a vanishing thermal expansivity suspended in a fluid can generate a photoacoustic effect when the heat deposited in the sphere by a light beam diffuses into the surrounding liquid causing it to expand and launch a sound wave. The properties of the photoacoustic effect for the sphere are found using a Green's function solution to the wave equation for pressure with Neumann boundary conditions. The results of the calculation show that the acoustic wave for fast heat liberation is an outgoing compressive pulse followed by a reflected pulse whose time profile is modified as a result of frequency dependent reflection from the sphere. For slow heat release by the sphere, the photoacoustic effect is shown to be proportional to the first time derivative of the heat flux at the particle-fluid interface.

  3. Data Recorded as Juno Entered Magnetosphere

    NASA Image and Video Library

    2016-06-30

    This chart presents data that the Waves investigation on NASA's Juno spacecraft recorded as the spacecraft crossed the bow shock just outside of Jupiter's magnetosphere on June 24, 2016, while approaching Jupiter. Audio accompanies the animation, with volume and pitch correlated to the amplitude and frequency of the recorded waves. The graph is a frequency-time spectrogram with color coding to indicate wave amplitudes as a function of wave frequency (vertical axis, in hertz) and time (horizontal axis, with a total elapsed time of two hours). During the hour before Juno reached the bow shock, the Waves instrument was detecting mainly plasma oscillations just below 10,000 hertz (10 kilohertz). The frequency of these oscillations is related to the local density of electrons; the data yield an estimate of approximately one electron per cubic centimeter (about 16 per cubic inch) in this region just outside Jupiter's bow shock. The broadband burst of noise marked "Bow Shock" is the region of turbulence where the supersonic solar wind is heated and slowed by encountering the Jovian magnetosphere. The shock is analogous to a sonic boom generated in Earth's atmosphere by a supersonic aircraft. The region after the shock is called the magnetosheath. The vertical bar to the right of the chart indicates the color coding of wave amplitude, in decibels (dB) above the background level detected by the Waves instrument. Each step of 10 decibels marks a tenfold increase in wave power. When Juno collected these data, the distance from the spacecraft to Jupiter was about 5.56 million miles (8.95 million kilometers), indicated on the chart as 128 times the radius of Jupiter. Jupiter's magnetic field is tilted about 10 degrees from the planet's axis of rotation. The note of 22 degrees on the chart indicates that at the time these data were recorded, the spacecraft was 22 degrees north of the magnetic-field equator. The "LT" notation is local time on Jupiter at the longitude of the planet directly below the spacecraft, with a value of 6.2 indicating approximately dawn. http://photojournal.jpl.nasa.gov/catalog/PIA20753

  4. Data Recorded as Juno Crossed Jovian Bow Shock

    NASA Image and Video Library

    2016-06-30

    This chart presents data that the Waves investigation on NASA's Juno spacecraft recorded as the spacecraft crossed the bow shock just outside of Jupiter's magnetosphere on June 24, 2016, while approaching Jupiter. Audio accompanies the animation, with volume and pitch correlated to the amplitude and frequency of the recorded waves. The graph is a frequency-time spectrogram with color coding to indicate wave amplitudes as a function of wave frequency (vertical axis, in hertz) and time (horizontal axis, with a total elapsed time of two hours). During the hour before Juno reached the bow shock, the Waves instrument was detecting mainly plasma oscillations just below 10,000 hertz (10 kilohertz). The frequency of these oscillations is related to the local density of electrons; the data yield an estimate of approximately one electron per cubic centimeter (about 16 per cubic inch) in this region just outside Jupiter's bow shock. The broadband burst of noise marked "Bow Shock" is the region of turbulence where the supersonic solar wind is heated and slowed by encountering the Jovian magnetosphere. The shock is analogous to a sonic boom generated in Earth's atmosphere by a supersonic aircraft. The region after the shock is called the magnetosheath. The vertical bar to the right of the chart indicates the color coding of wave amplitude, in decibels (dB) above the background level detected by the Waves instrument. Each step of 10 decibels marks a tenfold increase in wave power. When Juno collected these data, the distance from the spacecraft to Jupiter was about 5.56 million miles (8.95 million kilometers), indicated on the chart as 128 times the radius of Jupiter. Jupiter's magnetic field is tilted about 10 degrees from the planet's axis of rotation. The note of 22 degrees on the chart indicates that at the time these data were recorded, the spacecraft was 22 degrees north of the magnetic-field equator. The "LT" notation is local time on Jupiter at the longitude of the planet directly below the spacecraft, with a value of 6.2 indicating approximately dawn. http://photojournal.jpl.nasa.gov/catalog/PIA20753

  5. Mapping the sources of the seismic wave field at Kilauea volcano, Hawaii, using data recorded on multiple seismic Antennas

    USGS Publications Warehouse

    Almendros, J.; Chouet, B.; Dawson, P.; Huber, Caleb G.

    2002-01-01

    Seismic antennas constitute a powerful tool for the analysis of complex wave fields. Well-designed antennas can identify and separate components of a complex wave field based on their distinct propagation properties. The combination of several antennas provides the basis for a more complete understanding of volcanic wave fields, including an estimate of the location of each individual wave-field component identified simultaneously by at least two antennas. We used frequency-slowness analyses of data from three antennas to identify and locate the different components contributing to the wave fields recorded at Kilauea volcano, Hawaii, in February 1997. The wave-field components identified are (1) a sustained background volcanic tremor in the form of body waves generated in a shallow hydrothermal system located below the northeastern edge of the Halemaumau pit crater; (2) surface waves generated along the path between this hydrothermal source and the antennas; (3) back-scattered surface wave energy from a shallow reflector located near the southeastern rim of Kilauea caldera; (4) evidence for diffracted wave components originating at the southeastern edge of Halemaumau; and (5) body waves reflecting the activation of a deeper tremor source between 02 hr 00 min and 16 hr 00 min Hawaii Standard Time on 11 February.

  6. Plasma modification of spoof plasmon propagation along metamaterial-air interfaces

    NASA Astrophysics Data System (ADS)

    Lee, R.; Wang, B.; Cappelli, M. A.

    2017-12-01

    We report on measurements of the shift in resonance frequency of "spoof" surface plasmon polariton propagation along a 2-D metamaterial slow-wave structure induced by a gaseous plasma near the metamaterial/air interface. A transmission line circuit model for the metamaterial structure interprets the introduction of a plasma as a decrease in unit cell capacitance, causing a shift in the plasmon dispersion to higher frequency. We show through simulations and experiments that the effects of this shift at the resonance frequency and attenuation below and above resonance depend on the plasma density. The shifts recorded experimentally are small owing to the low plasma densities generated near the structure, ˜ 10 11 cm - 3 , but simulations show that a shift of ˜ 3 % of the resonance frequency can be generated at plasma densities of ˜ 10 12 cm - 3 .

  7. Nonlinear excitation of long-wavelength modes in Hall plasmas

    NASA Astrophysics Data System (ADS)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.

    2016-10-01

    Hall plasmas with magnetized electrons and unmagnetized ions exhibit a wide range of small scale fluctuations in the lower-hybrid frequency range as well as low-frequency large scale modes. Modulational instability of lower-hybrid frequency modes is investigated in this work for typical conditions in Hall plasma devices such as magnetrons and Hall thrusters. In these conditions, the dispersion of the waves in the lower-hybrid frequency range propagating perpendicular to the external magnetic field is due to the gradients of the magnetic field and the plasma density. It is shown that such lower-hybrid modes are unstable with respect to the secondary instability of the large scale quasimode perturbations. It is suggested that the large scale slow coherent modes observed in a number of Hall plasma devices may be explained as a result of such secondary instabilities.

  8. Multichannel electrogastrography under a magnifying glass--an in-depth study on reproducibility of fed state electrogastrograms.

    PubMed

    Krusiec-Swidergoł, B; Jonderko, K

    2008-06-01

    We checked on reproducibility of parameters of a multichannel electrogastrogram in adults after intake of typical, applied in electrogastrography, test meals. Recordings of multichannel electrogastrograms were accomplished in four blocks comprising 18 subjects (nine healthy volunteers and nine patients with functional GI disorders) each. Every subject had two examinations taken 1-2 days apart, and a third one was accomplished at least 2 weeks before or after the two other sessions. The registration involved a 30-min fasted and a 2-h postprandial period after one of the meal stimuli tested within a given block: 400 mL water, 400 g yoghurt (378 kcal), a scrambled eggs sandwich (370 kcal), a pancake (355 kcal). From among the parameters reflecting the propagation of the gastric slow waves, the average percentage of slow wave coupling (APSWC) exhibited a good (coefficient of variation for paired examinations CV(p) < or = 10%) to moderate (10 < CV(p) < or = 30%) reproducibility. On the other hand, the reproducibility of the maximum dominant frequency difference and the spatial dominant power difference was found to be unsatisfactory. The reproducibility of the multichannel electrogastrographic parameters did not differ between healthy volunteers and patients with functional GI disorders. Gender or the kind of a test meal did not affect the reproducibility of the electrogastrographic parameters either. The medium-term reproducibility was not any worse than the short-term one. From among the parameters of a multichannel electrogastrogram intended to quantify the propagation of slow waves, only the APSWC offers a reproducibility potentially good enough for clinical applications.

  9. Circadian regulation of slow waves in human sleep: Topographical aspects

    PubMed Central

    Lazar, Alpar S.; Lazar, Zsolt I.; Dijk, Derk-Jan

    2015-01-01

    Slow waves (SWs, 0.5–4 Hz) in field potentials during sleep reflect synchronized alternations between bursts of action potentials and periods of membrane hyperpolarization of cortical neurons. SWs decline during sleep and this is thought to be related to a reduction of synaptic strength in cortical networks and to be central to sleep's role in maintaining brain function. A central assumption in current concepts of sleep function is that SWs during sleep, and associated recovery processes, are independent of circadian rhythmicity. We tested this hypothesis by quantifying all SWs from 12 EEG derivations in 34 participants in whom 231 sleep periods were scheduled across the circadian cycle in a 10-day forced-desynchrony protocol which allowed estimation of the separate circadian and sleep-dependent modulation of SWs. Circadian rhythmicity significantly modulated the incidence, amplitude, frequency and the slope of the SWs such that the peaks of the circadian rhythms in these slow-wave parameters were located during the biological day. Topographical analyses demonstrated that the sleep-dependent modulation of SW characteristics was most prominent in frontal brain areas whereas the circadian effect was similar to or greater than the sleep-dependent modulation over the central and posterior brain regions. The data demonstrate that circadian rhythmicity directly modulates characteristics of SWs thought to be related to synaptic plasticity and that this modulation depends on topography. These findings have implications for the understanding of local sleep regulation and conditions such as ageing, depression, and neurodegeneration which are associated with changes in SWs, neural plasticity and circadian rhythmicity. PMID:25979664

  10. KINETIC SIMULATION OF SLOW MAGNETOSONIC WAVES AND QUASI-PERIODIC UPFLOWS IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi

    Quasi-periodic disturbances of emission-line parameters are frequently observed in the corona. These disturbances propagate upward along the magnetic field with speeds of ∼100 km s{sup −1}. This phenomenon has been interpreted as evidence of the propagation of slow magnetosonic waves or has been argued to be a signature of intermittent outflows superposed on the background plasmas. Here we aim to present a new “wave + flow” model to interpret these observations. In our scenario, the oscillatory motion is a slow-mode wave, and the flow is associated with a beam created by the wave–particle interaction owing to Landau resonance. With themore » help of a kinetic model, we simulate the propagation of slow-mode waves and the generation of beam flows. We find that weak periodic beam flows can be generated by to Landau resonance in the solar corona, and the phase with the strongest blueward asymmetry is ahead of that with the strongest blueshift by about 1/4 period. We also find that the slow wave damps to the level of 1/ e after the transit time of two wave periods, owing to Landau damping and Coulomb collisions in our simulation. This damping timescale is similar to that resulting from thermal conduction in the MHD regime. The beam flow is weakened/attenuated with increasing wave period and decreasing wave amplitude since Coulomb collisions become more and more dominant over the wave action. We suggest that this “wave + flow” kinetic model provides an alternative explanation for the observed quasi-periodic propagating perturbations in various parameters in the solar corona.« less

  11. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, I.; Quevedo, H. J.; Feldman, S.

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental datamore » characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.« less

  12. Next Generation of Magneto-Dielectric Antennas and Optimum Flux Channels

    NASA Astrophysics Data System (ADS)

    Yousefi, Tara

    There is an ever-growing need for broadband conformal antennas to not only reduce the number of antennas utilized to cover a broad range of frequencies (VHF-UHF) but also to reduce visual and RF signatures associated with communication systems. In many applications antennas needs to be very close to low-impedance mediums or embedded inside low-impedance mediums. However, for conventional metal and dielectric antennas to operate efficiently in such environments either a very narrow bandwidth must be tolerated, or enough loss added to expand the bandwidth, or they must be placed one quarter of a wavelength above the conducting surface. The latter is not always possible since in the HF through low UHF bands, critical to Military and Security functions, this quarter-wavelength requirement would result in impractically large antennas. Despite an error based on a false assumption in the 1950’s, which had severely underestimated the efficiency of magneto-dielectric antennas, recently demonstrated magnetic-antennas have been shown to exhibit extraordinary efficiency in conformal applications. Whereas conventional metal-and-dielectric antennas carrying radiating electric currents suffer a significant disadvantage when placed conformal to the conducting surface of a platform, because they induce opposing image currents in the surface, magnetic-antennas carrying magnetic radiating currents have no such limitation. Their magnetic currents produce co-linear image currents in electrically conducting surfaces. However, the permeable antennas built to date have not yet attained the wide bandwidth expected because the magnetic-flux-channels carrying the wave have not been designed to guide the wave near the speed of light at all frequencies. Instead, they tend to lose the wave by a leaky fast-wave mechanism at low frequencies or they over-bind a slow-wave at high frequencies. In this dissertation, we have studied magnetic antennas in detail and presented the design approach and apparatus required to implement a flux-channel carrying the magnetic current wave near the speed of light over a very broad frequency range which also makes the design of a frequency independent antenna (spiral) possible. We will learn how to construct extremely thin conformal antennas, frequency-independent permeable antennas, and even micron-sized antennas that can be embedded inside the brain without damaging the tissue.

  13. Computer program for analysis of coupled-cavity traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Omalley, T. A.

    1977-01-01

    A flexible, accurate, large signal computer program was developed for the design of coupled cavity traveling wave tubes. The program is written in FORTRAN IV for an IBM 360/67 time sharing system. The beam is described by a disk model and the slow wave structure by a sequence of cavities, or cells. The computational approach is arranged so that each cavity may have geometrical or electrical parameters different from those of its neighbors. This allows the program user to simulate a tube of almost arbitrary complexity. Input and output couplers, severs, complicated velocity tapers, and other features peculiar to one or a few cavities may be modeled by a correct choice of input data. The beam-wave interaction is handled by an approach in which the radio frequency fields are expanded in solutions to the transverse magnetic wave equation. All significant space harmonics are retained. The program was used to perform a design study of the traveling-wave tube developed for the Communications Technology Satellite. Good agreement was obtained between the predictions of the program and the measured performance of the flight tube.

  14. Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Siddiq, M.; Karim, S.

    2009-04-15

    Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous quantum plasma with neutrals in the background employing the quantum hydrodynamics (QHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical framework is presented to study the one-dimensional as well as the two-dimensional propagation ofmore » shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation of the shock profile with the quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving frame, v{sub *}/u, are also investigated. It is found that increasing the number density and collision frequency enhances the strength of the shock. It is also shown that the fast drift shock (i.e., v{sub *}/u>0) increases, whereas the slow drift shock (i.e., v{sub *}/u<0) decreases the strength of the shock. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less

  15. Study of Surface Wave Propagation in Fluid-Saturated Porous Solids.

    NASA Astrophysics Data System (ADS)

    Azcuaga, Valery Francisco Godinez

    1995-01-01

    This study addresses the surface wave propagation phenomena on fluid-saturated porous solids. The analytical method for calculation of surface wave velocities (Feng and Johnson, JASA, 74, 906, 1983) is extended to the case of a porous solid saturated with a wetting fluid in contact with a non-wetting fluid, in order to study a material combination suitable for experimental investigation. The analytical method is further extended to the case of a non-wetting fluid/wetting fluid-saturated porous solid interface with an arbitrary finite surface stiffness. These extensions of the analytical method allows to theoretically study surface wave propagation phenomena during the saturation process. A modification to the 2-D space-time reflection Green's function (Feng and Johnson, JASA, 74, 915, 1983) is introduced in order to simulate the behavior of surface wave signals detected during the experimental investigation of surface wave propagation on fluid-saturated porous solids (Nagy, Appl. Phys. Lett., 60, 2735, 1992). This modification, together with the introduction of an excess attenuation for the Rayleigh surface mode, makes it possible to explain the apparent velocity changes observed on the surface wave signals during saturation. Experimental results concerning the propagation of surface waves on an alcohol-saturated porous glass are presented. These experiments were performed at frequencies of 500 and 800 kHz and show the simultaneous propagation of the two surface modes predicted by the extended analytical method. Finally an analysis of the displacements associated with the different surface modes is presented. This analysis reveals that it is possible to favor the generation of the Rayleigh surface mode or of the slow surface mode, simply by changing the type of transducer used in the generation of surface waves. Calculations show that a shear transducer couples more energy into the Rayleigh mode, whereas a longitudinal transducer couples more energy into the slow surface mode. Experimental results obtained with the modified experimental system show a qualitative agreement with the theoretical predictions.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlaing, K.K.; Lemoy, C.; Maret, J.P.

    Conventional sonic measurements of shear and compressional slowness are body waves that travel within the formation and are commonly used for petrophysical analysis of a well. Low-frequency Stoneley waves travel within the well bore and are traditionally used to interpret fractures and formation permeability, usually by analyzing the energy losses and, to a lesser extent, the slowness. The authors have found that Stoneley energy has been very useful in the identification of vuggy carbonate facies linked to paleokarstic surfaces in the Upper Burman limestone reservoir of Miocene age, in the YADANA gas deposit, offshore Myanmar. One good example is seenmore » in well YAD-1 where the carbonate reservoir has been cored, allowing precise facies and porosity type determination. Matching Stoneley energy and core description show a striking correlation between loss of energy and vuggy carbonate facies due to karstic diagenetic processes, always in relation with reefal or near reefal facies. Accordingly, facies interpretation has tentatively been done in the deeper, noncored reservoir zone, where losses of energy are important and considered as indicating karstic influence and the specific environment.« less

  17. Spatial proximity effects on the excitation of sheath RF voltages by evanescent slow waves in the ion cyclotron range of frequencies

    NASA Astrophysics Data System (ADS)

    Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric

    2017-02-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF  +  DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  18. Output characteristics of a 0.14 THz dual sheet beam backward wave oscillator based on a hole-grating slow wave structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xiaopin; Yang, Ziqiang; Shi, Zongjun

    A novel backward wave oscillator (BWO) based on a hole-grating slow wave structure is proposed as a dual sheet beam millimeter wave radiation source. In this paper, we focus on the output characteristics of a 0.14 THz hole-grating BWO. The output characteristics of the hole-grating BWO, the conventional single-beam grating BWO, and the dual-beam grating BWO are contrasted in detail. 3-D particle-in-cell results indicate that the hole-grating slow wave structure can help to increase the maximum output power as well as lower the operating current density. Meanwhile, the hole-grating BWO shows good insensitivity to the differences between two sheet electronmore » beams. These characteristics make the hole-grating BWO feasible to be a stable millimeter wave radiation source with higher output power.« less

  19. Linearized traveling wave amplifier with hard limiter characteristics

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G. (Inventor)

    1986-01-01

    A dynamic velocity taper is provided for a traveling wave tube with increased linearity to avoid intermodulation of signals being amplified. In a traveling wave tube, the slow wave structure is a helix including a sever. A dynamic velocity taper is provided by gradually reducing the spacing between the repeating elements of the slow wave structure which are the windings of the helix. The reduction which takes place coincides with the ouput point of helix. The spacing between the repeating elements of the slow wave structure is ideally at an exponential rate because the curve increases the point of maximum efficiency and power, at an exponential rate. A coupled cavity traveling wave tube having cavities is shown. The space between apertured discs is gradually reduced from 0.1% to 5% at an exponential rate. Output power (or efficiency) versus input power for a commercial tube is shown.

  20. Shock Formation and Energy Dissipation of Slow Magnetosonic Waves in Coronal Plumes

    NASA Technical Reports Server (NTRS)

    Cuntz, M.; Suess, S. T.

    2003-01-01

    We study the shock formation and energy dissipation of slow magnetosonic waves in coronal plumes. The wave parameters and the spreading function of the plumes as well as the base magnetic field strength are given by empirical constraints mostly from SOHO/UVCS. Our models show that shock formation occurs at low coronal heights, i.e., within 1.3 bun, depending on the model parameters. In addition, following analytical estimates, we show that scale height of energy dissipation by the shocks ranges between 0.15 and 0.45 Rsun. This implies that shock heating by slow magnetosonic waves is relevant at most heights, even though this type of waves is apparently not a solely operating energy supply mechanism.

  1. Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.

  2. Elastic Nonlinear Response in Granular Media Under Resonance Conditions

    NASA Astrophysics Data System (ADS)

    Jia, X.; Johnson, P. A.

    2004-12-01

    We are studying the elastic linear and nonlinear behavior of granular media using dynamic wave methods. In the work presented here, our goal is to quantify the elastic nonlinear response by applying wave resonance. Resonance studies are desirable because they provide the means to easily study amplitude dependencies of elastic nonlinear behavior and thus to characterize the physical nature of the elastic nonlinearity. This work has implications for a variety of topics, in particular, the in situ nonlinear response of surface sediments. For this work we constructed an experimental cell in which high sensitivity dynamic resonance studies were conducted using granular media under controlled effective pressure. We limit our studies here to bulk modes but have the capability to employ shear waves as well. The granular media are composed of glass beads held under pressure by a piston, while applying resonance waves from transducers as both the excitation and the material probe. The container is closed with two fitted pistons and a normal load is applied to the granular sample across the top piston. Force and displacement are measured directly. Resonant frequency sweeps with frequencies corresponding to the fundamental bulk mode are applied to the longitudinal source transducer. The pore pressure in the system is 1 atm. The glass beads used in our experiments are of diameter 0.5 mm, randomly deposited in a duralumin cylinder of diameter 30 mm and height of 15 mm. This corresponds to a granular skeleton acoustic wave velocity of v ª 750m/s under 50 N of force [0.07 Mpa]. The loaded system gives fundamental mode resonances in the audio frequency band at half a wavelength where resonance frequency is effective-pressure dependent. The volume fraction of glass beads thus obtained is found to be 0.63 ± 0.01. Plane-wave generating and detecting transducers of diameter 30 mm are placed on axis at the top and bottom of the cylindrical container in direct contact with the glass beads. The wave signals are detected using a lock-in amplifier, and frequency and amplitude are recorded on computer. Drive frequency is swept from below to above the resonance mode. A typical frequency sweep is 3 kHz in width with a frequency sampling of 6 Hz. Frequency sweeps are applied at progressively increasing drive voltages to test for nonlinear-dynamical induced modulus softening. The resonance frequency at peak amplitude corresponds directly to modulus. We find significant elastic nonlinearity at all effective pressures, manifest by the fundamental-mode resonance curves decreasing progressively, at progressively increasing drive level. This is equivalent to progressive material softening with wave amplitude, meaning the wavespeed and modulus diminish. The wave dissipation simultaneously increases (Johnson and Sutin 2004). For example, at 0.11 Mpa effective pressure the observed change in resonance frequency of about 2.6% corresponds to a material bulk modulus decrease of about 5.2%. Strain amplitudes are 10-7-10-6. Thus, we would predict that surface sediments should have significant elastic nonlinear response beginning at about 10-6 strain amplitude. reference: Johnson, P. and A. Sutin, Slow dynamics in diverse solids, J. Acoust. Soc Am., in press (2004).

  3. Role of biological membranes in slow-wave sleep.

    PubMed

    Karnovsky, M L

    1991-02-01

    Two involvements of cellular membranes in slow-wave sleep (SWS) are discussed. In the first the endoplasmic reticulum (ER) is focussed upon, and in the second, the plasmalemma, where specific binding sites (receptors?) for promoters of slow-wave sleep are believed to be located. The study concerning the ER focuses on an enzyme in the brain, glucose-6-phosphatase, which, although present at low levels, manifests greatly increased activity during SWS compared to the waking state. The work on the plasmalemma has to do with the specific binding of muramyl peptides, inducers of slow-wave sleep, to various cells, and membrane preparations of various sorts, including those from brain tissue. Such cells as macrophages from mice, B-lymphocytes from human blood, and cells from a cell line (C-6 glioma) have been examined in this context.

  4. Regional variation in contribution of myenteric and intramuscular interstitial cells of Cajal to generation of slow waves in mouse gastric antrum

    PubMed Central

    Hirst, G D S; Beckett, E A H; Sanders, K M; Ward, S M

    2002-01-01

    When intracellular recordings were made from the antral region of murine stomach, cells with three different patterns of electrical activity were detected. One group of cells generated follower potentials, the second group generated pacemaker potentials and the third group generated slow waves that consisted of primary and secondary components. Slow waves recorded in different regions of the gastric antrum had similar amplitudes but different characteristic shapes. At the greater curvature, slow waves had large initial components. Midway between the greater and lesser curvature, the amplitude of the initial component was reduced and at the lesser curvature an initial component was difficult to detect. When the distributions of myenteric (ICC-MY) and intramuscular interstitial cells of Cajal (ICC-IM) were determined, using an antibody to Kit, ICC-MY were found to be present at the greater curvature but were greatly reduced in density at the lesser curvature. In contrast, ICC-IM were found in the circular layer of each region. When recordings were made from the antrum of W/WV mice, which lack ICC-IM, incomplete slow waves were detected and their amplitudes fell from the greater to the lesser curvature. Again, a corresponding fall in the density of ICC-MY was detected. The observations indicate that the contribution of ICC-MY and ICC-IM to the generation of slow waves varies in different regions of the mouse gastric antrum. PMID:11986385

  5. Classification and determination of cerebral biovailability of psychotropic drugs by quantitative "pharmaco-EEG" and psychometric investigations (studies with AX-A411-BS).

    PubMed

    Saletu, B; Grünberger, J; Linzmayer, L

    1977-10-01

    Utilizing computerized quantitative analysis of the human scalp recorded electroencephalogram (EEG), it is possible to classify psychotropic drugs. While neuroleptic compounds produce an increase of slow and decrease of fast activities, anxiolytic substances induce an augmentation of fast waves, decrease of alpha waves and--according to the sedative properties of the drug--an increase or decrease of slow waves. Antidepressants produce a concomitant augmentation of slow and fast activities as well as an attenuation of alpha waves. Nootropic substances attenuate slow activities, augment alpha and slow beta waves and decrease fast beta waves. The latter alterations are quite opposite to age-related changes. Since the main psychopharmacological classes seem to have characteristic pharmaco-EEG profiles, the method proved to be useful for determination of psychoactivity and cerebral bioavailability of newly developed substances as for instance AX-A411-BS, a new benzodiazepine. The latter substance was found to be CNS-active and was classified as anxiolytic. It induced dosedependent changes, which were barely visible in the 2nd hour post-drug, became quite obvious in the 4th hour and increased until the 8th hour after oral administration of one single dose. In the higher dosage range, slow activities came to the fore, indicating aoditional sedative properties. Psychometric tests measuring attention, psychomotor activity. mood, vigilance, extroversion, concentration aith a long-lasting effect. The implications of these methods are discussed.

  6. High-frequency source radiation during the 2011 Tohoku-Oki earthquake, Japan, inferred from KiK-net strong-motion seismograms

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Pulido, Nelson; Fukuyama, Eiichi; Aoi, Shin

    2013-01-01

    investigate source processes of the 2011 Tohoku-Oki earthquake, we utilized a source location method using high-frequency (5-10 Hz) seismic amplitudes. In this method, we assumed far-field isotropic radiation of S waves, and conducted a spatial grid search to find the best fitting source locations along the subducted slab in each successive time window. Our application of the method to the Tohoku-Oki earthquake resulted in artifact source locations at shallow depths near the trench caused by limited station coverage and noise effects. We then assumed various source node distributions along the plate, and found that the observed seismograms were most reasonably explained when assuming deep source nodes. This result suggests that the high-frequency seismic waves were radiated at deeper depths during the earthquake, a feature which is consistent with results obtained from teleseismic back-projection and strong-motion source model studies. We identified three high-frequency subevents, and compared them with the moment-rate function estimated from low-frequency seismograms. Our comparison indicated that no significant moment release occurred during the first high-frequency subevent and the largest moment-release pulse occurred almost simultaneously with the second high-frequency subevent. We speculated that the initial slow rupture propagated bilaterally from the hypocenter toward the land and trench. The landward subshear rupture propagation consisted of three successive high-frequency subevents. The trenchward propagation ruptured the strong asperity and released the largest moment near the trench.

  7. A Mechanism for Upper Airway Stability during Slow Wave Sleep

    PubMed Central

    McSharry, David G.; Saboisky, Julian P.; DeYoung, Pam; Matteis, Paul; Jordan, Amy S.; Trinder, John; Smales, Erik; Hess, Lauren; Guo, Mengshuang; Malhotra, Atul

    2013-01-01

    Study Objectives: The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. Design: The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Setting: Sleep laboratory. Participants: Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. Intervention: SWS. Measurement and Results: Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Conclusion: Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS. Citation: McSharry DG; Saboisky JP; DeYoung P; Matteis P; Jordan AS; Trinder J; Smales E; Hess L; Guo M; Malhotra A. A mechanism for upper airway stability during slow wave sleep. SLEEP 2013;36(4):555-563. PMID:23565001

  8. Medical management with diazepam for electrical status epilepticus during slow wave sleep in children.

    PubMed

    Francois, Densley; Roberts, Jessica; Hess, Stephany; Probst, Luke; Eksioglu, Yaman

    2014-03-01

    Oral diazepam, administered in varying doses, is among the few proposed treatment options for electrical status epilepticus during slow wave sleep in children. We sought to retrospectively evaluate the long-term efficacy of high-dose oral diazepam in reducing electrographic and clinical evidence of electrical status epilepticus during slow wave sleep in children. Additionally, we surveyed caregivers to assess safety and behavioral outcomes related to ongoing therapy. We collected demographic and clinical data on children treated for electrical status epilepticus during slow wave sleep between October 2010 and March 2013. We sought to identify the number of patients who achieved at least a 50% reduction in spike wave index on electroencephalograph after receiving high-dose oral diazepam. We also administered a questionnaire to caregivers to assess for behavioral problems and side effects. We identified 42 evaluable patients who received high-dose diazepam (range 0.23-2.02 mg/kg per day) to treat electrical status epilepticus during slow wave sleep. Twenty-six patients had spike reduction data and 18/26 (69.2%) children achieved a greater than 50% reduction in spike wave count from an average of 15.54 to 5.05 (P = 0.001). We received 28 responses to the questionnaire. Some patients experienced new onset of difficulties with problem-solving and speech and writing development. Sleep disturbances (50%) and irritability (57.1%) were the most frequent side effects reported. There did not appear to be a dose-related effect with electroencephalograph changes, behavioral effects, or side effects. High-dose oral diazepam significantly reduces the spike wave count on electroencephalograph in children with electrical status epilepticus during slow wave sleep. Although this therapy improves electroencephalograph-related findings, it can be associated with concerning neurological and behavioral side effects in some individuals, so further study is warranted. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Phase-Locked Loop for Precisely Timed Acoustic Stimulation during Sleep

    PubMed Central

    Santostasi, Giovanni; Malkani, Roneil; Riedner, Brady; Bellesi, Michele; Tononi, Giulio; Paller, Ken A.; Zee, Phyllis C.

    2016-01-01

    Background A Brain-Computer Interface could potentially enhance the various benefits of sleep. New Method We describe a strategy for enhancing slow-wave sleep (SWS) by stimulating the sleeping brain with periodic acoustic stimuli that produce resonance in the form of enhanced slow-wave activity in the electroencephalogram (EEG). The system delivers each acoustic stimulus at a particular phase of an electrophysiological rhythm using a Phase-Locked Loop (PLL). Results The PLL is computationally economical and well suited to follow and predict the temporal behavior of the EEG during slow-wave sleep. Comparison with Existing Methods Acoustic stimulation methods may be able to enhance SWS without the risks inherent in electrical stimulation or pharmacological methods. The PLL method differs from other acoustic stimulation methods that are based on detecting a single slow wave rather than modeling slow-wave activity over an extended period of time. Conclusions By providing real-time estimates of the phase of ongoing EEG oscillations, the PLL can rapidly adjust to physiological changes, thus opening up new possibilities to study brain dynamics during sleep. Future application of these methods hold promise for enhancing sleep quality and associated daytime behavior and improving physiologic function. PMID:26617321

  10. Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered During Slow Wave Sleep Does Not Improve Declarative Memory More Than Sham: A Randomized Sham Controlled Crossover Study.

    PubMed

    Sahlem, Gregory L; Badran, Bashar W; Halford, Jonathan J; Williams, Nolan R; Korte, Jeffrey E; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L; Runion, Jennifer; Bachman, David L; Uhde, Thomas W; Borckardt, Jeffery J; George, Mark S

    2015-01-01

    A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current waveform (square in our study, nearly sinusoidal in the original). Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517 mA/cm(2), and oscillated between zero and maximal current at a frequency of 0.75 Hz. Stimulation occurred during five-five minute blocks with 1-min inter-block intervals (25 min total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1 ± 3.0 SD more associations) (sham = 3.8 ± 3.1 SD more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6 ± 2.7 SD correctly typed sequences) compared to sham stimulation (2.3 ± 2.2 SD correctly typed sequences)]. In this study, we failed to find improvements in declarative or performance memory and could not replicate an earlier study using nearly identical settings. Specifically we failed to find a beneficial effect on either overnight declarative or non-declarative memory consolidation via square-wave oscillating tDCS intervention applied bi-frontally during early NREM sleep. It is unclear if the morphology of the tDCS pulse is critical in any memory related improvements. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Slow wave structures using twisted waveguides for charged particle applications

    DOEpatents

    Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.

    2012-12-11

    A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.

  12. Pulse propagation in discrete excitatory networks of integrate-and-fire neurons.

    PubMed

    Badel, Laurent; Tonnelier, Arnaud

    2004-07-01

    We study the propagation of solitary waves in a discrete excitatory network of integrate-and-fire neurons. We show the existence and the stability of a fast wave and a family of slow waves. Fast waves are similar to those already described in continuum networks. Stable slow waves have not been previously reported in purely excitatory networks and their propagation is particular to the discrete nature of the network. The robustness of our results is studied in the presence of noise.

  13. The theory of an auto-resonant field emission cathode relativistic electron accelerator for high efficiency microwave to direct current power conversion

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1990-01-01

    A novel method of microwave power conversion to direct current is discussed that relies on a modification of well known resonant linear relativistic electron accelerator techniques. An analysis is presented that shows how, by establishing a 'slow' electromagnetic field in a waveguide, electrons liberated from an array of field emission cathodes, are resonantly accelerated to several times their rest energy, thus establishing an electric current over a large potential difference. Such an approach is not limited to the relatively low frequencies that characterize the operation of rectennas, and can, with appropriate waveguide and slow wave structure design, be employed in the 300 to 600 GHz range where much smaller transmitting and receiving antennas are needed.

  14. Long-range correlation of the membrane potential in neocortical neurons during slow oscillation

    PubMed Central

    Volgushev, Maxim; Chauvette, Sylvain; Timofeev, Igor

    2012-01-01

    Large amplitude slow waves are characteristic for the summary brain activity, recorded as electroencephalogram (EEG) or local field potentials (LFP), during deep stages of sleep and some types of anesthesia. Slow rhythm of the synchronized EEG reflects an alternation of active (depolarized, UP) and silent (hyperpolarized, DOWN) states of neocortical neurons. In neurons, involvement in the generalized slow oscillation results in a long-range synchronization of changes of their membrane potential as well as their firing. Here, we aimed at intracellular analysis of details of this synchronization. We asked which components of neuronal activity exhibit long-range correlations during the synchronized EEG? To answer this question, we made simultaneous intracellular recordings from two to four neocortical neurons in cat neocortex. We studied how correlated is the occurrence of active and silent states, and how correlated are fluctuations of the membrane potential in pairs of neurons located close one to the other or separated by up to 13 mm. We show that strong long-range correlation of the membrane potential was observed only (i) during the slow oscillation but not during periods without the oscillation, (ii) during periods which included transitions between the states but not during within-the-state periods, and (iii) for the low-frequency (<5 Hz) components of membrane potential fluctuations but not for the higher-frequency components (>10 Hz). In contrast to the neurons located several millimeters one from the other, membrane potential fluctuations in neighboring neurons remain strongly correlated during periods without slow oscillation. We conclude that membrane potential correlation in distant neurons is brought about by synchronous transitions between the states, while activity within the states is largely uncorrelated. The lack of the generalized fine-scale synchronization of membrane potential changes in neurons during the active states of slow oscillation may allow individual neurons to selectively engage in short living episodes of correlated activity—a process that may be similar to dynamical formation of neuronal ensembles during activated brain states. PMID:21854963

  15. Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliasson, B.; Stenflo, L.; Department of Physics, Linkoeping University, SE-581 83 Linkoeping

    2008-10-15

    We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuirmore » wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.« less

  16. Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes

    NASA Astrophysics Data System (ADS)

    Lythgoe, K.; Deuss, A. F.

    2017-12-01

    The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.

  17. [Effect of oxysophoridine on electric activities and its power spectrum of reticular formation in rats].

    PubMed

    Yu, Jianqiang; Li, Yuxiang; Zhao, Chengjun; Gong, Xin; Liu, Jianping; Wang, Feng; Jiang, Yuanxu

    2010-05-01

    To observe the effect of oxysophoridine (OSR) on the EEG and its power spectrum of reticulum formation in mesencephalon of anaesthetized rat. Utilizing the technique of brain stereotactic apparatus, electrodes were implanted into reticulum formation of mesencephalon. Monopolar lead and computerized FFT technique were employed to record and analyse the index of EEG, power spectrum and frequency distribution in order to study the effect of oxysophoridine on the bioelectricity change of mesencephalon reticulum formation in rats. After administrating(icy) with oxysophoridine at the dose of 2.5,5, 10 mg/rat, the EEG of mesencephalon reticulum formation mainly characterized with low amplitude and slow waves accompanied by spindle-formed sleeping waves with a significant decrease of total power of EEG (P < 0.05) while the ratio of theta, alpha waves increased in total frequency of rats (P < 0.05). Oxysophoridine possesses central inhibitory effects and its inhibitory mechanism may associate with the reduction of bioelectricity in mesencephalon reticulum formation. Mesencephalon reticulum formation may serve as one part of the structure serving as the circuit conducting the central inhibitory effect of oxysophoridine. [Key words] oxysophoridine; reticulum formation; electroencephalogram (EEG) ; rats

  18. Nonlinear effects associated with fast magnetosonic waves and turbulent magnetic amplification in laboratory and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Tiwary, PremPyari; Sharma, Swati; Sharma, Prachi; Singh, Ram Kishor; Uma, R.; Sharma, R. P.

    2016-12-01

    This paper presents the spatio-temporal evolution of magnetic field due to the nonlinear coupling between fast magnetosonic wave (FMSW) and low frequency slow Alfvén wave (SAW). The dynamical equations of finite frequency FMSW and SAW in the presence of ponderomotive force of FMSW (pump wave) has been presented. Numerical simulation has been carried out for the nonlinear coupled equations of finite frequency FMSW and SAW. A systematic scan of the nonlinear behavior/evolution of the pump FMSW has been done for one of the set of parameters chosen in this paper, using the coupled dynamical equations. Filamentation of fast magnetosonic wave has been considered to be responsible for the magnetic turbulence during the laser plasma interaction. The results show that the formation and growth of localized structures depend on the background magnetic field but the order of amplification does not get affected by the magnitude of the background magnetic field. In this paper, we have shown the relevance of our model for two different parameters used in laboratory and astrophysical phenomenon. We have used one set of parameters pertaining to experimental observations in the study of fast ignition of laser fusion and hence studied the turbulent structures in stellar environment. The other set corresponds to the study of magnetic field amplification in the clumpy medium surrounding the supernova remnant Cassiopeia A. The results indicate considerable randomness in the spatial structure of the magnetic field profile in both the cases and gives a sufficient indication of turbulence. The turbulent spectra have been studied and the break point has been found around k which is consistent with the observations in both the cases. The nonlinear wave-wave interaction presented in this paper may be important in understanding the turbulence in the laboratory as well as the astrophysical phenomenon.

  19. Fast decomposition of two ultrasound longitudinal waves in cancellous bone using a phase rotation parameter for bone quality assessment: Simulation study.

    PubMed

    Taki, Hirofumi; Nagatani, Yoshiki; Matsukawa, Mami; Kanai, Hiroshi; Izumi, Shin-Ichi

    2017-10-01

    Ultrasound signals that pass through cancellous bone may be considered to consist of two longitudinal waves, which are called fast and slow waves. Accurate decomposition of these fast and slow waves is considered to be highly beneficial in determination of the characteristics of cancellous bone. In the present study, a fast decomposition method using a wave transfer function with a phase rotation parameter was applied to received signals that have passed through bovine bone specimens with various bone volume to total volume (BV/TV) ratios in a simulation study, where the elastic finite-difference time-domain method is used and the ultrasound wave propagated parallel to the bone axes. The proposed method succeeded to decompose both fast and slow waves accurately; the normalized residual intensity was less than -19.5 dB when the specimen thickness ranged from 4 to 7 mm and the BV/TV value ranged from 0.144 to 0.226. There was a strong relationship between the phase rotation value and the BV/TV value. The ratio of the peak envelope amplitude of the decomposed fast wave to that of the slow wave increased monotonically with increasing BV/TV ratio, indicating the high performance of the proposed method in estimation of the BV/TV value in cancellous bone.

  20. Nitric oxide signaling pathways involved in the inhibition of spontaneous activity in the guinea pig prostate.

    PubMed

    Dey, Anupa; Lang, Richard J; Exintaris, Betty

    2012-06-01

    We investigated nitric oxide mediated inhibition of spontaneous activity recorded in young and aging guinea pig prostates. Conventional intracellular microelectrode and tension recording techniques were used. The nitric oxide donor sodium nitroprusside (10 μM) abolished spontaneous contractions and slow wave activity in 5 young and 5 aging prostates. Upon adding the nitric oxide synthase inhibitor L-NAME (10 μM) the frequency of spontaneous contractile and electrical activity was significantly increased in each age group. This increase was significantly larger in 4 to 8 preparations of younger vs aging prostates (about 40% to 50% vs about 10% to 20%, 2-way ANOVA p<0.01). Other measured parameters, including the duration, amplitude and membrane potential of spontaneous electrical and contractile activity, were not altered from control values. The guanylate cyclase inhibitor ODQ (10 μM) significantly increased the frequency of spontaneous activity by 10% to 30% in 6 young guinea pig prostates (Student paired t test p<0.05). However, it had no effect on aging prostates. The cGMP analogue 8-Br-GMP (1 μM) and the PDE5 inhibitor dipyridamole (1 μM) significantly decreased the frequency of contractile activity by about 70% in 4 to 9 young and older prostates (Student paired t test p<0.05). The decrease in the response to L-NAME in spontaneous contractile and slow wave activity in aging prostate tissue compared to that in young prostates suggests that with age there is a decrease in nitric oxide production. This may further explain the increase in prostatic smooth muscle tone observed in age related prostate specific conditions, such as benign prostatic hyperplasia. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Calcium waves.

    PubMed

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  2. Dissipation of Alfven Waves at Fluid Scale through Parametric Decay Instabilities in Low-beta Turbulent Plasma

    NASA Astrophysics Data System (ADS)

    Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.

    2017-12-01

    The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.

  3. Ultrawide low frequency band gap of phononic crystal in nacreous composite material

    NASA Astrophysics Data System (ADS)

    Yin, J.; Huang, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2014-06-01

    The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results.

  4. Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-04-01

    In this paper, a general theory of coherent population oscillation effect in an Er3+ -doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation at room temperature is presented. Using the numerical simulation, in case of dual frequency light waves (1480 nm and 980 nm) with co-propagation and counter-propagation, we analyze the effect of the pump optical power ratio (M) on the group speed of light. The group velocity of light can be varied with the change of M. We research the time delay and fractional delay in an Er3+-doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation. Compared to the methods of the single pumping, the larger time delay can be got by using the technique of dual-frequency laser pumped fiber with co-propagation and counter-propagation.

  5. Modeling of a Compact Terahertz Source based on the Two-Stream Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svimonishvili, Tengiz

    2016-05-17

    THz radiation straddles the microwave and infrared bands of the electromagnetic spectrum, thus combining the penetrating power of lower-frequency waves and imaging capabilities of higher-energy infrared radiation. THz radiation is employed in various elds such as cancer research, biology, agriculture, homeland security, and environmental monitoring. Conventional vacuum electronic sources of THz radiation (e.g., fast- and slow-wave devices) either require very small structures or are bulky and expensive to operate. Optical sources necessitate cryogenic cooling and are presently capable of producing milliwatt levels of power at THz frequencies. We propose a millimeter and sub-millimeter wave source based on a well-known phenomenonmore » called the two-stream instability. The two-beam source relies on lowenergy and low-current electron beams for operation. Also, it is compact, simple in design, and does not contain expensive parts that require complex machining and precise alignment. In this dissertation, we perform 2-D particle-in-cell (PIC) simulations of the interaction region of the two-beam source. The interaction region consists of a beam pipe of radius ra and two electron beams of radius rb co-propagating and interacting inside the pipe. The simulations involve the interaction of unmodulated (no initial energy modulation) and modulated (energy-modulated, seeded at a given frequency) electron beams. In addition, both cold (monoenergetic) and warm (Gaussian) beams are treated.« less

  6. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishikawa, K.; Frank, L.A.; Huang, C.Y.

    Plasma data from ISEE 1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electronmore » beam and the ion beam excite ion acoustic waves with the Doppler-shifted real frequency ..omega..approx. = +- k/sub parallel/(c/sub s/-V/sub i//sub //sub parallel/). However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion beam is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points for simulations show turbulence generated by growing waves. The frequency of these spectra ranges from ..cap omega../sub i/ to ..omega../sub p//sub e/, which is in qualitative agreement with the satellite data. copyright American Geophysical Union 1988« less

  7. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography.

    PubMed

    Bossy, Emmanuel; Padilla, Frédéric; Peyrin, Françoise; Laugier, Pascal

    2005-12-07

    Three-dimensional numerical simulations of ultrasound transmission were performed through 31 trabecular bone samples measured by synchrotron microtomography. The synchrotron microtomography provided high resolution 3D mappings of bone structures, which were used as the input geometry in the simulation software developed in our laboratory. While absorption (i.e. the absorption of ultrasound through dissipative mechanisms) was not taken into account in the algorithm, the simulations reproduced major phenomena observed in real through-transmission experiments in trabecular bone. The simulated attenuation (i.e. the decrease of the transmitted ultrasonic energy) varies linearly with frequency in the MHz frequency range. Both the speed of sound (SOS) and the slope of the normalized frequency-dependent attenuation (nBUA) increase with the bone volume fraction. Twenty-five out of the thirty-one samples exhibited negative velocity dispersion. One sample was rotated to align the main orientation of the trabecular structure with the direction of ultrasonic propagation, leading to the observation of a fast and a slow wave. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures. As an illustration, comparison between results obtained on bone modelled either as a fluid or a solid structure suggested the major role of mode conversion of the incident acoustic wave to shear waves in bone to explain the large contribution of scattering to the overall attenuation.

  8. Technologically sensed social exposure related to slow-wave sleep in healthy adults.

    PubMed

    Butt, Maryam; Ouarda, Taha B M J; Quan, Stuart F; Pentland, Alex Sandy; Khayal, Inas

    2015-03-01

    The aim of this study is to understand the relationship between automatically captured social exposure and detailed sleep parameters of healthy young adults. This study was conducted in a real-world setting in a graduate-student housing community at a US university. Social exposure was measured using Bluetooth proximity sensing technology in mobile devices. Sleep was monitored in a naturalistic setting using a headband sleep monitoring device over a period of 2 weeks. The analysis included a total of 11 subjects (6 males and 5 females) aged 24-35 (149 subject nights). Slow-wave sleep showed a significant positive correlation (Spearman's rho = 0.51, p < 0.0001) with social exposure, whereas light non-REM (N1 + N2) sleep and wake time were found to be negatively correlated (rho = -0.25, p < 0.01; rho = -0.21, p < 0.01, respectively). The correlation of median slow-wave sleep with median social exposure per subject showed a strong positive significance (rho = 0.88, p < 0.001). On average, within subjects, following day's social exposure was higher when (slow-wave NREM + REM) percentage was high (Wilcoxon sign-ranked test, p < 0.05). Subjects with higher social exposure spent more time in slow-wave sleep. Following day's social exposure was found to be positively affected by previous night's (slow-wave NREM + REM) percentage. This suggests that sleep affects following day's social exposure and not vice versa. Capturing an individual's dynamic social behavior and sleep from their natural environment can provide novel insights into these relationships.

  9. Characteristics of the GPR field pattern antennas

    NASA Astrophysics Data System (ADS)

    Pérez-Gracia, V.; González-Drigo, R.; Di Capua, D.; Pujades, L. G.

    2007-10-01

    Ground-Penetrating Radar has become a popular non-destructive and non-invasive tool in different kind of applications: civil engineering, archaeology, concrete and masonry analysis, etc. The selection of the antenna frequencies depends on the application, but each antenna has a radiation pattern and some characteristics that have influence in the final interpretation and in the model obtained for the studied medium. The knowledge of these features and its coupling effects with the medium could improve the results of the GPR prospecting studies. In this work, some experimental procedures were carried out in order to obtain the 1.6 GHz centre frequency antenna characteristics in the air and in one material medium and to compare them. First, the study of the attenuation due to geometrical spreading was performed. This result was compared with the amplitude attenuation in a material medium, deduced from the GPR experimental data. Second, the shape of the radiation pattern was estimated in laboratory for different distances between the target and the antenna. Near field and far field were considered during the experimental data acquisition. Third, the relative amplitude of the reflected wave (in dB) was obtained depending on the relative position of the antenna over the target. The shape of the radiation pattern and the relative amplitudes obtained in the air were compared with those obtained in a slow medium (water). This slow medium was characterized with the wave velocity and the attenuation factor of the GPR signal.

  10. Prolonged treatment with transcutaneous electrical nerve stimulation (TENS) modulates neuro-gastric motility and plasma levels of vasoactive intestinal peptide (VIP), motilin and interleukin-6 (IL-6) in systemic sclerosis.

    PubMed

    McNearney, Terry A; Sallam, Hanaa S; Hunnicutt, Sonya E; Doshi, Dipti; Chen, Jiande D Z

    2013-01-01

    We assessed the effects of transcutaneous electrical nerve stimulation (TENS) on neurogastric functioning in scleroderma patients. Seventeen SSc patients underwent 30 min TENS treatment >10Hz at GI acupuncture points PC6 and ST36, once (acute TENS) and then after two weeks of TENS sessions for 30 min twice daily (prolonged TENS). Data collected at Visits 1 and 2 included gastric myoelectrical activity (GMA) by surface electrogastrography (EGG), heart rate variability (HRV) by surface electrocardiography (EKG), GI specific symptoms and health related SF-36 questionnaires. Plasma VIP, motilin and IL-6 levels were determined. Statistical analyses were performed by Student's t-test, Spearman Rank and p-values <0.05 were considered significant. 1. Only after prolonged TENS, the percentages of normal slow waves and average slow wave coupling (especially channels 1, 2 reflecting gastric pacemaker and corpus regions) were significantly increased; 2. the percentage of normal slow waves was significantly correlated to sympathovagal balance; 3. Mean plasma VIP and motilin levels were significantly decreased after acute TENS, (vs. baseline), generally maintained in the prolonged TENS intervals. Compared to baseline, mean plasma IL-6 levels were significantly increased after acute TENS, but significantly decreased after prolonged TENS. 4. After prolonged TENS, the frequency of awakening due to abdominal pain and abdominal bloating were significantly and modestly decreased, respectively. In SSc patients, two weeks of daily TENS improved patient GMA scores, lowered plasma VIP, motilin and IL-6 levels and improved association between GMA and sympathovagal balance. This supports the therapeutic potential of prolonged TENS to enhance gastric myoelectrical functioning in SSc.

  11. Sleep characteristics in the quail Coturnix coturnix.

    PubMed

    Mexicano, Graciela; Montoya-Loaiza, Bibiana; Ayala-Guerrero, Fructuoso

    2014-04-22

    As mammals, birds exhibit two sleep phases, slow wave sleep (SWS) and REM (Rapid Eye Movement) sleep characterized by presenting different electrophysiological patterns of brain activity. During SWS a high amplitude slow wave pattern in brain activity is observed. This activity is substituted by a low amplitude fast frequency pattern during REM sleep. Common quail (Coturnix coturnix) is an animal model that has provided information related to different physiological mechanisms present in man. There are reports related to its electrophysiological brain activity, however the sleep characteristics that have been described are not. The objectives of this study is describing the sleep characteristics throughout the nychthemeral cycle of the common quail and consider this bird species as an avian model to analyze the regulatory mechanisms of sleep. Experiments were carried out in implanted exemplars of C. coturnix. Under general anesthesia induced by ether inhalation, stainless steel electrodes were placed to register brain activity from the anterior and posterior areas during 24 continuous hours throughout the sleep-wake cycle. Ocular and motor activities were visually monitored. Quail showed four electrophysiologically and behaviorally different states of vigilance: wakefulness (53.28%), drowsiness (14.27%), slow wave sleep (30.47%) and REM sleep (1.98%). The animals presented 202 REM sleep episodes throughout the nychthemeral cycle. Sleep distribution was polyphasic; however sleep amount was significantly greater during the period corresponding to the night. The number of nocturnal REM sleep episodes was significantly greater than that of diurnal one. The quail C. coturnix shows a polyphasic distribution of sleep; however the amount of this state of vigilance is significantly greater during the nocturnal period. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Tremor, remote triggering and earthquake cycle

    NASA Astrophysics Data System (ADS)

    Peng, Z.

    2012-12-01

    Deep tectonic tremor and episodic slow-slip events have been observed at major plate-boundary faults around the Pacific Rim. These events have much longer source durations than regular earthquakes, and are generally located near or below the seismogenic zone where regular earthquakes occur. Tremor and slow-slip events appear to be extremely stress sensitive, and could be instantaneously triggered by distant earthquakes and solid earth tides. However, many important questions remain open. For example, it is still not clear what are the necessary conditions for tremor generation, and how remote triggering could affect large earthquake cycle. Here I report a global search of tremor triggered by recent large teleseismic earthquakes. We mainly focus on major subduction zones around the Pacific Rim. These include the southwest and northeast Japan subduction zones, the Hikurangi subduction zone in New Zealand, the Cascadia subduction zone, and the major subduction zones in Central and South America. In addition, we examine major strike-slip faults around the Caribbean plate, the Queen Charlotte fault in northern Pacific Northwest Coast, and the San Andreas fault system in California. In each place, we first identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. We also calculate the dynamic stress and check the triggering relationship with the Love and Rayleigh waves. Finally, we calculate the triggering potential with the local fault orientation and surface-wave incident angles. Our results suggest that tremor exists at many plate-boundary faults in different tectonic environments, and could be triggered by dynamic stress as low as a few kPas. In addition, we summarize recent observations of slow-slip events and earthquake swarms triggered by large distant earthquakes. Finally, we propose several mechanisms that could explain apparent clustering of large earthquakes around the world.

  13. Odors enhance slow-wave activity in non-rapid eye movement sleep

    PubMed Central

    Perl, Ofer; Arzi, Anat; Sela, Lee; Secundo, Lavi; Holtzman, Yael; Samnon, Perry; Oksenberg, Arie; Sobel, Noam

    2016-01-01

    Most forms of suprathreshold sensory stimulation perturb sleep. In contrast, presentation of pure olfactory or mild trigeminal odorants does not lead to behavioral or physiological arousal. In fact, some odors promote objective and subjective measures of sleep quality in humans and rodents. The brain mechanisms underlying these sleep-protective properties of olfaction remain unclear. Slow oscillations in the electroencephalogram (EEG) are a marker of deep sleep, and K complexes (KCs) are an EEG marker of cortical response to sensory interference. We therefore hypothesized that odorants presented during sleep will increase power in slow EEG oscillations. Moreover, given that odorants do not drive sleep interruption, we hypothesized that unlike other sensory stimuli odorants would not drive KCs. To test these hypotheses we used polysomnography to measure sleep in 34 healthy subjects (19 women, 15 men; mean age 26.5 ± 2.5 yr) who were repeatedly presented with odor stimuli via a computer-controlled air-dilution olfactometer over the course of a single night. Each participant was exposed to one of four odorants, lavender oil (n = 13), vetiver oil (n = 5), vanillin (n = 12), or ammonium sulfide (n = 4), for durations of 5, 10, and 20 s every 9–15 min. Consistent with our hypotheses, we found that odor presentation during sleep enhanced the power of delta (0.5–4 Hz) and slow spindle (9–12 Hz) frequencies during non-rapid eye movement sleep. The increase was proportionate to odor duration. In addition, odor presentation did not modulate the occurrence of KCs. These findings imply a sleep-promoting olfactory mechanism that may deepen sleep through driving increased slow-frequency oscillations. PMID:26888107

  14. Odors enhance slow-wave activity in non-rapid eye movement sleep.

    PubMed

    Perl, Ofer; Arzi, Anat; Sela, Lee; Secundo, Lavi; Holtzman, Yael; Samnon, Perry; Oksenberg, Arie; Sobel, Noam; Hairston, Ilana S

    2016-05-01

    Most forms of suprathreshold sensory stimulation perturb sleep. In contrast, presentation of pure olfactory or mild trigeminal odorants does not lead to behavioral or physiological arousal. In fact, some odors promote objective and subjective measures of sleep quality in humans and rodents. The brain mechanisms underlying these sleep-protective properties of olfaction remain unclear. Slow oscillations in the electroencephalogram (EEG) are a marker of deep sleep, and K complexes (KCs) are an EEG marker of cortical response to sensory interference. We therefore hypothesized that odorants presented during sleep will increase power in slow EEG oscillations. Moreover, given that odorants do not drive sleep interruption, we hypothesized that unlike other sensory stimuli odorants would not drive KCs. To test these hypotheses we used polysomnography to measure sleep in 34 healthy subjects (19 women, 15 men; mean age 26.5 ± 2.5 yr) who were repeatedly presented with odor stimuli via a computer-controlled air-dilution olfactometer over the course of a single night. Each participant was exposed to one of four odorants, lavender oil (n = 13), vetiver oil (n = 5), vanillin (n = 12), or ammonium sulfide (n = 4), for durations of 5, 10, and 20 s every 9-15 min. Consistent with our hypotheses, we found that odor presentation during sleep enhanced the power of delta (0.5-4 Hz) and slow spindle (9-12 Hz) frequencies during non-rapid eye movement sleep. The increase was proportionate to odor duration. In addition, odor presentation did not modulate the occurrence of KCs. These findings imply a sleep-promoting olfactory mechanism that may deepen sleep through driving increased slow-frequency oscillations. Copyright © 2016 the American Physiological Society.

  15. Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2011-07-01

    Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p < 0.05) differences in oscillation power between LS and REM were observed. However, the period of VLF oscillations around 8 mHz increased in REM sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.

  16. Effect of Stress and Saturation on Shear Wave Anisotropy: Laboratory Observations Using Laser Doppler Interferometry

    NASA Astrophysics Data System (ADS)

    Lebedev, M.; Collet, O.; Bona, A.; Gurevich, B.

    2015-12-01

    Estimations of hydrocarbon and water resources as well as reservoir management during production are the main challenges facing the resource recovery industry nowadays. The recently discovered reservoirs are not only deep but they are also located in complicated geological formations. Hence, the effect of anisotropy on reservoir imaging becomes significant. Shear wave (S-wave) splitting has been observed in the field and laboratory experiments for decades. Despite the fact that S-wave splitting is widely used for evaluation of subsurface anisotropy, the effects of stresses as well fluid saturation on anisotropy have not been understood in detail. In this paper we present the laboratory study of the effect of stress and saturation on S-wave splitting for a Bentheim sandstone sample. The cubic sample (50mm3), porosity 22%, density 1890kg/m3) was placed into a true-triaxial cell. The sample was subjected to several combinations of stresses varying from 0 to 10MPa and applied to the sample in two directions (X and Y), while no stress was applied to the sample in the Z-direction. The sample's bedding was nearly oriented parallel to Y-Z plane. The ultrasonic S-waves were exited at a frequency of 0.5MHz by a piezoelectric transducer and were propagating in the Z-direction. Upon wave arrival onto the free surface the displacement of the surface was monitored by a Laser Doppler interferometer. Hodograms of the central point of the dry sample (Fig. 1) demonstrate how S-wave polarizations for both "fast" and "slow" S-waves change when increasing the stress in the X direction, while the stress in direction Y is kept constant at 3 MPa. Polarization of the fast S wave is shifted towards the X-axis (axis of the maximum stress). While both S-wave velocities increase with stress, the anisotropy level remains the same. No shift of polarization of fast wave was observed when the stress along the Y-axis was kept at 3 MPa, while the stress along the X-axis was increasing. However, in that case, S-wave splitting is more prominent. The fast S-wave velocity is increasing with the stress increase while the slow S-wave velocity starts decreasing after 5MPa, indicating possible cracks opening in the Y-direction. Interestingly no change in anisotropy was observed for the water-saturated sample.

  17. Costs of storing colour and complex shape in visual working memory: Insights from pupil size and slow waves.

    PubMed

    Kursawe, Michael A; Zimmer, Hubert D

    2015-06-01

    We investigated the impact of perceptual processing demands on visual working memory of coloured complex random polygons during change detection. Processing load was assessed by pupil size (Exp. 1) and additionally slow wave potentials (Exp. 2). Task difficulty was manipulated by presenting different set sizes (1, 2, 4 items) and by making different features (colour, shape, or both) task-relevant. Memory performance in the colour condition was better than in the shape and both condition which did not differ. Pupil dilation and the posterior N1 increased with set size independent of type of feature. In contrast, slow waves and a posterior P2 component showed set size effects but only if shape was task-relevant. In the colour condition slow waves did not vary with set size. We suggest that pupil size and N1 indicates different states of attentional effort corresponding to the number of presented items. In contrast, slow waves reflect processes related to encoding and maintenance strategies. The observation that their potentials vary with the type of feature (simple colour versus complex shape) indicates that perceptual complexity already influences encoding and storage and not only comparison of targets with memory entries at the moment of testing. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Design and simulation of a sub-terahertz folded-waveguide extended interaction oscillator

    NASA Astrophysics Data System (ADS)

    Liu, Wenxin; Zhang, Zhaochuan; Zhao, Chao; Guo, Xin; Liao, Suying

    2017-06-01

    In this paper, an interesting type of a two-section folded wave-guide (TSFW) slow wave structure (SWS) for the development of sub-Terahertz (sub-THz) extended interaction oscillator (EIO) is proposed. In this sub-THz device, the prebunching electron beam is produced by the TSFW SWS, which results in the enhancement of the output power. To verify this concept, the TSFW for sub-THz EIO is developed, which includes the design, simulation, and some fabrications. A small size of electron optics system (EOS), the TSFW SWS for beam-wave interactions, and the output structure are studied with simulations. Through the codes Egun and Superfish, the EOS is designed and optimized. With a help of CST studio and 3D particle-in-cell (PIC) simulation CHIPIC, the characteristics of beam-wave interaction generated by the TSFW are studied. The results of PIC simulation show that the output power is remarkably enhanced by a factor of 3, which exceeds 200 W at the frequency of 108 GHz. Based on the optimum parameters, the TSFW is manufactured with a high speed numerical mill, and the test transmission characteristic |S21| is 13 dB. At last, the output structure with a pill-box window is optimized, fabricated, integrated, and tested, and the result shows that the voltage standing-wave ratio of the window is about 2.2 at an operating frequency of 108 GHz. This design and simulation can provide an effective method to develop high power THz sources.

  19. Elimination of spiral waves in a locally connected chaotic neural network by a dynamic phase space constraint.

    PubMed

    Li, Yang; Oku, Makito; He, Guoguang; Aihara, Kazuyuki

    2017-04-01

    In this study, a method is proposed that eliminates spiral waves in a locally connected chaotic neural network (CNN) under some simplified conditions, using a dynamic phase space constraint (DPSC) as a control method. In this method, a control signal is constructed from the feedback internal states of the neurons to detect phase singularities based on their amplitude reduction, before modulating a threshold value to truncate the refractory internal states of the neurons and terminate the spirals. Simulations showed that with appropriate parameter settings, the network was directed from a spiral wave state into either a plane wave (PW) state or a synchronized oscillation (SO) state, where the control vanished automatically and left the original CNN model unaltered. Each type of state had a characteristic oscillation frequency, where spiral wave states had the highest, and the intra-control dynamics was dominated by low-frequency components, thereby indicating slow adjustments to the state variables. In addition, the PW-inducing and SO-inducing control processes were distinct, where the former generally had longer durations but smaller average proportions of affected neurons in the network. Furthermore, variations in the control parameter allowed partial selectivity of the control results, which were accompanied by modulation of the control processes. The results of this study broaden the applicability of DPSC to chaos control and they may also facilitate the utilization of locally connected CNNs in memory retrieval and the exploration of traveling wave dynamics in biological neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Experimental and Computational Studies on the Scattering of an Edge-Guided Wave by a Hidden Crack on a Racecourse Shaped Hole.

    PubMed

    Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong

    2017-07-01

    Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.

  1. Application of MIMO Techniques in sky-surface wave hybrid networking sea-state radar system

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wu, X.; Yue, X.; Liu, J.; Li, C.

    2016-12-01

    The sky-surface wave hybrid networking sea-state radar system contains of the sky wave transmission stations at different sites and several surface wave radar stations. The subject comes from the national 863 High-tech Project of China. The hybrid sky-surface wave system and the HF surface wave system work simultaneously and the HF surface wave radar (HFSWR) can work in multi-static and surface-wave networking mode. Compared with the single mode radar system, this system has advantages of better detection performance at the far ranges in ocean dynamics parameters inversion. We have applied multiple-input multiple-output(MIMO) techniques in this sea-state radar system. Based on the multiple channel and non-causal transmit beam-forming techniques, the MIMO radar architecture can reduce the size of the receiving antennas and simplify antenna installation. Besides, by efficiently utilizing the system's available degrees of freedom, it can provide a feasible approach for mitigating multipath effect and Doppler-spread clutter in Over-the-horizon Radar. In this radar, slow-time phase-coded MIMO method is used. The transmitting waveforms are phase-coded in slow-time so as to be orthogonal after Doppler processing at the receiver. So the MIMO method can be easily implemented without the need to modify the receiver hardware. After the radar system design, the MIMO experiments of this system have been completed by Wuhan University during 2015 and 2016. The experiment used Wuhan multi-channel ionospheric sounding system(WMISS) as sky-wave transmitting source and three dual-frequency HFSWR developed by the Oceanography Laboratory of Wuhan University. The transmitter system located at Chongyang with five element linear equi-spaced antenna array and Wuhan with one log-periodic antenna. The RF signals are generated by synchronized, but independent digital waveform generators - providing complete flexibility in element phase and amplitude control, and waveform type and parameters. The field experimental results show the presented method is effective. The echoes are obvious and distinguishable both in co-located MIMO mode and widely distributed MIMO mode. Key words: sky-surface wave hybrid networking; sea-state radar; MIMO; phase-coded

  2. Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling

    2017-08-01

    The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.

  3. A megawatt-level surface wave oscillator in Y-band with large oversized structure driven by annular relativistic electron beam.

    PubMed

    Wang, Jianguo; Wang, Guangqiang; Wang, Dongyang; Li, Shuang; Zeng, Peng

    2018-05-03

    High power vacuum electronic devices of millimeter wave to terahertz regime are attracting extensive interests due to their potential applications in science and technologies. In this paper, the design and experimental results of a powerful compact oversized surface wave oscillator (SWO) in Y-band are presented. The cylindrical slow wave structure (SWS) with rectangular corrugations and large diameter about 6.8 times the radiation wavelength is proposed to support the surface wave interacting with annular relativistic electron beam. By choosing appropriate beam parameters, the beam-wave interaction takes place near the π-point of TM 01 mode dispersion curve, giving high coupling impedance and temporal growth rate compared with higher TM 0n modes. The fundamental mode operation of the device is verified by the particle-in-cell (PIC) simulation results, which also indicate its capability of tens of megawatts power output in the Y-band. Finally, a compact experimental setup is completed to validate our design. Measurement results show that a terahertz pulse with frequency in the range of 0.319-0.349 THz, duration of about 2 ns and radiation power of about 2.1 MW has been generated.

  4. Low-frequency dispersion and attenuation in anisotropic partially saturated rocks

    NASA Astrophysics Data System (ADS)

    Cavallini, Fabio; Carcione, José M.; Vidal de Ventós, Daniel; Engell-Sørensen, Lisbeth

    2017-06-01

    The mesoscopic-loss mechanism is believed to be the most important attenuation mechanism in porous media at seismic frequencies. It is caused by P-wave conversion to slow diffusion (Biot) modes at material inhomogeneity on length scales of the order of centimetres. It is very effective in partially saturated media, particularly in the presence of gas. We explicitly extend the theory of wave propagation at normal incidence to three periodic thin layers and using this result we obtain the five complex and frequency-dependent stiffness components of the corresponding periodic finely layered medium, where the equivalent medium is anisotropic, specifically transversely isotropic. The relaxation behaviour can be described by a single complex and frequency-dependent stiffness component, since the medium consists of plane homogeneous layers. The media can be dissimilar in any property, but a relevant example in hydrocarbon exploration is the case of partial saturation and the same frame skeleton, where the fluid can be brine, oil and gas. The numerical examples illustrate the implementation of the theory to compute the wave velocities (phase and energy) and quality factors. We consider two main cases, namely, the same frame (or skeleton) and different fluids, and the same fluid and different frame properties. Unlike the two-phase case (two fluids), the results show two relaxation peaks. This scenario is more realistic since usually reservoirs rocks contain oil, brine and gas. The theory is quite general since it is not only restricted to partial saturation, but also applies to important properties such as porosity and permeability heterogeneities.

  5. Infragravity wave generation and dynamics over a mild slope beach : Experiments and numerical computations

    NASA Astrophysics Data System (ADS)

    Cienfuegos, R.; Duarte, L.; Hernandez, E.

    2008-12-01

    Charasteristic frequencies of gravity waves generated by wind and propagating towards the coast are usually comprised between 0.05Hz and 1Hz. Nevertheless, lower frequecy waves, in the range of 0.001Hz and 0.05Hz, have been observed in the nearshore zone. Those long waves, termed as infragravity waves, are generated by complex nonlinear mechanisms affecting the propagation of irregular waves up to the coast. The groupiness of an incident random wave field may be responsible for producing a slow modulation of the mean water surface thus generating bound long waves travelling at the group speed. Similarly, a quasi- periodic oscillation of the break-point location, will be accompained by a slow modulation of set-up/set-down in the surf zone and generation and release of long waves. If the primary structure of the carrying incident gravity waves is destroyed (e.g. by breaking), forced long waves can be freely released and even reflected at the coast. Infragravity waves can affect port operation through resonating conditions, or strongly affect sediment transport and beach morphodynamics. In the present study we investigate infragravity wave generation mechanisms both, from experiments and numerical computations. Measurements were conducted at the 70-meter long wave tank, located at the Instituto Nacional de Hidraulica (Chile), prepared with a beach of very mild slope of 1/80 in order to produce large surf zone extensions. A random JONSWAP type wave field (h0=0.52m, fp=0.25Hz, Hmo=0.17m) was generated by a piston wave-maker and measurements of the free surface displacements were performed all over its length at high spatial resolution (0.2m to 1m). Velocity profiles were also measured at four verticals inside the surf zone using an ADV. Correlation maps of wave group envelopes and infragravity waves are computed in order to identify long wave generation and dynamics in the experimental set-up. It appears that both mechanisms (groupiness and break-point oscillation) are clearly present in this experiment while spectral analysis evidences the reorganization of energy density from the original narrow spectrum into the infragravity band. This experiment provides an opportunity to test numerical models that would in principle be able to reproduce infragravity wave generation and dynamics. We compare numerical results (free surface and velocities) produced by a fully nonlinear Boussinesq model including breaking and runup to the experimental data and show that the complex infragravity wave dynamics is adequately reproduced by the model.

  6. Synchronized gastric electrical stimulation improves vagotomy-induced impairment in gastric accommodation via the nitrergic pathway in dogs

    PubMed Central

    Chen, Jie; Koothan, Thillai; Chen, Jiande D. Z.

    2009-01-01

    Impaired gastric accommodation and gastric dysrhythmia are common in gastroparesis and functional dyspepsia. Recent studies have shown that synchronized gastric electrical stimulation (SGES) accelerates gastric emptying and enhances antral contractions in dogs. The aim of this study was to investigate the effects and mechanism of SGES on gastric accommodation and slow waves impaired by vagotomy in dogs. Gastric tone, compliance, and accommodation as well as slow waves with and without SGES were assessed in seven female regular dogs and seven dogs with bilateral truncal vagotomy, chronically implanted with gastric serosal electrodes and a gastric cannula. We found that 1) vagotomy impaired gastric accommodation that was normalized by SGES. The postprandial increase in gastric volume was 283.5 ± 50.6 ml in the controlled dogs, 155.2 ± 49.2 ml in the vagotomized dogs, and 304.0 ± 57.8 ml in the vagotomized dogs with SGES. The ameliorating effect of SGES was no longer observed after application of Nω-nitro-l-arginine (l-NNA); 2) vagotomy did not alter gastric compliance whereas SGES improved gastric compliance in the vagotomized dogs, and the improvement was also blocked by l-NNA; and 3) vagotomy impaired antral slow wave rhythmicity in both fasting and fed states. SGES at the proximal stomach enhanced the postprandial rhythmicity and amplitude (dominant power) of the gastric slow waves in the antrum. In conclusion, SGES with appropriate parameters restores gastric accommodation and improves gastric slow waves impaired by vagotomy. The improvement in gastric accommodation with SGES is mediated via the nitrergic pathway. Combined with previously reported findings (enhanced antral contractions and accelerated gastric emptying) and findings in this study (improved gastric accommodation and slow waves), SGES may be a viable therapy for gastroparesis. PMID:19023028

  7. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    PubMed Central

    Huang, Ming-Xiong; Nichols, Sharon; Baker, Dewleen G.; Robb, Ashley; Angeles, Annemarie; Yurgil, Kate A.; Drake, Angela; Levy, Michael; Song, Tao; McLay, Robert; Theilmann, Rebecca J.; Diwakar, Mithun; Risbrough, Victoria B.; Ji, Zhengwei; Huang, Charles W.; Chang, Douglas G.; Harrington, Deborah L.; Muzzatti, Laura; Canive, Jose M.; Christopher Edgar, J.; Chen, Yu-Han; Lee, Roland R.

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI. PMID:25009772

  8. Acquisition and analysis of angle-beam wavefield data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Alexander J.; Michaels, Jennifer E.; Levine, Ross M.

    2014-02-18

    Angle-beam ultrasonic testing is a common practical technique used for nondestructive evaluation to detect, locate, and characterize a variety of material defects and damage. Greater understanding of the both the incident wavefield produced by an angle-beam transducer and the subsequent scattering from a variety of defects and geometrical features is anticipated to increase the reliability of data interpretation. The focus of this paper is on acquiring and analyzing propagating waves from angle-beam transducers in simple, defect-free plates as a first step in the development of methods for flaw characterization. Unlike guided waves, which excite the plate throughout its thickness, angle-beammore » bulk waves bounce back and forth between the plate surfaces, resulting in the well-known multiple “skips” or “V-paths.” The experimental setup consists of a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. Although laser vibrometry is now routinely used to record guided waves for which the frequency content is below 1 MHz, it is more challenging to acquire higher frequency bulk waves in the 1–10 MHz range. Signals are recorded on the surface of an aluminum plate that were generated from a 5 MHz, 65° refracted angle, shear wave transducer-wedge combination. Data are analyzed directly in the x-t domain, via a slant stack Radon transform in the τ-p (offset time-slowness) domain, and via a 2-D Fourier transform in the ω-k domain, thereby enabling identification of specific arrivals and modes. Results compare well to those expected from a simple ray tracing analysis except for the unexpected presence of a strong Rayleigh wave.« less

  9. A compact frequency tunable radio frequency phase shifter with patterned Py enabled transmission line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, B.M. Farid; Divan, Ralu; Rosenmann, Daniel

    2015-01-01

    A well designed frequency tunable phase shifter using patterned Py with different thickness has been demonstrated. Phase shifter is implemented with a slow wave coplanar wave guide (CPW)transmission line, where the signal line has alternate short narrow and wide sections. Py is patterned on the top of narrow section for high inductance density, and inter-digital capacitor is implemented in wide section for high capacitance density. Compared with phase shifter using regular CPW, the dimension of the developed phase shifter has been reduced from 14.86 mm to4.70 mm at 2 GHz. Phase shifter based on 100 nm and 200 nm thickmore » patterned Py with the same dimensions (14lm10lm) are implemented and investigated comprehensively. FMR frequency of 3.2 GHz and 3.6 GHz without any external magnetic field has been achieved for100 nm and 200 nm thick Py film, respectively. Thicker Py has increased inductance density from 1067.2 nH/m to 1193.2 nH/m while the center frequency of the phase shifter has been shifted to 1.80 GHz. Frequency tunability of the phase shifter has been also demonstrated withDC current. The phase shifter can provide 90phase shift continuously from 2 GHz to 1.80 GHz with DC current from 0 mA to 150 mA. The design concept has great potential in design arbitrary tunable RF components such as filters and couplers.« less

  10. Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial

    NASA Astrophysics Data System (ADS)

    Hu, Sen; Liu, Dan; Lin, Hai; Chen, Jiao; Yi, Yuanyuan; Yang, Helin

    2017-03-01

    In this paper, a classical analogue of electromagnetically induced transparency (EIT) metamaterial is numerically and experimentally demonstrated. The unit cell of our proposed structure is composed of two identical and orthogonal double-end fork (DEF) metallic resonators. Under the excitation of the normally incident waves, each of the two DEFs exhibits different frequency of electric dipole response, which leads to the ultra-broadband and polarization-independent EIT-like effect. The resonant feature of the EIT-like effect has been qualitatively analyzed from the surface current distributions and quantitatively by the "two-oscillator" coupling model. In addition, the large group index is extracted to verify the slow light property within the transmission window. The EIT metamaterial structure with the above-mentioned characteristics may have potential applications in some areas, such as sensing, slow light, and filtering devices.

  11. "Paradox of slow frequencies" - Are slow frequencies in upper cortical layers a neural predisposition of the level/state of consciousness (NPC)?

    PubMed

    Northoff, Georg

    2017-09-01

    Consciousness research has much focused on faster frequencies like alpha or gamma while neglecting the slower ones in the infraslow (0.001-0.1Hz) and slow (0.1-1Hz) frequency range. These slower frequency ranges have a "bad reputation" though; their increase in power can observed during the loss of consciousness as in sleep, anesthesia, and vegetative state. However, at the same time, slower frequencies have been conceived instrumental for consciousness. The present paper aims to resolve this paradox which I describe as "paradox of slow frequencies". I first show various data that suggest a central role of slower frequencies in integrating faster ones, i.e., "temporo-spatial integration and nestedness". Such "temporo-spatial integration and nestedness" is disrupted during the loss of consciousness as in anesthesia and sleep leading to "temporo-spatial fragmentation and isolation" between slow and fast frequencies. Slow frequencies are supposedly mediated by neural activity in upper cortical layers in higher-order associative regions as distinguished from lower cortical layers that are related to faster frequencies. Taken together, slower and faster frequencies take on different roles for the level/state of consciousness. Faster frequencies by themselves are sufficient and thus a neural correlate of consciousness (NCC) while slower frequencies are a necessary non-sufficient condition of possible consciousness, e.g., a neural predisposition of the level/state of consciousness (NPC). This resolves the "paradox of slow frequencies" in that it assigns different roles to slower and faster frequencies in consciousness, i.e., NCC and NPC. Taken as NCC and NPC, fast and slow frequencies including their relation as in "temporo-spatial integration and nestedness" can be considered a first "building bloc" of a future "temporo-spatial theory of consciousness" (TTC) (Northoff, 2013; Northoff, 2014b; Northoff & Huang, 2017). Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Surface Plasmon Polaritons at the Boundary of a Graphene-Based Thin-Layer Medium

    NASA Astrophysics Data System (ADS)

    Evseev, D. A.; Sementsov, D. I.

    2018-03-01

    Properties of surface plasmon polaritons of the TM type at the interface of an isotropic insulator and a periodic graphene-insulator structure have been investigated. It is established that the presence of graphene in this structure allows one to obtain (in certain frequency ranges) negative effective permittivity and implement the condition for the existence of a surface wave that is practically unabsorbed. The influence of the graphene content in the structure on the characteristics of plasmon polaritons (in particular, the possibility of their significant slowing-down) is demonstrated.

  13. Effects of imatinib mesylate on spontaneous electrical and mechanical activity in smooth muscle of the guinea-pig stomach

    PubMed Central

    Hashitani, H; Hayase, M; Suzuki, H

    2008-01-01

    Background and purpose: Effects of imatinib mesylate, a Kit receptor tyrosine kinase inhibitor, on spontaneous activity of interstitial cells of Cajal (ICC) and smooth muscles in the stomach were investigated. Experimental approach: Effects of imatinib on spontaneous electrical and mechanical activity were investigated by measuring changes in the membrane potential and tension recorded from smooth muscles of the guinea-pig stomach. Its effects on spontaneous changes in intracellular concentration of Ca2+ ([Ca2+]i) (Ca2+ transients) were also examined in fura-2-loaded preparations. Key results: Imatinib (1–10 μM) suppressed spontaneous contractions and Ca2+ transients. Simultaneous recordings of electrical and mechanical activity demonstrated that imatinib (1 μM) reduced the amplitude of spontaneous contractions without suppressing corresponding slow waves. In the presence of nifedipine (1 μM), imatinib (10 μM) reduced the duration of slow waves and follower potentials in the antrum and accelerated their generation, but had little affect on their amplitude. In contrast, imatinib reduced the amplitude of antral slow potentials and slow waves in the corpus. Conclusions and implications: Imatinib may suppress spontaneous contractions of gastric smooth muscles by inhibiting pathways that increase [Ca2+]i in smooth muscles rather than by specifically inhibiting the activity of ICC. A high concentration of imatinib (10 μM) reduced the duration of slow waves or follower potentials in the antrum, which reflect activity of ICC distributed in the myenteric layers (ICC-MY), and suppressed antral slow potentials or corporal slow waves, which reflect activity of ICC within the muscle bundles (ICC-IM), presumably by inhibiting intracellular Ca2+ handling. PMID:18414381

  14. Measurement of tortuosity in aluminum foams using airborne ultrasound.

    PubMed

    Le, Lawrence H; Zhang, Chan; Ta, Dean; Lou, Edmond

    2010-01-01

    The slow compressional wave in air-saturated aluminum foams was studied by means of ultrasonic transverse transmission method over a frequency range from 0.2 MHz to 0.8 MHz. The samples investigated have three different cell sizes or pores per inch (5, 10 and 20 ppi) and each size has three aluminum volume fractions (5%, 8% and 12% AVF). Phase velocities show minor dispersion at low frequencies but remain constant after 0.7 MHz. Pulse broadening and amplitude attenuation are obvious and increase with increasing ppi. Attenuation increases considerably with AVF for 20 ppi foams. Tortuosity ranges from 1.003 to 1.032 and increases with AVF and ppi. However, the increase of tortuosity with AVF is very small for 10 and 20 ppi samples.

  15. Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, K.; Zhang, Z. D.; Qian, L.

    2016-02-08

    The thermal and electrical properties including the permittivity spectra in radio frequency region were investigated for copper/yttrium iron garnet (Cu/YIG) composites. Interestingly, the percolation behaviors in electrical and thermal conductivity were obtained due to the formation of copper particles' networks. Beyond the electrical percolation threshold, negative permittivity was observed and plasmon frequency was reduced by several orders of magnitude. With the increase in copper content, the thermal conductivity was gradually increased; meanwhile, the phonon scattering effect and thermal resistance get enhanced, so the rate of increase in thermal conductivity gradually slows down. Hopefully, Cu/YIG composites with tunable electrical and thermalmore » properties have great potentials for electromagnetic interference shielding and electromagnetic wave attenuation.« less

  16. Stability of Brillouin flow in the presence of slow-wave structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, D. H.; Lau, Y. Y.; Greening, G.

    2016-09-15

    Including a slow-wave structure (SWS) on the anode in the conventional, planar, and inverted magnetron, we systematically study the linear stability of Brillouin flow, which is the prevalent flow in crossed-field devices. The analytic treatment is fully relativistic and fully electromagnetic, and it incorporates the equilibrium density profile, flow profile, and electric field and magnetic field profiles in the linear stability analysis. Using parameters similar to the University of Michigan's recirculating planar magnetron, the numerical data show that the resonant interaction of the vacuum circuit mode and the corresponding smooth-bore diocotron-like mode is the dominant cause for instability. This resonantmore » interaction is far more important than the intrinsic negative (positive) mass property of electrons in the inverted (conventional) magnetron geometry. It is absent in either the smooth-bore magnetron or under the electrostatic assumption, one or both of which was almost always adopted in prior analytical formulation. This resonant interaction severely restricts the wavenumber for instability to the narrow range in which the cold tube frequency of the SWS is within a few percent of the corresponding smooth bore diocotron-like mode in the Brillouin flow.« less

  17. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus.

    PubMed

    Vandecasteele, Marie; Varga, Viktor; Berényi, Antal; Papp, Edit; Barthó, Péter; Venance, Laurent; Freund, Tamás F; Buzsáki, György

    2014-09-16

    Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field potentials in both anesthetized and behaving mice. Cholinergic stimulation completely blocked sharp wave ripples and strongly suppressed the power of both slow oscillations (0.5-2 Hz in anesthetized, 0.5-4 Hz in behaving animals) and supratheta (6-10 Hz in anesthetized, 10-25 Hz in behaving animals) bands. The same stimulation robustly increased both the power and coherence of theta oscillations (2-6 Hz) in urethane-anesthetized mice. In behaving mice, cholinergic stimulation was less effective in the theta (4-10 Hz) band yet it also increased the ratio of theta/slow oscillation and theta coherence. The effects on gamma oscillations largely mirrored those of theta. These findings show that medial septal cholinergic activation can both enhance theta rhythm and suppress peri-theta frequency bands, allowing theta oscillations to dominate.

  18. Collisionless slow shocks in magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Cremer, Michael; Scholer, Manfred

    The kinetic structure of collisionless slow shocks in the magnetotail is studied by solving the Riemann problem of the collapse of a current sheet with a normal magnetic field component using 2-D hybrid simulations. The collapse results in a current layer with a hot isotropic distribution and backstreaming ions in a boundary layer. The lobe plasma outside and within the boundary layer exhibits a large perpendicular to parallel temperature anisotropy. Waves in both regions propagate parallel to the magnetic field. In a second experiment a spatially limited high density beam is injected into a low beta background plasma and the subsequent wave excitation is studied. A model for slow shocks bounding the reconnection layer in the magnetotail is proposed where backstreaming ions first excite obliquely propagating waves by the electromagnetic ion/ion cyclotron instability, which lead to perpendicular heating. The T⊥/T∥ temperature anisotropy subsequently excites parallel propagating Alfvén ion cyclotron waves, which are convected into the slow shock and are refracted in the downstream region.

  19. Design of Silicon Photonic Crystal Waveguides for High Gain Raman Amplification Using Two Symmetric Transvers-Electric-Like Slow-Light Modes

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Hua; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2013-04-01

    We designed silicon photonic crystal (PhC) waveguides (WGs) for efficient silicon Raman amplifiers and lasers. We adopted narrow-width WGs to utilize two symmetric transvers-electric-like (TE-like) guided modes, which permit efficient external coupling for both the pump and Stokes waves. Modifying the size and shape of air holes surrounding the line-defect WG structures could tune the frequency difference between these two modes, at the Brillouin-zone edge, to match the Raman shift of silicon. Thus, small group velocities are also available both for pump and Stokes waves simultaneously, which results in a large enhancement of Raman gain. The enhancement factor of the Raman gain in the designed structure is more than 100 times that reported previously.

  20. High speed phase retrieval of in-line holograms by the assistance of corresponding off-axis holograms.

    PubMed

    Orzó, László

    2015-06-29

    Retrieving correct phase information from an in-line hologram is difficult as the object wave field and the diffractions of the zero order and the conjugate object term overlap. The existing iterative numerical phase retrieval methods are slow, especially in the case of high Fresnel number systems. Conversely, the reconstruction of the object wave field from an off-axis hologram is simple, but due to the applied spatial frequency filtering the achievable resolution is confined. Here, a new, high-speed algorithm is introduced that efficiently incorporates the data of an auxiliary off-axis hologram in the phase retrieval of the corresponding in-line hologram. The efficiency of the introduced combined phase retrieval method is demonstrated by simulated and measured holograms.

  1. Inhibitory Effects and Sympathetic Mechanisms of Distension in the Distal Organs on Small Bowel Motility and Slow Waves in Canine.

    PubMed

    Song, Jun; Yin, Jieyun; Chen, Jiande D Z

    2015-12-01

    Rectal distension (RD) is known to induce intestinal dysmotility. Few studies were performed to compare effects of RD, colon distension (CD) and duodenal distension (DD) on small bowel motility. This study aimed to investigate effects and underlying mechanisms of distensions in these regions on intestinal motility and slow waves. Eight dogs chronically implanted with a duodenal fistula, a proximal colon fistula, and intestinal serosal electrodes were studied in six sessions: control, RD, CD, DD, RD + guanethidine, and CD + guanethidine. Postprandial intestinal contractions and slow waves were recorded for the assessment of intestinal motility. The electrocardiogram was recorded for the assessment of autonomic functions. (1) Isobaric RD and CD suppressed intestinal contractions (contractile index: 6.0 ± 0.4 with RD vs. 9.9 ± 0.9 at baseline, P = 0.001, 5.3 ± 0.2 with CD vs. 7.7 ± 0.8 at baseline, P = 0.008). Guanethidine at 3 mg/kg iv was able to partially block the effects. (2) RD and CD reduced the percentage of normal intestinal slow waves from 92.1 ± 2.8 to 64.2 ± 3.4 % (P < 0.001) and from 90 ± 2.7 to 69.2 ± 3.7 % (P = 0.01), respectively. Guanethidine could eliminate these inhibitory effects. (3) DD did not induce any changes in small intestinal contractions and slow waves (P > 0.05). (4) The spectral analysis of the heart rate variability showed that both RD and CD increased sympathetic activity (LF) and reduced vagal activity (HF) (P < 0.05). Isobaric RD and CD could inhibit postprandial intestinal motility and impair intestinal slow waves, which were mediated via the sympathetic pathway. However, DD at a site proximal to the measurement site did not seem to impair small intestinal contractions or slow waves.

  2. Chaos and ion heating in a slow shock

    NASA Technical Reports Server (NTRS)

    Lin, Y.; Lee, L. C.

    1991-01-01

    An ion heating mechanism is proposed of slow shocks, which is associated with the chaotic motion of particles in the downstream wave field. For a coherent electromagnetic wave propagating along the downstream magnetic field, corresponding to switch-off shocks, the particle motions are not chaotic. For an oblique wave, the interaction between the particles and the wave field may lead to chaotic particle motions. Such particles may be greatly thermalized within one wavelength after they are incident into the downstream wave field. The results can be used to explain the existence of the critical intermediate Mach number observed in the hybrid simulations.

  3. Non-REM sleep EEG power distribution in fatigue and sleepiness.

    PubMed

    Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Linkowski, Paul; Le Bon, Olivier

    2014-04-01

    The aim of this study is to contribute to the sleep-related differentiation between daytime fatigue and sleepiness. 135 subjects presenting with sleep apnea-hypopnea syndrome (SAHS, n=58) or chronic fatigue syndrome (CFS, n=52) with respective sleepiness or fatigue complaints and a control group (n=25) underwent polysomnography and psychometric assessments for fatigue, sleepiness, affective symptoms and perceived sleep quality. Sleep EEG spectral analysis for ultra slow, delta, theta, alpha, sigma and beta power bands was performed on frontal, central and occipital derivations. Patient groups presented with impaired subjective sleep quality and higher affective symptom intensity. CFS patients presented with highest fatigue and SAHS patients with highest sleepiness levels. All groups showed similar total sleep time. Subject groups mainly differed in sleep efficiency, wake after sleep onset, duration of light sleep (N1, N2) and slow wave sleep, as well as in sleep fragmentation and respiratory disturbance. Relative non-REM sleep power spectra distributions suggest a pattern of power exchange in higher frequency bands at the expense of central ultra slow power in CFS patients during all non-REM stages. In SAHS patients, however, we found an opposite pattern at occipital sites during N1 and N2. Slow wave activity presents as a crossroad of fatigue and sleepiness with, however, different spectral power band distributions during non-REM sleep. The homeostatic function of sleep might be compromised in CFS patients and could explain why, in contrast to sleepiness, fatigue does not resolve with sleep in these patients. The present findings thus contribute to the differentiation of both phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Manipulation of peripheral neural feedback loops alters human corticomuscular coherence

    PubMed Central

    Riddle, C Nicholas; Baker, Stuart N

    2005-01-01

    Sensorimotor EEG shows ∼20 Hz coherence with contralateral EMG. This could involve efferent and/or afferent components of the sensorimotor loop. We investigated the pathways responsible for coherence genesis by manipulating nervous conduction delays using cooling. Coherence between left sensorimotor EEG and right EMG from three hand and two forearm muscles was assessed in healthy subjects during the hold phase of a precision grip task. The right arm was then cooled to 10°C for ∼90 min, increasing peripheral motor conduction time (PMCT) by ∼35% (assessed by F-wave latency). EEG and EMG recordings were repeated, and coherence recalculated. Control recordings revealed a heterogeneous subject population. In 6/15 subjects (Group A), the corticomuscular coherence phase increased linearly with frequency, as expected if oscillations were propagated along efferent pathways from cortex to muscle. The mean corticomuscular conduction delay for intrinsic hand muscles calculated from the phase–frequency regression slope was 10.4 ms; this is smaller than the delay expected for conduction over fast corticospinal pathways. In 8/15 subjects (Group B), the phase showed no dependence with frequency. One subject showed both Group A and Group B patterns over different frequency ranges. Following cooling, averaged corticomuscular coherence was decreased in Group A subjects, but unchanged for Group B, even though both groups showed comparable slowing of nervous conduction. The delay calculated from the slope of the phase–frequency regression was increased following cooling. However, the size of this increase was around twice the rise in PMCT measured using the F-wave (regression slope 2.33, 95% confidence limits 1.30–3.36). Both afferent and efferent peripheral nerves will be slowed by similar amounts following cooling. The change in delay calculated from the coherence phase therefore better matches the rise in total sensorimotor feedback loop time caused by cooling, rather than just the change in the efferent limb. A model of corticomuscular coherence which assumes that only efferent pathways contribute cannot be reconciled to these results. The data rather suggest that afferent feedback pathways may also play a role in the genesis of corticomuscular coherence. PMID:15919711

  5. Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro.

    PubMed Central

    Bal, T; von Krosigk, M; McCormick, D A

    1995-01-01

    1. The cellular basis for generation of spindle waves and a slower synchronized oscillation resembling absence seizures was investigated with extracellular and intracellular recording techniques in slices of ferret dorsal lateral geniculate nucleus (LGNd) maintained in vitro. 2. Intracellular recording from LGNd relay cells in vitro revealed that spindle waves occurred once every 3-30 s and were associated with barrages of inhibitory postsynaptic potentials (IPSPs) occurring at a frequency of 6-10 Hz. These IPSPs resulted in the generation of rebound low threshold Ca2+ spikes at 2-4 Hz, owing to the intrinsic propensity of LGNd relay cells to generate oscillatory burst firing in this frequency range. These rebound bursts of action potentials were highly synchronized with local multiunit and single unit activity. 3. The spindle wave-associated IPSPs in LGNd relay cells exhibited a mean reversal potential of -86 mV. This reversal potential was shifted to more depolarized membrane potentials with the intracellular injection of Cl- through the use of KCl-filled microelectrodes. Simultaneous recording from the perigeniculate nucleus (PGN) and LGNd revealed the IPSPs to be synchronous with the occurrence of burst firing in the PGN. Excitation of PGN neurons with local electrical stimulation after pharmacological block of excitatory amino acid transmission resulted in bicuculline-sensitive IPSPs in relay neurons similar in amplitude and time course to those occurring during spindle waves. 4. Application of (-)-bicuculline methiodide resulted in the abolition of spindle wave-associated IPSPs or in the slowing of the rate of rise, an increase in amplitude and a prolongation of these IPSPs; this resulted in a synchronized 2-4 Hz oscillation, in which each relay cell strongly burst on nearly every cycle, thus forming a paroxysmal event. Bath application of the GABAB receptor antagonist 2-OH-saclofen blocked these slowed oscillations, indicating that they are mediated by the activation of GABAB receptors. In contrast, pharmacological antagonism of GABAB receptors did not block the generation of normal spindle waves. 5. These and other results indicate that spindle waves are generated in the ferret LGNd in vitro as a network phenomenon occurring through an interaction between the relay cells of the LGNd and the GABAergic neurons of the PGN. We propose that burst firing in PGN cells hyperpolarizes relay neurons through activation of GABAA receptors. These IPSPs result in rebound burst firing in LGNd cells, which then excite PGN neurons.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7776249

  6. Coupled Transmission Line Based Slow Wave Structures for Traveling Wave Tubes Applications

    NASA Astrophysics Data System (ADS)

    Zuboraj, Md. Rashedul Alam

    High power microwave devices especially Traveling Wave Tubes (TWTs) and Backward Wave Oscillators (BWOs) are largely dependent on Slow Wave Structures for efficient beam to RF coupling. In this work, a novel approach of analyzing SWSs is proposed and investigated. Specifically, a rigorous study of helical geometries is carried out and a novel SWS "Half-Ring-Helix" is designed. This Half-Ring-Helix circuit achieves 27% miniaturization and delivers 10dB more gain than conventional helices. A generalization of the helix structures is also proposed in the form of Coupled Transmission Line (CTL). It is demonstrated that control of coupling among the CTLs leads to new propagation properties. With this in mind, a novel geometry referred to as "Curved Ring-Bar" is introduced. This geometry is shown to deliver 1MW power across a 33% bandwidth. Notably, this is the first demonstration of MW power TWT across large bandwidth. The CTL is further expanded to enable engineered propagation characteristics. This is done by introducing CTLs having non-identical transmission lines and CTLs with as many as four transmission lines in the same slow wave structure circuit. These non-identical CTLs are demonstrated to generate fourth order dispersion curves. Building on the property of CTLs, a `butterfly' slow wave structure is developed and demonstrated to provide degenerate band edge (DBE) mode. This mode are known to provide large feld enhancement that can be exploited to design high power backward wave oscillators.

  7. Effects of electric stimulation of the hunger center in the lateral hypothalamus on slow electric activity and spike activity of fundal and antral stomach muscles in rabbits under conditions of hunger and satiation.

    PubMed

    Kromin, A A; Zenina, O Yu

    2013-09-01

    In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.

  8. Oscillations and Waves in Radio Source of Drifting Pulsation Structures

    NASA Astrophysics Data System (ADS)

    Karlický, Marian; Rybák, Ján; Bárta, Miroslav

    2018-04-01

    Drifting pulsation structures (DPSs) are considered to be radio signatures of the plasmoids formed during magnetic reconnection in the impulsive phase of solar flares. In the present paper we analyze oscillations and waves in seven examples of drifting pulsation structures, observed by the 800 - 2000 MHz Ondřejov Radiospectrograph. For their analysis we use a new type of oscillation maps, which give us much more information as regards processes in DPSs than that in previous analyses. Based on these oscillation maps, made from radio spectra by the wavelet technique, we recognized quasi-periodic oscillations with periods ranging from about 1 to 108 s in all studied DPSs. This strongly supports the idea that DPSs are generated during a fragmented magnetic reconnection. Phases of most the oscillations in DPSs, especially for the period around 1 s, are synchronized ("infinite" frequency drift) in the whole frequency range of DPSs. For longer periods in some DPSs we found that the phases of the oscillations drift with the frequency drift in the interval from -17 to +287 MHz s^{-1}. We propose that these drifting phases can be caused (a) by the fast or slow magnetosonic waves generated during the magnetic reconnection and propagating through the plasmoid, (b) by a quasi-periodic structure in the plasma inflowing to the reconnection forming a plasmoid, and (c) by a quasi-periodically varying reconnection rate in the X-point of the reconnection close to the plasmoid.

  9. Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation

    NASA Astrophysics Data System (ADS)

    Booske, John

    2007-11-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).

  10. Inward rectifier potassium channels control rotor frequency in ventricular fibrillation.

    PubMed

    Jalife, José

    2009-11-01

    Ventricular fibrillation (VF) is the most important cause of sudden cardiac death. While traditionally thought to result from random activation of the ventricles by multiple independent wavelets, recent evidence suggests that VF may be determined by the sustained activation of a relatively small number of reentrant sources. In addition, recent experimental data in various species as well as computer simulations have provided important clues about its ionic and molecular mechanisms, particularly in regards to the role of potassium currents in such mechanisms. The results strongly argue that the inward rectifier current, I(K1,) is an important current during functional reentry because it mediates the electrotonic interactions between the unexcited core and its immediate surroundings. In addition, I(K1) is a stabilizer of reentry due to its ability to shorten action potential duration and reduce conduction velocity near the center of rotation. Increased I(K1) prevents wave front-wave tail interactions and thus averts rotor destabilization and breakup. Other studies have shown that while the slow component of the delayed rectifier potassium current I(Ks) does not significantly modify rotor frequency or stability, it plays a major role in postrepolarization refractoriness and wave break formation. Therefore, the interplay between I(K1) and the rapid sodium inward current (I(Na)) is a major factor in the control of cardiac excitability and thus the stability and frequency of reentry, while I(Ks) is an important determinant of fibrillatory conduction.

  11. Nonlinear generation of kinetic-scale waves by magnetohydrodynamic Alfvén waves and nonlocal spectral transport in the solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J. S.; Wu, D. J.; Voitenko, Y.

    We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigatemore » two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.« less

  12. Rotating magnetic shallow water waves and instabilities in a sphere

    NASA Astrophysics Data System (ADS)

    Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.

    2017-07-01

    Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.

  13. Neuronal Networks in Children with Continuous Spikes and Waves during Slow Sleep

    ERIC Educational Resources Information Center

    Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M.; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich

    2010-01-01

    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least greater than 85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and…

  14. Experimental Investigation on Acousto-Ultrasonic Sensing Using Polarization-Maintaining Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wang, Gang; Banks, Curtis E.

    2015-01-01

    This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while using reduced number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor in a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves and they are oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It is shown that the PM-FBG sensor system is able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acousto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications.

  15. Experimental Investigation on Acousto-ultrasonic Sensing Using Polarization-Maintaining Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wang, Gag; Banks, Curtis E.

    2016-01-01

    This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while reducing the number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor attached to a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves that were oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It was shown that the PM-FBG sensor system was able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acouto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications. Nomenclature.

  16. High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro.

    PubMed

    Oke, Olaleke O; Magony, Andor; Anver, Himashi; Ward, Peter D; Jiruska, Premysl; Jefferys, John G R; Vreugdenhil, Martin

    2010-04-01

    Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.

  17. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    NASA Astrophysics Data System (ADS)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-08-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  18. Solar Type II Radio Bursts and IP Type II Events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2005-01-01

    We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.

  19. Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991-2007

    USGS Publications Warehouse

    Koper, K.D.; De Foy, B.; Benz, H.

    2009-01-01

    We analyze seismic noise recorded on the 18 short-period, vertical component seismometers of the Yellowknife Seismic Array (YKA). YKA has an aperture of 23 km and is sited on cratonic lithosphere in an area with low cultural noise. These properties make it ideal for studying natural seismic noise at periods of 1-3 s. We calculated frequency-wave number spectra in this band for over 6,000 time windows that were extracted once per day for 17 years (1991-2007). Slowness analysis reveals a rich variety of seismic phases originating from distinct source regions: Rg waves from the Great Slave Lake; Lg waves from the Atlantic, Pacific, and Arctic Oceans; and teleseismic P waves from the north Pacific and equatorial mid-Atlantic regions. The surface wave energy is generated along coastlines, while the body wave energy is generated at least in part in deep-water, pelagic regions. Surface waves tend to dominate at the longer periods and, just as in earthquake seismograms, Lg is the most prominent arrival. Although the periods we study are slightly shorter than the classic double-frequency microseismic band of 4-10 s, the noise at YKA has clear seasonal behavior that is consistent with the ocean wave climate in the Northern Hemisphere. The temporal variation of most of the noise sources can be well fit using just two Fourier components: yearly and biyearly terms that combine to give a fast rise in microseismic power from mid-June through mid-October, followed by a gradual decline. The exception is the Rg energy from the Great Slave Lake, which shows a sharp drop in noise power over a 2-week period in November as the lake freezes. The L g noise from the east has a small but statistically significant positive slope, perhaps implying increased ocean wave activity in the North Atlantic over the last 17 years. Copyright 2009 by the American Geophysical Union.

  20. Linear Stability of Relativistic Space-Charge Flow in a Magnetically Insulated Transmission Line Oscillator

    DTIC Science & Technology

    1989-04-01

    MILO Magnetica fy insulated transmission line Slow-wave structure Relativistic Brillouin flow Space-charge waves Slow electromagnetic waves (over) 19... resonant layer always see a decelerating axial electric field. Consequently, field energy increases at the expense of particle energy. 17 AFWL-TR-88-103...Ve). If ve is greater than the structure coupling velocity, a resonant layer of electrons will always be present, and oscillations will occur at any

  1. Full wave description of VLF wave penetration through the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuzichev, Ilya; Shklyar, David

    2010-05-01

    Of the many problems in whistler study, wave propagation through the ionosphere is among the most important, and the most difficult at the same time. Both satellite and ground-based investigations of VLF waves include considerations of this problem, and it has been in the focus of research since the beginning of whistler study (Budden [1985]; Helliwell [1965]). The difficulty in considering VLF wave passage through the ionosphere is, after all, due to fast variation of the lower ionosphere parameters as compared to typical VLF wave number. This makes irrelevant the consideration in the framework of geometrical optics, which, along with a smooth variations of parameters, is always based on a particular dispersion relation. Although the full wave analysis in the framework of cold plasma approximation does not require slow variations of plasma parameters, and does not assume any particular wave mode, the fact that the wave of a given frequency belongs to different modes in various regions makes numerical solution of the field equations not simple. More specifically, as is well known (e.g. Ginzburg and Rukhadze [1972]), in a cold magnetized plasma, there are, in general, two wave modes related to a given frequency. Both modes, however, do not necessarily correspond to propagating waves. In particular, in the frequency range related to whistler waves, the other mode is evanescent, i.e. it has a negative value of N2 (the refractive index squared). It means that one of solutions of the relevant differential equations is exponentially growing, which makes a straightforward numerical approach to these equations despairing. This well known difficulty in the problem under discussion is usually identified as numerical swamping (Budden [1985]). Resolving the problem of numerical swamping becomes, in fact, a key point in numerical study of wave passage through the ionosphere. As it is typical of work based on numerical simulations, its essential part remains virtually hidden. Then, every researcher, in order to get quantitative characteristics of the process, such as transmission and reflection coefficients, needs to go through the whole problem. That is why the number of publications dealing with VLF wave transmission through the ionosphere does not run short. In this work, we develop a new approach to the problem, such that its intrinsic difficulty is resolved analytically, while numerical calculations are reduced to stable equations solvable with the help of a routine program. Using this approach, the field of VLF wave incident on the ionosphere from above is calculated as a function of height, and reflection coefficients for different frequencies and angles of incidence are obtained. In particular, for small angles of incidence, for which incident waves reach the ground, the reflection coefficient appears to be an oscillating function of frequency. Another goal of the work is to present all equations and related formulae in an undisguised form, in order that the problem may be solved in a straightforward way, once the ionospheric plasma parameters are given. References Budden, K.G. (1985), The Propagation of Radio Waves, Cambridge Univ. Press, Cambridge, U.K. Ginzburg, V.L., and Rukhadze, A.A. (1972), Waves in Magnetoactive Plasma. In Handbuch der Physik (ed. S. Flügge). Vol. 49, Part IV, p. 395, Springer Verlag, Berlin. Helliwell, R. A. (1965), Whistlers and Related Ionospheric Phenomena, Stanford University Press, Stanford, California.

  2. Optomechanical terahertz detection with single meta-atom resonator.

    PubMed

    Belacel, Cherif; Todorov, Yanko; Barbieri, Stefano; Gacemi, Djamal; Favero, Ivan; Sirtori, Carlo

    2017-11-17

    Most of the common technologies for detecting terahertz photons (>1 THz) at room temperature rely on slow thermal devices. The realization of fast and sensitive detectors in this frequency range is indeed a notoriously difficult task. Here we propose a novel device consisting of a subwavelength terahertz meta-atom resonator, which integrates a nanomechanical element and allows energy exchange between the mechanical motion and the electromagnetic degrees of freedom. An incident terahertz wave thus produces a nanomechanical signal that can be read out optically with high precision. We exploit this concept to demonstrate a terahertz detector that operates at room temperature with high sensitivity and a much higher frequency response compared to standard detectors. Beyond the technological issue of terahertz detection, our architecture opens up new perspectives for fundamental science of light-matter interaction at terahertz frequencies, combining optomechanical approaches with semiconductor quantum heterostructures.

  3. Traveling-Wave Tube Amplifier Model to Predict High-Order Modulation Intersymbol Interference

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Andro, Monty; Williams, W. D. (Technical Monitor)

    2001-01-01

    Demands for increased data rates in satellite communications necessitate higher order modulation schemes, larger system bandwidth, and minimum distortion of the modulated signal as it is passed through the traveling wave tube amplifier (TWTA). One type of distortion that the TWTA contributes to is intersymbol interference (ISI), and this becomes particularly disruptive with wide-band, complex modulation schemes. It is suspected that in addition to the dispersion of the TWT, frequency dependent reflections due to mismatches within the TWT are a significant contributor to ISI. To experimentally investigate the effect of these mismatches within the physical TWT on ISI would be prohibitively expensive, as it would require manufacturing numerous amplifiers in addition to the acquisition of the required digital hardware. In an attempt to develop a more accurate model to correlate IS1 with the TWTA and the operational signal, a fully three-dimensional (3D), time-dependent, TWT interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm). The model includes a user defined slow-wave circuit with a spatially tapered region of loss to implement a sever, and spatially varied geometry (such as helical pitch) to implement a phase velocity taper. The model also includes user defined input/output coupling and an electron beam contained by solenoidal, electrostatic, or periodic permanent magnet (PPM) focusing allowing standard or novel TWTs to be investigated. This model comprehensively takes into account the effects of frequency dependent nonlinear distortions (MAM and AMPM); gain ripple due to frequency dependent reflections at the input/output coupling, severs, and mismatches from dynamic pitch variations; drive induced oscillations; harmonic generation; intermodulation products; and backward waves.

  4. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg

    2017-09-10

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that themore » chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.« less

  5. Polarization independent and tunable plasmonic structure for mimicking electromagnetically induced transparency in the reflectance spectrum

    NASA Astrophysics Data System (ADS)

    Guo, B. S.; Loo, Y. L.; Ong, C. K.

    2017-10-01

    This paper proposes a plasmonic metamaterial that is able to mimic electromagnetically induced transparency in the reflectance spectrum within the GHz frequency range. Each meta-atom consists of a cross-slot structure as the bright resonator positioned on one side of the FR-4 substrate, and four spiral structures as the dark resonator located on the opposite side. Free space experimental results demonstrate that at normal incidence of plane wave, the metamaterial possesses the properties of tunability and polarization independence. In addition, based on simulation results the metamaterial also possesses slow wave property, with group refractive index of 56; and refractive-index-based sensing capability, with figure of merit of 6.1. In the strong coupling configuration, the plasma frequency and coupling constant of the metamaterial were calculated to be approximately 5.4 × 1010 rad s-1 and 9.8 × 109 rad s-1 respectively. While the respective damping constants of the bright resonator and dark resonator were calculated to be approximately 4.6 × 1010 rad s-1 and 1.9 × 1010 rad s-1.

  6. Slow twists of solar magnetic flux tubes and the polar magnetic field of the sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M.A.; Hollweg, J.V.

    The solar wind model of Weber and Davis (1967) is generalized to compute the heliospheric magnetic field resulting from solar rotation or a steady axisymmetric twist including a geometrical expansion which is more rapid than spherical. The calculated increase in the ratio of the toroidal to poloidal field components with heliocentric radial distance r clarifies an expression derived recently by Jokipii and Kota (1989). Magnetic field components transverse to r do not in general grow to dominate the radial component at large r. The analysis also yield expressions for the Poynting flux associated with the steady twists. These results aremore » regarded as indicative of the Poynting flux associated with very low frequency Alfven waves, and it is shown how the Poynting flux and the spatial evolution of the wave amplitude differ from the usual WKB result. It is found that the low-frequency Poynting flux at the base of a coronal hole can be about 50 percent larger than the WKB flux inferred from spectral observations of coronal motions (e.g. Hassler et al., 1988).« less

  7. Turbulence and Waves as Sources for the Solar Wind

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.

    2008-05-01

    Gene Parker's insights from 50 years ago provided the key causal link between energy deposition in the solar corona and the acceleration of solar wind streams. However, the community is still far from agreement concerning the actual physical processes that give rise to this energy. It is still unknown whether the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wavelike fluctuations) or if mass and energy is input more intermittently from closed loops into the open-field regions. No matter the relative importance of reconnections and loop-openings, though, we do know that waves and turbulent motions are present everywhere from the photosphere to the heliosphere, and it is important to determine how they affect the mean state of the plasma. In this presentation, I will give a summary of wave/turbulence models that seem to succeed in explaining the time-steady properties of the corona (and the fast and slow solar wind). The coronal heating and solar wind acceleration in these models comes from anisotropic turbulent cascade, which is driven by the partial reflection of low-frequency Alfven waves propagating along the open magnetic flux tubes. Specifically, a 2D model of coronal holes and streamers at solar minimum reproduces the latitudinal bifurcation of slow and fast streams seen by Ulysses. The radial gradient of the Alfven speed affects where the waves are reflected and damped, and thus whether energy is deposited below or above Parker's critical point. As predicted by earlier studies, a larger coronal expansion factor gives rise to a slower and denser wind, higher temperature at the coronal base, less intense Alfven waves at 1 AU, and correlative trends for commonly measured ratios of ion charge states and FIP-sensitive abundances that are in general agreement with observations. Finally, I will outline the types of future observations that would be most able to test and refine these ideas.

  8. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Yan; Chen, Changhua; Sun, Jun

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the frontmore » end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.« less

  9. Quantitative analysis of sleep EEG microstructure in the time-frequency domain.

    PubMed

    De Carli, Fabrizio; Nobili, Lino; Beelke, Manolo; Watanabe, Tsuyoshi; Smerieri, Arianna; Parrino, Liborio; Terzano, Mario Giovanni; Ferrillo, Franco

    2004-06-30

    A number of phasic events influence sleep quality and sleep macrostructure. The detection of arousals and the analysis of cyclic alternating patterns (CAP) support the evaluation of sleep fragmentation and instability. Sixteen polygraphic overnight recordings were visually inspected for conventional Rechtscaffen and Kales scoring, while arousals were detected following the criteria of the American Sleep Disorders Association (ASDA). Three electroencephalograph (EEG) segments were associated to each event, corresponding to background activity, pre-arousal period and arousal. The study was supplemented by the analysis of time-frequency distribution of EEG within each subtype of phase A in the CAP. The arousals were characterized by the increase of alpha and beta power with regard to background. Within NREM sleep most of the arousals were preceded by a transient increase of delta power. The time-frequency evolution of the phase A of the CAP sequence showed a strong prevalence of delta activity during the whole A1, but high amplitude delta waves were found also in the first 2/3 s of A2 and A3, followed by desynchronization. Our results underline the strict relationship between the ASDA arousals, and the subtype A2 and A3 within the CAP: in both the association between a short sequence of transient slow waves and the successive increase of frequency and decrease of amplitude characterizes the arousal response.

  10. Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray

    NASA Astrophysics Data System (ADS)

    Zhu, Hejun; Komatitsch, Dimitri; Tromp, Jeroen

    2017-10-01

    We use seismic data from USArray to image the upper mantle underneath the United States based on a so-called `adjoint tomography', an iterative full waveform inversion technique. The inversion uses data from 180 regional earthquakes recorded by 4516 seismographic stations, resulting in 586 185 frequency-dependent measurements. Three-component short-period body waves and long-period surface waves are combined to simultaneously constrain deep and shallow structures. The transversely isotropic model US22 is the result of 22 pre-conditioned conjugate-gradient iterations. Approximate Hessian maps and point-spread function tests demonstrate good illumination of the study region and limited trade-offs among different model parameters. We observe a distinct wave-speed contrast between the stable eastern US and the tectonically active western US. This boundary is well correlated with the Rocky Mountain Front. Stable cratonic regions are characterized by fast anomalies down to 250-300 km, reflecting the thickness of the North American lithosphere. Several fast anomalies are observed beneath the North American lithosphere, suggesting the possibility of lithospheric delamination. Slow wave-speed channels are imaged beneath the lithosphere, which might indicate weak asthenosphere. Beneath the mantle transition zone of the central US, an elongated north-south fast anomaly is observed, which might be the ancient subducted Farallon slab. The tectonically active western US is dominated by prominent slow anomalies with magnitudes greater than -6 per cent down to approximately 250 km. No continuous lower to upper mantle upwellings are observed beneath Yellowstone. In addition, our results confirm previously observed differences between oceans and continents in the anisotropic parameter ξ = (βh/βv)2. A slow wave-speed channel with ξ > 1 is imaged beneath the eastern Pacific at depths from 100 to 200 km, reflecting horizontal shear within the asthenosphere. Underneath continental areas, regions with ξ > 1 are imaged at shallower depths around 100 km. They are characterized by fast shear wave speeds, suggesting different origins of anisotropy underneath oceans and continents. The wave speed and anisotropic signatures of the western Atlantic are similar to continental areas in comparison with the eastern Pacific. Furthermore, we observe regions with ξ < 1 beneath the tectonically active western US at depths between 300 and 400 km, which might reflect vertical flows induced by subduction of the Farallon and Juan de Fuca Plates. Comparing US22 with several previous tomographic models, we observe relatively good correlations for long-wavelength features. However, there are still large discrepancies for small-scale features.

  11. Seasonal Anisotropy of Short-Period Seismic Noise in South Asia

    NASA Astrophysics Data System (ADS)

    Koper, K. D.; de Foy, B.

    2008-12-01

    We calculated frequency-wavenumber spectra for 955 samples of seismic noise recorded at the short-period Chiang Mai seismic array (CMAR) from 1995 through 2004. At frequencies above about 1.4 Hz the noise is isotropic and diffuse, but at lower frequencies the noise at CMAR is strongly partitioned by apparent velocity into two categories: teleseismic P wave energy with apparent velocities higher than 25 km/s (ray parameters of 0.0-5.0 s/deg) and higher mode Rayleigh energy with apparent velocities near 4.0 km/s. The ring of slowness space in between, corresponding to P waves turning in the crust and upper mantle, is relatively quiet. The Rayleigh noise is further partitioned by direction, with the strongest signal arriving from the Bay of Bengal at backazimuths of 180-255. A secondary peak in the Rayleigh noise occurs in the direction of the South China Sea at backazimuths of 80-120. The Rayleigh noise is strongly seasonal with annual variations of 10-15 dB in power. The easterly noise has peaks in local winter and troughs in local summer, while the noise from the southwest has the opposite pattern. This behavior is well-matched by the seasonal anti-correlation in significant wave heights in the South China Sea and the Bay of Bengal, as determined from TOPEX/POSEIDON satellite tracks. While propagating Rayleigh waves are often observed in seismic noise, it is less common to observe teleseismic body waves. Nearly all reports of body wave noise document ray parameters of 8-12 s/deg, which correspond to P waves that turn in the upper mantle, therefore our observations of a consistent noise peak with ray parameters of 4.5 s/deg and smaller, equivalent to apparent velocities of 25 km/s and higher, may be unique in the geophysical literature. Like the Rayleigh noise, the P noise observed at CMAR is seasonal. It has an annual power variation of 5-10 dB, with peaks in local winter and troughs in local summer. The seasonality implies that the noise is unrelated to small unidentified earthquakes or other tectonic processes, and instead is created at least indirectly by ocean waves, similar to the Rayleigh noise. Under this assumption there are several geographical regions that could act as sources: the western Atlantic Ocean near the coast of northern Brazil may contribute PKP energy, the Pacific Ocean just north of New Guinea may contribute PcP energy, and central portions of the North Pacific may contribute P waves that turn in the lower mantle. However, none of these sources provides an ideal match to our slowness observations and so none are preferred over the others. In order to resolve the uncertainty of the source location of the P noise at CMAR, a finer comparison of seismic data and ocean wave data is required. In any case, and irrespective of the precise source mechanism for the high velocity noise, our observations point towards a new method of imaging Earth's deep interior. Just as Rayleigh microseismic noise has been used to image Earth's crust it may be possible to use microseismic P-noise to image Earth's lowermost mantle and core. This could be especially beneficial for regions of the deep Earth that are poorly sampled by present-day patterns of seismicity.

  12. Interaction of solitons for obliquely propagating magnetoacoustic waves in stellar atmosphere

    NASA Astrophysics Data System (ADS)

    Jahangir, R.; Masood, W.; Siddiq, M.; Batool, Nazia

    2016-12-01

    We study here the nonlinear oblique propagation of magnetoacoustic waves in dense plasmas with degenerate electrons by deriving Kadomtsev-Petviashvili (KP) equation for small but finite amplitude perturbations. The two soliton interaction has been studied by finding the solution of the KP equation using the Hirota bilinear formalism. For illustrative purposes, we have used the plasma parameters typically found in white dwarf stars for both the fast and slow modes of magnetoacoustic waves. It has been observed that the soliton interaction in the fast and slow modes is strongly influenced by the predominant and weak dispersive coefficients of the KP equation. The single soliton behavior has also been explained for the fast and slow magnetoacoustic modes.

  13. Modeling and Theory of RF Antenna Systems on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Goulding, R. H.; Green, D.; Caughman, J. B. O.; Ruzic, D. N.; Proto-MPEX Team

    2017-10-01

    The RF wave coupling of the helicon and ICH antennas installed on the Prototype Material Plasma Exposure eXperiment (MPEX) has been explored theoretically and via a full wave model implemented in COMSOL Multiphysics. The high-density mode in Proto-MPEX has been shown to occur when exciting radial eigenmodes of the plasma column which coincides with entering a Trivelpiece Gould (TG) anti-resonant regime, therefore suppressing edge heating in favor of core power deposition. The fast wave launched by the helicon antenna has a large wavelength and travels at a steep group velocity angle with the background magnetic field; for this reason the fast wave launched by the helicon antenna efficiently couples power to the core plasma. However, the ICH heating scheme relies on a small wavelength slow wave to couple power to the core of the plasma column. Coupling slow wave power to the core of the plasma column is sensitive to the location of the Alfven resonance. The wave-vector and group velocity vector of the slow wave in this parameter regime undergoes a drastic change in behavior when approaching the Alfven resonance. Full wave simulation results and dispersion analysis will be presented with suggestions to guide experimental progress. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  14. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solis-Najera, S. E., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Neria-Pérez, J. A., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Medina, L., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’smore » waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.« less

  15. Ultrafast imaging of cell elasticity with optical microelastography

    PubMed Central

    Grasland-Mongrain, Pol; Zorgani, Ali; Nakagawa, Shoma; Bernard, Simon; Paim, Lia Gomes; Fitzharris, Greg; Catheline, Stefan

    2018-01-01

    Elasticity is a fundamental cellular property that is related to the anatomy, functionality, and pathological state of cells and tissues. However, current techniques based on cell deformation, atomic force microscopy, or Brillouin scattering are rather slow and do not always accurately represent cell elasticity. Here, we have developed an alternative technique by applying shear wave elastography to the micrometer scale. Elastic waves were mechanically induced in live mammalian oocytes using a vibrating micropipette. These audible frequency waves were observed optically at 200,000 frames per second and tracked with an optical flow algorithm. Whole-cell elasticity was then mapped using an elastography method inspired by the seismology field. Using this approach we show that the elasticity of mouse oocytes is decreased when the oocyte cytoskeleton is disrupted with cytochalasin B. The technique is fast (less than 1 ms for data acquisition), precise (spatial resolution of a few micrometers), able to map internal cell structures, and robust and thus represents a tractable option for interrogating biomechanical properties of diverse cell types. PMID:29339488

  16. Anisotropic Rayleigh-wave phase velocities beneath northern Vietnam

    NASA Astrophysics Data System (ADS)

    Legendre, Cédric P.; Zhao, Li; Huang, Win-Gee; Huang, Bor-Shouh

    2015-02-01

    We explore the Rayleigh-wave phase-velocity structure beneath northern Vietnam over a broad period range of 5 to 250 s. We use the two-stations technique to derive the dispersion curves from the waveforms of 798 teleseismic events recoded by a set of 23 broadband seismic stations deployed in northern Vietnam. These dispersion curves are then inverted for both isotropic and azimuthally anisotropic Rayleigh-wave phase-velocity maps in the frequency range of 10 to 50 s. Main findings include a crustal expression of the Red River Shear Zone and the Song Ma Fault. Northern Vietnam displays a northeast/southwest dichotomy in the lithosphere with fast velocities beneath the South China Block and slow velocities beneath the Simao Block and between the Red River Fault and the Song Da Fault. The anisotropy in the region is relatively simple, with a high amplitude and fast directions parallel to the Red River Shear Zone in the western part. In the eastern part, the amplitudes are generally smaller and the fast axis displays more variations with periods.

  17. 2D modeling of electromagnetic waves in cold plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crombé, K.; Van Eester, D.; Koch, R.

    2014-02-12

    The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was feltmore » as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.« less

  18. Simulation of a gigawatt level Ku-band overmoded Cerenkov type oscillator operated at low guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hua; Shu, Ting, E-mail: mrtingshu@qq.com; Ju, Jinchuan

    2014-03-15

    We present the simulation results of a Ku-band overmoded Cerenkov type high power microwave oscillator. A guiding magnetic field as low as 0.6 T has been operated in the device. Overmoded slow wave structures with gradually tapered vanes are used in order to increase power capacity and the efficiency of beam-wave interaction. The drift cavity is adopted to enhance the beam-wave interaction of the device. After numerical optimization, the designed generator with an output microwave power of 1.2 GW, a frequency of 13.8 GHz, and a power conversion efficiency as high as 38% can be achieved, when the diode voltage and currentmore » are, respectively, 540 kV and 5.8 kA. The power compositions of TM{sub 0n} modes of the output microwave have been analyzed, the results of which show that TM{sub 01} mode takes over almost 95% of the power proportion.« less

  19. Convectively coupled equatorial waves within the MJO during CINDY/DYNAMO: slow Kelvin waves as building blocks

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kazuyoshi; Kiladis, George N.; Dias, Juliana; Nasuno, Tomoe

    2018-06-01

    This study examines the relationship between the MJO and convectively coupled equatorial waves (CCEWs) during the CINDY2011/DYNAMO field campaign using satellite-borne infrared radiation data, in order to better understand the interaction between convection and the large-scale circulation. The spatio-temporal wavelet transform (STWT) enables us to document the convective signals within the MJO envelope in terms of CCEWs in great detail, through localization of space-time spectra at any given location and time. Three MJO events that occurred in October, November, and December 2011 are examined. It is, in general, difficult to find universal relationships between the MJO and CCEWs, implying that MJOs are diverse in terms of the types of disturbances that make up its convective envelope. However, it is found in all MJO events that the major convective body of the MJO is made up mainly by slow convectively coupled Kelvin waves. These Kelvin waves have relatively fast phase speeds of 10-13 m s-1 outside of, and slow phase speeds of 8-9 m s-1 within the MJO. Sometimes even slower eastward propagating signals with 3-5 m s-1 phase speed show up within the MJO, which, as well as the slow Kelvin waves, appear to comprise major building blocks of the MJO. It is also suggested that these eastward propagating waves often occur coincident with n = 1 WIG waves, which is consistent with the schematic model from Nakazawa in 1988. Some practical aspects that facilitate use of the STWT are also elaborated upon and discussed.

  20. A view of metals through the terahertz window

    NASA Astrophysics Data System (ADS)

    Dodge, Steve

    2006-05-01

    As electrons move through a metal, interaction with their environment tends to slow them down, causing the Drude peak in the optical conductivity to become narrower. The resulting peak width is typically in the terahertz frequency range that sits between microwaves the far infrared, too fast for conventional electronics and too slow for conventional infrared spectroscopy. With femtosecond laser techniques, however, coherent, broadband terahertz radiation can now be generated and detected with exquisite sensitivity, providing a new window onto electronic interactions in metals. I will discuss the application of this technique to a variety of metallic systems, including elemental lead, the nearly magnetic oxide metal CaRuO3, and CrV alloys that span the quantum phase transition from spin-density wave to paramagnetic metal. M. A. Gilmore, S. Kamal, D. M. Broun, and J. S. Dodge, Appl. Phys. Lett. 88, 141910 (2006).

Top