NASA Astrophysics Data System (ADS)
Carlsten, B. E.; Earley, L. M.; Krawczyk, F. L.; Russell, S. J.; Potter, J. M.; Ferguson, P.; Humphries, S.
2005-06-01
A sheet-beam traveling-wave amplifier has been proposed as a high-power generator of rf from 95 to 300 GHz, using a microfabricated rf slow-wave structure [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005), ITPSBD, 0093-3813, 10.1109/TPS.2004.841172], for emerging radar and communications applications. The planar geometry of microfabrication technologies matches well with the nearly planar geometry of a sheet beam, and the greater allowable beam current leads to high-peak power, high-average power, and wide bandwidths. Simulations of nominal designs using a vane-loaded waveguide as the slow-wave structure have indicated gains in excess of 1 dB/mm, with extraction efficiencies greater than 20% at 95 GHz with a 120-kV, 20-A electron beam. We have identified stable sheet-beam formation and transport as the key enabling technology for this type of device. In this paper, we describe sheet-beam transport, for both wiggler and periodic permanent magnet (PPM) magnetic field configurations, with natural (or single-plane) focusing. For emittance-dominated transport, the transverse equation of motion reduces to a Mathieu equation, and to a modified Mathieu equation for a space-charge dominated beam. The space-charge dominated beam has less beam envelope ripple than an emittance-dominated beam, but they have similar stability thresholds (defined by where the beam ripple continues to grow without bound along the transport line), consistent with the threshold predicted by the Mathieu equation. Design limits are derived for an emittance-dominated beam based on the Mathieu stability threshold. The increased beam envelope ripple for emittance-dominated transport may impact these design limits, for some transport requirements. The stability of transport in a wiggler field is additionally compromised by the beam’s increased transverse motion. Stable sheet-beam transport with natural focusing is shown to be achievable for a 120-kV, 20-A, elliptical beam with a cross section of 1 cm by 0.5 mm, with both a PPM and a wiggler field, with magnetic field amplitude of about 2.5 kG.
Numerical analysis of THz radiation wave using upper hybrid wave wiggler
NASA Astrophysics Data System (ADS)
Malik, Pratibha; Sharma, Suresh C.; Panwar, Jyotsna; Sharma, Rinku
2018-03-01
A theory for upper hybrid wave induced by relativistic electron beam in magnetized plasma emits tuneable and coherent terahertz radiation. The nonlinear interaction with REB is used to generate terahertz radiation. The enhancement in the amplitude of THz wave is also observed when pre-bunched REB is used. The ponderomotive force applied on beam electrons due to radiation wave and upper wave wiggler modifies the dispersion relation. By solving the dispersion relation, we have derived the growth rate of the radiation wave. Numerical studies indicate that by increasing the beam energy the growth rate of the radiation wave decreases, while it increases with wiggler frequency. Besides this, the growth rate of the radiation wave increases with beam density and decreases with radiation frequency and static magnetic field.
Magnetic measurements of the 10 T superconducting wiggler for the SPring-8 storage ring
NASA Astrophysics Data System (ADS)
Batrakov, A.; Borovikov, V.; Bekhtenev, E.; Fedurin, M.; Hara, M.; Karpov, G.; Kuzin, M.; Mezentsev, N.; Miahara, Y.; Shimada, T.; Shkaruba, V.; Soutome, K.; Tzumaki, K.
2001-07-01
In 1999, in the frame of the project ISTC #767 "Budker INP/RIKEN Slow Positron Source", the Budker Institute of Nuclear Physics had made a 10 T Three-pole Superconducting Wiggler. The wiggler will be the keystone of this project by its installation on the SPring-8 storage ring for powerful gamma ray generation ( λ c=450 keV ), that will be used for slow positron production ( Nγ( ɛ>1 MeV)˜10 15, γ/s I e=0.1 A ). A. Ando et al., Proposal of the high magnetic field super conducting WLS for slow positron source at SPring-8, presented at SR1 '97 Conference. In January, 2000, the wiggler was transported to SPring-8, where the last test and measurements were carried out in collaboration with Japan. In this article, the results of measurements of the magnetic field, finding the magnetic field amplitude by an NMR probe, the definition of feed current relations by stretch current wire method, the calibration of a Hall probe in the high magnetic field, and the measurement of the magnetic field profile by a Hall probe are presented.
NASA Astrophysics Data System (ADS)
Zirak, H.; Jafari, S.
2015-06-01
In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge-Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.
NASA Astrophysics Data System (ADS)
Tournes, C.; Aucouturier, J.; Arnaud, B.; Brasile, J. P.; Convert, G.; Simon, M.
1992-07-01
A current-driven wiggler is the cornerstone of an innovative, compact, high-efficiency, transportable tunable free-electron laser (FEL), the feasibility of which is currently being evaluated by Thomson-CSF. The salient advantages are: compactness of the FEL, along with the possibility to accelerate the beam through several successive passes through the accelerating section (the number of passes being defined by the final wavelength of the radiation; i.e. visible, MWIR, LWIR); the wiggler can be turned off and be transparent to the beam until the last pass. Wiggler periodicities as small as 5 mm can be achieved, hence contributing to FEL compactness. To achieve overall efficiencies in the range of 10% at visible wavelengths, not only the wiggler periodicity must be variable, but the strength of the magnetic field of each period can be adjusted separately and fine-tuned versus time during the macropulse, so as to take into account the growing contribution of the wave energy in the cavity to the total ponderomotive force. The salient theoretical point of this design is the optimization of the parameters defining each period of the wiggler for each micropacket of the macropulse. The salient technology point is the mechanical and thermal design of the wiggler which allows the required high currents to achieve magnetic fields up to 2T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchlik, Matthew; Biallas, George Herman
A method for managing the broad band microwave and TeraHertz (THz) radiation in a free electron laser (FEL) having a wiggler producing power in the electromagnetic spectrum. The method includes placement of broadband microwave and TeraHertz (THz) radiation absorbers on the upstream end of the wiggler. The absorbers dampen the bounced back, broad band microwave and THz radiation returning from the surfaces outside the nose of the cookie-cutter and thus preventing broadening of the electron beam pulse's narrow longitudinal energy distribution. Broadening diminishes the ultimate laser power from the wiggler. The broadband microwave and THz radiation absorbers are placed onmore » either side of the slot in the cookie-cutter that shapes the wake field wave of the electron pulse to the slot shape of the wiggler chamber aperture. The broad band microwave and THz radiation absorber is preferably a non-porous pyrolytic grade of graphite with small grain size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amri, Hassan Ehsani; Mohsenpour, Taghi, E-mail: mohsenpour@umz.ac.ir
2016-02-15
In this paper, an analysis of equilibrium orbits for electrons by a simultaneous solution of the equation of motion and the dispersion relation for electromagnetic wave wiggler in a free-electron laser (FEL) with ion-channel guiding has been presented. A fluid model has been used to investigate interactions among all possible waves. The dispersion relation has been derived for electrostatic and electromagnetic waves with all relativistic effects included. This dispersion relation has been solved numerically. For group I and II orbits, when the transverse velocity is small, only the FEL instability is found. In group I and II orbits with relativelymore » large transverse velocity, new couplings between other modes are found.« less
FEL amplifier performance in the Compton regime
NASA Astrophysics Data System (ADS)
Cover, R. A.; Bhowmik, A.
1984-01-01
The Kroll-Morton-Rosenbluth equations of motion for electrons in a linearly polarized, tapered wiggler are utilized to describe gain in free-electron laser amplifiers. The three-dimensional amplifier model includes the effects of density variation in the electron beam, off-axis variations in the wiggler magnetic field, and betatron oscillations. The input electromagnetic field is injected and subsequently propagated within the wiggler by computing the Fresnel-Kirchhoff diffraction integral using the Gardner-Fresnel-Kirchhoff algorithm. The injected optical beam used in evaluating amplifier performance is initially a Gaussian which in general may be astigmatic. The importance of the above effects on extraction efficiency is computed both with rigorous three-dimensional electromagnetic wave propagation and a Gaussian treatment of the field.
Theory and simulation of an inverse free-electron laser experiment
NASA Astrophysics Data System (ADS)
Gou, S. K.; Bhattacharjee, A.; Fang, J.-M.; Marshall, T. C.
1997-03-01
An experimental demonstration of the acceleration of electrons using a high-power CO2 laser interacting with a relativistic electron beam moving along a wiggler has been carried out at the Accelerator Test Facility of the Brookhaven National Laboratory [Phys. Rev. Lett. 77, 2690 (1996)]. The data generated by this inverse free-electron-laser (IFEL) experiment are studied by means of theory and simulation. Included in the simulations are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge; energy spread of the electrons; and arbitrary wiggler-field profile. Two types of wiggler profile are considered: a linear taper of the period, and a step-taper of the period. (The period of the wiggler is ˜3 cm, its magnetic field is ˜1 T, and the wiggler length is 0.47 m.) The energy increment of the electrons (˜1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (˜40 MeV). At a laser power level ˜0.5 Gw, the simulation results on energy gain are in reasonable agreement with the experimental results. Preliminary results on the electron energy distribution at the end of the IFEL are presented. Whereas the experiment produces a near-monotone distribution of electron energies with the peak shifted to higher energy, the simulation shows a more structured and non-monotonic distribution at the end of the wiggler. Effects that may help reconcile these differences are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolghadr, S. H.; Jafari, S., E-mail: sjafari@guilan.ac.ir; Raghavi, A.
2016-05-15
Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FELmore » has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.« less
NASA Astrophysics Data System (ADS)
Davidson, Ronald C.; McMullin, Wayne A.
1982-07-01
The relativistic motion of an electron is calculated in the combined fields of a transverse helical wiggler field (axial wavelength is λ0=2πk0) and the constant-amplitude, circularly polarized primary electromagnetic wave (δBT,ω,k) propagating in the z direction. For particle velocity near the beat-wave phase velocity ω(k+k0) of the primary wave, it is shown that the presence of a second, moderate-amplitude longitudinal wave (δÊL,ω,k) or transverse electromagnetic wave (δB2,ω2,k2) can lead to stochastic particle instability in which particles trapped near the separatrix of the primary wave undergo a systematic departure from the potential well. The condition for onset of instability is calculated, and the importance of these results for free-electron-laser (FEL) application is discussed. For development of long-pulse or steady-state free-electron lasers, the maintenance of beam integrity for an extended period of time will be of considerable practical importance. The fact that the presence of secondary, moderate-amplitude longitudinal or transverse electromagnetic waves can destroy coherent motion for certain classes of beam particles moving with velocity near ω(k+k0) may lead to a degradation of beam quality and concomitant modification of FEL emission properties.
Theory and Simulation of an Inverse Free Electron Laser Experiment
NASA Astrophysics Data System (ADS)
Guo, S. K.; Bhattacharjee, A.; Fang, J. M.; Marshall, T. C.
1996-11-01
An experimental demonstration of the acceleration of electrons using a high power CO2 laser in an inverse free electron laser (IFEL) is underway at the Brookhaven National Laboratory. This experiment has generated data, which we are attempting to simulate. Included in our studies are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge (which is significant at lower laser power); energy-spread of the electrons; arbitrary wiggler field profile; and slippage. Two types of wiggler profile have been considered: a linear taper of the period, and a step-taper of the period (the period is ~ 3cm, the field is ~ 1T, and the wiggler length is 47cm). The energy increment of the electrons ( ~ 1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (40MeV). For laser power ~ 0.5GW, the predictions of the simulations are in good accord with experimental results. A matter currently under study is the discrepancy between theory and observations for the electron energy distribution observed at the end of the IFEL. This work is supported by the Department of Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, S.L.; Scharlemann, E.T.
1992-05-01
We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end ofmore » ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations.« less
Slow Orbit Feedback at the ALS Using Matlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portmann, G.
1999-03-25
The third generation Advanced Light Source (ALS) produces extremely bright and finely focused photon beams using undulatory, wigglers, and bend magnets. In order to position the photon beams accurately, a slow global orbit feedback system has been developed. The dominant causes of orbit motion at the ALS are temperature variation and insertion device motion. This type of motion can be removed using slow global orbit feedback with a data rate of a few Hertz. The remaining orbit motion in the ALS is only 1-3 micron rms. Slow orbit feedback does not require high computational throughput. At the ALS, the globalmore » orbit feedback algorithm, based on the singular valued decomposition method, is coded in MATLAB and runs on a control room workstation. Using the MATLAB environment to develop, test, and run the storage ring control algorithms has proven to be a fast and efficient way to operate the ALS.« less
Wave-Particle Interactions on Relativistic Electron Beams.
1983-10-20
8217 , , , . , • -- . . : - ’ - , % % , . , , : " ’ . I_ °- , ,, - - . . . . . . . . . . . . . - .- , ,. , - ,.. .. -l -. ’- - ’ @ -5- In summary, the body of published research which resulted from Office...current beams so that the influence of the self- U(5 )-Y space charge on the beam can be neglected. We thus require that the transverse electrostatic...the gain en - hancement is that the equilibrium electron orbits in the wiggler be nearly helical. Without the axial guide field a helical magnetic
The Effects of Wiggler Errors on Free Electron Laser Performance
1990-04-02
phase deviation at the end of the wiggler by 113. The detrimental effects of wiggler errors may be reduced by arranging the magent poles in an optimal...fdz6BI. To meet these specifications, the vendor may arrange the mIagnet pole iD an optimum sequence such that If dz6BI is minimized. The present research...zc a- A,,/2. By considering a wiggler in which the error for a given magnet pole is correlated to the errors of the surrounding poles , one may
Sharpness of interference pattern of the 3-pole wiggler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dejus, Roger J., E-mail: dejus@aps.anl.gov; Kim, Kwang-Je
2016-07-27
Due to the small emittance, radiation from neighboring poles of a strong wiggler in future multi-bend achromat-based storage rings can exhibit sharp interference patterns. The spectral-angular distributions of the 3-pole wiggler for the proposed Advanced Photon Source (APS) upgrade were computed and prominent interference patterns were found. In this paper we provide an understanding of such interference patterns. The equations governing the interference pattern are described and computed spectral-angular distributions of a modeled 3-pole wiggler magnetic field using these equations are presented.
Sharpness of Interference Pattern of the 3-Pole Wiggler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dejus, Roger J.; Kim, Kwang-Je
2016-07-02
Due to the small emittance, radiation from neighboring poles of a strong wiggler in future multi-bend achromat-based storage rings can exhibit sharp interference patterns. The spectral-angular distributions of the 3-pole wiggler for the proposed Advanced Photon Source (APS) upgrade were computed and prominent interference patterns were found. In this paper we provide an understanding of such interference patterns. The equations governing the interference pattern are described and computed spectral-angular distributions of a modeled 3-pole wiggler magnetic field using these equations are presented.
APS undulator and wiggler sources: Monte-Carlo simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, S.L.; Lai, B.; Viccaro, P.J.
1992-02-01
Standard insertion devices will be provided to each sector by the Advanced Photon Source. It is important to define the radiation characteristics of these general purpose devices. In this document,results of Monte-Carlo simulation are presented. These results, based on the SHADOW program, include the APS Undulator A (UA), Wiggler A (WA), and Wiggler B (WB).
A New Hard X-ray Wiggler for DORIS III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tischer, M.; Gumprecht, L.; Pflueger, J.
2007-01-19
A 4 m long hard X-ray wiggler has been built and installed in the DORIS III storage ring at DESY. The device replaces an old wiggler especially designed for angiography studies. Future use of this beamline at the HARWI straight section has been dedicated to hard X-ray scattering and diffraction experiments for material science and geological investigations. The required energy range is from 30 keV to about 200 keV with emphasis on the {approx}100 keV spectral range. The magnet configuration corresponds to a hybrid structure with additional side magnets to achieve a 2 T peak field for the specified periodmore » length of 110 mm. The wiggler position in the storage ring has been moved 8 m upstream into the next cell which allowed for reduction of the minimum magnetic wiggler gap to 14 mm.« less
NASA Astrophysics Data System (ADS)
Abedi-Varaki, M.
2018-02-01
In this paper, the effects of planar magnetostatic wiggler and s-parameter on the terahertz (THz) radiation generation through rippled plasma have been investigated. Efficient THz radiation generation by photo-mixing of tophat lasers for rippled density plasma in the presence of the wiggler field has been presented. Fundamental equations for the analysis of the non-linear current density and THz radiation generation by wiggler magnetostatic field have been derived. It is shown that for the higher order of the tophat lasers, the values of THz amplitude are greater. In fact, the higher order of the tophat lasers has a sharp gradient in the intensity of lasers, which leads to a stronger nonlinear ponderomotive force and, consequently, a stronger current density. In addition, it is seen that by increasing s-parameter, the normalized transverse profile becomes more focused near the axis of y. Furthermore, it is observed that the normalized laser efficiency has a decreasing trend with increasing normalized THz frequency for different values of the wiggler field. Also, it is shown that by employing a greater order of the tophat lasers and a stronger wiggler field, the efficiency of order of 30% can be achieved. Moreover, it is found that we can control focus and intensity of THz radiation emitted in rippled plasma by choosing the appropriate order of the tophat lasers and tuning of the wiggler field.
1989-12-09
and anodized aluminum to stability of the prebunching cavities is a suppress emission on the remainder of the cathode, difficult constraint...with means of a thick, aluminum anode plate, and 2) a lower a (0.2 -0.3). A wiggler has been utilized to thin stainless steel anode plate, field shaping...Omar DUCTOR OXIDES - S. Yoshimori and M. Kawamura, Dept rf and K. Schiinemann, Technische Universitit Hamburg-Harburg, Physical Elec, Faculty of Engr
Calculation of the coherent synchrotron radiation impedance from a wiggler
NASA Astrophysics Data System (ADS)
Wu, Juhao; Raubenheimer, Tor O.; Stupakov, Gennady V.
2003-04-01
Most studies of coherent synchrotron radiation (CSR) have considered only the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter K. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of K. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies.
Magnetic field error measurement of the CEBAF (NIST) wiggler using the pulsed wire method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Stephen; Colson, William; Neil, George
1993-07-01
The National Institute for Science and Technology (NIST) wiggler has been loaded to the Continuous Electron Beam Accelerator Facility (CEBAF). The pulsed wire method [R.W. Warren, Nucl. Instr. and Meth. A272 (1988) 267] has been used to measure the field errors of the entrance wiggler half, and the net path deflection was calculated to be Δx ≈ 5.2 m.
Fast pulsed excitation wiggler or undulator
van Steenbergen, Arie
1990-01-01
A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Deepak; Uma, R.; Tripathi, V. K.
A relativistic electron beam propagating through a dielectric lined waveguide, with ripple on the dielectric surface, excites a free electron laser type instability where ripple acts as a wiggler. The spatial modulation of permittivity in the ripple region couples a terahertz radiation mode to a driven mode of lower phase velocity, where the beam is in Cerenkov resonance with the slow mode. Both the modes grow at the expanse of beam energy. The terahertz frequency increases as the beam velocity increases. The growth rate of the instability goes as one third power of beam density.
The first insertion devices at SSRL - some personal recollections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winick, H.
1995-02-01
The author recounts his experiences with insertion devices at the Stanford Synchrotron Radiation Laboratory. His first experiences with wigglers occured at the Cambridge Electron Accelerator, and was carried over to SSRL with the proposal for a six pole electromagnetic wiggler. Most modern undulators, and many wigglers are now designed around permanent magnets, and the origin of this transition at SSRL was rather fortuitous and humorous. It reflects some of the personality characteristics of Klaus Halbach.
NASA Astrophysics Data System (ADS)
Nikrah, M.; Jafari, S.
2016-06-01
We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.
Prebunched-beam free electron maser
NASA Astrophysics Data System (ADS)
Arbel, M.; Ben-Chaim, D.; Cohen, M.; Draznin, M.; Eichenbaum, A.; Gover, Abraham; Kleinman, H.; Kugel, A.; Pinhasi, Yosef; Witman, S.; Yakover, Y. M.
1994-05-01
The development status of a prebunched FEM is described. We are developing a 70 KeV FEM to allow high gain wideband operation and to enable variation of the degree of prebunching. We intend to investigate its operation as an amplifier and as an oscillator. Effects of prebunching, frequency variation, linear and nonlinear effects, will be investigated. The prebuncher consists of a Pierce e-gun followed by a beam modulating section. The prebunched beam is accelerated to 70 KeV and injected into a planar wiggler containing a waveguide. The results obtained to date will be presented. These include: characterization of the e-gun, e-beam transport to and through the wiggler, use of field modifying permanent magnets near the entrance and along the wiggler to obtain good e-beam transport through the wiggler, waveguide selection and characterization.
Technology Development for Tapered-Wiggler Free-Electron Lasers
1984-04-01
3-12 . 3-8 Demagnetizing Field for Magnets in Assembled Wiggler, 3-14 the Contour Lines are of g H/M, where K (-B )0r is the Level of Magnetization . 3...of discrepancy may be due to demagnetization at the time of wiggler assembly. The demagnetizing a field for magnets in the presence of the entire... magnetization . The areas of £s0H/M -l- will suf fer Pm. some permanent demagnetization . This loss of magnetization is the reason %! for the slight rolloff
Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves.
Schwalm, Miriam; Schmid, Florian; Wachsmuth, Lydia; Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo; Faber, Cornelius; Stroh, Albrecht
2017-09-15
Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses.
Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves
Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo
2017-01-01
Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses. PMID:28914607
Warnaby, Catherine E; Sleigh, Jamie W; Hight, Darren; Jbabdi, Saad; Tracey, Irene
2017-10-01
Previously, we showed experimentally that saturation of slow-wave activity provides a potentially individualized neurophysiologic endpoint for perception loss during anesthesia. Furthermore, it is clear that induction and emergence from anesthesia are not symmetrically reversible processes. The observed hysteresis is potentially underpinned by a neural inertia mechanism as proposed in animal studies. In an advanced secondary analysis of 393 individual electroencephalographic data sets, we used slow-wave activity dose-response relationships to parameterize slow-wave activity saturation during induction and emergence from surgical anesthesia. We determined whether neural inertia exists in humans by comparing slow-wave activity dose responses on induction and emergence. Slow-wave activity saturation occurs for different anesthetics and when opioids and muscle relaxants are used during surgery. There was wide interpatient variability in the hypnotic concentrations required to achieve slow-wave activity saturation. Age negatively correlated with power at slow-wave activity saturation. On emergence, we observed abrupt decreases in slow-wave activity dose responses coincident with recovery of behavioral responsiveness in ~33% individuals. These patients are more likely to have lower power at slow-wave activity saturation, be older, and suffer from short-term confusion on emergence. Slow-wave activity saturation during surgical anesthesia implies that large variability in dosing is required to achieve a targeted potential loss of perception in individual patients. A signature for neural inertia in humans is the maintenance of slow-wave activity even in the presence of very-low hypnotic concentrations during emergence from anesthesia.
Plante, D T; Goldstein, M R; Cook, J D; Smith, R; Riedner, B A; Rumble, M E; Jelenchick, L; Roth, A; Tononi, G; Benca, R M; Peterson, M J
2016-03-01
Slow waves are characteristic waveforms that occur during non-rapid eye movement (NREM) sleep that play an integral role in sleep quality and brain plasticity. Benzodiazepines are commonly used medications that alter slow waves, however, their effects may depend on the time of night and measure used to characterize slow waves. Prior investigations have utilized minimal scalp derivations to evaluate the effects of benzodiazepines on slow waves, and thus the topography of changes to slow waves induced by benzodiazepines has yet to be fully elucidated. This study used high-density electroencephalography (hdEEG) to evaluate the effects of oral temazepam on slow wave activity, incidence, and morphology during NREM sleep in 18 healthy adults relative to placebo. Temazepam was associated with significant decreases in slow wave activity and incidence, which were most prominent in the latter portions of the sleep period. However, temazepam was also associated with a decrease in the magnitude of high-amplitude slow waves and their slopes in the first NREM sleep episode, which was most prominent in frontal derivations. These findings suggest that benzodiazepines produce changes in slow waves throughout the night that vary depending on cortical topography and measures used to characterize slow waves. Further research that explores the relationships between benzodiazepine-induced changes to slow waves and the functional effects of these waveforms is indicated. Copyright © 2016 Elsevier B.V. All rights reserved.
Wiggler magnetic field assisted third harmonic generation in expanding clusters
NASA Astrophysics Data System (ADS)
Vij, Shivani
2018-04-01
A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.
Spiess, Mathilde; Bernardi, Giulio; Kurth, Salome; Ringli, Maya; Wehrle, Flavia M; Jenni, Oskar G; Huber, Reto; Siclari, Francesca
2018-05-17
Slow waves, the hallmarks of non-rapid eye-movement (NREM) sleep, are thought to reflect maturational changes that occur in the cerebral cortex throughout childhood and adolescence. Recent work in adults has revealed evidence for two distinct synchronization processes involved in the generation of slow waves, which sequentially come into play in the transition to sleep. In order to understand how these two processes are affected by developmental changes, we compared slow waves between children and young adults in the falling asleep period. The sleep onset period (starting 30s before end of alpha activity and ending at the first slow wave sequence) was extracted from 72 sleep onset high-density EEG recordings (128 electrodes) of 49 healthy subjects (age 8-25). Using an automatic slow wave detection algorithm, the number, amplitude and slope of slow waves were analyzed and compared between children (age 8-11) and young adults (age 20-25). Slow wave number and amplitude increased linearly in the falling asleep period in children, while in young adults, isolated high-amplitude slow waves (type I) dominated initially and numerous smaller slow waves (type II) with progressively increasing amplitude occurred later. Compared to young adults, children displayed faster increases in slow wave amplitude and number across the falling asleep period in central and posterior brain regions, respectively, and also showed larger slow waves during wakefulness immediately prior to sleep. Children do not display the two temporally dissociated slow wave synchronization processes in the falling asleep period observed in adults, suggesting that maturational factors underlie the temporal segregation of these two processes. Our findings provide novel perspectives for studying how sleep-related behaviors and dreaming differ between children and adults. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schoerling, Daniel; Antoniou, Fanouria; Bernhard, Axel; Bragin, Alexey; Karppinen, Mikko; Maccaferri, Remo; Mezentsev, Nikolay; Papaphilippou, Yannis; Peiffer, Peter; Rossmanith, Robert; Rumolo, Giovanni; Russenschuck, Stephan; Vobly, Pavel; Zolotarev, Konstantin
2012-04-01
To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC), the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 and 4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultralow emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.
Self-seeded injection-locked FEL amplifer
Sheffield, Richard L.
1999-01-01
A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.
Comparison of filtering methods for extracellular gastric slow wave recordings.
Paskaranandavadivel, Niranchan; O'Grady, Gregory; Du, Peng; Cheng, Leo K
2013-01-01
Extracellular recordings are used to define gastric slow wave propagation. Signal filtering is a key step in the analysis and interpretation of extracellular slow wave data; however, there is controversy and uncertainty regarding the appropriate filtering settings. This study investigated the effect of various standard filters on the morphology and measurement of extracellular gastric slow waves. Experimental extracellular gastric slow waves were recorded from the serosal surface of the stomach from pigs and humans. Four digital filters: finite impulse response filter (0.05-1 Hz); Savitzky-Golay filter (0-1.98 Hz); Bessel filter (2-100 Hz); and Butterworth filter (5-100 Hz); were applied on extracellular gastric slow wave signals to compare the changes temporally (morphology of the signal) and spectrally (signals in the frequency domain). The extracellular slow wave activity is represented in the frequency domain by a dominant frequency and its associated harmonics in diminishing power. Optimal filters apply cutoff frequencies consistent with the dominant slow wave frequency (3-5 cpm) and main harmonics (up to ≈ 2 Hz). Applying filters with cutoff frequencies above or below the dominant and harmonic frequencies was found to distort or eliminate slow wave signal content. Investigators must be cognizant of these optimal filtering practices when detecting, analyzing, and interpreting extracellular slow wave recordings. The use of frequency domain analysis is important for identifying the dominant and harmonics of the signal of interest. Capturing the dominant frequency and major harmonics of slow wave is crucial for accurate representation of slow wave activity in the time domain. Standardized filter settings should be determined. © 2012 Blackwell Publishing Ltd.
Short pulse free electron laser amplifier
Schlitt, Leland G.; Szoke, Abraham
1985-01-01
Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzuang, C.K.C.
1986-01-01
Various MMIC (monolithic microwave integrated circuit) planar waveguides have shown possible existence of a slow-wave propagation. In many practical applications of these slow-wave circuits, the semiconductor devices have nonuniform material properties that may affect the slow-wave propagation. In the first part of the dissertation, the effects of the nonuniform material properties are studied by a finite-element method. In addition, the transient pulse excitations of these slow-wave circuits also have great theoretical and practical interests. In the second part, the time-domain analysis of a slow-wave coplanar waveguide is presented.
Shorter duration of non-rapid eye movement sleep slow waves in EphA4 knockout mice.
Freyburger, Marlène; Poirier, Gaétan; Carrier, Julie; Mongrain, Valérie
2017-10-01
Slow waves occurring during non-rapid eye movement sleep have been associated with neurobehavioural performance and memory. In addition, the duration of previous wakefulness and sleep impacts characteristics of these slow waves. However, molecular mechanisms regulating the dynamics of slow-wave characteristics remain poorly understood. The EphA4 receptor regulates glutamatergic transmission and synaptic plasticity, which have both been linked to sleep slow waves. To investigate if EphA4 regulates slow-wave characteristics during non-rapid eye movement sleep, we compared individual parameters of slow waves between EphA4 knockout mice and wild-type littermates under baseline conditions and after a 6-h sleep deprivation. We observed that, compared with wild-type mice, knockout mice display a shorter duration of positive and negative phases of slow waves under baseline conditions and after sleep deprivation. However, the mutation did not change slow-wave density, amplitude and slope, and did not affect the sleep deprivation-dependent changes in slow-wave characteristics, suggesting that EphA4 is not involved in the response to elevated sleep pressure. Our present findings suggest a role for EphA4 in shaping cortical oscillations during sleep that is independent from sleep need. © 2017 European Sleep Research Society.
NASA Astrophysics Data System (ADS)
Balkcum, Adam J.
In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along with MAGIC, are used to design a representative 200 MW, 40% efficient, X-band amplifier for linear accelerators and a 1 GW, 21% efficient, S-band oscillator for directed energy. The technique of axial mode profiling in the ubitron cavity oscillator is also proposed and shown to increase the simulated interaction efficiency to 46%. These devices are realizable and their experimental implementation, including electron beam formation and spurious mode suppression techniques, is discussed.
Wiggler plane focusing in a linear free electron laser
Scharlemann, Ernst T.
1988-01-01
Free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped.
NASA Astrophysics Data System (ADS)
Singh Ghotra, Harjit; Kant, Niti
2018-06-01
We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.
Thalamic Atrophy Contributes to Low Slow Wave Sleep in Neuromyelitis Optica Spectrum Disorder.
Su, Lei; Han, Yujuan; Xue, Rong; Wood, Kristofer; Shi, Fu-Dong; Liu, Yaou; Fu, Ying
2016-12-01
Slow wave sleep abnormality has been reported in neuromyelitis optica spectrum disorder (NMOSD), but mechanism for such abnormality is unknown. To determine the structural defects in the brain that account for the decrease of slow wave sleep in NMOSD patients. Thirty-three NMOSD patients and 18 matched healthy controls (HC) were enrolled. Polysomnography was used to monitor slow wave sleep and three-dimensional T1-weighted MRIs were obtained to assess the alterations of grey matter volume. The percentage of deep slow wave sleep decreased in 93% NMOSD patients. Compared to HC, a reduction of grey matter volume was found in the bilateral thalamus of patients with a lower percentage of slow wave sleep (FWE corrected at cluster-level, p < 0.05, cluster size > 400 voxels). Furthermore, the right thalamic fraction was positively correlated with the decrease in the percentage of slow wave sleep in NMOSD patients (p < 0.05, FDR corrected, cluster size > 200 voxels). Our study identified that thalamic atrophy is associated with the decrease of slow wave sleep in NMOSD patients. Further studies should evaluate whether neurotransmitters or hormones which stem from thalamus are involved in the decrease of slow wave sleep.
Role of the sodium pump in pacemaker generation in dog colonic smooth muscle.
Barajas-López, C; Chow, E; Den Hertog, A; Huizinga, J D
1989-01-01
1. The role of the Na+ pump in the generation of slow wave activity in circular muscle of the dog colon was investigated using a partitioned 'Abe-Tomita' type chamber for voltage control. 2. Blockade of the Na+ pump by omission of extracellular K+, by ouabain, or the combination of 0 mM-Na+ and ouabain, depolarized the membrane up to approximately -40 mV and abolished the slow wave activity. Repolarization back to the control membrane potential by hyperpolarizing current restored the slow wave activity. 3. Slow waves continued to be present in 0 Na+, Li+ HEPES solution. 4. The depolarization induced by the procedures to block Na+ pump activity was associated with an increase in input membrane resistance. 5. Voltage-current relationships show the presence of an inward rectification. 6. Reduction of temperature depolarized the membrane, and decreased the slow wave frequency and amplitude. The slow wave amplitude was restored by repolarization of the membrane. 7. Brief depolarizing pulses evoked premature slow waves. Brief hyperpolarizing pulses terminated the slow waves. 8. We conclude that abolition of slow wave activity by Na+ pump blockade is a direct effect of membrane depolarization and that the Na+ pump is not responsible for the generation of the slow wave. 9. Our results are consistent with the hypothesis that pacemaker activity in smooth muscle is a consequence of membrane conductance changes which are metabolically dependent. PMID:2607455
Mohamed Yacin, S; Srinivasa Chakravarthy, V; Manivannan, M
2011-11-01
Extraction of extra-cardiac information from photoplethysmography (PPG) signal is a challenging research problem with significant clinical applications. In this study, radial basis function neural network (RBFNN) is used to reconstruct the gastric myoelectric activity (GMA) slow wave from finger PPG signal. Finger PPG and GMA (measured using Electrogastrogram, EGG) signals were acquired simultaneously at the sampling rate of 100 Hz from ten healthy subjects. Discrete wavelet transform (DWT) was used to extract slow wave (0-0.1953 Hz) component from the finger PPG signal; this slow wave PPG was used to reconstruct EGG. A RBFNN is trained on signals obtained from six subjects in both fasting and postprandial conditions. The trained network is tested on data obtained from the remaining four subjects. In the earlier study, we have shown the presence of GMA information in finger PPG signal using DWT and cross-correlation method. In this study, we explicitly reconstruct gastric slow wave from finger PPG signal by the proposed RBFNN-based method. It was found that the network-reconstructed slow wave provided significantly higher (P < 0.0001) correlation (≥ 0.9) with the subject's EGG slow wave than the correlation obtained (≈0.7) between the PPG slow wave from DWT and the EEG slow wave. Our results showed that a simple finger PPG signal can be used to reconstruct gastric slow wave using RBFNN method.
Emittance Effects on Gain in $W$ -Band TWTs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsten, Bruce Eric; Nichols, Kimberley E.; Shchegolkov, Dmitry Yu.
We consider the main effects of beam emittance on W-band traveling-wave tube (TWT) performance and gain. Specifically, we consider a representative dielectric TWT structure with ~5 dB/cm of gain driven by a 5-A, 20-keV, sheet electron beam that is focused by a wiggler magnetic field. The normalized beam transverse emittance must be about 1 μm or lower to ensure that both the transport is stable and the gain is not degraded by the effective energy spread arising from the emittance. This emittance limit scales roughly inversely with frequency.
Emittance Effects on Gain in $W$ -Band TWTs
Carlsten, Bruce Eric; Nichols, Kimberley E.; Shchegolkov, Dmitry Yu.; ...
2016-10-20
We consider the main effects of beam emittance on W-band traveling-wave tube (TWT) performance and gain. Specifically, we consider a representative dielectric TWT structure with ~5 dB/cm of gain driven by a 5-A, 20-keV, sheet electron beam that is focused by a wiggler magnetic field. The normalized beam transverse emittance must be about 1 μm or lower to ensure that both the transport is stable and the gain is not degraded by the effective energy spread arising from the emittance. This emittance limit scales roughly inversely with frequency.
Wiggler plane focusing in a linear free electron laser
Scharlemann, E.T.
1985-11-21
This disclosure describes a free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped.
Wear, Keith A
2014-04-01
In through-transmission interrogation of cancellous bone, two longitudinal pulses ("fast" and "slow" waves) may be generated. Fast and slow wave properties convey information about material and micro-architectural characteristics of bone. However, these properties can be difficult to assess when fast and slow wave pulses overlap in time and frequency domains. In this paper, two methods are applied to decompose signals into fast and slow waves: bandlimited deconvolution and modified least-squares Prony's method with curve-fitting (MLSP + CF). The methods were tested in plastic and Zerdine(®) samples that provided fast and slow wave velocities commensurate with velocities for cancellous bone. Phase velocity estimates were accurate to within 6 m/s (0.4%) (slow wave with both methods and fast wave with MLSP + CF) and 26 m/s (1.2%) (fast wave with bandlimited deconvolution). Midband signal loss estimates were accurate to within 0.2 dB (1.7%) (fast wave with both methods), and 1.0 dB (3.7%) (slow wave with both methods). Similar accuracies were found for simulations based on fast and slow wave parameter values published for cancellous bone. These methods provide sufficient accuracy and precision for many applications in cancellous bone such that experimental error is likely to be a greater limiting factor than estimation error.
EEG slow waves in traumatic brain injury: Convergent findings in mouse and man
Modarres, Mo; Kuzma, Nicholas N.; Kretzmer, Tracy; Pack, Allan I.; Lim, Miranda M.
2016-01-01
Objective Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). Methods We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Results Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Conclusion and implications Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms. PMID:28018987
EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.
Modarres, Mo; Kuzma, Nicholas N; Kretzmer, Tracy; Pack, Allan I; Lim, Miranda M
2016-07-01
Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.
Analysis of Slow-Wave Activity and Slow-Wave Oscillations Prior to Somnambulism
Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio
2010-01-01
Study Objectivies: Several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. Participants: Twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. Results: Analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. Conclusions: The specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined. Citation: Jaar O; Pilon M; Carrier J; Montplaisir J; Zadra A. Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism. SLEEP 2010;33(11):1511-1516. PMID:21102993
Harmonic generation with multiple wiggler schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonifacio, R.; De Salvo, L.; Pierini, P.
1995-02-01
In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.
Two-wave propagation in in vitro swine distal ulna
NASA Astrophysics Data System (ADS)
Mano, Isao; Horii, Kaoru; Matsukawa, Mami; Otani, Takahiko
2015-07-01
Ultrasonic transmitted waves were obtained in an in vitro swine distal ulna specimen, which mimics a human distal radius, that consists of interconnected cortical bone and cancellous bone. The transmitted waveforms appeared similar to the fast waves, slow waves, and overlapping fast and slow waves measured in the specimen after removing the surface cortical bone (only cancellous bone). In addition, the circumferential waves in the cortical bone and water did not affect the fast and slow waves. This suggests that the fast-and-slow-wave phenomenon can be observed in an in vivo human distal radius.
Effect of normalized plasma frequency on electron phase-space orbits in a free-electron laser
NASA Astrophysics Data System (ADS)
Ji, Yu-Pin; Wang, Shi-Jian; Xu, Jing-Yue; Xu, Yong-Gen; Liu, Xiao-Xu; Lu, Hong; Huang, Xiao-Li; Zhang, Shi-Chang
2014-02-01
Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that the irregularity of the electron phase-space orbits could be caused in several ways, such as varying the wiggler amplitude and inducing sidebands. Based on a Hamiltonian model with a set of self-consistent differential equations, it is shown in this paper that the electron-beam normalized plasma frequency functions not only couple the electron motion with the FEL wave, which results in the evolution of the FEL wave field and a possible power saturation at a large beam current, but also cause the irregularity of the electron phase-space orbits when the normalized plasma frequency has a sufficiently large value, even if the initial energy of the electron is equal to the synchronous energy or the FEL wave does not reach power saturation.
Tunability enhanced electromagnetic wiggler
Schlueter, Ross D.; Deis, Gary A.
1992-01-01
The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.
Thalamic reticular nucleus induces fast and local modulation of arousal state
Lewis, Laura D; Voigts, Jakob; Flores, Francisco J; Schmitt, L Ian; Wilson, Matthew A
2015-01-01
During low arousal states such as drowsiness and sleep, cortical neurons exhibit rhythmic slow wave activity associated with periods of neuronal silence. Slow waves are locally regulated, and local slow wave dynamics are important for memory, cognition, and behaviour. While several brainstem structures for controlling global sleep states have now been well characterized, a mechanism underlying fast and local modulation of cortical slow waves has not been identified. Here, using optogenetics and whole cortex electrophysiology, we show that local tonic activation of thalamic reticular nucleus (TRN) rapidly induces slow wave activity in a spatially restricted region of cortex. These slow waves resemble those seen in sleep, as cortical units undergo periods of silence phase-locked to the slow wave. Furthermore, animals exhibit behavioural changes consistent with a decrease in arousal state during TRN stimulation. We conclude that TRN can induce rapid modulation of local cortical state. DOI: http://dx.doi.org/10.7554/eLife.08760.001 PMID:26460547
Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J
2016-02-01
Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves
von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean
2015-01-01
Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated (‘down’, hyperpolarized) and an activated state (‘up’, depolarized). The ‘up’ state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the ‘up’ state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the ‘up’ and ‘down’ states. Spike and high frequency oscillation density was highest during the transition from the ‘up’ to the ‘down’ state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the ‘down’ to the ‘up’ state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not continuous, during this state of sleep. Both epileptic spikes and high frequency oscillations do not predominate, like physiological activity, during the ‘up’ state but during the transition from the ‘up’ to the ‘down’ state of the slow wave, a period of high synchronization. Epileptic discharges appear therefore more associated with synchronization than with excitability. Furthermore, high frequency oscillations in channels devoid of epileptic activity peak differently during the slow wave cycle from those in channels with epileptic activity. This property may allow differentiating physiological from pathological high frequency oscillations, a problem that is unresolved until now. PMID:25792528
SLOW MAGNETOACOUSTIC WAVES OBSERVED ABOVE A QUIET-SUN REGION IN A DARK CAVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Jiajia; Zhou Zhenjun; Wang Yuming
Waves play a crucial role in diagnosing the plasma properties of various structures in the solar corona and coronal heating. Slow magnetoacoustic (MA) waves are one of the important types of magnetohydrodynamic waves. In past decades, numerous slow MA waves were detected above active regions and coronal holes, but were rarely found elsewhere. Here, we investigate a 'tornado'-like structure consisting of quasi-periodic streaks within a dark cavity at about 40-110 Mm above a quiet-Sun region on 2011 September 25. Our analysis reveals that these streaks are actually slow MA wave trains. The properties of these wave trains, including phase speed,more » compression ratio, and kinetic energy density, are similar to those of the reported slow MA waves, except that the period of these waves is about 50 s, much shorter than the typical reported values (3-5 minutes).« less
HARWI---A hard x-ray wiggler beam at DORIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graeff, W.; Bittner, L.; Brefeld, W.
1989-07-01
The construction of the wiggler W2 at DORIS is described together with the major components of the beamline. Details are given on the assembly and performance of the magnet structure. Three different monochromators are used in the beamline alternatively. One of them, a Laue--Bragg-type monochromator is described in more detail.
Tunability enhanced electromagnetic wiggler
Schlueter, R.D.; Deis, G.A.
1992-03-24
The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.
An X-Ray Source for Lithography Based on a Quasi-Optical Maser Undulator
1989-05-09
an electron, c is the speed of light in vacuo, B is the peak magnetic induction and X is the period of the planar undulator or wiggler, the wavelength...relativistic motion is given 11 p = Le’ Y 6 [2 - X )2] (4) where = v/c is the particle velocity normalized to the speAd of light , and § /c, where v = -v is...k0 z + Wt),) (7) where E is the amplitude of the electric field, w is the radian frequency A and k a (0,0,k ) is the wave- vector . ez is a unit vector
Random aspects of beam physics and laser-plasma interactions
NASA Astrophysics Data System (ADS)
Charman, Andrew Emile
Aspects of the dynamics of charged particle and radiation beams, and of the interaction of plasmas with radiation are investigated, informed by concerns of classical and quantum mechanical uncertainty and noise, and related by notions of particle and radiation phase space manipulation, overlap, and control. We begin by studying questions of optimal longitudinal pulse-shaping in laser wakefield accelerators, based on a one-dimensional model with prescribed laser drive and either a linearized or fully nonlinear quasi-static plasma response. After discussing various figures of-merit, we advocate maximizing the peak wake amplitude instead of the transformer ratio. A number of new results are demonstrated, certain conjectures are rigorously proved for the first time, and some erroneous claims corrected. Instead of using short laser pulses to excite plasma waves, one can employ the beat wave between two co-propagating lasers to excite a Langmuir wave with high phase velocity suitable for acceleration of relativistic electrons. A modified version of this plasma beat-wave accelerator scheme is introduced and analyzed, which is based on autoresonant phase-locking of the nonlinear Langmuir wave to the slowly chirped beat frequency of the driving lasers via adiabatic passage through resonance. This new scheme is designed to overcome some of the well-known limitations of previous approaches, such as relativistic detuning and nonlinear modulation of the driven Langmuir wave amplitude, as well as sen sitivity to frequency mismatch due to measurement uncertainties and density fluctuations or inhomogeneities. From radiation exciting plasmas, we turn to issues of plasmas or beams emitting radiation. We develop a Hilbert-space and operator-based approach to electromagnetic radiation, and use this formalism to derive a maximum-power variational principle (MPVP) for spontaneous radiation from prescribed classical harmonic sources. Results are first derived in the paraxial limit, based on well-known analogies between paraxial optics and the Schrodinger equation for a single non-relativistic particle, and then generalized to non-paraxial situations. In essence, the variational principle says that prescribed classical charges radiate "as much as possible," consistent with energy conservation. The techniques are developed to model undulator radiation from relativistic electron beams, for which an example involving high harmonic generation is reviewed. We next study a situation where wiggler radiation is both emitted from particles and reapplied to them. In stochastic cooling, information in the radiation induced from a particle bunch, if suitably amplified and fed back on the beam, can decrease entropy and increase phase space density. Specifically, we analyze and assess possible quantum mechanical effects in optical stochastic cooling. Fast stochastic cooling (i.e., on microsecond time-scales) would be desirable in certain applications, for example, to boost final luminosity in the proposed muon collider, where the short particle lifetimes severely limit the total time available to reduce beam phase space. But fast cooling requires very high-bandwidth amplifiers to limit the incoherent heating effects from neighboring particles. Transit-time optical stochastic cooling employs high-gain, high-bandwidth, solid-state lasers to amplify the spontaneous radiation from the charged particle bunch in a strong-field magnetic wiggler. This amplified light is then fed back onto the same bunch inside a second wiggler, with appropriate phase delay to effect cooling. Prior to amplification, the usable coherent signal from any one particle is quite small, on average much less than one photon for each pass through the wiggler. This fact suggests that the radiation must be treated quantum mechanically, and raises doubts as to whether this weak signal even contains sufficient phase information for cooling and whether it can be reliably amplified to provide cooling on each pass. Further examining the possibility of quantum mechanical effects of charges and their radiation, we turn to quantum treatments of Electromagnetically-Induced-Transparency (EIT) in magnetized plasmas, in which the medium---normally opaque to a resonantly-polarized EM probe field at the cyclotron frequency---can be made transparent by the application of an intense EM pump at a frequency detuned below the cyclotron frequency by the plasma frequency. This raises fundamental questions as to how and to what extent a seemingly classical phenomena in plasma can mimic a quantum mechanical effect in atoms. We address these questions by describing both systems in a common quantum mechanical language, where in the cold, unsaturated limit, the relevant excitations are associated with collective Bosonic modes, or quasi-particles. EIT can be understood in terms of the dressing of these modes via the pump-mediated interaction, leading to a dark-state polariton coherently combining both field and particle excitations that is largely immune to the cyclotron resonance. (Abstract shortened by UMI.)
Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism.
Jaar, Olivier; Pilon, Mathieu; Carrier, Julie; Montplaisir, Jacques; Zadra, Antonio
2010-11-01
STUDY OBJECTIVIES: several studies have investigated slow wave sleep EEG parameters, including slow-wave activity (SWA) in relation to somnambulism, but results have been both inconsistent and contradictory. The first goal of the present study was to conduct a quantitative analysis of sleepwalkers' sleep EEG by studying fluctuations in spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) before the onset of somnambulistic episodes. A secondary aim was to detect slow-wave oscillations to examine changes in their amplitude and density prior to behavioral episodes. twenty-two adult sleepwalkers were investigated polysomnographically following 25 h of sleep deprivation. analysis of patients' sleep EEG over the 200 sec prior to the episodes' onset revealed that the episodes were not preceded by a gradual increase in spectral power for either delta or slow delta over frontal, central, or parietal leads. However, time course comparisons revealed significant changes in the density of slow-wave oscillations as well as in very slow oscillations with significant increases occurring during the final 20 sec immediately preceding episode onset. the specificity of these sleep EEG parameters for the occurrence and diagnosis of NREM parasomnias remains to be determined.
Is There a Relation between EEG-Slow Waves and Memory Dysfunction in Epilepsy? A Critical Appraisal
Höller, Yvonne; Trinka, Eugen
2015-01-01
Is there a relationship between peri-ictal slow waves, loss of consciousness, memory, and slow-wave sleep, in patients with different forms of epilepsy? We hypothesize that mechanisms, which result in peri-ictal slow-wave activity as detected by the electroencephalogram, could negatively affect memory processes. Slow waves (≤4 Hz) can be found in seizures with impairment of consciousness and also occur in focal seizures without impairment of consciousness but with inhibited access to memory functions. Peri-ictal slow waves are regarded as dysfunctional and are probably caused by mechanisms, which are essential to disturb the consolidation of memory entries in these patients. This is in strong contrast to physiological slow-wave activity during deep sleep, which is thought to group memory-consolidating fast oscillatory activity. In patients with epilepsy, slow waves may not only correlate with the peri-ictal clouding of consciousness, but could be the epiphenomenon of mechanisms, which interfere with normal brain function in a wider range. These mechanisms may have transient impacts on memory, such as temporary inhibition of memory systems, altered patterns of hippocampal–neocortical interactions during slow-wave sleep, or disturbed cross-frequency coupling of slow and fast oscillations. In addition, repeated tonic–clonic seizures over the years in uncontrolled chronic epilepsy may cause a progressive cognitive decline. This hypothesis can only be assessed in long-term prospective studies. These studies could disentangle the reversible short-term impacts of seizures, and the impacts of chronic uncontrolled seizures. Chronic uncontrolled seizures lead to irreversible memory impairment. By contrast, short-term impacts do not necessarily lead to a progressive cognitive decline but result in significantly impaired peri-ictal memory performance. PMID:26124717
Wave drift damping acting on multiple circular cylinders (model tests)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinoshita, Takeshi; Sunahara, Shunji; Bao, W.
1995-12-31
The wave drift damping for the slow drift motion of a four-column platform is experimentally investigated. The estimation of damping force of the slow drift motion of moored floating structures in ocean waves, is one of the most important topics. Bao et al. calculated an interaction of multiple circular cylinders based on the potential flow theory, and showed that the wave drift damping is significantly influenced by the interaction between cylinders. This calculation method assumes that the slow drift motion is approximately replaced by steady current, that is, structures on slow drift motion are supposed to be equivalent to onesmore » in both regular waves and slow current. To validate semi-analytical solutions of Bao et al., experiments were carried out. At first, added resistance due to waves acting on a structure composed of multiple (four) vertical circular cylinders fixed to a slowly moving carriage, was measured in regular waves. Next, the added resistance of the structure moored by linear spring to the slowly moving carriage were measured in regular waves. Furthermore, to validate the assumption that the slow drift motion is replaced by steady current, free decay tests in still water and in regular waves were compared with the simulation of the slow drift motion using the wave drift damping coefficient obtained by the added resistance tests.« less
A high gain free electron laser amplifier design for the Alcator-C tokamak. [FRED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong, R.A.
1987-02-01
We describe an improved wiggler tapering algorithm and the resulting wiggler design for a high-gain free electron laser amplifier to be used for plasma heating and current drive experiments in the Alcator-C tokamak. Unlike the original, this new design limits the growth of the shot noise to insignificant levels. The design goal of at least 8 GW of peak power in the TE/sub 01/ mode was achieved with a 3 kA electron beam with energies in the 7 to 9 MeV range and a beam brightness of 10/sup 5/ A/(rad-cm)/sup 2/. The wiggler was 5 m long with a wigglermore » wavelength of 8 cm.« less
The occurrence of individual slow waves in sleep is predicted by heart rate
Mensen, Armand; Zhang, Zhongxing; Qi, Ming; Khatami, Ramin
2016-01-01
The integration of near-infrared spectroscopy and electroencephalography measures presents an ideal method to study the haemodynamics of sleep. While the cortical dynamics and neuro-modulating influences affecting the transition from wakefulness to sleep is well researched, the assumption has been that individual slow waves, the hallmark of deep sleep, are spontaneously occurring cortical events. By creating event-related potentials from the NIRS recording, time-locked to the onset of thousands of individual slow waves, we show the onset of slow waves is phase-locked to an ongoing oscillation in the NIRS recording. This oscillation stems from the moment to moment fluctuations of light absorption caused by arterial pulsations driven by the heart beat. The same oscillating signal can be detected if the electrocardiogram is time-locked to the onset of the slow wave. The ongoing NIRS oscillation suggests that individual slow wave initiation is dependent on that signal, and not the other way round. However, the precise causal links remain speculative. We propose several potential mechanisms: that the heart-beat or arterial pulsation acts as a stimulus which evokes a down-state; local fluctuations in energy supply may lead to a network effect of hyperpolarization; that the arterial pulsations lead to corresponding changes in the cerebral-spinal-fluid which evokes the slow wave; or that a third neural generator, regulating heart rate and slow waves may be involved. PMID:27445083
Electroencephalographic slow waves prior to sleepwalking episodes.
Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio
2014-12-01
Recent studies have suggested that the onset of sleepwalking episodes may be preceded by fluctuations in slow-wave sleep electroencephalographic characteristics. However, whether or not such fluctuations are specific to sleepwalking episodes or generalized to all sleep-wake transitions in sleepwalkers remains unknown. The goal of this study was to compare spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) as well as slow oscillation density before the onset of somnambulistic episodes versus non-behavioral awakenings recorded from the same group of sleepwalkers. A secondary aim was to describe the time course of observed changes in slow-wave activity and slow oscillations during the 3 min immediately preceding the occurrence of somnambulistic episodes. Twelve adult sleepwalkers were investigated polysomnographically during the course of one night. Slow-wave activity and slow oscillation density were significantly greater prior to patients' somnambulistic episodes as compared with non-behavioral awakenings. However, there was no evidence for a gradual increase over the 3 min preceding the episodes. Increased slow-wave activity and slow oscillation density appear to be specific to sleepwalking episodes rather than generalized to all sleep-wake transitions in sleepwalkers. Copyright © 2014 Elsevier B.V. All rights reserved.
Modeling of induction-linac based free-electron laser amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong, R.A.; Fawley, W.M.; Scharlemann, E.T.
We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multimegawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for free-electron laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal atmore » the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices. 17 refs., 4 figs.« less
Angeli, T R; O'Grady, G; Du, P; Paskaranandavadivel, N; Pullan, A J; Bissett, I P; Cheng, L K
2013-05-01
Slow-waves modulate the pattern of small intestine contractions. However, the large-scale spatial organization of intestinal slow-wave pacesetting remains uncertain because most previous studies have had limited resolution. This study applied high-resolution (HR) mapping to evaluate intestinal pacesetting mechanisms and propagation patterns in vivo. HR serosal mapping was performed in anesthetized pigs using flexible arrays (256 electrodes; 32 × 8; 4 mm spacing), applied along the jejunum. Slow-wave propagation patterns, frequencies, and velocities were calculated. Slow-wave initiation sources were identified and analyzed by animation and isochronal activation mapping. Analysis comprised 32 recordings from nine pigs (mean duration 5.1 ± 3.9 min). Slow-wave propagation was analyzed, and a total of 26 sources of slow-wave initiation were observed and classified as focal pacemakers (31%), sites of functional re-entry (23%) and circumferential re-entry (35%), or indeterminate sources (11%). The mean frequencies of circumferential and functional re-entry were similar (17.0 ± 0.3 vs 17.2 ± 0.4 cycle min(-1) ; P = 0.5), and greater than that of focal pacemakers (12.7 ± 0.8 cycle min(-1) ; P < 0.001). Velocity was anisotropic (12.9 ± 0.7 mm s(-1) circumferential vs 9.0 ± 0.7 mm s(-1) longitudinal; P < 0.05), contributing to the onset and maintenance of re-entry. This study has shown multiple patterns of slow-wave initiation in the jejunum of anesthetized pigs. These results constitute the first description and analysis of circumferential re-entry in the gastrointestinal tract and functional re-entry in the in vivo small intestine. Re-entry can control the direction, pattern, and frequency of slow-wave propagation, and its occurrence and functional significance merit further investigation. © 2013 Blackwell Publishing Ltd.
Palchykova, S.; Achermann, P.; Tobler, I.; Deboer, T.
2017-01-01
Abstract It has been shown previously in Djungarian hamsters that the initial electroencephalography (EEG) slow-wave activity (power in the 0.5–4.0 Hz band; SWA) in non-rapid eye movement (NREM) sleep following an episode of daily torpor is consistently enhanced, similar to the SWA increase after sleep deprivation (SD). However, it is unknown whether the network mechanisms underlying the SWA increase after torpor and SD are similar. EEG slow waves recorded in the neocortex during sleep reflect synchronized transitions between periods of activity and silence among large neuronal populations. We therefore set out to investigate characteristics of individual cortical EEG slow waves recorded during NREM sleep after 4 h SD and during sleep after emergence from an episode of daily torpor in adult male Djungarian hamsters. We found that during the first hour after both SD and torpor, the SWA increase was associated with an increase in slow-wave incidence and amplitude. However, the slopes of single slow waves during NREM sleep were steeper in the first hour after SD but not after torpor, and, in contrast to sleep after SD, the magnitude of change in slopes after torpor was unrelated to the changes in SWA. Furthermore, slow-wave slopes decreased progressively within the first 2 h after SD, while a progressive increase in slow-wave slopes was apparent during the first 2 h after torpor. The data suggest that prolonged waking and torpor have different effects on cortical network activity underlying slow-wave characteristics, while resulting in a similar homeostatic sleep response of SWA. We suggest that sleep plays an important role in network homeostasis after both waking and torpor, consistent with a recovery function for both states. PMID:28168294
Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities
Du, Peng; Calder, Stefan; Angeli, Timothy R.; Sathar, Shameer; Paskaranandavadivel, Niranchan; O'Grady, Gregory; Cheng, Leo K.
2018-01-01
Gastrointestinal (GI) motility is regulated in part by electrophysiological events called slow waves, which are generated by the interstitial cells of Cajal (ICC). Slow waves propagate by a process of “entrainment,” which occurs over a decreasing gradient of intrinsic frequencies in the antegrade direction across much of the GI tract. Abnormal initiation and conduction of slow waves have been demonstrated in, and linked to, a number of GI motility disorders. A range of mathematical models have been developed to study abnormal slow waves and applied to propose novel methods for non-invasive detection and therapy. This review provides a general outline of GI slow wave abnormalities and their recent classification using multi-electrode (high-resolution) mapping methods, with a particular emphasis on the spatial patterns of these abnormal activities. The recently-developed mathematical models are introduced in order of their biophysical scale from cellular to whole-organ levels. The modeling techniques, main findings from the simulations, and potential future directions arising from notable studies are discussed. PMID:29379448
Dispersion interference in the pulsed-wire measurement method
NASA Astrophysics Data System (ADS)
Shahal, O.; Elkonin, B. V.; Sokolowski, J. S.
1990-10-01
The magnetic profile of the wiggler to be used in the planned Weizmann Institute FEL has been measured using the pulsed-wire method. The main transverse deflection pattern caused by an electrical current pulse in a wire placed along the wiggler was sometimes accompanied by minor faster and slower parasitic components. These components interfered with the main profile, resulting in distorted mapping of the wiggler magnetic field. Their periodical structure being very close to the main pattern could not be easily resolved by applying a numerical Fourier transform. A strong correlation between the wire tension and the amplitude of the parasitic patterns was found. Significant damping of these oscillations was achieved by applying high enough tension to the wire (close the yield point), allowing to disregard their contribution to the measurement accuracy.
Kuo, Terry B J; Yang, Cheryl C H
2004-06-15
To explore interactions between cerebral cortical and autonomic functions in different sleep-wake states. Active waking (AW), quiet sleep (QS), and paradoxical sleep (PS) of adult male Wistar-Kyoto rats (WKY) on their daytime sleep were compared. Ten WKY. All rats had electrodes implanted for polygraphic recordings. One week later, a 6-hour daytime sleep-wakefulness recording session was performed. A scatterplot analysis of electroencephalogram (EEG) slow-wave magnitude (0.5-4 Hz) and heart rate variability (HRV) was applied in each rat. The EEG slow-wave-RR interval scatterplot from all of the recordings revealed a propeller-like pattern. If the scatterplot was divided into AW, PS, and QS according to the corresponding EEG mean power frequency and nuchal electromyogram, the EEG slow wave-RR interval relationship became nil, negative, and positive for AW, PS, and QS, respectively. A significant negative relationship was found for EEG slow-wave and high-frequency power of HRV (HF) coupling during PS and for EEG slow wave and low-frequency power of HRV to HF ratio (LF/HF) coupling during QS. The optimal time lags for the slow wave-LF/HF relationship were different between PS and QS. Bradycardia noted in QS and PS was related to sympathetic suppression and vagal excitation, respectively. The EEG slow wave-HRV scatterplot may provide unique insights into studies of sleep, and such a relationship may delineate the sleep-state-dependent fluctuations in autonomic nervous system activity.
Association between ICP pulse waveform morphology and ICP B waves.
Kasprowicz, Magdalena; Bergsneider, Marvin; Czosnyka, Marek; Hu, Xiao
2012-01-01
The study aimed to investigate changes in the shape of ICP pulses associated with different patterns of the ICP slow waves (0.5-2.0 cycles/min) during ICP overnight monitoring in hydrocephalus. Four patterns of ICP slow waves were characterized in 44 overnight ICP recordings (no waves - NW, slow symmetrical waves - SW, slow asymmetrical waves - AS, slow waves with plateau phase - PW). The morphological clustering and analysis of ICP pulse (MOCAIP) algorithm was utilized to calculate a set of metrics describing ICP pulse morphology based on the location of three sub-peaks in an ICP pulse: systolic peak (P(1)), tidal peak (P(2)) and dicrotic peak (P(3)). Step-wise discriminant analysis was applied to select the most characteristic morphological features to distinguish between different ICP slow waves. Based on relative changes in variability of amplitudes of P(2) and P(3) we were able to distinguish between the combined groups NW + SW and AS + PW (p < 0.000001). The AS pattern can be differentiated from PW based on respective changes in the mean curvature of P(2) and P(3) (p < 0.000001); however, none of the MOCAIP feature separates between NW and SW. The investigation of ICP pulse morphology associated with different ICP B waves may provide additional information for analysing recordings of overnight ICP.
Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.
Nelson, Amber M; Hoffman, Joseph J; Anderson, Christian C; Holland, Mark R; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G
2011-10-01
Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. © 2011 Acoustical Society of America
Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone
Nelson, Amber M.; Hoffman, Joseph J.; Anderson, Christian C.; Holland, Mark R.; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G.
2011-01-01
Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. PMID:21973378
Memory improvement via slow-oscillatory stimulation during sleep in older adults.
Westerberg, Carmen E; Florczak, Susan M; Weintraub, Sandra; Mesulam, M-Marsel; Marshall, Lisa; Zee, Phyllis C; Paller, Ken A
2015-09-01
We examined the intriguing but controversial idea that disrupted sleep-dependent consolidation contributes to age-related memory decline. Slow-wave activity during sleep may help strengthen neural connections and provide memories with long-term stability, in which case decreased slow-wave activity in older adults could contribute to their weaker memories. One prediction from this account is that age-related memory deficits should be reduced by artificially enhancing slow-wave activity. In young adults, applying transcranial current oscillating at a slow frequency (0.75 Hz) during sleep improves memory. Here, we tested whether this procedure can improve memory in older adults. In 2 sessions separated by 1 week, we applied either slow-oscillatory stimulation or sham stimulation during an afternoon nap in a double-blind, crossover design. Memory tests were administered before and after sleep. A larger improvement in word-pair recall and higher slow-wave activity was observed with slow-oscillatory stimulation than with sham stimulation. This is the first demonstration that this procedure can improve memory in older adults, suggesting that declarative memory performance in older adults is partly dependent on slow-wave activity during sleep. Copyright © 2015 Elsevier Inc. All rights reserved.
Groopman, Amber M.; Katz, Jonathan I.; Holland, Mark R.; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A.; Miller, James G.
2015-01-01
Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable. PMID:26328678
Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.
Funk, Chadd M; Peelman, Kayla; Bellesi, Michele; Marshall, William; Cirelli, Chiara; Tononi, Giulio
2017-09-20
During non-rapid eye-movement (NREM) sleep, cortical and thalamic neurons oscillate every second or so between ON periods, characterized by membrane depolarization and wake-like tonic firing, and OFF periods, characterized by membrane hyperpolarization and neuronal silence. Cortical slow waves, the hallmark of NREM sleep, reflect near-synchronous OFF periods in cortical neurons. However, the mechanisms triggering such OFF periods are unclear, as there is little evidence for somatic inhibition. We studied cortical inhibitory interneurons that express somatostatin (SOM), because ∼70% of them are Martinotti cells that target diffusely layer I and can block excitatory transmission presynaptically, at glutamatergic terminals, and postsynaptically, at apical dendrites, without inhibiting the soma. In freely moving male mice, we show that SOM+ cells can fire immediately before slow waves and their optogenetic stimulation during ON periods of NREM sleep triggers long OFF periods. Next, we show that chemogenetic activation of SOM+ cells increases slow-wave activity (SWA), slope of individual slow waves, and NREM sleep duration; whereas their chemogenetic inhibition decreases SWA and slow-wave incidence without changing time spent in NREM sleep. By contrast, activation of parvalbumin+ (PV+) cells, the most numerous population of cortical inhibitory neurons, greatly decreases SWA and cortical firing, triggers short OFF periods in NREM sleep, and increases NREM sleep duration. Thus SOM+ cells, but not PV+ cells, are involved in the generation of sleep slow waves. Whether Martinotti cells are solely responsible for this effect, or are complemented by other classes of inhibitory neurons, remains to be investigated. SIGNIFICANCE STATEMENT Cortical slow waves are a defining feature of non-rapid eye-movement (NREM) sleep and are thought to be important for many of its restorative benefits. Yet, the mechanism by which cortical neurons abruptly and synchronously cease firing, the neuronal basis of the slow wave, remains unknown. Using chemogenetic and optogenetic approaches, we provide the first evidence that links a specific class of inhibitory interneurons-somatostatin-positive cells-to the generation of slow waves during NREM sleep in freely moving mice. Copyright © 2017 the authors 0270-6474/17/379132-17$15.00/0.
Vagus Nerve Stimulation for Electrographic Status Epilepticus in Slow-Wave Sleep.
Carosella, Christopher M; Greiner, Hansel M; Byars, Anna W; Arthur, Todd M; Leach, James L; Turner, Michele; Holland, Katherine D; Mangano, Francesco T; Arya, Ravindra
2016-07-01
Electrographic status epilepticus in slow sleep or continuous spike and waves during slow-wave sleep is an epileptic encephalopathy characterized by seizures, neurocognitive regression, and significant activation of epileptiform discharges during nonrapid eye movement sleep. There is no consensus on the diagnostic criteria and evidence-based optimal treatment algorithm for children with electrographic status epilepticus in slow sleep. We describe a 12-year-old girl with drug-resistant electrographic status epilepticus in slow wave sleep that was successfully treated with vagus nerve stimulation. Her clinical presentation, presurgical evaluation, decision-making, and course after vagus nerve stimulator implantation are described in detail. After vagus nerve stimulator implantation, the girl remained seizure free for more than a year, resolved the electrographic status epilepticus in slow sleep pattern on electroencephalography, and exhibited significant cognitive improvement. Vagus nerve stimulation may be considered for electrographic status epilepticus in slow sleep. Copyright © 2016 Elsevier Inc. All rights reserved.
Regional Slow Waves and Spindles in Human Sleep
Nir, Yuval; Staba, Richard J.; Andrillon, Thomas; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Fried, Itzhak; Tononi, Giulio
2011-01-01
SUMMARY The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions—are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions. PMID:21482364
EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory
Wang, Kaier; Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Wilson, Marcus T.; Sleigh, Jamie W.
2014-01-01
The electroencephalogram (EEG) patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations during transition to unconsciousness may help us to identify drug-induced alterations of the underlying brain state, and provide insight into the mechanisms of general anesthesia. Although cellular-based mechanisms have been proposed, the origin of the slow oscillation has not yet been unambiguously established. A recent theoretical study by Steyn-Ross et al. (2013) proposes that the slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious state signposted by emergent low-frequency oscillations with chaotic dynamics in space and time. They suggest that anesthetic slow-waves arise from a competitive interaction between symmetry-breaking instabilities in space (Turing) and time (Hopf), modulated by gap-junction coupling strength. A significant prediction of their model is that EEG phase coherence will decrease as the cortex transits from Turing–Hopf balance (wake) to Hopf-dominated chaotic slow-waves (unconsciousness). Here, we investigate changes in phase coherence during induction of general anesthesia. After examining 128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia, we report a significant drop in sub-delta band (0.05–1.5 Hz) slow-wave coherence between frontal, occipital, and frontal–occipital electrode pairs, with the most pronounced wake-vs.-unconscious coherence changes occurring at the frontal cortex. PMID:25400558
Gastric dysrhythmias and the current status of electrogastrography
NASA Technical Reports Server (NTRS)
Koch, K. L.
1989-01-01
Myoelectrical activity recorded simultaneously from mucosal, serosal, and cutaneous electrodes has confirmed that the 3-cpm signal from such electrodes reflects gastric slow-wave activity. Now, the observation that patients with unexplained nausea and vomiting may have very rapid slow-wave frequencies (tachygastrias) and very slow, slow-wave frequencies (bradygastrias) suggests that electrogastrography, a reliable and noninvasive technique, may be useful in the diagnosis and management of patients with upper abdominal symptoms and gastroparesis.
Teleseismic surface wave study of S-wave velocity structure in Southern California
NASA Astrophysics Data System (ADS)
Prindle-Sheldrake, K. L.; Tanimoto, T.
2002-12-01
We report on a 3D S-wave velocity structure derived from teleseismic Rayleigh and Love waves using TriNet broadband seismic data. Phase velocity maps, constructed between 20 and 55 mHz for Rayleigh waves and between 25 and 45 mHz for Love waves, were inverted for S-wave velocity structure at depth. Our starting model is SCEC 2.2, which has detailed crustal structure, but laterally homogeneous upper mantle structure. Depth resolution from the data set is good from the surface to approximately 100 km, but deteriorates rapidly beyond this depth. Our analysis indicates that, while Rayleigh wave data are mostly sensitive to mantle structure, Love wave data require some modifications of crustal structure from SCEC 2.2 model. Various regions in Southern California have different seismic-velocity signatures in terms of fast and slow S-wave velocities: In the Southern Sierra, both the crust and mantle are slow. In the Mojave desert, mid-crustal depths tend to show slow velocities, which are already built into SCEC 2.2. In the Transverse Ranges, the lower crust and mantle are both fast. Our Love wave results require much faster crustal velocity than those in SCEC 2.2 in this region. In the Peninsular ranges, both the crust and mantle are fast with mantle fast velocity extending to about 70 km. This is slightly more shallow than the depth extent under the Transverse Ranges, yet it is surprisingly deep. Under the Salton Sea, the upper crust is very slow and the upper mantle is also slow. However, these two slow velocity layers are separated by faster velocity lower crust which creates a distinct contrast with respect to the adjacent slow velocity regions. Existence of such a relatively fast layer, sandwiched by slow velocities, are related to features in phase velocity maps, especially in the low frequency Love wave phase velocity map (25 mHz) and the high frequency Rayleigh wave phase velocity maps (above 40 mHz). Such a feature may be related to partial melting processes under the Salton Sea.
NASA Astrophysics Data System (ADS)
Kant, Niti; Rajput, Jyoti; Singh, Arvinder
2018-03-01
This paper presents a scheme of electron energy enhancement by employing frequency - chirped lowest order axicon focussed radially polarised (RP) laser pulse in vacuum under the influence of wiggler magnetic field. Terawatt RP laser can be focussed down to ∼5μm by an axicon optical element, which produces an intense longitudinal electric field. This unique property of axicon focused Gaussian RP laser pulse is employed for direct electron acceleration in vacuum. A linear frequency chirp increases the time duration of laser-electron interaction, whereas, the applied magnetic wiggler helps in improving the strength of ponderomotive force v→ ×B→ and periodically deflects electron in order to keep it traversing in the accelerating phase up to longer distance. Numerical simulations have been carried out to investigate the influence of laser, frequency chirp and magnetic field parameters on electron energy enhancement. It is noticed that an electron from rest can be accelerated up to GeV energy under optimized laser and magnetic field parameters. Significant enhancement in the electron energy gain of the order of 11.2 GeV is observed with intense chirped laser pulse in the presence of wiggler magnetic field of strength 96.2 kG.
Mayne, Terence P; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; OGrady, Gregory; Cheng, Leo K; Angeli, Timothy R
2018-02-01
High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation. The novel method of "wavefront-orientation" interpolation was created to account for the planar movement of the slow wave wavefront, negate any need for distance calculations, remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation boundary. The wavefront-orientation method determines the orthogonal wavefront direction and calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity. Animation accuracy of 17 human high-resolution slow wave recordings (64-256 electrodes) was verified by visual comparison to the prior method showing a clear improvement in wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an assessment of clinical applicability performed by eight GI clinicians. Quantitatively, the new method produced accurate interpolation values compared to experimental data (mean difference 0.02 ± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per wave. These novel methods provide a validated visualization platform that will improve analysis of high-resolution GI mapping in research and clinical translation.
Photonic Crystal-Based High-Power Backward Wave Oscillator
Poole, Brian R.; Harris, John R.
2017-12-01
An electron beam traversing a slow wave structure can be used to either generate or amplify electromagnetic radiation through the interaction of the slow space charge wave on the beam with the slow wave structure modes. Here, a cylindrical waveguide with a periodic array of conducting loops is used for the slow wave structure. This paper considers operation as a backward wave oscillator. The dispersion properties of the structure are determined using a frequency-domain eigenmode solver. The interaction of the electron beam with the structure modes is investigated using a 2-D particle-in-cell (PIC) code. In conclusion, the operating frequency andmore » growth rate dependence on beam energy and beam current are investigated using the PIC code and compared with analytic and scaling estimates where possible.« less
Photonic Crystal-Based High-Power Backward Wave Oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, Brian R.; Harris, John R.
An electron beam traversing a slow wave structure can be used to either generate or amplify electromagnetic radiation through the interaction of the slow space charge wave on the beam with the slow wave structure modes. Here, a cylindrical waveguide with a periodic array of conducting loops is used for the slow wave structure. This paper considers operation as a backward wave oscillator. The dispersion properties of the structure are determined using a frequency-domain eigenmode solver. The interaction of the electron beam with the structure modes is investigated using a 2-D particle-in-cell (PIC) code. In conclusion, the operating frequency andmore » growth rate dependence on beam energy and beam current are investigated using the PIC code and compared with analytic and scaling estimates where possible.« less
The sleep slow oscillation as a traveling wave.
Massimini, Marcello; Huber, Reto; Ferrarelli, Fabio; Hill, Sean; Tononi, Giulio
2004-08-04
During much of sleep, virtually all cortical neurons undergo a slow oscillation (<1 Hz) in membrane potential, cycling from a hyperpolarized state of silence to a depolarized state of intense firing. This slow oscillation is the fundamental cellular phenomenon that organizes other sleep rhythms such as spindles and slow waves. Using high-density electroencephalogram recordings in humans, we show here that each cycle of the slow oscillation is a traveling wave. Each wave originates at a definite site and travels over the scalp at an estimated speed of 1.2-7.0 m/sec. Waves originate more frequently in prefrontal-orbitofrontal regions and propagate in an anteroposterior direction. Their rate of occurrence increases progressively reaching almost once per second as sleep deepens. The pattern of origin and propagation of sleep slow oscillations is reproducible across nights and subjects and provides a blueprint of cortical excitability and connectivity. The orderly propagation of correlated activity along connected pathways may play a role in spike timing-dependent synaptic plasticity during sleep.
Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.
Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei
2018-01-24
An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.
Effect of medullary cavity in cancellous bone on two-wave phenomenon
NASA Astrophysics Data System (ADS)
Hachiken, Takuma; Nakanishi, Shoko; Matsukawa, Mami
2016-07-01
Osteoporotic patients have a larger medullary cavity in their cancellous bone than healthy people. In this study, the effect of the medullary cavity on the two-wave phenomenon was experimentally investigated using a cancellous bone model and a radius bone model. In the cancellous bone model, with the increase in hole (medullary cavity) diameter, the amplitudes of the fast waves became smaller, whereas the amplitudes of the slow waves became larger. In the radius bone model, the fast wave overlapped with the circumferential wave. The slow wave became larger with increasing hole diameter. The analysis of the slow wave thus seems to be useful for the in vivo diagnosis of the degree of osteoporosis.
NASA Astrophysics Data System (ADS)
Larson, J. J.; Pinsker, R. I.; Bonoli, P. T.; Porkolab, M.
2017-10-01
The important effect of varying the initial poloidal wave-launching location to the core accessibility of lower hybrid slow waves in a torus of finite aspect ratio has been understood for many years. Since the qualitative properties of the wave propagation of the other branch in this regime, known as the `whistler', `helicon' or simply the `fast wave', are similar in some ways to those of the slow wave, we expect a dependence on launch position for this wave also. We study this problem for both slow and fast waves, first with simplified analytic models and then using the ray-tracing code GENRAY for realistic plasma equilibria. We assess the prospects of inside, top, bottom or conventional outside launch of waves on each of the two branches. Although the slow wave has been the focus of research for LHRF heating and current drive in the past, the fast wave will play a major role in burning plasmas beyond ITER where Te(0) = 10-20 keV. The stronger electron Landau damping of the slow wave will restrict the power deposition to the outer third of the plasma, while the fast wave's weaker damping allows the wave to penetrate to the hot plasma core before depositing its power. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698 and DE-FG02-91-ER54109.
Properties of slow oscillation during slow-wave sleep and anesthesia in cats.
Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor
2011-10-19
Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine-xylazine anesthesia.
Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey N.; Uralov, Arkadiy M.
2016-11-01
Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.
Wang, Huichuan; Lu, Zengbing; Liu, Yuen Hang; Sun, Yayi; Tu, Longlong; Ngan, Man P; Yeung, Chi-Kong; Rudd, John A
2018-06-01
What is the central question of this study? Gastric slow waves originating from the interstitial cells of Cajal-smooth muscle syncytium are usually studied in culture or in tissue segments, but nobody has described recordings of slow waves from awake, freely moving mice. Can radiotelemetry be used to record slow waves, and do they respond predictably to drug treatment? What is the main finding and its importance? Radiotelemetry can be used to record slow waves from awake, freely moving mice, permitting an examination of drug actions in vivo, which is crucial to drug discovery projects for characterizing the effects of drugs and metabolites on gastrointestinal function. The mouse is the most commonly used species in preclinical research, and isolated tissues are used to study slow waves from the interstitial cells of Cajal-smooth muscle syncytium of the gastrointestinal tract. The aim of this study was to establish a radiotelemetric technique in awake mice to record gastric myoelectric activity from the antrum to gain insight into the effects of endogenous modulatory systems on slow waves. Under general anaesthesia, two biopotential wires from a telemetry transmitter were sutured into the antrum of male ICR (imprinting control region) mice. The animals were allowed 1 week to recover from surgery before the i.p. administration of drugs to stimulate or inhibit slow waves. The basal dominant frequency of slow waves was 6.96 ± 0.43 c.p.m., and the percentages of power in the bradygastric, normogastric and tachygastric ranges were 6.89 ± 0.98, 37.32 ± 1.72 and 34.38 ± 0.77%, respectively (n = 74). Nicotine at 1 mg kg -1 increased normogastric power, but at 3 mg kg -1 it increased bradygastric power (P < 0.05). Metoclopramide at 10 mg kg -1 increased normogastric power; sodium nitroprusside at 10 mg kg -1 had latent effects on tachygastric power (P < 0.05); and l-NAME at 10 mg kg -1 had no effect (P > 0.05). Nicotine and bethanechol also caused varying degrees of hypothermia (>1°C reductions; P < 0.05). In conclusion, radiotelemetry can be used to record slow waves from awake, freely moving mice. In light of our findings, we recommend that studies assessing slow waves should also assess body temperature simultaneously. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.
Surface Current Density Mapping for Identification of Gastric Slow Wave Propagation
Bradshaw, L. A.; Cheng, L. K.; Richards, W. O.; Pullan, A. J.
2009-01-01
The magnetogastrogram records clinically relevant parameters of the electrical slow wave of the stomach noninvasively. Besides slow wave frequency, gastric slow wave propagation velocity is a potentially useful clinical indicator of the state of health of gastric tissue, but it is a difficult parameter to determine from noninvasive bioelectric or biomagnetic measurements. We present a method for computing the surface current density (SCD) from multichannel magnetogastrogram recordings that allows computation of the propagation velocity of the gastric slow wave. A moving dipole source model with hypothetical as well as realistic biomagnetometer parameters demonstrates that while a relatively sparse array of magnetometer sensors is sufficient to compute a single average propagation velocity, more detailed information about spatial variations in propagation velocity requires higher density magnetometer arrays. Finally, the method is validated with simultaneous MGG and serosal EMG measurements in a porcine subject. PMID:19403355
Bian, Tianjian; Gao, Jie; Zhang, Chuang; ...
2017-12-10
In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. Here in this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ringmore » as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. Finally, for the normal bend scheme, we implement the orbit correction to correct the earth field.« less
Positron production by x rays emitted by betatron motion in a plasma wiggler.
Johnson, D K; Auerbach, D; Blumenfeld, I; Barnes, C D; Clayton, C E; Decker, F J; Deng, S; Emma, P; Hogan, M J; Huang, C; Ischebeck, R; Iverson, R; Joshi, C; Katsouleas, T C; Kirby, N; Krejcik, P; Lu, W; Marsh, K A; Mori, W B; Muggli, P; O'Connell, C L; Oz, E; Siemann, R H; Walz, D; Zhou, M
2006-10-27
Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra.
Calculated and measured fields in superferric wiggler magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, E.B.; Solomon, L.
1995-02-01
Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peakmore » on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.« less
High peak power THz source for ultrafast electron diffraction
NASA Astrophysics Data System (ADS)
Liu, Shengguang
2018-01-01
Terahertz (THz) science and technology have already become the research highlight at present. In this paper, we put forward a device setup to carry out ultrafast fundamental research. A photocathode RF gun generates electron bunches with ˜MeV energy, ˜ps bunch width and about 25pC charge. The electron bunches inject the designed wiggler, the coherent radiation at THz spectrum emits from these bunches and increases rapidly until the saturation at ˜MW within a short wiggler. THz pulses can be used as pump to stimulate an ultra-short excitation in some kind of sample. Those electron bunches out of wiggler can be handled into bunches with ˜1pC change, small beam spot and energy spread to be probe. Because the pump and probe comes from the same electron source, synchronization between pump and probe is inherent. The whole facility can be compacted on a tabletop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Tianjian; Gao, Jie; Zhang, Chuang
In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. Here in this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ringmore » as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. Finally, for the normal bend scheme, we implement the orbit correction to correct the earth field.« less
Propofol Anesthesia and Sleep: A High-Density EEG Study
Murphy, Michael; Bruno, Marie-Aurelie; Riedner, Brady A.; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C.; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Melanie
2011-01-01
Study Objectives: The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. Design: 256-channel EEG recordings in humans during propofol anesthesia. Setting: Hospital operating room. Patients or Participants: 8 healthy subjects (4 males) Interventions: N/A Measurements and Results: Initially, propofol induced increases in EEG power from 12–25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25–40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Conclusions: Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity. Citation: Murphy M; Bruno MA; Riedner BA; Boveroux P; Noirhomme Q; Landsness EC; Brichant JF; Phillips C; Massimini M; Laureys S; Tononi G; Boly M. Propofol anesthesia and sleep: a high-density EEG study. SLEEP 2011;34(3):283-291. PMID:21358845
Global Intracellular Slow-Wave Dynamics of the Thalamocortical System
Sheroziya, Maxim
2014-01-01
It is widely accepted that corticothalamic neurons recruit the thalamus in slow oscillation, but global slow-wave thalamocortical dynamics have never been experimentally shown. We analyzed intracellular activities of neurons either from different cortical areas or from a variety of specific and nonspecific thalamic nuclei in relation to the phase of global EEG signal in ketamine-xylazine anesthetized mice. We found that, on average, slow-wave active states started off within frontal cortical areas as well as higher-order and intralaminar thalamus (posterior and parafascicular nuclei) simultaneously. Then, the leading edge of active states propagated in the anteroposterior/lateral direction over the cortex at ∼40 mm/s. The latest structure we recorded within the slow-wave cycle was the anterior thalamus, which followed active states of the retrosplenial cortex. Active states from different cortical areas tended to terminate simultaneously. Sensory thalamic ventral posterior medial and lateral geniculate nuclei followed cortical active states with major inhibitory and weak tonic-like “modulator” EPSPs. In these nuclei, sharp-rising, large-amplitude EPSPs (“drivers”) were not modulated by cortical slow waves, suggesting their origin in ascending pathways. The thalamic active states in other investigated nuclei were composed of depolarization: some revealing “driver”- and “modulator”-like EPSPs, others showing “modulator”-like EPSPs only. We conclude that sensory thalamic nuclei follow the propagating cortical waves, whereas neurons from higher-order thalamic nuclei display “hub dynamics” and thus may contribute to the generation of cortical slow waves. PMID:24966387
Modeling resting-state functional networks when the cortex falls asleep: local and global changes.
Deco, Gustavo; Hagmann, Patric; Hudetz, Anthony G; Tononi, Giulio
2014-12-01
The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Angeli, Timothy R; O'Grady, Gregory; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; Du, Peng; Pullan, Andrew J; Bissett, Ian P
2013-01-01
Background/Aims Small intestine motility is governed by an electrical slow wave activity, and abnormal slow wave events have been associated with intestinal dysmotility. High-resolution (HR) techniques are necessary to analyze slow wave propagation, but progress has been limited by few available electrode options and laborious manual analysis. This study presents novel methods for in vivo HR mapping of small intestine slow wave activity. Methods Recordings were obtained from along the porcine small intestine using flexible printed circuit board arrays (256 electrodes; 4 mm spacing). Filtering options were compared, and analysis was automated through adaptations of the falling-edge variable-threshold (FEVT) algorithm and graphical visualization tools. Results A Savitzky-Golay filter was chosen with polynomial-order 9 and window size 1.7 seconds, which maintained 94% of slow wave amplitude, 57% of gradient and achieved a noise correction ratio of 0.083. Optimized FEVT parameters achieved 87% sensitivity and 90% positive-predictive value. Automated activation mapping and animation successfully revealed slow wave propagation patterns, and frequency, velocity, and amplitude were calculated and compared at 5 locations along the intestine (16.4 ± 0.3 cpm, 13.4 ± 1.7 mm/sec, and 43 ± 6 µV, respectively, in the proximal jejunum). Conclusions The methods developed and validated here will greatly assist small intestine HR mapping, and will enable experimental and translational work to evaluate small intestine motility in health and disease. PMID:23667749
Onisawa, Naomi; Manabe, Hiroyuki; Mori, Kensaku
2017-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. Copyright © 2017 the American Physiological Society.
Onisawa, Naomi; Mori, Kensaku
2016-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. NEW & NOTEWORTHY Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. PMID:27733591
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Z.; Ruland, R.; Dix, B.
The Stanford Linear Accelerator Center is evaluating the feasibility of placing a free electron laser (FEL) at the end of the linear accelerator. The proposal is to inject electrons two thirds of the way down the linac, accelerate the electrons for the last one third of the linac, and then send the electrons into the FEL. This project is known as the LCLS (Linac Coherent Light Source). To test the feasibility of the LCLS, a smaller experiment VISA (Visual to Infrared SASE (Self Amplified Stimulated Emission) Amplifier) is being performed at Brookhaven National Laboratory. VISA consists of four wiggler segments,more » each 0.99 m long. The four segments are required to be aligned to the beam axis with an rms error less than 50 {micro}m [1]. This very demanding alignment is carried out in two steps [2]. First the segments are fiducialized using a pulsed wire system. Then the wiggler segments are placed along a reference laser beam which coincides with the electron beam axis. In the wiggler segment fiducialization, a wire is stretched through a wiggler segment and a current pulse is sent down the wire. The deflection of the wire is monitored. The deflection gives information about the electron beam trajectory. The wire is moved until its x position, the coordinate without wire sag, is on the ideal beam trajectory. (The y position is obtained by rotating the wiggler 90{sup o}.) Once the wire is on the ideal beam trajectory, the wire's location is measured relative to tooling balls on the wiggler segment. To locate the wire, a device was constructed which measures the wire position relative to tooling balls on the device. The device is called the wire finder. It will be discussed in this paper. To place the magnets along the reference laser beam, the position of the laser beam must be determined. A device which can locate the laser beam relative to tooling balls was constructed and is also discussed in this paper. This device is called the laser finder. With a total alignment error budget less than 50 {micro}m, both the fiducialization and magnet placement must be performed with errors much smaller than 50 {micro}m. It is desired to keep the errors from the wire finder and laser finder at the few {micro}m level.« less
Bölsterli Heinzle, Bigna Katrin; Bast, Thomas; Critelli, Hanne; Huber, Reto; Schmitt, Bernhard
2017-02-01
Epileptic encephalopathy with continuous spike-and-waves during sleep (CSWS) occurs during childhood and is characterized by an activation of spike wave complexes during slow wave sleep. The location of epileptic foci is variable, as is etiology. A relationship between the epileptic focus and age has been shown in various focal epilepsies following a posterior-anterior trajectory, and a link to brain maturation has been proposed. We hypothesize that in CSWS, maximal spike wave activity, corresponding to the epileptic focus, is related to age and shows a posterior-anterior evolution. In a retrospective cross-sectional study on CSWS (22 EEGs of 22 patients aged 3.1–13.5 years), the location of the epileptic focus is related to age and follows a posterior-anterior course. Younger patients are more likely to have posterior foci than older ones. We propose that the posterior-anterior trajectory of maximal spike waves in CSWS might reflect maturational changes of maximal expression of sleep slow waves, which follow a comparable course. Epileptic spike waves, that is, “hyper-synchronized slow waves” may occur at the place where the highest and therefore most synchronized slow waves meet brain tissue with an increased susceptibility to synchronization. Georg Thieme Verlag KG Stuttgart · New York.
Properties of slow oscillation during slow-wave sleep and anesthesia in cats
Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor
2011-01-01
Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat, to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, while under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were largely uniform across cortical areas under anesthesia, but in SWS they were most pronounced in associative and visual areas, but smaller and less regular in somatosensory and motor cortices. We conclude that although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS as compared to ketamine-xylazine anesthesia. PMID:22016533
Energy Recovery Linacs for Light Source Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Neil
2011-04-01
Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the statusmore » of worldwide programs and discuss the technology challenges to provide such beams for photon production.« less
Siclari, Francesca; Bernardi, Giulio; Riedner, Brady A.; LaRocque, Joshua J.; Benca, Ruth M.; Tononi, Giulio
2014-01-01
Objectives: To assess how the characteristics of slow waves and spindles change in the falling-asleep process. Design: Participants undergoing overnight high-density electroencephalographic recordings were awakened at 15- to 30-min intervals. One hundred forty-one falling-asleep periods were analyzed at the scalp and source level. Setting: Sleep laboratory. Participants: Six healthy participants. Interventions: Serial awakenings. Results: The number and amplitude of slow waves followed two dissociated, intersecting courses during the transition to sleep: slow wave number increased slowly at the beginning and rapidly at the end of the falling-asleep period, whereas amplitude at first increased rapidly and then decreased linearly. Most slow waves occurring early in the transition to sleep had a large amplitude, a steep slope, involved broad regions of the cortex, predominated over frontomedial regions, and preferentially originated from the sensorimotor and the posteromedial parietal cortex. Most slow waves occurring later had a smaller amplitude and slope, involved more circumscribed parts of the cortex, and had more evenly distributed origins. Spindles were initially sparse, fast, and involved few cortical regions, then became more numerous and slower, and involved more areas. Conclusions: Our results provide evidence for two types of slow waves, which follow dissociated temporal courses in the transition to sleep and have distinct cortical origins and distributions. We hypothesize that these two types of slow waves result from two distinct synchronization processes: (1) a “bottom-up,” subcorticocortical, arousal system-dependent process that predominates in the early phase and leads to type I slow waves, and (2) a “horizontal,” corticocortical synchronization process that predominates in the late phase and leads to type II slow waves. The dissociation between these two synchronization processes in time and space suggests that they may be differentially affected by experimental manipulations and sleep disorders. Citation: Siclari F, Bernardi G, Riedner BA, LaRocque JJ, Benca RM, Tononi G. Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study. SLEEP 2014;37(10):1621-1637. PMID:25197810
An X-ray beam position monitor based on the photoluminescence of helium gas
NASA Astrophysics Data System (ADS)
Revesz, Peter; White, Jeffrey A.
2005-03-01
A new method for white beam position monitoring for both bend magnet and wiggler synchrotron X-ray radiation has been developed. This method utilizes visible light luminescence generated as a result of ionization by the intense X-ray flux. In video beam position monitors (VBPMs), the luminescence of helium gas at atmospheric pressure is observed through a view port using a CCD camera next to the beam line. The beam position, profile, integrated intensity and FWHM are calculated from the distribution of luminescence intensity in each captured image by custom software. Misalignment of upstream apertures changes the image profile making VBPMs helpful for initial alignment of upstream beam line components. VBPMs can thus provide more information about the X-ray beam than most beam position monitors (BPMs). A beam position calibration procedure, employing a tilted plane-parallel glass plate placed in front of the camera lens, has also been developed. The accuracy of the VBPM system was measured during a bench-top experiment to be better than 1 μm. The He-luminescence-based VBPM system has been operative on three CHESS beam lines (F hard-bend and wiggler, A-line wiggler and G-line wiggler) for about a year. The beam positions are converted to analog voltages and used as feedback signals for beam stabilization. In our paper we discuss details of VBPM construction and describe further results of its performance.
Optimizing detection and analysis of slow waves in sleep EEG.
Mensen, Armand; Riedner, Brady; Tononi, Giulio
2016-12-01
Analysis of individual slow waves in EEG recording during sleep provides both greater sensitivity and specificity compared to spectral power measures. However, parameters for detection and analysis have not been widely explored and validated. We present a new, open-source, Matlab based, toolbox for the automatic detection and analysis of slow waves; with adjustable parameter settings, as well as manual correction and exploration of the results using a multi-faceted visualization tool. We explore a large search space of parameter settings for slow wave detection and measure their effects on a selection of outcome parameters. Every choice of parameter setting had some effect on at least one outcome parameter. In general, the largest effect sizes were found when choosing the EEG reference, type of canonical waveform, and amplitude thresholding. Previously published methods accurately detect large, global waves but are conservative and miss the detection of smaller amplitude, local slow waves. The toolbox has additional benefits in terms of speed, user-interface, and visualization options to compare and contrast slow waves. The exploration of parameter settings in the toolbox highlights the importance of careful selection of detection METHODS: The sensitivity and specificity of the automated detection can be improved by manually adding or deleting entire waves and or specific channels using the toolbox visualization functions. The toolbox standardizes the detection procedure, sets the stage for reliable results and comparisons and is easy to use without previous programming experience. Copyright © 2016 Elsevier B.V. All rights reserved.
Slow Magnetosonic Waves and Fast Flows in Active Region Loops
NASA Technical Reports Server (NTRS)
Ofman, L.; Wang, T. J.; Davila, J. M.
2012-01-01
Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.
Effect of Local Thermal Equilibrium Misbalance on Long-wavelength Slow Magnetoacoustic Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakariakov, V. M.; Afanasyev, A. N.; Kumar, S.
Evolution of slow magnetoacoustic waves guided by a cylindrical magnetic flux tube that represents a coronal loop or plume, is modeled accounting for the effects of finite gas pressure, weak nonlinearity, dissipation by thermal conduction and viscosity, and the misbalance between the cooling by optically thin radiation and unspecified heating of the plasma. An evolutionary equation of the Burgers–Malthus type is derived. It is shown that the cooling/heating misbalance, determined by the derivatives of the combined radiative cooling and heating function, with respect to the density, temperature, and magnetic field at the thermal equilibrium affect the wave rather strongly. Thismore » effect may either cause additional damping, or counteract it, or lead to the gradual amplification of the wave. In the latter case, the coronal plasma acts as an active medium for the slow magnetoacoustic waves. The effect of the cooling/heating misbalance could be important for coronal slow waves, and could be responsible for certain discrepancies between theoretical results and observations, in particular, the increased or decreased damping lengths and times, detection of the waves at certain heights only, and excitation of compressive oscillations. The results obtained open up a possibility for the diagnostics of the coronal heating function by slow magnetoacoustic waves.« less
Characterization of ictal slow waves in epileptic spasms.
Honda, Ryoko; Saito, Yoshiaki; Okumura, Akihisa; Abe, Shinpei; Saito, Takashi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki
2015-12-01
We characterized the clinico-neurophysiological features of epileptic spasms, particularly focusing on high-voltage slow waves during ictal EEG. We studied 22 patients with epileptic spasms recorded during digital video-scalp EEG, including five individuals who still had persistent spasms after callosotomy. We analysed the duration, amplitude, latency to onset of electromyographic bursts, and distribution of the highest positive and negative peaks of slow waves in 352 spasms. High-voltage positive slow waves preceded the identifiable muscle contractions of spasms. The mean duration of these positive waves was 569±228 m, and the mean latency to electromyographic onset was 182±127 m. These parameters varied markedly even within a patient. The highest peak of the positive component was distributed in variable regions, which was not consistent with the location of lesions on MRI. The peak of the negative component following the positivity was distributed in the neighbouring or opposite areas of the positive peak distribution. No changes were evident in the pre- or post-surgical distributions of the positive peak, or in the interhemispheric delay between both hemispheres, in individuals with callosotomy. Our data imply that ictal positive slow waves are the most common EEG changes during spasms associated with a massive motor component. Plausible explanations for these widespread positive slow waves include the notion that EEG changes possibly reflect involvement of both cortical and subcortical structures.
Are Slow Waves of Intracranial Pressure Suppressed by General Anaesthesia?
Lalou, Despina Afroditi; Czosnyka, Marek; Donnelly, Joseph; Lavinio, Andrea; Pickard, John D; Garnett, Matthew; Czosnyka, Zofia
2018-01-01
Slow waves of intracranial pressure (ICP) are spontaneous oscillations with a frequency of 0.3-4 cycles/min. They are often associated with pathological conditions, following vasomotor activity in the cranial enclosure. This study quantifies the effects of general anaesthesia (GA) on the magnitude of B-waves compared with natural sleep and the conscious state. Four groups of 30 patients each were formed to assess the magnitude of slow waves. Group A and group B consisted of normal pressure hydrocephalus (NPH) patients, each undergoing cerebrospinal fluid (CSF) infusion studies, conscious and under GA respectively. Group C comprised conscious, naturally asleep hydrocephalic patients undergoing overnight ICP monitoring; group D, which included deeply sedated head injury patients monitored in the intensive care unit (ICU), was compared with group C. The average amplitude for group A patients was higher (0.23 ± 0.10 mmHg) than that of group B (0.15 ± 0.10 mmHg; p = 0.01). Overnight magnitude of slow waves was higher in group C (0.20 ± 0.13 mmHg) than in group D (0.11 ± 0.09 mmHg; p = 0.002). Slow waves of ICP are suppressed by GA and deep sedation. When using slow waves in clinical decision-making, it is important to consider the patients' level of consciousness to avoid incorrect therapeutic and management decisions.
Soliton wave-speed management: Slowing, stopping, or reversing a solitary wave
NASA Astrophysics Data System (ADS)
Baines, Luke W. S.; Van Gorder, Robert A.
2018-06-01
While dispersion management is a well-known tool to control soliton properties such as shape or amplitude, far less effort has been directed toward the theoretical control of the soliton wave speed. However, recent experiments concerning the stopping or slowing of light demonstrate that the control of the soliton wave speed is of experimental interest. Motivated by these and other studies, we propose a management approach for modifying the wave speed of a soliton (or of other nonlinear wave solutions, such as periodic cnoidal waves) under the nonlinear Schrödinger equation. Making use of this approach, we are able to slow, stop, or even reverse a solitary wave, and we give several examples to bright solitons, dark solitons, and periodic wave trains, to demonstrate the method. An extension of the approach to spatially heterogeneous media, for which the wave may propagate differently at different spatial locations, is also discussed.
Slow Wave Sleep Induced by GABA Agonist Tiagabine Fails to Benefit Memory Consolidation
Feld, Gordon B.; Wilhelm, Ines; Ma, Ying; Groch, Sabine; Binkofski, Ferdinand; Mölle, Matthias; Born, Jan
2013-01-01
Study Objectives: Slow wave sleep (SWS) plays a pivotal role in consolidating memories. Tiagabine has been shown to increase SWS in favor of REM sleep without impacting subjective sleep. However, it is unknown whether this effect is paralleled by an improved sleep-dependent consolidation of memory. Design: This double-blind within-subject crossover study tested sensitivity of overnight retention of declarative neutral and emotional materials (word pairs, pictures) as well as a procedural memory task (sequence finger tapping) to oral administration of placebo or 10 mg tiagabine (at 22:30). Participants: Fourteen healthy young men aged 21.9 years (range 18-28 years). Measurements and Results: Tiagabine significantly increased the time spent in SWS and decreased REM sleep compared to placebo. Tiagabine also enhanced slow wave activity (0.5-4.0 Hz) and density of < 1 Hz slow oscillations during NREM sleep. Fast (12-15 Hz) and slow (9-12 Hz) spindle activity, in particular that occurring phase-locked to the slow oscillation cycle, was decreased following tiagabine. Despite signs of deeper and more SWS, overnight retention of memory tested after sleep the next evening (19:30) was generally not improved after tiagabine, but on average even lower than after placebo, with this impairing effect reaching significance for procedural sequence finger tapping. Conclusions: Our data show that increasing slow wave sleep with tiagabine does not improve memory consolidation. Possibly this is due to functional differences from normal slow wave sleep, i.e., the concurrent suppressive influence of tiagabine on phase-locked spindle activity. Citation: Feld GB; Wilhelm I; Ma Y; Groch S; Binkofski F; Mölle M; Born J. Slow wave sleep induced by GABA agonist tiagabine fails to benefit memory consolidation. SLEEP 2013;36(9):1317-1326. PMID:23997364
Brindle, Ryan C; Duggan, Katherine A; Cribbet, Matthew R; Kline, Christopher E; Krafty, Robert T; Thayer, Julian F; Mulukutla, Suresh R; Hall, Martica H
2018-04-01
Exaggerated cardiovascular reactivity to acute psychological stress has been associated with increased carotid intima-media thickness (IMT). However, interstudy variability in this relationship suggests the presence of moderating factors. The current study aimed to test the hypothesis that poor nocturnal sleep, defined as short total sleep time or low slow-wave sleep, would moderate the relationship between cardiovascular reactivity and IMT. Participants (N = 99, 65.7% female, age = 59.3 ± 9.3 years) completed a two-night laboratory sleep study and cardiovascular examination where sleep and IMT were measured. The multisource interference task was used to induce acute psychological stress, while systolic and diastolic blood pressure and heart rate were monitored. Moderation was tested using the PROCESS framework in SPSS. Slow-wave sleep significantly moderated the relationship between all cardiovascular stress reactivity variables and IMT (all pinteraction ≤ .048, all ΔRinteraction ≥ .027). Greater stress reactivity was associated with higher IMT values in the low slow-wave sleep group and lower IMT values in the high slow-wave sleep group. No moderating effects of total sleep time were observed. The results provide evidence that nocturnal slow-wave sleep moderates the relationship between cardiovascular stress reactivity and IMT and may buffer the effect of daytime stress-related disease processes.
The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.
Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori
2017-01-01
Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5-4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep.
The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation
Miyamoto, Daisuke; Hirai, Daichi; Murayama, Masanori
2017-01-01
Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5–4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep. PMID:29213231
Clustering of Ca2+ transients in interstitial cells of Cajal defines slow wave duration
Drumm, Bernard T.; Hennig, Grant W.; Battersby, Matthew J.; Sung, Tae Sik
2017-01-01
Interstitial cells of Cajal (ICC) in the myenteric plexus region (ICC-MY) of the small intestine are pacemakers that generate rhythmic depolarizations known as slow waves. Slow waves depend on activation of Ca2+-activated Cl− channels (ANO1) in ICC, propagate actively within networks of ICC-MY, and conduct to smooth muscle cells where they generate action potentials and phasic contractions. Thus, mechanisms of Ca2+ regulation in ICC are fundamental to the motor patterns of the bowel. Here, we characterize the nature of Ca2+ transients in ICC-MY within intact muscles, using mice expressing a genetically encoded Ca2+ sensor, GCaMP3, in ICC. Ca2+ transients in ICC-MY display a complex firing pattern caused by localized Ca2+ release events arising from multiple sites in cell somata and processes. Ca2+ transients are clustered within the time course of slow waves but fire asynchronously during these clusters. The durations of Ca2+ transient clusters (CTCs) correspond to slow wave durations (plateau phase). Simultaneous imaging and intracellular electrical recordings revealed that the upstroke depolarization of slow waves precedes clusters of Ca2+ transients. Summation of CTCs results in relatively uniform Ca2+ responses from one slow wave to another. These Ca2+ transients are caused by Ca2+ release from intracellular stores and depend on ryanodine receptors as well as amplification from IP3 receptors. Reduced extracellular Ca2+ concentrations and T-type Ca2+ channel blockers decreased the number of firing sites and firing probability of Ca2+ transients. In summary, the fundamental electrical events of small intestinal muscles generated by ICC-MY depend on asynchronous firing of Ca2+ transients from multiple intracellular release sites. These events are organized into clusters by Ca2+ influx through T-type Ca2+ channels to sustain activation of ANO1 channels and generate the plateau phase of slow waves. PMID:28592421
Cui, N; Mckillop, L E; Fisher, S P; Oliver, P L; Vyazovskiy, V V
2014-01-01
The dynamics of cortical activity across the 24-h day and at vigilance state transitions is regulated by an interaction between global subcortical neuromodulatory influences and local shifts in network synchrony and excitability. To address the role of long-term and immediate preceding history in local and global cortical dynamics, we investigated cortical EEG recorded from both frontal and occipital regions during an undisturbed 24-h recording in mice. As expected, at the beginning of the light period, under physiologically increased sleep pressure, EEG slow waves were more frequent and had higher amplitude and slopes, compared to the rest of the light period. Within discrete NREM sleep episodes, the incidence, amplitude and slopes of individual slow waves increased progressively after episode onset in both derivations by approximately 10-30%. Interestingly, at the beginning of NREM sleep episodes slow waves in the frontal and occipital derivations frequently occurred in isolation, as quantified by longer latencies between consecutive slow waves in the two regions. Notably, slow waves during the initial period of NREM sleep following REM sleep episodes were significantly less frequent, lower in amplitude and exhibited shallower slopes, compared to those that occurred in NREM episodes after prolonged waking. Moreover, the latencies between consecutive frontal and occipital NREM slow waves were substantially longer when they occurred directly after REM sleep compared to following consolidated wakefulness. Overall these data reveal a complex picture, where both time of day and preceding state contribute to the characteristics and dynamics of slow waves within NREM sleep. These findings suggest that NREM sleep initiates in a more "local" fashion when it occurs following REM sleep episodes as opposed to sustained waking bouts. While the mechanisms and functional significance of such a re-setting of brain state after individual REM sleep episodes remains to be investigated, we suggest that it may be an essential feature of physiological sleep regulation.
Wear, Keith A
2013-04-01
The presence of two longitudinal waves in poroelastic media is predicted by Biot's theory and has been confirmed experimentally in through-transmission measurements in cancellous bone. Estimation of attenuation coefficients and velocities of the two waves is challenging when the two waves overlap in time. The modified least squares Prony's (MLSP) method in conjuction with curve-fitting (MLSP + CF) is tested using simulations based on published values for fast and slow wave attenuation coefficients and velocities in cancellous bone from several studies in bovine femur, human femur, and human calcaneus. The search algorithm is accelerated by exploiting correlations among search parameters. The performance of the algorithm is evaluated as a function of signal-to-noise ratio (SNR). For a typical experimental SNR (40 dB), the root-mean-square errors (RMSEs) for one example (human femur) with fast and slow waves separated by approximately half of a pulse duration were 1 m/s (slow wave velocity), 4 m/s (fast wave velocity), 0.4 dB/cm MHz (slow wave attenuation slope), and 1.7 dB/cm MHz (fast wave attenuation slope). The MLSP + CF method is fast (requiring less than 2 s at SNR = 40 dB on a consumer-grade notebook computer) and is flexible with respect to the functional form of the parametric model for the transmission coefficient. The MLSP + CF method provides sufficient accuracy and precision for many applications such that experimental error is a greater limiting factor than estimation error.
Traveling wave tube and method of manufacture
NASA Technical Reports Server (NTRS)
Vancil, Bernard K. (Inventor)
2004-01-01
A traveling wave tube includes a glass or other insulating envelope having a plurality of substantially parallel glass rods supported therewithin which in turn support an electron gun, a collector and an intermediate slow wave structure. The slow wave structure itself provides electrostatic focussing of a central electron beam thereby eliminating the need for focussing magnetics and materially decreasing the cost of construction as well as enabling miniaturization. The slow wave structure advantageously includes cavities along the electron beam through which the r.f. energy is propagated, or a double, interleaved ring loop structure supported by dielectric fins within a ground plane cylinder disposed coaxially within the glass envelope.
Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances
NASA Technical Reports Server (NTRS)
Balakumar, P.
2013-01-01
Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abliz, M.; Grimmer, J.; Dejus, R.
The current design of the Advanced Photon Source Upgrade (APS-U) project is a multi-bend achromat (MBA) lattice, which incorporates three-pole wigglers as radiation sources for the bending magnet beamlines. They are located in the short section between the M4 dipole and Q8 quadrupole magnets. Due to space constraints, a hybrid permanent magnet design is necessary to provide the required magnetic field strength. A three-pole wiggler with a flat peak field profile along the beam axis was designed to enhance the photon flux and flatten the transverse flux density distributions. The magnetic peak field at the center pole reached 1.08 Teslamore » for a magnetic gap of 26 mm. The maximum power density, integrated over all vertical angles, is 3.1 W/mm 2, which is substantially higher than that of the existing bending magnets at the APS (0.86 W/mm 2). Detailed designs of the three-pole wiggler is presented, including calculated spectral-angular flux distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abliz, M., E-mail: mabliz@aps.anl.gov; Grimmer, J., E-mail: grimmer@aps.anl.gov; Dejus, R.
The current design of the Advanced Photon Source Upgrade (APS-U) project is a multi-bend achromat (MBA) lattice, which incorporates three-pole wigglers as radiation sources for the bending magnet beamlines. They are located in the short section between the M4 dipole and Q8 quadrupole magnets. Due to space constraints, a hybrid permanent magnet design is necessary to provide the required magnetic field strength. A three-pole wiggler with a flat peak field profile along the beam axis was designed to enhance the photon flux and flatten the transverse flux density distributions. The magnetic peak field at the center pole reached 1.08 Teslamore » for a magnetic gap of 26 mm. The maximum power density, integrated over all vertical angles, is 3.1 W/mm{sup 2}, which is substantially higher than that of the existing bending magnets at the APS (0.86 W/mm{sup 2}). Detailed designs of the three-pole wiggler is presented, including calculated spectral-angular flux distributions.« less
NASA Technical Reports Server (NTRS)
Starinshak, David P.; Smith, Nathan D.; Wilson, Jeffrey D.
2008-01-01
The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented.
Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo
2016-03-15
We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventionalmore » Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.« less
Every slow-wave impulse is associated with motor activity of the human stomach.
Hocke, Michael; Schöne, Ulrike; Richert, Hendryk; Görnert, Peter; Keller, Jutta; Layer, Peter; Stallmach, Andreas
2009-04-01
Using a newly developed high-resolution three-dimensional magnetic detector system (3D-MAGMA), we observed periodical movements of a small magnetic marker in the human stomach at the typical gastric slow-wave frequency, that is 3 min(-1). Thus we hypothesized that each gastric slow wave induces a motor response that is not strong enough to be detected by conventional methods. Electrogastrographies (EGG, Medtronic, Minneapolis, MN) for measurement of gastric slow waves and 3D-MAGMA (Innovent, Jena, Germany) measurements were simultaneously performed in 21 healthy volunteers (10 men, 40.4+/-13.6 yr; 11 women, 35.8+/-11.6 yr). The 3D-MAGMA system contains 27 highly sensitive magnetic field sensors that are able to locate a magnetic pill inside a human body with an accuracy of +/-5 mm or less in position and +/-2 degrees in orientation at a frequency of 50 Hz. Gastric transit time of the magnetic marker ranged from 19 to 154 min. The mean dominant EGG frequency while the marker was in the stomach was 2.87+/-0.15 cpm. The mean dominant 3D-MAGMA frequency during this interval was nearly identical; that is, 2.85+/-0.15 movements per minute. We observed a strong linear correlation between individual dominant EGG and 3D-MAGMA frequency (R=0.66, P=0.0011). Our findings suggest that each gastric slow wave induces a minute contraction that is too small to be detected by conventional motility investigations but can be recorded by the 3D-MAGMA system. The present slow-wave theory that assumes that the slow wave is a pure electrical signal should be reconsidered.
Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point
NASA Astrophysics Data System (ADS)
Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.
2018-05-01
The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.
KINETIC SIMULATION OF SLOW MAGNETOSONIC WAVES AND QUASI-PERIODIC UPFLOWS IN THE SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi
Quasi-periodic disturbances of emission-line parameters are frequently observed in the corona. These disturbances propagate upward along the magnetic field with speeds of ∼100 km s{sup −1}. This phenomenon has been interpreted as evidence of the propagation of slow magnetosonic waves or has been argued to be a signature of intermittent outflows superposed on the background plasmas. Here we aim to present a new “wave + flow” model to interpret these observations. In our scenario, the oscillatory motion is a slow-mode wave, and the flow is associated with a beam created by the wave–particle interaction owing to Landau resonance. With themore » help of a kinetic model, we simulate the propagation of slow-mode waves and the generation of beam flows. We find that weak periodic beam flows can be generated by to Landau resonance in the solar corona, and the phase with the strongest blueward asymmetry is ahead of that with the strongest blueshift by about 1/4 period. We also find that the slow wave damps to the level of 1/ e after the transit time of two wave periods, owing to Landau damping and Coulomb collisions in our simulation. This damping timescale is similar to that resulting from thermal conduction in the MHD regime. The beam flow is weakened/attenuated with increasing wave period and decreasing wave amplitude since Coulomb collisions become more and more dominant over the wave action. We suggest that this “wave + flow” kinetic model provides an alternative explanation for the observed quasi-periodic propagating perturbations in various parameters in the solar corona.« less
Influence of general anaesthesia on slow waves of intracranial pressure.
Lalou, Despina A; Czosnyka, Marek; Donnelly, Joseph; Lavinio, Andrea; Pickard, John D; Garnett, Matthew; Czosnyka, Zofia
2016-07-01
Slow vasogenic intracranial pressure (ICP) waves are spontaneous ICP oscillations with a low frequency bandwidth of 0.3-4 cycles/min (B-waves). B-waves reflect dynamic oscillations in cerebral blood volume associated with autoregulatory cerebral vasodilation and vasoconstriction. This study quantifies the effects of general anaesthesia (GA) on the magnitude of B-waves compared to natural sleep and conscious state. The magnitude of B-waves was assessed in 4 groups of 30 patients each with clinical indications for ICP monitoring. Normal pressure hydrocephalus patients undergoing Cerebrospinal Fluid (CSF) infusion studies in the conscious state (GROUP A) and under GA (GROUP B), and hydrocephalus patients undergoing overnight ICP monitoring during physiological sleep (GROUP C) were compared to deeply sedated traumatic brain injury (TBI) patients with well-controlled ICP during the first night of Intensive Care Unit (ICU) stay (GROUP D). A total of 120 patients were included. During CSF infusion studies, the magnitude of slow waves was higher in conscious patients ( 0.23+/-0.10 mm Hg) when compared to anaesthetised patients ( 0.15+/-0.10 mm Hg; p = 0.011). Overnight magnitude of slow waves was higher in patients during natural sleep (GROUP C: 0.20+/-0.13 mm Hg) when compared to TBI patients under deep sedation (GROUP D: 0.11+/- 0.09 mm Hg; p = 0.002). GA and deep sedation are associated with a reduced magnitude of B-waves. ICP monitoring carried out under GA is affected by iatrogenic suppression of slow vasogenic waves of ICP. Accounting for the effects of anaesthesia on vasogenic waves may prevent the misidentification of potential shunt-responders as non-responders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, I.; Quevedo, H. J.; Feldman, S.
2013-12-15
Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental datamore » characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.« less
Plasma production by helicon and slow waves.
Sakawa, Youichi; Kunimatsu, Hiroyuki; Kikuchi, Hideki; Fukui, Yasuaki; Shoji, Tatsuo
2003-03-14
The observation of slow-wave sustained (SW) discharge in a whistler- or helicon-wave range of frequency is made using high-frequency and very-high-frequency bands of rf. The SW discharge occurs at an extremely low rf power and plasma density, which are lower than a capacitive-coupling discharge region.
Wear, Keith A
2010-10-01
The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.
Advances in wave turbulence: rapidly rotating flows
NASA Astrophysics Data System (ADS)
Cambon, C.; Rubinstein, R.; Godeferd, F. S.
2004-07-01
At asymptotically high rotation rates, rotating turbulence can be described as a field of interacting dispersive waves by the general theory of weak wave turbulence. However, rotating turbulence has some complicating features, including the anisotropy of the wave dispersion relation and the vanishing of the wave frequency on a non-vanishing set of 'slow' modes. These features prevent straightforward application of existing theories and lead to some interesting properties, including the transfer of energy towards the slow modes. This transfer competes with, and might even replace, the transfer to small scales envisioned in standard turbulence theories. In this paper, anisotropic spectra for rotating turbulence are proposed based on weak turbulence theory; some evidence for their existence is given based on numerical calculations of the wave turbulence equations. Previous arguments based on the properties of resonant wave interactions suggest that the slow modes decouple from the others. Here, an extended wave turbulence theory with non-resonant interactions is proposed in which all modes are coupled; these interactions are possible only because of the anisotropy of the dispersion relation. Finally, the vanishing of the wave frequency on the slow modes implies that these modes cannot be described by weak turbulence theory. A more comprehensive approach to rotating turbulence is proposed to overcome this limitation.
Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.
2007-01-01
A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.
The new wave-ring helical (WRH) slow-wave structure for traveling wave tube amplifiers
NASA Astrophysics Data System (ADS)
Panahi, Nasser; Saviz, S.; Ghorannevis, M.
2017-12-01
In this paper, the new slow-wave structure called wave-ring helix to enhance the power of the traveling wave tubes is introduced. In this new structure, without increasing the length and radius of the helix, the wave motion path can be increased to radiofrequency wave in phase with the electron beam. The results show that in the special frequency range the output power and gain are greater than conventional helix. In this paper, optimization results are presented in cold and hot tests on the new structure. The software CST is used in S-band frequency range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Xiaopin; Yang, Ziqiang; Shi, Zongjun
A novel backward wave oscillator (BWO) based on a hole-grating slow wave structure is proposed as a dual sheet beam millimeter wave radiation source. In this paper, we focus on the output characteristics of a 0.14 THz hole-grating BWO. The output characteristics of the hole-grating BWO, the conventional single-beam grating BWO, and the dual-beam grating BWO are contrasted in detail. 3-D particle-in-cell results indicate that the hole-grating slow wave structure can help to increase the maximum output power as well as lower the operating current density. Meanwhile, the hole-grating BWO shows good insensitivity to the differences between two sheet electronmore » beams. These characteristics make the hole-grating BWO feasible to be a stable millimeter wave radiation source with higher output power.« less
Linearized traveling wave amplifier with hard limiter characteristics
NASA Technical Reports Server (NTRS)
Kosmahl, H. G. (Inventor)
1986-01-01
A dynamic velocity taper is provided for a traveling wave tube with increased linearity to avoid intermodulation of signals being amplified. In a traveling wave tube, the slow wave structure is a helix including a sever. A dynamic velocity taper is provided by gradually reducing the spacing between the repeating elements of the slow wave structure which are the windings of the helix. The reduction which takes place coincides with the ouput point of helix. The spacing between the repeating elements of the slow wave structure is ideally at an exponential rate because the curve increases the point of maximum efficiency and power, at an exponential rate. A coupled cavity traveling wave tube having cavities is shown. The space between apertured discs is gradually reduced from 0.1% to 5% at an exponential rate. Output power (or efficiency) versus input power for a commercial tube is shown.
Shock Formation and Energy Dissipation of Slow Magnetosonic Waves in Coronal Plumes
NASA Technical Reports Server (NTRS)
Cuntz, M.; Suess, S. T.
2003-01-01
We study the shock formation and energy dissipation of slow magnetosonic waves in coronal plumes. The wave parameters and the spreading function of the plumes as well as the base magnetic field strength are given by empirical constraints mostly from SOHO/UVCS. Our models show that shock formation occurs at low coronal heights, i.e., within 1.3 bun, depending on the model parameters. In addition, following analytical estimates, we show that scale height of energy dissipation by the shocks ranges between 0.15 and 0.45 Rsun. This implies that shock heating by slow magnetosonic waves is relevant at most heights, even though this type of waves is apparently not a solely operating energy supply mechanism.
Three-Dimensional Simulation of Traveling-Wave Tube Cold-Test Characteristics Using MAFIA
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Wilson, Jeffrey D.
1995-01-01
The three-dimensional simulation code MAFIA was used to compute the cold-test parameters - frequency-phase dispersion, beam on-axis interaction impedance, and attenuation - for two types of traveling-wave tube (TWT) slow-wave circuits. The potential for this electromagnetic computer modeling code to reduce the time and cost of TWT development is demonstrated by the high degree of accuracy achieved in calculating these parameters. Generalized input files were developed for ferruled coupled-cavity and TunneLadder slow-wave circuits. These files make it easy to model circuits of arbitrary dimensions. The utility of these files was tested by applying each to a specific TWT slow-wave circuit and comparing the results with experimental data. Excellent agreement was obtained.
NASA Technical Reports Server (NTRS)
Maruschek, Joseph W.; Kory, Carol L.; Wilson, Jeffrey D.
1993-01-01
The frequency-phase dispersion and Pierce on-axis interaction impedance of a ferruled, coupled-cavity, traveling-wave tube (TWT), slow-wave circuit were calculated using the three-dimensional simulation code Micro-SOS. The utilization of the code to reduce costly and time-consuming experimental cold tests is demonstrated by the accuracy achieved in calculating these parameters. A generalized input file was developed so that ferruled coupled-cavity TWT slow-wave circuits of arbitrary dimensions could be easily modeled. The practicality of the generalized input file was tested by applying it to the ferruled coupled-cavity slow-wave circuit of the Hughes Aircraft Company model 961HA TWT and by comparing the results with experimental results.
Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A., Jr.
1997-01-01
Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.
Role of biological membranes in slow-wave sleep.
Karnovsky, M L
1991-02-01
Two involvements of cellular membranes in slow-wave sleep (SWS) are discussed. In the first the endoplasmic reticulum (ER) is focussed upon, and in the second, the plasmalemma, where specific binding sites (receptors?) for promoters of slow-wave sleep are believed to be located. The study concerning the ER focuses on an enzyme in the brain, glucose-6-phosphatase, which, although present at low levels, manifests greatly increased activity during SWS compared to the waking state. The work on the plasmalemma has to do with the specific binding of muramyl peptides, inducers of slow-wave sleep, to various cells, and membrane preparations of various sorts, including those from brain tissue. Such cells as macrophages from mice, B-lymphocytes from human blood, and cells from a cell line (C-6 glioma) have been examined in this context.
Hirst, G D S; Beckett, E A H; Sanders, K M; Ward, S M
2002-01-01
When intracellular recordings were made from the antral region of murine stomach, cells with three different patterns of electrical activity were detected. One group of cells generated follower potentials, the second group generated pacemaker potentials and the third group generated slow waves that consisted of primary and secondary components. Slow waves recorded in different regions of the gastric antrum had similar amplitudes but different characteristic shapes. At the greater curvature, slow waves had large initial components. Midway between the greater and lesser curvature, the amplitude of the initial component was reduced and at the lesser curvature an initial component was difficult to detect. When the distributions of myenteric (ICC-MY) and intramuscular interstitial cells of Cajal (ICC-IM) were determined, using an antibody to Kit, ICC-MY were found to be present at the greater curvature but were greatly reduced in density at the lesser curvature. In contrast, ICC-IM were found in the circular layer of each region. When recordings were made from the antrum of W/WV mice, which lack ICC-IM, incomplete slow waves were detected and their amplitudes fell from the greater to the lesser curvature. Again, a corresponding fall in the density of ICC-MY was detected. The observations indicate that the contribution of ICC-MY and ICC-IM to the generation of slow waves varies in different regions of the mouse gastric antrum. PMID:11986385
Saletu, B; Grünberger, J; Linzmayer, L
1977-10-01
Utilizing computerized quantitative analysis of the human scalp recorded electroencephalogram (EEG), it is possible to classify psychotropic drugs. While neuroleptic compounds produce an increase of slow and decrease of fast activities, anxiolytic substances induce an augmentation of fast waves, decrease of alpha waves and--according to the sedative properties of the drug--an increase or decrease of slow waves. Antidepressants produce a concomitant augmentation of slow and fast activities as well as an attenuation of alpha waves. Nootropic substances attenuate slow activities, augment alpha and slow beta waves and decrease fast beta waves. The latter alterations are quite opposite to age-related changes. Since the main psychopharmacological classes seem to have characteristic pharmaco-EEG profiles, the method proved to be useful for determination of psychoactivity and cerebral bioavailability of newly developed substances as for instance AX-A411-BS, a new benzodiazepine. The latter substance was found to be CNS-active and was classified as anxiolytic. It induced dosedependent changes, which were barely visible in the 2nd hour post-drug, became quite obvious in the 4th hour and increased until the 8th hour after oral administration of one single dose. In the higher dosage range, slow activities came to the fore, indicating aoditional sedative properties. Psychometric tests measuring attention, psychomotor activity. mood, vigilance, extroversion, concentration aith a long-lasting effect. The implications of these methods are discussed.
Saravanaperumal, Siva Arumugam; Gibbons, Simon J; Malysz, John; Sha, Lei; Linden, David R; Szurszewski, Joseph H; Farrugia, Gianrico
2018-01-01
What is the central question of this study? The aim was to investigate the roles of extracellular chloride in electrical slow waves and resting membrane potential of mouse jejunal smooth muscle by replacing chloride with the impermeant anions gluconate and isethionate. What is the main finding and its importance? The main finding was that in smooth muscle cells, the resting Cl - conductance is low, whereas transmembrane Cl - movement in interstitial cells of Cajal (ICCs) is a major contributor to the shape of electrical slow waves. Furthermore, the data confirm that ICCs set the smooth muscle membrane potential and that altering Cl - homeostasis in ICCs can alter the smooth muscle membrane potential. Intracellular Cl - homeostasis is regulated by anion-permeable channels and transporters and contributes to excitability of many cell types, including smooth muscle and interstitial cells of Cajal (ICCs). Our aims were to investigate the effects on electrical activity in mouse jejunal muscle strips of replacing extracellular Cl - (Cl - o ) with the impermeant anions gluconate and isethionate. On reducing Cl - o , effects were observed on electrical slow waves, with small effects on smooth muscle membrane voltage (E m ). Restoration of Cl - hyperpolarized smooth muscle E m proportional to the change in Cl - o concentration. Replacement of 90% of Cl - o with gluconate reversibly abolished slow waves in five of nine preparations. Slow waves were maintained in isethionate. Gluconate and isethionate substitution had similar concentration-dependent effects on peak amplitude, frequency, width at half peak amplitude, rise time and decay time of residual slow waves. Gluconate reduced free ionized Ca 2+ in Krebs solutions to 0.13 mm. In Krebs solutions containing normal Cl - and 0.13 mm free Ca 2+ , slow wave frequency was lower, width at half peak amplitude was smaller, and decay time was faster. The transient hyperpolarization following restoration of Cl - o was not observed in W/W v mice, which lack pacemaker ICCs in the small intestine. We conclude that in smooth muscle cells, the resting Cl - conductance is low, whereas transmembrane Cl - movement in ICCs plays a major role in generation or propagation of slow waves. Furthermore, these data support a role for ICCs in setting smooth muscle E m and that altering Cl - homeostasis in ICCs can alter smooth muscle E m . © 2017 Mayo Clinic. Experimental Physiology © 2017 The Physiological Society.
Francois, Densley; Roberts, Jessica; Hess, Stephany; Probst, Luke; Eksioglu, Yaman
2014-03-01
Oral diazepam, administered in varying doses, is among the few proposed treatment options for electrical status epilepticus during slow wave sleep in children. We sought to retrospectively evaluate the long-term efficacy of high-dose oral diazepam in reducing electrographic and clinical evidence of electrical status epilepticus during slow wave sleep in children. Additionally, we surveyed caregivers to assess safety and behavioral outcomes related to ongoing therapy. We collected demographic and clinical data on children treated for electrical status epilepticus during slow wave sleep between October 2010 and March 2013. We sought to identify the number of patients who achieved at least a 50% reduction in spike wave index on electroencephalograph after receiving high-dose oral diazepam. We also administered a questionnaire to caregivers to assess for behavioral problems and side effects. We identified 42 evaluable patients who received high-dose diazepam (range 0.23-2.02 mg/kg per day) to treat electrical status epilepticus during slow wave sleep. Twenty-six patients had spike reduction data and 18/26 (69.2%) children achieved a greater than 50% reduction in spike wave count from an average of 15.54 to 5.05 (P = 0.001). We received 28 responses to the questionnaire. Some patients experienced new onset of difficulties with problem-solving and speech and writing development. Sleep disturbances (50%) and irritability (57.1%) were the most frequent side effects reported. There did not appear to be a dose-related effect with electroencephalograph changes, behavioral effects, or side effects. High-dose oral diazepam significantly reduces the spike wave count on electroencephalograph in children with electrical status epilepticus during slow wave sleep. Although this therapy improves electroencephalograph-related findings, it can be associated with concerning neurological and behavioral side effects in some individuals, so further study is warranted. Copyright © 2014 Elsevier Inc. All rights reserved.
Phase-Locked Loop for Precisely Timed Acoustic Stimulation during Sleep
Santostasi, Giovanni; Malkani, Roneil; Riedner, Brady; Bellesi, Michele; Tononi, Giulio; Paller, Ken A.; Zee, Phyllis C.
2016-01-01
Background A Brain-Computer Interface could potentially enhance the various benefits of sleep. New Method We describe a strategy for enhancing slow-wave sleep (SWS) by stimulating the sleeping brain with periodic acoustic stimuli that produce resonance in the form of enhanced slow-wave activity in the electroencephalogram (EEG). The system delivers each acoustic stimulus at a particular phase of an electrophysiological rhythm using a Phase-Locked Loop (PLL). Results The PLL is computationally economical and well suited to follow and predict the temporal behavior of the EEG during slow-wave sleep. Comparison with Existing Methods Acoustic stimulation methods may be able to enhance SWS without the risks inherent in electrical stimulation or pharmacological methods. The PLL method differs from other acoustic stimulation methods that are based on detecting a single slow wave rather than modeling slow-wave activity over an extended period of time. Conclusions By providing real-time estimates of the phase of ongoing EEG oscillations, the PLL can rapidly adjust to physiological changes, thus opening up new possibilities to study brain dynamics during sleep. Future application of these methods hold promise for enhancing sleep quality and associated daytime behavior and improving physiologic function. PMID:26617321
APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, T.; Yokoyama, T.; Goossens, M.
2015-10-20
In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation acrossmore » the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.« less
Pulse propagation in discrete excitatory networks of integrate-and-fire neurons.
Badel, Laurent; Tonnelier, Arnaud
2004-07-01
We study the propagation of solitary waves in a discrete excitatory network of integrate-and-fire neurons. We show the existence and the stability of a fast wave and a family of slow waves. Fast waves are similar to those already described in continuum networks. Stable slow waves have not been previously reported in purely excitatory networks and their propagation is particular to the discrete nature of the network. The robustness of our results is studied in the presence of noise.
Saebipour, Mohammad R; Joghataei, Mohammad T; Yoonessi, Ali; Sadeghniiat-Haghighi, Khosro; Khalighinejad, Nima; Khademi, Soroush
2015-10-01
Recent evidence suggests that lack of slow-wave activity may play a fundamental role in the pathogenesis of insomnia. Pharmacological approaches and brain stimulation techniques have recently offered solutions for increasing slow-wave activity during sleep. We used slow (0.75 Hz) oscillatory transcranial direct current stimulation during stage 2 of non-rapid eye movement sleeping insomnia patients for resonating their brain waves to the frequency of sleep slow-wave. Six patients diagnosed with either sleep maintenance or non-restorative sleep insomnia entered the study. After 1 night of adaptation and 1 night of baseline polysomnography, patients randomly received sham or real stimulation on the third and fourth night of the experiment. Our preliminary results show that after termination of stimulations (sham or real), slow oscillatory transcranial direct current stimulation increased the duration of stage 3 of non-rapid eye movement sleep by 33 ± 26 min (P = 0.026), and decreased stage 1 of non-rapid eye movement sleep duration by 22 ± 17.7 min (P = 0.028), compared with sham. Slow oscillatory transcranial direct current stimulation decreased stage 1 of non-rapid eye movement sleep and wake time after sleep-onset durations, together, by 55.4 ± 51 min (P = 0.045). Slow oscillatory transcranial direct current stimulation also increased sleep efficiency by 9 ± 7% (P = 0.026), and probability of transition from stage 2 to stage 3 of non-rapid eye movement sleep by 20 ± 17.8% (P = 0.04). Meanwhile, slow oscillatory transcranial direct current stimulation decreased transitions from stage 2 of non-rapid eye movement sleep to wake by 12 ± 6.7% (P = 0.007). Our preliminary results suggest a sleep-stabilizing role for the intervention, which may mimic the effect of sleep slow-wave-enhancing drugs. © 2015 European Sleep Research Society.
Taki, Hirofumi; Nagatani, Yoshiki; Matsukawa, Mami; Kanai, Hiroshi; Izumi, Shin-Ichi
2017-10-01
Ultrasound signals that pass through cancellous bone may be considered to consist of two longitudinal waves, which are called fast and slow waves. Accurate decomposition of these fast and slow waves is considered to be highly beneficial in determination of the characteristics of cancellous bone. In the present study, a fast decomposition method using a wave transfer function with a phase rotation parameter was applied to received signals that have passed through bovine bone specimens with various bone volume to total volume (BV/TV) ratios in a simulation study, where the elastic finite-difference time-domain method is used and the ultrasound wave propagated parallel to the bone axes. The proposed method succeeded to decompose both fast and slow waves accurately; the normalized residual intensity was less than -19.5 dB when the specimen thickness ranged from 4 to 7 mm and the BV/TV value ranged from 0.144 to 0.226. There was a strong relationship between the phase rotation value and the BV/TV value. The ratio of the peak envelope amplitude of the decomposed fast wave to that of the slow wave increased monotonically with increasing BV/TV ratio, indicating the high performance of the proposed method in estimation of the BV/TV value in cancellous bone.
Królczyk, Grzegorz; Czupryna, Antoni; Sobocki, Jacek; Nowak, Lukasz; Zurowski, Daniel; Szatyłowiczi, Jadwiga; Strus, Magdalena; Thor, Piotr J
2004-01-01
It is well recognized that prolonged antibiotic therapy leading to gut decontamination often results in side effects and may lead to colonization of gut with pathologic bacteria. Changes of a gut microflora could play a role in dysmotility of gastrointestinal tract. The aim of the study was to evaluate influence of intraluminal colon anaerobic and aerobic bacterial flora on myoelectric activity of duodenum and stomach. A myoelectric activity recordings using electrodes implanted on small bowel of the conscious rats were performed. Group I was scheduled for control recording, group II for recordings in 4th day after metronidazole (M) administration (30 mg/kg) and group III for recordings after vancomycin (V) administration (15 mg/kg) respectively. Rat's stools were cultured for confirmation of changes in colon flora composition. Recordings were previously filtered digitally with bandwidth filter 0.01-0.1 Hz and 0.1-1.0 Hz to extract gastric and duodenal slow wave respectively and than analyzed with Fast Fourier Transformation. Baseline duodenal slow wave frequency in control group revealed 0.60 +/- 0.05 Hz. M increased slow waves frequency to 0.64 +/- 0.13 Hz and V did not 0.58 +/- 0.09 Hz (p > 0.05). Slow wave dominant frequency of the stomach showed decrease of frequency from control 0.035 +/- 0.04 to 0.025 +/- 0.06 Hz after M (p < 0.05). Pretreatment with V also did not influence slow wave dominant frequency in comparison to control group (0.036 +/- 0.07 Hz, p > 0.05). Only pretreatment with M significantly decreased gastric slow wave frequency. One can speculate that M effects are related not only to gut decontamination but also directly affects ENS. We propose hypothesis that M influence on slow wave frequency may be related not only to its antimicrobial activity but to its potential neurotoxic action on intramural ENS neurons.
Jaffe, Lionel F
2008-04-12
Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.
NASA Astrophysics Data System (ADS)
Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.
2017-12-01
The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.
Free electron laser with masked chicane
Nguyen, Dinh C.; Carlsten, Bruce E.
1999-01-01
A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.
Electron beam magnetic switch for a plurality of free electron lasers
Schlitt, Leland G.
1984-01-01
Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.
Technologically sensed social exposure related to slow-wave sleep in healthy adults.
Butt, Maryam; Ouarda, Taha B M J; Quan, Stuart F; Pentland, Alex Sandy; Khayal, Inas
2015-03-01
The aim of this study is to understand the relationship between automatically captured social exposure and detailed sleep parameters of healthy young adults. This study was conducted in a real-world setting in a graduate-student housing community at a US university. Social exposure was measured using Bluetooth proximity sensing technology in mobile devices. Sleep was monitored in a naturalistic setting using a headband sleep monitoring device over a period of 2 weeks. The analysis included a total of 11 subjects (6 males and 5 females) aged 24-35 (149 subject nights). Slow-wave sleep showed a significant positive correlation (Spearman's rho = 0.51, p < 0.0001) with social exposure, whereas light non-REM (N1 + N2) sleep and wake time were found to be negatively correlated (rho = -0.25, p < 0.01; rho = -0.21, p < 0.01, respectively). The correlation of median slow-wave sleep with median social exposure per subject showed a strong positive significance (rho = 0.88, p < 0.001). On average, within subjects, following day's social exposure was higher when (slow-wave NREM + REM) percentage was high (Wilcoxon sign-ranked test, p < 0.05). Subjects with higher social exposure spent more time in slow-wave sleep. Following day's social exposure was found to be positively affected by previous night's (slow-wave NREM + REM) percentage. This suggests that sleep affects following day's social exposure and not vice versa. Capturing an individual's dynamic social behavior and sleep from their natural environment can provide novel insights into these relationships.
Kursawe, Michael A; Zimmer, Hubert D
2015-06-01
We investigated the impact of perceptual processing demands on visual working memory of coloured complex random polygons during change detection. Processing load was assessed by pupil size (Exp. 1) and additionally slow wave potentials (Exp. 2). Task difficulty was manipulated by presenting different set sizes (1, 2, 4 items) and by making different features (colour, shape, or both) task-relevant. Memory performance in the colour condition was better than in the shape and both condition which did not differ. Pupil dilation and the posterior N1 increased with set size independent of type of feature. In contrast, slow waves and a posterior P2 component showed set size effects but only if shape was task-relevant. In the colour condition slow waves did not vary with set size. We suggest that pupil size and N1 indicates different states of attentional effort corresponding to the number of presented items. In contrast, slow waves reflect processes related to encoding and maintenance strategies. The observation that their potentials vary with the type of feature (simple colour versus complex shape) indicates that perceptual complexity already influences encoding and storage and not only comparison of targets with memory entries at the moment of testing. Copyright © 2015 Elsevier B.V. All rights reserved.
Lower hybrid accessibility in a large, hot reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dziubek, R.A.
1995-02-01
Recent theoretical and experimental results indicate that driving a current in the outer radius of an RPF suppresses sawtooth activity and increases particle and energy confinement times. One candidate for a form of steady state current drive is the slow wave at the lower hybrid frequency. Here, the accessibility of such a wave in an RFP plasma is investigated theoretically, with focus on the RFX machine of Padua, Italy. To drive current, the slow wave with frequency between 1.0--1.5 GHz is considered where optimal Landau damping is desired at r/a {approximately} 0.7. By numerically determining the values of the wave`smore » perpendicular index of refraction which satisfy the hot plasma dispersion relation, regions of propagation and evanescence can be found. The path of the wave can then be traced over a contour map of these regions so that accessibility can be clearly seen. The possibility of mode conversion events can be ascertained by plotting the values of the perpendicular index of refraction for the fast and slow wave and observing convergence points. To locate regions of maximum Landau damping, a technique developed by Stix was adapted for use with the slow wave in an RFP plasma. Results show that the slow wave is accessible to the target region without mode conversion so long as the value of the parallel index of refraction is correctly chosen at the edge of the plasma. Landau damping can also be optimized with this method. In an RFP, 2--20% of the electron population consists of fast electrons. Because this species alters the total electron distribution function and raises the effective temperature in the outer regions of the plasma, its presence is expected to shift the location of ideal Landau damping.« less
Angeli, T R; Du, P; Paskaranandavadivel, N; Sathar, S; Hall, A; Asirvatham, S J; Farrugia, G; Windsor, J A; Cheng, L K; O'Grady, G
2017-05-01
Gastric motility is coordinated by bioelectrical slow waves, and gastric dysrhythmias are reported in motility disorders. High-resolution (HR) mapping has advanced the accurate assessment of gastric dysrhythmias, offering promise as a diagnostic technique. However, HR mapping has been restricted to invasive surgical serosal access. This study investigates the feasibility of HR mapping from the gastric mucosal surface. Experiments were conducted in vivo in 14 weaner pigs. Reference serosal recordings were performed with flexible-printed-circuit (FPC) arrays (128-192 electrodes). Mucosal recordings were performed by two methods: (i) FPC array aligned directly opposite the serosal array, and (ii) cardiac mapping catheter modified for gastric mucosal recordings. Slow-wave propagation and morphology characteristics were quantified and compared between simultaneous serosal and mucosal recordings. Slow-wave activity was consistently recorded from the mucosal surface from both electrode arrays. Mucosally recorded slow-wave propagation was consistent with reference serosal activation pattern, frequency (P≥.3), and velocity (P≥.4). However, mucosally recorded slow-wave morphology exhibited reduced amplitude (65-72% reduced, P<.001) and wider downstroke width (18-31% wider, P≤.02), compared to serosal data. Dysrhythmias were successfully mapped and classified from the mucosal surface, accorded with serosal data, and were consistent with known dysrhythmic mechanisms in the porcine model. High-resolution gastric electrical mapping was achieved from the mucosal surface, and demonstrated consistent propagation characteristics with serosal data. However, mucosal signal morphology was attenuated, demonstrating necessity for optimized electrode designs and analytical algorithms. This study demonstrates feasibility of endoscopic HR mapping, providing a foundation for advancement of minimally invasive spatiotemporal gastric mapping as a clinical and scientific tool. © 2016 John Wiley & Sons Ltd.
Chen, Jie; Koothan, Thillai; Chen, Jiande D. Z.
2009-01-01
Impaired gastric accommodation and gastric dysrhythmia are common in gastroparesis and functional dyspepsia. Recent studies have shown that synchronized gastric electrical stimulation (SGES) accelerates gastric emptying and enhances antral contractions in dogs. The aim of this study was to investigate the effects and mechanism of SGES on gastric accommodation and slow waves impaired by vagotomy in dogs. Gastric tone, compliance, and accommodation as well as slow waves with and without SGES were assessed in seven female regular dogs and seven dogs with bilateral truncal vagotomy, chronically implanted with gastric serosal electrodes and a gastric cannula. We found that 1) vagotomy impaired gastric accommodation that was normalized by SGES. The postprandial increase in gastric volume was 283.5 ± 50.6 ml in the controlled dogs, 155.2 ± 49.2 ml in the vagotomized dogs, and 304.0 ± 57.8 ml in the vagotomized dogs with SGES. The ameliorating effect of SGES was no longer observed after application of Nω-nitro-l-arginine (l-NNA); 2) vagotomy did not alter gastric compliance whereas SGES improved gastric compliance in the vagotomized dogs, and the improvement was also blocked by l-NNA; and 3) vagotomy impaired antral slow wave rhythmicity in both fasting and fed states. SGES at the proximal stomach enhanced the postprandial rhythmicity and amplitude (dominant power) of the gastric slow waves in the antrum. In conclusion, SGES with appropriate parameters restores gastric accommodation and improves gastric slow waves impaired by vagotomy. The improvement in gastric accommodation with SGES is mediated via the nitrergic pathway. Combined with previously reported findings (enhanced antral contractions and accelerated gastric emptying) and findings in this study (improved gastric accommodation and slow waves), SGES may be a viable therapy for gastroparesis. PMID:19023028
Huang, Ming-Xiong; Nichols, Sharon; Baker, Dewleen G.; Robb, Ashley; Angeles, Annemarie; Yurgil, Kate A.; Drake, Angela; Levy, Michael; Song, Tao; McLay, Robert; Theilmann, Rebecca J.; Diwakar, Mithun; Risbrough, Victoria B.; Ji, Zhengwei; Huang, Charles W.; Chang, Douglas G.; Harrington, Deborah L.; Muzzatti, Laura; Canive, Jose M.; Christopher Edgar, J.; Chen, Yu-Han; Lee, Roland R.
2014-01-01
Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI. PMID:25009772
Hashitani, H; Hayase, M; Suzuki, H
2008-01-01
Background and purpose: Effects of imatinib mesylate, a Kit receptor tyrosine kinase inhibitor, on spontaneous activity of interstitial cells of Cajal (ICC) and smooth muscles in the stomach were investigated. Experimental approach: Effects of imatinib on spontaneous electrical and mechanical activity were investigated by measuring changes in the membrane potential and tension recorded from smooth muscles of the guinea-pig stomach. Its effects on spontaneous changes in intracellular concentration of Ca2+ ([Ca2+]i) (Ca2+ transients) were also examined in fura-2-loaded preparations. Key results: Imatinib (1–10 μM) suppressed spontaneous contractions and Ca2+ transients. Simultaneous recordings of electrical and mechanical activity demonstrated that imatinib (1 μM) reduced the amplitude of spontaneous contractions without suppressing corresponding slow waves. In the presence of nifedipine (1 μM), imatinib (10 μM) reduced the duration of slow waves and follower potentials in the antrum and accelerated their generation, but had little affect on their amplitude. In contrast, imatinib reduced the amplitude of antral slow potentials and slow waves in the corpus. Conclusions and implications: Imatinib may suppress spontaneous contractions of gastric smooth muscles by inhibiting pathways that increase [Ca2+]i in smooth muscles rather than by specifically inhibiting the activity of ICC. A high concentration of imatinib (10 μM) reduced the duration of slow waves or follower potentials in the antrum, which reflect activity of ICC distributed in the myenteric layers (ICC-MY), and suppressed antral slow potentials or corporal slow waves, which reflect activity of ICC within the muscle bundles (ICC-IM), presumably by inhibiting intracellular Ca2+ handling. PMID:18414381
Installation, commissioning and performance of IDs installed at ALBA
NASA Astrophysics Data System (ADS)
Campmany, J.; Marcos, J.; Massana, V.; Becheri, F.; Gigante, J. V.; Colldelram, C.; Ribó, Ll
2013-03-01
The new synchrotron light source ALBA is currently starting regular operation. Up to 6 beamlines are using light produced by Insertion Devices. There are up to four types of IDs: 2 Apple-II undulators (EU62 and EU71) operating at low energies, one conventional wiggler (MPW80) operating in the range of 2 - 20 keV, two in-vacuum undulators (IVU21) operating in the range 5 - 30 keV and a superconducting wiggler (SCW30) operating in the range of (up to) 40 keV. The main IDs characteristics, their influence on the beam dynamics and a first characterization of their light will be presented.
NASA Astrophysics Data System (ADS)
Stupakov, Gennady; Zhou, Demin
2016-04-01
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stupakov, Gennady; Zhou, Demin
2016-04-21
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.
X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herzen, Julia; Physics Department and Institute for Medical Engineering, Technische Universitaet Muenchen, 85748 Garching; Donath, Tilman
2011-11-15
X-ray phase-contrast radiography and tomography enable to increase contrast for weakly absorbing materials. Recently, x-ray grating interferometers were developed that extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron sources to non-coherent conventional x-ray tube sources. Here, we present the first installation of a three grating x-ray interferometer at a low-coherence wiggler source at the beamline W2 (HARWI II) operated by the Helmholtz-Zentrum Geesthacht at the second-generation synchrotron storage ring DORIS (DESY, Hamburg, Germany). Using this type of the wiggler insertion device with a millimeter-sized source allows monochromatic phase-contrast imaging of centimeter sized objects withmore » high photon flux. Thus, biological and materials-science imaging applications can highly profit from this imaging modality. The specially designed grating interferometer currently works in the photon energy range from 22 to 30 keV, and the range will be increased by using adapted x-ray optical gratings. Our results of an energy-dependent visibility measurement in comparison to corresponding simulations demonstrate the performance of the new setup.« less
Collisionless slow shocks in magnetotail reconnection
NASA Astrophysics Data System (ADS)
Cremer, Michael; Scholer, Manfred
The kinetic structure of collisionless slow shocks in the magnetotail is studied by solving the Riemann problem of the collapse of a current sheet with a normal magnetic field component using 2-D hybrid simulations. The collapse results in a current layer with a hot isotropic distribution and backstreaming ions in a boundary layer. The lobe plasma outside and within the boundary layer exhibits a large perpendicular to parallel temperature anisotropy. Waves in both regions propagate parallel to the magnetic field. In a second experiment a spatially limited high density beam is injected into a low beta background plasma and the subsequent wave excitation is studied. A model for slow shocks bounding the reconnection layer in the magnetotail is proposed where backstreaming ions first excite obliquely propagating waves by the electromagnetic ion/ion cyclotron instability, which lead to perpendicular heating. The T⊥/T∥ temperature anisotropy subsequently excites parallel propagating Alfvén ion cyclotron waves, which are convected into the slow shock and are refracted in the downstream region.
Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting.
Helfrich, Randolph F; Mander, Bryce A; Jagust, William J; Knight, Robert T; Walker, Matthew P
2018-01-03
The coupled interaction between slow-wave oscillations and sleep spindles during non-rapid-eye-movement (NREM) sleep has been proposed to support memory consolidation. However, little evidence in humans supports this theory. Moreover, whether such dynamic coupling is impaired as a consequence of brain aging in later life, contributing to cognitive and memory decline, is unknown. Combining electroencephalography (EEG), structural MRI, and sleep-dependent memory assessment, we addressed these questions in cognitively normal young and older adults. Directional cross-frequency coupling analyses demonstrated that the slow wave governs a precise temporal coordination of sleep spindles, the quality of which predicts overnight memory retention. Moreover, selective atrophy within the medial frontal cortex in older adults predicted a temporal dispersion of this slow wave-spindle coupling, impairing overnight memory consolidation and leading to forgetting. Prefrontal-dependent deficits in the spatiotemporal coordination of NREM sleep oscillations therefore represent one pathway explaining age-related memory decline. Copyright © 2017 Elsevier Inc. All rights reserved.
Song, Jun; Yin, Jieyun; Chen, Jiande D Z
2015-12-01
Rectal distension (RD) is known to induce intestinal dysmotility. Few studies were performed to compare effects of RD, colon distension (CD) and duodenal distension (DD) on small bowel motility. This study aimed to investigate effects and underlying mechanisms of distensions in these regions on intestinal motility and slow waves. Eight dogs chronically implanted with a duodenal fistula, a proximal colon fistula, and intestinal serosal electrodes were studied in six sessions: control, RD, CD, DD, RD + guanethidine, and CD + guanethidine. Postprandial intestinal contractions and slow waves were recorded for the assessment of intestinal motility. The electrocardiogram was recorded for the assessment of autonomic functions. (1) Isobaric RD and CD suppressed intestinal contractions (contractile index: 6.0 ± 0.4 with RD vs. 9.9 ± 0.9 at baseline, P = 0.001, 5.3 ± 0.2 with CD vs. 7.7 ± 0.8 at baseline, P = 0.008). Guanethidine at 3 mg/kg iv was able to partially block the effects. (2) RD and CD reduced the percentage of normal intestinal slow waves from 92.1 ± 2.8 to 64.2 ± 3.4 % (P < 0.001) and from 90 ± 2.7 to 69.2 ± 3.7 % (P = 0.01), respectively. Guanethidine could eliminate these inhibitory effects. (3) DD did not induce any changes in small intestinal contractions and slow waves (P > 0.05). (4) The spectral analysis of the heart rate variability showed that both RD and CD increased sympathetic activity (LF) and reduced vagal activity (HF) (P < 0.05). Isobaric RD and CD could inhibit postprandial intestinal motility and impair intestinal slow waves, which were mediated via the sympathetic pathway. However, DD at a site proximal to the measurement site did not seem to impair small intestinal contractions or slow waves.
Elastic Properties of Synthetic Pyrope (Mg3Al2Si3O12) to 9 GPa and 1000°C
NASA Astrophysics Data System (ADS)
Gwanmesia, G. D.; Zhang, J.; Li, B.; Darling, K.; Kung, J.; Neuville, D.; Raterron, P.; Sullivan, S.; Liebermann, R. C.
2003-04-01
We have measured the elastic wave velocities of polycrystalline pyrope (Mg_3Al_2Si_3O12) to 9 GPa and 1000^oC by ultrasonic interferometry, combined with in-situ synchrotron x-ray diffraction and imaging techniques. Fine-grained polycrystalline specimens (99.5% of theoretical density) were hot-pressed from a homogeneous glass starting material in the USSA-2000 apparatus at Stony Brook; the physical properties of the recovered specimens were characterized with density measurements, x-ray diffraction and transmission electron microscopy. Bench-top elastic wave velocities were in excellent agreement with the isotropic averages calculated from single-crystal elastic moduli of Leitner et al. (1980) by the Hashin-Shtrikman method. Travel times of acoustic compressional (P) and shear (S) waves, specimen lengths and PVT equations of state for the specimen and a NaCl standard were measured to 9 GPa and 1000^oC in a DIA-type high pressure apparatus (SAM-85), installed on the superconducting wiggler beamline (X17B) at the National Synchrotron Light Source of the Brookhaven National Laboratory. These data enabled us to determine the pressure and temperature derivatives of the elastic wave velocities and moduli for isotropic pyrope. We compare our new values with those of previous investigators and discuss the implications of these data for interpreting the seismic velocity gradients in the transition zone of the Earth's mantle.
Electrostatic waves driven by electron beam in lunar wake plasma
NASA Astrophysics Data System (ADS)
Sreeraj, T.; Singh, S. V.; Lakhina, G. S.
2018-05-01
A linear analysis of electrostatic waves propagating parallel to the ambient field in a four component homogeneous, collisionless, magnetised plasma comprising fluid protons, fluid He++, electron beam, and suprathermal electrons following kappa distribution is presented. In the absence of electron beam streaming, numerical analysis of the dispersion relation shows six modes: two electron acoustic modes (modes 1 and 6), two fast ion acoustic modes (modes 2 and 5), and two slow ion acoustic modes (modes 3 and 4). The modes 1, 2 and 3 and modes 4, 5, and 6 have positive and negative phase speeds, respectively. With an increase in electron beam speed, the mode 6 gets affected the most and the phase speed turns positive from negative. The mode 6 thus starts to merge with modes 2 and 3 and generates the electron beam driven fast and slow ion acoustic waves unstable with a finite growth. The electron beam driven slow ion-acoustic waves occur at lower wavenumbers, whereas fast ion-acoustic waves occur at a large value of wavenumbers. The effect of various other parameters has also been studied. We have applied this analysis to the electrostatic waves observed in lunar wake during the first flyby of the ARTEMIS mission. The analysis shows that the low (high) frequency waves observed in the lunar wake could be the electron beam driven slow (fast) ion-acoustic modes.
Chaos and ion heating in a slow shock
NASA Technical Reports Server (NTRS)
Lin, Y.; Lee, L. C.
1991-01-01
An ion heating mechanism is proposed of slow shocks, which is associated with the chaotic motion of particles in the downstream wave field. For a coherent electromagnetic wave propagating along the downstream magnetic field, corresponding to switch-off shocks, the particle motions are not chaotic. For an oblique wave, the interaction between the particles and the wave field may lead to chaotic particle motions. Such particles may be greatly thermalized within one wavelength after they are incident into the downstream wave field. The results can be used to explain the existence of the critical intermediate Mach number observed in the hybrid simulations.
Coupled Transmission Line Based Slow Wave Structures for Traveling Wave Tubes Applications
NASA Astrophysics Data System (ADS)
Zuboraj, Md. Rashedul Alam
High power microwave devices especially Traveling Wave Tubes (TWTs) and Backward Wave Oscillators (BWOs) are largely dependent on Slow Wave Structures for efficient beam to RF coupling. In this work, a novel approach of analyzing SWSs is proposed and investigated. Specifically, a rigorous study of helical geometries is carried out and a novel SWS "Half-Ring-Helix" is designed. This Half-Ring-Helix circuit achieves 27% miniaturization and delivers 10dB more gain than conventional helices. A generalization of the helix structures is also proposed in the form of Coupled Transmission Line (CTL). It is demonstrated that control of coupling among the CTLs leads to new propagation properties. With this in mind, a novel geometry referred to as "Curved Ring-Bar" is introduced. This geometry is shown to deliver 1MW power across a 33% bandwidth. Notably, this is the first demonstration of MW power TWT across large bandwidth. The CTL is further expanded to enable engineered propagation characteristics. This is done by introducing CTLs having non-identical transmission lines and CTLs with as many as four transmission lines in the same slow wave structure circuit. These non-identical CTLs are demonstrated to generate fourth order dispersion curves. Building on the property of CTLs, a `butterfly' slow wave structure is developed and demonstrated to provide degenerate band edge (DBE) mode. This mode are known to provide large feld enhancement that can be exploited to design high power backward wave oscillators.
Enhanced traveling wave amplification of co-planar slow wave structure by extended phase-matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palm, Andrew; Sirigiri, Jagadishwar; Shin, Young-Min, E-mail: yshin@niu.edu
2015-09-15
The electron beam co-propagating with slow waves in a staggered double grating array (SDGA) efficiently amplifies millimeter and sub-millimeter waves over a wide spectrum. Our theoretical and numerical analyses show that the power amplification in the fundamental passband is enhanced by the extended beam-wave phase-matching. Particle-in-cell simulations on the SDGA slow wave structure, designed with 10.4 keV and 50–100 mA sheet beam, indicate that maintaining beam-wave synchronization along the entire length of the circuit improves the gain by 7.3% leading to a total gain of 28 dB, corresponding to 62 W saturated power at the middle of operating band, and a 3-dB bandwidthmore » of 7 GHz with 10.5% at V-band (73.5 GHz center frequency) with saturated peak power reaching 80 W and 28 dB at 71 GHz. These results also show a reasonably good agreement with analytic calculations based on Pierce small signal gain theory.« less
Kromin, A A; Zenina, O Yu
2013-09-01
In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.
Slow waves in microchannel metal waveguides and application to particle acceleration
NASA Astrophysics Data System (ADS)
Steinhauer, L. C.; Kimura, W. D.
2003-06-01
Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.
Rotating magnetic shallow water waves and instabilities in a sphere
NASA Astrophysics Data System (ADS)
Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.
2017-07-01
Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.
Neuronal Networks in Children with Continuous Spikes and Waves during Slow Sleep
ERIC Educational Resources Information Center
Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M.; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich
2010-01-01
Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least greater than 85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and…
3D Modeling of Antenna Driven Slow Waves Excited by Antennas Near the Plasma Edge
NASA Astrophysics Data System (ADS)
Smithe, David; Jenkins, Thomas
2016-10-01
Prior work with the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas has highlighted the possibility of slow wave excitation at the very low end of the SOL density range, and thus the prudent need for a slow-time evolution model to treat SOL density modifications due to the RF itself. At higher frequency, the DIII-D helicon antenna has much easier access to a parasitic slow wave excitation, and in this case the Faraday screen provides the dominant means of controlling the content of the launched mode, with antenna end-effects remaining a concern. In both cases, the danger is the same, with the slow-wave propagating into a lower-hybrid resonance layer a short distance ( cm) away from the antenna, which would parasitically absorb power, transferring energy to the SOL edge plasma, primarily through electron-neutral collisions. We will present 3D modeling of antennas at both ICRF and helicon frequencies. We've added a slow-time evolution capability for the SOL plasma density to include ponderomotive force driven rarefaction from the strong fields in the vicinity of the antenna, and show initial application to NSTX antenna geometry and plasma configurations. The model is based on a Scalar Ponderomotive Potential method, using self-consistently computed local field amplitudes from the 3D simulation.
1989-04-01
MILO Magnetica fy insulated transmission line Slow-wave structure Relativistic Brillouin flow Space-charge waves Slow electromagnetic waves (over) 19... resonant layer always see a decelerating axial electric field. Consequently, field energy increases at the expense of particle energy. 17 AFWL-TR-88-103...Ve). If ve is greater than the structure coupling velocity, a resonant layer of electrons will always be present, and oscillations will occur at any
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tecimer, M.; Elias, L.R.
1995-12-31
Lienard-Wiechert (LW) fields, which are exact solutions of the Wave Equation for a point charge in free space, are employed to formulate a self-consistent treatment of the electron beam dynamics and the evolution of the generated radiation in long undulators. In a relativistic electron beam the internal forces leading to the interaction of the electrons with each other can be computed by means of retarded LW fields. The resulting electron beam dynamics enables us to obtain three dimensional radiation fields starting from an initial incoherent spontaneous emission, without introducing a seed wave at start-up. Based on the formalism employed here,more » both the evolution of the multi-bucket electron phase space dynamics in the beam body as well as edges and the relative slippage of the radiation with respect to the electrons in the considered short bunch are naturally embedded into the simulation model. In this paper, we present electromagnetic radiation studies, including multi-bucket electron phase dynamics and angular distribution of radiation in the time and frequency domain produced by a relativistic short electron beam bunch interacting with a circularly polarized magnetic undulator.« less
Parsons, Sean P; Huizinga, Jan D
2018-06-03
What is the central question of this study? What is the nature of slow wave driven contraction frequency gradients in the small intestine? What is the main finding and its importance? Frequency plateaus are composed of discrete waves of increased interval, each wave associated with a contraction dislocation. Smooth frequency gradients are generated by localised neural modulation of wave frequency, leading to functionally important wave turbulence. Both patterns are emergent properties of a network of coupled oscillators, the interstitial cells of Cajal. A gut-wide network of interstitial cells of Cajal (ICC) generate electrical oscillations (slow waves) that orchestrate waves of muscle contraction. In the small intestine there is a gradient in slow wave frequency from high at the duodenum to low at the terminal ileum. Time-averaged measurements of frequency have suggested either a smooth or stepped (plateaued) gradient. We measured individual contraction intervals from diameter maps of the mouse small intestine to create interval maps (IMaps). IMaps showed that each frequency plateau was composed of discrete waves of increased interval. Each interval wave originated at a terminating contraction wave, a "dislocation", at the plateau's proximal boundary. In a model chain of coupled phase oscillators, interval wave frequency increased as coupling decreased or as the natural frequency gradient or noise increased. Injuring the intestine at a proximal point to destroy coupling, suppressed distal steps which then reappeared with gap junction block by carbenoxolone. This lent further support to our previous hypothesis that lines of dislocations were fixed by points of low coupling strength. Dislocations induced by electrical field pulses in the intestine and by equivalent phase shift in the model, were associated with interval waves. When the enteric nervous system was active, IMaps showed a chaotic, turbulent pattern of interval change with no frequency steps or plateaus. This probably resulted from local, stochastic release of neurotransmitters. Plateaus, dislocations, interval waves and wave turbulence arise from a dynamic interplay between natural frequency and coupling in the ICC network. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Interaction of solitons for obliquely propagating magnetoacoustic waves in stellar atmosphere
NASA Astrophysics Data System (ADS)
Jahangir, R.; Masood, W.; Siddiq, M.; Batool, Nazia
2016-12-01
We study here the nonlinear oblique propagation of magnetoacoustic waves in dense plasmas with degenerate electrons by deriving Kadomtsev-Petviashvili (KP) equation for small but finite amplitude perturbations. The two soliton interaction has been studied by finding the solution of the KP equation using the Hirota bilinear formalism. For illustrative purposes, we have used the plasma parameters typically found in white dwarf stars for both the fast and slow modes of magnetoacoustic waves. It has been observed that the soliton interaction in the fast and slow modes is strongly influenced by the predominant and weak dispersive coefficients of the KP equation. The single soliton behavior has also been explained for the fast and slow magnetoacoustic modes.
Modeling and Theory of RF Antenna Systems on Proto-MPEX
NASA Astrophysics Data System (ADS)
Piotrowicz, P. A.; Caneses, J. F.; Goulding, R. H.; Green, D.; Caughman, J. B. O.; Ruzic, D. N.; Proto-MPEX Team
2017-10-01
The RF wave coupling of the helicon and ICH antennas installed on the Prototype Material Plasma Exposure eXperiment (MPEX) has been explored theoretically and via a full wave model implemented in COMSOL Multiphysics. The high-density mode in Proto-MPEX has been shown to occur when exciting radial eigenmodes of the plasma column which coincides with entering a Trivelpiece Gould (TG) anti-resonant regime, therefore suppressing edge heating in favor of core power deposition. The fast wave launched by the helicon antenna has a large wavelength and travels at a steep group velocity angle with the background magnetic field; for this reason the fast wave launched by the helicon antenna efficiently couples power to the core plasma. However, the ICH heating scheme relies on a small wavelength slow wave to couple power to the core of the plasma column. Coupling slow wave power to the core of the plasma column is sensitive to the location of the Alfven resonance. The wave-vector and group velocity vector of the slow wave in this parameter regime undergoes a drastic change in behavior when approaching the Alfven resonance. Full wave simulation results and dispersion analysis will be presented with suggestions to guide experimental progress. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.
Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solis-Najera, S. E., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Neria-Pérez, J. A., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Medina, L., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx
Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’smore » waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.« less
Evidence of Biot Slow Waves in Electroseismic Measurementss on Laboratory-Scale
NASA Astrophysics Data System (ADS)
Devi, M. S.
2015-12-01
Electroseismic methods which are the opposite of seismo-electric methods have only been little investigated up to now especially in the near surface scale. These methods can generate the solid-fluid relative movement induced by the electric potential in fluid-filled porous media. These methods are the response of electro-osmosis due to the presence of the electrical double layer. Laboratory experiments and numerical simulations of electroseismic studies have been performed. Electroseismic measurements conducted in micro glass beads saturated with demineralized water. Pair of 37 x 37 mm square aluminium grids with 2 mm of aperture and 4 mm of spacing is used as the electric dipole that connected to the electric power source with the voltage output 150 V. A laser doppler vibrometer is the system used to measure velocity of vibrating objects during measurements by placing a line of reflective paper on the surface of media that scattered back a helium-neon laser. The results in homogeneous media shows that the compressional waves induced by an electric signal. We confirm that the results are not the effects of thermal expansion. We also noticed that there are two kinds of the compressional waves are recorded: fast and slow P-waves. The latter, Biot slow waves, indicate the dominant amplitude. Moreover, we found that the transition frequency (ωc) of Biot slow waves depends on mechanical parameters such as porosity and permeability. The ωc is not affected when varying conductivity of the fluid from 25 - 320 μS/cm, although the amplitude slightly changed. For the results in two layer media by placing a sandstone as a top layer shows that a large amount of transmission seismic waves (apparently as Biot slow waves) rather than converted electromagnetic-to-seismic waves. These properties have also been simulated with full waveform numerical simulations relying on Pride's (1994) using our computer code (Garambois & Dietrich, 2002). If it is true that the electric source in the safe voltage range generates seismic waves dominantly, it may be a reason of electro-osmosis dewatering technique to transport liquids. And this source may be used an alternative as a seismic source in geophysical exploration.
Low-frequency quadrupole impedance of undulators and wigglers
Blednykh, A.; Bassi, G.; Hidaka, Y.; ...
2016-10-25
An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ r. Here, in the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ r → ∞), and the case in which the magnets are fullymore » saturated (μ r = 1).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stupakov, Gennady; Zhou, Demin
2016-04-21
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. Furthermore, all our formulas are benchmarked against numerical simulations with the CSRZ computermore » code.« less
NASA Astrophysics Data System (ADS)
Kikuchi, Kazuyoshi; Kiladis, George N.; Dias, Juliana; Nasuno, Tomoe
2018-06-01
This study examines the relationship between the MJO and convectively coupled equatorial waves (CCEWs) during the CINDY2011/DYNAMO field campaign using satellite-borne infrared radiation data, in order to better understand the interaction between convection and the large-scale circulation. The spatio-temporal wavelet transform (STWT) enables us to document the convective signals within the MJO envelope in terms of CCEWs in great detail, through localization of space-time spectra at any given location and time. Three MJO events that occurred in October, November, and December 2011 are examined. It is, in general, difficult to find universal relationships between the MJO and CCEWs, implying that MJOs are diverse in terms of the types of disturbances that make up its convective envelope. However, it is found in all MJO events that the major convective body of the MJO is made up mainly by slow convectively coupled Kelvin waves. These Kelvin waves have relatively fast phase speeds of 10-13 m s-1 outside of, and slow phase speeds of 8-9 m s-1 within the MJO. Sometimes even slower eastward propagating signals with 3-5 m s-1 phase speed show up within the MJO, which, as well as the slow Kelvin waves, appear to comprise major building blocks of the MJO. It is also suggested that these eastward propagating waves often occur coincident with n = 1 WIG waves, which is consistent with the schematic model from Nakazawa in 1988. Some practical aspects that facilitate use of the STWT are also elaborated upon and discussed.
Resting-state slow wave power, healthy aging and cognitive performance.
Vlahou, Eleni L; Thurm, Franka; Kolassa, Iris-Tatjana; Schlee, Winfried
2014-05-29
Cognitive functions and spontaneous neural activity show significant changes over the life-span, but the interrelations between age, cognition and resting-state brain oscillations are not well understood. Here, we assessed performance on the Trail Making Test and resting-state magnetoencephalographic (MEG) recordings from 53 healthy adults (18-89 years old) to investigate associations between age-dependent changes in spontaneous oscillatory activity and cognitive performance. Results show that healthy aging is accompanied by a marked and linear decrease of resting-state activity in the slow frequency range (0.5-6.5 Hz). The effects of slow wave power on cognitive performance were expressed as interactions with age: For older (>54 years), but not younger participants, enhanced delta and theta power in temporal and central regions was positively associated with perceptual speed and executive functioning. Consistent with previous work, these findings substantiate further the important role of slow wave oscillations in neurocognitive function during healthy aging.
Ascent to moderate altitude impairs overnight memory improvements.
Tesler, Noemi; Latshang, Tsogyal D; Lo Cascio, Christian M; Stadelmann, Katrin; Stoewhas, Anne-Christin; Kohler, Malcolm; Bloch, Konrad E; Achermann, Peter; Huber, Reto
2015-02-01
Several studies showed beneficial effects of sleep on memory performance. Slow waves, the electroencephalographic characteristic of deep sleep, reflected on the neuronal level by synchronous slow oscillations, seem crucial for these benefits. Traveling to moderate altitudes decreases deep sleep. In a randomized cross-over design healthy male subjects performed a visuo-motor learning task in Zurich (490 m) and at Davos Jakobshorn (2590 m) in random order. Memory performance was assessed immediately after learning, before sleep, and in the morning after a night of sleep. Sleep EEG recordings were performed during the nights. Our findings show an altitude induced reduction of sleep dependent memory performance. Moreover, this impaired sleep dependent memory performance was associated with reduced slow wave derived measures of neuronal synchronization. Our results are consistent with a critical role of slow waves for the beneficial effects of sleep on memory that is susceptible to natural environmental influences. Copyright © 2014 Elsevier Inc. All rights reserved.
Ketamine, sleep, and depression: current status and new questions.
Duncan, Wallace C; Zarate, Carlos A
2013-09-01
Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has well-described rapid antidepressant effects in clinical studies of individuals with treatment-resistant major depressive disorder (MDD). Preclinical studies investigating the effects of ketamine on brain-derived neurotrophic factor (BDNF) and on sleep slow wave activity (SWA) support its use as a prototype for investigating the neuroplastic mechanisms presumably involved in the mechanism of rapidly acting antidepressants. This review discusses human EEG slow wave sleep parameters and plasma BDNF as central and peripheral surrogate markers of plasticity, and their use in assessing ketamine's effects. Acutely, ketamine elevates BDNF levels, as well as early night SWA and high-amplitude slow waves; each of these measures correlates with change in mood in depressed patients who respond to ketamine. The slow wave effects are limited to the first night post-infusion, suggesting that their increase is part of an early cascade of events triggering improved mood. Increased total sleep and decreased waking occur during the first and second night post infusion, suggesting that these measures are associated with the enduring treatment response observed with ketamine.
Excitation of slow waves in front of an ICRF antenna in a basic plasma experiment
NASA Astrophysics Data System (ADS)
Soni, Kunal; van Compernolle, Bart; Crombe, Kristel; van Eester, Dirk
2017-10-01
Recent results of ICRF experiments at the Large Plasma Device (LAPD) indicate parasitic coupling to the slow wave by the fast wave antenna. Plasma parameters in LAPD are similar to the scrape-off layer of current fusion devices. The machine has a 17 m long, 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B0 1000 G. It was found that coupling to the slow mode occurs when the plasma density in front of the antenna is low enough such that the lower hybrid resonance is present in the plasma. The radial density profile is tailored to allow for fast mode propagation in the high density core and slow mode propagation in the low density edge region. Measurements of the wave fields clearly show two distinct modes, one long wavelength m=1 fast wave mode in the core and a short wavelength backward propagating mode in the edge. Perpendicular wave numbers compare favorably to the predicted values. The experiment was done for varying frequencies, ω /Ωi = 25 , 6 and 1.5. Future experiments will investigate the dependence on antenna tilt angle with respect to the magnetic field, with and without Faraday screen. This work is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF.
Zhu, Xuefeng; Li, Kun; Zhang, Peng; Zhu, Jie; Zhang, Jintao; Tian, Chao; Liu, Shengchun
2016-01-01
The ability to slow down wave propagation in materials has attracted significant research interest. A successful solution will give rise to manageable enhanced wave–matter interaction, freewheeling phase engineering and spatial compression of wave signals. The existing methods are typically associated with constructing dispersive materials or structures with local resonators, thus resulting in unavoidable distortion of waveforms. Here we show that, with helical-structured acoustic metamaterials, it is now possible to implement dispersion-free sound deceleration. The helical-structured metamaterials present a non-dispersive high effective refractive index that is tunable through adjusting the helicity of structures, while the wavefront revolution plays a dominant role in reducing the group velocity. Finally, we numerically and experimentally demonstrate that the helical-structured metamaterials with designed inhomogeneous unit cells can turn a normally incident plane wave into a self-accelerating beam on the prescribed parabolic trajectory. The helical-structured metamaterials will have profound impact to applications in explorations of slow wave physics. PMID:27198887
Characterization of electrophysiological propagation by multichannel sensors
Bradshaw, L. Alan; Kim, Juliana H.; Somarajan, Suseela; Richards, William O.; Cheng, Leo K.
2016-01-01
Objective The propagation of electrophysiological activity measured by multichannel devices could have significant clinical implications. Gastric slow waves normally propagate along longitudinal paths that are evident in recordings of serosal potentials and transcutaneous magnetic fields. We employed a realistic model of gastric slow wave activity to simulate the transabdominal magnetogastrogram (MGG) recorded in a multichannel biomagnetometer and to determine characteristics of electrophysiological propagation from MGG measurements. Methods Using MGG simulations of slow wave sources in a realistic abdomen (both superficial and deep sources) and in a horizontally-layered volume conductor, we compared two analytic methods (Second Order Blind Identification, SOBI and Surface Current Density, SCD) that allow quantitative characterization of slow wave propagation. We also evaluated the performance of the methods with simulated experimental noise. The methods were also validated in an experimental animal model. Results Mean square errors in position estimates were within 2 cm of the correct position, and average propagation velocities within 2 mm/s of the actual velocities. SOBI propagation analysis outperformed the SCD method for dipoles in the superficial and horizontal layer models with and without additive noise. The SCD method gave better estimates for deep sources, but did not handle additive noise as well as SOBI. Conclusion SOBI-MGG and SCD-MGG were used to quantify slow wave propagation in a realistic abdomen model of gastric electrical activity. Significance These methods could be generalized to any propagating electrophysiological activity detected by multichannel sensor arrays. PMID:26595907
Gastric electrical stimulation with short pulses reduces vomiting but not dysrhythmias in dogs.
Chen, Jiande D Z; Qian, Liwei; Ouyang, Hui; Yin, Jieyun
2003-02-01
The aim of this study was to investigate the acute effects of 3 different methods of electrical stimulation in the prevention of vasopressin-induced emetic response and gastric dysrhythmias. Seven female hound dogs chronically implanted with 4 pairs of electrodes on gastric serosa were used in a 5-session study. Saline and vasopressin were infused in sessions 1 and 2, respectively. In the other 3 sessions with vasopressin infusion, 3 different methods of electrical stimulation (short-pulse stimulation, long-pulse stimulation, and electroacupuncture) were applied. Gastric slow waves and vomiting and behaviors suggestive of nausea were recorded in each session. In a separate study, additional experiments were performed in 5 vagotomized dogs to investigate vagally mediated mechanisms. Vasopressin induced gastric dysrhythmias, uncoupling of slow waves, and vomiting and behaviors suggestive of nausea (P < 0.02, analysis of variance). Long-pulse stimulation, but not short-pulse stimulation or electroacupuncture, was capable of preventing vasopressin-induced gastric dysrhythmias and gastric slow wave uncoupling. Short-pulse stimulation and electroacupuncture, but not long-pulse stimulation, prevented vomiting and significantly reduced the symptom scores, which was not noted in the dogs with truncal vagotomy. Long-pulse stimulation normalizes vasopressin-induced slow wave abnormalities with no improvement in vomiting and behaviors suggestive of nausea. Short-pulse stimulation and electroacupuncture prevent vomiting and behaviors suggestive of nausea induced by vasopressin but have no effects on slow waves, and their effects are vagally mediated.
Porous medium acoustics of wave-induced vorticity diffusion
NASA Astrophysics Data System (ADS)
Müller, T. M.; Sahay, P. N.
2011-02-01
A theory for attenuation and dispersion of elastic waves due to wave-induced generation of vorticity at pore-scale heterogeneities in a macroscopically homogeneous porous medium is developed. The diffusive part of the vorticity field associated with a viscous wave in the pore space—the so-called slow shear wave—is linked to the porous medium acoustics through incorporation of the fluid strain rate tensor of a Newtonian fluid in the poroelastic constitutive relations. The method of statistical smoothing is then used to derive dynamic-equivalent elastic wave velocities accounting for the conversion scattering process into the diffusive slow shear wave in the presence of randomly distributed pore-scale heterogeneities. The result is a simple model for wave attenuation and dispersion associated with the transition from viscosity- to inertia-dominated flow regime.
Signatures of Nonlinear Waves in Coronal Plumes and Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
1999-01-01
In recent Ultraviolet Coronagraph Spectrometer/Solar and Heliospheric Observatory (UVCS/SOHO) White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness (pB) in the polar coronal holes at heliocentric distances of 1.9-2.45 solar radii. The motivation for the observation is the 2.5D Magnetohydrodynamics (MHD) model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes. To help identify the waves observed with the UVCS/WLC we model the propagation and dissipation of slow magnetosonic waves in polar plumes using 1D MHD code in spherical geometry, We find that the slow waves nonlinearly steepen in the gravitationally stratified plumes. The nonlinear steepening of the waves leads to enhanced dissipation due to compressive viscosity at the wave-fronts.
Stable two-plane focusing for emittance-dominated sheet-beam transport
NASA Astrophysics Data System (ADS)
Carlsten, B. E.; Earley, L. M.; Krawczyk, F. L.; Russell, S. J.; Potter, J. M.; Ferguson, P.; Humphries, S.
2005-06-01
Two-plane focusing of sheet electron beams will be an essential technology for an emerging class of high-power, 100 to 300 GHz rf sources [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005), ITPSBD, 0093-3813, 10.1109/TPS.2004.841172]. In these devices, the beam has a unique asymmetry in which the transport is emittance dominated in the sheet’s thin dimension and space-charge dominated in the sheet’s wide dimension. Previous work has studied the stability of the transport of beams in the emittance-dominated regime for both wiggler and periodic permanent magnet (PPM) configurations with single-plane focusing, and has found that bigger envelope scalloping occurs for equilibrium transport, as compared to space-charge dominated beams [Carlsten et al., this issue, Phys. Rev. ST Accel. Beams 8, 062001 (2005), PRABFM, 1098-4402]. In this paper, we describe the differences in transport stability when two-plane focusing is included. Two-plane wiggler focusing degrades the transport stability slightly, whereas two-plane PPM focusing greatly compromises the transport. On the other hand, single-plane PPM focusing can be augmented with external quadrupole fields to provide weak focusing in the sheet’s wide dimension, which has stability comparable to two-plane wiggler transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huamg, C. W., E-mail: huang.zw@nsrrc.org.tw; Hwang, C. S., E-mail: cshwang@nsrrc.org.tw; Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan
The Taiwan Photon Source (TPS) has been successfully commissioned. However, the minimum emittance in the TPS lattice is 1.6 nm rad. In the existing TPS storage ring lattice, it is imperative to reduce the emittance to below 1 nm rad. Therefore, a feasibility study for reducing the effective emittance of the TPS storage ring by using a Robinson wiggler was launched; the reduction is necessary to enhance the photon brilliance. In this study, a permanent-magnet multiperiod Robinson wiggler (MRW) was developed for use instead of the single-period Robinson wiggler. In general, the quadruple field of a combined function magnet inmore » the storage ring is approximately few tesla per meter. According to beam dynamic analysis, we found that it is necessary to adopt a high gradient (40 T/m) combined-function MRW magnet to reduce the emittance effectively. Therefore, a high gradient field strength is required in the combined function MRW magnet. In this study, the quadrupole field strength of the MRW magnet was allowed to be approximately 40 T/m at a magnet gap of 20 mm. The period length of the MRW magnet was 300 mm and the period number was 16. The of MRWs is discussed in regard to the possibility of increasing the photon brilliance from IU22.« less
Measurements of acoustic surface waves on fluid-filled porous rocks
NASA Astrophysics Data System (ADS)
Adler, Laszlo; Nagy, Peter B.
1994-09-01
Novel experimental techniques to measure ultrasonic velocity and attenuation of surface waves on fluid-filled porous natural rocks are presented. Our experimental results are consistent with the theoretical predictions of Feng and Johnson (1983). Depending on the interface conditions, i.e., whether the surface pores are open or closed, pseudo-Rayleigh, pseudo-Stoneley, and/or Stoneley surface waves may exist on fluid-saturated rocks with closed 'slow' surface wave (true Stoneley mode) on fluid-filled porous rocks with closed surface pores. The velocity and attenuation of the 'slow' surface mode may be used to assess the dynamic permeabilty of porous formations.
Zenina, O Yu; Kromin, A A
2012-10-01
Stimulation of the lateral hypothalamus in preliminary fed animals in the presence of the food is associated with successful food-procuring behavior, accompanied by regular generation of high-amplitude slow electrical waves by muscles of the lesser curvature, body, and antrum of the stomach, which was reflected in the structure of temporal organization of slow electrical activity in the form of unimodal distribution of slow wave periods typical of satiation state. Despite increased level of food motivation caused by stimulation of the lateral hypothalamus, the additional food intake completely abolished the inhibitory effects of hunger motivation excitement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach of satiated rabbits. Changes in slow electrical activity of the stomach muscles in rabbits deprived of food over 24 h and offered food and associated food-procuring behavior during electrical stimulation of the lateral hypothalamus have a two-phase pattern. Despite food intake during phase I of electrical stimulation, the downstream inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature of stomach abolishes the stimulating effect of food reinforcement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach. During phase II of electrical stimulation, the food reinforcement decreases inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature that paces maximal rhythm of slow electrical waves for muscles activity in the lesser curvature, body, and antrum of the stomach, which is reflected by unimodal distribution of slow electrical wave periods. Our results indicated that the structure of temporal organization of slow electrical activity of the stomach muscles reflects convergent interactions of food motivation and reinforcement excitations on the dorsal vagal complex neurons in medulla oblongata.
A system and method for online high-resolution mapping of gastric slow-wave activity.
Bull, Simon H; O'Grady, Gregory; Du, Peng; Cheng, Leo K
2014-11-01
High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed "off-line" (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for "online" HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application.
Computer Simulation of Microwave Devices
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1997-01-01
The accurate simulation of cold-test results including dispersion, on-axis beam interaction impedance, and attenuation of a helix traveling-wave tube (TWT) slow-wave circuit using the three-dimensional code MAFIA (Maxwell's Equations Solved by the Finite Integration Algorithm) was demonstrated for the first time. Obtaining these results is a critical step in the design of TWT's. A well-established procedure to acquire these parameters is to actually build and test a model or a scale model of the circuit. However, this procedure is time-consuming and expensive, and it limits freedom to examine new variations to the basic circuit. These limitations make the need for computational methods crucial since they can lower costs, reduce tube development time, and lessen limitations on novel designs. Computer simulation has been used to accurately obtain cold-test parameters for several slow-wave circuits. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. A new computer modeling technique developed at the NASA Lewis Research Center overcomes these difficulties. The MAFIA three-dimensional mesh for a C-band helix slow-wave circuit is shown.
A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry.
Du, Peng; Paskaranandavadivel, Niranchan; O'Grady, Greg; Tang, Shou-Jiang; Cheng, Leo K
2015-12-01
Gastric slow wave dysrhythmias are associated with motility disorders. Periods of tachygastria associated with slow wave re-entry were recently recognized as one important dysrhythmia mechanism, but factors promoting and sustaining gastric re-entry are currently unknown. This study reports two experimental forms of gastric re-entry and presents a series of multi-scale models that define criteria for slow wave re-entry initiation, maintenance and termination. High-resolution electrical mapping was conducted in porcine and canine models and two spatiotemporal patterns of re-entrant activities were captured: single-loop rotor and double-loop figure-of-eight. Two separate multi-scale mathematical models were developed to reproduce the velocity and entrainment frequency of these experimental recordings. A single-pulse stimulus was used to invoke a rotor re-entry in the porcine model and a figure-of-eight re-entry in the canine model. In both cases, the simulated re-entrant activities were found to be perpetuated by tachygastria that was accompanied by a reduction in the propagation velocity in the re-entrant pathways. The simulated re-entrant activities were terminated by a single-pulse stimulus targeted at the tip of re-entrant wave, after which normal antegrade propagation was restored by the underlying intrinsic frequency gradient. (i) the stability of re-entry is regulated by stimulus timing, intrinsic frequency gradient and conductivity; (ii) tachygastria due to re-entry increases the frequency gradient while showing decreased propagation velocity; (iii) re-entry may be effectively terminated by a targeted stimulus at the core, allowing the intrinsic slow wave conduction system to re-establish itself. © The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry
Du, Peng; Paskaranandavadivel, Niranchan; O’Grady, Greg; Tang, Shou-Jiang; Cheng, Leo K.
2015-01-01
Gastric slow wave dysrhythmias are associated with motility disorders. Periods of tachygastria associated with slow wave re-entry were recently recognized as one important dysrhythmia mechanism, but factors promoting and sustaining gastric re-entry are currently unknown. This study reports two experimental forms of gastric re-entry and presents a series of multi-scale models that define criteria for slow wave re-entry initiation, maintenance and termination. High-resolution electrical mapping was conducted in porcine and canine models and two spatiotemporal patterns of re-entrant activities were captured: single-loop rotor and double-loop figure-of-eight. Two separate multi-scale mathematical models were developed to reproduce the velocity and entrainment frequency of these experimental recordings. A single-pulse stimulus was used to invoke a rotor re-entry in the porcine model and a figure-of-eight re-entry in the canine model. In both cases, the simulated re-entrant activities were found to be perpetuated by tachygastria that was accompanied by a reduction in the propagation velocity in the re-entrant pathways. The simulated re-entrant activities were terminated by a single-pulse stimulus targeted at the tip of re-entrant wave, after which normal antegrade propagation was restored by the underlying intrinsic frequency gradient. Main findings: (i) the stability of re-entry is regulated by stimulus timing, intrinsic frequency gradient and conductivity; (ii) tachygastria due to re-entry increases the frequency gradient while showing decreased propagation velocity; (iii) re-entry may be effectively terminated by a targeted stimulus at the core, allowing the intrinsic slow wave conduction system to re-establish itself. PMID:25552487
Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer
NASA Technical Reports Server (NTRS)
Messiter, A. F.
1995-01-01
For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.
NASA Astrophysics Data System (ADS)
Anderson, Christian Carl
This Dissertation explores the physics underlying the propagation of ultrasonic waves in bone and in heart tissue through the use of Bayesian probability theory. Quantitative ultrasound is a noninvasive modality used for clinical detection, characterization, and evaluation of bone quality and cardiovascular disease. Approaches that extend the state of knowledge of the physics underpinning the interaction of ultrasound with inherently inhomogeneous and isotropic tissue have the potential to enhance its clinical utility. Simulations of fast and slow compressional wave propagation in cancellous bone were carried out to demonstrate the plausibility of a proposed explanation for the widely reported anomalous negative dispersion in cancellous bone. The results showed that negative dispersion could arise from analysis that proceeded under the assumption that the data consist of only a single ultrasonic wave, when in fact two overlapping and interfering waves are present. The confounding effect of overlapping fast and slow waves was addressed by applying Bayesian parameter estimation to simulated data, to experimental data acquired on bone-mimicking phantoms, and to data acquired in vitro on cancellous bone. The Bayesian approach successfully estimated the properties of the individual fast and slow waves even when they strongly overlapped in the acquired data. The Bayesian parameter estimation technique was further applied to an investigation of the anisotropy of ultrasonic properties in cancellous bone. The degree to which fast and slow waves overlap is partially determined by the angle of insonation of ultrasound relative to the predominant direction of trabecular orientation. In the past, studies of anisotropy have been limited by interference between fast and slow waves over a portion of the range of insonation angles. Bayesian analysis estimated attenuation, velocity, and amplitude parameters over the entire range of insonation angles, allowing a more complete characterization of anisotropy. A novel piecewise linear model for the cyclic variation of ultrasonic backscatter from myocardium was proposed. Models of cyclic variation for 100 type 2 diabetes patients and 43 normal control subjects were constructed using Bayesian parameter estimation. Parameters determined from the model, specifically rise time and slew rate, were found to be more reliable in differentiating between subject groups than the previously employed magnitude parameter.
Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Zhenhua; Yu, Lingyu
The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less
Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates
Tian, Zhenhua; Yu, Lingyu
2017-01-05
The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less
Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates.
Tian, Zhenhua; Yu, Lingyu
2017-01-05
The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.
NASA Astrophysics Data System (ADS)
Luo, Cong; Li, Xiangyang; Huang, Guangtan
2017-08-01
Oil-water discrimination is of great significance in the design and adjustment of development projects in oil fields. For fractured reservoirs, based on anisotropic S-wave splitting information, it becomes possible to effectively solve such problems which are difficult to deal with in traditional longitudinal wave exploration, due to the similar bulk modulus and density of these two fluids. In this paper, by analyzing the anisotropic character of the Chapman model (2009 Geophysics 74 97-103), the velocity and reflection coefficient differences between the fast and slow S-wave caused by fluid substitution have been verified. Then, through a wave field response analysis of the theoretical model, we found that water saturation causes a longer time delay, a larger time delay gradient and a lower amplitude difference between the fast and slow S-wave, while the oil case corresponds to a lower time delay, a lower gradient and a higher amplitude difference. Therefore, a new class attribute has been proposed regarding the amplitude energy of the fast and slow shear wave, used for oil-water distinction. This new attribute, as well as that of the time delay gradient, were both applied to the 3D3C seismic data of carbonate fractured reservoirs in the Luojia area of the Shengli oil field in China. The results show that the predictions of the energy attributes are more consistent with the well information than the time delay gradient attribute, hence demonstrating the great advantages and potential of this new attribute in oil-water recognition.
NASA Astrophysics Data System (ADS)
Wagner, Alexander; Schülein, Erich; Petervari, René; Hannemann, Klaus; Ali, Syed R. C.; Cerminara, Adriano; Sandham, Neil D.
2018-05-01
Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels were conducted by means of a slender wedge probe and direct numerical simulation. The study comprises comparative tunnel noise measurements at Mach 3, 6 and 7.4 in two Ludwieg tube facilities and a shock tunnel. Surface pressure fluctuations were measured over a wide range of frequencies and test conditions including harsh test environments not accessible to measurement techniques such as pitot probes and hot-wire anemometry. Quantitative results of the tunnel noise are provided in frequency ranges relevant for hypersonic boundary layer transition. In combination with the experimental studies, direct numerical simulations of the leading-edge receptivity to fast and slow acoustic waves were performed for the slender wedge probe at conditions corresponding to the experimental free-stream conditions. The receptivity to fast acoustic waves was found to be characterized by an early amplification of the induced fast mode. For slow acoustic waves an initial decay was found close to the leading edge. At all Mach numbers, and for all considered frequencies, the leading-edge receptivity to fast acoustic waves was found to be higher than the receptivity to slow acoustic waves. Further, the effect of inclination angles of the acoustic wave with respect to the flow direction was investigated. The combined numerical and experimental approach in the present study confirmed the previous suggestion that the slow acoustic wave is the dominant acoustic mode in noisy hypersonic wind tunnels.
Free electron laser using Rf coupled accelerating and decelerating structures
Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.
1984-01-01
A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.
Use of the CEBAF Accelerator for IR and UV Free Electron Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunn, Byung; Sinclair, Charles; Leemann, Christoph
1992-08-01
The CEBAF superconducting linac is capable of accelerating electron beams suitable for driving high-power free-electron lasers. The 45 MeV injector linac with a 6 cm period wiggler can produce kilowatt output powers of infrared light (3.6-17 micrometer), while the 400 MeV north linac can produce ultraviolet light (~200 nm) at similar powers. The FELs require the addition of a high-peak intensity electron source (~ 60 A peak current) and extraction beam lines to wigglers with appropriate electron and photon optics. FEL operation is compatible with simultaneous baseline CEBAF nuclear physics operation. A design for a CEBAF-based FEL facility has beenmore » developed. The current status of the FEL project is reported.« less
Four cavity efficiency enhanced magnetically insulated line oscillator
Lemke, Raymond W.; Clark, Miles C.; Calico, Steve E.
1998-04-21
A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity (C4) portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor.
Four cavity efficiency enhanced magnetically insulated line oscillator
Lemke, R.W.; Clark, M.C.; Calico, S.E.
1998-04-21
A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode is disclosed. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor. 34 figs.
Electroencephalographic Variation during End Maintenance and Emergence from Surgical Anesthesia
MacColl, Jono N.; Illing, Sam; Sleigh, Jamie W.
2014-01-01
The re-establishment of conscious awareness after discontinuing general anesthesia has often been assumed to be the inverse of loss of consciousness. This is despite the obvious asymmetry in the initiation and termination of natural sleep. In order to characterize the restoration of consciousness after surgery, we recorded frontal electroencephalograph (EEG) from 100 patients in the operating room during maintenance and emergence from general anesthesia. We have defined, for the first time, 4 steady-state patterns of anesthetic maintenance based on the relative EEG power in the slow-wave (<14 Hz) frequency bands that dominate sleep and anesthesia. Unlike single-drug experiments performed in healthy volunteers, we found that surgical patients exhibited greater electroencephalographic heterogeneity while re-establishing conscious awareness after drug discontinuation. Moreover, these emergence patterns could be broadly grouped according to the duration and rapidity of transitions amongst these slow-wave dominated brain states that precede awakening. Most patients progressed gradually from a pattern characterized by strong peaks of delta (0.5–4 Hz) and alpha/spindle (8–14 Hz) power (‘Slow-Wave Anesthesia’) to a state marked by low delta-spindle power (‘Non Slow-Wave Anesthesia’) before awakening. However, 31% of patients transitioned abruptly from Slow-Wave Anesthesia to waking; they were also more likely to express pain in the post-operative period. Our results, based on sleep-staging classification, provide the first systematized nomenclature for tracking brain states under general anesthesia from maintenance to emergence, and suggest that these transitions may correlate with post-operative outcomes such as pain. PMID:25264892
Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep.
Leminen, Miika M; Virkkala, Jussi; Saure, Emma; Paajanen, Teemu; Zee, Phyllis C; Santostasi, Giovanni; Hublin, Christer; Müller, Kiti; Porkka-Heiskanen, Tarja; Huotilainen, Minna; Paunio, Tiina
2017-03-01
Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results showed that the sound stimulation increased both slow wave (p = .002) and sleep spindle activity (p < .001). When overnight improvement of memory performance was compared between stimulus and control nights, we found a significant effect in word pair task but not in other memory tasks. The stimulation did not affect sleep structure or subjective sleep quality. We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].
Overnight changes in the slope of sleep slow waves during infancy.
Fattinger, Sara; Jenni, Oskar G; Schmitt, Bernhard; Achermann, Peter; Huber, Reto
2014-02-01
Slow wave activity (SWA, 0.5-4.5 Hz) is a well-established marker for sleep pressure in adults. Recent studies have shown that increasing sleep pressure is reflected by an increased synchronized firing pattern of cortical neurons, which can be measured by the slope of sleep slow waves. Thus we aimed at investigating whether the slope of sleep slow waves might provide an alternative marker to study the homeostatic regulation of sleep during early human development. All-night sleep electroencephalography (EEG) was recorded longitudinally at 2, 4, 6, and 9 months after birth. Home recording. 11 healthy full-term infants (5 male, 6 female). None. The slope of sleep slow waves increased with age. At all ages the slope decreased from the first to the last hour of non rapid-eye-movement (NREM) sleep, even when controlling for amplitude differences (P < 0.002). The decrease of the slope was also present in the cycle-by-cycle time course across the night (P < 0.001) at the age of 6 months when the alternating pattern of low-delta activity (0.75-1.75 Hz) is most prominent. Moreover, we found distinct topographical differences exhibiting the steepest slope over the occipital cortex. The results suggest an age-dependent increase in synchronization of cortical activity during infancy, which might be due to increasing synaptogenesis. Previous studies have shown that during early postnatal development synaptogenesis is most pronounced over the occipital cortex, which could explain why the steepest slope was found in the occipital derivation. Our results provide evidence that the homeostatic regulation of sleep develops early in human infants.
ERIC Educational Resources Information Center
McVicar, Kathryn A.; Shinnar, Shlomo
2004-01-01
The Landau-Kleffner syndrome (LKS) and electrical status epilepticus in slow wave sleep (ESES) are rare childhood-onset epileptic encephalopathies in which loss of language skills occurs in the context of an epileptiform EEG activated in sleep. Although in LKS the loss of function is limited to language, in ESES there is a wider spectrum of…
Measurement of airborne ultrasonic slow waves in calcaneal cancellous bone.
Strelitzki, R; Paech, V; Nicholson, P H
1999-05-01
Measurements of an airborne ultrasonic wave were made in defatted cancellous bone from the human calcaneus using standard ultrasonic equipment. The wave propagating under these conditions was consistent with a decoupled Biot slow wave travelling in the air alone, as previously reported in gas-saturated foams. Reproducible measurements of phase velocity and attenuation coefficient were possible, and an estimate of the tortuosity of the trabecular framework was derived from the high frequency limit of the phase velocity. Thus the method offers a new approach to the acoustic characterisation of bone in vitro which, in contrast to existing techniques, has the potential to yield information directly characterising the trabecular structure.
Varma, N K; Kushwaha, R; Beydoun, A; Williams, W J; Drury, I
1997-10-01
The purpose of this paper is to compare the morphological features of interictal epileptiform discharges (IED) in patients with benign epilepsy of childhood with centrotemporal spikes to IED of those with symptomatic localization related epilepsies using information theory. Three patients from each clinical group were selected. Two-second epochs centered at the peak negativity of the sharp waves were analyzed from a referential montage during stage I sleep. The epochs from the two groups were compared using parametric and information theory analysis. Information analysis determined the likelihood of correctly identifying the clinical group based on the IED. Standard parametric, morphological and spectral analyses were also performed. We found no significant difference in the morphology of the sharp wave between the two groups. The after-going slow wave contained the greatest information that separated the two groups. This result was supported by morphological and spectral differences in the after-going slow wave. Greater distinguishing information is held in the after-going slow wave than the sharp wave for the identification of clinical groups. Information analysis may assist in differentiating clinical syndromes from EEG signals.
Traveling-Wave Maser for 32 GHz
NASA Technical Reports Server (NTRS)
Shell, James; Clauss, Robert
2009-01-01
The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the evanescent-wave sections to provide reverse loss needed to suppress reverse propagation of power at the signal frequency. This design is expected to afford a large gain-bandwidth product at the signal frequency and efficient coupling of the pump power into the paramagnetic spin resonances of the ruby sections. The more efficiently the pump power could be thus coupled, the more efficiently it could be utilized and the heat load on the refrigerator correspondingly reduced.
Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser
NASA Technical Reports Server (NTRS)
Moore, F. K.
1988-01-01
A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.
Mukherjee, Didhiti; Kaushik, Mahesh K; Jaryal, Ashok Kumar; Kumar, Velayudhan Mohan; Mallick, Hruda Nanda
2012-05-09
The role of the medial septum in suppressing paradoxical sleep and promoting slow wave sleep was suggested on the basis of neurotoxic lesion studies. However, these conclusions need to be substantiated with further experiments, including chemical stimulation studies. In this report, the medial septum was stimulated in adult male rats by microinjection of L-glutamate. Sleep-wakefulness was electrophysiologically recorded, through chronically implanted electrodes, for 2 h before the injection and 4 h after the injection. There was a decrease in paradoxical sleep during the first hour and an increase in slow wave sleep during the second hour after the injection. The present findings not only supported the lesion studies but also showed that the major role of the medial septum is to suppress paradoxical sleep.
Tuning the group delay of optical wave packets in liquid-crystal light valves
NASA Astrophysics Data System (ADS)
Bortolozzo, U.; Residori, S.; Huignard, J. P.
2009-05-01
By performing two-wave mixing experiments in a liquid-crystal light valve, optical pulses are slowed down to group velocities as slow as a few tenths of mm/s, corresponding to a very large group index. We present experiments and model of the slow-light process occurring in the liquid-crystal light valve, showing that this is characterized by multiple-beam diffraction in the Raman-Nath regime. Depending on the initial frequency detuning between pump and signal, the different output order beams are distinguished by different group delays. The group delay can be tuned by changing the main parameters of the experiment: the detuning between the pump and the input wave packet, the strength of the nonlinearity, and the intensity of the pump beam.
NASA Astrophysics Data System (ADS)
Baik, Chan-Wook; Ahn, Ho Young; Kim, Yongsung; Lee, Jooho; Hong, Seogwoo; Lee, Sang Hun; Choi, Jun Hee; Kim, Sunil; Jeon, So-Yeon; Yu, SeGi; Collins, George; Read, Michael E.; Lawrence Ives, R.; Kim, Jong Min; Hwang, Sungwoo
2015-11-01
In our earlier paper dealing with dispersion retrieval from ultra-deep, reactive-ion-etched, slow-wave circuits on silicon substrates, it was proposed that splitting high-aspect-ratio circuits into multilevels enabled precise characterization in sub-terahertz frequency regime. This achievement prompted us to investigate beam-wave interaction through a vacuum-sealed integration with a 15-kV, 85-mA, thermionic, electron gun. Our experimental study demonstrates sub-terahertz, backward-wave amplification driven by an external oscillator. The measured output shows a frequency downshift, as well as power amplification, from beam loading even with low beam perveance. This offers a promising opportunity for the development of terahertz radiation sources, based on silicon technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baik, Chan-Wook, E-mail: cw.baik@samsung.com; Ahn, Ho Young; Kim, Yongsung
2015-11-09
In our earlier paper dealing with dispersion retrieval from ultra-deep, reactive-ion-etched, slow-wave circuits on silicon substrates, it was proposed that splitting high-aspect-ratio circuits into multilevels enabled precise characterization in sub-terahertz frequency regime. This achievement prompted us to investigate beam-wave interaction through a vacuum-sealed integration with a 15-kV, 85-mA, thermionic, electron gun. Our experimental study demonstrates sub-terahertz, backward-wave amplification driven by an external oscillator. The measured output shows a frequency downshift, as well as power amplification, from beam loading even with low beam perveance. This offers a promising opportunity for the development of terahertz radiation sources, based on silicon technologies.
A System and Method for Online High-Resolution Mapping of Gastric Slow-Wave Activity
Bull, Simon H.; O’Grady, Gregory; Du, Peng
2015-01-01
High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed “off-line” (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for “online” HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application. PMID:24860024
"Slowing" Mechanical Waves with a Consumer-Type High-Speed Digital Camera
ERIC Educational Resources Information Center
Ng, Pun-hon; Chan, Kin-lok
2015-01-01
In most secondary physics textbooks, waves are first introduced with examples of mechanical waves because they can be illustrated by drawings and photographs. However, these illustrations are static and cannot reflect the dynamic nature of waves. Although many mechanical waves (e.g. water waves and vibrating strings) can be easily shown using…
Reduced Sodium Current in the Lateral Ventricular Wall Induces Inferolateral J-Waves.
Meijborg, Veronique M F; Potse, Mark; Conrath, Chantal E; Belterman, Charly N W; De Bakker, Jacques M T; Coronel, Ruben
2016-01-01
J-waves in inferolateral leads are associated with a higher risk for idiopathic ventricular fibrillation. We aimed to test potential mechanisms (depolarization or repolarization dependent) responsible for inferolateral J-waves. We hypothesized that inferolateral J-waves can be caused by regional delayed activation of myocardium that is activated late during normal conditions. Computer simulations were performed to evaluate how J-point elevation is influenced by reducing sodium current conductivity (GNa), increasing transient outward current conductivity (Gto), or cellular uncoupling in three predefined ventricular regions (lateral, anterior, or septal). Two pig hearts were Langendorff-perfused with selective perfusion with a sodium channel blocker of lateral or anterior/septal regions. Volume-conducted pseudo-electrocardiograms (ECG) were recorded to detect the presence of J-waves. Epicardial unipolar electrograms were simultaneously recorded to obtain activation times (AT). Simulation data showed that conduction slowing, caused by reduced sodium current, in lateral, but not in other regions induced inferolateral J-waves. An increase in transient outward potassium current or cellular uncoupling in the lateral zone elicited slight J-point elevations which did not meet J-wave criteria. Additional conduction slowing in the entire heart attenuated J-waves and J-point elevations on the ECG, because of masking by the QRS. Experimental data confirmed that conduction slowing attributed to sodium channel blockade in the left lateral but not in the anterior/septal ventricular region induced inferolateral J-waves. J-waves coincided with the delayed activation. Reduced sodium current in the left lateral ventricular myocardium can cause inferolateral J-waves on the ECG.
Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide
NASA Astrophysics Data System (ADS)
Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu
2018-05-01
A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.
The Effect of Saturation on Shear Wave Anisotropy in a Transversely Isotropic Medium
NASA Astrophysics Data System (ADS)
Li, W.; Pyrak-Nolte, L. J.
2010-12-01
Seismic monitoring of fluid distributions in the subsurface requires an understanding of the effect of fluid saturation on the anisotropic properties of layered media. Austin Chalk is a carbonate rock composed mainly of calcite (99.9%) with fine bedding caused by a weakly-directed fabric. In this paper, we assess the shear-wave anisotropy of Austin Chalk and the effect of saturation on interpreting anisotropy based on shear wave velocity, attenuation and spectral content as a function of saturation. In the laboratory, we performed full shear-waveform measurements on several dry cubic samples of Austin Chalk with dimensions 50mm x 50mm x 50mm. Two shear-wave contact transducers (central Frequency 1 MHz) were use to send and receive signals. Data was collected for three orthogonal orientations of the sample and as a function of shear wave polarization relative to the layers in the sample. For the waves propagated parallel to the layers, both fast and slow shear waves were observed with velocities of 3444 m/s and 3193 m/s, respectively. It was noted that the minimum and maximum shear wave velocities did not occur when the shear wave polarization were perpendicular or parallel to the layering in the sample but occurred at an orientation of ~25 degrees from the normal to the layers. The sample was then vacuum saturated with water for approximately ~15 hours. The same measurements were performed on the saturated sample as those on the dry sample. Both shear wave velocities observed decreased upon water-saturation with corresponding velocities of 3155 m/s and 2939 m/s, respectively. In the dry condition the difference between the fast and slow shear wave velocities was 250 m/s. This difference decreased to 215 m/s after fluid saturation. In both the dry and saturated condition, the shear wave velocity for waves propagated perpendicularly to the layers was independent of polarization and had the same magnitude as that of the slow shear wave. A wavelet analysis was performed to determine changes in the spectral content of the signals upon saturation as well velocity dispersion. We found that (1) low frequency components exhibit a larger difference in time delay between the fast and slow shear waves for the water-saturated condition than for the dry condition; (2) that high frequency components have relatively small differences in time delay between the dry and saturated conditions; and (3) the dominant frequency shifted to lower frequencies for the fast shear wave upon saturation while no change in dominant frequency was observed for the slow shear wave upon saturation. Thus, fluid saturation affects shear velocity as well as the spectral content of the signal. Acknowledgments: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022), by Exxon Mobil Upstream Research Company and the GeoMathematical Imaging Group at Purdue University.
The effect of shot noise on the start up of the fundamental and harmonics in free-electron lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freund, H. P.; Miner, W. H. Jr.; Giannessi, L.
2008-12-15
The problem of radiation start up in free-electron lasers (FELs) is important in the simulation of virtually all FEL configurations including oscillators and amplifiers in both seeded master oscillator power amplifier (MOPA) and self-amplified spontaneous emission (SASE) modes. Both oscillators and SASE FELs start up from spontaneous emission due to shot noise on the electron beam, which arises from the random fluctuations in the phase distribution of the electrons. The injected power in a MOPA is usually large enough to overwhelm the shot noise. However, this noise must be treated correctly in order to model the initial start up ofmore » the harmonics. In this paper, we discuss and compare two different shot noise models that are implemented in both one-dimensional wiggler-averaged (PERSEO) and non-wiggler-averaged (MEDUSA1D) simulation codes, and a three-dimensional non-wiggler-averaged (MEDUSA) formulation. These models are compared for examples describing both SASE and MOPA configurations in one dimension, in steady-state, and time-dependent simulations. Remarkable agreement is found between PERSEO and MEDUSA1D for the evolution of the fundamental and harmonics. In addition, three-dimensional correction factors have been included in the MEDUSA1D and PERSEO, which show reasonable agreement with MEDUSA for a sample MOPA in steady-state and time-dependent simulations.« less
Observations of apparent superslow wave propagation in solar prominences
NASA Astrophysics Data System (ADS)
Raes, J. O.; Van Doorsselaere, T.; Baes, M.; Wright, A. N.
2017-06-01
Context. Phase mixing of standing continuum Alfvén waves and/or continuum slow waves in atmospheric magnetic structures such as coronal arcades can create the apparent effect of a wave propagating across the magnetic field. Aims: We observe a prominence with SDO/AIA on 2015 March 15 and find the presence of oscillatory motion. We aim to demonstrate that interpreting this motion as a magneto hydrodynamic (MHD) wave is faulty. We also connect the decrease of the apparent velocity over time with the phase mixing process, which depends on the curvature of the magnetic field lines. Methods: By measuring the displacement of the prominence at different heights to calculate the apparent velocity, we show that the propagation slows down over time, in accordance with the theoretical work of Kaneko et al. We also show that this propagation speed drops below what is to be expected for even slow MHD waves for those circumstances. We use a modified Kippenhahn-Schlüter prominence model to calculate the curvature of the magnetic field and fit our observations accordingly. Results: Measuring three of the apparent waves, we get apparent velocities of 14, 8, and 4 km s-1. Fitting a simple model for the magnetic field configuration, we obtain that the filament is located 103 Mm below the magnetic centre. We also obtain that the scale of the magnetic field strength in the vertical direction plays no role in the concept of apparent superslow waves and that the moment of excitation of the waves happened roughly one oscillation period before the end of the eruption that excited the oscillation. Conclusions: Some of the observed phase velocities are lower than expected for slow modes for the circumstances, showing that they rather fit with the concept of apparent superslow propagation. A fit with our magnetic field model allows for inferring the magnetic geometry of the prominence. The movie attached to Fig. 1 is available at http://www.aanda.org
Tremblay, Nicolas; Larose, Eric; Rossetto, Vincent
2010-03-01
The stiffness of a consolidated granular medium experiences a drop immediately after a moderate mechanical solicitation. Then the stiffness rises back toward its initial value, following a logarithmic time evolution called slow dynamics. In the literature, slow dynamics has been probed by macroscopic quantities averaged over the sample volume, for instance, by the resonant frequency of vibrational eigenmodes. This article presents a different approach based on diffuse acoustic wave spectroscopy, a technique that is directly sensitive to the details of the sample structure. The parameters of the dynamics are found to depend on the damage of the medium. Results confirm that slow dynamics is, at least in part, due to tiny structural rearrangements at the microscopic scale, such as inter-grain contacts.
Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun
2016-01-13
We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively.
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Wilson, Jeffrey D.
1994-01-01
The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.
Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, J. A., Jr.
1998-01-01
Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAFIA is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyzes required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.
Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A., Jr.
1997-01-01
Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAFIA is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyses required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.
Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A., Jr.
1998-01-01
Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such'as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAxwell's equations by the Finite Integration Algorithm (MAFIA) is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyzes required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.
Evaluation of superconducting wiggler designs and free-electron laser support: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1990-10-12
This report consists of copies of previous progress reports, and copies of viewgraphs presented in a talk at Los Alamos. The report describes activities carried out as part of a project to evaluate the design and performance of a superconducting wiggler magnet design. It includes work on evaluating the appropriate materials for the magnet coils and poles, and stress evaluations for the design. It includes work on beam optics through the magnet, and design considerations to optimize extraction: work on the cryocooling system; weight minimization efforts; and design work on the vacuum liner for the magnet. A major concern inmore » all of this design work is heat loads which will be dissipated in different parts of the system during operation, as well as transient events.« less
Insertion device calculations with mathematica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, R.; Lidia, S.
1995-02-01
The design of accelerator insertion devices such as wigglers and undulators has usually been aided by numerical modeling on digital computers, using code in high level languages like Fortran. In the present era, there are higher level programming environments like IDL{reg_sign}, MatLab{reg_sign}, and Mathematica{reg_sign} in which these calculations may be performed by writing much less code, and in which standard mathematical techniques are very easily used. The authors present a suite of standard insertion device modeling routines in Mathematica to illustrate the new techniques. These routines include a simple way to generate magnetic fields using blocks of CSEM materials, trajectorymore » solutions from the Lorentz force equations for given magnetic fields, Bessel function calculations of radiation for wigglers and undulators and general radiation calculations for undulators.« less
Characterization of the sleep-wake patterns in mice lacking fatty acid amide hydrolase.
Huitron-Resendiz, Salvador; Sanchez-Alavez, Manuel; Wills, Derek N; Cravatt, Benjamin F; Henriksen, Steven J
2004-08-01
Oleamide and anandamide are fatty acid amides implicated in the regulatory mechanisms of sleep processes. However, due to their prompt catabolism by fatty acid amide hydrolase (FAAH), their pharmacologic and behavioral effects, in vivo, disappear rapidly. To determine if, in the absence of FAAH, the hypnogenic fatty acid amides induce an increase of sleep, we characterized the sleep-wake patters in FAAH-knockout mice [FAAH (-/-)] before and after sleep deprivation. FAAH (-/-), FAAH (+/-), and FAAH (+/+) mice were implanted chronically for sleep, body temperature (Tb), and locomotor activity (LMA) recordings. Sleep-wake states were recorded during a 24-hour baseline session followed by 8 hours of sleep deprivation. Recovery recordings were done during the 16 hours following sleep deprivation. Total amount of wake, slow-wave sleep, and rapid eye movement sleep were calculated and compared between genotypes. The electroencephalographic spectral analysis was performed by fast Fourier transform analysis. Telemetry recordings of Tb and LMA were carried out continuously during 4 days under baseline conditions. N/A. FAAH (-/-) mice and their heterozygote (+/-) and control (+/+) littermates were used. Sleep deprivation. FAAH (-/-) mice possess higher values of slow-wave sleep and more intense episodes of slow-wave sleep than do control littermates under baseline conditions that are not related to differences in Tb and LMA. A rebound of slow-wave sleep and rapid eye movement sleep as well an increase in the levels of slow-wave activity were observed after sleep deprivation in all genotypes. These findings support the role of fatty acid amides as possible modulators of sleep and indicate that the homeostatic mechanisms of sleep in FAAH (-/-) mice are not disrupted.
A theoretical analysis of anatomical and functional intestinal slow wave re-entry.
Du, Peng; O'Grady, Gregory; Cheng, Leo K
2017-07-21
Intestinal bioelectrical slow waves are a key regulator of intestinal motility. Peripheral pacemakers, ectopic initiations and sustained periods of re-entrant activities have all been experimentally observed to be important factors in setting the frequency of intestinal slow waves, but the tissue-level mechanisms underpinning these activities are unclear. This theoretical analysis aimed to define the initiation, maintenance, and termination criteria of two classes of intestinal re-entrant activities: anatomical re-entry and functional re-entry. Anatomical re-entry was modeled in a three-dimensional (3D) cylindrical model, and functional rotor was modeled in a 2D rectangle model. A single-pulse stimulus was used to invoke an anatomical re-entry and a prolonged refractory block was used to invoke the rotor. In both cases, the simulated re-entrant activities operated at frequencies above the baseline entrainment frequency. The anatomical re-entry simulation results demonstrated that a temporary functional refractory block would be required to initiate the re-entrant activity in a single direction around the cylindrical model. The rotor could be terminated by a single-pulse stimulus delivered around the core of the rotor. In conclusion, the simulation results provide the following new insights into the mechanisms of intestinal re-entry: (i) anatomical re-entry is only maintained within a specific range of velocities, outside of which the re-entrant activities become either an ectopic activity or simultaneous activations of the intestinal wall; (ii) a maintained rotor entrained slow waves faster in the antegrade direction than in the retrograde direction. Simulations are shown to be a valuable tool for achieving novel insights into the mechanisms of intestinal slow wave dysrhythmia. Copyright © 2017 Elsevier Ltd. All rights reserved.
A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.
Farajidavar, Aydin; O'Grady, Gregory; Rao, Smitha M N; Cheng, Leo K; Abell, Thomas; Chiao, J-C
2012-06-01
Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical userinter face. The front-end module conditions the analogue signals, then digitizes and loads the data into a radio for transmission. Data receipt at the backend is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35 × 35 × 27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124 h operation when utilizing a 560 mAh, 3 V battery. In vivo,slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles min−1), automated activation time detection was modestly better for the wireless system (5% versus 14% FP rate), and signal amplitudes were modestly higher via the wireless system (462 versus 3 86μV; p<0.001). This telemetric system for slow wave acquisition is reliable,power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients.0967-3334/
A miniature bidirectional telemetry system for in-vivo gastric slow wave recordings
Farajidavar, Aydin; O’Grady, Gregory; Rao, Smitha M.N.; Cheng, Leo K; Abell, Thomas; Chiao, J.-C.
2012-01-01
Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical user interface. The front-end module conditions the analog signals, then digitizes and loads the data into a radio for transmission. Data receipt at the back-end is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in-vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35×35×27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124-hour operation when utilizing a 560-mAh, 3-V battery. In-vivo, slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles/min), automated activation time detection was modestly better for the wireless system (5% vs 14% false positive rate), and signal amplitudes were modestly higher via the wireless system (462 vs 386 μV; p<0.001). This telemetric system for slow wave acquisition is reliable, power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients. PMID:22635054
Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline
NASA Astrophysics Data System (ADS)
Zaqarashvili, Teimuraz
2018-03-01
The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.
Brown, L.T.; Boore, D.M.; Stokoe, K.H.
2002-01-01
The spectral-analysis-of-surface-waves (SASW) method is a relatively new in situ method for determining shear-wave slownesses. All measurements are made on the ground surface, making it much less costly than methods that require boreholes. The SASW method uses a number of active sources (ranging from a commercial Vibroseis truck to a small handheld hammer for the study conducted here) and different receiver spacings to map a curve of apparent phase velocity versus frequency. With the simplifying assumption that the phase velocities correspond to fundamental mode surface waves, forward modeling yields an estimate of the sub-surface shear-wave slownesses. To establish the reliability of this indirect technique, we conducted a blind evaluation of the SASW method. SASW testing was performed at 10 strong-motion stations at which borehole seismic measurements were previously or subsequently made; if previously made, the borehole results were not used for the interpretation of the SASW data, and vice-versa. Comparisons of the shear-wave slownesses from the SASW and borehole measurements are generally very good. The differences in predicted ground-motion amplifications are less than about 15% for most frequencies. In addition, both methods gave the same NEHRP site classification for seven of the sites. For the other three sites the average velocities from the downhole measurements were only 5-13 m/sec larger than the velocity defining the class C/D boundary. This study demonstrates that in many situations the SASW method can provide subsurface information suitable for site response predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Sudip; Banerjee, Dipankar; Pant, Vaibhav
Slow MHD waves are important tools for understanding coronal structures and dynamics. In this paper, we report a number of observations from the X-Ray Telescope (XRT) on board HINODE and Solar Dynamic Observatory /Atmospheric Imaging Assembly (AIA) of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and temperature of the loop plasma by performing differential emission measure (DEM) analysis on the AIA image sequence.more » The estimated speed of propagation is comparable to or lower than the local sound speed, suggesting it to be a propagating slow wave. The intensity perturbation amplitude, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observation as inputs, and perform forward modeling to synthesize AIA 94 Å images. Analyzing the synthesized images, we obtain the same properties of the observables as for the real observation. From the analysis we conclude that a footpoint heating can generate a slow wave which then reflects back and forth in the coronal loop before fading. Our analysis of the simulated data shows that the main agent for this damping is anisotropic thermal conduction.« less
NASA Astrophysics Data System (ADS)
Kim, S. H.
2017-05-01
We reason based on the concept of stationary plasma fluctuation that in the free-electron laser (FEL), the Coulomb force from the surrounding electrons and the Ampérian force arising from the beam current do not disrupt the density-deviation mode driven by the laser field in cooperation with the magnetic wiggler. We adopt the synchronization principle that in the state of a stationary plasma density-wave and laser wave, all electrons arriving at the same position can emit laser photons all together only at t = NT + t o , where N is an integer and T is the laser period. We find that in the FEL, the incident laser radiation acts as a dummy field in net stimulated radiation. Using these findings and noticing a previously-recognized concept that the radiation power from an electron is given by Δ E/T, where Δ E is the amplitude of the net work done by the electron during T [1], we derive the laser gain of a self-launched FEL. The thusly derived gain is in excellent agreement with the measured gain.
NASA Astrophysics Data System (ADS)
Benedik, Andrey I.; Karetnikova, Tatiana A.; Torgashov, Roman A.; Terentyuk, Artem G.; Rozhnev, Andrey G.; Torgashov, Gennadiy V.; Ryskin, Nikita M.
2018-04-01
Microfabricated vacuum-tube millimeter- and THz-band sources are of great interest for numerous applications such as communications, radar, sensors, imaging, etc. Recently, miniaturized sheet-beam traveling-wave tubes for sub-THz and THz operation have attracted a considerable interest. In this paper, we present the results of modeling and development of slow-wave structures (SWS) for medium power (10-100 W) traveling-wave tube (TWT) amplifiers and backwardwave oscillators (BWO) in near-THz frequency band. Different types of SWSs are considered, such as double-vane SWS for TWT with a sheet electron beam, a folded-waveguide SWS, and novel planar SWSs on dielectric substrates.
TeO2 slow surface acoustic wave Bragg cell
NASA Astrophysics Data System (ADS)
Yao, Shi-Kay
1991-08-01
A newly discovered slow acoustic surface wave (SAW) on a (-110) cut TeO2 surface is reported focusing on its properties studied using a PC based numerical method. It is concluded that the slow SAW is rather tolerant to crystal surface orientation errors and has unusually deep penetration of its shear component into the thickness of substrate, about 47 wavelengths for a half amplitude point. The deep shear field is considered to be beneficial for surface acoustooptic interaction with free propagating focused laser beams. Rotation of the substrate about the z-axis makes it possible to adjust a slow SAW velocity with the potential advantage of trading acoustic velocity for less acoustic attenuation. Wider-bandwidth long signal processing time Bragg cells may be feasible utilizing this trade-off. The slow SAW device is characterized by an extremely low power consumption which might be useful for compact portable or avionics signal processing equipment applications.
Neuronal plasticity and thalamocortical sleep and waking oscillations
Timofeev, Igor
2011-01-01
Throughout life, thalamocortical (TC) network alternates between activated states (wake or rapid eye movement sleep) and slow oscillatory state dominating slow-wave sleep. The patterns of neuronal firing are different during these distinct states. I propose that due to relatively regular firing, the activated states preset some steady state synaptic plasticity and that the silent periods of slow-wave sleep contribute to a release from this steady state synaptic plasticity. In this respect, I discuss how states of vigilance affect short-, mid-, and long-term synaptic plasticity, intrinsic neuronal plasticity, as well as homeostatic plasticity. Finally, I suggest that slow oscillation is intrinsic property of cortical network and brain homeostatic mechanisms are tuned to use all forms of plasticity to bring cortical network to the state of slow oscillation. However, prolonged and profound shift from this homeostatic balance could lead to development of paroxysmal hyperexcitability and seizures as in the case of brain trauma. PMID:21854960
Nieuwmeyer, Florentine; Ye, Jing; Huizinga, Jan D
2006-04-01
Substance P is generally considered an excitatory neurotransmitter related to gut motor activity, although an inhibitory influence of neurokinin-1 (NK1) receptor activation on peristalsis has also been reported. With an optimized in vitro method to assess distention-induced peristalsis, our aim was to clarify the effect of NK1 receptor activation on peristaltic activity and to reveal the mechanisms by which NK1 activation alters peristalsis. Distention of the small intestine of the mouse and guinea pig induced periodic occurrence of rhythmic waves of propagating rings of circular muscle contraction, associated with slow waves and superimposed action potentials, that propelled intestinal contents aborally. Activation of NK1 receptors by Ava[l-Pro(9),N-MeLeu10] substance P(7-11) (GR 73632) and Sar(9), Met(O(2))(11) on smooth muscle cells resulted in prolongation of the activity periods and increased action potential generation occurring superimposed on the intestinal slow wave activity. Activation of NK1 receptors on interstitial cells of Cajal resulted in an increase in slow wave frequency. Slow wave amplitude increased, likely by increased cell-to-cell coupling. The NK1 antagonist (S)-1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)piperidin-3-yl]ethyl)-4-phenyl-1-azoniabicyclo[2.2.2]octane chloride (SR 140333) induced a decrease in the slow wave frequency and duration of the activity periods evoked by distention, which makes it likely that NK1 receptor activation plays a role in the normal physiological distention-induced generation of peristaltic motor patterns. In summary, NK1 receptors play a role in normal development of peristalsis and NK1 receptor activation markedly increases propulsive peristaltic contractile activity.
Hippocampal ripples down-regulate synapses.
Norimoto, Hiroaki; Makino, Kenichi; Gao, Mengxuan; Shikano, Yu; Okamoto, Kazuki; Ishikawa, Tomoe; Sasaki, Takuya; Hioki, Hiroyuki; Fujisawa, Shigeyoshi; Ikegaya, Yuji
2018-03-30
The specific effects of sleep on synaptic plasticity remain unclear. We report that mouse hippocampal sharp-wave ripple oscillations serve as intrinsic events that trigger long-lasting synaptic depression. Silencing of sharp-wave ripples during slow-wave states prevented the spontaneous down-regulation of net synaptic weights and impaired the learning of new memories. The synaptic down-regulation was dependent on the N -methyl-d-aspartate receptor and selective for a specific input pathway. Thus, our findings are consistent with the role of slow-wave states in refining memory engrams by reducing recent memory-irrelevant neuronal activity and suggest a previously unrecognized function for sharp-wave ripples. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Numerical Study of Transmission Loss Through a Slow Gas Layer Adjacent to a Plate
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Beck, Benjamin S.; Slagle, Adam C.
2013-01-01
This paper describes a systematic numerical investigation of the sound transmission loss through a multilayer system consisting of a bagged gas and lightweight panel. The goal of the study is to better understand the effect of the gas on transmission loss and determine whether a gas with a slow speed of sound is beneficial for noise control applications. As part of the study, the density and speed of sound of the gas are varied independently to assess the impact of each on transmission loss. Results show that near grazing incidence the plane wave transmission loss through the multilayer system is more sensitive to the speed of sound than the density of the gas. In addition, it was found that a slow wave speed in the bagged gas provides more low-frequency transmission loss benefit than a fast wave speed. At low angles of incidence, close to the plate normal, the benefit is due to the reduction of the characteristic impedance of the gas. At high angles of incidence, the benefit is attributed to the fact that the incident waves at the air/gas interface are bent towards the surface normal. Since transmission loss is angle dependent, refraction in the slow gas layer results in a significant improvement in the transmission loss at high angles of incidence.
Strain differences in the somnogenic effects of interferon inducers in mice.
Toth, L A
1996-12-01
Increased slow-wave sleep accompanies influenza infection in C57BL/6 mice but not BALB/c mice. These strains of mice possess different alleles of the genetic lucus If-1, which codes for high (If-1h; C57BL/6) and low (If-1(1); BALB/c) production of interferon (IFN), a putative sleep-inducing cytokine. To evaluate the contribution of the If-1 gene to differences in murine sleep propensity, sleep patterns were evaluated in mice treated with the IFN inducers polyinosinic:polycytidilic acid (pIC) or Newcastle disease virus (NDV), with influenza virus, or with murine interferon (IFN-alpha) or IFN-alpha/beta. As compared with baseline values, C57BL/6 mice exhibited increased slow-wave sleep after all three challenges, but BALB/c mice did not. Congenic B6.C-H28c mice, which bear the BALB/c allele for low IFN production on the C57BL/6 genetic background, showed enhanced slow-wave sleep after influenza infection but not after NDV. Exogenous IFN did not enhance slow-wave sleep in either C57BL/6 or BALB/c mice. These data suggest that the If-1 allele may influence the somnogenic responsiveness of mice under some conditions but that additional mechanisms may contribute to sleep enhancement during infectious disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginzburg, N. S.; Zaslavsky, V. Yu.; Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950
2013-11-15
Within the framework of a quasi-optical approach, we develop 2D and 3D self-consistent theory of relativistic surface-wave oscillators. Presenting the radiation field as a sum of two counter-propagating wavebeams coupled on a shallow corrugated surface, we describe formation of an evanescent slow wave. Dispersion characteristics of the evanescent wave following from this method are in good compliance with those found from the direct cst simulations. Considering excitation of the slow wave by a sheet electron beam, we simulate linear and nonlinear stages of interaction, which allows us to determine oscillation threshold conditions, electron efficiency, and output coupling. The transition frommore » the model of surface-wave oscillator operating in the π-mode regime to the canonical model of relativistic backward wave oscillator is considered. We also described a modified scheme of planar relativistic surface-wave oscillators exploiting two-dimensional periodic gratings. Additional transverse propagating waves emerging on these gratings synchronize the emission from a wide sheet rectilinear electron beam allowing realization of a Cherenkov millimeter-wave oscillators with subgigawatt output power level.« less
NASA Astrophysics Data System (ADS)
Hori, K.; Teed, R. J.; Jones, C. A.
2018-03-01
We investigate slow magnetic Rossby waves in convection-driven dynamos in rotating spherical shells. Quasi-geostrophic waves riding on a mean zonal flow may account for some of the geomagnetic westward drifts and have the potential to allow the toroidal field strength within the planetary fluid core to be estimated. We extend the work of Hori et al. (2015) to include a wider range of models, and perform a detailed analysis of the results. We find that a predicted dispersion relation matches well with the longitudinal drifts observed in our strong-field dynamos. We discuss the validity of our linear theory, since we also find that the nonlinear Lorentz terms influence the observed waveforms. These wave motions are excited by convective instability, which determines the preferred azimuthal wavenumbers. Studies of linear rotating magnetoconvection have suggested that slow magnetic Rossby modes emerge in the magnetostrophic regime, in which the Lorentz and Coriolis forces are in balance in the vorticity equation. We confirm this to be predominant balance for the slow waves we have detected in nonlinear dynamo systems. We also show that a completely different wave regime emerges if the magnetic field is not present. Finally we report the corresponding radial magnetic field variations observed at the surface of the shell in our simulations and discuss the detectability of these waves in the geomagnetic secular variation.
CHROMOSPHERIC AND CORONAL WAVE GENERATION IN A MAGNETIC FLUX SHEATH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris
2016-08-10
Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field inmore » the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.« less
Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.
Haggerty, Daniel C; Ji, Daoyun
2014-10-01
Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions. Copyright © 2014 the American Physiological Society.
A Ka-band radial relativistic backward wave oscillator with GW-class output power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jiaxin; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Dang, Fangchao
A novel radial relativistic backward wave oscillator with a reflector is proposed and designed to generate GW-level high power microwaves at Ka-band. The segmented radial slow wave structure and the reflector are matched to enhance interaction efficiency. We choose the volume wave TM{sub 01} mode as the working mode due to the volume wave characteristic. The main structural parameters of the novel device are optimized by particle-in-cell simulation. High power microwaves with power of 2 GW and a frequency of 29.4 GHz are generated with 30% efficiency when the electron beam voltage is 383 kV, the beam current is 17 kA, and themore » guiding magnetic field is only 0.6 T. Simultaneously, the highest electric field in the novel Ka-band device is just about 960 kV/cm in second slow wave structure.« less
Grimaldi, Annalisa; Tettamanti, Gianluca; Martin, Benjamin L; Gaffield, William; Pownall, Mary E; Hughes, Simon M
2004-07-01
In tetrapod phylogeny, the dramatic modifications of the trunk have received less attention than the more obvious evolution of limbs. In somites, several waves of muscle precursors are induced by signals from nearby tissues. In both amniotes and fish, the earliest myogenesis requires secreted signals from the ventral midline carried by Hedgehog (Hh) proteins. To determine if this similarity represents evolutionary homology, we have examined myogenesis in Xenopus laevis, the major species from which insight into vertebrate mesoderm patterning has been derived. Xenopus embryos form two distinct kinds of muscle cells analogous to the superficial slow and medial fast muscle fibres of zebrafish. As in zebrafish, Hh signalling is required for XMyf5 expression and generation of a first wave of early superficial slow muscle fibres in tail somites. Thus, Hh-dependent adaxial myogenesis is the likely ancestral condition of teleosts, amphibia and amniotes. Our evidence suggests that midline-derived cells migrate to the lateral somite surface and generate superficial slow muscle. This cell re-orientation contributes to the apparent rotation of Xenopus somites. Xenopus myogenesis in the trunk differs from that in the tail. In the trunk, the first wave of superficial slow fibres is missing, suggesting that significant adaptation of the ancestral myogenic programme occurred during tetrapod trunk evolution. Although notochord is required for early medial XMyf5 expression, Hh signalling fails to drive these cells to slow myogenesis. Later, both trunk and tail somites develop a second wave of Hh-independent slow fibres. These fibres probably derive from an outer cell layer expressing the myogenic determination genes XMyf5, XMyoD and Pax3 in a pattern reminiscent of amniote dermomyotome. Thus, Xenopus somites have characteristics in common with both fish and amniotes that shed light on the evolution of somite differentiation. We propose a model for the evolutionary adaptation of myogenesis in the transition from fish to tetrapod trunk.
Krogh-Madsen, Trine; Christini, David J
2017-09-01
Accumulation of intracellular Na + is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na + concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na + concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na + ] i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na + ] i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na + ] i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na + ] i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na + ] i may play complex roles in cellular and tissue-level cardiac dynamics.
Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model
NASA Astrophysics Data System (ADS)
Krogh-Madsen, Trine; Christini, David J.
2017-09-01
Accumulation of intracellular Na+ is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na+ concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na+ concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na+]i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na+]i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na+]i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na+]i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na+]i may play complex roles in cellular and tissue-level cardiac dynamics.
Involvement of Spindles in Memory Consolidation Is Slow Wave Sleep-Specific
ERIC Educational Resources Information Center
Cox, Roy; Hofman, Winni F.; Talamini, Lucia M.
2012-01-01
Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention…
NASA Astrophysics Data System (ADS)
Wang, Tongjiang; Ofman, Leon; Sun, Xudong; Solanki, Sami K.; Davila, Joseph M.
2018-06-01
Standing slow-mode waves have been recently observed in flaring loops by the Atmospheric Imaging Assembly of the Solar Dynamics Observatory. By means of the coronal seismology technique, transport coefficients in hot (∼10 MK) plasma were determined by Wang et al., revealing that thermal conductivity is nearly suppressed and compressive viscosity is enhanced by more than an order of magnitude. In this study, we use 1D nonlinear MHD simulations to validate the predicted results from the linear theory and investigate the standing slow-mode wave excitation mechanism. We first explore the wave trigger based on the magnetic field extrapolation and flare emission features. Using a flow pulse driven at one footpoint, we simulate the wave excitation in two types of loop models: Model 1 with the classical transport coefficients and Model 2 with the seismology-determined transport coefficients. We find that Model 2 can form the standing wave pattern (within about one period) from initial propagating disturbances much faster than Model 1, in better agreement with the observations. Simulations of the harmonic waves and the Fourier decomposition analysis show that the scaling law between damping time (τ) and wave period (P) follows τ ∝ P 2 in Model 2, while τ ∝ P in Model 1. This indicates that the largely enhanced viscosity efficiently increases the dissipation of higher harmonic components, favoring the quick formation of the fundamental standing mode. Our study suggests that observational constraints on the transport coefficients are important in understanding both the wave excitation and damping mechanisms.
Kinetic theory and Vlasov simulation of nonlinear ion-acoustic waves in multi-ion species plasmas.
Chapman, T; Berger, R L; Brunner, S; Williams, E A
2013-05-10
The theory of damping and nonlinear frequency shifts from particles resonant with ion-acoustic waves (IAWs) is presented for multi-ion species plasma and compared to driven wave Vlasov simulations. Two distinct IAW modes may be supported in multi-ion species plasmas, broadly classified as fast and slow by their phase velocity relative to the constituent ion thermal velocities. In current fusion-relevant long pulse experiments, the ion to electron temperature ratio, T(i)/T(e), is expected to reach a level such that the least damped and thus more readily driven mode is the slow mode, with both linear and nonlinear properties that are shown to differ significantly from the fast mode. The lighter ion species of the slow mode is found to make no significant contribution to the IAW frequency shift despite typically being the dominant contributor to the Landau damping.
The Origin of Compressible Magnetic Turbulence in the Very Local Interstellar Medium
NASA Astrophysics Data System (ADS)
Zank, G. P.; Du, S.; Hunana, P.
2017-06-01
Voyager 1 observed compressible magnetic turbulence in the very local interstellar medium (VLISM). We show that inner heliosheath (IHS) fast- and slow-mode waves incident on the heliopause (HP) generate VLISM fast-mode waves only that propagate into the VLISM. We suggest that this is the origin of compressible turbulence in the VLISM. We show that fast- and slow-mode waves transmitted across a tangential discontinuity such as the HP are strongly refracted on crossing the HP and subsequently propagate at highly oblique angles to the VLISM magnetic field. Thus, fast-mode waves in the VLISM contribute primarily to the compressible and not the transverse components of the VLISM fluctuating magnetic field variance < δ {\\hat{B}}2> since < δ {\\hat{B}}{fz}2> \
Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay
NASA Astrophysics Data System (ADS)
Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.
2018-02-01
Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.
Equatorial waves in temperature in the altitude range 4 to 70 km
NASA Astrophysics Data System (ADS)
Krishna Murthy, B. V.; Satheesan, K.; Parameswaran, K.; Sasi, M. N.; Ramkumar, Geetha; Bhavanikumar, Y.; Raghunath, K.; Krishniah, M.
2002-04-01
Using altitude profiles of temperature in the range 4 to 70 km derived from Mesosphere-Stratosphere- Troposphere radar and lidar observations at Gadanki (13.5°N, 79.2°E) from 18 January 1999 to 5 March 1999, characteristics of equatorial waves are studied. Two-dimensional Fourier-transform analysis of the temperature profiles is carried out to identify the periodicities and their vertical wave numbers. From the characteristics obtained, equatorial slow Kelvin waves with periodicities 15.7 d, 9.4 d, 7.8 d and 6.7 d are identified in the troposphere and stratosphere regions and among these 7.8 d and 6.7 d periodicities are found to penetrate into the mesosphere. Equatorial waves with smaller periodicities in the range 5.2 d to 3.6 d are also observed. The vertical flux of horizontal momentum (zonal) of the identified slow Kelvin-wave periodicities in the altitude region 4-25 km is estimated. It is found that equatorial waves modulate tropical tropopause temperature and altitude.
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1998-01-01
The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.
Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.
1982-01-01
A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.
Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.
1979-12-12
A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac is described. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator, or as an amplifier in conjunction with a master oscillator laser.
Generation of high power sub millimeter radiation using free electron laser
NASA Astrophysics Data System (ADS)
Panwar, J.; Sharma, S. C.; Malik, P.; Yadav, M.; Sharma, R.
2018-03-01
We have developed an analytical formalism to study the emission of high power radiation lying in the sub millimetre range. A relativistic electron beam (REB) is velocity modulated by the pondermotive force exerted by the laser beams. After passing through the drift space, the beam gets density modulated which further interacts with the strong field wiggler and acquires a transverse velocity that couples with the modulated density of the beam in the presence of ion channel which contribute to the non-linear current density which further leads to the emission of the radiation. The output radiation can be modified by changing the wiggler parameters and the energy of the electron beam. The power of the output radiation is found to increase with the modulation. The obtained radiation can be employed for various applications.
Installation of a second superconducting wiggler at SAGA-LS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneyasu, T., E-mail: kaneyasu@saga-ls.jp; Takabayashi, Y.; Iwasaki, Y.
The SAGA Light Source is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring with a circumference of 75.6 m. A superconducting wiggler (SCW) with a peak magnetic field of 4 T has been routinely operating for generating hard X-rays since its installation in 2010. In light of this success, it was decided to install a second SCW as a part of the beamline construction by Sumitomo Electric Industries. To achieve this, machine modifications including installation of a new magnet power supply, improvement of the magnet control system, and replacement of themore » vacuum chambers in the storage ring were carried out. Along with beamline construction, installation and commissioning of the second SCW are scheduled to take place in 2015.« less
Basic design considerations for free-electron lasers driven by electron beams from RF accelerators
NASA Astrophysics Data System (ADS)
Gover, A.; Freund, H.; Granatstein, V. L.; McAdoo, J. H.; Tang, C.-M.
A design procedure and design criteria are derived for free-electron lasers driven by electron beams from RF accelerators. The procedure and criteria permit an estimate of the oscillation-buildup time and the laser output power of various FEL schemes: with waveguide resonator or open resonator, with initial seed-radiation injection or with spontaneous-emission radiation source, with a linear wiggler or with a helical wiggler. Expressions are derived for computing the various FEL parameters, allowing for the design and optimization of the FEL operational characteristics under ideal conditions or with nonideal design parameters that may be limited by technological or practical constraints. The design procedure enables one to derive engineering curves and scaling laws for the FEL operating parameters. This can be done most conveniently with a computer program based on flowcharts given in the appendices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Podobedov, B.
2015-12-30
The NSLS-II storage ring vacuum chamber, including frontends (FE) and beamlines (BL), is protected from possible damage from synchrotron radiation (SR) emitted from insertion devices (IDs) by a dedicated active interlock system (AIS). The system monitors electron beam position and angle and triggers a beam dump if the beam orbit is outside of the active interlock envelope (AIE). The AIE was calculated under the assumptions of 3 GeV beam energy and ID gaps set to their minimum operating values (i.e. “fully closed”). Recently it was proposed to perform machine studies that would ramp the stored beam energy significantly below themore » nominal operational value of 3 GeV. These studies may potentially include the use of NSLS-II damping wigglers (DWs) for electron beam emittance reduction and control.« less
Development of Superconducting Insertion Device Magnets at NSRRC
NASA Astrophysics Data System (ADS)
Hwang, C. S.; Chang, C. H.; Chen, H. H.; Jan, J. C.; Lin, F. Y.; Fan, T. C.; Chen, J.; Hsu, S. N.; Hsu, K. T.; Huang, M. H.; Chang, H. P.; Hsiung, G. Y.; Chien, Y. C.; Chen, J. R.; Kuo, C. C.; Chen, C. T.
2007-01-01
A superconducting wavelength shifter (SWLS) with a magnetic field of 6.5 T in cryogen-free operation provides X-rays for high-resolution X-ray microscopy, EXAFS, and medical imaging beamlines. A 32-pole superconducting wiggler (SW) with a period of 6.1 cm and a magnetic field of 3.2 T in a liquid helium bath provides for three dedicated protein crystallography beamlines. Additionally, three 16-pole in-achromatic superconducting wigglers (IASW) with a period of 6.1 cm and a field strength of 3.1 T were constructed in-house and installed between the first and second bending magnets of a TBA arc section. Development of a prototype superconducting undulator (SU15) with a period of 15 mm and a field strength of 1.4 T is currently underway at National Synchrotron Radiation Research Center (MSRRC).
Evidence of thermal conduction depression in hot coronal loops
NASA Astrophysics Data System (ADS)
Wang, Tongjiang; Ofman, Leon; Sun, Xudong; Provornikova, Elena; Davila, Joseph
2015-08-01
Slow magnetoacoustic waves were first detected in hot (>6 MK) flare loops by the SOHO/SUMER spectrometer as Doppler shift oscillations in Fe XIX and Fe XXI lines. These oscillations are identified as standing slow-mode waves because the estimated phase speeds are close to the sound speed in the loop and some cases show a quarter period phase shift between velocity and intensity oscillations. The observed very rapid excitation and damping of standing slow mode waves have been studied by many authors using theories and numerical simulations, however, the exact mechanisms remain not well understood. Recently, flare-induced longitudinal intensity oscillations in hot post-flare loops have been detected by SDO/AIA. These oscillations have the similar physical properties as SUMER loop oscillations, and have been interpreted as the slow-mode waves. The multi-wavelength AIA observations with high spatio-temporal resolution and wide temperature coverage allow us to explore the wave excitation and damping mechanisms with an unprecedented detail to develope new coronal seismology. In this paper, we present accurate measurements of the effective adiabatic index (γeff) in the hot plasma from the electron temperature and density wave signals of a flare-induced longitudinal wave event using SDO/AIA data. Our results strikingly and clearly reveal that thermal conduction is highly depressed in hot (˜10 MK) post-flare loops and suggest that the compressive viscosity is the dominant wave damping mechanism which allows determination of the viscosity coefficient from the observables by coronal seismology. This new finding challenges our current understanding of thermal energy transport in solar and stellar flares, and may provide an alternative explanation of long-duration events and enhance our understand of coronal heating mechanism. We will discuss our results based on non-ideal MHD theory and simulations. We will also discuss the flare trigger mechanism based on magnetic topology derived from SDO/HMI vector magnetic fields using nonlinear force-free field extrapolations and discuss the wave excitation mechanism based on 3D MHD modeling of the active region.
Infrasonic induced ground motions
NASA Astrophysics Data System (ADS)
Lin, Ting-Li
On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body wave refraction and Rayleigh wave dispersion data. Theoretical standard high-frequency and air-coupled Rayleigh wave dispersion calculated by the inferred site structure match the observed dispersion curves. Our study suggests that natural or controlled air-borne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.
Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak
Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.
2016-01-01
Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the biphasic decay was replaced by slow decay. We conclude that, in the presence of adrenergic stimulation, Ca leak can produce biphasic decay; the slow phase results from the leak opposing Ca uptake by SERCA. The degree of leak determines whether decay of Ca waves, biphasic or monophasic, occurs. PMID:26537441
Desynchronization of slow oscillations in the basal ganglia during natural sleep.
Mizrahi-Kliger, Aviv D; Kaplan, Alexander; Israel, Zvi; Bergman, Hagai
2018-05-01
Slow oscillations of neuronal activity alternating between firing and silence are a hallmark of slow-wave sleep (SWS). These oscillations reflect the default activity present in all mammalian species, and are ubiquitous to anesthesia, brain slice preparations, and neuronal cultures. In all these cases, neuronal firing is highly synchronous within local circuits, suggesting that oscillation-synchronization coupling may be a governing principle of sleep physiology regardless of anatomical connectivity. To investigate whether this principle applies to overall brain organization, we recorded the activity of individual neurons from basal ganglia (BG) structures and the thalamocortical (TC) network over 70 full nights of natural sleep in two vervet monkeys. During SWS, BG neurons manifested slow oscillations (∼0.5 Hz) in firing rate that were as prominent as in the TC network. However, in sharp contrast to any neural substrate explored thus far, the slow oscillations in all BG structures were completely desynchronized between individual neurons. Furthermore, whereas in the TC network single-cell spiking was locked to slow oscillations in the local field potential (LFP), the BG LFP exhibited only weak slow oscillatory activity and failed to entrain nearby cells. We thus show that synchrony is not inherent to slow oscillations, and propose that the BG desynchronization of slow oscillations could stem from its unique anatomy and functional connectivity. Finally, we posit that BG slow-oscillation desynchronization may further the reemergence of slow-oscillation traveling waves from multiple independent origins in the frontal cortex, thus significantly contributing to normal SWS.
de Saint-Martin, Anne; Rudolf, Gabrielle; Seegmuller, Caroline; Valenti-Hirsch, Maria Paola; Hirsch, Edouard
2014-08-01
Epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) presents clinically with infrequent nocturnal focal seizures, atypical absences related to secondary bilateral synchrony, negative myoclonia, and atonic and rare generalized tonic-clonic seizures. The unique electroencephalography (EEG) pattern found in ECSWS consists of continuous, diffuse, bilateral spike-waves during slow-wave sleep. Despite the eventual disappearance of clinical seizures and EEG abnormalities by adolescence, the prognosis is guarded in most cases because of neuropsychological and behavioral deficits. ECSWS has a heterogeneous etiology (genetic, structural, and unknown). Because epilepsy and electroencephalography (EEG) abnormalities in epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) are self-limited and age related, the need for ongoing medical care and transition to adult care might be questioned. For adolescents in whom etiology remains unknown (possibly genetic) and who experience the disappearance of seizures and EEG abnormalities, there is rarely need for long-term neurologic follow-up, because often a relatively normal cognitive and social evolution follows. However, the majority of patients with structural and possibly "genetic syndromic" etiologies will have persistent cognitive deficits and will need suitable socioeducative care. Therefore, the transition process in ECSWS will depend mainly on etiology and its related features (epileptic active phase duration, and cognitive and behavioral evolution) and revolve around neuropsychological and social support rather than medical and pharmacologic follow-up. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
NASA Astrophysics Data System (ADS)
Chuang, Kuo-Chih; Zhang, Zhi-Qiang; Wang, Hua-Xin
2016-12-01
This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.
On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T., E-mail: daniel.verscharen@unh.edu, E-mail: christopher.chen@imperial.ac.uk, E-mail: r.wicks@ucl.ac.uk
Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predictedmore » wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.« less
Effect of acute gastric dilatation on gastric myoelectic and motor activity in dogs.
Hall, J A; Solie, T N; Seim, H B; Twedt, D C
1999-05-01
To investigate the effects of experimentally induced acute gastric dilatation on electrical and mechanical activities of the stomach in dogs. 7 healthy dogs. Electrodes and strain-gauge force transducers were implanted on the serosal surface of the antrum and pylorus. Eight days later, baseline gastric electrical and contractile activities were recorded. The dogs were anesthetized and mechanically ventilated to maintain normocapnia while the stomach was distended (intragastric pressure, 30 mm Hg) for 180 minutes, using a thin compliant bag. Gastric electrical and contractile activities were recorded again on days 1 and 10 after dilatation. Recordings were analyzed to determine gastric slow-wave frequency, slow-wave dysrhythmia, propagation velocity of slow-waves, coupling of contractions to slow waves, motility index on the basis of relative contractile amplitudes, and onset of contractions after a standardized meal. Electrical or contractile activities were not significantly different 18 hours after acute gastric dilatation (day 1). Arrhythmias were evident before and after gastric dilatation in dogs from which food was withheld and in dogs after consumption of a meal. Variables for assessing gastric electrical and contractile activities were unaffected 18 hours after acute gastric dilatation. Analysis of results of this study indicated that altered electrical and contractile activities in dogs with short-term gastric dilatation are not likely to be secondary to the process of acute gastric dilatation.
Induction of slow oscillations by rhythmic acoustic stimulation.
Ngo, Hong-Viet V; Claussen, Jens C; Born, Jan; Mölle, Matthias
2013-02-01
Slow oscillations are electrical potential oscillations with a spectral peak frequency of ∼0.8 Hz, and hallmark the electroencephalogram during slow-wave sleep. Recent studies have indicated a causal contribution of slow oscillations to the consolidation of memories during slow-wave sleep, raising the question to what extent such oscillations can be induced by external stimulation. Here, we examined whether slow oscillations can be effectively induced by rhythmic acoustic stimulation. Human subjects were examined in three conditions: (i) with tones presented at a rate of 0.8 Hz ('0.8-Hz stimulation'); (ii) with tones presented at a random sequence ('random stimulation'); and (iii) with no tones presented in a control condition ('sham'). Stimulation started during wakefulness before sleep and continued for the first ∼90 min of sleep. Compared with the other two conditions, 0.8-Hz stimulation significantly delayed sleep onset. However, once sleep was established, 0.8-Hz stimulation significantly increased and entrained endogenous slow oscillation activity. Sleep after the 90-min period of stimulation did not differ between the conditions. Our data show that rhythmic acoustic stimulation can be used to effectively enhance slow oscillation activity. However, the effect depends on the brain state, requiring the presence of stable non-rapid eye movement sleep. © 2012 European Sleep Research Society.
NASA Astrophysics Data System (ADS)
Han, Song; Zhang, Wei; Zhang, Jie
2017-09-01
A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.
Lamb wave propagation in monocrystalline silicon wafers.
Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard
2018-01-01
Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.
Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves
Ford, Kevin J.; Félix, Aude L.; Feller, Marla B.
2012-01-01
Prior to vision, a transient network of recurrently connected cholinergic interneurons, called starburst amacrine cells (SACs), generates spontaneous retinal waves. Despite an absence of robust inhibition, cholinergic retinal waves initiate infrequently and propagate within finite boundaries. Here we combine a variety of electrophysiological and imaging techniques and computational modeling to elucidate the mechanisms underlying these spatial and temporal properties of waves in developing mouse retina. Waves initiate via rare spontaneous depolarizations of SACs. Waves propagate through recurrent cholinergic connections between SACs and volume release of ACh as demonstrated using paired recordings and a cell-based ACh optical sensor. Perforated patch recordings and two-photon calcium imaging reveal that individual SACs have slow afterhyperpolarizations that induce SACs to have variable depolarizations during sequential waves. Using a computational model in which the properties of SACs are based on these physiological measurements, we reproduce the slow frequency, speed, and finite size of recorded waves. This study represents a detailed description of the circuit that mediates cholinergic retinal waves and indicates that variability of the interneurons that generate this network activity may be critical for the robustness of waves across different species and stages of development. PMID:22262883
1992-01-01
Pulse-labeling studies demonstrate that tubulin synthesized in the neuron cell body (soma) moves somatofugally within the axon (at a rate of several millimeters per day) as a well-defined wave corresponding to the slow component of axonal transport. A major goal of the present study was to determine what proportion of the tubulin in mature motor axons is transported in this wave. Lumbar motor neurons in 9-wk-old rats were labeled by injecting [35S]methionine into the spinal cord 2 wk after motor axons were injured (axotomized) by crushing the sciatic nerve. Immunoprecipitation with mAbs which recognize either class II or III beta-tubulin were used to analyze the distributions of radioactivity in these isotypes in intact and axotomized motor fibers 5 d after labeling. We found that both isotypes were associated with the slow component wave, and that the leading edge of this wave was enriched in the class III isotype. Axotomy resulted in significant increases in the labeling and transport rates of both isotypes. Immunohistochemical examination of peripheral nerve fibers demonstrated that nearly all of the class II and III beta-tubulin in nerve fibers is located within axons. Although the amounts of radioactivity per millimeter of nerve in class II and III beta-tubulin were significantly greater in axotomized than in control nerves (with increases of +160% and +58%, respectively), immunoassay revealed no differences in the amounts of these isotypes in axotomized and control motor fibers. We consider several explanations for this paradox; these include the possibility that the total tubulin content is relatively insensitive to changes in the amount of tubulin transported in the slow component wave because this wave represents the movement of only a small fraction of the tubulin in these motor fibers. PMID:1383234
Rg-Lg coupling as a Lg-wave excitation mechanism
NASA Astrophysics Data System (ADS)
Ge, Z.; Xie, X.
2003-12-01
Regional phase Lg is predominantly comprised of shear wave energy trapped in the crust. Explosion sources are expected to be less efficient for excitation of Lg phases than earthquakes to the extent that the source can be approximated as isotropic. Shallow explosions generate relatively large surface wave Rg compared to deeper earthquakes, and Rg is readily disrupted by crustal heterogeneity. Rg energy may thus scatter into trapped crustal S-waves near the source region and contribute to low-frequency Lg wave. In this study, a finite-difference modeling plus the slowness analysis are used for investigating the above mentioned Lg-wave excitation mechanism. The method allows us to investigate near source energy partitioning in multiple domains including frequency, slowness and time. The main advantage of this method is that it can be applied at close range, before Lg is actually formed, which allows us to use very fine near source velocity model to simulate the energy partitioning process. We use a layered velocity structure as the background model and add small near source random velocity patches to the model to generate the Rg to Lg coupling. Two types of simulations are conducted, (1) a fixed shallow explosion source vs. randomness at different depths and (2) a fixed shallow randomness vs. explosion sources at different depths. The results show apparent couplings between the Rg and Lg waves at lower frequencies (0.3-1.5 Hz). A shallow source combined with shallow randomness generates the maximum Lg-wave, which is consistent with the Rg energy distribution of a shallow explosion source. The Rg energy and excited Lg energy show a near linear relationship. The numerical simulation and slowness analysis suggest that the Rg to Lg coupling is an effective excitation mechanism for low frequency Lg-waves from a shallow explosion source.
NASA Astrophysics Data System (ADS)
Zhao, J. S.; Voitenko, Y.; De Keyser, J.; Wu, D. J.
2018-04-01
We study the decay of Alfvén waves in the solar wind, accounting for the joint operation of two-dimensional (2D) scalar and three-dimensional (3D) vector nonlinear interactions between Alfvén and slow waves. These interactions have previously been studied separately in long- and short-wavelength limits where they lead to 2D scalar and 3D vector decays, correspondingly. The joined action of the scalar and vector interactions shifts the transition between 2D and 3D decays to significantly smaller wavenumbers than was predicted by Zhao et al. who compared separate scalar and vector decays. In application to the broadband Alfvén waves in the solar wind, this means that the vector nonlinear coupling dominates in the extended wavenumber range 5 × 10‑4 ≲ ρ i k 0⊥ ≲ 1, where the decay is essentially 3D and nonlocal, generating product Alfvén and slow waves around the ion gyroscale. Here ρ i is the ion gyroradius, and k 0⊥ is the pump Alfvén wavenumber. It appears that, except for the smallest wavenumbers at and below {ρ }i{k}0\\perp ∼ {10}-4 in Channel I, the nonlinear decay of magnetohydrodynamic Alfvén waves propagating from the Sun is nonlocal and cannot generate counter-propagating Alfvén waves with similar scales needed for the turbulent cascade. Evaluation of the nonlinear frequency shift shows that product Alfvén waves can still be approximately described as normal Alfvénic eigenmodes. On the contrary, nonlinearly driven slow waves deviate considerably from normal modes and are therefore difficult to identify on the basis of their phase velocities and/or polarization.
Miller, Nathaniel; Lizarralde, Daniel
2016-01-01
Effects of serpentine-filled fault zones on seismic wave propagation in the upper mantle at the outer rise of subduction zones are evaluated using acoustic wave propagation models. Modeled wave speeds depend on azimuth, with slowest speeds in the fault-normal direction. Propagation is fastest along faults, but, for fault widths on the order of the seismic wavelength, apparent wave speeds in this direction depend on frequency. For the 5–12 Hz Pn arrivals used in tomographic studies, joint-parallel wavefronts are slowed by joints. This delay can account for the slowing seen in tomographic images of the outer rise upper mantle. At the Middle America Trench, confining serpentine to fault zones, as opposed to a uniform distribution, reduces estimates of bulk upper mantle hydration from ~3.5 wt % to as low as 0.33 wt % H2O.
Infrasound from thunder: A natural seismic source
NASA Astrophysics Data System (ADS)
Lin, Ting-L.; Langston, Charles A.
2007-07-01
A small array consisting of five three-component short-period surface seismometers, a three-component borehole seismometer, and five infrasound microphones was built to investigate thunder-induced ground motions. Data from two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen as examples of data collected by the array. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters at the site. Although the depth of the borehole is relatively shallow compared to a seismic wave wavelength, velocity amplitude in the radial component decays as much as 63 percent with depth but vertical component amplitudes are unaffected consistent with air-coupled Rayleigh wave excitation. Naturally occurring thunder appears to be a useful seismic source to empirically determine site resonance characteristics for hazards assessments.
Therapeutic effects of antimotion sickness medications on the secondary symptoms of motion sickness
NASA Technical Reports Server (NTRS)
Wood, C. D.; Stewart, J. J.; Wood, M. J.; Manno, J. E.; Manno, B. R.
1990-01-01
In addition to nausea and vomiting, motion sickness involves slowing of brain waves, loss of performance, inhibition of gastric motility and the Sopite Syndrome. The therapeutic effects of antimotion sickness drugs on these reactions were evaluated. The subjects were rotated to the M-III end-point of motion sickness. Intramuscular (IM) medications were then administered. Side effects before and after rotation were reported on the Cornell Medical Index. Brain waves were recorded on a Grass Model 6 Electroencephalograph (EEG), and gastric emptying was studied after an oral dose of 1 mCi Technetium 99m DTPA in 10 oz. isotonic saline. An increase in dizziness and drowsiness was reported with placebo after rotation. This was not prevented by IM scopolamine 0.1 mg or ephedrine 25 mg. EEG recordings indicated a slowing of alpha waves with some thea and delta waves from the frontal areas after rotation. IM ephedine and dimenhydrinate counteracted the slowing while 0.3 mg scopolamine had an additive effect. Alterations of performance on the pursuit meter correlated with the brain wave changes. Gastric emptying was restored by IM metoclopramide. Ephedrine IM but not scopolamine is effective for some of the secondary effects of motion sickness after it is established.
A Simple and Accurate Analysis of Conductivity Loss in Millimeter-Wave Helical Slow-Wave Structures
NASA Astrophysics Data System (ADS)
Datta, S. K.; Kumar, Lalit; Basu, B. N.
2009-04-01
Electromagnetic field analysis of a helix slow-wave structure was carried out and a closed form expression was derived for the inductance per unit length of the transmission-line equivalent circuit of the structure, taking into account the actual helix tape dimensions and surface current on the helix over the actual metallic area of the tape. The expression of the inductance per unit length, thus obtained, was used for estimating the increment in the inductance per unit length caused due to penetration of the magnetic flux into the conducting surfaces following Wheeler’s incremental inductance rule, which was subsequently interpreted for the attenuation constant of the propagating structure. The analysis was computationally simple and accurate, and accrues the accuracy of 3D electromagnetic analysis by allowing the use of dispersion characteristics obtainable from any standard electromagnetic modeling. The approach was benchmarked against measurement for two practical structures, and excellent agreement was observed. The analysis was subsequently applied to demonstrate the effects of conductivity on the attenuation constant of a typical broadband millimeter-wave helical slow-wave structure with respect to helix materials and copper plating on the helix, surface finish of the helix, dielectric loading effect and effect of high temperature operation - a comparative study of various such aspects are covered.
First Imaging Observation of Standing Slow Wave in Coronal Fan Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pant, V.; Tiwari, A.; Banerjee, D.
2017-09-20
We observe intensity oscillations along coronal fan loops associated with the active region AR 11428. The intensity oscillations were triggered by blast waves that were generated due to X-class flares in the distant active region AR 11429. To characterize the nature of oscillations, we created time–distance maps along the fan loops and noted that the intensity oscillations at two ends of the loops were out of phase. As we move along the fan loop, the amplitude of the oscillations first decreased and then increased. The out-of-phase nature together with the amplitude variation along the loop implies that these oscillations aremore » very likely to be standing waves. The period of the oscillations is estimated to be ∼27 minutes, damping time to be ∼45 minutes, and phase velocity projected in the plane of sky to be ∼65–83 km s{sup −1}. The projected phase speeds were in the range of the acoustic speed of coronal plasma at about 0.6 MK, which further indicates that these are slow waves. To the best of our knowledge, this is the first report on the existence of the standing slow waves in non-flaring fan loops.« less
Bell, Iris R; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R; Brooks, Audrey J
2012-07-01
Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stages 3 and 4 slow wave sleep EEG sampled in artifact-free 2-min segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. Copyright © 2012 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Wang, T H-H; Du, P; Angeli, T R; Paskaranandavadivel, N; Erickson, J C; Abell, T L; Cheng, L K; O'Grady, G
2018-01-01
Gastric slow wave dysrhythmias are accompanied by deviations in frequency, velocity, and extracellular amplitude, but the inherent association between these parameters in normal activity still requires clarification. This study quantified these associations using a joint experimental-theoretical approach. Gastric pacing was conducted in pigs with simultaneous high-resolution slow wave mapping (32-256 electrodes; 4-7.6 mm spacing). Relationships between period, velocity, and amplitude were quantified and correlated for each wavefront. Human data from two existing mapping control cohorts were analyzed to extract and correlate these same parameters. A validated biophysically based ICC model was also applied in silico to quantify velocity-period relationships during entrainment simulations and velocity-amplitude relationships from membrane potential equations. Porcine pacing studies identified positive correlations for velocity-period (0.13 mm s -1 per 1 s, r 2 =.63, P<.001) and amplitude-velocity (74 μV per 1 mm s -1 , r 2 =.21, P=.002). In humans, positive correlations were also quantified for velocity-period (corpus: 0.11 mm s -1 per 1 s, r 2 =.16, P<.001; antrum: 0.23 mm s -1 per 1 s, r 2 =.55; P<.001), and amplitude-velocity (94 μV per 1 mm s -1 , r 2 =.56; P<.001). Entrainment simulations matched the experimental velocity-period relationships and demonstrated dependence on the slow wave recovery phase. Simulated membrane potential relationships were close to these experimental results (100 μV per 1 mm s -1 ). These data quantify the relationships between slow wave frequency, velocity, and extracellular amplitude. The results from both human and porcine studies were in keeping with biophysical models, demonstrating concordance with ICC biophysics. These relationships are important in the regulation of gastric motility and will help to guide interpretations of dysrhythmias. © 2017 John Wiley & Sons Ltd.
Bell, Iris R.; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R.; Brooks, Audrey J.
2012-01-01
Background Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Methods Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stage 3 and 4 slow wave sleep EEG sampled in artifact-free 2-minute segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. Results MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Conclusions Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. PMID:22818237
Kantrowitz, Joshua; Citrome, Leslie; Javitt, Daniel
2009-08-01
Evidence for an intrinsic relationship between sleep, cognition and the symptomatic manifestations of schizophrenia is accumulating. This review presents evidence for the possible utility of GABA(B) receptor agonists for the treatment of subjective and objective sleep abnormalities related to schizophrenia. At the phenotypic level, sleep disturbance occurs in 16-30% of patients with schizophrenia and is related to reduced quality of life and poor coping skills. On the neurophysiological level, studies suggest that sleep deficits reflect a core component of schizophrenia. Specifically, slow-wave sleep deficits, which are inversely correlated with cognition scores, are seen. Moreover, sleep plays an increasingly well documented role in memory consolidation in schizophrenia. Correlations of slow-wave sleep deficits with impaired reaction time and declarative memory have also been reported. Thus, both behavioural insomnia and sleep architecture are critical therapeutic targets in patients with schizophrenia. However, long-term treatment with antipsychotics often results in residual sleep dysfunction and does not improve slow-wave sleep, and adjunctive GABA(A) receptor modulators, such as benzodiazepines and zolpidem, can impair sleep architecture and cognition in schizophrenia. GABA(B) receptor agonists have therapeutic potential in schizophrenia. These agents have minimal effect on rapid eye movement sleep while increasing slow-wave sleep. Preclinical associations with increased expression of genes related to slow-wave sleep production and circadian rhythm function have also been reported. GABA(B) receptor deficits result in a sustained hyperdopaminergic state and can be reversed by a GABA(B) receptor agonist. Genetic, postmortem and electrophysiological studies also associate GABA(B) receptors with schizophrenia. While studies thus far have not shown significant effects, prior focus on the use of GABA(B) receptor agonists has been on the positive symptoms of schizophrenia, with minimal investigation of GABA(B) receptor agonists such as baclofen or gamma-hydroxybutyric acid and their effects on sleep architecture, cognition and negative symptoms in patients with schizophrenia. Further study is needed.
Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.
Sheroziya, Maxim; Timofeev, Igor
2015-09-23
Reduction in temperature depolarizes neurons by a partial closure of potassium channels but decreases the vesicle release probability within synapses. Compared with cooling, neuromodulators produce qualitatively similar effects on intrinsic neuronal properties and synapses in the cortex. We used this similarity of neuronal action in ketamine-xylazine-anesthetized mice and non-anesthetized mice to manipulate the thalamocortical activity. We recorded cortical electroencephalogram/local field potential (LFP) activity and intracellular activities from the somatosensory thalamus in control conditions, during cortical cooling and on rewarming. In the deeply anesthetized mice, moderate cortical cooling was characterized by reversible disruption of the thalamocortical slow-wave pattern rhythmicity and the appearance of fast LFP spikes, with frequencies ranging from 6 to 9 Hz. These LFP spikes were correlated with the rhythmic IPSP activities recorded within the thalamic ventral posterior medial neurons and with depolarizing events in the posterior nucleus neurons. Similar cooling of the cortex during light anesthesia rapidly and reversibly eliminated thalamocortical silent states and evoked thalamocortical persistent activity; conversely, mild heating increased thalamocortical slow-wave rhythmicity. In the non-anesthetized head-restrained mice, cooling also prevented the generation of thalamocortical silent states. We conclude that moderate cortical cooling might be used to manipulate slow-wave network activity and induce neuromodulator-independent transition to activated states. Significance statement: In this study, we demonstrate that moderate local cortical cooling of lightly anesthetized or naturally sleeping mice disrupts thalamocortical slow oscillation and induces the activated local field potential pattern. Mild heating has the opposite effect; it increases the rhythmicity of thalamocortical slow oscillation. Our results demonstrate that slow oscillation can be influenced by manipulations to the properties of cortical neurons without changes in neuromodulation. Copyright © 2015 the authors 0270-6474/15/3513006-14$15.00/0.
Atrioventricular block, ECG tracing (image)
... an abnormal rhythm (arrhythmia) called an atrioventricular (AV) block. P waves show that the top of the ... wave (and heart contraction), there is an atrioventricular block, and a very slow pulse (bradycardia).
Theoretical, Experimental, and Computational Evaluation of Several Vane-Type Slow-Wave Structures
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.; Qureshi, A. Haq
1994-01-01
Several types of periodic vane slow-wave structures were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the MAFIA code. Computer-generated characteristics agreed to approximately within 2 percent of the experimental characteristics for all structures. The theoretical characteristics, however, deviated increasingly as the width to height ratio became smaller. Interaction impedances were also computed based on the experimental and computer-generated resonance frequency shifts due to the introduction of a perturbing dielectric rod.
A Smart Microwave Vacuum Electron Device (MVED) Using Field Emitters
2012-01-31
operation of the device. By using a larger retardation value, the slow wave phase velocity is decreased allowing a lower E/B drift velocity. By reducing...the drift velocity the device is able to run at a lower cathode potential reducing the risk of high voltage arcing. This new slow wave circuit will...sole electrode above the cathode by using a thin dielectric layer ( mylar ) on top of the cathode and placing the sole electrode on the dielectric
NASA Astrophysics Data System (ADS)
Kordbacheh, A.; Ghahremaninezhad, Roghayeh; Maraghechi, B.
2012-09-01
A three-dimensional analysis of a novel free-electron laser (FEL) based upon a rectangular hybrid wiggler (RHW) is presented. This RHW is designed in a configuration composed of rectangular rings with alternating ferrite and dielectric spacers immersed in a solenoidal magnetic field. An analytic model of RHW is introduced by solution of Laplace's equation for the magnetostatic fields under the appropriate boundary conditions. The single-electron orbits in combined RHW and axial guide magnetic fields are studied when only the first and the third spatial harmonic components of the RHW field are taken into account and the higher order terms are ignored. The results indicate that the third spatial harmonic leads to group III orbits with a strong negative mass regime particularly in large solenoidal magnetic fields. RHW is found to be a promising candidate with favorable characteristics to be used in microwave FEL.
Heat load studies of a water-cooled minichannel monochromator for synchrotron x-ray beams
NASA Astrophysics Data System (ADS)
Freund, Andreas K.; Arthur, John R.; Zhang, Lin
1997-12-01
We fabricated a water-cooled silicon monochromator crystal with small channels for the special case of a double-crystal fixed-exit monochromator design where the beam walks across the crystal when the x-ray energy is changed. The two parts of the cooled device were assembled using a new technique based on low melting point solder. The bending of the system produced by this technique could be perfectly compensated by mechanical counter-bending. Heat load tests of the monochromator in a synchrotron beam of 75 W total power, 3 mm high and 15 mm wide, generated by a multipole wiggler at SSRL, showed that the thermal slope error of the crystal is 1 arcsec/40 W power, in full agreement with finite element analysis. The cooling scheme is adequate for bending magnet beamlines at the ESRF and present wiggler beamlines at the SSRL.
Optical pulse evolution in the Stanford free-electron laser and in a tapered wiggler
NASA Technical Reports Server (NTRS)
Colson, W. B.
1982-01-01
The Stanford free electron laser (FEL) oscillator is driven by a series of electron pulses from a high-quality superconducting linear accelerator (LINAC). The electrons pass through a transverse and nearly periodic magnetic field, a 'wiggler', to oscillate and amplify a superimposed optical pulse. The rebounding optical pulse must be closely synchronized with the succession of electron pulses from the accelerator, and can take on a range of structures depending on the precise degree of synchronism. Small adjustments in desynchronism can make the optical pulse either much shorter or longer than the electron pulse, and can cause significant subpulse structure. The oscillator start-up from low level incoherent fields is discussed. The effects of desynchronism on coherent pulse propagation are presented and compared with recent Stanford experiments. The same pulse propagation effects are studied for a magnet design with a tapered wavelength in which electrons are trapped in the ponderomotive potential.
CSEM-Steel hybrid wiggler/undulator magnetic field studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halbach, K.; Hoyer, E.; Marks, S.
1985-06-01
Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 KOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in placemore » of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields. 3 refs., 6 figs.« less
The new HMI beamline MAGS: an instrument for hard X-ray diffraction at BESSY.
Dudzik, Esther; Feyerherm, Ralf; Diete, Wolfgang; Signorato, Riccardo; Zilkens, Christopher
2006-11-01
The Hahn-Meitner-Institute Berlin is operating the new hard X-ray diffraction beamline MAGS at the Berlin synchrotron radiation source BESSY. The beamline is intended to complement the existing neutron instrumentation at the Berlin Neutron Scattering Centre. The new beamline uses a 7 T multipole wiggler to produce photon fluxes in the 10(11)-10(12) photons s(-1) (100 mA)(-1) (0.1% bandwidth)(-1) range at energies from 4 to 30 keV at the experiment. It has active bendable optics to provide flexible horizontal and vertical focusing and to compensate the large heat load from the wiggler source. The experimental end-station consists of a six-circle Huber diffractometer which can be used with an additional (polarization) analyser and different sample environments. The beamline is intended for single-crystal diffraction and resonant magnetic scattering experiments for the study of ordering phenomena, phase transitions and materials science.
Effect of slow energy releasing on divergent detonation of Insensitive High Explosives
NASA Astrophysics Data System (ADS)
Hu, Xiaomian; Pan, Hao; Huang, Yong; Wu, Zihui
2014-03-01
There exists a slow energy releasing (SER) process in the slow reaction zone located behind the detonation wave due to the carbon cluster in the detonation products of Insensitive High Explosives (IHEs), and the process will affect the divergent detonation wave's propagation and the driving process of the explosives. To study the potential effect, a new artificial burn model including the SER process based on the programmed burn model is proposed in the paper. Quasi-steady analysis of the new model indicates that the nonlinearity of the detonation speed as a function of front curvature owes to the significant change of the reaction rate and the reaction zone length at the sonic state. What's more, in simulating the detonation of IHE JB-9014, the new model including the slow reaction can predict a slower jump-off velocity, in good agreement with the result of the test.
Boore, D.M.; Asten, M.W.
2008-01-01
Many groups contributed to a blind interpretation exercise for the determination of shear-wave slowness beneath the Santa Clara Valley. The methods included invasive methods in deep boreholes as well as noninvasive methods using active and passive sources, at six sites within the valley (with most investigations being conducted at a pair of closely spaced sites near the center of the valley). Although significant variability exists between the models, the slownesses from the various methods are similar enough that linear site amplifications estimated in several ways are generally within 20% of one another. The methods were able to derive slownesses that increase systematically with distance from the valley edge, corresponding to a tendency for the sites to be underlain by finer-grained materials away from the valley edge. This variation is in agreement with measurements made in the boreholes at the sites.
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-04-01
Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission
NASA Astrophysics Data System (ADS)
Yang, Jieun; Lee, Joong Seok; Lee, Hyeong Rae; Kang, Yeon June; Kim, Yoon Young
2018-02-01
Sound transmission reduction is typically governed by the mass law, requiring thicker panels to handle lower frequencies. When open holes must be inserted in panels for heat transfer, ventilation, or other purposes, the efficient reduction of sound transmission through holey panels becomes difficult, especially in the low-frequency ranges. Here, we propose slow-wave metamaterial open panels that can dramatically lower the working frequencies of sound transmission loss. Global resonances originating from slow waves realized by multiply inserted, elaborately designed subwavelength rigid partitions between two thin holey plates contribute to sound transmission reductions at lower frequencies. Owing to the dispersive characteristics of the present metamaterial panels, local resonances that trap sound in the partitions also occur at higher frequencies, exhibiting negative effective bulk moduli and zero effective velocities. As a result, low-frequency broadened sound transmission reduction is realized efficiently in the present metamaterial panels. The theoretical model of the proposed metamaterial open panels is derived using an effective medium approach and verified by numerical and experimental investigations.
NASA Astrophysics Data System (ADS)
Restrepo, Simon; Basler, Konrad
2016-08-01
Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies.
Effects of transport coefficients on excitation of flare-induced standing slow-mode waves
NASA Astrophysics Data System (ADS)
Wang, Tongjiang; Ofman, Leon; Davila, Joseph
2017-08-01
The flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA, and interpreted as the slow-mode standing waves. By means of the seismology technique we have, for the first time, determined the transport coefficients in the hot (>9 MK) flare plasma, and found that thermal conductivity is suppressed by at least 3 times and viscosity coefficient is enhanced by a factor of 15 as the upper limit (Wang et al. 2015, ApJL, 811, L13). In this presentation, we first discuss possible causes for conduction suppression and viscosity enhancements. Then we use the nonlinear MHD simulations to validate the seismology method that is based on linear analytical analysis, and demonstrate the inversion scheme for determining transport coefficients using numerical parametric study. Finally, we show how the seismologically-determined transport coefficients are crucial for understanding the excitation of the observed standing slow-mode waves in coronal loops and the heating of the loop plasma by a footpoint flare.
Yilmaz, Kutluhan; Sahin, Derya Aydin
2010-08-01
Although diagnostic contribution of intravenous diazepam administration during electroencephalography (EEG) recording in subacute sclerosing panencephalitis has been known, no another drug with less potential side effects has been studied in this procedure. In this study, diazepam is compared with midazolam in 25 subacute sclerosing panencephalitis-diagnosed children and 10 children with subacute sclerosing panencephalitis-suggesting symptoms, normal EEG findings and no certain diagnosis. Neither midazolam nor diazepam affected typical periodic slow-wave complexes. However, in the patients with atypical EEG abnormalities, midazolam, like diazepam, attenuated sharp or sharp-and-slow waves, and therefore made the identification of periodic slow-wave paroxysms easier. In the patients with normal EEGs, both midazolam and diazepam revealed typical periodic complexes on EEG recording in the same 3 patients. Cerebrospinal fluid examination verified the diagnosis of subacute sclerosing panencephalitis. The findings suggest that midazolam or diazepam administration increases the contribution of EEG recording in atypical cases with subacute sclerosing panencephalitis.
Observation and excitation of magnetohydrodynamic waves in numerical models of Earth's core
NASA Astrophysics Data System (ADS)
Teed, R.; Hori, K.; Tobias, S.; Jones, C. A.
2017-12-01
Several types of magnetohydrodynamic waves are theorised to operate in Earth's outer core but their detection is limited by the inability to probe the fluid core directly. Secular variation data and periodic changes in Earth's length-of-day provide evidence for the possible existence of waves. Numerical simulations of core dynamics enable us to search directly for waves and determine their properties. With this information it is possible to consider whether they can be the origin of features observed in observational data. We focus on two types of wave identified in our numerical experiments: i) torsional waves and ii) slow magnetic Rossby waves. Our models display periodic, Earth-like torsional waves that travel outwards from the tangent cylinder circumscribing the inner core. We discuss the properties of these waves and their similarites to observational data. Excitation is via a matching of the Alfvén frequency with that of small modes of convection focused at the tangent cylinder. The slow magnetic Rossby waves observed in our simulations show that these waves may account for some geomagnetic westward drifts observed at mid-latitudes. We present analysis showing excitation of waves by the convective instability and we discuss how the detection of these waves could also provide an estimate of the strength of the toroidal component of the magnetic field within the planetary fluid core.
Excitation of flare-induced waves in coronal loops and the effects of radiative cooling
NASA Astrophysics Data System (ADS)
Provornikova, Elena; Ofman, Leon; Wang, Tongjiang
2018-01-01
EUV imaging observations from several space missions (SOHO/EIT, TRACE, and SDO/AIA) have revealed a presence of propagating intensity disturbances in solar coronal loops. These disturbances are typically interpreted as slow magnetoacoustic waves. However, recent spectroscopic observations with Hinode/EIS of active region loops revealed that the propagating intensity disturbances are associated with intermittent plasma upflows (or jets) at the footpoints which are presumably generated by magnetic reconnection. For this reason, whether these disturbances are waves or periodic flows is still being studied. This study is aimed at understanding the physical properties of observed disturbances by investigating the excitation of waves by hot plasma injections from below and the evolution of flows and wave propagation along the loop. We expand our previous studies based on isothermal 3D MHD models of an active region to a more realistic model that includes full energy equation accounting for the effects of radiative losses. Computations are initialized with an equilibrium state of a model active region using potential (dipole) magnetic field, gravitationally stratified density and temperature obtained from the polytropic equation of state. We model an impulsive injection of hot plasma into the steady plasma outflow along the loops of different temperatures, warm (∼1 MK) and hot (∼6 MK). The simulations show that hot jets launched at the coronal base excite slow magnetoacoustic waves that propagate to high altitudes along the loops, while the injected hot flows decelerate rapidly with heights. Our results support that propagating disturbances observed in EUV are mainly the wave features. We also find that the effect of radiative cooling on the damping of slow-mode waves in 1-6 MK coronal loops is small, in agreement with the previous conclusion based on 1D MHD models.
Expansion Under Climate Change: The Genetic Consequences.
Garnier, Jimmy; Lewis, Mark A
2016-11-01
Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.
Synchronization Properties of Slow Cortical Oscillations
NASA Astrophysics Data System (ADS)
Takekawa, T.; Aoyagi, T.; Fukai, T.
During slow-wave sleep, the brain shows slow oscillatory activity with remarkable long-range synchrony. Intracellular recordings show that the slow oscillation consists of two phases: an textit{up} state and a textit{down} state. Deriving the phase-response function of simplified neuronal systems, we examine the synchronization properties on slow oscillations between the textit{up} state and the textit{down} state. As a result, the strange interaction functions are found in some parameter ranges. These functions indicate that the states with the smaller phase lag than a critical value are all stable.
NASA Astrophysics Data System (ADS)
Rahman, B. M. Farid
Modern communications systems are following a common trend to increase the operational frequency, level of integration and number of frequency bands. Although 90-95% components in a cell phone are passives which take 80% of the total board area. High performance RF passive components play limited role and are desired towards this technological advancement. Slow wave structure is one of the most promising candidates to design compact RF and mm-Wave passive components. Slow wave structures are the specially designed transmission line realized by placing the alternate narrow and wide signal conductors in order to reduce the physical size of the components. This dissertation reports multiband slow wave structures integrated with ferromagnetic and ferroelectric thin films and their RF applications. A comparative study on different types of coplanar wave-guide (CPW) slow wave structures (SWS) has been demonstrated for the first time. Slow wave structures with various shapes have been investigated and optimized with various signal conductor shapes, ground conductor shapes and pitch of the sections. Novel techniques i.e. the use of the defected ground structure and the different signal conductor length has been implemented to achieve higher slow wave effect with minimum loss. The measured results have shown the reduction of size over 43.47% and 37.54% in the expense of only 0.27dB and 0.102dB insertion loss respectively which can reduce the area of a designed branch line coupler by 68% and 61% accordingly. Permalloy (Py) is patterned on top of the developed SWS for the first time to further increase the slow wave effect and provide tunable inductance value. High frequency applications of Py are limited by its ferro-magnetic resonance frequency since the inductance value decreases beyond that. Sub-micrometer patterning of Py has increased FMR frequency until 6.3GHz and 3.2GHz by introducing the shape anisotropy. For the SWS with patterned Py, the size of the quarter wavelength has been reduced from 14.86mm to 4.7mm at 2GHz. DC current which is the most convenient and available tuning parameter in a practical circuit board has been used, the developed SWS can function as quarter wave transmission line from 2GHz to 1.80GHz (i.e. 10%). Lead Zirconium Titanate (PZT) is grown and patterned on top of the section with standard sol-gel method to increase capacitance value. The inter digit capacitor type structure along with PZT thin film has been adopted and results showed capacitance value increment by 36%. An electric field between signal and ground has been applied to change the polarization of the thin film which resulted in a tuning of center frequency by 15% (1.75GHz to 2GHz). In addition, a novel approach has been implemented by integrating both the ferromagnetic and the ferroelectric thin films simultaneously to achieve higher slow wave effect, wider tuning range and smaller variation in Characteristics Impedance. The size of the final structure for a quarter wavelengths has been reduced from 14.86mm to 3.98mm while the center frequency has been tuned from 2GHz to 1.5GHz (i.e. 25%). Tunable RF applications of the ferro-magnetic thin films are also demonstrated as a DC current band pass filter, tunable noise suppressor and meander line inductor. A well designed frequency tunable band pass filter (BPF) is implemented at 4GHz with patterned Permalloy. The pass band frequency of a band pass filter has been tuned from 4GHz to 4.02GHz by applying a DC current. The suppression frequency of the developed noise suppressor is tuned from 4.8GHz to 6GHz and 4GHz to 6GHz by changing the aspect ratio of the Py bars and the gap in between them. Moreover, a novel way of tuning the stop band frequency of the noise suppressor by using an external direct current changed the suppression frequency from 6GHz to 4.3GHz. A pass band loss of 1.5%, less than 2° transmitted signal phase distortion, and 3 dB extra return loss of the designed noise suppressor showed the promise the noise suppressors. The increase in the number of turns of a meander line inductor has increased the inductance density from 2565nH/m to 3396nH/m while application of the patterned Py has increased the inductance density from 2565nH/m to 3060nH/m. The tuning of the meander line inductor has been performed by applying DC current until the FMR frequency 4.51GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Ding, M. D.; Chen, P. F., E-mail: guoyang@nju.edu.cn
2015-08-15
Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUVmore » propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.« less
NASA Astrophysics Data System (ADS)
Liu, Yi-Hsin; Drake, J. F.; Swisdak, M.
2011-09-01
Simulations of collisionless oblique propagating slow shocks have revealed the existence of a transition associated with a critical temperature anisotropy ɛ = 1 - μ0(P|| - P⊥)/B2 = 0.25 (Y.-H. Liu, J. F. Drake, and M. Swisdak, Phys. Plasmas 18, 062110 (2011)). An explanation for this phenomenon is proposed here based on anisotropic fluid theory, in particular, the anisotropic derivative nonlinear-Schrödinger-Burgers equation, with an intuitive model of the energy closure for the downstream counter-streaming ions. The anisotropy value of 0.25 is significant because it is closely related to the degeneracy point of the slow and intermediate modes and corresponds to the lower bound of the coplanar to non-coplanar transition that occurs inside a compound slow shock (SS)/rotational discontinuity (RD) wave. This work implies that it is a pair of compound SS/RD waves that bound the outflows in magnetic reconnection, instead of a pair of switch-off slow shocks as in Petschek's model. This fact might explain the rareness of in-situ observations of Petschek-reconnection-associated switch-off slow shocks.
Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells
Dähne, Sven; Wilbert, Niko; Wiskott, Laurenz
2014-01-01
The developing visual system of many mammalian species is partially structured and organized even before the onset of vision. Spontaneous neural activity, which spreads in waves across the retina, has been suggested to play a major role in these prenatal structuring processes. Recently, it has been shown that when employing an efficient coding strategy, such as sparse coding, these retinal activity patterns lead to basis functions that resemble optimal stimuli of simple cells in primary visual cortex (V1). Here we present the results of applying a coding strategy that optimizes for temporal slowness, namely Slow Feature Analysis (SFA), to a biologically plausible model of retinal waves. Previously, SFA has been successfully applied to model parts of the visual system, most notably in reproducing a rich set of complex-cell features by training SFA with quasi-natural image sequences. In the present work, we obtain SFA units that share a number of properties with cortical complex-cells by training on simulated retinal waves. The emergence of two distinct properties of the SFA units (phase invariance and orientation tuning) is thoroughly investigated via control experiments and mathematical analysis of the input-output functions found by SFA. The results support the idea that retinal waves share relevant temporal and spatial properties with natural visual input. Hence, retinal waves seem suitable training stimuli to learn invariances and thereby shape the developing early visual system such that it is best prepared for coding input from the natural world. PMID:24810948
Gummadavelli, Abhijeet; Motelow, Joshua E; Smith, Nicholas; Zhan, Qiong; Schiff, Nicholas D; Blumenfeld, Hal
2015-01-01
Understanding the neural mechanisms that support human consciousness is an important frontier in neuroscience and medicine. We previously developed a rodent model of temporal lobe seizures that recapitulates the human electroencephalography (EEG) signature of ictal and postictal neocortical slow waves associated with behavioral impairments in level of consciousness. The mechanism of slow-wave production in epilepsy may involve suppression of the subcortical arousal systems including the brainstem and intralaminar thalamic nuclei. We hypothesized that intralaminar thalamic stimulation may lead to electrophysiologic and functional rescue from postictal slow waves and behavioral arrest. We electrically stimulated the central lateral thalamic nucleus (a member of the intralaminar nuclei) under anesthesia and after electrically induced hippocampal seizures in anesthetized and in awake-behaving animal model preparations. We demonstrated a proof-of-principle restoration of electrophysiologic and behavioral measures of consciousness by stimulating the intralaminar thalamic nuclei after seizures. We measured decreased cortical slow waves and increased desynchronization and multiunit activity in the cortex with thalamic stimulation following seizures. Functionally, thalamic stimulation produced resumption of exploratory behaviors in the postictal state. Targeting of nodes in the neural circuitry of consciousness has important medical implications. Impaired consciousness with epilepsy has dangerous consequences including decreased school/work performance, social stigmatization, and impaired airway protection. These data suggest a novel therapeutic approach for restoring consciousness after seizures. If paired with responsive neurostimulation, this may allow rapid implementation to improve level of consciousness in patients with epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Instabilities in dynamic anti-plane sliding of an elastic layer on a dissimilar elastic half-space
NASA Astrophysics Data System (ADS)
Kunnath, R.
2012-12-01
The stability of dynamic anti-plane sliding at an interface between an elastic layer and an elastic half-space with dissimilar elastic properties is studied. Friction at the interface is assumed to follow a rate- and state-dependent law, with a positive instantaneous dependence on slip velocity and a rate weakening behavior in the steady state. The perturbations are of the form exp(ikx+pt), where k is the wavenumber, x is the coordinate along the interface, p is the time response to the perturbation and t is time. The results of the stability analysis are shown in Figs. 1 and 2 with the velocity weakening parameter b/a=5, shear wave speed ratio cs'/cs=1.2, shear modulus ratio μ'/μ=1.2 and non-dimensional layer thickness H=100. The normalized instability growth rate and normalized phase velocity are plotted as a function of wavenumber. Fig.1 is for a non-dimensional unperturbed slip velocity ɛ=5 (rapid sliding) while Fig. 2 is for ɛ=0.05 (slow sliding). The results show the destabilization of interfacial waves. For slow sliding, destabilization of interfacial waves is still seen, indicating that the quasi-static approximation to slow sliding is not valid. This is in agreement with the result of Ranjith (Int. J. Solids and Struct., 2009, 46, 3086-3092) who predicted an instability of long-wavelength Love waves in slow sliding.
Madan, Christopher R.; Chen, Yvonne Y.; Singhal, Anthony
2016-01-01
It is known that the functional properties of an object can interact with perceptual, cognitive, and motor processes. Previously we have found that a between-subjects manipulation of judgment instructions resulted in different manipulability-related memory biases in an incidental memory test. To better understand this effect we recorded electroencephalography (EEG) while participants made judgments about images of objects that were either high or low in functional manipulability (e.g., hammer vs. ladder). Using a between-subjects design, participants judged whether they had seen the object recently (Personal Experience), or could manipulate the object using their hand (Functionality). We focused on the P300 and slow-wave event-related potentials (ERPs) as reflections of attentional allocation. In both groups, we observed higher P300 and slow wave amplitudes for high-manipulability objects at electrodes Pz and C3. As P300 is thought to reflect bottom-up attentional processes, this may suggest that the processing of high-manipulability objects recruited more attentional resources. Additionally, the P300 effect was greater in the Functionality group. A more complex pattern was observed at electrode C3 during slow wave: processing the high-manipulability objects in the Functionality instruction evoked a more positive slow wave than in the other three conditions, likely related to motor simulation processes. These data provide neural evidence that effects of manipulability on stimulus processing are further mediated by automatic vs. deliberate motor-related processing. PMID:27536224
The Direct Digital Modulation of Traveling Wave Tubes
NASA Technical Reports Server (NTRS)
Radhamohan, Ranjan S.
2004-01-01
Traveling wave tube (TWT) technology, first described by Rudolf Kompfner in the early 1940s, has been a key component of space missions from the earliest communication satellites in the 1960s to the Cassini probe today. TWTs are essentially signal amplifiers that have the special capability of operating at microwave frequencies. The microwave frequency range, which spans from approximately 500 MHz to 300 GHz, is shared by many technologies including cellular phones, satellite television, space communication, and radar. TWT devices are superior in reliability, weight, and efficiency to solid-state amplifiers at the high power and frequency levels required for most space missions. TWTs have three main components -an electron gun, slow wave structure, and collector. The electron gun generates an electron beam that moves along the length of the tube axis, inside of the slow wave circuit. At the same time, the inputted signal is slowed by its travel through the coils of the helical slow wave circuit. The interaction of the electron beam and this slowed signal produces a transfer of kinetic energy to the signal, and in turn, amplification. At the end of its travel, the spent electron beam moves into the collector where its remaining energy is dissipated as heat or harnessed for reuse. TWTs can easily produce gains in the tens of decibels, numbers that are suitable for space missions. To date, however, TWTs have typically operated at fixed levels of gain. This gain is determined by various, unchanging, physical factors of the tube. Traditionally, to achieve varying gain, an input signal s amplitude has had to first be modulated by a separate device before being fed into the TWT. This is not always desirable, as significant distortion can occur in certain situations. My mentor, Mr. Dale Force, has proposed an innovative solution to this problem called direct digital modulation . The testing and implementation of this solution is the focus of my summer internship. The direct digital modulation of a TWT removes the need for a separate amplitude modulation device. Instead, different levels of gain are achieved by varying the electron beam current. The lower the current, the less kinetic energy is available to be transferred to the signal. To vary the current, a grid is placed in-between the electron gun and the slow wave circuit. By changing the voltage across the grid, the electron beam current can be controlled. Grid technology has mostly been used in pulse applications such as radar, where only two voltage states are necessary. For direct digital modulation, however, a continuous range of voltages is required.
Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA
NASA Astrophysics Data System (ADS)
Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.
2016-05-01
Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.
NASA Astrophysics Data System (ADS)
Delph, J. R.; Beck, S. L.; Zandt, G.; Biryol, C. B.; Ward, K. M.
2013-12-01
The Anatolian Plate consists of various lithospheric terranes amalgamated during the closure of the Tethys Ocean, and is currently extruding to the west in response to a combination of the collision of the Arabian plate in the east and the roll back of the Aegean subduction zone in the west. We used Ambient Noise Tomography (ANT) at periods <= 40s to investigate the crust and uppermost mantle structure of the Anatolian Plate. We computed a total of 13,779 unique cross-correlations using one sample-per-second vertical component broadband seismic data from 215 stations from 8 different networks over a period of 7 years to compute fundamental-mode Rayleigh wave dispersion curves following the method of Benson et al. (2007). We then inverted the dispersion data to calculate phase velocity maps for 11 periods from 8 s - 40 s throughout Anatolia and the Aegean regions (Barmin et al. 2001). Using smoothed Moho values derived from Vanacore et al. (2013) in our starting models, we inverted our dispersion curves using a linear least-squares iterative inversion scheme (Herrmann & Ammon 2004) to produce a 3-D shear-wave velocity model of the crust and uppermost mantle throughout Anatolia and the Aegean. We find a good correlation between our seismic shear wave velocities and paleostructures (suture zones) and modern deformation (basin formation and fault deformation). The most prominent crustal velocity contrasts occur across intercontinental sutures zones, resulting from the juxtaposition of the compositionally different basements of the amalgamated terranes. At shallow depths, seismic velocity contrasts correspond closely with surficial features. The Thrace, Cankiri and Tuz Golu basins, and accretionary complexes related to the closure of the Neotethys are characterized by slow shear wave velocities, while the Menderes and Kirsehir Massifs, Pontides, and Istanbul Zone are characterized by fast velocities. We find that the East Anatolia Plateau has slow shear-wave velocities, as expected due to high heat flow and active volcanism. The Tuz Golu fault has a visible seismic signal down to ~15 km below sea level, and the eastern Inner-Tauride Suture corresponding to the Central Anatolian Fault Zone may extend into the mantle. The Isparta Angle separates the actively extending portion of western Anatolia from the plateau regions in the east, and the largest anomaly (slow velocities) extending into the upper mantle is observed under the western flank of the Isparta Angle, corresponding to the Fethiye-Burdur fault zone. We attribute these slow shear-wave velocities to the effects of complex deformations within the crust as a result of the interactions of the African and Anatolian Plates. In the upper mantle, slow shear-wave velocities are consistent with a slab tear along a STEP fault corresponding to the extensions of the Pliny and Strabo Transform faults, allowing asthenosphere to rise to very shallow depths. The upper mantle beneath the Taurides exhibits very slow shear-wave velocities, in agreement with possible delamination or slab-breakoff (Cosentino et al. 2012) causing rapid uplift in the last 8 million years.
Auditory closed-loop stimulation of the sleep slow oscillation enhances memory.
Ngo, Hong-Viet V; Martinetz, Thomas; Born, Jan; Mölle, Matthias
2013-05-08
Brain rhythms regulate information processing in different states to enable learning and memory formation. The <1 Hz sleep slow oscillation hallmarks slow-wave sleep and is critical to memory consolidation. Here we show in sleeping humans that auditory stimulation in phase with the ongoing rhythmic occurrence of slow oscillation up states profoundly enhances the slow oscillation rhythm, phase-coupled spindle activity, and, consequently, the consolidation of declarative memory. Stimulation out of phase with the ongoing slow oscillation rhythm remained ineffective. Closed-loop in-phase stimulation provides a straight-forward tool to enhance sleep rhythms and their functional efficacy. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang; Li, Yong-Ming; Jing, Jian
2017-03-01
Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang
Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.
Slow Wave Sleep and Long Duration Spaceflight
NASA Technical Reports Server (NTRS)
Orr, M.; Whitmire, A.; Arias, D.; Leveton, L.
2011-01-01
To review the literature on slow wave sleep (SWS) in long duration space flight, and place this within the context of the broader literature on SWS particularly with respect to analogous environments such as the Antarctic. Explore how SWS could be measured within the International Space Station (ISS) context with the aim to utilize the ISS as an analog for future extra-orbital long duration missions. Discuss the potential use of emergent minimally intrusive wireless technologies like ZEO for integrated prelaunch, flight, and return to Earth analysis and optimization of SWS (and general quality of sleep).
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
2006-01-01
We have developed relatively broadband K- and Ka-band phase shifters using synthetic (slow-wave) transmission lines employing coupled microstripline "varactors". The tunable coupled microstripline circuits are based on laser ablated BaSrTiO films on lanthanum aluminate substrates. A model and design criteria for these novel circuits will be presented, along with measured performance including anomalous phase delay characteristics. The critical role of phase shifter loss and transient response in reflectarray antennas will be emphasized.
Lower hybrid accessibility in a large, hot reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dziubek, R.A.; Harvey, R.W.; Hokin, S.A.
1995-11-01
Accessibility and damping of the slow wave in a reversed field pinch (RFP) plasma is investigated theoretically, using projected Reversed Field Experiment (RFX) plasma parameters. By numerically solving the hot plasma dispersion relation, regions of propagation are found and the possibility of mode conversion is analyzed. If the parallel index of refraction of the wave is chosen judiciously at the edge of the plasma, the slow wave is accessible to a target region located just inside the reversal surface without mode conversion. Landau damping is also optimized in this region. A representative fast electron population is then added in ordermore » to determine its effect on accessibility and damping. The presence of these electrons, whose parameters were estimated by extrapolation of Madison Symmetric Torus (MST) data, does not affect the accessibility of the wave. However, the initial phase velocity of the wave needs to be increased somewhat in order to maintain optimal damping in the target zone.« less
The Fisher-KPP problem with doubly nonlinear diffusion
NASA Astrophysics Data System (ADS)
Audrito, Alessandro; Vázquez, Juan Luis
2017-12-01
The famous Fisher-KPP reaction-diffusion model combines linear diffusion with the typical KPP reaction term, and appears in a number of relevant applications in biology and chemistry. It is remarkable as a mathematical model since it possesses a family of travelling waves that describe the asymptotic behaviour of a large class solutions 0 ≤ u (x , t) ≤ 1 of the problem posed in the real line. The existence of propagation waves with finite speed has been confirmed in some related models and disproved in others. We investigate here the corresponding theory when the linear diffusion is replaced by the "slow" doubly nonlinear diffusion and we find travelling waves that represent the wave propagation of more general solutions even when we extend the study to several space dimensions. A similar study is performed in the critical case that we call "pseudo-linear", i.e., when the operator is still nonlinear but has homogeneity one. With respect to the classical model and the "pseudo-linear" case, the "slow" travelling waves exhibit free boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Mijie; Xiao, Chijie; Wang, Xiaogang
2017-06-10
We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. Thismore » result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Hongxiang; Faculty of Science, Jiangsu University, Zhenjiang 212013; Zhang Shuyi
2011-04-01
Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coatingmore » on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.« less
The dissipation of electromagnetic waves in plasmas
NASA Astrophysics Data System (ADS)
Basov, N. G.
The present anthology includes articles concerning the experimental study of the interaction of high power electromagnetic waves with collisionless plasmas and with electrons. Among the topics covered are the nonlinear dissipation of electromagnetic waves in inhomogeneous collisionless plasmas, the collisionless absorption of electromagnetic waves in plasmas and 'slow' nonlinear phenomena, the nonlinear effects of electron plasma waves propagating in an inhomogeneous plasma layer, and secondary-emission microwave discharges having large electron transit angles.
NASA Astrophysics Data System (ADS)
Ito, Y.; Wallace, L. M.; Henrys, S. A.; Kaneko, Y.; Webb, S. C.; Muramoto, T.; Ohta, K.; Mochizuki, K.; Suzuki, S.; Kido, M.; Hino, R.
2017-12-01
The two M7-class earthquakes struck in New Zealand in 2016. One is the M7.1 Te Araroa earthquake on 1st September, and the other is the M7.8 Kaikoura earthquake on 14th November. The M7.1 earthquake struck offshore, following a sequence of the Hikurangi slow slip event on the northern Hikurangi Margin. The M7.8 Kaikoura earthquake has triggered a shallow slow slip event of northern Hikurangi subduction margin. We present seismic and tsunami waves radiated from two large earthquakes of M7.8 Kaikoura and M7.1 Te Araroa earthquakes in 2016 using a network of absolute pressure gauges (APG) deployed at the Hikurangi subduction margin offshore New Zealand. We deployed 5 APG on the accretionary wedge at the northen part of the Hikurangi margnin in June 2016 at the northern part of Hikurangi subducting margin, and were recovered in June 2015. The pressure gauge recorded data continuously for one year, with a logging interval of 1 or 2 s. Our processing of the APG data to identify seismic is a band pass filter with a range of 10-100 s is applied for seismic signals. We observed seismic waves radiated from both the M7.8 Kaikoura and M7.1 Te Araroa earthquakes. The pressure fluctuation more than 20 hPa from the arrivals of seismic waves was observed on two both earthquakes. It should be noted that marine pressure records are nearly equivalent to vertical acceleration measurements [Webb, 1998]. Specifically, on the M7.8 Kaikoura earthquake, the characteristic seismic signals with large amplitude more than 20 hPa lasting more than 300 s was observed on the all of four APGs. The long duration seismic waves with relatively large amplitude observed after the 7.8 Kaikoura earthquake would dynamically trigger the Hikurangi slow slip event; the dynamic triggering and characteristic seismic waves in the accretionary wedge has been predicted from a wave-field modeling using a 3D velocity model with a low-velocity sedimentary basin [Wallace et al., 2017].
NASA Technical Reports Server (NTRS)
Sui, Chung-Hsiung; Lau, Ka-Ming
1989-01-01
An improved treatment of diabatic heating due to moist convection is introduced into the dynamical model of Lau and Peng (1987) to study the origin of intraseasonal oscillations in the tropics. It is found that the periods of slow-moving wave-CISK disturbances in the tropical troposphere with fixed sea surface temperature vary from 20 to 50 days. The results suggest that heating in the lower troposphere may be important in slowing down the wave-CISK modes. Also, it is shown that the intraseasonal oscillation can propagate around the globe even when the associated deep convection is only confined over warm sea surface temperatures.
Irregular wave functions of a hydrogen atom in a uniform magnetic field
NASA Technical Reports Server (NTRS)
Wintgen, D.; Hoenig, A.
1989-01-01
The highly excited irregular wave functions of a hydrogen atom in a uniform magnetic field are investigated analytically, with wave function scarring by periodic orbits considered quantitatively. The results obtained confirm that the contributions of closed classical orbits to the spatial wave functions vanish in the semiclassical limit. Their disappearance, however, is slow. This discussion is illustrated by numerical examples.
Bright-dark rogue wave in mode-locked fibre laser (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kbashi, Hani; Kolpakov, Stanislav; Martinez, Amós; Mou, Chengbo; Sergeyev, Sergey V.
2017-05-01
Bright-Dark Rogue Wave in Mode-Locked Fibre Laser Hani Kbashi1*, Amos Martinez1, S. A. Kolpakov1, Chengbo Mou, Alex Rozhin1, Sergey V. Sergeyev1 1Aston Institute of Photonic Technologies, School of Engineering and Applied Science Aston University, Birmingham, B4 7ET, UK kbashihj@aston.ac.uk , 0044 755 3534 388 Keywords: Optical rogue wave, Bright-Dark rogue wave, rogue wave, mode-locked fiber laser, polarization instability. Abstract: Rogue waves (RWs) are statistically rare localized waves with high amplitude that suddenly appear and disappear in oceans, water tanks, and optical systems [1]. The investigation of these events in optics, optical rogue waves, is of interest for both fundamental research and applied science. Recently, we have shown that the adjustment of the in-cavity birefringence and pump polarization leads to emerge optical RW events [2-4]. Here, we report the first experimental observation of vector bright-dark RWs in an erbium-doped stretched pulse mode-locked fiber laser. The change of induced in-cavity birefringence provides an opportunity to observe RW events at pump power is a little higher than the lasing threshold. Polarization instabilities in the laser cavity result in the coupling between two orthogonal linearly polarized components leading to the emergence of bright-dark RWs. The observed clusters belongs to the class of slow optical RWs because their lifetime is of order of a thousand of laser cavity roundtrip periods. References: 1. D. R. Solli, C. Ropers, P. Koonath,and B. Jalali, Optical rogue waves," Nature, 450, 1054-1057, 2007. 2. S. V. Sergeyev, S. A. Kolpakov, C. Mou, G. Jacobsen, S. Popov, and V. Kalashnikov, "Slow deterministic vector rogue waves," Proc. SPIE 9732, 97320K (2016). 3. S. A. Kolpakov, H. Kbashi, and S. V. Sergeyev, "Dynamics of vector rogue waves in a fiber laser with a ring cavity," Optica, 3, 8, 870, (2016). 5. S. Kolpakov, H. Kbashi, and S. Sergeyev, "Slow optical rogue waves in a unidirectional fiber laser," in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW2A.56.
Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations
Wei, Yina; Krishnan, Giri P.
2016-01-01
Sleep is critical for regulation of synaptic efficacy, memories, and learning. However, the underlying mechanisms of how sleep rhythms contribute to consolidating memories acquired during wakefulness remain unclear. Here we studied the role of slow oscillations, 0.2–1 Hz rhythmic transitions between Up and Down states during stage 3/4 sleep, on dynamics of synaptic connectivity in the thalamocortical network model implementing spike-timing-dependent synaptic plasticity. We found that the spatiotemporal pattern of Up-state propagation determines the changes of synaptic strengths between neurons. Furthermore, an external input, mimicking hippocampal ripples, delivered to the cortical network results in input-specific changes of synaptic weights, which persisted after stimulation was removed. These synaptic changes promoted replay of specific firing sequences of the cortical neurons. Our study proposes a neuronal mechanism on how an interaction between hippocampal input, such as mediated by sharp wave-ripple events, cortical slow oscillations, and synaptic plasticity, may lead to consolidation of memories through preferential replay of cortical cell spike sequences during slow-wave sleep. SIGNIFICANCE STATEMENT Sleep is critical for memory and learning. Replay during sleep of temporally ordered spike sequences related to a recent experience was proposed to be a neuronal substrate of memory consolidation. However, specific mechanisms of replay or how spike sequence replay leads to synaptic changes that underlie memory consolidation are still poorly understood. Here we used a detailed computational model of the thalamocortical system to report that interaction between slow cortical oscillations and synaptic plasticity during deep sleep can underlie mapping hippocampal memory traces to persistent cortical representation. This study provided, for the first time, a mechanistic explanation of how slow-wave sleep may promote consolidation of recent memory events. PMID:27076422
Multi-scale analysis of compressible fluctuations in the solar wind
NASA Astrophysics Data System (ADS)
Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe
2018-01-01
Compressible plasma turbulence is investigated in the fast solar wind at proton kinetic scales by the combined use of electron density and magnetic field measurements. Both the scale-dependent cross-correlation (CC) and the reduced magnetic helicity (σm) are used in tandem to determine the properties of the compressible fluctuations at proton kinetic scales. At inertial scales the turbulence is hypothesised to contain a mixture of Alfvénic and slow waves, characterised by weak magnetic helicity and anti-correlation between magnetic field strength B and electron density ne. At proton kinetic scales the observations suggest that the fluctuations have stronger positive magnetic helicities as well as strong anti-correlations within the frequency range studied. These results are interpreted as being characteristic of either counter-propagating kinetic Alfvén wave packets or a mixture of anti-sunward kinetic Alfvén waves along with a component of kinetic slow waves.
Three-dimensional simulation of helix traveling-wave tube cold-test characteristics using MAFIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kory, C.L.
1996-12-31
A critically important step in the traveling-wave tube (TWT) design process is the cold-testing of the slow-wave circuit for dispersion, beam interaction impedance and RF losses. Experimental cold-tests can be very time-consuming and expensive, thus limiting the freedom to examine numerous variations to the test circuit. This makes the need for computational methods crucial as they can lower cost, reduce tube development time and allow the freedom to introduce novel and improved designs. The cold-test parameters have been calculated for a C-Band Northrop-Grumman helix TWT slow-wave circuit using MAFIA, the three-dimensional electromagnetic finite-integration computer code. Measured and simulated cold-test datamore » for the Northrop-Grumman helix TWT including dispersion, impedance and attenuation will be presented. Close agreement between simulated and measured values of the dispersion, impedance and attenuation has been obtained.« less
Wave kinetics of random fibre lasers
Churkin, D V.; Kolokolov, I V.; Podivilov, E V.; Vatnik, I D.; Nikulin, M A.; Vergeles, S S.; Terekhov, I S.; Lebedev, V V.; Falkovich, G.; Babin, S A.; Turitsyn, S K.
2015-01-01
Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics. PMID:25645177
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdizadeh, N.; Aghamir, F. M.
2013-02-28
A fluid theory is used to derive the dispersion relation of two-stream free electron laser (TSFEL) with a magnetic planar wiggler pump in the presence of background plasma (BP). The effect of finite beams and plasma temperature on the growth rate of a TSFEL has been verified. The twelve order dispersion equation has been solved numerically. Three instabilities, FEL along with the TS and TS-FEL instabilities occur simultaneously. The analysis in the case of cold BP shows that when the effect of the beam temperature is taken into account, both instable bands of wave-number and peak growth rate in themore » TS instability increase, but peak growth of the FEL and TS-FEL instabilities decreases. Thermal motion of the BP causes to diminish the TS instability and it causes to decrease the FEL and TS-FEL instabilities. By increasing the beam densities and lowering initial velocities (in the collective Raman regime), growth rate of instabilities increases; however, it has opposite behavior in the Campton regime.« less
Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1997-01-01
The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various circuit parameters including typical manufacturing dimensional tolerances and support rod permittivity. By varying the circuit parameters of an accurate model using MAFIA, these sensitivities can be computed for manufacturing concerns, and design optimization previous to fabrication, thus eliminating the need for costly experimental iterations. Several variations were made to a standard helical circuit using MAFIA to investigate the effect that variations on helical tape and support rod width, metallized loading height and support rod permittivity, have on TWT cold-test characteristics.
Seismic noise frequency dependent P and S wave sources
NASA Astrophysics Data System (ADS)
Stutzmann, E.; Schimmel, M.; Gualtieri, L.; Farra, V.; Ardhuin, F.
2013-12-01
Seismic noise in the period band 3-10 sec is generated in the oceans by the interaction of ocean waves. Noise signal is dominated by Rayleigh waves but body waves can be extracted using a beamforming approach. We select the TAPAS array deployed in South Spain between June 2008 and September 2009 and we use the vertical and horizontal components to extract noise P and S waves, respectively. Data are filtered in narrow frequency bands and we select beam azimuths and slownesses that correspond to the largest continuous sources per day. Our procedure automatically discard earthquakes which are localized during short time durations. Using this approach, we detect many more noise P-waves than S-waves. Source locations are determined by back-projecting the detected slowness/azimuth. P and S waves are generated in nearby areas and both source locations are frequency dependent. Long period sources are dominantly in the South Atlantic and Indian Ocean whereas shorter period sources are rather in the North Atlantic Ocean. We further show that the detected S-waves are dominantly Sv-waves. We model the observed body waves using an ocean wave model that takes into account all possible wave interactions including coastal reflection. We use the wave model to separate direct and multiply reflected phases for P and S waves respectively. We show that in the South Atlantic the complex source pattern can be explained by the existence of both coastal and pelagic sources whereas in the North Atlantic most body wave sources are pelagic. For each detected source, we determine the equivalent source magnitude which is compared to the model.
Ultrasonic inspection of studs (bolts) using dynamic predictive deconvolution and wave shaping.
Suh, D M; Kim, W W; Chung, J G
1999-01-01
Bolt degradation has become a major issue in the nuclear industry since the 1980's. If small cracks in stud bolts are not detected early enough, they grow rapidly and cause catastrophic disasters. Their detection, despite its importance, is known to be a very difficult problem due to the complicated structures of the stud bolts. This paper presents a method of detecting and sizing a small crack in the root between two adjacent crests in threads. The key idea is from the fact that the mode-converted Rayleigh wave travels slowly down the face of the crack and turns from the intersection of the crack and the root of thread to the transducer. Thus, when a crack exists, a small delayed pulse due to the Rayleigh wave is detected between large regularly spaced pulses from the thread. The delay time is the same as the propagation delay time of the slow Rayleigh wave and is proportional to the site of the crack. To efficiently detect the slow Rayleigh wave, three methods based on digital signal processing are proposed: wave shaping, dynamic predictive deconvolution, and dynamic predictive deconvolution combined with wave shaping.
NASA Astrophysics Data System (ADS)
Zigone, Dimitri; Rivet, Diane; Radiguet, Mathilde; Campillo, Michel; Voisin, Christophe; Cotte, Nathalie; Walpersdorf, Andrea; Shapiro, Nikolai M.; Cougoulat, Glenn; Roux, Philippe; Kostoglodov, Vladimir; Husker, Allen; Payero, Juan S.
2012-09-01
We investigate the triggering of seismic tremor and slow slip event in Guerrero (Mexico) by the February 27, 2010 Maule earthquake (Mw 8.8). Triggered tremors start with the arrival of S wave generated by the Maule earthquake, and keep occurring during the passing of ScS, SS, Love and Rayleigh waves. The Rayleigh wave dispersion curve footprints the high frequency energy envelope of the triggered tremor, indicating a strong modulation of the source of tremors by the passing surface wave. This correlation and modulation by the passing waves is progressively lost with time over a few hours. The tremor activity continues during the weeks/months after the earthquake. GPS time series suggest that the second sub-event of the 2009-2010 SSE in Guerrero is actually triggered by the Maule earthquake. The southward displacement of the GPS stations starts coincidently with the earthquake and tremors. The long duration of tremors indicate a continuing deformation process at depth, which we propose to be the second sub-event of the 2009-2010 SSE. We show a quasi-systematic correlation between surface displacement rate measured by GPS and tremor activity, suggesting that the NVT are controlled by the variations in the slip history of the SSE. This study shows that two types of tremors emerge: (1) Those directly triggered by the passing waves and (2) those triggered by the stress variations associated with slow slip. This indicates the prominent role of aseismic creep in the Mexican subduction zone response to a large teleseismic earthquake, possibly leading to large-scale stress redistribution.
Generation of Magnetohydrodynamic Waves in Low Solar Atmospheric Flux Tubes by Photospheric Motions
NASA Astrophysics Data System (ADS)
Mumford, S. J.; Fedun, V.; Erdélyi, R.
2015-01-01
Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.
Gene expression in the rat cerebral cortex: comparison of recovery sleep and hypnotic-induced sleep.
Wisor, J P; Morairty, S R; Huynh, N T; Steininger, T L; Kilduff, T S
2006-08-11
Most hypnotic medications currently on the market target some aspect of GABAergic neurotransmission. Although all such compounds increase sleep, these drugs differentially affect the activity of the cerebral cortex as measured by the electroencephalogram. Whereas benzodiazepine medications such as triazolam tend to suppress slow wave activity in the cortex, the GABA(B) ligand gamma-hydroxybutyrate greatly enhances slow wave activity and the non-benzodiazepine, zolpidem, which binds to the omega1 site on the GABA(A) receptor/Cl(-) ionophore complex, is intermediate in this regard. Our previous studies have demonstrated that a small number of genes exhibit increased expression in the cerebral cortex of the mouse and rat during recovery sleep after sleep deprivation: egr-3, fra-2, grp78, grp94, ngfi-b, and nr4a3. Using these genes as a panel of biomarkers associated with sleep, we asked whether hypnotic medications induce similar molecular changes in the rat cerebral cortex to those observed when both sleep continuity and slow wave activity are enhanced during recovery sleep. We find that, although each drug increases the expression of a subset of genes in the panel of biomarkers, no drug fully replicates the molecular changes in the cortex associated with recovery sleep. Furthermore, high levels of slow wave activity in the cortex are correlated with increased expression of fra-2 whereas the expression of grp94 is correlated with body temperature. These results demonstrate that sleep-related changes in gene expression may be affected by physiological covariates of sleep and wakefulness rather than by vigilance state per se.
Grønli, Janne; Rempe, Michael J; Clegern, William C; Schmidt, Michelle; Wisor, Jonathan P
2016-06-01
Markers of sleep drive (<10 Hz; slow-wave activity and theta) have been identified in the course of slow-wave sleep and wakefulness. So far, higher frequencies in the waking electroencephalogram have not been examined thoroughly as a function of sleep drive. Here, electroencephalogram dynamics were measured in epochs of active wake (wake characterized by high muscle tone) or quiet wake (wake characterized by low muscle tone). It was hypothesized that the higher beta oscillations (15-35 Hz, measured by local field potential and electroencephalography) represent fundamentally different processes in active wake and quiet wake. In active wake, sensory stimulation elevated beta activity in parallel with gamma (80-90 Hz) activity, indicative of cognitive processing. In quiet wake, beta activity paralleled slow-wave activity (1-4 Hz) and theta (5-8 Hz) in tracking sleep need. Cerebral lactate concentration, a measure of cerebral glucose utilization, increased during active wake whereas it declined during quiet wake. Mathematical modelling of state-dependent dynamics of cortical lactate concentration was more precisely predictive when quiet wake and active wake were included as two distinct substates rather than a uniform state of wakefulness. The extent to which lactate concentration declined in quiet wake and increased in active wake was proportionate to the amount of beta activity. These data distinguish quiet wake from active wake. Quiet wake, particularly when characterized by beta activity, is permissive to metabolic and electrophysiological changes that occur in slow-wave sleep. These data urge further studies on state-dependent beta oscillations across species. © 2016 European Sleep Research Society.
An integrated perspective of the continuum between earthquakes and slow-slip phenomena
Peng, Zhigang; Gomberg, Joan
2010-01-01
The discovery of slow-slip phenomena has revolutionized our understanding of how faults accommodate relative plate motions. Faults were previously thought to relieve stress either through continuous aseismic sliding, or as earthquakes resulting from instantaneous failure of locked faults. In contrast, slow-slip events proceed so slowly that slip is limited and only low-frequency (or no) seismic waves radiate. We find that slow-slip phenomena are not unique to the depths (tens of kilometres) of subduction zone plate interfaces. They occur on faults in many settings, at numerous scales and owing to various loading processes, including landslides and glaciers. Taken together, the observations indicate that slowly slipping fault surfaces relax most of the accrued stresses through aseismic slip. Aseismic motion can trigger more rapid slip elsewhere on the fault that is sufficiently fast to generate seismic waves. The resulting radiation has characteristics ranging from those indicative of slow but seismic slip, to those typical of earthquakes. The mode of seismic slip depends on the inherent characteristics of the fault, such as the frictional properties. Slow-slip events have previously been classified as a distinct mode of fault slip compared with that seen in earthquakes. We conclude that instead, slip modes span a continuum and are of common occurrence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen Yuandeng; Liu Yu; Zhao Ruijuan
2013-08-20
We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, itmore » transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.« less
Helicon wave coupling in KSTAR plasmas for off-axis current drive in high electron pressure plasmas
NASA Astrophysics Data System (ADS)
Wang, S. J.; Wi, H. H.; Kim, H. J.; Kim, J.; Jeong, J. H.; Kwak, J. G.
2017-04-01
A helicon wave current drive is proposed as an efficient off-axis current drive in the high electron β plasmas that are expected in fusion reactors. A high frequency helicon wave coupling was analyzed using the surface impedance at a plasma boundary. A slow wave coupling, which may compete with the helicon wave coupling at a frequency of 500 MHz, is estimated to be lower than the fast wave coupling by an order of magnitude in the KSTAR edge plasma density and in practical Faraday shield misalignment with the magnetic pitch. A traveling wave antenna, which is a two port combline antenna, was analyzed using a simplified lumped element model. The results show that the traveling wave antenna provides load resiliency because of its insensitivity to loading resistance, provided that the loading resistance at a radiating element is limited within a practical range. The combline antenna is attractive because it does not require a matching system and exhibits a high selectivity of parallel refractive index. Based on the analysis, a seven element combline antenna was fabricated and installed at an off-mid-plane offset of 30 cm from the mid-plane in KSTAR. The low power RF characteristics measured during several plasma discharges showed no evidence of slow wave coupling. This is consistent with the expectation made through the surface impedance analysis which predicted low slow wave coupling. The wave coupling to the plasma is easily controlled by a radial outer-gap control and gas puffing. No plasma confinement degradation was observed during the radial outer-gap control of up to 3 cm in H-mode discharges. In a ELMy plasmas, only a small reflection peak was observed during a very short portion of the ELM bursting period. If the number of radiating elements is increased for high power operation, then complete load resiliency can be expected. A very large coupling can be problematic for maintaining a parallel refractive index, although this issue can be mitigated by increasing the number of elements.
The Effects of Caffeine on Sleep and Maturational Markers in the Rat
Olini, Nadja; Kurth, Salomé; Huber, Reto
2013-01-01
Adolescence is a critical period for brain maturation during which a massive reorganization of cortical connectivity takes place. In humans, slow wave activity (<4.5 Hz) during NREM sleep was proposed to reflect cortical maturation which relies on use-dependent processes. A stimulant like caffeine, whose consumption has recently increased especially in adolescents, is known to affect sleep wake regulation. The goal of this study was to establish a rat model allowing to assess the relationship between cortical maturation and sleep and to further investigate how these parameters are affected by caffeine consumption. To do so, we assessed sleep and markers of maturation by electrophysiological recordings, behavioral and structural readouts in the juvenile rat. Our results show that sleep slow wave activity follows a similar inverted U-shape trajectory as already known in humans. Caffeine treatment exerted short-term stimulating effects and altered the trajectory of slow wave activity. Moreover, caffeine affected behavioral and structural markers of maturation. Thus, caffeine consumption during a critical developmental period shows long lasting effects on sleep and brain maturation. PMID:24023748
Low-Frequency Waves in Cold Three-Component Plasmas
NASA Astrophysics Data System (ADS)
Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong
2016-09-01
The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS
Shera, Christopher A; Cooper, Nigel P
2013-04-01
At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves.
Avoided-Level-Crossing Spectroscopy with Dressed Matter Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckardt, Andre; Holthaus, Martin
2008-12-12
We devise a method for probing resonances of macroscopic matter waves in shaken optical lattices by monitoring their response to slow parameter changes, and show that such resonances can be disabled by particular choices of the driving amplitude. The theoretical analysis of this scheme reveals far-reaching analogies between dressed atoms and time periodically forced matter waves.
Avoided-Level-Crossing Spectroscopy with Dressed Matter Waves
NASA Astrophysics Data System (ADS)
Eckardt, André; Holthaus, Martin
2008-12-01
We devise a method for probing resonances of macroscopic matter waves in shaken optical lattices by monitoring their response to slow parameter changes, and show that such resonances can be disabled by particular choices of the driving amplitude. The theoretical analysis of this scheme reveals far-reaching analogies between dressed atoms and time periodically forced matter waves.
Magnetic chicane for terahertz management
Benson, Stephen; Biallas, George Herman; Douglas, David; Jordan, Kevin Carl; Neil, George R.; Michelle D. Shinn; Willams, Gwyn P.
2010-12-28
The introduction of a magnetic electron beam orbit chicane between the wiggler and the downstream initial bending dipole in an energy recovering Linac alleviates the effects of radiation propagated from the downstream bending dipole that tend to distort the proximate downstream mirror of the optical cavity resonator.
Status Report on the CEBAF IR and UV FELs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leemann, Christoph; Bisognano, Joseph; Douglas, David
1993-07-01
The CEBAF five pass recirculating, superconducting linac, being developed as a high power electron source for nuclear physics, is also an ideal FEL driver.The 45 MeV front end linac is presently operational with a CW (low peak current) nuclear physics gun and has met all CEBAF performance specifications including low emittance and energy spread (< 1 * 10^-4). Progress will be reported in commissioning.This experience leads to predictions of excellent FEL performance.Initial designs reported last year have been advanced.Using the output of a high charge DC photoemission gun under development with a 6 cm period wiggler produces kilowatt output powersmore » in the 3.6 to 17 micrometer range in the fundamental.Third harmonic operation extends IR performance down to 1.2 micrometer.Beam at energies up to 400 MeV from the first full CEBAF linac will interact in a similar but longer wiggler to yield kilowatt UV light production at wavelengths as short as 0.15 micrometers.Full power FEL« less
Hard X-ray Wiggler Front End Filter Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte-Schrepping, Horst; Hahn, Ulrich
2007-01-19
The front end filter design and implementation for the new HARWI-II hard X-ray wiggler at DORIS-III at HASYLAB/DESY is presented. The device emits a total power of 30 kW at 150mA storage ring current. The beam has a horizontal width of 3.8mrad and a central power density of 54 W/mm2 at 26m distance to the source. The filter section located in the ring tunnel has been introduced to tailor the thermal loads at the downstream optical components. The high power density and the high total power at the filter section are handled with a layered design. Glassy carbon filters convertmore » the absorbed power into thermal radiation to lower the heat load to an acceptable level for water cooled copper filters. The requirements in beam size and filtering are addressed by separating the filter functions in three units which are switched individually into the beam.« less
Construction and Performance of a Superconducting Multipole Wiggler
NASA Astrophysics Data System (ADS)
Hwang, C. S.; Wang, B.; Chen, J. Y.; Chang, C. H.; Chen, H. H.; Fan, T. C.; Lin, F. Y.; Huang, M. H.; Chang, C. C.; Hsu, S. N.; Hsiung, G. Y.; Hsu, K. T.; Chen, J.; Chien, Y. C.; Chen, J. R.; Chen, C. T.
2004-05-01
A 3.2 Tesla superconducting multipole wiggler was designed and fabricated as an X-ray source. The magnet assembly, which consists of 32 pairs of racetrack NbTi superconducting coils with a periodic length of 60 mm, provides 28 effective poles. A 1.4056 m long elliptical cold-bore stainless steel beam duct with taper flanges and a wall thickness of 1 mm, was developed and constructed to fit the ultra-high vacuum condition for electron beam. The magnetic field strength was measured in liquid helium using a cryogenic Hall probe, revealing a field behavior very close to behavior consistent with the designed values. A Hall generator and the stretch wire methods are used to determine the transfer function of the peak field, the first and second integrated field distributions, and the good field region of the magnet. The quench protection of the magnet, the control algorithm for automatic filling of liquid helium, and the boil off rate of liquid helium and liquid nitrogen will also be discussed.
Common oscillatory mechanisms across multiple memory systems
NASA Astrophysics Data System (ADS)
Headley, Drew B.; Paré, Denis
2017-01-01
The cortex, hippocampus, and striatum support dissociable forms of memory. While each of these regions contains specialized circuitry supporting their respective functions, all structure their activities across time with delta, theta, and gamma rhythms. We review how these oscillations are generated and how they coordinate distinct memory systems during encoding, consolidation, and retrieval. First, gamma oscillations occur in all regions and coordinate local spiking, compressing it into short population bursts. Second, gamma oscillations are modulated by delta and theta oscillations. Third, oscillatory dynamics in these memory systems can operate in either a "slow" or "fast" mode. The slow mode happens during slow-wave sleep and is characterized by large irregular activity in the hippocampus and delta oscillations in cortical and striatal circuits. The fast mode occurs during active waking and rapid eye movement (REM) sleep and is characterized by theta oscillations in the hippocampus and its targets, along with gamma oscillations in the rest of cortex. In waking, the fast mode is associated with the efficacious encoding and retrieval of declarative and procedural memories. Theta and gamma oscillations have similar relationships with encoding and retrieval across multiple forms of memory and brain regions, despite regional differences in microcircuitry and information content. Differences in the oscillatory coordination of memory systems during sleep might explain why the consolidation of some forms of memory is sensitive to slow-wave sleep, while others depend on REM. In particular, theta oscillations appear to support the consolidation of certain types of procedural memories during REM, while delta oscillations during slow-wave sleep seem to promote declarative and procedural memories.
Fan filters, the 3-D Radon transform, and image sequence analysis.
Marzetta, T L
1994-01-01
This paper develops a theory for the application of fan filters to moving objects. In contrast to previous treatments of the subject based on the 3-D Fourier transform, simplicity and insight are achieved by using the 3-D Radon transform. With this point of view, the Radon transform decomposes the image sequence into a set of plane waves that are parameterized by a two-component slowness vector. Fan filtering is equivalent to a multiplication in the Radon transform domain by a slowness response function, followed by an inverse Radon transform. The plane wave representation of a moving object involves only a restricted set of slownesses such that the inner product of the plane wave slowness vector and the moving object velocity vector is equal to one. All of the complexity in the application of fan filters to image sequences results from the velocity-slowness mapping not being one-to-one; therefore, the filter response cannot be independently specified at all velocities. A key contribution of this paper is to elucidate both the power and the limitations of fan filtering in this new application. A potential application of 3-D fan filters is in the detection of moving targets in clutter and noise. For example, an appropriately designed fan filter can reject perfectly all moving objects whose speed, irrespective of heading, is less than a specified cut-off speed, with only minor attenuation of significantly faster objects. A simple geometric construction determines the response of the filter for speeds greater than the cut-off speed.
The New Social Studies in Perspective: The Carnegie-Mellon Slow-Learner Project.
ERIC Educational Resources Information Center
Penna, Anthony N.
1995-01-01
Describes the origins, development, and products of the slow- learner social studies curriculum development project at Carnegie-Mellon University (Pennsylvania) in the late 1960s. Maintains that this project represented the last wave of curriculum projects to emerge from the national reform efforts following Sputnik. (CFR)
Slow, Fast and Mixed Compressible Modes near the Magnetopause
NASA Astrophysics Data System (ADS)
Scudder, J. D.; Maynard, N. C.; Burke, W. J.
2003-12-01
We motivate and illustrate a new technique to certify time variations, observed in spacecraft frame of reference, as compressible slow or fast magnetosonic waves. Like the Walén test for Alfvén waves, our method for identifying compressible modes requires no Galilean transformation. Unlike the Walén test, we use covariance techniques with magnetic field time series to select three special projections of B(t). The projections of magnetic fluctuations are associated with three, usually non-orthogonal, wavevectors that, in principle, contribute to the locally sampled density fluctuations. Wavevector directions ({\\hat k}(CoV)) are derived from eigenvectors of covariance matrices and mean field directions, Bo. Linear theory for compressible modes indicates that these projections are proportional to the density fluctuations. Regression techniques are then applied to observed density and magnetic field profiles to specify coefficients of proportionality. Signs of proportionality constants, connecting the three projections of δ B and δ ρ , determine whether the compressional modes are of the fast (+) or slow (-) type. Within a polytropic-closure framework, the proportionality between magnetic and density fluctuations can be computed by relating {\\hat k}, the polytropic index, γ , and the plasma β . Our certification program validates the direct interpretation of proportionality constants comparing their best-fit and error values with the directions of wavevectors required by the dispersion relation, {\\hat k}(Disp) inferred from experimental measurements of β and γ . Final certification requires that for each mode retained in the correlation, the scalar product of wavevectors determined through covariance and dispersion-relation analyses are approximately unity \\hat k (CoV)\\cdot \\hat k (Disp)≈ 1. This quality check is the compressible-mode analogue to slope-one tests in the Walén test expressed in Elsässer [1950] variables. By products of completed certification include the assignment of various portions of time-domain data streams to the compression or rarefaction phases of fast/slow modes structures, the directions of wave-power propagation in the plasma frame and relative to the magnetic field direction as well as their phase speeds with respect to the background plasma. These certifications also imply temporal trains of electric fields of the ambipolar type, including spatially varying E∥ (t), that may be the cause of some of the structured observations of E∥ that have recently been detected near the diffusion region. Along with Walén tests the new procedures enable surveys for the presence and roles of non-dispersive fast, intermediate, and slow MHD waves in geospace. Geophysical examples from the Polar satellite illustrate fast, slow and even admixtures of fast and slow magnetosonic waves retrieved through our analysis. On this experimental basis, we discuss the roles of compressible-mode structures in boundary layers associated with the magnetopause.
Integrated fiber-coupled launcher for slow plasmon-polariton waves.
Della Valle, Giuseppe; Longhi, Stefano
2012-01-30
We propose and numerically demonstrate an integrated fiber-coupled launcher for slow surface plasmon-polaritons. The device is based on a novel plasmonic mode-converter providing efficient power transfer from the fast to the slow modes of a metallic nanostripe. Total coupling efficiency with standard single-mode fiber approaching 30% (including ohmic losses) has been numerically predicted for a 25-µm long gold-based device operating at 1.55 µm telecom wavelength.
The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake
NASA Astrophysics Data System (ADS)
Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena
2017-04-01
Recently our understanding of tectonic faulting has been shaken by the discoveries of seismic tremor, low frequency earthquakes, slow slip events, and other models of fault slip. These phenomenas represent models of failure that were thought to be non-existent and theoretically impossible only a few years ago. Slow earthquakes are seismic phenomena in which the rupture of geological faults in the earth's crust occurs gradually without creating strong tremors. Despite the growing number of observations of slow earthquakes their origin remains unresolved. Studies show that the duration of slow earthquakes ranges from a few seconds to a few hundred seconds. The regular earthquakes with which most people are familiar release a burst of built-up stress in seconds, slow earthquakes release energy in ways that do little damage. This study focus on the characteristics of the Mw5.6 earthquake occurred in Sofia seismic zone on May 22nd, 2012. The Sofia area is the most populated, industrial and cultural region of Bulgaria that faces considerable earthquake risk. The Sofia seismic zone is located in South-western Bulgaria - the area with pronounce tectonic activity and proved crustal movement. In 19th century the city of Sofia (situated in the centre of the Sofia seismic zone) has experienced two strong earthquakes with epicentral intensity of 10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64).The 2012 quake occurs in an area characterized by a long quiescence (of 95 years) for moderate events. Moreover, a reduced number of small earthquakes have also been registered in the recent past. The Mw5.6 earthquake is largely felt on the territory of Bulgaria and neighbouring countries. No casualties and severe injuries have been reported. Mostly moderate damages were observed in the cities of Pernik and Sofia and their surroundings. These observations could be assumed indicative for a very low rupture velocity. The low rupture velocity can mean slow-faulting, which brings to slow release of accumulated seismic energy. The slow release energy does principally little to moderate damages. Additionally wave form of the earthquake shows low frequency content of P-waves (the maximum P-wave is at 1.19 Hz) and the specific P- wave displacement spectral is characterise with not expressed spectrum plateau and corner frequency. These and other signs suggest us to the conclusion, that the 2012 Mw5.6 earthquake can be considered as types of slow earthquake, like a low frequency quake. The study is based on data from Bulgarian seismological network (NOTSSI), the local network (LSN) deployed around Kozloduy NPP and System of Accelerographs for Seismic Monitoring of Equipment and Structures (SASMES) installed in the Kozloduy NPP. NOTSSI jointly with LSN and SASMES provide reliable information for multiple studies on seismicity in regional scale.
Inflight loss of consciousness : a case report.
DOT National Transportation Integrated Search
1963-09-01
A case of inflight vertigo and loss of consciousness in a private pilot, flying alone, is presented. The differential diagnosis and the significance of the findings of 5-7 per second theta waves in his resting EEG and high voltage slow waves during c...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.
2016-08-15
Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C. C.; Drasco, M.
The purpose of the CRADA was to develop new microwave codes for analyzing both slow-,vave structures and beam-wave interactions of traveling wave tube amplifiers (TWTA), the microwave power source for satellite and radar communication systems. The scope of work also included testing and improving power modules through measurements and simulation.
NASA Technical Reports Server (NTRS)
Song, P.; Russell, C. T.; Strangeway, R. J.; Wygant, J. R.; Cattell, C. A.; Fitzenreiter, R. J.; Anderson, R. R.
1993-01-01
Strong slow mode waves in the Pc 3-4 frequency range are found in the magnetosheath close to the magnetopause. We have studied these waves at one of the ISEE subsolar magnetopause crossings using the magnetic field, electric field, and plasma measurements. We use the pressure balance at the magnetopause to calibrate the Fast Plasma Experiment data versus the magnetometer data. When we perform such a calibration and renormalization, we find that the slow mode structures are not in pressure balance and small scale fluctuations in the total pressure still remain in the Pc 3-4 range. Energy in the total pressure fluctuations can be transmitted through the magnetopause by boundary motions. The Poynting flux calculated from the electric and magnetic field measurements suggests that a net Poynting flux is transmitted into the magnetopause. The two independent measurements show a similar energy transmission coefficient. The transmitted energy flux is about 18 percent of the magnetic energy flux of the waves in the magnetosheath. Part of this transmitted energy is lost in the sheath transition layer before it enters the closed field line region. The waves reaching the boundary layer decay rapidly. Little wave power is transmitted into the magnetosphere.
On the convergence of the coupled-wave approach for lamellar diffraction gratings
NASA Technical Reports Server (NTRS)
Li, Lifeng; Haggans, Charles W.
1992-01-01
Among the many existing rigorous methods for analyzing diffraction of electromagnetic waves by diffraction gratings, the coupled-wave approach stands out because of its versatility and simplicity. It can be applied to volume gratings and surface relief gratings, and its numerical implementation is much simpler than others. In addition, its predictions were experimentally validated in several cases. These facts explain the popularity of the coupled-wave approach among many optical engineers in the field of diffractive optics. However, a comprehensive analysis of the convergence of the model predictions has never been presented, although several authors have recently reported convergence difficulties with the model when it is used for metallic gratings in TM polarization. Herein, three points are made: (1) in the TM case, the coupled-wave approach converges much slower than the modal approach of Botten et al; (2) the slow convergence is caused by the use of Fourier expansions for the permittivity and the fields in the grating region; and (3) is manifested by the slow convergence of the eigenvalues and the associated modal fields. The reader is assumed to be familiar with the mathematical formulations of the coupled-wave approach and the modal approach.
NASA Astrophysics Data System (ADS)
Kim, Sun Ho; Hwang, Yong Seok; Jeong, Seung Ho; Wang, Son Jong; Kwak, Jong Gu
2017-10-01
An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh) could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.
NASA Astrophysics Data System (ADS)
Okazaki, Masakazu; Hattori, Ichiro; Shiraiwa, Fujio; Koizumi, Takashi
1983-08-01
Effect of strain wave shape on strain-controlled low-cycle fatigue crack propagation of SUS 304 stainless steel was investigated at 600 and 700 °C. It was found that the rate of crack propagation in a cycle-dependent region was successfully correlated with the range of cyclic J-integral, Δ Jf, regardless of the strain wave shape, frequency, and test temperature. It was also shown that the rate of crack propagation gradually increased from cycle-dependent curve to time-dependent one with decreasing frequency and slow-fast strain wave shape, and that one of the factors governing the rate of crack propagation in such a region was the ratio of the range of creep J-integral to that of total J-integral, Δ J c/Δ JT. Based on the results thus obtained, an interaction damage rule proposed semi-empirically was interpreted, with regard to crack propagation. Furthermore, fatigue crack initiation mechanism in slow-fast strain wave shape was studied, and it was shown that grain boundary sliding took an important role in it.
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-07-01
Seismic waves travelling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency-dependent Pwave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The Pwave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyse their effect on the mesoscopic loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances
NASA Technical Reports Server (NTRS)
Balakamar, P.; Kegerise, Michael A.
2011-01-01
Boundary layer receptivity to two-dimensional acoustic disturbances at different incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes equations for Mach 6 flow over a 7deg half-angle sharp-tipped wedge and a cone. Higher order spatial and temporal schemes are employed to obtain the solution. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. It is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle. The maximum receptivity is obtained when the wave incident angle is about 20 degrees. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that for the acoustic waves. Vortical disturbances first generate the fast acoustic modes and they switch to the slow mode near the continuous spectrum.
GPS Detection of Biot's Slow Wave in the Earth's Crust Triggered by Hurricane Sandy
NASA Astrophysics Data System (ADS)
Holt, W. E.; Zhang, J. H.; Blewitt, G.; Yao, Z.
2017-12-01
Here we show, using 5-minute GPS data observed in northeast USA around the landfall of Hurricane Sandy of October 29-30, 2012, evidence of a highly-attenuated wave propagating in the Earth's crust over hundreds of km inland at 65 m/s with peak amplitudes as great as 12 cm. Such a phenomenon is consistent with Biot's slow wave being triggered by the associated 4-m storm surge, then propagating in a highly permeable crust with abundant fluid-saturated interconnected cracks. The vertical displacement field recorded on a dense network of continuous GPS stations (CORS network) shows strong attenuation with distance, and occurs at frequencies too low to be recorded by broad-band seismic sensors. To our knowledge, such a unique wave, with ultra-low frequency, slow wave speed, high amplitude, and strong attenuation, has never been measured before. The zenith tropospheric varies slowly over the 24 hours that bracket Hurricane Sandy landfall and there is no apparent relationship to the timing or duration of the downward displacement field that initiates during peak storm surge loading. Amplitudes are a factor of 10 higher than predicted by elastic models of static loading of the 4-m storm surge. Numerical simulations of a low frequency impulse (with duration of storm surge loading) on a homogenous porous medium filled with viscous fluid show an amplification of displacements 10 times larger than for a homogeneous elastic material with the same elastic properties as the poroelastic matrix. The low wave speed of 65 m/s and long period of 4 hours, requires an extremely high permeability (10-6 10-8 m2). Such a high permeability can exist in high-porosity media containing vast interconnected fractures. The high amplitude displacements generated by the dynamic influences of Hurricane Sandy, and other large magnitude storms, would generate significant time-dependent stress changes in the crust that might contribute to the observations of seismicity rate changes and slow slip phenomenon described previously for this and other major storm disturbances.
NASA Astrophysics Data System (ADS)
Pasyanos, M. E.; Walter, W. R.; Hazler, S. E.
- We present results from a large-scale study of surface-wave group velocity dispersion across the Middle East, North Africa, southern Eurasia and the Mediterranean. Our database for the region is populated with seismic data from regional events recorded at permanent and portable broadband, three-component digital stations. We have measured the group velocity using a multiple narrow-band filter on deconvolved displacement data. Overall, we have examined more than 13,500 seismograms and made good quality dispersion measurements for 6817 Rayleigh- and 3806 Love-wave paths. We use a conjugate gradient method to perform a group-velocity tomography. Our current results include both Love- and Rayleigh-wave inversions across the region for periods from 10 to 60 seconds. Our findings indicate that short-period structure is sensitive to slow velocities associated with large sedimentary features such as the Mediterranean Sea and Persian Gulf. We find our long-period Rayleigh-wave inversion is sensitive to crustal thickness, such as fast velocities under the oceans and slow along the relatively thick Zagros Mts. and Turkish-Iranian Plateau. We also find slow upper mantle velocities along known rift systems. Accurate group velocity maps can be used to construct phase-matched filters along any given path. The filters can improve weak surface wave signals by compressing the dispersed signal. The signals can then be used to calculate regionally determined MS measurements, which we hope can be used to extend the threshold of mb:MS discriminants down to lower magnitude levels. Other applications include using the group velocities in the creation of a suitable background model for forming station calibration maps, and using the group velocities to model the velocity structure of the crust and upper mantle.
Slow oscillations orchestrating fast oscillations and memory consolidation.
Mölle, Matthias; Born, Jan
2011-01-01
Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical <1Hz electroencephalogram (EEG) slow oscillation and involves the reactivation of newly encoded representations and their subsequent redistribution from temporary hippocampal to neocortical long-term storage sites. Indeed, experimental induction of slow oscillations during non-rapid eye movement (non-REM) sleep by slowly alternating transcranial current stimulation distinctly improves consolidation of declarative memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.
Lower Mantle S-wave Velocity Model under the Western United States
NASA Astrophysics Data System (ADS)
Nelson, P.; Grand, S. P.
2016-12-01
Deep mantle plumes created by thermal instabilities at the core-mantle boundary has been an explanation for intraplate volcanism since the 1970's. Recently, broad slow velocity conduits in the lower mantle underneath some hotspots have been observed (French and Romanowicz, 2015), however the direct detection of a classical thin mantle plume using seismic tomography has remained elusive. Herein, we present a seismic tomography technique designed to image a deep mantle plume under the Yellowstone Hotspot located in the western United States utilizing SKS and SKKS waves in conjunction with finite frequency tomography. Synthetic resolution tests show the technique can resolve a 235 km diameter lower mantle plume with a 1.5% Gaussian velocity perturbation even if a realistic amount of random noise is added to the data. The Yellowstone Hotspot presents a unique opportunity to image a thin plume because it is the only hotspot with a purported deep origin that has a large enough aperture and density of seismometers to accurately sample the lower mantle at the length scales required to image a plume. Previous regional tomography studies largely based on S wave data have imaged a cylindrically shaped slow anomaly extending down to 900km under the hotspot, however they could not resolve it any deeper (Schmandt et al., 2010; Obrebski et al., 2010).To test if the anomaly extends deeper, we measured and inverted over 40,000 SKS and SKKS waves' travel times in two frequency bands recorded at 2400+ stations deployed during 2006-2012. Our preliminary model shows narrow slow velocity anomalies in the lower mantle with no fast anomalies. The slow anomalies are offset from the Yellowstone hotspot and may be diapirs rising from the base of the mantle.
Slow Wave Sleep and Long Duration Spaceflight
NASA Technical Reports Server (NTRS)
Whitmire, Alexandra; Orr, Martin; Arias, Diana; Rueger, Melanie; Johnston, Smith; Leveton, Lauren
2012-01-01
While ground research has clearly shown that preserving adequate quantities of sleep is essential for optimal health and performance, changes in the progression, order and /or duration of specific stages of sleep is also associated with deleterious outcomes. As seen in Figure 1, in healthy individuals, REM and Non-REM sleep alternate cyclically, with stages of Non-REM sleep structured chronologically. In the early parts of the night, for instance, Non-REM stages 3 and 4 (Slow Wave Sleep, or SWS) last longer while REM sleep spans shorter; as night progresses, the length of SWS is reduced as REM sleep lengthens. This process allows for SWS to establish precedence , with increases in SWS seen when recovering from sleep deprivation. SWS is indeed regarded as the most restorative portion of sleep. During SWS, physiological activities such as hormone secretion, muscle recovery, and immune responses are underway, while neurological processes required for long term learning and memory consolidation, also occur. The structure and duration of specific sleep stages may vary independent of total sleep duration, and changes in the structure and duration have been shown to be associated with deleterious outcomes. Individuals with narcolepsy enter sleep through REM as opposed to stage 1 of NREM. Disrupting slow wave sleep for several consecutive nights without reducing total sleep duration or sleep efficiency is associated with decreased pain threshold, increased discomfort, fatigue, and the inflammatory flare response in skin. Depression has been shown to be associated with a reduction of slow wave sleep and increased REM sleep. Given research that shows deleterious outcomes are associated with changes in sleep structure, it is essential to characterize and mitigate not only total sleep duration, but also changes in sleep stages.
Increase in slow-wave vasomotion by hypoxia and ischemia in lowlanders and highlanders.
Salvi, Paolo; Faini, Andrea; Castiglioni, Paolo; Brunacci, Fausto; Montaguti, Luca; Severi, Francesca; Gautier, Sylvie; Pretolani, Enzo; Benetos, Athanase; Parati, Gianfranco
2018-06-21
The physiological relevance of slow-wave vasomotion is still unclear, even it has been hypothesized it could be a compensatory mechanism enhancing tissue oxygenation in conditions of reduced oxygen supply. Aim of our study was to explore the effects of hypoxia and ischemia on slow-wave vasomotion in microcirculation. Peripheral oxygen saturation and forearm microcirculation flow (laser-Doppler flowmetry) were recorded at baseline and during post-occlusive reactive hyperemia in the Himalaya region from 8 European lowlanders (6 males; aged 29-39yrs) at 1350, 3400 and 5050m, and from 10 Nepalese male highlanders (aged 21-39yrs) at 3400 and 5050m of altitude. The same measurements were also performed at sea level in 16 healthy volunteers (aged 23-61yrs) during a short-term exposure to normobaric hypoxia. In lowlanders, exposure to progressively higher altitude under baseline flow conditions progressively increased 0.06-0.15Hz vasomotion amplitude [power spectral density % expressed as geometric means (geometric standard deviation) =14.0(3.6) at 1350m; 87.0(2.3) at 3400m and 249.8(3.6) at 5050m, p=0.006 and p<0.001 vs 1350m, respectively]. In highlanders, low frequency vasomotion amplitude was similarly enhanced at different altitudes [power spectral density % =183.4(4.1) at 3400m vs 236.0(3.0) at 5050m, p=0.139]. In both groups at altitude it was further increased after ischemic stimulus (p<0.001). At baseline, acute short lasting normobaric hypoxia did not induce low frequency vasomotion, which was conversely induced by ischemia even under normal oxygenation and barometric pressure. This study offers the demonstration of a significant increase in slow-wave vasomotion under prolonged hypobaric-hypoxia exposure at high altitude, with a further enhancement after ischemia induction.
Shear wave splitting and crustal anisotropy at the Mid-Atlantic Ridge, 35°N
NASA Astrophysics Data System (ADS)
Barclay, Andrew H.; Toomey, Douglas R.
2003-08-01
Shear wave splitting observed in microearthquake data at the axis of the Mid-Atlantic Ridge near 35°N has a fast polarization direction that is parallel to the trend of the axial valley. The time delays between fast and slow S wave arrivals range from 35 to 180 ms, with an average of 90 ms, and show no relationship with ray path length, source-to-receiver azimuth, or receiver location. The anisotropy is attributed to a shallow distribution of vertical, fluid-filled cracks, aligned parallel to the trend of the axial valley. Joint modeling of the shear wave anisotropy and coincident P wave anisotropy results, using recent theoretical models for the elasticity of a porous medium with aligned cracks, suggests that the crack distribution that causes the observed P wave anisotropy can account for at most 10 ms of the shear wave delay. Most of the shear wave delay thus likely accrues within the shallowmost 500 m (seismic layer 2A), and the percent S wave anisotropy within this highly fissured layer is 8-30%. Isolated, fluid-filled cracks at 500 m to 3 km depth that are too thin or too shallow to be detected by the P wave experiment may also contribute to the shear wave delays. The joint analysis of P and S wave anisotropy is an important approach for constraining the crack distributions in the upper oceanic crust and is especially suited for seismically active hydrothermal systems at slow and intermediate spreading mid-ocean ridges.
New Tsunami Forecast Tools for the French Polynesia Tsunami Warning System
NASA Astrophysics Data System (ADS)
Clément, Joël; Reymond, Dominique
2015-03-01
This paper presents the tsunami warning tools, which are used for the estimation of the seismic source parameters. These tools are grouped under a method called Preliminary Determination of Focal Mechanism_2 ( PDFM2), that has been developed at the French Polynesia Warning Center, in the framework of the system, as a plug-in concept. The first tool determines the seismic moment and the focal geometry (strike, dip, and slip), and the second tool identifies the "tsunami earthquakes" (earthquakes that cause much bigger tsunamis than their magnitude would imply). In a tsunami warning operation, initial assessment of the tsunami potential is based on location and magnitude. The usual quick magnitude methods which use waves, work fine for smaller earthquakes. For major earthquakes these methods drastically underestimate the magnitude and its tsunami potential because the radiated energy shifts to the longer period waves. Since French Polynesia is located far away from the subduction zones of the Pacific rim, the tsunami threat is not imminent, and this luxury of time allows to use the long period surface wave data to determine the true size of a major earthquake. The source inversion method presented in this paper uses a combination of surface waves amplitude spectra and P wave first motions. The advantage of using long period surface data is that there is a much more accurate determination of earthquake size, and the advantage of using P wave first motion is to have a better constrain of the focal geometry than using the surface waves alone. The method routinely gives stable results at minutes, with being the origin time of an earthquake. Our results are then compared to the Global Centroid Moment Tensor catalog for validating both the seismic moment and the source geometry. The second tool discussed in this paper is the slowness parameter and is the energy-to-moment ratio. It has been used to identify tsunami earthquakes, which are characterized by having unusual slow rupture velocity and release seismic energy that has been shifted to longer periods and, therefore, have low values. The slow rupture velocity would indicate weaker material and bigger uplift and, thus, bigger tsunami potential. The use of the slowness parameter is an efficient tool for monitoring the near real-time identification of tsunami earthquakes.
Effect of skew angle on second harmonic guided wave measurement in composite plates
NASA Astrophysics Data System (ADS)
Cho, Hwanjeong; Choi, Sungho; Lissenden, Cliff J.
2017-02-01
Waves propagating in anisotropic media are subject to skewing effects due to the media having directional wave speed dependence, which is characterized by slowness curves. Likewise, the generation of second harmonics is sensitive to micro-scale damage that is generally not detectable from linear features of ultrasonic waves. Here, the effect of skew angle on second harmonic guided wave measurement in a transversely isotropic lamina and a quasi-isotropic laminate are numerically studied. The strain energy density function for a nonlinear transversely isotropic material is formulated in terms of the Green-Lagrange strain invariants. The guided wave mode pairs for cumulative second harmonic generation in the plate are selected in accordance with the internal resonance criteria - i.e., phase matching and non-zero power flux. Moreover, the skew angle dispersion curves for the mode pairs are obtained from the semi-analytical finite element method using the derivative of the slowness curve. The skew angles of the primary and secondary wave modes are calculated and wave propagation simulations are carried out using COMSOL. Numerical simulations revealed that the effect of skew angle mismatch can be significant for second harmonic generation in anisotropic media. The importance of skew angle matching on cumulative second harmonic generation is emphasized and the accompanying issue of the selection of internally resonant mode pairs for both a unidirectional transversely isotropic lamina and a quasi-isotropic laminate is demonstrated.
Scattered P'P' waves observed at short distances
Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine
2011-01-01
We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.
Slow Mode Waves in the Heliospheric Plasma Sheet
NASA Technical Reports Server (NTRS)
Smith, Edward. J.; Zhou, Xiaoyan
2007-01-01
We report the results of a search for waves/turbulence in the Heliospheric Plasma Sheet (HPS) surrounding the Heliospheric Current Sheet (HCS). The HPS is treated as a distinctive heliospheric structure distinguished by relatively high Beta, slow speed plasma. The data used in the investigation are from a previously published study of the thicknesses of the HPS and HCS that were obtained in January to May 2004 when Ulysses was near aphelion at 5 AU. The advantage of using these data is that the HPS is thicker at large radial distances and the spacecraft spends longer intervals inside the plasma sheet. From the study of the magnetic field and solar wind velocity components, we conclude that, if Alfven waves are present, they are weak and are dominated by variations in the field magnitude, B, and solar wind density, NP, that are anti-correlated.
Franklin, Clarence C; Ball, John M; Schulz, David J; Nair, Satish S
2010-09-01
The underlying membrane potential oscillation of both forced and endogenous slow-wave bursting cells affects the number of spikes per burst, which in turn affects outputs downstream. We use a biophysical model of a class of slow-wave bursting cells with six active currents to investigate and generalize correlations among maximal current conductances that might generate and preserve its underlying oscillation. We propose three phases for the underlying oscillation for this class of cells: generation, maintenance, and termination and suggest that different current modules coregulate to preserve the characteristics of each phase. Coregulation of I(Burst) and I(A) currents within distinct boundaries maintains the dynamics during the generation phase. Similarly, coregulation of I(CaT) and I(Kd) maintains the peak and duration of the underlying oscillation, whereas the calcium-activated I(KCa) ensures appropriate termination of the oscillation and adjusts the duration independent of peak.
Analysis of a Stabilized CNLF Method with Fast Slow Wave Splittings for Flow Problems
Jiang, Nan; Tran, Hoang A.
2015-04-01
In this work, we study Crank-Nicolson leap-frog (CNLF) methods with fast-slow wave splittings for Navier-Stokes equations (NSE) with a rotation/Coriolis force term, which is a simplification of geophysical flows. We propose a new stabilized CNLF method where the added stabilization completely removes the method's CFL time step condition. A comprehensive stability and error analysis is given. We also prove that for Oseen equations with the rotation term, the unstable mode (for which u(n+1) + u(n-1) equivalent to 0) of CNLF is asymptotically stable. Numerical results are provided to verify the stability and the convergence of the methods.
Existence domain of electrostatic solitary waves in the lunar wake
NASA Astrophysics Data System (ADS)
Rubia, R.; Singh, S. V.; Lakhina, G. S.
2018-03-01
Electrostatic solitary waves (ESWs) and double layers are explored in a four-component plasma consisting of hot protons, hot heavier ions (He++), electron beam, and suprathermal electrons having κ-distribution using the Sagdeev pseudopotential method. Three modes exist: slow and fast ion-acoustic modes and electron-acoustic mode. The occurrence of ESWs and their existence domain as a function of various plasma parameters, such as the number densities of ions and electron beam, the spectral index, κ, the electron beam velocity, the temperatures of ions, and electron beam, are analyzed. It is observed that both the slow and fast ion-acoustic modes support both positive and negative potential solitons as well as their coexistence. Further, they support a "forbidden gap," the region in which the soliton ceases to propagate. In addition, slow ion-acoustic solitons support the existence of both positive and negative potential double layers. The electron-acoustic mode is only found to support negative potential solitons for parameters relevant to the lunar wake plasma. Fast Fourier transform of a soliton electric field produces a broadband frequency spectrum. It is suggested that all three soliton types taken together can provide a good explanation for the observed electrostatic waves in the lunar wake.
High power microwave source with a three dimensional printed metamaterial slow-wave structure.
French, David M; Shiffler, Don
2016-05-01
For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.
High power microwave source with a three dimensional printed metamaterial slow-wave structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, David M.; Shiffler, Don
2016-05-15
For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for buildingmore » these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.« less
Rodriguez, Alexander V.; Funk, Chadd M.; Vyazovskiy, Vladyslav V.; Nir, Yuval; Tononi, Giulio
2016-01-01
During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal “fatigue”: high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. SIGNIFICANCE STATEMENT A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the “fatigue” accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire at high levels for 6 h in 2 different conditions: during active wake with exploration and during sleep. We find that neurons need more time OFF only after sustained firing in wake, suggesting that fatigue due to sustained firing alone is unlikely to account for the increase in SWA that follows sleep deprivation. PMID:27927960
Rodriguez, Alexander V; Funk, Chadd M; Vyazovskiy, Vladyslav V; Nir, Yuval; Tononi, Giulio; Cirelli, Chiara
2016-12-07
During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal "fatigue": high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the "fatigue" accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire at high levels for 6 h in 2 different conditions: during active wake with exploration and during sleep. We find that neurons need more time OFF only after sustained firing in wake, suggesting that fatigue due to sustained firing alone is unlikely to account for the increase in SWA that follows sleep deprivation. Copyright © 2016 the authors 0270-6474/16/3612436-12$15.00/0.
The properties of fast and slow oblique solitons in a magnetized plasma
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Doyle, T. B.
2002-01-01
This work builds on a recent treatment by McKenzie and Doyle [Phys. Plasmas 8, 4367 (2001)], on oblique solitons in a cold magnetized plasma, to include the effects of plasma thermal pressure. Conservation of total momentum in the direction of wave propagation immediately shows that if the flow is supersonic, compressive (rarefactive) changes in the magnetic pressure induce decelerations (accelerations) in the flow speed, whereas if the flow is subsonic, compressive (rarefactive) changes in the magnetic pressure induce accelerations (decelerations) in the flow speed. Such behavior is characteristic of a Bernoulli-type plasma momentum flux which exhibits a minimum at the plasma sonic point. The plasma energy flux (kinetic plus enthalpy) also shows similar Bernoulli-type behavior. This transonic effect is manifest in the spatial structure equation for the flow speed (in the direction of propagation) which shows that soliton structures may exist if the wave speed lies either (i) in the range between the fast and Alfven speeds or (ii) between the sound and slow mode speed. These conditions follow from the requirement that a defined, characteristic "soliton parameter" m exceeds unity. It is in this latter slow soliton regime that the effects of plasma pressure are most keenly felt. The equilibrium points of the structure equation define the center of the wave. The structure of both fast and slow solitons is elucidated through the properties of the energy integral function of the structure equation. In particular, the slow soliton, which owes its existence to plasma pressure, may have either a compressive or rarefactive nature, and exhibits a rich structure, which is revealed through the spatial structure of the longitudinal speed and its corresponding transverse velocity hodograph.
Local strong slow S-wave anomalies at western edge of Pacific LLSVP
NASA Astrophysics Data System (ADS)
Obayashi, M.; Niu, F.; Yoshimitsu, J.
2017-12-01
Seismic tomography studies have revealed two broad slow shear-wave speed anomalies regions beneath the Pacific and Africa called as LLSVPs (Large Low Seismic Velocity Provinces). There are geographic correlations between the LLSVPs and hotspots, and the LLSVPs could probably play an important role for convection throughout the mantle and thermal structure and evolution of the earth. The LLSVPs have been considered to be heterogeneous in composition since the boundaries between the normal mantle are sharp. To investigate the details of the sharp LLSVP edge we measure ScS-S and SKS-S differential traveltimes in the hypocentral distance of about 60°-90° using Japanese and Chinese seismic networks. We used 25events for the Chinese network and 16 events for Japanese network that occurred in Tonga-Kermadec region and obtained 3750 event-station pairs of ScS-S and 1500 pairs of SKS-S differential travel times. We found anomalously large (more than 5 sec) ScS-S travel times accompanying normal SKS-S travel times, suggesting local strong slow region in the vicinity of the ScS bounce points (red circles in Figure 1). Such ScS bounce points locate to the northeast of New Guinea Island extending over 20 degrees in NE-SW direction. However below New Guinea Island, both ScS-S and SKS-S travel times are normal (green circles in Figure 1), indicating abrupt end of the local strong slow anomalies. We inverted the ScS-S and SKS-S differential traveltimes for lowermost mantle S-wave speed structure, assuming isotropic mantle. The result shows very strong slow anomalies of more than 5% at western edge of Pacific LLSVP that extend vertically not more than 200 km from the core mantle boundary.
NASA Astrophysics Data System (ADS)
Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Sleigh, J. W.
2013-04-01
Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the possible consequences of chaotic dynamics for memory processing and learning.
Ferraris, Maëva; Ghestem, Antoine; Vicente, Ana F; Nallet-Khosrofian, Lauriane; Bernard, Christophe; Quilichini, Pascale P
2018-03-21
Gamma oscillations are involved in long-range coupling of distant regions that support various cognitive operations. Here we show in adult male rats that synchronized bursts of gamma oscillations bind the hippocampus (HPC) and prefrontal cortex (mPFC) during slow oscillations and slow-wave sleep, a brain state that is central for consolidation of memory traces. These gamma bursts entrained the firing of the local HPC and mPFC neuronal populations. Neurons of the nucleus reuniens (NR), which is a structural and functional hub between HPC and mPFC, demonstrated a specific increase in their firing before gamma burst onset, suggesting their involvement in HPC-mPFC binding. Chemical inactivation of NR disrupted the temporal pattern of gamma bursts and their synchronization, as well as mPFC neuronal firing. We propose that the NR drives long-range hippocampo-prefrontal coupling via gamma bursts providing temporal windows for information exchange between the HPC and mPFC during slow-wave sleep. SIGNIFICANCE STATEMENT Long-range coupling between hippocampus (HPC) and prefrontal cortex (mPFC) is believed to support numerous cognitive functions, including memory consolidation occurring during sleep. Gamma-band synchronization is a fundamental process in many neuronal operations and is instrumental in long-range coupling. Recent evidence highlights the role of nucleus reuniens (NR) in consolidation; however, how it influences hippocampo-prefrontal coupling is unknown. In this study, we show that HPC and mPFC are synchronized by gamma bursts during slow oscillations in anesthesia and natural sleep. By manipulating and recording the NR-HPC-mPFC network, we provide evidence that the NR actively promotes this long-range gamma coupling. This coupling provides the hippocampo-prefrontal circuit with a novel mechanism to exchange information during slow-wave sleep. Copyright © 2018 the authors 0270-6474/18/383026-13$15.00/0.
Propagation of time-reversed Lamb waves in bovine cortical bone in vitro.
Lee, Kang Il; Yoon, Suk Wang
2015-01-01
The present study aims to investigate the propagation of time-reversed Lamb waves in bovine cortical bone in vitro. The time-reversed Lamb waves were successfully launched at 200 kHz in 18 bovine tibiae through a time reversal process of Lamb waves. The group velocities of the time-reversed Lamb waves in the bovine tibiae were measured using the axial transmission technique. They showed a significant correlation with the cortical thickness and tended to follow the theoretical group velocity of the lowest order antisymmetrical Lamb wave fairly well, consistent with the behavior of the slow guided wave in long cortical bones.
Guided wave phenomena in millimeter wave integrated circuits and components
NASA Astrophysics Data System (ADS)
Itoh, Tatsuo
1993-01-01
Representative projects from Army Research Office are summarized. Following the narrative descriptions with appropriate illustrations, a complete list of articles published in scientific journals and those presented at national and international conferences is provided. Lists of personnel and advanced degrees are also included. The projects were carried out at The University of Texas at Austin and later at UCLA. Topics covered include: quasi-optical technique; active antenna; active filter; traveling wave transistor; slow wave, planar transmission line; and discontinuities.
Smith, E.F.; Gomberg, J.
2009-01-01
We test the hypothesis that, as in subduction zones, slow slip facilitates triggered and ambient tremor in the transform boundary setting of California. Our study builds on the study of Peng et al. (2009) of triggered and ambient tremor near Parkfield, California during time intervals surrounding 31, potentially triggering, M ≥ 7.5 teleseismic earthquakes; waves from 10 of these triggered tremor and 29 occurred in periods of ambient tremor activity. We look for transient slow slip during 3-month windows that include 11 of these triggering and nontriggering teleseisms, using continuous strain data recorded on two borehole Gladwin tensor strainmeters (GTSM) located within the distribution of tremor epicenters. We model the GTSM data assuming only tidal and “drift” signals are present and find no detectable slow slip, either ongoing when the teleseismic waves passed or triggered by them. We infer a conservative detection threshold of about 5 nanostrain for abrupt changes and about twice this for slowly evolving signals. This could be lowered slightly by adding analyses of other data types, modeled slow slip signals, and GTSM data calibration. Detection of slow slip also depends on the slipping fault's location and size, which we describe in terms of equivalent earthquake moment magnitude, M. In the best case of the GTSM above a very shallow slipping fault, detectable slip events must exceed M~2, and if the slow slip is beneath the seismogenic zone (below ~15 km depth), even M~5 events are likely to remain hidden.
Structured Slow Solar Wind Variability: Streamer-blob Flux Ropes and Torsional Alfvén Waves
NASA Astrophysics Data System (ADS)
Higginson, A. K.; Lynch, B. J.
2018-05-01
The slow solar wind exhibits strong variability on timescales from minutes to days, likely related to magnetic reconnection processes in the extended solar corona. Higginson et al. presented a numerical magnetohydrodynamic simulation that showed interchange magnetic reconnection is ubiquitous and most likely responsible for releasing much of the slow solar wind, in particular along topological features known as the Separatrix-Web (S-Web). Here, we continue our analysis, focusing on two specific aspects of structured slow solar wind variability. The first type is present in the slow solar wind found near the heliospheric current sheet (HCS), and the second we predict should be present everywhere S-Web slow solar wind is observed. For the first type, we examine the evolution of three-dimensional magnetic flux ropes formed at the top of the helmet streamer belt by reconnection in the HCS. For the second, we examine the simulated remote and in situ signatures of the large-scale torsional Alfvén wave (TAW), which propagates along an S-Web arc to high latitudes. We describe the similarities and differences between the reconnection-generated flux ropes in the HCS, which resemble the well-known “streamer blob” observations, and the similarly structured TAW. We discuss the implications of our results for the complexity of the HCS and surrounding plasma sheet and the potential for particle acceleration, as well as the interchange reconnection scenarios that may generate TAWs in the solar corona. We discuss predictions from our simulation results for the dynamic slow solar wind in the extended corona and inner heliosphere.
A study of Equartorial wave characteristics using rockets, balloons, lidar and radar
NASA Astrophysics Data System (ADS)
Sasi, M.; Krishna Murthy, B.; Ramkumar, G.; Satheesan, K.; Parameswaran, K.; Rajeev, K.; Sunilkumar, S.; Nair, P.; Krishna Murthy, K.; Bhavanikumar, Y.; Raghunath, K.; Jain, A.; Rao, P.; Krishnaiah, M.; Nayar, S.; Revathy, K.
Dynamics of low latitude middle atmosphere is dominated by the zonal wind quasi- biennial oscillation (QBO) in the lower stratosphere and zonl wind semiannual oscillation (SAO) in the stratopause and mesopause regions. Equatorial waves play a significant role in the evolution of QBO and SAO through wave- mean flow interactions resulting in momentum transfer from the waves to the mean flow in the equatorial middle atmosphere. With the objective of characterising the equatorial wave characteristics and momentum fluxes associated with them a campaign experiment was conducted in 2000 using RH-200 rockets, balloons, Raleigh lidar and MST radar. Winds and temperatures in the troposphere, stratosphere and mesosphere over two low latitude stations Gadanki (13.5°N, 79.2°E) and SHAR (13.7°N, 80.2°E) were measured, using MST Radar, Rayleigh Lidar, balloons and RH-200 rockets, for 40 consecutive days from 21 February to 01 April 2000 and were used for the study of equatorial waves and their interactions with the background mean flow in various atmospheric regions. The study shows the occurrence of a strong stratospheric cooling (~25 K) anomaly along with a zonal wind anomaly and this low-latitude event appears to be linked to high-latitude stratospheric warming event and leads to subsequent generation of short period (~5 days) oscillations lasting for a few cycles in the stratosphere. A slow Kelvin wave (~18 day period), fast Kelvin wave (~8 days) and ultra fast Kelvin wave (~3.3 day period) and RG wave (~4.8 day period) have been identified. There are indications of slow and ultra fast Kelvin waves, in addition to fast Kelvin waves, contributing to the evolution of the westerly phase of the stratopause SAO.
Transverse eV Ion Heating by Random Electric Field Fluctuations in the Plasmasphere
NASA Technical Reports Server (NTRS)
Artemyev, A. V.; Mourenas, D.; Agapitov, O. V.; Blum, L.
2017-01-01
Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2-3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse heating of H+ and O+ ions in the inner magnetosphere. The essential element of the proposed model of ion heating is the presence of trains of random whistler (hiss) wave packets, with significant amplitude modulations produced by strong wave damping, rapid wave growth, or a superposition of wave packets of different frequencies, phases, and amplitudes. Such characteristics correspond to measured characteristics of hiss waves in this region. Using test particle simulations with typical wave and plasma parameters, we demonstrate that the corresponding stochastic transverse ion heating reaches 0.07-0.2 eV/h for protons and 0.007-0.015 eV/h for O+ ions. This global temperature increase of the Maxwellian ion population from an initial Ti approx. 0.3 eV could potentially explain the observations.
The family of anisotropically scaled equatorial waves
NASA Astrophysics Data System (ADS)
RamíRez GutiéRrez, Enver; da Silva Dias, Pedro Leite; Raupp, Carlos; Bonatti, Jose Paulo
2011-04-01
In the present work we introduce the family of anisotropic equatorial waves. This family corresponds to equatorial waves at intermediate states between the shallow water and the long wave approximation model. The new family is obtained by using anisotropic time/space scalings on the linearized, unforced and inviscid shallow water model. It is shown that the anisotropic equatorial waves tend to the solutions of the long wave model in one extreme and to the shallow water model solutions in the other extreme of the parameter dependency. Thus, the problem associated with the completeness of the long wave model solutions can be asymptotically addressed. The anisotropic dispersion relation is computed and, in addition to the typical dependency on the equivalent depth, meridional quantum number and zonal wavenumber, it also depends on the anisotropy between both zonal to meridional space and velocity scales as well as the fast to slow time scales ratio. For magnitudes of the scales compatible with those of the tropical region, both mixed Rossby-gravity and inertio-gravity waves are shifted to a moderately higher frequency and, consequently, not filtered out. This draws attention to the fact that, for completeness of the long wave like solutions, it is necessary to include both the anisotropic mixed Rossby-gravity and inertio-gravity waves. Furthermore, the connection of slow and fast manifolds (distinguishing feature of equatorial dynamics) is preserved, though modified for the equatorial anisotropy parameters used δ ∈ < 1]. New possibilities of horizontal and vertical scale nonlinear interactions are allowed. Thus, the anisotropic shallow water model is of fundamental importance for understanding multiscale atmosphere and ocean dynamics in the tropics.
The Shock and Vibration Digest. Volume 16, Number 11
1984-11-01
wave [19], a secular equation for Rayleigh waves on ing, seismic risk, and related problems are discussed. the surface of an anisotropic half-space...waves in an !so- tive equation of an elastic-plastic rack medium was....... tropic linear elastic half-space with plane material used; the coefficient...pair of semi-linear hyperbolic partial differential -- " Conditions under which the equations of motion equations governing slow variations in amplitude
NASA Astrophysics Data System (ADS)
Kalaee, Mohammad Javad; Katoh, Yuto
2014-12-01
For a particular angle of incidence wave, it is possible for a slow Z-mode wave incident on an inhomogeneous plasma slab to be converted into an LO mode wave. But for another wave normal angle of the incident wave, it has been considered impossible, since an evanescence region exists between two mode branches. In this case we expect that the mode conversion takes place through the tunneling effect. We investigate the effect of the spatial scale of the density gradient on the mode conversion efficiency in an inhomogeneous plasma where the mode conversion can occur only by the tunneling effect. We use the computer simulation solving Maxwell's equations and the motion of a cold electron fluid. By considering the steepness of the density gradient, the simulation results show the efficient mode conversion could be expected even in the case that the mismatch of the refractive indexes prevents the close coupling of plasma waves. Also, we show for these cases the beaming angle does not correspond to Jones' formula. This effect leads to the angles larger and smaller than the angle estimated by the formula. This type of mode conversion process becomes important in a case where the different plasmas form a discontinuity at their contact boundary.
RF breakdown in "cold" slow wave structures operating at travelling wave mode of TM01
NASA Astrophysics Data System (ADS)
Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang; Zhang, Dian; Bai, Zhen; Zhu, Danni
2018-01-01
RF breakdown experiments and simulations in "cold" slow wave structures (SWSs) are executed. All the SWSs are designed as traveling wave structures, which operate at the π/2 mode of TM01 waves. The experimental results indicate that the input microwave energy is mainly absorbed, not reflected by the RF breakdown process in traveling wave SWSs. Both larger magnitude of Es-max and more numbers of periods of SWSs aggravate the microwave absorption in the breakdown process and bring about a shorter transmission pulse width. We think that the critical surface E-field of the multi-period SWSs is 1 MV/cm. However, little correlation between RF breakdown effects and Bext is observed in the experiments. The simulation conditions are coincident with the experimental setup. Explosive emissions of electrons in the rounded corner of SWSs together with the ionization of the gas layer close to it supply the breakdown plasma. The gas layer consists of water vapor and hydrogen gas and has a pressure of 1 Pa. Different kinds of circumstances of SWSs are simulated. We mainly concern about the characteristic of the plasma and its influence on microwave power. Comprehensive simulation results are obtained. The simulation results match the experimental results basically and are helpful in explaining the RF breakdown phenomenon physically.
Receptivity of Hypersonic Boundary Layers Due to Acoustic Disturbances over Blunt Cone
NASA Technical Reports Server (NTRS)
Kara, K.; Balakumar, P.; Kandil, O. A.
2007-01-01
The transition process induced by the interaction of acoustic disturbances in the free-stream with boundary layers over a 5-degree straight cone and a wedge with blunt tips is numerically investigated at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves the Navier-Stokes equations are solved in axisymmetric coordinates. The governing equations are solved using the 5th -order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, acoustic disturbances are introduced at the outer boundary of the computational domain and unsteady simulations are performed. Generation and evolution of instability waves and the receptivity of boundary layer to slow and fast acoustic waves are investigated. The mean flow data are compared with the experimental results. The results show that the instability waves are generated near the leading edge and the non-parallel effects are stronger near the nose region for the flow over the cone than that over a wedge. It is also found that the boundary layer is much more receptive to slow acoustic wave (by almost a factor of 67) as compared to the fast wave.
Tapered-Wiggler Free-Electron Laser Oscillator Program.
1984-05-01
16 ) are usually ruled in substrates of pyrex or copper (for infrared applications). Typical CW S damage levels at 2.06 /lm wavelength are 10 XW/cm 2...degradation limit WW2 ; 2r/.D, (1) where r is either the average power or single-pulse integrated energy exposure within the cavity, whichever is
Multilayer diffraction at 104 keV
NASA Technical Reports Server (NTRS)
Krieger, Allen S.; Blake, Richard L.; Siddons, D. P.
1993-01-01
We have measured the diffraction peak of a W:Si synthetic multilayer reflector at 104 keV using the High Energy Bonse-Hart Camera at the X-17B hard X-ray wiggler beam line of the National Synchrotron Light Source at Brookhaven National Laboratory. The characteristics of the diffraction peak are described and compared to theory.
Emittance and lifetime measurement with damping wigglers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G. M.; Shaftan, T., E-mail: shaftan@bnl.gov; Cheng, W. X.
National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects inmore » the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrd, J.M.; Hao, Z.; Martin, M.C.
2004-07-01
Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces large modulation of the electron energies within a short {approx}100 fs slice of the electron bunch. Propagating around the storage ring, this bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories. The length of the perturbation evolves with a distance from the wiggler but is much shorter than the electron bunch length. This perturbation causes the electron bunch to emit short pulses of temporally and spatially coherent infrared light which are automatically synchronized to the modulating laser. Themore » intensity and spectra of the infrared light were measured in two storage ring locations for a nominal ALS lattice and for an experimental lattice with the higher momentum compaction factor. The onset of instability stimulated by laser e-beam interaction had been discovered. The infrared signal is now routinely used as a sensitive monitor for a fine tuning of the laser beam alignment during data accumulation in the experiments with femtosecond x-ray pulses.« less
[Predictors of epilepsy in children after ischemic stroke].
Lvova, O A; Shalkevich, L V; Dron, A N; Lukaschuk, M Y; Orlova, E A; Gusev, V V; Suleymanova, E V; Sulimov, A V; Kudlatch, A I
To determine clinical/instrumental predictors of symptomatic epilepsy after ischemic stroke in children. One hundred and thirty-six patients, aged 0-15 years, with the diagnosis of ischemic stroke (ICD-10 I63.0-I63.9) were examined. The duration of the study was 18 months - 12 years. Patients were stratified into post-stroke (n=22) and control (n=114) groups, the latter included patients without epilepsy regardless of the presence of convulsive seizures in the acute stage of stroke. Predictors were determined based on EEG and characteristics of convulsive syndrome in the acute stage of stroke. The following prognostic criteria were found: generalized type of seizures, focal type of seizures with secondary generalization, epileptiform (peak and/or peak-wave) activity, focal character of epileptiform activity, generalized type of seizures in the combination with slow wave background activity on EEG, generalized type of seizures in the combination with slow wave activity and disorganized activity on EEG.
Slow waves, sharp waves, ripples, and REM in sleeping dragons.
Shein-Idelson, Mark; Ondracek, Janie M; Liaw, Hua-Peng; Reiter, Sam; Laurent, Gilles
2016-04-29
Sleep has been described in animals ranging from worms to humans. Yet the electrophysiological characteristics of brain sleep, such as slow-wave (SW) and rapid eye movement (REM) activities, are thought to be restricted to mammals and birds. Recording from the brain of a lizard, the Australian dragon Pogona vitticeps, we identified SW and REM sleep patterns, thus pushing back the probable evolution of these dynamics at least to the emergence of amniotes. The SW and REM sleep patterns that we observed in lizards oscillated continuously for 6 to 10 hours with a period of ~80 seconds. The networks controlling SW-REM antagonism in amniotes may thus originate from a common, ancient oscillator circuit. Lizard SW dynamics closely resemble those observed in rodent hippocampal CA1, yet they originate from a brain area, the dorsal ventricular ridge, that has no obvious hodological similarity with the mammalian hippocampus. Copyright © 2016, American Association for the Advancement of Science.
Mode conversion between Alfvén wave eigenmodes in axially inhomogeneous two-ion-species plasmas
NASA Astrophysics Data System (ADS)
Roberts, D. R.; Hershkowitz, N.; Tataronis, J. A.
1990-04-01
The uniform cylindrical plasma model of Litwin and Hershkowitz [Phys. Fluids 30, 1323 (1987)] is shown to predict mode conversion between the lowest radial order m=+1 fast magnetosonic surface and slow ion-cyclotron global eigenmodes of the Alfvén wave at the light-ion species Alfvén resonance of a cold two-ion plasma. A hydrogen (h)-deuterium (d) plasma is examined in experiments. The fast mode is efficiently excited by a rotating field antenna array at ω˜Ωh in the central cell of the Phaedrus-B tandem mirror [Phys. Rev. Lett. 51, 1955(1983)]. Radially scanned magnetic probes observe the propagating eigenmode wave fields within a shallow central cell magnetic gradient in which the conversion zone is axially localized according to nd/nh. A low radial-order slow ion-cyclotron mode, observed in the vicinity of the conversion zone, gives evidence for the predicted mode conversion.
Vataev, S I; Malgina, N A; Oganesyan, G A
2015-07-01
The effects of electrical stimulation of nucleus reticularis pontis oralis on the behavior and brain electrical activity during all phases of the sleep-waking cycle was studied in Krushinskii-Molodkina strain rats, which have an inherited predisposition to audiogenic seizures. Electrical stimulation with 7 Hz frequency in the deep stage of slow-wave sleep cause appearance the fast-wave sleep. Similar stimulation during fast-wave sleep periods did not effects on the electrographic patterns and EEG spectral characteristics of hippocampus, visual, auditory and somatocnen nrnrenc nf the cnrtey ThPe sfimul1stinns did nnt break a fast-wave sleenhut increased almost twice due the duration of these sleep episodes. After electrical stimulation by same frequency during the wakeftlness and superficial slow-wave sleep states, the patterns and spectral characteristics of brain electrical activity in rats showed no significant changes as compared with controls. The results of this study indicate that the state of the animals sleep-waking cycle at the time of stimulation is a critical variable that influences the responses which are induced by electrical stimulation of the nucleus reticularis pontis oralis.
Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Le Bon, Olivier
2015-10-01
To investigate slow wave sleep (SWS) spectral power proportions in distinct clinical conditions sharing non-restorative sleep and fatigue complaints without excessive daytime sleepiness (EDS), namely the chronic fatigue syndrome (CFS) and primary insomnia (PI). Impaired sleep homeostasis has been suspected in both CFS and PI. We compared perceived sleep quality, fatigue and sleepiness symptom-intensities, polysomnography (PSG) and SWS spectral power distributions of drug-free CFS and PI patients without comorbid sleep or mental disorders, with a good sleeper control group. Higher fatigue without EDS and impaired perceived sleep quality were confirmed in both patient groups. PSG mainly differed in sleep fragmentation and SWS durations. Spectral analysis revealed a similar decrease in central ultra slow power (0.3-0.79Hz) proportion during SWS for both CFS and PI and an increase in frontal power proportions of faster frequencies during SWS in PI only. The latter was correlated to affective symptoms whereas lower central ultra slow power proportions were related to fatigue severity and sleep quality impairment. In combination with normal (PI) or even increased SWS durations (CFS), we found consistent evidence for lower proportions of slow oscillations during SWS in PI and CFS. Observing normal or increased SWS durations but lower proportions of ultra slow power, our findings suggest a possible quantitative compensation of altered homeostatic regulation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?
Lesku, John A; Vyssotski, Alexei L; Martinez-Gonzalez, Dolores; Wilzeck, Christiane; Rattenborg, Niels C
2011-08-22
The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.
On the Motion of an Annular Film in Microgravity Gas-Liquid Flow
NASA Technical Reports Server (NTRS)
McQuillen, John B.
2002-01-01
Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.
NASA Astrophysics Data System (ADS)
Cremer, Michael; Scholer, Manfred
2000-12-01
The kinetic structure of the reconnection layer in the magnetotail is investigated by two-dimensional hybrid simulations. As a proxy, the solution of the Riemann problem of the collapse of a current sheet with a normal magnetic field component is considered for two cases of the plasma beta (particle to magnetic field pressure): β=0.02 and β=0.002. The collapse results in an expanding layer of compressed and heated plasma, which is accelerated up to the Alfvén speed vA. The boundary layer separating this hot reconnection like layer from the cold lobe plasma is characterized by a beam of back-streaming ions with a field-aligned bulk speed of ~=2vA relative to the cold lobe ion population at rest. As a consequence, obliquely propagating waves are excited via the electromagnetic ion/ion cyclotron instability, which led to perpendicular heating of the ions in the boundary layer as well as further outside the layer in the lobe. In both regions, waves are found which propagate almost parallel to the magnetic field and which are identified as Alfvén ion cyclotron (AIC) waves. These waves are excited by the temperature anisotropy instability. The temperature anisotropy increases with decreasing plasma beta. Thus the anisotropy threshold of the instability is exceeded even in the case of a rather small beta value. The AIC waves, when convected downstream of what can be defined as the the slow shock, make an important contribution to the ion thermalization process. More detailed information on the dissipation process in the slow shocks is gained by analyzing individual ion trajectories.
NASA Astrophysics Data System (ADS)
Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.
2013-09-01
Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B 0) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B 0(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P th and the magnetic pressure P B, distributing against the temporal scale and the angle θxB between B 0(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of θxB. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B 0(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T ∥ derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.
Measurements of plasma loading in the presence of electrostatic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riccardi, C.; Agostini, E.; Fontanesi, M.
1995-10-01
An experimental analysis of the plasma impedance with respect to the coupling of ES (electrostatic) waves is described in this paper. The waves are excited through a slow-wave antenna and the experiment performed in a toroidal device [C. Riccardi {ital et} {ital al}., Plasma Phys. {bold 36}, 1791 (1994)]. The measured impedance is compared with a simple theoretical model for magnetized homogeneous plasma, in order to establish the presence of bulk or surface waves and of some nonlinear effects when power is raised. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Turbulence Evolution and Shock Acceleration of Solar Energetic Particles
NASA Technical Reports Server (NTRS)
Chee, Ng K.
2007-01-01
We model the effects of self-excitation/damping and shock transmission of Alfven waves on solar-energetic-particle (SEP) acceleration at a coronal-mass-ejection (CME) driven parallel shock. SEP-excited outward upstream waves speedily bootstrap acceleration. Shock transmission further raises the SEP-excited wave intensities at high wavenumbers but lowers them at low wavenumbers through wavenumber shift. Downstream, SEP excitation of inward waves and damping of outward waves tend to slow acceleration. Nevertheless, > 2000 km/s parallel shocks at approx. 3.5 solar radii can accelerate SEPs to 100 MeV in < 5 minutes.
NASA Technical Reports Server (NTRS)
Jones, E.; Anliker, M.; Chang, I.
1971-01-01
Investigation of the effects of blood viscosity on dissipation as well as dispersion of small waves in arteries and veins by means of a parametric study. A linearized analysis of axisymmetric waves in a cylindrical membrane that contains a viscous fluid indicates that there are two families of waves: a family of slow waves and one of fast waves. The faster waves are shown to be more sensitive to variations in the elastic properties of the medium surrounding the blood vessels and at high values of the frequency parameter alpha. At low values of alpha the effects of viscosity on attenuation are reversed.
Spreading Photoparoxysmal EEG Response is Associated with an Abnormal Cortical Excitability Pattern
ERIC Educational Resources Information Center
Siniatchkin, Michael; Groppa, Sergey; Jerosch, Bettina; Muhle, Hiltrud; Kurth, Christoph; Shepherd, Alex J.; Siebner, Hartwig; Stephani, Ulrich
2007-01-01
Photosensitivity or photoparoxysmal response (PPR) is a highly heritable electroencephalographic trait characterized by an abnormal cortical response to intermittent photic stimulation (IPS). In PPR-positive individuals, IPS induces spikes, spike-waves or intermittent slow waves. The PPR may be restricted to posterior visual areas (i.e. local PPR…
2011-12-30
improvements also significantly increase anomaly strength while sharpening the anomaly edges to create stronger and more pronounced tectonic structures. The...continental deformation and crustal thickening is occurring, the wave speeds are substantially slower. This Asian north-to-south, fast-to-slow wave speed
On the coupled evolution of oceanic internal waves and quasi-geostrophic flow
NASA Astrophysics Data System (ADS)
Wagner, Gregory LeClaire
Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic that transfers energy to the small near-inertial vertical scales of wave breaking and mixing.
Direct measurement of the transition from edge to core power coupling in a light-ion helicon source
NASA Astrophysics Data System (ADS)
Piotrowicz, P. A.; Caneses, J. F.; Showers, M. A.; Green, D. L.; Goulding, R. H.; Caughman, J. B. O.; Biewer, T. M.; Rapp, J.; Ruzic, D. N.
2018-05-01
We present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displays characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.
Direct measurement of the transition from edge to core power coupling in a light-ion helicon source
Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.; ...
2018-05-02
Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less
Direct measurement of the transition from edge to core power coupling in a light-ion helicon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.
Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less
Computer Simulation For Design Of TWT's
NASA Technical Reports Server (NTRS)
Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard
1992-01-01
A three-dimensional finite-element analytical technique facilitates design and fabrication of traveling-wave-tube (TWT) slow-wave structures. Used to perform thermal and mechanical analyses of TWT designed with variety of configurations, geometries, and materials. Using three-dimensional computer analysis, designer able to simulate building and testing of TWT, with consequent substantial saving of time and money. Technique enables detailed look into operation of traveling-wave tubes to help improve performance for future communications systems.
ERIC Educational Resources Information Center
Arend, Anna M.; Zimmer, Hubert D.
2011-01-01
In the lateralized change detection task, two item arrays are presented, one on each side of the display. Participants have to remember the items in the relevant hemifield and ignore the items in the irrelevant hemifield. A difference wave between contralateral and ipsilateral slow potentials with respect to the relevant items, the contralateral…
Sahlem, Gregory L.; Badran, Bashar W.; Halford, Jonathan J.; Williams, Nolan R.; Korte, Jeffrey E.; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L.; Runion, Jennifer; Bachman, David L.; Uhde, Thomas W.; Borckardt, Jeffery J.; George, Mark S.
2015-01-01
Background A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current wave form (square in our study, nearly sinusoidal in the original). Objective/Hypothesis Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Methods Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517mA/CM2, and oscillated between zero and maximal current at a frequency of 0.75Hz. Stimulation occurred during five-five minute blocks with one-minute inter-block intervals (25 minutes total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. Results There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1±3.0SD more associations) (sham = 3.8±3.1S.D more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6±2.7 S.D. correctly typed sequences) compared to sham stimulation (2.3± 2.2 S.D. correctly typed sequences)]. Conclusion In this study, we failed to find improvements in declarative or performance memory and could not replicate an earlier study using nearly identical settings. Specifically we failed to find a beneficial effect on either overnight declarative or non-declarative memory consolidation via square-wave oscillating tDCS intervention applied bi-frontally during early NREM sleep. It is unclear if the morphology of the tDCS pulse is critical in any memory related improvements. PMID:25795621
Kobayashi, Katsuhiro; Jacobs, Julia; Gotman, Jean
2013-01-01
Objective A novel type of statistical time-frequency analysis was developed to elucidate changes of high-frequency EEG activity associated with epileptic spikes. Methods The method uses the Gabor Transform and detects changes of power in comparison to background activity using t-statistics that are controlled by the false discovery rate (FDR) to correct type I error of multiple testing. The analysis was applied to EEGs recorded at 2000 Hz from three patients with mesial temporal lobe epilepsy. Results Spike-related increase of high-frequency oscillations (HFOs) was clearly shown in the FDR-controlled t-spectra: it was most dramatic in spikes recorded from the hippocampus when the hippocampus was the seizure onset zone (SOZ). Depression of fast activity was observed immediately after the spikes, especially consistently in the discharges from the hippocampal SOZ. It corresponded to the slow wave part in case of spike-and-slow-wave complexes, but it was noted even in spikes without apparent slow waves. In one patient, a gradual increase of power above 200 Hz preceded spikes. Conclusions FDR-controlled t-spectra clearly detected the spike-related changes of HFOs that were unclear in standard power spectra. Significance We developed a promising tool to study the HFOs that may be closely linked to the pathophysiology of epileptogenesis. PMID:19394892
Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip.
Shelly, David R; Beroza, Gregory C; Ide, Satoshi; Nakamula, Sho
2006-07-13
Non-volcanic seismic tremor was discovered in the Nankai trough subduction zone in southwest Japan and subsequently identified in the Cascadia subduction zone. In both locations, tremor is observed to coincide temporally with large, slow slip events on the plate interface downdip of the seismogenic zone. The relationship between tremor and aseismic slip remains uncertain, however, largely owing to difficulty in constraining the source depth of tremor. In southwest Japan, a high quality borehole seismic network allows identification of coherent S-wave (and sometimes P-wave) arrivals within the tremor, whose sources are classified as low-frequency earthquakes. As low-frequency earthquakes comprise at least a portion of tremor, understanding their mechanism is critical to understanding tremor as a whole. Here, we provide strong evidence that these earthquakes occur on the plate interface, coincident with the inferred zone of slow slip. The locations and characteristics of these events suggest that they are generated by shear slip during otherwise aseismic transients, rather than by fluid flow. High pore-fluid pressure in the immediate vicinity, as implied by our estimates of seismic P- and S-wave speeds, may act to promote this transient mode of failure. Low-frequency earthquakes could potentially contribute to seismic hazard forecasting by providing a new means to monitor slow slip at depth.
Faville, R A; Pullan, A J; Sanders, K M; Koh, S D; Lloyd, C M; Smith, N P
2009-06-17
Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations.
Alterations in affective processing of attack images following September 11, 2001.
Tso, Ivy F; Chiu, Pearl H; King-Casas, Brooks R; Deldin, Patricia J
2011-10-01
The events of September 11, 2001 created unprecedented uncertainty about safety in the United States and created an aftermath with significant psychological impact across the world. This study examined emotional information encoding in 31 healthy individuals whose stress response symptoms ranged from none to a moderate level shortly after the attacks as assessed by the Impact of Event Scale-Revised. Participants viewed attack-related, negative (but attack-irrelevant), and neutral images while their event-related brain potentials (ERPs) were recorded. Attack images elicited enhanced P300 relative to negative and neutral images, and emotional images prompted larger slow waves than neutral images did. Total symptoms were correlated with altered N2, P300, and slow wave responses during valence processing. Specifically, hyperarousal and intrusion symptoms were associated with diminished stimulus discrimination between neutral and unpleasant images; avoidance symptoms were associated with hypervigilance, as suggested by reduced P300 difference between attack and other images and reduced appraisal of attack images as indicated by attenuated slow wave. The findings in this minimally symptomatic sample are compatible with the alterations in cognition in the posttraumatic stress disorder (PTSD) literature and are consistent with a dimensional model of PTSD. Copyright © 2011 International Society for Traumatic Stress Studies.
Baddam, Suman; Laws, Holly; Crawford, Jessica L.; Wu, Jia; Bolling, Danielle Z.; Mayes, Linda C.
2016-01-01
Friendships play a major role in cognitive, emotional and social development in middle childhood. We employed the online Cyberball social exclusion paradigm to understand the neural correlates of dyadic social exclusion among best friends assessed simultaneously. Each child played with their friend and an unfamiliar player. Event-related potentials (ERPs) were assessed via electroencephalogram during exclusion by friend and unfamiliar peer. Data were analyzed with hierarchical linear modeling to account for nesting of children within friendship dyads. Results showed that stranger rejection was associated with larger P2 and positive slow wave ERP responses compared to exclusion by a friend. Psychological distress differentially moderated the effects of friend and stranger exclusion such that children with greater psychological distress were observed to have larger neural responses (larger P2 and slow wave) to exclusion by a stranger compared to exclusion by a friend. Conversely, children with lower levels of psychological distress had larger neural responses for exclusion by a friend than by a stranger. Psychological distress within the dyad differentially predicted the P2 and slow wave response. Findings highlight the prominent, but differential role of individual and dyadic psychological distress levels in moderating responses to social exclusion in middle childhood. PMID:27330184
NASA Astrophysics Data System (ADS)
Kumar, N.; Lamba, R. P.; Hossain, A. M.; Pal, U. N.; Phelps, A. D. R.; Prakash, R.
2017-11-01
The experimental study of a tapered, multi-gap, multi-aperture pseudospark-sourced electron gun based X-band plasma assisted slow wave oscillator is presented. The designed electron gun is based on the pseudospark discharge concept and has been used to generate a high current density and high energy electron beam simultaneously. The distribution of apertures has been arranged such that the field penetration potency inside the backspace of the hollow-cathode is different while passing through the tapered gap region. This leads to non-concurrent ignition of the discharge through all the channels which is, in general, quite challenging in the case of multi-aperture plasma cathode electron gun geometries. Multiple and successive hollow cathode phases are reported from this electron gun geometry, which have been confirmed using simulations. This geometry also has led to the achievement of ˜71% fill factor inside the slow wave oscillator for an electron beam of energy of 20 keV and a beam current density in the range of 115-190 A/cm2 at a working argon gas pressure of 18 Pa. The oscillator has generated broadband microwave output in the frequency range of 10-11.7 GHz with a peak power of ˜10 kW for ˜50 ns.
Raha, Sarbani; Shah, Urvashi; Udani, Vrajesh
2012-11-01
The aims of this study were to assess the cognitive and behavioral problems of patients with Epilepsy with Electrical Status Epilepticus in slow sleep (ESES) and related syndromes and to review their EEG (electroencephalography) findings and treatment options. Fourteen patients with ESES were evaluated and treated in 2010. Nine children had continuous spike and wave during slow-wave sleep (CSWS)/ESES syndrome, 3 had Atypical BECTS (benign epilepsy with centrotemporal spikes), 1 had Opercular syndrome, and 1 had Landau-Kleffner syndrome. The duration of ESES ranged from 6 to 52 months. Eleven (91%) children had behavioral issues, most prominent being hyperactivity. Seven of the 13 children (53%) showed evidence of borderline to moderate cognitive impairment. A total of 28 EEG findings of ESES were analyzed for SWI (spike-wave index). Antiepileptic drugs received by the patients included valproate, clobazam, levetiracetam, and others. Eleven patients had been treated with oral steroids and it was found to be efficacious in seven (63%). Disabilities caused by ESES affect multiple domains. Patients with an SWI>50% should be followed up frequently with neuropsychological assessments. Steroids appear to be effective, although there is a need to standardize the dose and duration of treatment. Copyright © 2012 Elsevier Inc. All rights reserved.
Baddam, Suman; Laws, Holly; Crawford, Jessica L; Wu, Jia; Bolling, Danielle Z; Mayes, Linda C; Crowley, Michael J
2016-11-01
Friendships play a major role in cognitive, emotional and social development in middle childhood. We employed the online Cyberball social exclusion paradigm to understand the neural correlates of dyadic social exclusion among best friends assessed simultaneously. Each child played with their friend and an unfamiliar player. Event-related potentials (ERPs) were assessed via electroencephalogram during exclusion by friend and unfamiliar peer. Data were analyzed with hierarchical linear modeling to account for nesting of children within friendship dyads. Results showed that stranger rejection was associated with larger P2 and positive slow wave ERP responses compared to exclusion by a friend. Psychological distress differentially moderated the effects of friend and stranger exclusion such that children with greater psychological distress were observed to have larger neural responses (larger P2 and slow wave) to exclusion by a stranger compared to exclusion by a friend. Conversely, children with lower levels of psychological distress had larger neural responses for exclusion by a friend than by a stranger. Psychological distress within the dyad differentially predicted the P2 and slow wave response. Findings highlight the prominent, but differential role of individual and dyadic psychological distress levels in moderating responses to social exclusion in middle childhood. © The Author (2016). Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Tian, Yu; Zeng, Zhi-Fang
2017-10-01
In this paper, we aim to introduce a new form of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation for the long waves of small amplitude with slow dependence on the transverse coordinate. By using the Hirota's bilinear form and the extended homoclinic test approach, new exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation are presented. Moreover, the properties and characteristics for these new exact periodic solitary-wave solutions are discussed with some figures.
[Myoclonus epilepsy with ragged-red fibers: a case report and literature review].
Zhao, Man-man; Zhang, Yao; Bao, Xin-hua
2015-12-18
To demonstrate the clinical manifestation, diagnosis and treatment of myoclonus epilepsy with ragged-red-fibers (MERRF), a case of MERRF was presented with review of the literature. A 4-year-7-month-old girl was diagnosed with MERRF. She had tremor, fatigue and developmental delay for more than 2 years. Laboratory tests showed that the serum and urine lactic acid and pyruvic acid increased significantly. Electroencephalogram showed diffuse and focal spike slow wave and slow wave in right central and parietal regions. Electromyogram showed neurological damage. Gene mutational analysis showed mtDNA 8344 A>G mutation. The mutational rate was 78%. Mitochondrial disease MERRF syndrome was diagnosed. Cocktails therapy with vitamins B1, B6, B12, L-carnitine, and coenzyme Q10 was administrated to the patient. MERRF is a rare disease. The diagnosis can be made by gene mutational analysis. Cocktail therapy may slow down the deterioration of the disease. Gene therapy is still experimental.
Del Felice, Alessandra; Magalini, Alessandra; Masiero, Stefano
2015-01-01
Temporal lobe epilepsy (TLE) is often associated with memory deficits. Given the putative role for sleep spindles memory consolidation, spindle generators skewed toward the affected lobe in TLE subjects may be a neurophysiological marker of defective memory. Slow-oscillatory transcranial direct current stimulation (sotDCS) during slow waves sleep (SWS) has previously been shown to enhance sleep-dependent memory consolidation by increasing slow-wave sleep and modulating sleep spindles. To test if anodal sotDCS over the affected TL prior to a nap affects sleep spindles and whether this improves memory consolidation. Randomized controlled cross-over study. 12 people with TLE underwent sotDCS (0.75 Hz; 0-250 μV, 30 min) or sham before daytime nap. Declarative verbal and visuospatial learning were tested. Fast and slow spindle signals were recorded by 256-channel EEG during sleep. In both study arms, electrical source imaging (ESI) localized cortical generators. Neuropsychological data were analyzed with general linear model statistics or the Kruskal-Wallis test (P or Z < 0.05), and neurophysiological data tested with the Mann-Whitney t test and binomial distribution test (P or Z < 0.05). An improvement in declarative (P = 0.05) and visuospatial memory performance (P = 0.048) emerged after sotDCS. SotDCS increased slow spindle generators current density (Z = 0.001), with a shift to the anterior cortical areas. Anodal sotDCS over the affected temporal lobe improves declarative and visuospatial memory performance by modulating slow sleep spindles cortical source generators. SotDCS appears a promising tool for memory rehabilitation in people with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.
Frequency chirping for resonance-enhanced electron energy during laser acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, D.N.; Suk, H.
2006-04-15
The model given by Singh-Tripathi [Phys. Plasmas 11, 743 (2004)] for laser electron acceleration in a magnetic wiggler is revisited by including the effect of laser frequency chirping. Laser frequency chirp helps to maintain the resonance condition longer, which increases the electron energy gain. A significant enhancement in electron energy gain during laser acceleration is observed.
Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach.
Geng, Xiaolong; Boufadel, Michel C; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L; Miller, Richard S
2014-09-01
A numerical study was undertaken to investigate the effects of waves on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to waves. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate waves, which were the seaward boundary condition for MARUN. A no-wave case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that waves generated seawater-groundwater circulations in the swash and surf zones of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-wave case, waves significantly increased the residence time and spreading of inland-applied solutes in the beach. Waves also altered solute pathways and shifted the solute discharge zone further seaward. Residence Time Maps (RTM) revealed that the wave-induced residence time of the inland-applied solutes was largest near the solute exit zone to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated zone, the mass of the solute in the unsaturated zone, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated zone of the beach. This means of control was not addressed in prior studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Hermeling, Evelien; Delhaas, Tammo; Prinzen, Frits W; Kuijpers, Nico H L
2012-01-01
In the ECG, T- and R-wave are concordant during normal sinus rhythm (SR), but discordant after a period of ventricular pacing (VP). Experiments showed that the latter phenomenon, called T-wave memory, is mediated by a mechanical stimulus. By means of a mathematical model, we investigated the hypothesis that slow acting mechano-electrical feedback (MEF) explains T-wave memory. In our model, electromechanical behavior of the left ventricle (LV) was simulated using a series of mechanically and electrically coupled segments. Each segment comprised ionic membrane currents, calcium handling, and excitation-contraction coupling. MEF was incorporated by locally adjusting conductivity of L-type calcium current (g(CaL)) to local external work. In our set-up, g(CaL) could vary up to 25%, 50%, 100% or unlimited amount around its default value. Four consecutive simulations were performed: normal SR (with MEF), acute VP, sustained VP (with MEF), and acutely restored SR. MEF led to T-wave concordance in normal SR and to discordant T-waves acutely after restoring SR. Simulated ECGs with a maximum of 25-50% adaptation closely resembled those during T-wave memory experiments in vivo and also provided the best compromise between optimal systolic and diastolic function. In conclusion, these simulation results indicate that slow acting MEF in the LV can explain a) the relatively small differences in systolic shortening and mechanical work during SR, b) the small dispersion in repolarization time, c) the concordant T-wave during SR, and d) T-wave memory. The physiological distribution in electrophysiological properties, reflected by the concordant T-wave, may serve to optimize cardiac pump function. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cortical sources of ERP in prosaccade and antisaccade eye movements using realistic source models
Richards, John E.
2013-01-01
The cortical sources of event-related-potentials (ERP) using realistic source models were examined in a prosaccade and antisaccade procedure. College-age participants were presented with a preparatory interval and a target that indicated the direction of the eye movement that was to be made. In some blocks a cue was given in the peripheral location where the target was to be presented and in other blocks no cue was given. In Experiment 1 the prosaccade and antisaccade trials were presented randomly within a block; in Experiment 2 procedures were compared in which either prosaccade and antisaccade trials were mixed in the same block, or trials were presented in separate blocks with only one type of eye movement. There was a central negative slow wave occurring prior to the target, a slow positive wave over the parietal scalp prior to the saccade, and a parietal spike potential immediately prior to saccade onset. Cortical source analysis of these ERP components showed a common set of sources in the ventral anterior cingulate and orbital frontal gyrus for the presaccadic positive slow wave and the spike potential. In Experiment 2 the same cued- and non-cued blocks were used, but prosaccade and antisaccade trials were presented in separate blocks. This resulted in a smaller difference in reaction time between prosaccade and antisaccade trials. Unlike the first experiment, the central negative slow wave was larger on antisaccade than on prosaccade trials, and this effect on the ERP component had its cortical source primarily in the parietal and mid-central cortical areas contralateral to the direction of the eye movement. These results suggest that blocked prosaccade and antisaccade trials results in preparatory or set effects that decreases reaction time, eliminates some cueing effects, and is based on contralateral parietal-central brain areas. PMID:23847476
Thomas, Robert Joseph; Mietus, Joseph E; Peng, Chung-Kang; Guo, Dan; Gozal, David; Montgomery-Downs, Hawley; Gottlieb, Daniel J; Wang, Cheng-Yen; Goldberger, Ary L
2014-01-01
The physiologic relationship between slow-wave activity (SWA) (0-4 Hz) on the electroencephalogram (EEG) and high-frequency (0.1-0.4 Hz) cardiopulmonary coupling (CPC) derived from electrocardiogram (ECG) sleep spectrograms is not known. Because high-frequency CPC appears to be a biomarker of stable sleep, we tested the hypothesis that that slow-wave EEG power would show a relatively fixed-time relationship to periods of high-frequency CPC. Furthermore, we speculated that this correlation would be independent of conventional nonrapid eye movement (NREM) sleep stages. We analyzed selected datasets from an archived polysomnography (PSG) database, the Sleep Heart Health Study I (SHHS-I). We employed the cross-correlation technique to measure the degree of which 2 signals are correlated as a function of a time lag between them. Correlation analyses between high-frequency CPC and delta power (computed both as absolute and normalized values) from 3150 subjects with an apnea-hypopnea index (AHI) of ≤5 events per hour of sleep were performed. The overall correlation (r) between delta power and high-frequency coupling (HFC) power was 0.40±0.18 (P=.001). Normalized delta power provided improved correlation relative to absolute delta power. Correlations were somewhat reduced in the second half relative to the first half of the night (r=0.45±0.20 vs r=0.34±0.23). Correlations were only affected by age in the eighth decade. There were no sex differences and only small racial or ethnic differences were noted. These results support a tight temporal relationship between slow wave power, both within and outside conventional slow wave sleep periods, and high frequency cardiopulmonary coupling, an ECG-derived biomarker of "stable" sleep. These findings raise mechanistic questions regarding the cross-system integration of neural and cardiopulmonary control during sleep. Copyright © 2013 Elsevier B.V. All rights reserved.
Walsh, James K.; Hall-Porter, Janine M.; Griffin, Kara S.; Dodson, Ehren R.; Forst, Elizabeth H.; Curry, Denise T.; Eisenstein, Rhody D.; Schweitzer, Paula K.
2010-01-01
Study Objectives: To investigate whether enhancement of slow wave sleep (SWS) with sodium oxybate reduces the impact of sleep deprivation. Design: Double-blind, parallel group, placebo-controlled design Setting: Sleep research laboratory Participants: Fifty-eight healthy adults (28 placebo, 30 sodium oxybate), ages 18-50 years. Interventions: A 5-day protocol included 2 screening/baseline nights and days, 2 sleep deprivation nights, each followed by a 3-h daytime (08:00-11:00) sleep opportunity and a recovery night. Sodium oxybate or placebo was administered prior to each daytime sleep period. Multiple sleep latency test (MSLT), psychomotor vigilance test (PVT), Karolinska Sleepiness Scale (KSS), and Profile of Mood States were administered during waking hours. Measurements and Results: During daytime sleep, the sodium oxybate group had more SWS, more EEG spectral power in the 1-9 Hz range, and less REM. Mean MSLT latency was longer for the sodium oxybate group on the night following the first daytime sleep period and on the day following the second day sleep period. Median PVT reaction time was faster in the sodium oxybate group following the second day sleep period. The change from baseline in SWS was positively correlated with the change in MSLT and KSS. During recovery sleep the sodium oxybate group had less TST, SWS, REM, and slow wave activity (SWA) than the placebo group. Conclusions: Pharmacological enhancement of SWS with sodium oxybate resulted in a reduced response to sleep loss on measures of alertness and attention. In addition, SWS enhancement during sleep restriction appears to result in a reduced homeostatic response to sleep loss. Citation: Walsh JK; Hall-Porter JM; Griffin KS; Dodson ER; Forst EH; Curry DT; Eisenstein RD; Schweitzer PK. Enhancing slow wave sleep with sodium oxybate reduces the behavioral and physiological impact of sleep loss. SLEEP 2010;33(9):1217-1225. PMID:20857869
De Giorgis, Valentina; Filippini, Melissa; Macasaet, Joyce Ann; Masnada, Silvia; Veggiotti, Pierangelo
2017-09-01
Continuous spike and waves during slow sleep (CSWS) is a typical EEG pattern defined as diffuse, bilateral and recently also unilateral or focal localization spike-wave occurring in slow sleep or non-rapid eye movement sleep. Literature results so far point out a progressive deterioration and decline of intellectual functioning in CSWS patients, i.e. a loss of previously normally acquired skills, as well as persistent neurobehavioral disorders, beyond seizure and EEG control. The objective of this study was to shed light on the neurobehavioral impact of CSWS and to identify the potential clinical risk factors for development. We conducted a retrospective study involving a series of 16 CSWS idiopathic patients age 3-16years, considering the entire duration of epilepsy from the onset to the outcome, i.e. remission of CSWS pattern. All patients were longitudinally assessed taking into account clinical (sex, age at onset, lateralization and localization of epileptiform abnormalities, spike wave index, number of antiepileptic drugs) and behavioral features. Intelligent Quotient (IQ) was measured in the whole sample, whereas visuo-spatial attention, visuo-motor skills, short term memory and academic abilities (reading and writing) were tested in 6 out of 16 patients. Our results showed that the most vulnerable from an intellectual point of view were those children who had an early-onset of CSWS whereas those with later onset resulted less affected (p=0.004). Neuropsychological outcome was better than the behavioral one and the lexical-semantic route in reading and writing resulted more severely affected compared to the phonological route. Cognitive deterioration is one but not the only consequence of CSWS. Especially with respect to verbal skills, CSWS is responsible of a pattern of consequences in terms of developmental hindrance, including slowing of development and stagnation, whereas deterioration is rare. Behavioral and academic problems tend to persist beyond epilepsy resolution. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of Conditioned Stimulus Exposure during Slow Wave Sleep on Fear Memory Extinction in Humans
He, Jia; Sun, Hong-Qiang; Li, Su-Xia; Zhang, Wei-Hua; Shi, Jie; Ai, Si-Zhi; Li, Yun; Li, Xiao-Jun; Tang, Xiang-Dong; Lu, Lin
2015-01-01
Study Objectives: Repeated exposure to a neutral conditioned stimulus (CS) in the absence of a noxious unconditioned stimulus (US) elicits fear memory extinction. The aim of the current study was to investigate the effects of mild tone exposure (CS) during slow wave sleep (SWS) on fear memory extinction in humans. Design: The healthy volunteers underwent an auditory fear conditioning paradigm on the experimental night, during which tones served as the CS, and a mild shock served as the US. They were then randomly assigned to four groups. Three groups were exposed to the CS for 3 or 10 min or an irrelevant tone (control stimulus, CtrS) for 10 min during SWS. The fourth group served as controls and was not subjected to any interventions. All of the subjects completed a memory test 4 h after SWS-rich stage to evaluate the effect on fear extinction. Moreover, we conducted similar experiments using an independent group of subjects during the daytime to test whether the memory extinction effect was specific to the sleep condition. Participants: Ninety-six healthy volunteers (44 males) aged 18–28 y. Measurements and Results: Participants exhibited undisturbed sleep during 2 consecutive nights, as assessed by sleep variables (all P > 0.05) from polysomnographic recordings and power spectral analysis. Participants who were re-exposed to the 10 min CS either during SWS and wakefulness exhibited attenuated fear responses (wake-10 min CS, P < 0.05; SWS-10 min CS, P < 0.01). Conclusions: Conditioned stimulus re-exposure during slow wave sleep promoted fear memory extinction without altering sleep profiles. Citation: He J, Sun HQ, Li SX, Zhang WH, Shi J, Ai SZ, Li Y, Li XJ, Tang XD, Lu L. Effect of conditioned stimulus exposure during slow wave sleep on fear memory extinction in humans. SLEEP 2015;38(3):423–431. PMID:25348121
An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.
Bjorness, Theresa E; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A; Yanagisawa, Masashi; Bibb, James A; Greene, Robert W
2016-03-30
Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to sleep function. Copyright © 2016 the authors 0270-6474/16/363709-13$15.00/0.
Du, Peng; O'Grady, Gregory; Paskaranandavadivel, Niranchan; Tang, Shou-Jiang; Abell, Thomas; Cheng, Leo K
2016-06-06
What is the central question of this study? This study aimed to provide the first comparison of simultaneous high-resolution mapping of anterior and posterior gastric serosa over sustained periods. What is the main finding and its importance? Episodes of spontaneous gastric slow-wave dysrhythmias increased significantly following intravenous infusion of vasopressin compared with the baseline state. A number of persistent dysrhythmias were defined, including ectopic activation, conduction block, rotor, retrograde and collision/merger of wavefronts. Slow-wave dysrhythmias could occur either simultaneously or independently on the anterior and posterior gastric serosa, and interacted depending on activation-repolarization and frequency dynamics. High-resolution mapping enables mechanistic insights into gastric slow-wave dysrhythmias and is now achieving clinical translation. However, previous studies have focused mainly on dysrhythmias occurring on the anterior gastric wall. The present study simultaneously mapped the anterior and posterior gastric serosa during episodes of dysrhythmias induced by vasopressin to aid understanding of dysrhythmia initiation, maintenance and termination. High-resolution mapping (8 × 16 electrodes on each serosa; 20-74 cm 2 ) was performed in anaesthetized dogs. Baseline recordings (21 ± 8 min) were followed by intravenous infusion of vasopressin (0.1-0.5 IU ml -1 at 60-190 ml h -1 ) and further recordings (22 ± 13 min). Slow-wave activation maps, amplitudes, velocity, interval and frequency were calculated, and differences compared between baseline and postinfusion. All dogs demonstrated an increased prevalence of dysrhythmic events following infusion of vasopressin (17 versus 51%). Both amplitude and velocity demonstrated significant differences (baseline versus postinfusion: 3.6 versus 2.2 mV; 7.7 versus 6.5 mm s -1 ; P < 0.05 for both). Dysrhythmias occurred simultaneously or independently on the anterior and posterior serosa, and then interacted according to frequency dynamics. A number of persistent dysrhythmias were compared, including the following: ectopic activation (n = 2 animals), conduction block (n = 1), rotor (n = 2), retrograde (n = 3) and collision/merger of wavefronts (n = 2). We conclude that infusion of vasopressin induces gastric dysrhythmias, which occur across a heterogeneous range of frequencies and patterns. The results demonstrate that different classes of gastric dysrhythmias may arise simultaneously or independently in one or both surfaces of the serosa, then interact according to their relative frequencies. These results will help to inform interpretation of clinical dysrhythmia. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Effect of Velocity of Detonation of Explosives on Seismic Radiation
NASA Astrophysics Data System (ADS)
Stroujkova, A. F.; Leidig, M.; Bonner, J. L.
2014-12-01
We studied seismic body wave generation from four fully contained explosions of approximately the same yields (68 kg of TNT equivalent) conducted in anisotropic granite in Barre, VT. The explosions were detonated using three types of explosives with different velocities of detonation (VOD): Black Powder (BP), Ammonium Nitrate Fuel Oil/Emulsion (ANFO), and Composition B (COMP B). The main objective of the experiment was to study differences in seismic wave generation among different types of explosives, and to determine the mechanism responsible for these differences. The explosives with slow burn rate (BP) produced lower P-wave amplitude and lower corner frequency, which resulted in lower seismic efficiency (0.35%) in comparison with high burn rate explosives (2.2% for ANFO and 3% for COMP B). The seismic efficiency estimates for ANFO and COMP B agree with previous studies for nuclear explosions in granite. The body wave radiation pattern is consistent with an isotropic explosion with an added azimuthal component caused by vertical tensile fractures oriented along pre-existing micro-fracturing in the granite, although the complexities in the P- and S-wave radiation patterns suggest that more than one fracture orientation could be responsible for their generation. High S/P amplitude ratios and low P-wave amplitudes suggest that a significant fraction of the BP source mechanism can be explained by opening of the tensile fractures as a result of the slow energy release.
NASA Astrophysics Data System (ADS)
Bhakta, S.; Prajapati, R. P.; Dolai, B.
2017-08-01
The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.
NASA Astrophysics Data System (ADS)
Andoh, Masayoshi; Wada, Hiroshi
2004-07-01
The aim of this study was to predict the characteristics of two types of cochlear pressure waves, so-called fast and slow waves. A two-dimensional finite-element model of the organ of Corti (OC), including fluid-structure interaction with the surrounding lymph fluid, was constructed. The geometry of the OC at the basal turn was determined from morphological measurements of others in the gerbil hemicochlea. As far as mechanical properties of the materials within the OC are concerned, previously determined mechanical properties of portions within the OC were adopted, and unknown mechanical features were determined from the published measurements of static stiffness. Time advance of the fluid-structure scheme was achieved by a staggered approach. Using the model, the magnitude and phase of the fast and slow waves were predicted so as to fit the numerically obtained pressure distribution in the scala tympani with what is known about intracochlear pressure measurement. When the predicted pressure waves were applied to the model, the numerical result of the velocity of the basilar membrane showed good agreement with the experimentally obtained velocity of the basilar membrane documented by others. Thus, the predicted pressure waves appeared to be reliable. Moreover, it was found that the fluid-structure interaction considerably influences the dynamic behavior of the OC at frequencies near the characteristic frequency.
Acoustic Receptivity of Mach 4.5 Boundary Layer with Leading- Edge Bluntness
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Balakumar, Ponnampalam
2007-01-01
Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier-Stokes equations for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The results show that the instability waves are generated in the leading edge region and that the boundary-layer is much more receptive to slow acoustic waves (by almost a factor of 20) as compared to the fast waves. Hence, this leading-edge receptivity mechanism is expected to be more relevant in the transition process for high Mach number flows where second mode instability is dominant. Computations are performed to investigate the effect of leading-edge thickness and it is found that bluntness tends to stabilize the boundary layer. Furthermore, the relative significance of fast acoustic waves is enhanced in the presence of bluntness. The effect of acoustic wave incidence angle is also studied and it is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases by more than a factor of 4 when the incidence angle is increased from 0 to 45 deg. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle.
NASA Astrophysics Data System (ADS)
Lu, Zhigang; Su, Zhicheng; Wei, Yanyu
2018-05-01
A double-ridge-loaded folded waveguide (DRL-FW) travelling wave tube (TWT) based on period-tapered structure is proposed. Through analysing the dispersion characteristics of the DRL-FW slow wave structure (SWS), the physical mechanism of the band-edge oscillation is obtained. Period-tapered SWS is proposed and analysed for verifying the feasibility in suppressing upper-band-edge oscillation and increasing the output power. Then the electromagnetic characteristics and the beam-wave interaction of TWT based on the period-tapered DRL-FW SWS are investigated. The calculation results predict that it potentially could provide continuous wave power over 600W from 29 GHz to 32 GHz without upper-band-edge oscillation. The bandwidth expands from 29-31GHz to 29-32GHz and electron efficiency is increased from more than 8.3% to more than 11%, while the range of operating voltage expands from 22kV-22.5kV to 22kV-24kV. The corresponding saturated gain can reach over 36.8 dB. In addition, we have carried out experimental tests on the transmission characteristics of period-tapered DRL-FW SWS. The cold test results show that the voltage stand-wave ratio (VSWR) is below 1.8 in the range of 29-32GHz. Good transmission characteristics greatly reduce the risk of reflection wave oscillation, thus improving the stability of DRL-FW TWT.
A study of equatorial wave characteristics using rockets, balloons, lidar and radar
NASA Astrophysics Data System (ADS)
Sasi, M. N.; Krishna Murthy, B. V.; Ramkumar, Geetha; Satheesan, K.; Parameswaran, K.; Rajeev, K.; Sunilkumar, S. V.; Nair, Prabha R.; Krishna Moorthy, K.; Bhavanikumar, Y.; Raghunath, K.; Jain, A. R.; Rao, P. B.; Krishnaiah, M.; Prabhakaran Nayars, S. R.; Revathy, K.; Devanarayanan, S.
2003-09-01
A co-ordmated experimental campaign was conducted for 40 consecutive days from 21 February to 01 April 2000 using RH-200 rockets, balloons, Rayleigh lidar and MST radar, with the objective of delineating the equatorial waves and estimating momentum fluxes associated with them. Winds and temperatures in the troposphere, stratosphere and mesosphere over two low latitude stations Gadanki (13.5°N, 79.2°E) and SHAR (13.7°N, 80.2°E) were measured and were used for the study of equatorial waves and their interactions with the background mean flow in various atmospheric regions. The study shows the occurrence of a strong stratospheric cooling (˜25 K) anomaly along with a zonal wind anomaly and this low-latitude event appears to be linked to high-latitude stratospheric warming event and followed by subsequent generation of short period (˜5 days) oscillations lasting for a few cycles in the stratosphere. Slow and fast Kelvin waves and RG wave (˜-17-day and ˜7.2-day and ˜4.2-day periods respectively) have been identified. The mean flow acceleration produced by the divergence of the momentum flux due to the observed Kelvin waves in the 35-60 km height region were compared with the zonal flow accelerations computed from the observed zonal winds. Contribution by the slow and fast Kelvin waves was found to be only ˜25 % of the observed acceleration during the evolution of the westerly phase of the semi-annual oscillation.
Balance models for equatorial planetary-scale dynamics
NASA Astrophysics Data System (ADS)
Chan, Ian Hiu-Fung
This thesis aims at advancing our understanding of large-scale dynamics in the tropics, specifically the characterization of slow planetary-scale motions through a balance theory; current balance theories in the tropics are unsatisfactory as they filter out Kelvin waves, which are an important component of variability, along with fast inertia-gravity (IG) waves. (Abstract shortened by UMI.).
Using High Speed Smartphone Cameras and Video Analysis Techniques to Teach Mechanical Wave Physics
ERIC Educational Resources Information Center
Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano
2017-01-01
We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…
Ultrasonic Nondestructive Characterization of Porous Materials
NASA Astrophysics Data System (ADS)
Yang, Ningli
2011-12-01
Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples with varying water-to-cement ratios are presented in the dissertation. The third part concerns the ultrasonic characterization of air-saturated porous materials. Using airborne reflected and transmitted ultrasonic experimental data, the open porosity and tortuosity value of a porous acrylic plate with graded void content and a polyimide foam are determined simultaneously. Experimental and numerical results of the method are presented.
Synchrony of two uncoupled neurons under half wave sine current stimulation
NASA Astrophysics Data System (ADS)
Peng, Yueping; Wang, Jue; Jian, Zhong
2009-04-01
Two uncoupled Hindmarsh-Rose neurons under different initial discharge patterns are stimulated by the half wave sine current; and the synchronization mechanism of the two neurons is discussed by analyzing their membrane potentials and their interspike interval (ISI) distribution. Under the half wave sine current stimulation, the two uncoupled neurons under different initial conditions, whose parameter r (the parameter r is related to the membrane penetration of calcium ion, and reflects the changing speed of the slow adaptation current) is different or the same, can realize discharge synchronization (phase synchronization) or the full synchronization (state synchronization). The synchronization characteristics are mainly related to the frequency and the amplitude of the half wave sine current, and are little related to the parameter r and the initial state of the two neurons. This investigation shows the mechanism of the current's amplitude and its frequency affecting the synchronization process of neurons, and the neurons' discharge patterns and synchronization process can be adjusted and controlled by the current's amplitude and its frequency. This result is of far reaching importance to study synchronization and encode of many neurons or neural network, and provides the theoretic basis for studying the mechanism of some nervous diseases such as epilepsy and Alzheimer's disease by the slow wave of EEG.
Impediments to predicting site response: Seismic property estimation and modeling simplifications
Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Guzina, B.B.
2009-01-01
We compare estimates of the empirical transfer function (ETF) to the plane SH-wave theoretical transfer function (TTF) within a laterally constant medium for invasive and noninvasive estimates of the seismic shear-wave slownesses at 13 Kiban-Kyoshin network stations throughout Japan. The difference between the ETF and either of the TTFs is substantially larger than the difference between the two TTFs computed from different estimates of the seismic properties. We show that the plane SH-wave TTF through a laterally homogeneous medium at vertical incidence inadequately models observed amplifications at most sites for both slowness estimates, obtained via downhole measurements and the spectral analysis of surface waves. Strategies to improve the predictions can be separated into two broad categories: improving the measurement of soil properties and improving the theory that maps the 1D soil profile onto spectral amplification. Using an example site where the 1D plane SH-wave formulation poorly predicts the ETF, we find a more satisfactory fit to the ETF by modeling the full wavefield and incorporating spatially correlated variability of the seismic properties. We conclude that our ability to model the observed site response transfer function is limited largely by the assumptions of the theoretical formulation rather than the uncertainty of the soil property estimates.
Preoperative EEG predicts memory and selective cognitive functions after temporal lobe surgery.
Tuunainen, A; Nousiainen, U; Hurskainen, H; Leinonen, E; Pilke, A; Mervaala, E; Vapalahti, M; Partanen, J; Riekkinen, P
1995-01-01
Preoperative and postoperative cognitive and memory functions, psychiatric outcome, and EEGs were evaluated in 32 epileptic patients who underwent temporal lobe surgery. The presence and location of preoperative slow wave focus in routine EEG predicted memory functions of the non-resected side after surgery. Neuropsychological tests of the function of the frontal lobes also showed improvement. Moreover, psychiatric ratings showed that seizure free patients had significantly less affective symptoms postoperatively than those who were still exhibiting seizures. After temporal lobectomies, successful outcome in postoperative memory functions can be achieved in patients with unilateral slow wave activity in preoperative EEGs. This study suggests a new role for routine EEG in preoperative evaluation of patients with temporal lobe epilepsy. PMID:7608663
Experimental quantification of nonlinear time scales in inertial wave rotating turbulence
NASA Astrophysics Data System (ADS)
Yarom, Ehud; Salhov, Alon; Sharon, Eran
2017-12-01
We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.
Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults
Papalambros, Nelly A.; Santostasi, Giovanni; Malkani, Roneil G.; Braun, Rosemary; Weintraub, Sandra; Paller, Ken A.; Zee, Phyllis C.
2017-01-01
Acoustic stimulation methods applied during sleep in young adults can increase slow wave activity (SWA) and improve sleep-dependent memory retention. It is unknown whether this approach enhances SWA and memory in older adults, who generally have reduced SWA compared to younger adults. Additionally, older adults are at risk for age-related cognitive impairment and therefore may benefit from non-invasive interventions. The aim of this study was to determine if acoustic stimulation can increase SWA and improve declarative memory in healthy older adults. Thirteen participants 60–84 years old completed one night of acoustic stimulation and one night of sham stimulation in random order. During sleep, a real-time algorithm using an adaptive phase-locked loop modeled the phase of endogenous slow waves in midline frontopolar electroencephalographic recordings. Pulses of pink noise were delivered when the upstate of the slow wave was predicted. Each interval of five pulses (“ON interval”) was followed by a pause of approximately equal length (“OFF interval”). SWA during the entire sleep period was similar between stimulation and sham conditions, whereas SWA and spindle activity were increased during ON intervals compared to matched periods during the sham night. The increases in SWA and spindle activity were sustained across almost the entire five-pulse ON interval compared to matched sham periods. Verbal paired-associate memory was tested before and after sleep. Overnight improvement in word recall was significantly greater with acoustic stimulation compared to sham and was correlated with changes in SWA between ON and OFF intervals. Using the phase-locked-loop method to precisely target acoustic stimulation to the upstate of sleep slow oscillations, we were able to enhance SWA and improve sleep-dependent memory storage in older adults, which strengthens the theoretical link between sleep and age-related memory integrity. PMID:28337134
NASA Astrophysics Data System (ADS)
Vianna, S. D. B.; Lin, F. Y.; Plum, M. A.; Duran, H.; Steffen, W.
2017-05-01
Using non-invasive, marker-free resonance enhanced dynamic light scattering, the dynamics of capillary waves on ultrathin polystyrene films' coupling to the viscoelastic and mechanical properties have been studied. The dynamics of ultrathin polymer films is still debated. In particular the question of what influence either the solid substrate and/or the fluid-gas interface has on the dynamics and the mechanical properties of films of glass forming liquids as polymers is in the focus of the present research. As a consequence, e.g., viscosity close to interfaces and thus the average viscosity of very thin films are prone to change. This study is focused on atactic, non-entangled polystyrene thin films on the gold surface. A slow dynamic mode was observed with Vogel-Fulcher-Tammann temperature dependence, slowing down with decreasing film thickness. We tentatively attribute this relaxation mode to overdamped capillary waves because of its temperature dependence and the dispersion with a wave vector which was found. No signs of a more mobile layer at the air/polymer interface or of a "dead layer" at the solid/polymer interface were found. Therefore we investigated the influence of an artificially created dead layer on the capillary wave dynamics by introducing covalently bound polystyrene polymer brushes as anchors. The dynamics was slowed down to a degree more than expected from theoretical work on the increase of density close to the solid liquid interface—instead of a "dead layer" of 2 nm, the interaction seems to extend more than 10 nm into the polymer.
[Comprehensive testing system for cardiorespiratory interaction research].
Zhang, Zhengbo; Wang, Buqing; Wang, Weidong; Zheng, Jiewen; Liu, Hongyun; Li, Kaiyuan; Sun, Congcong; Wang, Guojing
2013-04-01
To investigate the modulation effects of breathing movement on cardiovascular system and to study the physiological coupling relationship between respiration and cardiovascular system, we designed a comprehensive testing system for cardiorespiratory interaction research. This system, comprising three parts, i. e. physiological signal conditioning unit, data acquisition and USB medical isolation unit, and a PC based program, can acquire multiple physiological data such as respiratory flow, rib cage and abdomen movement, electrocardiograph, artery pulse wave, cardiac sounds, skin temperature, and electromyography simultaneously under certain experimental protocols. Furthermore this system can be used in research on short-term cardiovascular variability by paced breathing. Preliminary experiments showed that this system could accurately record rib cage and abdomen movement under very low breathing rate, using respiratory inductive plethysmography to acquire respiration signal in direct-current coupling mode. After calibration, this system can be used to estimate ventilation non-intrusively and correctly. The PC based program can generate audio and visual biofeedback signal, and guide the volunteers to perform a slow and regular breathing. An experiment on healthy volunteers showed that this system was able to guide the volunteers to do slow breathing effectively and simultaneously record multiple physiological data during the experiments. Signal processing techniques were used for off-line data analysis, such as non-invasive ventilation calibration, QRS complex wave detection, and respiratory sinus arrhythmia and pulse wave transit time calculation. The experiment result showed that the modulation effect on RR interval, respiratory sinus arrhythmia (RSA), pulse wave transit time (PWTT) by respiration would get stronger with the going of the slow and regular breathing.
Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi
We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data ofmore » the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.« less
Extracting Rayleigh wave dispersion from ambient noise across the Indian Ocean
NASA Astrophysics Data System (ADS)
Ma, Z.; Dalton, C. A.
2016-12-01
Rayleigh wave dispersion extracted from ambient seismic noise has been widely used to image crustal and uppermost mantle structure. Applications of this approach in continental settings are abundant, but there have been relatively few studies within ocean basins. In this presentation, we will first demonstrate the feasibility of extracting high quality Rayleigh wave dispersion information from ambient noise across the entire Indian Ocean basin. Phase arrival times measured from ambient noise are largely consistent with the ones predicted from 2-D phase velocity maps that were determined from earthquake data alone. Secondly, we show that adding dispersion information extracted from ambient noise to existing earthquake data can indeed improve the resolution of phase velocity maps by about 20% in the western Indian Ocean region where the station distribution is the densest. High quality Rayleigh wave dispersion information can be obtained from stacking waveforms over less than two years at land stations and less than four years at island stations. After removing the age dependent average velocities, the 2-D phase velocity maps show slow anomalies associated with the Seychelles-Mascarene plateau. Forward modeling suggests that the crust is about 15-25 km thick in this area, which agrees with previous estimates obtained from gravity data. We also observe that the slow anomaly related to the Central Indian Ridge is asymmetric. The center of this slow anomaly lies to the west side of ridge, which is opposite to the ridge migration direction. This asymmetry probably reflects the interactions between the ridge and nearby hotspots.
NASA Astrophysics Data System (ADS)
Ba, Jing; Xu, Wenhao; Fu, Li-Yun; Carcione, José M.; Zhang, Lin
2017-03-01
Heterogeneity of rock's fabric can induce heterogeneous distribution of immiscible fluids in natural reservoirs, since the lithological variations (mainly permeability) may affect fluid migration in geological time scales, resulting in patchy saturation of fluids. Therefore, fabric and saturation inhomogeneities both affect wave propagation. To model the wave effects (attenuation and velocity dispersion), we introduce a double double-porosity model, where pores saturated with two different fluids overlap with pores having dissimilar compressibilities. The governing equations are derived by using Hamilton's principle based on the potential energy, kinetic energy, and dissipation functions, and the stiffness coefficients are determined by gedanken experiments, yielding one fast P wave and four slow Biot waves. Three examples are given, namely, muddy siltstones, clean dolomites, and tight sandstones, where fabric heterogeneities at three different spatial scales are analyzed in comparison with experimental data. In muddy siltstones, where intrapore clay and intergranular pores constitute a submicroscopic double-porosity structure, wave anelasticity mainly occurs in the frequency range (104-107 Hz), while in pure dolomites with microscopic heterogeneity of grain contacts and tight sandstones with mesoscopic heterogeneity of less consolidated sands, it occurs at 103-107 Hz and 101-103 Hz (seismic band), respectively. The predicted maximum quality factor of the fast compressional wave for the sandstone is the lowest (approximately 8), and that of the dolomite is the highest. The results of the diffusive slow waves are affected by the strong friction effects between solids and fluids. The model describes wave propagation in patchy-saturated rocks with fabric heterogeneity at different scales, and the relevant theoretical predictions agree well with the experimental data in fully and partially saturated rocks.