Stefaniuk, Magdalena; Oleszczuk, Patryk; Różyło, Krzysztof
2017-12-01
The application of sewage sludge with biochar as fertilizer may be a new method improves soil properties. Biochar increases of the crops productivity and reduction of bioavailability of contaminants. In the present study the persistence of sum of 16 (Σ16) PAHs (US EPA 16 PAHs) in a sewage sludge-amended soil (11t/h) and in a sewage sludge-amended soil with the addition of biochar (at a rate of 2.5, 5 or 10% of sewage sludge (dry weight basis)) was determined. This study was carried out as a plot experiment over a period of 18months. Samples for analysis were taken at the beginning of the study and after 6, 12 and 18months from the beginning of the experiment. Application of sewage sludge as a soil amendment did not cause a significant change (P≥0.05) in the soil content of Σ16 PAHs. In turn, the addition of biochar with sewage sludge to the soil, regardless of the contribution of biochar in the sewage sludge, resulted in a significant decrease in PAH content already at the beginning of the experiment. Throughout the experiment, in all treatments the PAH content varied, predominantly showing a decreasing trend. Ultimately, after 18months the content of Σ16 PAHs decreased by 19% in the experiment with sewage sludge alone and by 45, 35 and 28% in the experiment with sewage sludge and the 2.5%, 5.0% and 10% biochar rates, respectively. After 18months of the study, the largest losses in the sewage sludge-amended soil were observed for 2- and 3-ring PAHs. In the sewage sludge- and biochar-amended soil, compared to the beginning of the study and the sewage sludge-amended soil, the highest losses were found for 5- and 6-ring PAHs (2.5 and 5.0% rates) as well as for 5- and 2-ring PAHs (10% rate). Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roslev, P.; Madsen, P.L.; Thyme, J.B.
The metabolism of phthalic acid (PA) and di-(2-ethylhexyl) (DEHP) in sludge-amended agricultural soil was studied with radiotracer techniques. The initial rates of metabolism of PA and DEHP were estimated to be 731.8 and 25.6 pmol/g (dry weight) per day, respectively. Indigenous microorganisms assimilated 28 and 17% of the carbon in [{sup 14}C]PA and [{sup 14}C]DEHP, respectively, into microbial biomass. The rates of DEHP metabolism were much greater in sludge assays without soil than in assays with sludge-amended soil. Mineralization of [{sup 14}C]DEHP to {sup 14}CO{sub 2} increased fourfold after inoculation of sludge and soil samples with DEHP-degrading strain SDE 2.more » The elevated mineralization potential was maintained for more than 27 days. Experiments performed with strain SDE 2 suggested that the bioavailability and mineralization of DEHP decreased substantially in the presence of soil and sludge components. The microorganisms metabolizing PA and DEHP in sludge and sludge-amended soil were characterized by substrate-specific radiolabelling, followed by analysis of {sup 14}C-labelled phospholipid ester-linked fatty acids ({sup 14}C-PLFAs).« less
Kończak, Magdalena; Oleszczuk, Patryk
2018-06-01
The aim of the present study was to determine changes in the physicochemical properties and toxicity of soil amended with sewage sludge (10t dw /ha) or sewage sludge (10t dw /ha) with biochar addition (2.5, 5 or 10% of sewage sludge). The study was carried out as a field experiment over a period of 18months. Samples for analysis were taken at the beginning of the experiment as well as after 6, 12 and 18months. The study investigated toxicity of the unamended soil, sewage sludge-amended soil and sewage sludge-amended soil with biochar addition towards Folsomia candida (collembolan test) and Lepidium sativum (Phytotoxkit F). Moreover, toxicity of aqueous extracts obtained from the tested soils towards Vibrio fischeri (Microtox®) and Lepidium sativum (elongation test) was determined. The study showed that addition of biochar to the sewage sludge and soil reduced leaching of nutrients (mainly phosphorus and potassium) from the amended soil. Biochar significantly reduced sewage sludge toxicity, exhibiting a stimulating effect on the tested organisms. The stimulating effect of biochar addition to the sewage sludge persisted throughout the entire experiment. Apart from the remediatory character of biochar, this is also evidence of its fertilizing character. In the tests with L. sativum (leachates and solid phase) and V. fischeri (leachates), increasing the rate of biochar in the sewage sludge increased root growth stimulation (L. sativum) and bacteria luminescence (V. fischeri). However, increasing biochar rate decreased F. candida reproduction stimulation, which could have been an effect of reduced nutrient bioavailability due to the biochar. Copyright © 2017 Elsevier B.V. All rights reserved.
The influence of organic amendment and nickel pollution on tomato fruit yield and quality.
Palacios, G; Carbonell-Barrachina, A; Gómez, I; Mataix, J
1999-01-01
The effects of organic fertilization (sludge application) and/or different levels of Ni pollution on tomato fruit yield, quality, nutrition, and Ni accumulation were investigated. The mass loading of sewage sludge solids used in this study for the amendment of a calcareous soil with low organic matter content was 2% (w/w). A control with no sewage sludge amendment was also included (S). Nickel was added to the sludge amended soil at 0, 60, 120 and 240 mg kg-1 concentrations. Sewage sludge addition to the calcareous soil significantly increased fruit yield but did not adversely affect the quality and nutritional status of the tomato fruit. The results demonstrated that sewage sludge could be successfully used as a horticultural fertilizer. Only the highest addition rate of Ni (240 mg kg-1) to an organic amended calcareous soil had negative effects on fruit yield and quality, and caused a Ni accumulation in fruit that could be considered as a hazard for human health. Thus, no toxic problems will be encountered in tomato fruit due to Ni pollution provided the total Ni (soil Ni plus Ni incorporated with sludge amendment) concentration is kept below the maximum concentration of Ni allowed for agricultural alkaline soils in Spain (112 mg Ni kg-1).
Elemental transport and distribution in soils amended with incinerated sewage sludge.
Paramasivam, S; Sajwan, K S; Alva, A K; VanClief, D; Hostler, K H
2003-05-01
Sewage sludge (SS) is the major solid waste of sewage and wastewater treatment plants in cities around the world. Even though treated effluent water from wastewater treatment plants are utilized for irrigation, disposal of sewage sludge is becoming a serious problem. This is due to its high content of certain heavy metals still posing threat of accumulation in plants and groundwater contamination when it is used as soil amendment or disposed in landfills. Water treatment plants incinerate the dewatered activated sewage sludge (ISS) and dissolve the ash in water to store in ash ponds for long-term storage (WISS). A study was undertaken to evaluate the transport and leaching potential of various elements and their distribution within soil columns amended with various rates of ISS. Results of this study indicates that ISS from wastewater treatment plants can be used as soil amendment on agricultural lands at low to medium rates (< or = 100 Mg ha(-1)) without causing potential loading of metals into groundwater.
Evaluation of emission of greenhouse gases from soils amended with sewage sludge.
Paramasivam, S; Fortenberry, Gamola Z; Julius, Afolabi; Sajwan, Kenneth S; Alva, A K
2008-02-01
Increase in concentrations of various greenhouse gases and their possible contributions to the global warming are becoming a serious concern. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in C and N, as soil amendments could contribute to the increase in emission of greenhouse gases such as methane (CH(4)) and nitrous oxide (N(2)O) into the atmosphere. Therefore, evaluation of flux of various greenhouse gases from soils amended with sewage sludge is essential to quantify their release into the atmosphere. Two soils with contrasting properties (Candler fine sand [CFS] from Florida, and Ogeechee loamy sand [OLS] from Savannah, GA) were amended with varying rates (0, 24.7, 49.4, 98.8, and 148.3 Mg ha(-1)) of 2 types of sewage sludge (industrial [ISS] and domestic [DSS] origin. The amended soil samples were incubated in anaerobic condition at field capacity soil water content in static chamber (Qopak bottles). Gas samples were extracted immediately after amending soils and subsequently on a daily basis to evaluate the emission of CH(4), CO(2) and N(2)O. The results showed that emission rates and cumulative emission of all three gases increased with increasing rates of amendments. Cumulative emission of gases during 25-d incubation of soils amended with different types of sewage sludge decreased in the order: CO(2) > N(2)O > CH(4). The emission of gases was greater from the soils amended with DSS as compared to that with ISS. This may indicate the presence of either low C and N content or possible harmful chemicals in the ISS. The emission of gases was greater from the CFS as compared to that from the OLS. Furthermore, the results clearly depicted the inhibitory effect of acetylene in both soils by producing more N(2)O and CH(4) emission compared to the soils that did not receive acetylene at the rate of 1 mL g(-1) soil. Enumeration of microbial population by fluorescein diacetate (FDA) and most probable number (MPN) procedure at the end of 25-d incubation demonstrated a clear relationship between microbial activity and the emission of gases. The results of this study emphasize the need to consider the emission of greenhouse gases from soils amended with organic soil amendments such as sewage sludge, especially at high rates, and their potential contribution to global warming.
Eid, Ebrahem M; El-Bebany, Ahmed F; Alrumman, Sulaiman A; Hesham, Abd El-Latif; Taher, Mostafa A; Fawy, Khaled F
2017-04-03
In this study, we present the response of spinach to different amendment rates of sewage sludge (0, 10, 20, 30, 40 and 50 g kg -1 ) in a greenhouse pot experiment, where plant growth, biomass and heavy metal uptake were measured. The results showed that sewage sludge application increased soil electric conductivity (EC), organic matter, chromium and zinc concentrations and decreased soil pH. All heavy metal concentrations of the sewage sludge were below the permissible limits for land application of sewage sludge recommended by the Council of the European Communities. Biomass and all growth parameters (except the shoot/root ratio) of spinach showed a positive response to sewage sludge applications up to 40 g kg -1 compared to the control soil. Increasing the sewage sludge amendment rate caused an increase in all heavy metal concentrations (except lead) in spinach root and shoot. However, all heavy metal concentrations (except chromium and iron) were in the normal range and did not reach the phytotoxic levels. The spinach was characterized by a bioaccumulation factor <1.0 for all heavy metals. The translocation factor (TF) varied among the heavy metals as well as among the sewage sludge amendment rates. Spinach translocation mechanisms clearly restricted heavy metal transport to the edible parts (shoot) because the TFs for all heavy metals (except zinc) were <1.0. In conclusion, sewage sludge used in the present study can be considered for use as a fertilizer in spinach production systems in Saudi Arabia, and the results can serve as a management method for sewage sludge.
Soil microbial properties after 5 years of consecutive amendment with composted tannery sludge.
Araujo, Ademir Sérgio Ferreira; Miranda, Ana Roberta Lima; Oliveira, Mara Lucia Jacinto; Santos, Vilma Maria; Nunes, Luís Alfredo Pinheiro Leal; Melo, Wanderley José
2015-01-01
Composting has been recognised an alternative method to tannery sludge recycling and afterwards to be used in agriculture. As the tannery sludge contains salts and chromium, the application of composted tannery sludge (CTS) should be performed carefully to minimise negative effects on soil microbial properties. Therefore, this study evaluated the effects of 5-year repeated CTS amendment on soil microbial biomass (SMB) and enzyme activities in a tropical soil. CTS was applied during 5 years at 0, 2.5, 5, 10 and 20 Mg ha(-1), and at the fifth year, the microbial biomass C (MBC) and N (MBN), basal and substrate-induced respiration (SIR), metabolic quotient (qCO₂) and dehydrogenase (DHA) and fluorescein diacetate (FDA) hydrolysis were determined in the soil samples. Soil MBC and MBN showed the highest values with the amendment of 5 Mg ha(-1) CTS. Soil respiration increased with the increase in CTS rates, while SIR showed the highest values with the amendment of 0, 2.5 and 5 Mg ha(-1) CTS. DHA activity showed the highest values with the amendment up to 2.5 Mg ha(-1), while FDA hydrolysis increased up to the rate of 5 Mg ha(-1) CTS. The results show that after 5 years of permanent amendment of CTS, soils amended with 2.5 Mg ha(-1) have SMB and enzymatic activities similar to those in unamended soil.
Element accumulation in tall fescue and alfalfa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stucky, D.J.; Newman, T.S.
This study was initiated to examine the effect of three application rates of dried anaerobically digested sludge on two different soil media on the establishment, yield, duration, and element accumulation in tall fescue and alfalfa. In a greenhouse study, acid strip-mine spoil and agricultural soil were used to compare plant growth in sewage-amended and untreated media. Sludge was applied at 0, 314, and 627 metric tons/hectare to the agricultural soil control and the strip mine spoil. Plant yields were significantly higher for strip-mine spoil amended with 627 metric tons/ha and for agricultural soil amended with 314 and 627 metric tons/ha.more » Concentrations of Mn, Ni, Cd, Zn, and Cu were measured in plants and soils. Concentrations of Mn, Zn, Ni, and Cd in tall fescue and alfalfa grown in strip-mine spoils were higher at higher sludge application rates. Sludge application rate did not affect Cu uptake. Concentrations of Mn, Zn, Ni, and Cd in tall fescue were highest during the 180 toese is the fluctuation in nutrient salt concentrations:agreement of experimental and calculated data is obtton beam.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, J.W.C.; Selvam, A.
2009-10-15
A greenhouse experiment was conducted to evaluate the growth and heavy-metal accumulation of Brassica chinensis and Agropyron elongatum in 10 and 25% ash-sludge co-compost (ASC)-amended loamy acidic soil (pH 4.51) at two different application rates: 20% and 40% (v/v). Soil pH increased, whereas electrical conductivity decreased with the amendment of ASC to soil. Bioavailable Cu, Zn, and Mn contents of ASC-amended soil decreased, whereas Ni, Pb, and B contents increased. Concentrations of bioavailable Cu, Zn, and Mn in sludge compost (SC)-amended soils were 5.57, 20.8, and 8.19 mg kg{sup -1}, respectively. These concentrations were significantly lower than those in soilmore » receiving an application rate of 20 or 25% ASC as 2.64, 8.48, and 5.26 mg kg(-1), respectively. Heavy metals and B contents of the composting mass significantly increased with an increase in ASC application rate from 20 to 40% (6.2 to 16.6 mg kg{sup -1} for 10% ASC- and 9.4 to 18.6 mg kg{sup -1} for 25% ASC-amended soil. However, when the ash content in co-compost increased from 10 to 25% during composting, bioavailable heavy-metal contents decreased. However, B contents increased with an increase in ash content. Addition of co-composts increased the dry-weight yield of the plants, and this increase was more obvious as the ash amendment rate in the co-composts and the ASC application rate increased. In case of B. chinensis, the biomass of 2.84 g/plant for 40% application of 25% ASC was significantly higher than SC (0.352 g/plant), which was 40% application of 10% ASC (0.434 g/plant) treatments. However, in A. elongatum, the differences between biomass of plants grown with 10% (1.34-1.94 g/ plant) and 25% ASC (2.12-2.21 g/plant) were not significantly different. ASC was favorable in increasing the growth of B. chinensis and A. elongatum. The optimal ash amendment to the sludge composting and ASC application rates were at 25 and 20%, respectively.« less
Eid, Ebrahem M; Alrumman, Sulaiman A; El-Bebany, Ahmed F; Hesham, Abd El-Latif; Taher, Mostafa A; Fawy, Khaled F
2017-07-01
When sewage sludge is incorrectly applied, it may adversely impact agro-system productivity. Thus, this study addresses the reaction of Cucumis sativus L. (cucumber) to different amendment rates (0, 10, 20, 30, 40 and 50 g kg -1 ) of sewage sludge in a greenhouse pot experiment, in which the plant growth, heavy metal uptake and biomass were evaluated. A randomized complete block design with six treatments and six replications was used as the experimental design. The soil electrical conductivity, organic matter and Cr, Fe, Zn and Ni concentrations increased, but the soil pH decreased in response to the sewage sludge applications. As approved by the Council of European Communities, all of the heavy metal concentrations in the sewage sludge were less than the permitted limit for applying sewage sludge to land. Generally, applications of sewage sludge of up to 40 g kg -1 resulted in a considerable increase in all of the morphometric parameters and biomass of cucumbers in contrast to plants grown on the control soil. Nevertheless, the cucumber shoot height; root length; number of leaves, internodes and fruits; leaf area; absolute growth rate and biomass decreased in response to 50 g kg -1 of sewage sludge. All of the heavy metal concentrations (except the Cu, Zn and Ni in the roots, Mn in the fruits and Pb in the stems) in different cucumber tissues increased with increasing sewage sludge application rates. However, all of the heavy metal concentrations (except the Cr and Fe in the roots, Fe in the leaves and Cu in the fruits) were within the normal range and did not reach phytotoxic levels. A characteristic of these cucumbers was that all of the heavy metals had a bioaccumulation factor <1.0. All of the heavy metals (except Cd, Cu and Zn) had translocation factors that were <1.0. As a result, the sewage sludge used in this study could be considered for use as a fertilizer in cucumber production systems in Saudi Arabia and can also serve as a substitute method of sewage sludge disposal. Graphical Abstract The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers.
Wang, Ke; Wu, Yiqi; Li, Weiguang; Wu, Chuandong; Chen, Zhiqiang
2018-03-01
Mature compost recycling is widely used to reduce the dosage of organic bulking agent in actual composting process. In this study, the effects of mature compost amendment on N 2 O emission and denitrification genes were investigated in 47 days composting of sewage sludge and rice husks. The results showed that mature compost amendment dramatically augmented N 2 O emission rate in mesophilic phase and CO 2 emission rate in thermophilic phase of composting, respectively. The cumulative amount of N 2 O emission increased by more than 23 times compared to the control. Mature compost amendment not only reduced moisture and pH, but also significantly increased NO 3 - -N and NO 2 - -N concentrations. The correlation matrices indicated that NO 3 - -N, narG and norB were the main factors influencing N 2 O emission rate in sludge composting with mature compost recycling, but the N 2 O emission rate was significantly correlated to NO 2 - -N, nirK and norB in the control. Copyright © 2018 Elsevier Ltd. All rights reserved.
Polynuclear aromatic hydrocarbon uptake by carrots grown in sludge-amended soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wild, S.R.; Jones, K.C.
The uptake of polynuclear aromatic hydrocarbons (PAHs) from sewage sludge-amended soils by carrots (Daucus carota) was investigated. Carrots were grown in control soils and soils amended with three sludge application rates, 15, 55, and 180 t/ha. Applied sludge contained 17.2 mg [summation]PAH/kg, a concentration typical for a sludge derived from a rural area. Carrot foliage, root peels and root cores were analyzed for 15 PAH compounds. Carrots foliage PAH concentrations were unaffected by sludge applications (PAH loadings), but root peel PAH concentrations increased to a plateau concentration with increasing soil PAH levels. Low molecular weight PAH compounds dominate dindividual componentsmore » of the [summation]PAH load in the root tissues. The PAH concentrations detected in the root peels were all significantly lower than in the foliage, which receives PAH inputs from the atmosphere. Carrot core [summation]PAH concentrations were unaffected by sludge application, implying little or no transfer of PAHs from the peels to the core. About 70% of the PAH burden found in carrots was associated with the peels. Fresh weight carrot core concentrations were all <4.2 [mu]g/kg. Overall, this investigation suggests that the risks posed to human health by PAHs applied in sewage sludge to arable soils are minimal.« less
Sun, Yafei; Qi, Shiyue; Zheng, Fanping; Huang, Linli; Pan, Jing; Jiang, Yingying; Hou, Wanyuan; Xiao, Lu
2018-02-01
Organics removal, nitrogen removal, N 2 O emission and nitrogen removal functional gene abundances in four subsurface wastewater infiltration systems (SWISs), named SWIS A (no intermittent aeration without biochar and sludge), SWIS B (no intermittent aeration with biochar and sludge), SWIS C (intermittent aeration without biochar and sludge), SWIS D (intermittent aeration with biochar and sludge) were investigated. Intermittent aeration enhanced chemical oxygen demand (COD), ammonia nitrogen (NH 4 + -N), total nitrogen (TN) removal and the abundances of nitrogen removal functional genes (amoA, nxrA, napA, narG, nirS, nirK, qnorB and nosZ) compared to non-aerated SWISs. High COD (95.4 ± 0.2%), NH 4 + -N (96.2 ± 0.6%), TN (86.4 ± 0.5%) removal efficiencies and low N 2 O emission rate (18.4 mg/(m 2 d)) were obtained simultaneously in intermittent aerated SWIS amended with biochar and sludge. The results suggested that intermittent aerated SWISs amended with biochar and sludge could be an effective and appropriate method for improving treatment performance and reducing N 2 O emission. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dissipation of fragrance materials in sludge-amended soils.
DiFrancesco, Angela M; Chiu, Pei C; Standley, Laurel J; Allen, Herbert E; Salvito, Daniel T
2004-01-01
A possible removal mechanism for fragrance materials (FMs) in wastewater is adsorption to sludge, and sludge application to land may be a route through which FMs are released to the soil environment. However, little is known about the concentrations and fate of FMs in soil receiving sludge application. This study was conducted to better understand the dissipation of FMs in sludge-amended soils. We first determined the spiking and extraction efficiencies for 22 FMs in soil and leachate samples. Nine FMs were detected in digested sludges from two wastewater treatment plants in Delaware using these methods. We conducted a 1-year die-away experiment which involved four different soils amended with sludge, with and without spiking of the 22 FMs. The initial dissipation of FMs in all spiked trays was rapid, and only seven FMs remained at concentrations above the quantification limits after 3 months: AHTN, HHCB, musk ketone, musk xylene, acetyl cedrene, OTNE, and DPMI. After 1 year, the only FMs remaining in all spiked trays were musk ketone and AHTN. DPMI was the only FM that leached significantly from the spiked trays, and no FMs were detected in leachate from any unspiked tray. While soil organic matter content affected the dissipation rate in general, different mechanisms (volatilization, transformation, leaching) appeared to be important for different FMs.
Inubushi, Kazuyuki; Liang, Jian; Zhu, Sipin; Wei, Zhenya; Guo, Xiaobin; Luo, Xianping
2018-01-01
Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon–nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable. PMID:29751652
Luo, Caigui; Deng, Yangwu; Inubushi, Kazuyuki; Liang, Jian; Zhu, Sipin; Wei, Zhenya; Guo, Xiaobin; Luo, Xianping
2018-05-11
Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon⁻nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable.
Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth.
Yue, Yan; Cui, Liu; Lin, Qimei; Li, Guitong; Zhao, Xiaorong
2017-04-01
It is meaningful to quickly improve poor urban soil fertility in order to establish the green land vegetation. In this study, a series rates (0%, 1%, 5%, 10%, 20% and 50%, in mass ratio) of biochar derived from municipal sewage sludge was applied into an urban soil and then turf grass was grown in pots. The results showed that biochar amendment induced significant increases in soil total nitrogen, organic carbon, black carbon, and available phosphorus and potassium by more than 1.5, 1.9, 4.5, 5.6 and 0.4 times, respectively. Turf grass dry matter increased proportionally with increasing amount of added biochar (by an average of 74%), due to the improvement in plant mineral nutrition. Biochar amendment largely increased the total amounts of soil heavy metals. However, 43-97% of the heavy metals in the amended soil were concentrated in the residual fraction with low bioavailability. So the accumulation of heavy metals in turf grass aboveground biomass was highly reduced by the addition of biochar. These results indicated that sewage sludge biochar could be recommended in the poor urban raw soil as a soil conditioner at a rate of 50%. However, the environmental risk of heavy metal accumulation in soil amended with sewage sludge biochar should be carefully considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Hong-Tao
2016-10-01
Recycling sludge as a soil amendment has both positive and negative effects because of its enrichment in both nutrients and contaminants. So far, the negative effect has to be extensively investigated that the severities of different types of contaminants also remain unclear. The environmental behavior and risk of organic contaminant and pharmaceuticals, heavy metal and salt as well as pathogenic microorganisms brought by sludge amendment are summarized and discussed here. Organic contaminants and pharmaceuticals are typically found at low concentrations in sludge, the risks from sludge-amended soil decrease over time owing to its biodegradability. On the other hand, application of sludge generally increases soil salinity, which may cause physiological damage to plants grown in sludge-amended soil. In some extent, this negative effect can be alleviated by means of dilution; however, greater attention should be paid to long term increasing possible risk of eutrophication. Heavy metal (particularly of mobile heavy metals, such as Cd) with high concentrations in sludge and soil receiving considerable sludge can cause its incremental abundance in soil and crop contamination, further posing risks to humans, but most cases showed that there remained not excessive in heavy metal caused by sludge amendment. It is worth noting that increasing soil organic matter content may reduce transfer of heavy metal from soil to crops, but not restrict its uptake by crops at all. Combined literature together, it is summarized that heavy metal becomes a relatively severe bottleneck in recycling of sludge as soil amendment due to its non-biodegradability and potential damage to health by adventuring contamination from agricultural products. Particular attention should therefore be paid to long term monitoring the change of heavy metals concentration in sludge amended soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y
2009-10-01
This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.
Han, Sim-Hee; Lee, Jae-Cheon; Oh, Chang-Young; Kim, Pan-Gi
2006-10-01
We investigated alleviation of Cd toxicity and changes in the physiological characteristics of Betula schmidtii seedlings following application of composted sewage sludge to Cd-treated plants. Plants were grown under four test conditions: control, Cd treatment, sludge amendment, and Cd treatment with sludge amendment. B. schmidtii treated with Cd only accumulated the greatest amount of Cd in the leaves, but absorbed Cd was also highly concentrated in the roots. In contrast, Cd concentrations in the Cd and sludge amendment treated seedlings were the lowest in the roots. Since sludge amendment increased the growth of seedlings, it may have alleviated toxicity by dilution of Cd. Additionally, the absorbed Cd was more widely distributed since it was transported from the roots and accumulated in the stems and leaves of Cd and sludge treated plants. Cd treatment inhibited the growth and physiological functions of B. schmidtii seedlings, but sludge amendment compensated for these effects and improved growth and physiological functions in both Cd-treated and control plants. SOD activity in the leaves of seedlings was increased in the Cd-treated plants, but not in the Cd and sludge amendment treated seedlings. In conclusion, alleviation of Cd toxicity in response to sludge amendment may be related to a dilution effect, in which the Cd concentration in the tissues was effectively lowered by the improved growth performance of the seedlings.
Belhaj, Dalel; Elloumi, Nada; Jerbi, Bouthaina; Zouari, Mohamed; Abdallah, Ferjani Ben; Ayadi, Habib; Kallel, Monem
2016-10-01
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture, is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for Helianthus annuus, a pot experiment was conducted by mixing sewage sludge at 2.5, 5, and 7.5 % (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductivity, organic matter, total N, available P, and exchangeable Na, K, and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Ni, Cu, Cr, and Zn concentrations of soil. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in shoot and root concentrations of Cr, Cu, Ni, and Zn in plant as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Moreover, high metal removal for the harvestable parts of the crops was recorded. Sewage sludge amendment increased root and shoot length, leaves number, biomass, and antioxidant activities of sunflower. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, and soluble sugar content in response to amendment with sewage sludge may be defense mechanisms induced in response to heavy metal stress. Graphical abstract Origin, fate and behavior of sewage sludge fertilizer.
López-Valdez, F; Fernández-Luqueño, F; Luna-Suárez, S; Dendooven, L
2011-12-15
Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO(2) and N(2)O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO(2) and N(2)O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N(2)O emissions but not CO(2) emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbonell-Barrachina, A.; Jugsujinda, A.; DeLaune, R.D.
1999-07-01
Chemical fractionation procedures were used to quantify the effect of the sediment redox and pH conditions on the adsorption and solubility of arsenic (As) in municipal sewage sludge and sewage sludge-amended soil. Sludge and sludge-amended soil were incubated in microcosms in which Eh-pH conditions were controlled. Samples were sequentially extracted to determine As in various chemical forms (water soluble, exchangeable, bound to carbonates, bound to iron (Fe) and manganese (Mn) oxides, bound to insoluble organics and sulfides) and the chemically inactive fraction (mineral residues). In both sewage sludge and sludge-amended soil, As chemistry was governed by large molecular humic mattermore » and sulfides and Fe and Mn-oxides. Solubility of As remained low and constant under both aerobic and anaerobic conditions in sludge-amended soil. After dissolution of Fe and Mn-oxides, As{sup 5+} was released into sludge solution, reduced to As{sup 3+} and likely precipitated as sulfide. Therefore, an organic amendment rich in sulfur compounds, such as sewage sludge, would drastically reduce the potential risks derived from As pollution under highly anoxic conditions by precipitation of this toxic metalloid as insoluble and immobile sulfides.« less
Fan, Yuan; Ge, Tian; Zheng, Yanli; Li, Hua; Cheng, Fangqin
2016-11-01
Soil salinization has become a worldwide problem that imposes restrictions on crop production and food quality. This study utilizes a soil column experiment to address the potential of using mixed solid waste (vinegar residue, fly ash, and sewage sludge) as soil amendment to ameliorate saline-sodic soil and enhance crop growth. Mixed solid waste with vinegar residue content ranging from 60-90 %, sewage sludge of 8.7-30 %, and fly ash of 1.3-10 % was added to saline-sodic soil (electrical conductivity (EC 1:5 ) = 1.83 dS m -1 , sodium adsorption ratio (SAR 1:5 ) = 129.3 (mmol c L -1 ) 1/2 , pH = 9.73) at rates of 0 (control), 130, 260, and 650 kg ha -1 . Results showed that the application of waste amendment significantly reduced SAR, while increasing soil soluble K + , Ca 2+ , and Mg 2+ , at a dose of 650 kg ha -1 . The wet stability of macro-aggregates (>1 mm) was improved 90.7-133.7 % when the application rate of amendment was greater than 260 kg ha -1 . The application of this amendment significantly reduced soil pH. Germination rates and plant heights of oats were improved with the increasing rate of application. There was a positive correlation between the percentage of vinegar residue and the K/Na ratio in the soil solutions and roots. These findings suggest that applying a mixed waste amendment (vinegar residue, fly ash, and sewage sludge) could be a cost-effective method for the reclamation of saline-sodic soil and the improvement of the growth of salt-tolerant plants.
Singh, Shraddha; Sinha, Sarita
2004-05-01
The plants of Helianthus annuus L. var. modern were grown in the soil amended with different amounts of tannery sludge (10%, 25%, 35%, 50%, 75% and 100%), collected from Wastewater Treatment Plant Jajmau, Kanpur (Uttar Pradesh, India) under field conditions. The effect of tannery sludge amendments was studied on the growth performance of the plant, i.e. root length, shoot length, leaf area and number of leaves after 30, 60 and 90 days of exposures. The root length of the plant increased up to 35% tannery sludge followed by significant (p<0.01) decrease at higher amendments, whereas the shoot length of the plant increased with increase in sludge amendment ratio at all the exposure periods, compared to their respective controls. The number of leaves and leaf area in the plants of H. annuus increased at all the amendments of tannery sludge at initial exposure periods (30 and 60 days); however, it decreased at higher sludge amendments at highest exposure period (90 days) as compared to their respective controls. The analysis of scanning electron micrographs of the leaf surface of H. annuus grown on 50% and 100% tannery sludge after 90 days showed an increase in the frequency of stomata and trichomes, closure of stomata and degeneration of certain cells in the sludge grown plants.
Liu, Hongtao
2016-10-01
Recycling of sludge as soil amendment poses certain risk of heavy metals contamination. This study investigated the relationship between organic matter in composted sludge and its heavy metals bioavailability over 7years. Periodic monitoring indicated a gradual increase in organic matter degradation, accompanied by changing degrees of polymerization, i.e., ratio of humic acid (HA)/fulvic acid (FA) coupled with incremental exchangeable fraction of copper (Cu) in sludge, with a growing rate of 74.7%, rather than that in soil. However, cadmium (Cd) in composted sludge exhibited an independent manner. Linear-regression analysis revealed that the total proportion of the Cu active fraction (exchangeable plus carbonate bound) was better correlated with the degree of polymerization (DP) and humification ratio (HR) than the degradation ratio of organic matter. Overall, amount of uptaken Cu was more dependent on the humification degree of organic matter, especially the proportion of HA in humus. Copyright © 2016 Elsevier B.V. All rights reserved.
Zupancic, Marija; Bukovec, Peter; Milacic, Radmila; Scancar, Janez
2006-01-01
The leachability of zinc (Zn) and nickel (Ni) was investigated in various soil types amended with sewage sludge and sewage sludge treated with hydroxyapatite. Sandy, clay and peat soils were investigated. For leachability tests, plastic columns (diameter 9 cm, height 50 cm) were filled with moist samples up to a height of 25 cm. Sewage sludge (1 kg) was mixed with 4.6 kg of clay and sandy soils and with 6.7 kg of peat soil. For sewage sludge mixtures treated with hydroxyapatite, 0.5 kg of the hydroxyapatite was added to 1 kg of the sewage sludge. Neutral (pH 7) and acid precipitation (pH 3.5) were applied. Acid precipitation was prepared from concentrated HNO(3), H(2)SO(4) and fresh doubly distilled water. The amount of precipitation corresponded to the average annual precipitation for the city of Ljubljana, Slovenia. It was divided into eight equal portions and applied sequentially on the top of the columns. The results indicated that the leachabilities of Zn in sewage sludge amended peat and clay soils were low (below 0.3% of total Zn content) and of Ni in sewage sludge amended sandy, clay and peat soil below 1.9% of total Ni content. In sewage sludge amended sandy soil, the leachability of Zn was higher (11% of Zn content). The pH of precipitation had no influence on the leachability of either metal. Treatment of sewage sludge with hydroxyapatite efficiently reduced the leachability of Zn in sewage sludge amended sandy soil (from 11% to 0.2% of total Zn content). In clay and peat sewage sludge amended soils, soil characteristics rather than hydroxyapatite treatment dominate Zn mobility.
Huang, Xiangdong; Xue, Dong; Xue, Lian
2015-08-01
A greenhouse experiment was conducted to investigate the impact of sewage sludge compost application on functional diversity of soil microbial communities, based on carbon source utilization, and biochemical characteristics of tree peony (Paeonia suffruticosa). Functional diversity was estimated with incubations in Biolog EcoPlates and well color development was used as the functional trait for carbon source utilization. The average well color development and Shannon index based on the carbon source utilization pattern in Biolog EcoPlates significantly increased with the increasing sludge compost application in the range of 0-45%, with a decreasing trend above 45%. Principal component analysis of carbon source utilization pattern showed that sludge compost application stimulated the utilization rate of D-cellobiose and α-D-lactose, while the utilization rate of β-methyl-D-glucoside, L-asparagine, L-serine, α-cyclodextrin, γ-hydroxybutyric acid, and itaconic acid gradually increased up to a sludge compost amendment dosage of 45% and then decreased above 45%. The chlorophyll content, antioxidase (superoxide dismutase, catalase, and peroxidase) activities, plant height, flower diameter, and flower numbers per plant of tree peony increased significantly with sludge compost dosage, reaching a peak value at 45 %, and then decreased with the exception that activity of superoxide dismutase and catalase did not vary significantly.
Functional Diversity of Microbial Communities in Sludge-Amended Soils
NASA Astrophysics Data System (ADS)
Sun, Y. H.; Yang, Z. H.; Zhao, J. J.; Li, Q.
The BIOLOG method was applied to exploration of functional diversity of soil microbial communities in sludge-amended soils sampled from the Yangtze River Delta. Results indicated that metabolic profile, functional diversity indexes and Kinetic parameters of the soil microbial communities changed following soil amendment with sewage sludge, suggesting that the changes occurred in population of the microbes capable of exploiting carbon substrates and in this capability as well. The kinetic study of the functional diversity revealed that the metabolic profile of the soil microbial communities exhibited non-linear correlation with the incubation time, showing a curse of sigmoid that fits the dynamic model of growth of the soil microbial communities. In all the treatments, except for treatments of coastal fluvo-aquic soil amended with fresh sludge and dried sludge from Hangzhou, kinetic parameters K and r of the functional diversity of the soil microbial communities decreased significantly and parameter S increased. Changes in characteristics of the functional diversity well reflected differences in C utilizing capacity and model of the soil microbial communities in the sludge-amended soils, and changes in functional diversity of the soil microbial communities in a particular eco-environment, like soil amended with sewage sludge.
Welch, J.E.; Lund, L.J.
1989-01-01
A soil column study was conducted to assess the movement of Zn in sewage-sludge-amended soils. Varables investigated were soil properties, irrigation water quality, and soil moisture level. Bulk samples of the surface layer of six soil series were packed into columns, 10.2 cm in diameter and 110 cm in length. An anaerobically digested municipal sewage sludge was incorporated into the top 20 cm of each column at a rate of 300 mg ha-1. The columns were maintained at moisture levels of saturation and unsaturation and were leached with two waters of different quality. At the termination of leaching, the columns were cut open and the soil was sectioned and analyzed. Zinc movement was evaluated by mass balance accounting and correlation and regression analysis. Zinc movement in the unsaturated columns ranged from 3 to 30 cm, with a mean of 10 cm. The difference in irrigation water quality did not have an effect on Zn movement. Most of the Zn applied to the unsaturated columns remained in the sludge-amended soil layer (96.1 to 99.6%, with a mean of 98.1%). The major portion of Zn leached from the sludge-amended soil layer accumulated in the 0- to 3-cm depth (35.7 to 100%, with a mean of 73.6%). The mean final soil pH values decreased in the order: saturated columns = sludge-amended soil layer > untreated soils > unsaturated columns. Total Zn leached from the sludge-amended soil layer was correlated negatively at P = 0.001 with final pH (r = -0.85). Depth of Zn movement was correlated negatively at P = 0.001 with final pH (r = -0.91). Multiple linear regression analysis showed that the final pH accounted for 72% of the variation in the total amounts of Zn leached from the sludge-amended soil layer of the unsaturated columns and accounted for 82% of the variation in the depth of Zn movement among the unsaturated columns. A significant correlation was not found between Zn and organic carbon in soil solutions, but a negative correlation significant at P = 0.001 was found between pH and Zn (r = -0.61).
Nitrate in waters from sewage-sludge amended lysimeters.
Jones, R L; Hinesly, T D
1988-01-01
Nitrate nitrogen was measured in runoff and tile-drainage during two years of operation of instrumented, large-scale lysimeters planted to corn (Zea mays L.) and amended with sewage sludge which was applied at rates supplying total N amounting to 2292 kg ha(-) in 1972 and 3286 kg ha(-1) in 1973. Other lysimeters were amended with inorganic fertiliser at the rate of 336 kg N ha(-1) year(-1). Annual losses in runoff and tile-drainage from sludge treatments were 0.9 and 5.1 and 371 and 663 kg NO(3)(-)-N ha(-1). Losses from lysimeters treated with inorganic fertiliser were 1.1 and 3.3 kg NO(3)(-)-N ha(-1) year(-1) in runoff and 31 and 79 kg NO(3)(-)-N ha(-1) year(-1) in tile-drainage. Given the nitrogen inputs accounted for in the study design, unaccounted for losses of 1800 to 2400 kg ha(-1) year(-1) were calculated for sludge and 277 kg ha(-1) year(-1) for inorganic fertiliser treatments. For one year there was a 300 kg ha(-1) increase in N in the lysimeters receiving inorganic fertiliser. Median NO(3)(-)-N concentrations ranged from 8.9 to 14.0 mg litre(-1) in runoff from sludge-treated lysimeters and 3.6 to 5.9 mg litre(-1) in runoff from lysimeters receiving inorganic fertiliser. In tile-drainage the median NO(3)(-)-N concentrations were 148 to 223 mg litre(-1) and 24 to 44 mg litre(-1) for sludge and inorganic fertiliser treatments, respectively. Highest runoff levels occurred in early summer storms, whereas highest tile-drainage concentrations occurred in late winter and early spring.
Asensio, Verónica; Covelo, Emma F; Kandeler, Ellen
2013-07-01
Mine soils at the depleted copper mine in Touro (Northwest Spain) are physico-chemically degraded and polluted by chromium and copper. To increase the quality of these soils, some areas at this mine have been vegetated with eucalyptus or pines, amended with sludges, or received both treatments. Four sites were selected at the Touro mine tailing in order to evaluate the effect of these different reclamation treatments on the biological soil quality: (1) Control (untreated), (2) Forest (vegetated), (3) Sludge (amended with sludges) and (4) Forest+Sludge (vegetated and amended). The new approach of the present work is that we evaluated the effect of planting trees or/and amending with sludges on the biological soil quality of mine sites polluted by metals under field conditions. The addition of sludges to mine sites recovered the biological quality of the soil, while vegetating with trees did not increase microbial biomass and function to the level of unpolluted sites. Moreover, amending with sludges increased the efficiency of the soil's microbial community to metabolize C and N, which was indicated by the decrease of the specific enzyme activities and the increase in the ratio Cmic:Nmic (shift towards predominance of fungi instead of bacteria). However, the high Cu and Cr concentrations still have negative influence on the microorganisms in all the treated soils. For the future remediation of mine soils, we recommend periodically adding sludge and planting native legume species. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, M.B.; Richards, B.K.; Steenhuis, T.
2000-06-01
Molybdenum (Mo) is a plant-available element in soils that can adversely affect the health of farm animals. There is a need for more information on its uptake into forage crops from waste materials, such as sewage sludge, applied to agricultural land. Field and greenhouse experiments with several crops grown on long-term sewage sludge-amended soils as well as soils recently amended with dewatered (DW) and alkaline-stabilized (ALK) sludges indicated that Mo supplied from sludge is readily taken up by legumes in particular. Excessive uptake into red clover (Trifolium pratense L.) was seen in a soil that had been heavily amended withmore » sewage sludge 20 yr earlier, where the soil contained about 3 mg Mo/kg soil, three times the background soil concentration. The greenhouse and field studies indicated that Mo can have a long residual availability in sludge-amended soils. The effect of sludge application was to decrease Cu to Mo ratios in legume forages, canola (Brassica napus var. napus) and soybeans [Glycine max (L.) Merr.] below the recommended limit of 2:1 for ruminant diets, a consequence of high bioavailability of Mo and low uptake of Cu added in sludge. Molybdenum uptake coefficients (UCs) for ALK sludge were higher than for DW sludge, presumably due to the greater solubility of Mo measured in the more alkaline sludges and soils. Based on these UCs, it is tentatively recommended that cumulative Mo loadings on forages grown on nonacid soils should not exceed 1.0 kg/ha from ALK sludge or 4.0 kg/ha from DW sludge.« less
Ahumada, Inés; Escudero, Paula; Carrasco, M Adriana; Castillo, Gabriela; Ascar, Loreto; Fuentes, Edwar
2004-04-01
In Chile, the increasing number of plants for the treatment of wastewater has brought about an increase in the generation of sludge. One way of sludge disposal is its application on land; this, however involves some problems, some of them being heavy metal accumulation and the increase in organic matter and other components from sewage sludge which may change the distribution and mobility of heavy metals. The purpose of the present study was to determine the effect of sewage sludge application on the distribution of Cr, Ni, Cu, Zn and Pb in agricultural soils in Chile. Three different soils, two Mollisols and one Alfisol, were sampled from an agricultural area in Central Chile. The soils were treated with sewage sludge at the rates of 0 and 30 ton ha(-1), and were incubated at 25 degrees C for 45 days. Before and after incubation, the soils were sequentially extracted to obtain labile (exchangeable and sodium acetate-soluble), potentially labile (soluble in moderately reducing conditions, K4P2O7-soluble and soluble in reducing conditions) and inert (soluble in strong acid oxidizing conditions) fractions. A two-level factored design was used to assess the effect of sludge application rate, incubation time and their interaction on the mobility of the elements under study. Among the metals determined in the sludge, zinc has the highest concentration. However, with the exception of Ni, the total content of metals was lower than the recommended limit values in sewage sludge as stated by Chilean regulations. Although 23% of zinc in sludge was in more mobile forms, the residual fraction of all metals was the predominant form in soils and sludge. The content of zinc only was significantly increased in two of the soils by sewage sludge application. On the other hand, with the exception of copper, the metals were redistributed in the first four fractions of amended soils. The effect of sludge application rate, incubation time and their interaction depended on the metal or soil type. In most cases an increase in more mobile forms of metals in soils was observed as the final effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, H.A.; Singer, L.M.
The impact of a water treatment sludge on the fertility of a silt loam soil was assessed by monitoring the yield and elemental composition of tomato (Lycopersicon esculentum) shoots in a greenhouse study. Application of sludge at rates from 2-10% (air dry weight basis) raised the soil pH from 5.3 to 8.0 which enhanced plant growth. A substantial reduction in metal (Cd, Zn, Cu, Ni) uptake was observed with sludge amendments, even at the highest rates. The alkaline nature of this sludge (pH=9.3, calcium carbonate equivalence=53%) suggest its potential use as a liming material for agricultural soils. Overly alkaline conditionsmore » should be avoided however, as high application rates combined with ammonia fertilization had an antagonistic effect on plant growth, possibly from P deficiency induced by struvite (MgNH{sub 4}PO{sub 4}) formation.« less
Use of Municipal Sewage Sludge for Improvement of Forest Sites in the Southeast
Charles R. Berry
1987-01-01
In eight field experiments dried municipal sewage sludge was applied to forest sites before planting of seedlings. In all cases, tree growth was faster on sludge-amended plots than on plots that received fertilizer and lime or no amendment. Deep subsoiling was beneficial regardless of Soil amendment. Where weeds were plentiful at the outset, they became serious...
Yadav, Santosh Kumar; Juwarkar, Asha A; Kumar, G Phani; Thawale, Prashant R; Singh, Sanjeev K; Chakrabarti, Tapan
2009-10-01
The present study was planned to remediate the metalloid and metal contaminated soil by using non-edible and economic plant species Jatropha curcas L. The experiment was conducted on pots to improve the survival rate, metal tolerance and growth response of the plant on soil; having different concentrations of arsenic, chromium and zinc. The soil was amended with dairy sludge and bacterial inoculum (Azotobacter chroococcum) as biofertilizer. The results of the study showed that the bioaccumulation potential was increased with increase in metalloid and metal concentration in soil system. Application of dairy sludge significantly reduces the DTPA-extractable As, Cr and Zn concentration in soil. The application of organic amendment stabilizes the As, Cr and Zn and reduced their uptake in plant tissues.
Degradation of organic pollutants in Mediterranean forest soils amended with sewage sludge.
Francisca Gomez-Rico, M; Font, Rafael; Vera, Jose; Fuentes, David; Disante, Karen; Cortina, Jordi
2008-05-01
The degradation of two groups of organic pollutants in three different Mediterranean forest soils amended with sewage sludge was studied for nine months. The sewage sludge produced by a domestic water treatment plant was applied to soils developed from limestone, marl and sandstone, showing contrasting alkalinity and texture. The compounds analysed were: linear alkylbenzene sulphonates (LAS) with a 10-13 carbon alkylic chain, and nonylphenolic compounds, including nonylphenol (NP) and nonylphenol ethoxylates with one and two ethoxy groups (NP1EO+NP2EO). These compounds were studied because they frequently exceed the limits proposed for sludge application to land in Europe. After nine months, LAS decomposition was 86-96%, and NP+NP1EO+NP2EO decomposition was 61-84%, which can be considered high. Temporal trends in LAS and NP+NP1EO+NP2EO decomposition were similar, and the concentrations of both types of compounds were highly correlated. The decomposition rates were higher in the period of 6-9 months (summer period) than in the period 0-6 months (winter+spring period) for total LAS and NP+NP1EO+NP2EO. Differences in decay rates with regard to soil type were not significant. The average values of decay rates found are similar to those observed in agricultural soils.
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge.
Torri, S I; Lavado, R S
2008-01-01
A greenhouse experiment was set up to study the distribution of Cd, Cu and Pb in three typical soils of the Pampas Region amended with sewage sludge. A sequential extraction procedure was used to obtain four operationally defined geochemical species: exchangeable, bound to organic matter, bound to carbonates, and residual. Two kinds of sewage sludge were used: pure sewage sludge and sewage sludge containing 30% DM of its own incinerated ash, at rates equivalent to a field application of 150 t DM ha(-1). Pots were maintained at 80% of field capacity through daily irrigation with distilled water. Soil samples were obtained on days 1, 60, 270 and 360, and then air-dried and passed through a 2 mm sieve for analysis. Results showed that sludge application increased the less available forms of Cd, Cu and Pb. The inorganic forms became the most prevalent forms for Cu and Pb, whereas Cd was only found in the residual fraction. The concentrations of OM-Cu and INOR-Cu in the amended soil samples were closely correlated with soil pH, whereas the chemical behavior of Cd and Pb did not depend on soil physico-chemical characteristics.
Lim, T T; Chu, J; Goi, M H
2006-01-01
The suitability of using cement-stabilized sludge products as artificial soils in earth works was evaluated. The sludge products investigated were cemented sludge, cement-treated clay-amended sludge (SS+MC), and cement-treated copper slag-amended sludge (SS+CS). The leachability of lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) were assessed using the sequential extraction technique, toxicity characteristic leaching procedure (TCLP), NEN 7341 availability test, and column leaching test. The results indicated that Zn leachability was reduced in all the cement-stabilized sludge products. In contrast, Cu was transferred from the organic fraction to the readily leachable phases in the cement-stabilized sludge products and therefore exhibited increased leachability. The increased Cu leachability could be attributed to dissolution of humic substances in the sludge as a result of elevated pH. Good correlation between dissolved organic carbon (DOC) and heavy metal leaching from the cement-stabilized sludge products was observed in the column leaching experiment. Even with a cement percentage as small as 12.5%, calcium silicate hydrate (C-S-H) was formed in the SS+MC and SS+CS products. Inclusion of the marine clay in the SS+MC products could reduce the leaching potentials of Zn, and this was the great advantage of the marine clay over the copper slag for sludge amendment.
Impact of composting strategies on the degradation of nonylphenol in sewage sludge.
Zheng, Guodi; Chen, Tongbin; Yu, Jie; Gao, Ding; Shen, Yujun; Niu, Mingjie; Liu, Hongtao
2015-12-01
Nonylphenol can be present in sewage sludge, and this can limit the use of the sewage sludge to amend soil. Composting is one of the most efficient and economical methods of making sewage sludge stable and harmless. The nonylphenol degradation rates during composting with added bulking agents and with aeration applied were studied. Three organic bulking agents (sawdust, corn stalk, and mushroom residue) were added to sewage sludge, and the effects of the bulking agents used and the amount added on nonylphenol degradation were determined. The highest apparent nonylphenol degradation rate (71.6%) was found for sewage sludge containing 20% mushroom residue. The lowest apparent nonylphenol degradation rate (22.5%) was found for sewage sludge containing 20% sawdust. The temperature of the composting pile of sewage sludge containing 20% sawdust became too high for nonylphenol to be efficiently degraded, and the apparent nonylphenol degradation rate was lower than was found for sewage sludge containing 10% sawdust. Increasing the ventilating time from 5 to 15 min increased the apparent nonylphenol degradation rate from 19.7 to 41.6%. Using appropriate aerobic conditions facilitates the degradation of nonylphenol in sewage sludge, decreasing the risks posed by sewage sludge applied to land. Adding too much of a bulking agent can decrease the amount of the nonylphenol degraded. Increasing the ventilating time and the amount of air supplied can increase the amount of nonylphenol degraded even if doing so causes the composting pile temperature to remain low.
Liu, Hong-Tao; Wang, Yan-Wen; Huang, Wei-Dong; Lei, Mei
2016-12-01
Sludge is an organic waste after domestic sewage being treated and contains phytonutrients and organic matter. In this study, recycling of sludge compost (SC) and its compound fertilizer (SCF) to wine grape resulted in improvement in vegetative growth, reproductive development of wine grape, and potential wine quality of grape fruit. The amounts of Cu, Pb, and Cd in grape fruit were significantly higher in response to sludge amendment than in the control, but were all below the permissible limits for agricultural product. The contents of Cu and Pb in sludge-amended soil decreased with increasing soil depth, but Cd content increased with soil depth. Ongoing monitoring of on mobility of Cd downward is proposed with sludge recycling to wine grape soil.
Nason, Peter; Johnson, Raymond H; Neuschütz, Clara; Alakangas, Lena; Öhlander, Björn
2014-02-28
Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation. Copyright © 2014 Elsevier B.V. All rights reserved.
Nason, Peter; Johnson, Raymond H.; Neuschutz, Clara; Alakangas, Lena; Ohlander, Bjorn
2014-01-01
Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2 m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6 m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3 m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.
Grotto, Denise; Carneiro, Maria Fernanda Hornos; Sauer, Elisa; Garcia, Solange Cristina; de Melo, Wanderley José; Barbosa, Fernando
2013-09-01
The increased production of urban sewage sludge requires alternative methods for final disposal. A very promising choice is the use of sewage sludge as a fertilizer in agriculture, since it is rich in organic matter, macro and micronutrients. However, urban sewage sludge may contain toxic substances that may cause deleterious effects on the biota, water and soil, and consequently on humans. There is a lack of studies evaluating how safe the consumption of food cultivated in soils containing urban sewage sludge is. Thus, the aim of this paper was to evaluate biochemical and redox parameters in rats fed with corn produced in a soil treated with urban sewage sludge for a long term. For these experiments, maize plants were grown in soil amended with sewage sludge (rates of 5, 10 and 20 t/ha) or not (control). Four different diets were prepared with the corn grains produced in the field experiment, and rats were fed with these diets for 1, 2, 4, 8 and 12 weeks. Biochemical parameters (glucose, total cholesterol and fractions, triglycerides, aspartate aminotransferase and alanine aminotransferase) as well the redox state biomarkers such as reduced glutathione (GSH), malondialdehyde (MDA), catalase, glutathione peroxidase and butyrylcholinesterase (BuChE) were assessed. Our results show no differences in the biomarkers over 1 or 2 weeks. However, at 4 weeks BuChE activity was inhibited in rats fed with corn grown in soil amended with sewage sludge (5, 10 and 20 t/ha), while MDA levels increased. Furthermore, prolonged exposure to corn cultivated in the highest amount per hectare of sewage sludge (8 and 12 weeks) was associated with an increase in MDA levels and a decrease in GSH levels, respectively. Our findings add new evidence of the risks of consuming food grown with urban sewage sludge. However, considering that the amount and type of toxic substances present in urban sewage sludge varies considerably among different sampling areas, further studies are needed to evaluate sludge samples collected from different sources and/or undergoing different types of treatment. Copyright © 2013 Elsevier Inc. All rights reserved.
Singh, Shraddha; Saxena, Rohit; Pandey, Kavita; Bhatt, Kavita; Sinha, Sarita
2004-12-01
The interaction of metals present in tannery waste and their tolerance in the plants of sunflower (Helianthus annuus L.) was studied in the present paper under field conditions. Effects of 100% tannery sludge and various amendments of tannery sludge (10%, 25%, 35%, 50%, 75%) along with one set of control were studied on the physiological and biochemical parameters of the plant along with their metal accumulation potential after 30, 60 and 90d after sowing. The plants of H. annuus were found effective in the accumulation of metals (Cr, Fe, Zn and Mn) in roots, shoots and leaves, however, the level of toxic metal, Cr was found below detection limit in the seeds of the plant. The oil was extracted from the seeds of the plant and the level of oil content was increased up to 35% tannery sludge as compared to control followed by decrease at higher tannery sludge ratio. An increase in the chlorophyll, protein, cysteine, non-protein thiol and sugar contents was observed at the lower amendment of tannery sludge at initial exposure periods followed by decrease than their respective controls. Malondialdehyde content in the roots and leaves was increased beyond 50% sludge amendments at all the exposure periods as compared to control. However, proline and ascorbic acid contents of the roots and leaves of the plant increased at all the exposure periods and sludge amendments, compared to their respective controls.
Role of organic matter on aggregate stability and related mechanisms through organic amendments
NASA Astrophysics Data System (ADS)
Zaher, Hafida
2010-05-01
To date, only a few studies have tried to simultaneously compare the role of neutral and uronic sugars and lipids on soil structural stability. Moreover, evidence for the mechanisms involved has often been established following wetting of moist aggregates after various pre-treatments thus altering aggregate structure and resulting in manipulations on altered aggregates on which the rapid wetting process may not be involved anymore. To the best of our knowledge, the objective of this work was to study the role of neutral and uronic sugars and lipids in affecting key mechanisms (swelling rate, pressure evolution) involved in the stabilization of soil structure. A long-term incubation study (48-wk) was performed on a clay loam and a silty-clay loam amended with de-inking-secondary sludge mix at three rates (8, 16 and 24 Mg dry matter ha-1), primary-secondary sludge mix at one rate (18 Mg oven-dry ha-1) and composted de-inking sludge at one rate (24 Mg ha-1). Different structural stability indices (stability of moist and dry aggregates, the amount of dispersible clay and loss of soil material following sudden wetting) were measured on a regular basis during the incubation, along with CO2 evolved, neutral and uronic sugar, and lipid contents. During the course of the incubations, significant increases in all stability indices were measured for both soil types. In general, the improvements in stability were proportional to the amount of C added as organic amendments. These improvements were linked to a very intense phase of C mineralization and associated with increases in neutral and uronic sugars as well as lipid contents. The statistical relationships found between the different carbonaceous fractions and stability indices were all highly significant and indicated no clear superiority of one fraction over another. Paper sludge amendments also resulted in significant decreases in maximum internal pressure of aggregate and aggregate swelling following immersion in water, two mechanisms affecting structural stability. Overall, the results suggest that reduction in maximum internal pressure induced by organic amendments most likely resulted from increases in pore surface roughness and pore occlusion rather than by increase in surface wetting angles. This study also supports the view of a non specific action of the lipids, neutral and uronic sugars on aggregate stability to rapid wetting. Key words: soil aggregate stability, polysaccharides, lipids, mechanisms, organic matter
Bian, Rongxing; Sun, Yingjie; Li, Weihua; Ma, Qiang; Chai, Xiaoli
2017-12-01
Aerobic composting is an alternative measure to the disposal of municipal solid waste (MSW). However, it produces nitrous oxide (N 2 O), a highly potent greenhouse via microbial nitrification and denitrification. In this study, the effects of matured sewage sludge (MSS) amendment on N 2 O emissions and the inter-relationships between N 2 O emissions and the abundance of denitrifying bacteria were investigated during aerobic composting of MSW. The results demonstrated that MSW composting with MSS amendments (C1, and C2, with a MSW to MSS ratio of 2:1 and 4:1, (v/v), respectively) significantly increased N 2 O emissions during the initial stage, yet contributed to the mitigation of N 2 O emissions during the cooling and maturation stage. MSS amended composting emitted a total of 18.4%-25.7% less N 2 O than the control treatment without MSS amendment (CK). Matured sewage sludge amendment also significantly altered the abundance of denitrifying bacteria. The quantification of denitrifying functional genes revealed that the N 2 O emission rate had a significant positive correlation with the abundance of the nirS, nirK genes in both treatments with MSS amendment. The nosZ/(nirS + nirK) ratio could be a good indicator for predicting N 2 O emissions. The higher N 2 O emission rate during the initial stage of composting mixed with MSS was characterized by lower nosZ/(nirS + nirK) ratios, compared to CK treatment. Higher ratios of nosZ/(nirS + nirK) were measured during the cooling and maturation stage in treatments with MSS which resulted in a reduction of the N 2 O emissions. These results demonstrated that MSS amendment could be a valid strategy for mitigating N 2 O emissions during MSW composting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fernández-Luqueño, F; Reyes-Varela, V; Martínez-Suárez, C; Salomón-Hernández, G; Yáñez-Meneses, J; Ceballos-Ramírez, J M; Dendooven, L
2010-01-01
Wastewater sludge can be used to fertilize crops, especially after vermicomposting (composting with earthworms to reduce pathogens). How wastewater sludge or vermicompost affects bean (Phaseolus vulgaris L.) growth is still largely unknown. In this study the effect of different forms of N fertilizer on common bean plant characteristics and yield were investigated in a Typic Fragiudepts (sandy loam) soil under greenhouse conditions. Beans were fertilized with wastewater sludge, or wastewater sludge vermicompost, or urea, or grown in unamended soil, while plant characteristics and yield were monitored (the unamended soil had no fertilization). Yields of common bean plants cultivated in unamended soil or soil amended with urea were lower than those cultivated in wastewater sludge-amended soil. Application of vermicompost further improved plant development and increased yield compared with beans cultivated in wastewater amended soil. It was found that application of organic waste products improved growth and yield of bean plants compared to those amended with inorganic fertilizer.
NASA Astrophysics Data System (ADS)
Shenker, Moshe; Einhoren, Hana
2016-04-01
Wastewater treatment, whether for water reusing or for releasing into the environment, results in sewage sludge rich in organic matter and nutrients. If free of pathogens and pollutants, this waste material is a widely used as soil amendment and source of valuable nutrients for agronomic use. Nevertheless, its P/N ratio largely exceeds plant P/N demand. Limiting its application rates according to the P demand of crops will largely limit its application rates and its beneficial effect as a soil amendment and as a source for other nutrients. An alternative approach, in which P is stabilized before application, was evaluated in this study. Anaerobically digested fresh sewage sludge (FSS) was stabilized by aluminum sulfate, ferrous sulfate, and calcium oxide (CaO), as well as by composting with shredded woody yard-waste to produce Al-FSS, Fe-FSS, CaO-FSS, and FSS-compost, respectively. Defined organic-P sources (glucose-1-phosphate and inositol-hexa-phosphate) and a P fertilizer (KH2PO4) were included as well and a control with no P amendments was included as a reference. Each material was applied at a fixed P load of 50 mg kg-1 to each of three soils and P speciation and plants P uptake were tested along 112 days of incubation at moderate (near field capacity) water content. Tomato seedlings were used for the P uptake test. The large set of data was used to evaluate the effect of each treatment on P reactions and mechanisms of retention in the tested soils and to correlate various P indices to P availability for plants. Plant P uptake was highly correlated to Olsen-P as well as to water-soluble inorganic-P, but not to water-soluble organic-P and not to total P or other experimentally-defined stable P fractions. We conclude that the P stabilization in the sludge will allow beneficial and sustainable use of sewage sludge as a soil amendment and source of nutrients, but the stabilization method should be selected in accordance with the target soil properties.
Tarrasón, D; Ojeda, G; Ortiz, O; Alcañiz, J M
2008-01-01
Anaerobically-digested sludge called fresh sludge (F), composted sludge (C) and thermally-drying sludge (T), all from the same batch, were applied to the surface of a calcareous Udic Calciustept with loamy texture. Dosage equivalent was 10 t ha(-1) of dry matter. The concentration of mineral nitrogen (ammonium and nitrate) in the soil was measured in order to estimate the effects of the post-treatments to which the different kinds of sewage sludge are subjected in relation to the availability of N in the surface layer of the soil. The most significant differences in NH(4)-N and NO(3)-N concentrations due to the transformation of the organic matter were observed during the first three weeks following soil amendment. Thermally-dried and composted sludge initially displayed higher concentrations of ammonium and nitrate in soil. Five months after the amendment, soil applied with fresh sludge showed the highest concentrations of NH(4)-N and NO(3)-N (6.1 and 36.6 mg kg(-1), respectively). It is clear that the processes of composting and thermal-drying influence the bioavailability of nitrogen from the different types of sewage sludge.
Fernández, José M; Plaza, César; Senesi, Nicola; Polo, Alfredo
2007-09-01
The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from composted sewage sludge (CS), thermally-dried sewage sludge (TS), soils amended with either CS or TS at a rate of 80 t ha(-1)y(-1) for 3y and the corresponding unamended soil were investigated by use of potentiometric titrations. The non-ideal competitive adsorption (NICA)-Donnan model for a bimodal distribution of proton binding sites was fitted to titration data by use of a least-squares minimization method. The main fitting parameters of the NICA-Donnan model obtained for each HA and FA sample included site densities, median affinity constants and widths of affinity distributions for proton binding to low and high affinity sites, which were assumed to be, respectively, carboxylic- and phenolic-type groups. With respect to unamended soil HA and FA, the HAs and FAs from CS, and especially TS, were characterized by smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, and smaller heterogeneity of carboxylic and phenolic-type groups. Amendment with CS or TS led to a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. These effects were more evident in the HA and FA fractions from CS-amended soil than in those from TS-amended soil.
Larchevêque, Marie; Ballini, Christine; Korboulewsky, Nathalie; Montès, Nicolas
2006-10-01
In Mediterranean frequently burnt areas, fire and erosion result in the decrease of soil fertility, so afforestation is a major concern. We carried out an in situ experiment of compost amendment to improve survival and growth of planted tree seedlings. One-year-tree seedlings of native species (Quercus ilex, Pinus halepensis and Pinus pinea) were planted on a frequently burnt calcareous site. Three rates of fresh co-composted sewage sludge and greenwastes (control without compost, 20 and 40 kg m(-2) of compost) were incorporated into the soil at each seedling stem. Changes of soil properties and tree development were studied during 3 years (2001-2003) and 2 years (2002-2003) respectively. The compost improved survival of Quercus ilex and Pinus pinea seedlings in severe drought conditions, but had no effect on Pinus halepensis. For all species seedling length and radial growth and NPK nutrition were increased for both rates of amendment. Amendment improved soil fertility, but available P concentration increased 13 fold in the neighbouring soil of seedlings amended at the maximal rate compared to control. However, amendment did not significantly increase concentrations of Cd, Cr, Ni and Pb in soils or tree seedlings. It increased Cu and Zn total and available concentrations in soils, while foliar Cu and Zn concentrations in the seedlings remained similar in all plots. Compost can efficiently help afforestation of dry soils with low organic matter content. However, sewage sludge concentrations in P, and to a lesser extent in Cu and Zn, limit rates of application that can be applied without environmental hazard.
The influence of organic amendments on soil aggregate stability from semiarid sites
NASA Astrophysics Data System (ADS)
Hueso Gonzalez, Paloma; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose
2016-04-01
Restoring the native vegetation is the most effective way to regenerate soil health. Under these conditions, vegetation cover in areas having degraded soils may be better sustained if the soil is amended with an external source of organic matter. The addition of organic materials to soils also increases infiltration rates and reduces erosion rates; these factors contribute to an available water increment and a successful and sustainable land management. The goal of this study was to analyze the effect of various organic amendments on the aggregate stability of soils in afforested plots. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. The vegetation was planted in a grid pattern with 0.5 m between plants in each plot. During the afforestation process the soil was tilled to 25 cm depth from the surface. Soil from the afforested plots was sampled in: i) 6 months post-afforestation; ii) 12 months post-afforestation; iii) 18 months post-afforestation; and iv) 24 months post-afforestation. The sampling strategy for each plot involved collection of 4 disturbed soil samples taken from the surface (0-10 cm depth). The stability of aggregates was measured by wet-sieving. Regarding to soil aggregate stability, the percentage of stable aggregates has increased slightly in all the treatments in relation to control. Specifically, the differences were recorded in the fraction of macroaggregates (≥ 0.250 mm). The largest increases have been associated with straw mulch, pinus mulch and sludge. Similar results have been registered for the soil organic carbon content. Independent of the soil management, after six months, no significant differences in microaggregates were found regarding to the control plots. These results showed an increase in the stability of the macroaggregates when soil is amended with sludge, pinus mulch and straw much. This fact has been due to an increase in the number cementing agents due to: (i) the application of pinus, straw and sludge had resulted in the release of carbohydrates to the soil; and thus (ii) it has favored the development of a protective vegetation cover, which has increased the number of roots in the soil and the organic contribution to it.
Lachassagne, Delphine; Soubrand, Marilyne; Casellas, Magali; Gonzalez-Ospina, Adriana; Dagot, Christophe
2015-11-01
This study aimed to determine the effect of sludge stabilization treatments (liming and anaerobic digestion) on the mobility of different pharmaceutical compounds in soil amended by landspreading of treated sludge from different sources (urban and hospital). The sorption and desorption potential of the following pharmaceutical compounds: carbamazepine (CBZ), ciprofloxacin (CIP), sulfamethoxazole (SMX), salicylic acid (SAL), ibuprofen (IBU), paracetamol (PAR), diclofenac (DIC), ketoprofen (KTP), econazole (ECZ), atenolol (ATN), and their solid-liquid distribution during sludge treatment (from thickening to stabilization) were investigated in the course of batch testing. The different sludge samples were then landspread at laboratory scale and leached with an artificial rain simulating 1 year of precipitation adapted to the surface area of the soil column used. The quality of the resulting leachate was investigated. Results showed that ibuprofen had the highest desorption potential for limed and digested urban and hospital sludge. Ibuprofen, salicylic acid, diclofenac, and paracetamol were the only compounds found in amended soil leachates. Moreover, the leaching potential of these compounds and therefore the risk of groundwater contamination depend mainly on the origin of the sludge because ibuprofen and diclofenac were present in the leachates of soils amended with urban sludge, whereas paracetamol and salicylic acid were found only in the leachates of soils amended with hospital sludge. Although carbamazepine, ciprofloxacin, sulfamethoxazole, ketoprofen, econazole, and atenolol were detected in some sludge, they were not present in any leachate. This reflects either an accumulation and/or (bio)degradation of these compounds (CBZ, CIP, SMX, KTP, ECZ, and ATN ), thus resulting in very low mobility in soil. Ecotoxicological risk assessment, evaluated by calculating the risk quotients for each studied pharmaceutical compound, revealed no high risk due to the application on the soil of sludge stabilized by liming or anaerobic digestion.
Natal-da-Luz, T; Ojeda, G; Costa, M; Pratas, J; Lanno, R P; Van Gestel, C A M; Sousa, J P
2012-08-01
Sewage sludge application to soils is regulated by its total metal content. However, the real risk of metals is determined by the fraction that is biologically available. The available fraction is highly related to the strength of metal binding by the matrix, which is a dynamic process. The evaluation of the fate of metals in time can contribute increased accuracy of ecological risk assessment. Aiming to evaluate short-term changes in metal availability when metals were applied to soil directly (metal-spiked) or by way of an organic matrix (sludge-amended), a laboratory experiment was performed using open microcosms filled with agricultural soil. A concentration gradient of industrial sludge (11, 15, 55, and 75 t/ha) that was contaminated predominantly with chromium, copper, nickel, and zinc, or soil freshly spiked with the same concentrations of these metals, were applied on top of the agricultural soil. After 0, 3, 6, and 12 weeks, total (HNO(3) 69 %) and 0.01 M CaCl(2)-extractable metal concentrations in soil and metal content in the percolates were measured. Results demonstrated that comparison between sludge-amended and metal-spiked soils may give important information about the role of sludge matrix on metal mobility and availability in soil. In sludge-amended soils, extractable-metal concentrations were independent of the sludge concentration and did not change over time. In metal-spiked soils, metal extractability decreased with time due to ageing and transport of metals to deeper layers. In general, the sludge matrix increased the adsorption of metals, thus decreasing their mobility in soils.
Malara, Anna; Oleszczuk, Patryk
2013-05-01
The objective of the study was to determine the leachates toxicity from sewage sludge-amended soils (sandy and loamy). Samples originated from a plot experiment realized over a period of 29 months. Two types of soil were fertilized with sewage sludges at the dose of 3 % (90 t/ha). Soil samples were taken after 0, 7, 17, and 29 months from the application of sewage sludges. Leachates were obtained according to the EN 12457-2 protocol. The following commercial tests were applied for the estimation of the toxicity: Microtox (Vibrio fischeri), Microbial assay for toxic risk assessment (ten bacteria and one yeast), Protoxkit F (Tetrahymena thermophila), Rotoxkit F (Brachionus calyciflorus), and Daphtoxkit F (Daphnia magna). The test organisms displayed varied toxicity with relation to the soils amended with sewage sludges. The toxicity of the leachates depended both on the soil type and on the kind of sewage sludge applied. Notable differences were also observed in the sensitivity of the test organisms to the presence of sewage sludge in the soil. The highest sensitivity was a characteristic of B. calyciflorus, while the lowest sensitivity to the presence of the sludges was revealed by the protozoa T. thermophila. Throughout the periods of the study, constant variations of toxicity were observed for most of the test organisms. The intensity as well as the range of those variations depended both on the kind of test organism and on the kind of sludge and soil type. In most cases, an increase of the toxicity of soils amended with the sewage sludges was observed after 29 months of the experiment.
Fang, Xiong; Liu, Ju-Xiu; Yin, Guang-Cai; Zhao, Liang; Liu, Shi-Zhong; Chu, Guo-Wei; Li, Yi-Yong
2013-01-01
Through concentrated application of lime, sewage sludge and lime + sewage sludge on the sloping top of the hilly woodlands, the restoration effects of the three soil amendments on the acidified soil of hilly woodland were studied. The results showed that: (1) Joint application of sewage sludge + lime can significantly (P < 0.05) decrease soil acidity, promote the rapid increase in soil organic matter and nitrogen content, increase soil cation exchange capacity, and effectively improve acidified soil. (2) Through natural diffusion mechanisms of surface and subsurface runoff, a large area of acidified soil of hilly woodlands can be restored by concentrated application of soil amendments on the sloping top of the hilly woodlands. (3) It is conducive to solve the pollution problems of the urban sewage sludge by using municipal sewage sludge to restore acidified soil, but only for the restoration of acidified soil of timber forest.
Significance of various soil amendments to borrow pit reclamation with loblolly pine and fescue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, C.R.; Marx, D.H.
Loblolly pine seedlings with ectomycorrhizae formed by Pisolithus tinctorius (Pt) or naturally occurring Thelephora terrestris (Tt) were planted on a borrow pit in South Carolina in plots with no amendment; with fertilizer plus dolomitic limestone alone and with pine bark or bottom ash or bark and ash together; or with dried sewage sludge alone and with bark or ash or bark and ash together. All plots were subsoiled, disked, and seeded to fescue grass before planting pine seedlings. Naturally occurring Pt formed abundant ectomycorrhizae on all Tt seedlings by the end of the first season, precluding any specific ectomycorrhizal fungusmore » effect for the duration of the study. Sewage sludge alone or with bark or ash amendments dramatically improved pine seedling growth and grass biomass in comparison with other soil treatments. Mean seedling volume (D/sup 2/H) was 28 times greater and grass biomass was five times greater in the sludge plots than on nonsludge plots. Generally, soil amended with sludge contained more N, P, organic matter, and had a higher cation exchange capacity than soil of other treatments. Foliage of pine seedlings in sludge-amended soil also contained more N and less Ca than other seedlings. The significance of these results to reclamation of borrow pits is discussed.« less
Studies find more alternatives to soil cover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-02-01
Researchers from Southern Illinois University at Carbondale have experimented with planting forage grasses on acid coal refuse after deeply incorporating sewage sludge and limestone. Studies were conducted at Peabody Coal Co.'s Will Scarlet Mine, two miles north of Stonefort, IL. Digested liquid sewage sludge was hauled from the Chicago Sanitation District and deposited one meter deep into holding basins adjacent to the study site. The material was then dried in these basins for two years. In 1979, a specially modified cable trencher opened trenches 8 cm wide to depths of 30 cm and 60 cm for various treatments. Researchers depositedmore » the dried sludge using a silage wagon and spread the limestone by hand. Eleven different treatments of sludge and limestone were deposited at the two different incorporation depths. In March 1981 three grasses--reed canary grass, red top, and tall fescue--were seeded in a randomized complete block design within each of the eleven treatments. The deep incorporation of sewage sludge and/or limestone improved the physical and chemical properties of the coal refuse sufficiently to establish and maintain good stands of these forage grasses. Also, in spite of the high concentration of heavy metals in coal refuse amended with sewage sludge, the plant uptake was less than the maximum suggested level for feed. Analysis showed that the sewage sludge increased the organic matter of the coal refuse and decreased the bulk density. Water retention was higher in the sewage sludge amended treatments, but there were no differences in the availability of water. The pH of coal refuse increased from 2.5 to 5.0 at higher rates of sludge or limestone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korcak, R.F.
Open pollinated York Imperial apple (Malus domestica Borkh.) seeds were germinated and grown for a period of 7 months in: (1) sand with complete nutrient solutions added; (2) limed and unlimed soil, (3) limed and unlimed soil amended with two different sewage sludges at rates of 25, 50 or 100 dry kg ha/sup -1/. A third composted, lime stabilized sludge was added either sieved or non-sieved at the same rates. The sludge materials used were: (1) a high metal, composted sludge from Baltimore, MD (BALT); (2) a high Cd sewage sludge (CITY) and (3) a low metal, composted sewage sludgemore » from Washington, D.C. (DC). Germination was unaffected by treatments. After 7 months, the best growth was obtained from the sand plus nutrient solution media. Two of the three sludge materials increased seedling growth over that of the soil, either limed or unlimed. The BALT compost treated soils produced the lowest growth, particularly when unlimed. Elevated tissue metal levels indicated that Mn, Zn, Cu and Ni were the probable causes of reduced growth noted from the BALT compost treatment. The use of soil with or without low metal sludges as media for early apple seedling growth when compared to standard sand culture is not recommended.« less
Phytoextraction of Zn and Cu from sewage sludge and impact on agronomic characteristics.
Xiaomei, Liu; Qitang, Wu; Banks, M K; Ebbs, S D
2005-01-01
The presence of elevated concentrations of heavy metals limits the usage of sewage sludge as a fertilizer and soil amendment. Experiments were carried out to examine the extent to which seven plant species phytoextracted Zn and Cu from dewatered sludge. The hyperaccumulators Thlaspi caerulescens and Sedum alfredii showed the greatest removal of Zn, while shoots and tubers of two species of Alocasia showed the greatest Cu removal. Cultivation of plants in the sludge resulted in significant decreases in total Zn and changes in the partitioning of Zn between soil pools. However, Cu levels were largely unchanged and remained associated predominantly with the organic matter pool. Agronomic characteristics of the sludge material, such as pH, organic matter content, and nitrogen, phosphorus, and potassium concentrations, did not change significantly during the four-month growth period, indicating that subsequent crops could be sustained by this material. These results suggest that Zn can be phytoextracted from sludge material, provided the rate of metal uptake exceeds the rate of mobilization to the exchangeable fraction. Since there was no appreciable accumulation of Zn and Cu in seeds of Zea mays in this study, some tissues from sludge-grown plants could potentially be used as animal fodder.
Bourdat-Deschamps, Marjolaine; Ferhi, Sabrina; Bernet, Nathalie; Feder, Fréderic; Crouzet, Olivier; Patureau, Dominique; Montenach, Denis; Moussard, Géraud D; Mercier, Vincent; Benoit, Pierre; Houot, Sabine
2017-12-31
Recycling organic waste products in agriculture is a potential route for the dispersion of pharmaceutical residues in the environment. In this study, the concentrations of thirteen pharmaceuticals and the personal care product triclosan (PPCPs) were determined in different environmental matrices from long-term experimental fields amended with different organic waste products (OWPs), including sludge, composted sludge with green wastes, livestock effluents and composted urban wastes applied at usual agricultural rates. PPCP concentrations were different in OWPs, varying from a few micrograms to milligrams per kilogram dry matter or per litre for slurry. OWPs from sludge or livestock effluents primarily contained antibiotics, whereas composted urban wastes primarily contained anti-inflammatory compounds. PPCP contents in soils amended for several years were less than a few micrograms per kilogram. The most persistent compounds (fluoroquinolones, carbamazepine) were quantified or detected in soils amended with sludge or composted sludge. In soils amended with composted municipal solid waste, carbamazepine was quantified, and fluoroquinolones, ibuprofen and diclofenac were sometimes detected. The small increases in fluoroquinolones and carbamazepine in soils after individual OWP applications were consistent with the fluxes from the applied OWP. The measured concentrations of pharmaceuticals in soil after several successive OWP applications were lower than the predicted concentrations because of degradation, strong sorption to soil constituents and/or leaching. Dissipation half-lives (DT 50 ) were approximately 750-2500, 900 and <300days for fluoroquinolones, carbamazepine and ibuprofen, respectively, in temperate soils and <350 and <80days for fluoroquinolones and doxycycline, respectively, in tropical soils. Detection frequencies in soil leachates were very low (below 7%), and concentrations ranged from the limits of detection (0.002-0.03μg/L) and exceptionally to 0.27μg/L. The most frequently detected pharmaceuticals were carbamazepine and ibuprofen. Based on the risk quotient, the estimated ecotoxicological risks for different soil organisms were low. Copyright © 2017 Elsevier B.V. All rights reserved.
Biological testing of a digested sewage sludge and derived composts.
Moreira, R; Sousa, J P; Canhoto, C
2008-11-01
Aiming to evaluate a possible loss of soil habitat function after amendment with organic wastes, a digested sewage sludge and derived composts produced with green residues, where biologically tested in the laboratory using soil animals (Eisenia andrei and Folsomia candida) and plants (Brassica rapa and Avena sativa). Each waste was tested mimicking a field application of 6ton/ha or 12ton/ha. Avoidance tests did not reveal any impact of sludge and composts to soil biota. Germination and growth tests showed that application of composts were beneficial for both plants. Composts did not affect earthworm's mass increase or reproduction, but the highest sludge amendment revealed negative effects on both parameters. Only the amendment of composts at the highest dose originated an impairment of springtails reproductive output. We suggest that bioassays using different test species may be an additional tool to evaluate effects of amendment of organic wastes in soil. Biological tests are sensitive to pollutants at low concentrations and to interactions undetected by routine chemical analysis.
Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment.
Mbakwe, Ikenna; De Jager, Pieter C; Annandale, John G; Matema, Taurai
2013-01-01
Rehabilitating coal gasification ash dumps by amendment with waste-activated sludge has been shown to improve the physical and chemical properties of ash and to facilitate the establishment of vegetation. However, mineralization of organic N from sludge in such an alkaline and saline medium and the effect that ash weathering has on the process are poorly understood and need to be ascertained to make decisions regarding the suitability of this rehabilitation option. This study investigated the rate and pattern of N mineralization from sludge in a coal gasification ash medium to determine the prevalent inorganic N form in the system and assess the effect of ash weathering on N mineralization. An incubation experiment was performed in which fresh ash, weathered ash, and soil were amended with the equivalent of 90 Mg ha sludge, and N mineralization was evaluated over 63 d. More N (24%) was mineralized in fresh ash than in weathered ash and soil, both of which mineralized 15% of the initial organic N in sludge. More nitrification occurred in soil, and most of the N mineralized in ash was in the form of ammonium, indicating an inhibition of nitrifying organisms in the ash medium and suggesting that, at least initially, plants used for rehabilitation of coal gasification ash dumps will take up N mostly as ammonium. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
40 CFR 501.32 - Procedures for revision of State programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SEWAGE SLUDGE STATE SLUDGE MANAGEMENT PROGRAM REGULATIONS Program Approval, Revision and Withdrawal § 501... requires revision to comply with amendments to federal regulations governing sewage sludge use or disposal...
Liang, Qi; Lei, Mei; Chen, Tongbin; Yang, Jun; Wan, Xiaoming; Yang, Sucai
2014-08-01
Adding organic amendments to stimulate the biodegradation of pesticides is a subject of ongoing interest. The effect of sewage sludge on the bioremediation of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) contaminated soil was investigated in bench scale experiments, and intermittent aeration strategy was also used in this study to form an anaerobic-aerobic cycle. Bioremediation of DDT and HCH was enhanced with the addition of sewage sludge and the intermittent aeration. The removal rates of HCH and DDT were raised by 16.8%-80.8% in 10 days. Sewage sludge increased the organic carbon content from 6.2 to 218 g/kg, and it could also introduce efficient degradation microbes to soil, including Pseudomonas sp., Bacillus sp. and Sphingomonas sp. The unaerated phase enhanced the anaerobic dechlorination of DDT and HCH, and anaerobic removal rates of β-HCH, o,p'-DDT and p,p'-DDT accounted for more than 50% of the total removal rates, but the content of α-HCH declined more in the aerobic phase. Copyright © 2014. Published by Elsevier B.V.
Plant uptake of pentachlorophenol from sludge-amended soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellin, C.A.; O'Connor, G.A.
A greenhouse study was conducted to determine the effects of sludge on plant uptake of {sup 14}C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal {sup 14}C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent ofmore » sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were <0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge.« less
Plant uptake of pentachlorophenol from sludge-amended soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellin, C.A.; O'Connor, G.A.
A greenhouse study was conducted to determine the effects of sludge on plant uptake of {sup 14}C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal {sup 14}C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent ofmore » sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were < 0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge.« less
Natural attenuation of toxic metal phytoavailability in 35-year-old sewage sludge-amended soil.
Tai, Yiping; Li, Zhian; Mcbride, Murray B
2016-04-01
Toxic heavy metals persist in agricultural soils and ecosystem for many decades after their application as contaminants in sewage sludge and fertilizer products This study assessed the potential long-term risk of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in land-applied sewage sludge to food crop contamination. A sewage sludge-amended soil (SAS) aged in the field more than 35 years was used in a greenhouse pot experiment with leafy vegetables (lettuce and amaranth) having strong Cd and Zn accumulation tendencies. Soil media with variable levels of available Cd, Zn, and Cu (measured using 0.01 M CaCl2 extraction) were prepared by diluting SAS with several levels of uncontaminated control soil. Despite long-term aging in the field, the sludge site soil still retains large reserves of heavy metals, residual organic matter, phosphorus, and other nutrients, but its characteristics appear to have stabilized over time. Nevertheless, lettuce and amaranth harvested from the sludge-treated soil had undesirable contents of Cd and Zn. The high plant uptake efficiency for Cd and Zn raises a concern regarding the quality and safety of leafy vegetables in particular, when these crops are grown on soils that have been amended heavily with sewage sludge products at any time in their past.
The influence of biosolids treatment files on the mobility of metal trace elements.
Maisonnave, V; Montrejaud-Vignoles, M; Bonnin, C; Revel, J C; Vignoles, C
2001-01-01
The production of sludge in France is estimated to be about 900,000 metric tons dry matter per year and 60% of this is recycled onto agricultural land. At present, the long term future of this procedure is open to question and among the different arguments being put forward are the levels of metallic trace elements and the risk of accumulation in soils. This study presents the behaviour of metallic trace elements in sludges from three different treatment procedures: thickened liquid sludges, dewatered sludges and dried sludges. These biosolids are mixed with a clay soil and then placed in a temperature and humidity controlled glasshouse. Several containers are seeded with ryegrass and compared with controls. For the three harvests, covering all the amendments studied (including non-amended soil), the differences are not really representative. Absorption by the ryegrass is low in all cases. For the cadmium, the chromium, the nickel and the lead, the roots are 5 to 10 times more concentrated than the leaves. The majority of these elements stay absorbed in the roots, regardless of the amendment used. The addition of the sludges has considerably reduced the uptake of water in ryegrass throughout its growth cycle. Quite apart from their fertilizing qualities, wastewater treatment plant sludges could offer important implications for irrigation.
BEHAVIOR OF TOLUENE ADDED TO SLUDGE-AMENDED SOILS
Toluene is a priority pollutant that can be introduced to soils in a variety of wastes, including some municipal sludges. Laboratory experiments were conducted to study the behavior of toluene in two soils in the presence and absence of municipal sludge. Sludge additions increa...
NASA Astrophysics Data System (ADS)
Luna Ramos, Lourdes; Miralles, Isabel; Contreras, Sergio; Lázaro-Suau, Roberto; Solé-Benet, Albert
2017-04-01
An experimental restoration was designed in a calcareous quarry in Sierra de Gádor, SE Spain, with the aim of determining useful semiarid restoration techniques. The factors tested were: a) organic amendments (sewage sludge, compost and no amendment), b) mulches (gravel, woodchip and no mulch), and c) three native species (Macrochloa tenacissima, Anthyllis terniflora and Anthyllis cytisoides). Nine combinations of organic amendments and mulches were established in plots of 15 x 5 m and 75 plants were planted in each plot. Plant survival and growth were measured at months 6, 24, 36 and 48 after planting. Moreover, the possible relationships between soil quality indicators (physico-chemical and microbiological properties, aggregate stability and infiltration rate) and changes in the planted vegetation caused by restoration treatments were explored. This study demonstrated that opencast mine revegetation with native species (M. tenacissima, A. terniflora and A. cytisoides) was successful in the boundary between arid and semiarid climate in only four years, compared to previous soil restoration treatment. The response of plant species was different, showing their own physiological mechanisms. M. tenacissima presented the highest survival rates although the two Anthyllis species had the highest growth rates. Despite organic amendments had not a positive effect on plant survival, these treatments increased plant growth. In particular, the improvement on chemical, microbiological and physical soil properties induced by sewage sludge and especially compost treatment, enhanced plant growth. However, changes induced by mulches on the physico-chemical soil properties did not provided clear evidences, either positive or negative, in plant establishment. Thus, the addition of organic matter from organic residues and revegetation with native species can improve the restoration success in SE Spain and perhaps similar regions worldwide under arid-semiarid climate.
Knight, B P; Chaudri, A M; McGrath, S P; Giller, K E
1998-01-01
A rapid method for extracting soil solutions using porous plastic soil-moisture samplers was combined with a cation resin equilibration based speciation technique to look at the chemical availability of metals in soil. Industrially polluted, metal sulphate amended and sewage sludge treated soils were used in our study. Cadmium sulphate amended and industrially contaminated soils all had > 65% of the total soil solution Cd present as free Cd2+. However, increasing total soil Cd concentrations by adding CdSO4 resulted in smaller total soil solution Cd. Consequently, the free Cd2+ concentrations in soil solutions extracted from these soils were smaller than in the same soil contaminated by sewage sludge addition. Amendment with ZnSO4 gave much greater concentrations of free Zn2+ in soil solutions compared with the same soil after long-term Zn contamination via sewage sludge additions. Our results demonstrate the difficulty in comparing total soil solution and free metal ion concentrations for soils from different areas with different physiochemical properties and sources of contamination. However, when comparing the same Woburn soil, Cd was much less available as Cd2+ in soil solution from the CdSO4 amended soils compared with soil contaminated by about 36 years of sewage sludge additions. In contrast, much more Zn was available in soil solution as free Zn2+ in the ZnSO4 amended soils compared with the sewage sludge treated soils.
Sustainable use of tannery sludge in brick manufacturing in Bangladesh.
Juel, Md Ariful Islam; Mizan, Al; Ahmed, Tanvir
2017-02-01
Chromium-rich tannery sludge generated from tanneries has the potential to become a serious environmental burden in Bangladesh and a promising avenue for disposal of this sludge is by stabilizing it in clay brick products. But for sustainable industrial application of such technique it needs to be ensured first that the engineering properties of bricks as a building material are not diminished by addition of sludge, the process becomes energy efficient compared to alternatives and the use of such bricks do not pose any harmful environmental effects in the long run. In this study, clay bricks were prepared with different proportions of sludge (10%, 20%, 30% and 40% by dry weight) in both laboratory-controlled and field conditions and their suitability as a construction material was assessed based on their strength, water absorption, shrinkage, weight-loss on ignition and bulk density. For the sludge incorporated bricks, the compressive strength ranged from 10.98MPa to 29.61MPa and water absorption ranged from 7.2% to 20.9%, which in most cases met both the Bangladesh and ASTM criteria for bricks as a construction material. Volumetric shrinkage, weight loss and efflorescence properties of sludge-amended bricks were found to be favorable and it was estimated that an energy saving of 15-47% could potentially be achieved during firing with 10-40% tannery sludge-amended bricks. The quality of sludge-amended bricks made in the brick kiln was relatively inferior compared to bricks produced in the laboratory due to operating in a less-controlled environment with respect to maintaining adequate compaction and optimum moisture content. The leaching behavior of several heavy metals (Cr, As, Cu, Ni, Cd, Pb and Zn) from sludge-amended bricks has been found to be insignificant and far below the Dutch regulations and USEPA regulatory limits. Results from this study indicate that tannery sludge can be sustainably stabilized in clay bricks and large-scale application of this technique can be envisaged in the context of Bangladesh where brick remains a dominant building material. Copyright © 2016 Elsevier Ltd. All rights reserved.
Single application of Sewage Sludge to an Alluvial Agricultural Soil - impacts on Soil Quality
NASA Astrophysics Data System (ADS)
Suhadolc, M.; Graham, D. B.; Hagn, A.; Doerfler, U.; Schloter, M.; Schroll, R.; Munch, J. C.; Lobnik, F.
2009-04-01
Limited information exists on the effects of sewage sludge on soil quality with regard to their ability to maintain soil functions. We studied effects of sewage sludge amendment on soil chemical properties, microbial community structure and microbial degradation of the herbicide glyphosate. Three months soil column leaching experiment has been conducted using alluvial soils (Eutric Fluvisol) with no prior history of sludge application. The soil was loamy with pH 7,4 and organic matter content of 3,5%. Soil material in the upper 2 cm of columns was mixed with dehydrated sewage sludge which was applied in amounts corresponding to the standards governing the use of sewage sludge for agricultural land. Sludge did increase some nutrients (total N, NH4+, available P and K, organic carbon) and some heavy metals contents (Zn, Cu, Pb) in soil. However, upper limits for heavy metals in agricultural soils were not exceeded. Results of heavy metal availability in soil determined by sequential extraction will be also presented. Restriction fragment length polymorphism (RFLP) analyses of 16s/18s rDNA, using universal fungal and bacterial primers, revealed clear shifts in bacterial and fungal community structure in the upper 2 cm of soils after amendment. Fungal fingerprints showed greater short term effects of sewage sludge, whereas sewage sludge seems to have prolonged effects on soil bacteria. Furthermore, sewage sludge amendment significantly increased glyphosate degradation from 21.6±1% to 33.6±1% over a 2 months period. The most probable reasons for shifts in microbial community structure and increased degradation of glyphosate are beneficial alterations to the physical-chemical characteristics of the soil. Negative effects of potentially toxic substances present in the sewage sludge on soil microbial community functioning were not observed with the methods used in our study.
Komilis, Dimitrios; Evangelou, Alexandros; Voudrias, Evangelos
2011-09-01
The management of dewatered wastewater sludge is a major issue worldwide. Sludge disposal to landfills is not sustainable and thus alternative treatment techniques are being sought. The objective of this work was to determine optimal mixing ratios of dewatered sludge with other organic amendments in order to maximize the degradability of the mixtures during composting. This objective was achieved using mixture experimental design principles. An additional objective was to study the impact of the initial C/N ratio and moisture contents on the co-composting process of dewatered sludge. The composting process was monitored through measurements of O(2) uptake rates, CO(2) evolution, temperature profile and solids reduction. Eight (8) runs were performed in 100 L insulated air-tight bioreactors under a dynamic air flow regime. The initial mixtures were prepared using dewatered wastewater sludge, mixed paper wastes, food wastes, tree branches and sawdust at various initial C/N ratios and moisture contents. According to empirical modeling, mixtures of sludge and food waste mixtures at 1:1 ratio (ww, wet weight) maximize degradability. Structural amendments should be maintained below 30% to reach thermophilic temperatures. The initial C/N ratio and initial moisture content of the mixture were not found to influence the decomposition process. The bio C/bio N ratio started from around 10, for all runs, decreased during the middle of the process and increased to up to 20 at the end of the process. The solid carbon reduction of the mixtures without the branches ranged from 28% to 62%, whilst solid N reductions ranged from 30% to 63%. Respiratory quotients had a decreasing trend throughout the composting process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zaier, Hanen; Ghnaya, Tahar; Ben Rejeb, Kilani; Lakhdar, Abdelbasset; Rejeb, Salwa; Jemal, Fatima
2010-06-01
Sludge application is a reliable practice to ameliorate soil fertility. However, repetitive sludge addition represents a potential soil contamination source with heavy metals, which must be extracted. The aim of this study was to evaluate the capacity of Brassica napus to remove metals from soils amended with sludge, and to study the effect of EDTA on this process. Seedlings were cultivated in presence of sludge combined or not with EDTA. Results showed that sludge ameliorate significantly biomass production. This effect was accompanied with an increase in Pb, Zn and Mn shoot concentrations. EDTA application does not affect significantly plant growth. However, this chelator enhances shoot metals accumulation. It's therefore concluded that sludge has a beneficial effect on soil fertility, B. napus can be used for the decontamination of affected soils and that the EDTA addition increases the ability of B. napus to accumulate heavy metals. Published by Elsevier Ltd.
Zinc distribution in soils amended with different kinds of sewage sludge.
Torri, Silvana Irene; Lavado, Raúl
2008-09-01
Sewage sludge (SS) can be applied to cropland to supply and recycle nutrients and organic carbon. Potentially toxic elements in the sludge, however, are of environmental concern. This study evaluates the changes in chemical speciation of Zn in three representative pristine soils of the Pampas Region, Argentina, measured with sequential extraction over a one-year period. Pure SS or SS containing 30% (DM) of its own incineration ash (AS) was applied to the soils at an application rate of 150 Mg ha(-1). Zn was sequentially fractionated into exchangeable, organically bound, inorganic and residual fractions. The application of the SS and AS amendments significantly increased Zn concentration in all soil fractions at each sampling date. At day 1, Zn was mainly found in the residual fraction. A year after the application of the amendments, redistribution towards the inorganic fraction was observed (41-76% of total Zn content). Zn found in exchangeable and inorganic fractions depended on soil pH rather than on the type of soil used. A negative and significant correlation was found between exchangeable Zn concentrations and soil pH (r=0.94), and a positive and significant correlation between inorganic Zn concentrations and soil pH (r=0.92). For each amended soil and sampling date, no significant differences were observed between SS or AS treatments for the exchangeable fraction. Moreover, the use of AS did not cause significant differences in Zn concentration in the other soil fractions compared to SS. Based on these results, land spreading of AS may be similar to SS diaposal in terms of Zn mobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, J.P.; Glover, T.N.
Acid, infertile, erosive, barren orphan coal minesoils are a regional problem in the eastern coal fields. Learning how to establish permanent forest ecosystems on these minesoils is a goal of reclamation research in Ohio. This greenhouse research tested Newark, Ohio sewage sludge at 70, 160, 250, and 340 Mg ha/sup -1/ as treatments to promote growth of American sycamore (Platanus occidentalis L.) seedlings in toxic minesoils. Sycamore seed did germinate and grow in sludge-amended minesoil, whereas growth was nil in the absence of sewage sludge. Soil pH, available P, exchangeable K and Ca, available Zn, and extractable B all increasedmore » with sludge addition, but exchangeable Mg, available Mn and CEC declined. Regressions of N, P, K, Ca, Fe, and Cu content of seedlings on rate of sludge addition were significant and positive; a similar regression of manganese was significant and negative. Stress symptoms appearing on lower leaves of sycamore seedlings grown in sludge-minesoil mixtures matched boron toxicity symptoms of sycamore produced in solution cultures containing 2 or 4 mg kg/sup -1/ of B and in mixtures of glass fiber insulation, a component of the sludge, with peat and vermiculite.« less
Design of long-term sludge-loading rates for forests under uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crohn, D.M.
1995-09-01
A simple time series describing nitrate-nitrogen concentrations percolating form a sludge-amended forest is presented for the case where applications are made at several-year intervals. The time series converges to a quasi-steady-state solution that can be solved for an application rate limited by percolating nitrate-nitrogen concentrations. Excess nitrogen is commonly converted to nitrate, a form that leaches readily to pollute ground water. A chance constraint incorporates uncertainty associated with precipitation and evapotranspiration, the most important factors in determining the excess of water available for leaching. Design loading rates for eight New York state forest regions are discussed. If applications occur atmore » 3-year intervals, rates range form 0.2 to 5.3 Mg/ha dry weight depending on the design confidence level, local excess water patterns, forest nitrogen uptake, sludge type, and atmospheric nitrogen deposition rates. Results are compared to predictions made with FORSENTO, a comprehensive model for simulating sludge applications to northern hardwood forests. FORSENTO simulations suggest that mature hardwoods need only 12 kg/ha to support annually perennial material growth and that atmospheric nitrogen deposition may eventually meet or exceed needs of trees so that landspreading may not be sustainable indefinitely in some areas.« less
Verlicchi, P; Zambello, E
2015-12-15
This review is based on 59 papers published between 2002 and 2015, referring to about 450 treatment trains providing data regarding sludge concentrations for 169 compounds, specifically 152 pharmaceuticals and 17 personal care products, grouped into 28 different classes. The rationale of the study is to provide data to evaluate the environmental risk posed by the spreading of treated sludge in agriculture. Following discussion of the legislative scenario governing the final disposal of treated sludge in European countries and the USA, the study provides a snapshot of the occurrence of selected compounds in primary, secondary, mixed, digested, conditioned, composted and dried sludge originating in municipal wastewater treatment plants fed mainly with urban wastewater as well as in sludge-amended soil. Not only are measured values reported, but also predicted concentrations based on Kd values are reported. It emerges that in secondary sludge, the highest concentrations were found for fragrances, antiseptics and antibiotics and an attenuation in their concentrations occurs during treatment, in particular anaerobic digestion and composting. An in-depth literature survey of the (measured and predicted) Kd values for the different compounds and treated sludge are reported and an analysis of the influence of pH, redox conditions, sludge type was carried out. The data regarding measured and predicted concentrations of selected compounds in sludge-amended soil is then analyzed. Finally an environmental risk assessment posed by their occurrence in soil in the case of land application of sludge is examined, and the results obtained by different authors are compared. The most critical compounds found in the sludge-amended soil are estradiol, ciprofloxacin, ofloxacin, tetracycline, caffeine, triclosan and triclocarban. The study concludes with a focus on the main issues that should be further investigated in order to refine the environmental risk assessment. Copyright © 2015 Elsevier B.V. All rights reserved.
Comellas, L; Portillo, J L; Vaquero, M T
1993-12-24
A procedure for determining linear alkylbenzenesulphonates (LASs) in sewage sludge and amended soils has been developed. Extraction by sample treatment with 0.5 M potassium hydroxide in methanol and reflux was compared with a previously described extraction procedure in Soxhlet with methanol and solid sodium hydroxide in the sample. Repeatability results were similar with savings in extraction time, solvents and evaporation time. A clean-up method involving a C18 cartridge has been developed. Analytes were quantified by a reversed-phase HPLC method with UV and fluorescence detectors. Recoveries obtained were higher than 84%. The standing procedure was applied to high doses of sewage sludge-amended soils (15%) with increasing quantities of added LASs. Degradation data for a 116-day period are presented.
Phosphorus runoff from sewage sludge applied to different slopes of lateritic soil.
Chen, Yan Hui; Wang, Ming Kuang; Wang, Guo; Chen, Ming Hua; Luo, Dan; Ding, Feng Hua; Li, Rong
2011-01-01
Sewage sludge (SS) applied to sloping fields at rates that exceed annual forest nutrient requirements can be a source of phosphorus (P) in runoff. This study investigates the effects of different slopes (18, 27, 36, and 45%) on P in runoff from plots amended with SS (120 Mg ha). Lateritic soil (pH 5.2) was exposed to five simulated rainfalls (90 mm h) on outdoor plots. When sludge was broadcast and mixed with surface soils, the concentrations and loss in runoff of total P in the mixed sample (MTP), total P in the settled sample (STP), total particulate P (TPP), total suspended P (TSP), and total dissolved P (TDP) were highest at 1 or 18 d after application. Initially, pollution risks to surface waters generally increased to different degrees with steeper slopes, and then diminished gradually with dwindling differences between the slopes. The runoff losses coefficient of MTP increased in the order 36 > 45 > 27 > 18%. The initial event (1 and 18 d) accounted for 67.0 to 83.6% of total runoff P losses. Particulate fraction were dominant carriers for P losses, while with the lower slopes there was higher content of P per unit particulate fraction in runoff. Phosphorus losses were greatly affected by the interaction of sludge-soil-runoff and the modification of soil properties induced by sludge amendment. It is recommended to choose lower slopes (<27%) to reduce risk of P losses. Thus, the risk of application sludge to sloping fields in acid soils should be studied further in the field under a wider diversity of conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Anaerobic digestion of municipal solid waste: Utility of process residues as a soil amendment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, C.J.; Nagle, N.J.; Kay, B.D.
1995-12-31
Tuna processing wastes (sludges high in fat, oil, and grease [FOG]) and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal challenge. The biological conversion of the organic fraction of these wastes to useful products, including methane and fertilizer-grade residue, through anaerobic high-solids digestion is currently in scale-up development. The suitability of the anaerobic digestion residues as a soil amendment was evaluated through extensive chemical analysis and greenhouse studies using corn as an indicator crop. Additionally, native Samoan soil was used to evaluate the specific application rates for the compost. Experiments established that anaerobic residuesmore » increase crop yields in direct proportion to increases in the application rate. Additionally, nutrient saturation was not demonstrated within the range of application rates evaluated for the Samoan soil. Beyond nutrient supplementation, organic residue amendment to Samoan soil imparts enhanced water and nutrient-binding capacities.« less
TRACE ORGANICS AND INORGANICS IN DISTRIBUTION AND MARKETING MUNICIPAL SLUDGES
The land application of municipal wastewater treatment sludges is widely practiced both as an economic treatment method for disposal and to provide an economic soil nutrient amendment for agricultural use. Concerns over the general disposal of sludge to land have focused on sever...
Gondim-Porto, Clarissa; Platero, Leticia; Nadal, Ignacio; Navarro-García, Federico
2016-09-15
The use of sewage sludge or biosolids as agricultural amendments may pose environmental and human health risks related to pathogen or antibiotic-resistant microorganism transmission from soils to vegetables or to water through runoff. Since the survival of those microorganisms in amended soils has been poorly studied under Mediterranean climatic conditions, we followed the variation of soil fecal bacterial markers and ampicillin-resistant bacteria for two years with samplings every four months in a split block design with three replica in a crop soil where two different types of biosolids (aerobically or anaerobically digested) at three doses (low, 40; intermediate, 80; and high, 160Mg·ha(-1)) were applied. Low amounts of biosolids produced similar decay rates of coliform populations than in control soil (-0.19 and -0.27log10CFUs·g(-1)drysoilmonth(-1) versus -0.22) while in the case of intermediate and high doses were close to zero and their populations remained 24months later in the range of 4-5log10CFUs·g(-1)ds. Enterococci populations decayed at different rates when using aerobic than anaerobic biosolids although high doses had higher rates than control (-0.09 and -0.13log10CFUs·g(-1)dsmonth(-1) for aerobic and anaerobic, respectively, vs -0.07). At the end of the experiment, counts in high aerobic and low and intermediate anaerobic plots were 1 log10 higher than in control (4.21, 4.03, 4.2 and 3.11log10CFUs·g(-1) ds, respectively). Biosolid application increased the number of Clostridium spores in all plots at least 1 log10 with respect to control with a different dynamic of decay for low and intermediate doses of aerobic and anaerobic sludge. Ampicillin-resistant bacteria increased in amended soils 4months after amendment and remained at least 1 log10 higher 24months later, especially in aerobic and low and intermediate anaerobic plots due to small rates of decay (in the range of -0.001 to -0.008log10CFUs·g(-1)dsmonth(-1) vs -0.016 for control). Aerobic plots had relative populations of ampicillin-resistant bacteria higher than anaerobic plots with different positive trends. Dose (22%) and time (13%) explained most of the variation of the bacterial populations. Dynamics of fecal markers did not correlate with ampicillin-resistant bacteria thus making necessary to evaluate specifically this trait to avoid possible risks for human and environmental health. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulhern, D.W.; Robel, R.J.; Furness, J.C.
Disposal of scrubber sludge and fly ash waste from coal-fired power plants is a costly problem for utilities. Current regulations call for the retired waste areas to be covered with topsoil, then seeded to produce a protective vegetative cap. We conducted field tests over a 3-yr period to determine if a vegetative cover could be established without first adding topsoil to waste sites. Seven herbaceous and six tree species were planted on scrubber sludge and bottom ash sites. These substrates were first amended with fertilizer, and then hay, woodchips, or cow (Bos taurus) manure. The bottom ash was not capablemore » of supporting vegetative growth, even with amendment. Tall wheatgrass (Agropyron elongatum, (Host) Beauv.), tall fescue (Festuca arundinacea Schreb.), yellow sweet clover (Melilotus officinalis Lam.), and Japanese millet (Echinochloa crusgalli (L.) Beauv.) grew well on scrubber sludge, as did eastern cottonwood (Populus deltoides Marsh.) and eastern red cedar trees (Juniperus virginiana L.). Generally, herbaceous plants grew best on scrubber sludge to which manure and fertilizer were added, the trees survived and grew best on scrubber sludge amended with woodchips and fertilizer. This study demonstrates that a good vegetative cover can be produced on scrubber sludge waste areas without first covering them with topsoil.« less
Geng, Chunnu; Bergheaud, Valérie; Garnier, Patricia; Zhu, Yong-Guan; Haudin, Claire-Sophie
2018-03-01
Sludge recycled in agriculture may bring antibiotics into cropped soils. The nature, total amount, and availability of the antibiotics in soil partly depend on the sludge treatments. Our paper compares the fate of N-acetyl sulfamethoxazole (AC-SMX) residues between soils incubated with the same sludge but submitted to different processes before being added in soil. The fate of 14 C-AC-SMX residues was studied in mixtures of soil and sludges at different treatment levels: 1) activated and 2) centrifuged sludges, both enriched with 14 C-AC-SMX, and 3) limed and 4) heat-dried sludges obtained by treating the previously contaminated centrifuged sludge. The evolution of the extractability of 14 C residues (CaCl 2 , methanol) and their mineralization were followed during 119 days. More than 80% of the initial 14 C-activity was no longer extractable after 14 days, except in soil with limed sludge. Liming and drying the centrifuged sludge decreased the mineralized 14 C fraction from 5.7-6.4% to 1.2-1.8% and consequently, the corresponding soils contained more 14 C residues after 119 days. Although 14 C residues were more CaCl 2 -extractable in soil with limed sludge, they seemed to be poorly bioavailable for biodegradation. For all solid sludges, the mineralization rate of 14 C-AC-SMX residues was strongly correlated to that of sludge organic carbon, with a coefficient three times lower for the limed and dried sludges than for the centrifuged sludge after 14 days. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Tao; Shao, Yanqiu; Tian, Chao; Cattle, Stephen R.; Zhu, Ying; Song, Jinjuan
2018-01-01
A composted sewage sludge (CSS) was added to the soil of an urban garden at 5%, 10%, and 25% (w/w soil) and stabilised for 180 days. Samples were then collected and analysed for total heavy metal concentrations, chemical fractions, and bioaccessibility, together with some physicochemical properties. The results showed that the total chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) concentrations were increased with CSS addition rate. The CSS addition decreased the residual fractions of these four elements. The exchangeable Cr, Cu, and Pb fractions were very small or not detected, while Zn exhibited an increasing trend in its exchangeable fraction with CSS addition rate. The bioaccessibility of these four elements was increased with the CSS addition rate. Moreover, the Cr, Cu, and Zn bioaccessibility correlated positively with the total concentration, while the bioaccessibility of these four elements exhibited a negative correlation with the residual fraction. The fractionation and bioaccessibility of heavy metals may have also been influenced by pH, cation exchange capacity, and organic matter. The risk assessment code reflected the amended soil showed no or low environmental risks for Cr, Cu, and Pb and a medium risk for Zn. The hazardous index values and cancer risk levels indicated that the heavy metals in the soil amended with 25% CSS posed negligible potential noncarcinogenic and carcinogenic risks to children and adults via incidental ingestion. PMID:29597244
Krzyzanowski, Flávio; de Souza Lauretto, Marcelo; Nardocci, Adelaide Cássia; Sato, Maria Inês Zanoli; Razzolini, Maria Tereza Pepe
2016-10-15
A deeper understanding about the risks involved in sewage sludge practice in agriculture is required. The aims of the present study were to determine the annual risk of infection of consuming lettuce, carrots and tomatoes cultivated in soil amended with sewage sludge. The risk to agricultural workers of accidental ingestion of sludge or amended soil was also investigated. A Quantitative Microbial Risk Assessment was conducted based on Salmonella concentrations from five WWTPs were used to estimate the probability of annual infection associated with crops and soil ingestion. The risk of infection was estimated for nine exposure scenarios considering concentration of the pathogen, sewage sludge dilution in soil, variation of Salmonella concentration in soil, soil attachment to crops, seasonal average temperatures, hours of post-harvesting exposure, Salmonella regrowth in lettuce and tomatoes, Salmonella inhibition factor in carrots, crop ingestion and frequency of exposure, sludge/soil ingestion by agricultural workers and frequency of exposure. Annual risks values varied across the scenarios evaluated. Highest values of annual risk were found for scenarios in which the variation in the concentration of Salmonella spp. in both soil and crops (scenario 1) and without variation in the concentration of Salmonella spp. in soil and variation in crops (scenario 3) ranging from 10(-3) to 10(-2) for all groups considered. For agricultural workers, the highest annual risks of infection were found when workers applied sewage sludge to agricultural soils (2.26×10(-2)). Sensitivity analysis suggests that the main drivers for the estimated risks are Salmonella concentration and ingestion rate. These risk values resulted from conservative scenarios since some assumptions were derived from local or general studies. Although these scenarios can be considered conservative, the sensitivity analysis yielded the drivers of the risks, which can be useful for managing risks from the fresh products chain with stakeholders' involvement. Copyright © 2016. Published by Elsevier B.V.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-23
... Subjects in 40 CFR Part 261 Environmental protection, Hazardous waste, Recycling, and Reporting and... a maximum annual rate of 200 cubic yards per year must be disposed in a lined Subtitle D landfill... forth in paragraph 1, Phillips 66 can dispose of the processed sludge in a lined Subtitle D landfill...
Fang, Wen; Wei, Yonghong; Liu, Jianguo
2016-06-05
The leaching and accumulation of heavy metals are major concerns following the land application of sewage sludge compost (SSC). We comparatively characterized SSC, the reference soil, and the SSC amended soil to investigate their similarities and differences regarding heavy metal leaching behavior and then to evaluate the effect of SSC land application on the leaching behavior of soil. Results showed that organic matter, including both of particulate organic matter (POM) and dissolved organic matter (DOM), were critical factors influencing heavy metal leaching from both of SSC and the soil. When SSC was applied to soil at the application rate of 48t/ha, the increase of DOM content slightly enhanced heavy metal leaching from the amended soil over the applicable pH domain (6
Effects of sewage sludge amendment on the properties of two Brazilian oxisols and their humic acids.
Bertoncini, E I; D'Orazio, V; Senesi, N; Mattiazzo, M E
2008-07-01
The effect of sewage sludge (SS) amendment on the general properties of the top layers of a sandy and a clayey oxisols and on the nature of their humic acid (HA) fractions was evaluated by chemical and physico-chemical techniques. The amended soils, especially the sandy soil, benefited of SS amendment by increasing their pH to above neutrality and enhancing the contents of C, N, P, and Ca and cation exchange capacity. The SS-HA-like sample showed larger H and N contents and a greater aliphatic character and humification degree than the HAs isolated from non-amended soils. The composition and structure of amended soil HAs were affected by SS application as a function of soil type and layer. In particular, N-containing groups and aliphatic structures of SS-HA-like sample appears to be partially incorporated in the amended soil HAs, and these effects were more evident in the HAs from the sandy oxisol.
Gomez-Lahoz, C; Fernández-Giménez, B; Garcia-Herruzo, F; Rodriguez-Maroto, J M; Vereda-Alonso, C
2007-03-01
The possible management of Fruit and Vegetable Solid Wastes (FVSWs) through their simultaneous digestion with the primary sludge of Municipal Wastewater Treatment plants is investigated. This alternative allows the recovery of energy and a solid product that can be used as an amendment for soils that generated the residue, while is not expensive. Results indicate that the ratio of FVSWs to sludge and the pH control are the main variables determining the methane production and concentration. NaHCO3 was selected to achieve the pH control. The results for a ratio of 50% sludge together with 10 g NaHCO3/kg of residue are among the best obtained, with a methane yield of about 90 L per kg of volatile solids, and a methane concentration of 40% (v/v) of the biogas. A 50% reduction of the total solids; 21% reduction of the volatile solids (in terms of total solids); and a pH value of the sludge, which is 6.9 indicate that the digested sludge can be a good material for soil amendment.
The Effect of paper mill waste and sewage sludge amendments on soil organic matter
NASA Astrophysics Data System (ADS)
Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel
2013-04-01
In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.
Yang, Qi; Luo, Kun; Li, Xiao-ming; Wang, Dong-bo; Zheng, Wei; Zeng, Guang-ming; Liu, Jing-jin
2010-05-01
In this investigation, the effects of commercial enzyme preparation containing alpha amylase and neutral protease on hydrolysis of excess sludge and the kinetic analysis of hydrolysis process were evaluated. The results indicated that amylase treatment displayed higher hydrolysis efficiency than that of protease. VSS reduction greatly increased to 39.70% for protease and 54.24% for amylase at the enzyme dosage of 6% (w/w), respectively. The hydrolysis rate of sludge improved with temperature increasing from 40 to 50 degrees Celsius, which could be well described by the amended Arrhenius equation. Mixed-enzyme had great impact on sludge solubilisation than single enzyme. The mixture of two enzymes (protease:amylase=1:3) resulted in optimum hydrolysis efficiency, the efficiency of solids hydrolysis increased from 10% (control test) to 68.43% at the temperature of 50 degrees Celsius. Correspondingly, the concentration of reducing sugar and NH(4)(+)-N improved about 377% and 201%, respectively. According to the kinetic analysis of enzymatic hydrolysis process, VSS solubilisation process within prior 4 h followed first-order kinetics. Compared with control test, the hydrolysis rate improved significantly at 50 degrees Celsius when either single enzyme or mixed-enzyme was added. Copyright 2009. Published by Elsevier Ltd.
Rodríguez-Morgado, Bruno; Gómez, Isidoro; Parrado, Juan; Tejada, Manuel
2014-09-01
We studied the behaviour of oxyfluorfen herbicide at a rate of 4 l ha(-1) on biological properties of a Calcaric Regosol amended with two edaphic biostimulants/biofertilizers (SS, derived from sewage sludge; and CF, derived from chicken feathers). Oxyfluorfen was surface broadcast on 11 March 2013. Two days after application of oxyfluorfen to soil, both biostimulants/biofertilizers (BS) were also applied to the soil. An unamended soil without oxyfluorfen was used as control. For 2, 4, 7, 9, 20, 30, 60, 90 and 120 days of the application of herbicide to the soil and for each treatment, the soil dehydrogenase, urease, β-glucosidase and phosphatase activities were measured. For 2, 7, 30 and 120 days of the application of herbicide to the soil and for each treatment, soil microbial community was determined. The application of both BS to soil without the herbicide increased the enzymatic activities and soil biodiversity, mainly at 7 days of beginning the experiment. However, this stimulation was higher in the soil amended with SS than for CF. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly, the low-molecular-weight protein content easily assimilated by soil microorganisms is responsible for less inhibition of these soil biological properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aranda, J.M.; O'Connor, G.A.; Eiceman, G.A.
Di-(2-ethylhexyl) phthalate (DEHP) is a priority organic pollutant frequently found in municipal sludges. A greenhouse study was conducted to determine the effect of sludge on plant uptake of {sup 14}C-DEHP (carbonyl labeled). Plants grown included three food chain crops, lettuce (Lactuca sativa L.), carrot (Daucus carota L.) and chile pepper (Capsicum annuum L.) and tall fescue (Festuca arundinacea Schreb.). Net {sup 14}C concentration in plants grown in soil amended with {sup 14}C-DEHP-contaminated sludge was independent of sludge rate (at the same DEHP loading) for lettuce, chile fruit, and carrot roots. Net {sup 14}C concentration, however, was inversely related to sludgemore » rate in carrot tops, fescue, and chile plants. Intact DEHP was not detected in plants by gas chromatography/mass spectrometry analysis. Calculated plant DEHP concentrations (based on measured net {sup 14}C concentrations and DEHP specific activities) were generally correlated better with DEHP soil solution concentrations than with total DEHP soil concentrations. Net {sup 14}C-DEHP bioconcentration factors were calculated from initial soil DEHP concentration and plant fresh weights. Bioconcentration factors ranged from 0.01 to 0.03 for fescue, lettuce, carrots, and chile, suggesting little DEHP uptake. Additionally, because intact DEHP was not detected in any plants, DEHP uptake by plants was of minor importance and would not limit sludge additions to soils used to grow these crops.« less
Heavy metal concentrations in earthworms from soil amended with sewage sludge
Beyer, W.N.; Chaney, R.L.; Mulhern, B.M.
1982-01-01
Metal concentrations in soil may be elevated considerably when metal-laden sewage sludge is spread on land. Metals in earthworms (Lumbricidae) from agricultural fields amended with sewage sludge and from experimental plots were examined to determine if earthworms are important in transferring metals in soil to wildlife. Earthworms from four sites amended with sludge contained significantly (P . < 0.05) more Cd (12 times), Cu (2.4 times), Zn (2.0 times), and Pb (1.2 times) than did earthworms from control sites, but the concentrations detected varied greatly and depended on the particular sludge application. Generally, Cd and Zn were concentrated by earthworms relative to soil, and Cu, Pb, and Ni were not concentrated. Concentrations of Cd, Zn, Cu, and Pb in earthworms were correlated (P < 0.05) with those in soil. The ratio of the concentration of metals in earthworms to the concentration of metals in soil tended to be lower in contaminated soil than in clean soil. Concentrations of Cd as high as 100 ppm (dry wt) were detected in earthworms from soil containing only 2 ppm Cd. These concentrations are considered hazardous to wildlife that eat worms. Liming soil decreased Cd concentrations in earthworms slightly (P < 0.05) but had no discernible effect on concentrations of the other metals studied. High Zn concentrations in soil substantially reduced Cd concentrations in earthworms.
Kacprzak, Malgorzata; Grobelak, Anna; Grosser, Anna; Prasad, M. N. V.
2013-01-01
The role of sewage sludge as an immobilising agent in the phytostabilization of metal-contaminated soil was evaluated using five grass species viz., Dactylis glomerata L., Festuca arundinacea Schreb., F. rubra L., Lolium perenne L., L. westerwoldicum L. The function of metal immobilization was investigated by monitoring pH, Eh and Cd, Pb, and Zn levels in column experiment over a period of 5-months. Grasses grown on sewage sludge-amendments produced high biomass in comparison to controls. A significant reduction in metal uptake by plants was also observed as a result of sewage sludge application, which was attributed to decreased bioavailability through soil stabilisation. We have observed that the sludge amendment decreased metal bioavailability and concentrations in soil at a depth of 25 cm, in contrast to untreated columns, where metal concentrations in the soil solution were very high. PMID:24912245
Fornefeld, Eva; Baklawa, Mohamed; Hallmann, Johannes; Schikora, Adam; Smalla, Kornelia
2018-05-01
Contamination of fruits and vegetables with Salmonella is a serious threat to human health. In order to prevent possible contaminations of fresh produce it is necessary to identify the contributing ecological factors. In this study we investigated whether the addition of sewage sludge or the presence of plant-parasitic nematodes foster the internalization of Salmonella enterica serovar Typhimurium LT2 into lettuce plants, posing a potential threat for human health. Greenhouse experiments were conducted to investigate whether the amendment of sewage sludge to soil or the presence of plant-parasitic nematodes Meloidogyne hapla or Pratylenchus crenatus promote the internalization of S. Typhimurium LT2 from soil into the edible part of lettuce plants. Unexpectedly, numbers of cultivable S. Typhimurium LT2 decreased faster in soil with sewage sludge than in control soil but not in root samples. Denaturing gradient gel electrophoresis analysis revealed shifts of the soil bacterial communities in response to sewage sludge amendment and time. Infection and proliferation of nematodes inside plant roots were observed but did not influence the number of cultivable S. Typhimurium LT2 in the root samples or in soil. S. Typhimurium LT2 was not detected in the leaf samples 21 and 49 days after inoculation. The results indicate that addition of sewage sludge, M. hapla or P. crenatus to soil inoculated with S. Typhimurium LT2 did not result in an improved survival in soil or internalization of lettuce plants. Copyright © 2017. Published by Elsevier Ltd.
Xie, Dan; Wu, Weibing; Hao, Xiaoxia; Jiang, Dongmei; Li, Xuewei; Bai, Lin
2016-04-01
Vermicomposting of animal wastewater treatment plant sludge (S) mixed with cow dung (CD) or swine manure (SM) employing Eisenia fetida was tested. The numbers, weights, clitellum development, and cocoon production were monitored for 60 days at a detecting interval of 15 days. The results indicated that 100 % of the sludge can be the suitable food for growth and fecundity of E. fetida, while addition of CD or SM in sludge significantly (P < 0.05) increased the worm biomass and reproduction. The sludge amended with 40 % SM can be a great medium for the growth of E. fetida, and the sludge amended with 40 % CD can be a suitable medium for the fecundity of E. fetida. The addition of CD in sludge provided a better environment for the fecundity of earthworm than SM did. Moreover, vermicomposts obtained in the study had lower pH value, lower total organic carbon (TOC), lower NH4 (+)-N, lower C/N ratio, higher total available phosphorous (TAP) contents, optimal stability, and maturity. NH4 (+)-N, pH and TAP of the initial mixtures explained high earthworm growth. The results provided the theory basic both for management of animal wastes and the production of earthworm proteins using E. fetida.
Hoadley, A F A; Qi, Y; Nguyen, T; Hapgood, K; Desai, D; Pinches, D
2015-10-01
Dried sludge is preferred when the sludge is either to be incinerated or used as a soil amendment. This paper focuses on superheated steam drying which has many benefits, because the system is totally enclosed, thereby minimising odours and particulate emissions. This work reports on field trials at a wastewater treatment plant where anaerobically digested sludge is dried immediately after being dewatered by belt press. The trials showed that unlike previous off-site tests, the sludge could be dried without the addition of a filter aid at a low production rate. However, the trials also confirmed that the addition of the lignite (brown coal) into the anaerobically digested sludge led to a more productive drying process, improved product quality and a greater fraction of the product being in the desired product size range. It is concluded that these results were achieved because the lignite helped to control the granule size in the dryer. Furthermore neither Salmonella spp or E coli were detected in the dried samples. Tests on spontaneous combustion show that this risk is increased in proportion to the amount of lignite used as a drying aid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Ramos-Ruiz, Adriana; Sesma-Martin, Juan; Sierra-Alvarez, Reyes; Field, Jim A
2017-01-01
According to the U.S. Department of Energy and the European Union, tellurium is a critical element needed for energy and defense technology. Thus methods are needed to recover tellurium from waste streams. The objectives of this study was to determine the feasibility of utilizing upflow anaerobic sludge bed (UASB) reactors to convert toxic tellurite (Te IV ) oxyanions to non-toxic insoluble elemental tellurium (Te 0 ) nanoparticles (NP) that are amendable to separation from aqueous effluents. The reactors were supplied with ethanol as the electron donating substrate to promote the biological reduction of Te IV . One reactor was additionally amended with the redox mediating flavonoid compound, riboflavin (RF), with the goal of enhancing the bioreduction of Te IV . Its performance was compared to a control reactor lacking RF. The continuous formation of Te 0 NPs using the UASB reactors was found to be feasible and remarkably improved by the addition of RF. The presence of this flavonoid was previously shown to enhance the conversion rate of Te IV by approximately 11-fold. In this study, we demonstrated that this was associated with the added benefit of reducing the toxic impact of Te IV towards the methanogenic consortium in the UASB and thus enabled a 4.7-fold higher conversion rate of the chemical oxygen demand. Taken as a whole, this work demonstrates the potential of a methanogenic granular sludge to be applied as a bioreactor technology producing recoverable Te 0 NPs in a continuous fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Polesel, Fabio; Plósz, Benedek Gy; Trapp, Stefan
2015-11-01
Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation with freshwater or reclaimed wastewater. Recent research has shown the tendency for these substances to accumulate in food crops. In this study, we developed and applied a simulation tool to predict the fate of three ionizable trace chemicals (triclosan-TCS, furosemide-FUR, ciprofloxacin-CIP) from human consumption/excretion up to the accumulation in soil and plant, following field amendment with sewage sludge or irrigation with river water (assuming dilution of WWTP effluent). The simulation tool combines the SimpleTreat model modified for fate prediction of ionizable chemicals in a generic WWTP and a recently developed dynamic soil-plant uptake model. The simulation tool was tested using country-specific (e.g., consumption/emission rates, precipitation and temperature) input data. A Monte Carlo-based approach was adopted to account for the uncertainty associated to physico-chemical and biokinetic model parameters. Results obtained in this study suggest significant accumulation of TCS and CIP in sewage sludge (1.4-2.8 mg kgDW(-1)) as compared to FUR (0.02-0.11 mg kgDW(-1)). For the latter substance, more than half of the influent load (60.1%-72.5%) was estimated to be discharged via WWTP effluent. Specific emission rates (g ha(-1) a(-1)) of FUR to soil via either sludge application or irrigation were up to 300 times lower than for TCS and CIP. Nevertheless, high translocation potential to wheat was predicted for FUR, reaching concentrations up to 4.3 μg kgDW(-1) in grain. Irrigation was found to enhance the relative translocation of FUR to plant (45.3%-48.9% of emission to soil), as compared to sludge application (21.9%-27.6%). A comparison with peer-reviewed literature showed that model predictions were close to experimental data for elimination in WWTP, concentrations in sewage and sludge and bioconcentration factors (BCFs) in plant tissues, which showed however a large variability. The simulation tool presented here can thus be useful for priority setting and for the estimation of human exposure to trace chemicals via intake of food crops. Copyright © 2015 Elsevier Ltd. All rights reserved.
Torri, Silvana; Lavado, Raúl
2009-07-30
The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.
Review of municipal sludge use as a soil amendment on disturbed lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, C.A.; Hendrickson, P.L.
1990-08-01
The US Department of Energy is examining options of improving soil conditions at Hanford reclamation sites. One promising technology is the incorporation of municipal sewage sludge into the soil profile. This report reviews the potential benefits and adverse consequences of sludge use in land reclamation. Land reclamation comprises those activities instigated to return a mechanically disturbed site to some later successional state. Besides the introduction of suitable plant species to disturbed lands, reclamation generally requires measures to enhance long-term soil nutrient content, moisture retention or drainage, and mitigation of toxic effects from metals and pH. One of the more effectivemore » means of remediating adverse soil characteristics is the application of complex organic manures such as municipal sewage sludge. Sewage sludges contain complete macro- and micronutrients necessary to sustain plant growth. The application of sewage sludge may reestablish microbial activity in sterile soils. Physical properties, such as water-holding capacity and percentage water-stable aggregates, also improve with the addition of sewage sludge. Sludge applications may also increase the rate of degradation of some hydrocarbon pollutants in soils. Potential adverse impacts associated with the application of sewage sludge to land include negative public perception of human waste products; concerns regarding pathogen buildup and spread in the soils, plants, and water; entrance and accumulation of heavy metals in the food chain; salt accumulation in the soil and ground water; leaching of nitrates into ground water; and accumulation of other potentially toxic substances, such as boron and synthetic hydrocarbons, in the soil, plants, and food chain. 56 refs., 10 tabs.« less
Scheifler, R; Ben Brahim, M; Gomot-de Vaufleury, A; Carnus, J-M; Badot, P-M
2003-01-01
Juvenile Helix aspersa snails exposed in field microcosms were used to assess the transfer of Cd, Cu, Ni, Pb and Zn from forest soils amended with liquid and composted sewage sludge. Zn concentrations and contents were significantly higher in snails exposed to liquid and composted sludge after 5 and 7 weeks of exposure, when compared with control. Trends were less clear for the other metals. Present results show that Zn, among the cocktail of metallic trace elements (MTE) coming from sewage sludge disposal, represents the principal concern for food chain transfer and secondary poisoning risks. The microcosm design used in this experiment was well suited for relatively long-term (about 2 months) active biomonitoring with H. aspersa snails. The snails quickly indicated the variations of MTE concentrations in their immediate environment. Therefore, the present study provides a simple but efficient field tool to evaluate MTE bioavailability and transfer.
Agronomic value of sewage sludge and corn cob biochar in an infertile Oxisol
NASA Astrophysics Data System (ADS)
Deenik, J. L.; Cooney, M. J.; Antal, M. J., Jr.
2013-12-01
Disposal of sewage sludge and other agricultural waste materials has become increasingly difficult in urban environments with limited land space. Carbonization of the hazardous waste produces biochar as a soil amendment with potential to improve soil quality and productivity. A series of greenhouse pot experiments were conducted to assess the agrnomic value of two biochars made from domestic wastewater sludge and corn cob waste. The ash component of the sewage sludge biochar was very high (65.5%) and high for the corn cob (11.4%) biochars. Both biochars contained low concentrations of heavy metals and met EPA land application criteria. The sewage sludge biochar was a better liming material and source of mineral nutrients than the corn cob biochar, but the corn cob biochar showed the greatest increase in soil carbon and total nitrogen. Both biochar materials increased soil pH compared with soils not receiving biochar, but the sewage sludge biochar was a more effective liming material maintaining elevated soil pH throughout the 3 planting cycles. The sewage sludge biochar also showed the greatest increase in extractable soil P and base cations. In the first planting cycle, both biochars in combination with conventional fertilizers produced significantly higher corn seedling growth than the fertilized control. However, the sewage sludge biochar maintained beneficial effects corn seedling growth through the third planting cycle showing 3-fold increases in biomass production compared with the control in the third planting. The high ash content and associated liming properties and mineral nutrient contributions in the sewage sludge biochar explain benefits to plant growth. Conversion of sewage sludge waste into biochar has the potential to effectively address several environmental issues: 1) convert a hazardous waste into a valuable soil amendment, 2) reduce land and water contamination, and 3) improve soil quality and productivity.
Wang, Meijing; Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Ren, Xiuna; Zhao, Junchao; Li, Ronghua; Zhang, Zengqiang
2017-11-01
In this study, the pilot scale co-composting of sewage sludge (SS)+wheat straw amended with 10% (dry weight ratio of basis) of three different additives (zeolite, Ca-bentonite and medical stone) was conducted for 56days to evaluate the greenhouse gases (GHGs) and nitrogen conservation efficacy and its correlation with analyzed physicochemical, gaseous and biological parameters. The results indicated that all of three additives could adequately buffer pH, considerably increase temperature, and enhance organic matter degradation as well as reduce ammonia and GHGs emission. Particularly, zeolite amended treatment showed the maximum reduction of CH 4 emission by 88.45% and less amount of nitrogen loss by 28.80%, meanwhile reduced the maturity period by 2weeks. In addition, the redundancy analysis was confirmed most significant relationship between biological, GHGs, bacterial community and nutrients concentration in 10% zeolite applied treatment than other treatments. The result suggested 10% zeolite could be a suitable additive to improve the quality of sewage sludge composting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Irradiation of municipal sludge for agricultural use
NASA Astrophysics Data System (ADS)
Ahlstrom, Scott B.
Research has demonstrated that irradiation is an effective means for reducing pathogens in sewage sludge to levels where sludge reuse in public areas meets criteria for protection of the public health. Complementary research has demonstrated the value of the irradiated sludge in both agronomic and animal science applications. The benefits of sludge application to cropland are well documented. The irradiation process does not increase the extractability and plant uptake of a broad range of nutrients and heavy metals from sludge-amended soils. However, it does eliminate the hazards associated with pathogen contamination when applying sludge to agricultural land. Irradiated sludge has also been evaluated as a supplemental foodstuff for cattle and sheep. The data indicate that products derived from raw sewage may have a substantial nutritive value for ruminant animals. Irradiation of sewage sludge is a practical means of sludge disinfection. Where a highly disinfected sludge is required, it should be considered as a viable sludge management alternative. Evaluation of sludge irradiation technology and its associated costs must be done with consideration of other sludge treatment processes to develop an acceptable sludge management system.
Kriipsalu, Mait; Marques, Marcia; Nammari, Diauddin R; Hogland, William
2007-09-30
The objective was to investigate the aerobic biodegradation of oily sludge generated by a flotation-flocculation unit (FFU) of an oil refinery wastewater treatment plant. Four 1m(3) pilot bioreactors with controlled air-flow were filled with FFU sludge mixed with one of the following amendments: sand (M1); matured oil compost (M2); kitchen waste compost (M3) and shredded waste wood (M4). The variables monitored were: pH, total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), total carbon (C(tot)), total nitrogen (N(tot)) and total phosphorus (P(tot)). The reduction of TPH based on mass balance in M1, M2, M3 and M4 after 373 days of treatment was 62, 51, 74 and 49%; the reduction of PAHs was 97%, +13% (increase), 92 and 88%, respectively. The following mechanisms alone or in combination might explain the results: (i) most organics added with amendments biodegrade faster than most petroleum hydrocarbons, resulting in a relative increase in concentration of these recalcitrant contaminants; (ii) some amendments result in increased amounts of TPH and PAHs to be degraded in the mixture; (iii) sorption-desorption mechanisms involving hydrophobic compounds in the organic matrix reduce bioavailability, biodegradability and eventually extractability; (iv) mixture heterogeneity affecting sampling. Total contaminant mass reduction seems to be a better parameter than concentration to assess degradation efficiency in mixtures with high content of biodegradable amendments.
RESPONSE OF TALL FESCUE, BUSH BEAN, AND MAIZE TO CHROME TANNERY SLUDGE IN SOILS
Tannery sludge was compared with commercial nitrogen fertiliser to investigate its potential use as an alternative to commercial fertiliser. Soils containing 38% and 7% organic carbon and with nitrogen contents of 1-3% and 0-2%, respectively, were amended with either commercial N...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The 85-acre Bofors Nobel site contains an active specialty chemical production plant in Egelston Township, Muskegon County, Michigan. Site features include an unused landfill. The ROD amends a 1990 ROD written by the state, which consisted of onsite incineration and onsite landfilling of lagoon area soil, construction of RCRA-type secure landfill cells to hold non-incinerated material and ash from the incinerated sludge. The selected amended remedial action for the site includes excavating and containing approximately 767,000 cubic yards of untreated sludge and soil in onsite RCRA-type secure landfill cells constructed as part of the original remedial action. The ROD Amendmentmore » does not address any issue associated with ground water treatment.« less
Wyrwicka, Anna; Urbaniak, Magdalena
2016-01-01
The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.
Wyrwicka, Anna; Urbaniak, Magdalena
2016-01-01
The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity. PMID:27327659
Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina
2015-06-01
Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rideout, Karen; Teschke, Kay
2004-01-01
Sewage sludge from municipal wastewater treatment is used in agriculture as a nutrient source and to aid in moisture retention. To examine the potential impact of sludge-amended soil on exposures to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from plant and animal foods, we conducted a review of published empirical data from international sources. Levels of PCDD/F in municipal sewage sludge ranged from 0.0005 to 8,300 pg toxic equivalents (TEQ)/g. Background levels in soil ranged from 0.003 to 186 pg TEQ/g. In sludge-amended soils, levels of PCDD/F ranged from 1.4 to 15 pg TEQ/g. Studies that measured levels before and after sludge treatment showed an increase in soil concentration after treatment. Relationships between PCDD/F levels in soil and resulting concentrations in plants were very weakly positive for unpeeled root crops, leafy vegetables, tree fruits, hay, and herbs. Somewhat stronger relationships were observed for plants of the cucumber family. In all cases, large increases in soil concentration were required to achieve a measurable increase in plant contamination. A considerably stronger positive relationship was observed between PCDD/F in feed and resulting levels in cattle tissue, suggesting bioaccumulation. Although PCDD/Fs are excreted in milk, no association was found between feed contamination and levels of PCDD/Fs measured in milk. There is a paucity of realistic data describing the potential for entry of PCDD/Fs into the food supply via sewage sludge. Currently available data suggest that sewage sludge application to land used for most crops would not increase human exposure. However, the use of sludge on land used to graze animals appears likely to result in increased human exposure to PCDD/F. PMID:15198915
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, S.P.; Zhao, F.J.; Dunham, S.J.
2000-06-01
Changes in the extractability and uptake by crops of sludge metals in a long-term field experiment, started in 1942, were measured to assess whether Zn and Cd are either fixed by the sludge/soil constituents or are released as the sludge organic matter (OM) decomposes. Total and 0.1 M CaCl{sub 2}-extractable concentrations of Zn and Cd in soil and total concentrations in crops were measured on archived crop and soil samples. Extractability of Zn as a proportion of the total ranged from 0.5 to 3% and that of Cd from 4 to 18%, and were higher in sludge-amended than farmyard manuremore » or fertilizer-amended soils. Over a 23-yr period after 1961, when sludge was last applied, the extractability of both metals fluctuated, but neither decreased nor increased consistently. The relationships between total soil and crop metal concentrations were linear, with no evidence of a plateau across the range of soil metal concentrations achieved. The slopes of the soil-plant relationships depended on the type of crop or crop part examined, but were generally in the order red beet (Beta vulgaris L.) > sugar beet (Beta vulgaris L.) > carrot (Daucus carota L.) > barley (Hordeum vulgare L.). However, there also were large seasonal differences in metal concentrations in the crops. It is concluded from the available evidence that up to 23 yr after sludge applications cease, Zn and Cd extractability and bioavailability do not decrease.« less
Stefaniuk, Magdalena; Oleszczuk, Patryk
2016-11-01
Due to an increased content of polycyclic aromatic hydrocarbons (PAHs) frequently found in sewage sludges, it is necessary to find solutions that will reduce the environmental hazard associated with their presence. The aim of this study was to determine changes of total and freely dissolved concentration of PAHs in sewage sludge-biochar-amended soil. Two different sewage sludges and biochars with varying properties were tested. Biochars (BC) were produced from biogas residues at 400 °C or 600 °C and from willow at 600 °C. The freely dissolved PAH concentration was determined by means of passive sampling using polyoxymethylene (POM). Total and freely dissolved PAH concentration was monitored at the beginning of the experiment and after 90 days of aging of the sewage sludge with the biochar and soil. Apart from chemical evaluation, the effect of biochar addition on the toxicity of the tested materials on bacteria - Vibrio fischeri (Microtox ® ), plants - Lepidium sativum (Phytotestkit F, Phytotoxkit F), and Collembola - Folsomia candida (Collembolan test) was evaluated. The addition of biochar to the sewage sludges decreased the content of C free PAHs. A reduction from 11 to 43% of sewage sludge toxicity or positive effects on plants expressed by root growth stimulation from 6 to 25% to the control was also found. The range of reduction of C free PAHs and toxicity was dependent on the type of biochar. After 90 days of incubation of the biochars with the sewage sludge in the soil, C free PAHs and toxicity were found to further decrease compared to the soil with sewage sludge alone. The obtained results show that the addition of biochar to sewage sludges may significantly reduce the risk associated with their environmental use both in terms of PAH content and toxicity of the materials tested. Copyright © 2016 Elsevier Ltd. All rights reserved.
Awasthi, Mukesh Kumar; Wang, Quan; Huang, Hui; Ren, Xiuna; Lahori, Altaf Hussain; Mahar, Amanullah; Ali, Amjad; Shen, Feng; Li, Ronghua; Zhang, Zengqiang
2016-09-01
This study aimed to evaluate the role of different amount of zeolite with low dosage of lime amendment on the greenhouse gas (GHGs) emission and maturity during the dewatered fresh sewage sludge (DFSS) composting. The evolution of CO2, CH4, NH3 and N2O and maturity indexes were monitored in five composting mixtures prepared from DFSS mixed with wheat straw, while 10%, 15% and 30% zeolite+1% lime were supplemented (dry weight basis of DFSS) into the composting mass and compared with treatment only 1% lime amended and control without any amendment. The results showed that addition of higher dosage of zeolite+1% lime drastically reduce the GHGs emissions and NH3 loss. Comparison of GHGs emissions and compost quality showed that zeolite amended treatments were superior than control and 1% lime amended treatments. Therefore, DFSS composting with 30% zeolite+1% lime as consortium of additives were found to emit very less amount of GHGs and gave the highest maturity than other treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.
Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota
2016-09-01
This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.
Butkovskyi, A; Leal, L Hernandez; Zeeman, G; Rijnaarts, H H M
2017-07-01
The quality of anaerobic sludge and struvite from black water treatment system, aerobic sludge from grey water treatment system and effluents of both systems was assessed for organic micropollutant content in order to ensure safety when reusing these products. Use of anaerobic black water sludge and struvite as soil amendments is recommended based on the low micropollutant content. Aerobic grey water sludge is recommended for disposal, because of the relatively high micropollutant concentrations, exceeding those in sewage sludge. Effluents of black and grey water treatment systems require post-treatment prior to reuse, because the measured micropollutant concentrations in the effluents are above ecotoxicological thresholds. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of elemental sulphur on heavy metal uptake by plants growing on municipal sewage sludge.
Dede, Gulgun; Ozdemir, Saim
2016-01-15
In this study experiment was carried out to determine the phytoextraction potential of six plant species (Conium maculatum, Brassica oleraceae var. oleraceae, Brassica juncea, Datura stramonium, Pelargonium hortorum and Conyza canadensis) grown in a sewage sludge medium amended with metal uptake promoters. The solubility of Cu, Cd and Pb was significantly increased with the application of elemental S due to decrease of pH. Faecal coliform number was markedly decreased by addition of elemental sulphur. The extraction of Cu, Cr and Pb from sewage sludge by using B. juncea plant was observed as 65%, 65% and 54% respectively that is statistically similar to EDTA as sulphur. The bioaccumulation factors were found higher (>1) in the plants tested for Cu and Pb like B. juncea. Translocation index (TI) calculated values for Cd and Pb were greater than one (>1) in both C. maculatum and B. oleraceae var. oleraceae. The results cleared that the amendment of sludge with elemental sulphur showed potential to solubilize heavy metals in phytoremediation as much as EDTA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Napropamide residues in runoff and infiltration water from pepper production.
Antonious, George F; Patterson, Matthew A
2005-01-01
A field study was conducted on a Lowell silty loam soil of 2.7% organic matter at the Kentucky State University Research Farm, Franklin County, Kentucky. Eighteen universal soil loss equation (USLE) standard plots (22 x 3.7 m each) were established on a 10% slope. Three soil management practices were used: (i) class-A biosolids (sewage sludge), (ii) yard waste compost, each mixed with native soil at a rate of 50 ton acre(-1) on a dry-weight basis, and (iii) a no-mulch (NM) treatment (rototilled bare soil), used for comparison purposes. Devrinol 50-DF "napropamide" [N,N-diethyl-2-(1-naphthyloxy) propionamide] was applied as a preemergent herbicide, incorporated into the soil surface, and the plots were planted with 60-day-old sweet bell pepper seedlings. Napropamide residues one hour following spraying averaged 0.8, 0.4, and 0.3 microg g(-1) dry soil in sewage sludge, yard waste compost, and no-mulch treatments, respectively. Surface runoff water, runoff sediment, and napropamide residues in runoff were significantly reduced by the compost and biosolid treatments. Yard waste compost treatments increased water infiltration and napropamide residues in the vadose zone compared to sewage sludge and NM treatments. Total pepper yields from yard waste compost amended soils (9187 lbs acre(-1)) was significantly higher (P < 0.05) than yield from either the soil amended with class-A biosolids (6984 lbs acre(-1)) or the no-mulch soil (7162 lbs acre(-1)).
Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil.
Liphadzi, M S; Kirkham, M B; Paulsen, G M
2006-06-01
A technology to increase root growth would be advantageous for phytoremediation of trace metal polluted soil, because more roots would be available for metal uptake. The objective of this study was to determine if the auxin, indole-3-acetic acid (IAA), would increase root growth in soil with metals from sewage sludge, when the tetrasodium salt of the chelate EDTA (ethylenediamine-tetraacetic acid) was added to solubilize the metals. Sunflower (Helianthus annuus L.) plants grew in large pots containing either soil from a sludge farm or composted sludge. The EDTA salt was added at a rate of 1 g kg(-1) soil 37 days after planting. IAA at the rate of 3 or 6 mg l(-1) was sprayed on the leaves (500 ml) and added to the soil (500 ml) three times: 41, 50, and 74 days after planting. At harvest 98 days after planting, oven-dry weights were measured, and plant organs were analyzed for Cd, Cu, Fe, Mn, Ni, Pb, and Zn. Metal uptake was determined as the product of metal concentration in an organ and weight. IAA increased root growth of plants grown in the soil with sludge when no EDTA was present. With no EDTA, Mn and Ni in leaves of plants grown in the soil were higher at 3 and 6 mg l(-1) IAA compared to 0 mg l(-1) IAA. With and without EDTA, Cd and Pb in leaves of plants grown in the compost were higher with 3 and 6 mg l(-1) IAA compared to 0 mg l(-1) IAA.
Gautam, Meenu; Agrawal, Madhoolika
2017-05-01
Lemongrass is a commercially important perennial herb with medicinal value and ability to tolerate high alkaline and saline conditions. Essential oil bearing plants can grow safely in soil contaminated with heavy metals without severe effects on morphology and oil yield. The present study was aimed to assess the essential oil content and composition in lemongrass in response to elevated metals in above-ground plant parts. Pot experiment was conducted for six months using sewage sludge as soil amendment (soil: sludge: 2:1 w/w) followed by red mud treatments (0, 5, 10 and 15% w/w). Garden soil without sludge and red mud was control and there were ten replicates of each treatment. Oil content in leaves was differently affected due to presence of metals in soil under different treatments. Oil content under S RM5 (5% red mud) treatment was raised by 42.9 and 11.5% compared to the control and S RM0 treatment, respectively. Among identified compounds in oil under red mud treatments, 17 compounds contributed more than 90% of total volatiles (citral contributing approximately 70%). Under S RM10 treatment, essential oil showed maximum citral content (75.3%). Contents of Fe, Zn, Cu, Cd, Ni and Pb in above-ground plant parts exceeded, whereas Mn was detected within WHO permissible limits for medicinal plants. However, metal contents in essential oil were well within FSSAI limits for food. The study suggests utilization of 5 and 10% red mud in sludge amended soil for lemongrass cultivation to have better oil yield and quality, without metal contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
García-Gil, Juan Carlos; Soler-Rovira, Pedro Angel; García López de Sa, Esther; Polo, Alfredo
2013-04-01
Soil tillage practices exert a significant influence on the dynamic of soluble organic C and N pools, affecting nutrient cycling in agricultural systems by enhancing its mineralization through microbial activities or stabilization in soil microaggregates, which contribute to mitigate greenhouse gases emissions. The objective of the present research was to determine the influence of three different soil management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) obtained from wastewater treatment processes on dissolved organic C (water-soluble organic C -WSOC-, carbohydrates, phenolic compounds) and soluble N (total-N, NH4+, NO3-) pools in a long-term field experiment (27 years) conducted on a sandy-loam soil at the experimental station "La Higueruela" (40° 03'N, 4° 24'W) under semi-arid conditions. Both organic amendments were applied at a rate of 30 tonnes per hectare prior to tillage practices. Unamended soils were used as control for each tillage system. Soil sampling was performed two months after tillage practices at the following depths for each treatment: 0-10 cm, 10-20 cm and 20-30 cm. Results obtained for unamended soils showed that no-tillage management increased total-N, NH4+ and NO3- contents at the 0-10 cm depth samples, meanwhile WSC and carbohydrates contents were larger at 20-30 cm depth samples in both moldboard and no-tillage plots. CS and TSS-amended soils presented a general increase in soluble C and N compounds, being significantly higher in TSS-amended soils, as TSS contains a great amount of labile organic C and N substrates due to the lack of stabilization treatment. TSS-amended soils under no-tillage and chisel plowing showed larger N, NH4+ and NO3- content at the 0-10 cm samples, meanwhile moldboard management exhibited larger NH4+ and NO3- content at 10-20 and 20-30 cm samples, possibly due to the incorporation of TSS at deeper depths (20-40 cm). CS and TSS-amended soils in no-tillage system showed the largest content of organic C pools at 0-10 cm depth samples due to less soil disturbance and the input of organic substrates with CS and TSS on soil surface. CS and TSS-amended soils under chisel plowing exhibited similar contents of soluble organic C pools at 10-20 and 20-30 cm depth samples and only TSS-amended soils increased significantly WSOC content at 0-10 cm samples. Similarly, contents of WSOC and carbohydrates in moldboard plowing were distributed more uniformly throughout the soil profile due to the turnover of soil and CS and TSS amendments into the plow layer. Acknowledgements: this research was supported by the Spanish CICYT, Project no. CTM2011-25557.
Biostimulation of Indigenous Microbial Community for Bioremediation of Petroleum Refinery Sludge
Sarkar, Jayeeta; Kazy, Sufia K.; Gupta, Abhishek; Dutta, Avishek; Mohapatra, Balaram; Roy, Ajoy; Bera, Paramita; Mitra, Adinpunya; Sar, Pinaki
2016-01-01
Nutrient deficiency severely impairs the catabolic activity of indigenous microorganisms in hydrocarbon rich environments (HREs) and limits the rate of intrinsic bioremediation. The present study aimed to characterize the microbial community in refinery waste and evaluate the scope for biostimulation based in situ bioremediation. Samples recovered from the wastewater lagoon of Guwahati refinery revealed a hydrocarbon enriched [high total petroleum hydrocarbon (TPH)], oxygen-, moisture-limited, reducing environment. Intrinsic biodegradation ability of the indigenous microorganisms was enhanced significantly (>80% reduction in TPH by 90 days) with nitrate amendment. Preferred utilization of both higher- (>C30) and middle- chain (C20-30) length hydrocarbons were evident from GC-MS analysis. Denaturing gradient gel electrophoresis and community level physiological profiling analyses indicated distinct shift in community’s composition and metabolic abilities following nitrogen (N) amendment. High throughput deep sequencing of 16S rRNA gene showed that the native community was mainly composed of hydrocarbon degrading, syntrophic, methanogenic, nitrate/iron/sulfur reducing facultative anaerobic bacteria and archaebacteria, affiliated to γ- and δ-Proteobacteria and Euryarchaeota respectively. Genes for aerobic and anaerobic alkane metabolism (alkB and bssA), methanogenesis (mcrA), denitrification (nirS and narG) and N2 fixation (nifH) were detected. Concomitant to hydrocarbon degradation, lowering of dissolve O2 and increase in oxidation-reduction potential (ORP) marked with an enrichment of N2 fixing, nitrate reducing aerobic/facultative anaerobic members [e.g., Azovibrio, Pseudoxanthomonas and Comamonadaceae members] was evident in N amended microcosm. This study highlighted that indigenous community of refinery sludge was intrinsically diverse, yet appreciable rate of in situ bioremediation could be achieved by supplying adequate N sources. PMID:27708623
Fate of personal care and household products in source separated sanitation.
Butkovskyi, A; Rijnaarts, H H M; Zeeman, G; Hernandez Leal, L
2016-12-15
Removal of twelve micropollutants, namely biocides, fragrances, ultraviolet (UV)-filters and preservatives in source separated grey and black water treatment systems was studied. All compounds were present in influent grey water in μg/l range. Seven compounds were found in influent black water. Their removal in an aerobic activated sludge system treating grey water ranged from 59% for avobenzone to >99% for hexylcinnamaldehyde. High concentrations of hydrophobic micropollutants in sludge of aerobic activated sludge system indicated the importance of sorption for their removal. Six micropollutants were found in sludge of an Up-flow anaerobic sludge blanket (UASB) reactor treating black water, with four of them being present at significantly higher concentrations after addition of grey water sludge to the reactor. Hence, addition of grey water sludge to the UASB reactor is likely to increase micropollutant content in UASB sludge. This approach should not be followed when excess UASB sludge is designed to be reused as soil amendment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Priyadarshini, J.; Roy, P. K.; Mazumdar, A.
2014-01-01
In this research work, management of sewage sludge disposal on agricultural soils is addressed. The increasing amount of sewage sludge and more legislative regulation of its disposal have stimulated the need for developing new technologies to recycle sewage sludge efficiently. The research was structured along two main avenues, namely, the efficacy of the irradiation process for removing enteric pathogenic microorganisms and the potential of irradiated sludge as a soil amendment. This study investigated how application of irradiation with heat treatment reduced pathogens in sewage sludge. Raw and pasteurised Sewage sludge was treated at different dose treatment of 1.5, 3 and 5 kilogray (kGy) gamma irradiation individually and for 3 kGy sufficiency was achieved. Decrease in irradiation dose from 5 to 3 kGy was observed for pasteurised sludge resulting in saving of radiation energy. The presence of heavy metals in untreated sewage sludge has raised concerns, which decreases after irradiation.
Nitrous oxide emissions from a coal mine land reclaimed with stabilized manure
USDA-ARS?s Scientific Manuscript database
Mined land restoration using manure-based amendments may create soil conditions suitable for nitrous oxide production and emission. We measured nitrous oxide emissions from mine soil amended with composted poultry manure (Comp) or poultry manure mixed with paper mill sludge (Man+PMS) at C/N ratios o...
NASA Astrophysics Data System (ADS)
Garcia-Gil, Juan Carlos; Haller, Isabel; Soler-Rovira, Pedro; Polo, Alfredo
2010-05-01
Soil management exerts a significant influence on the dynamic of soil organic matter, which is a key issue to enhance soil quality and its ecological functions, but also affects to greenhouse gas emissions and C sequestration processes. The objective of the present research was to determine the influence of soil management (conventional deep-tillage and no-tillage) and the application of two different organic amendment -thermally-dry sewage sludge (TSL) and municipal waste compost (MWC)- on soil CO2 fluxes and microbial activities in a long-term field experiment under semi-arid conditions. Both organic amendments were applied at a rate of 30 t ha-1 prior to sowing a barley crop. The experiment was conducted on an agricultural soil (Calcic Luvisol) from the experimental farm "La Higueruela" (Santa Olalla, Toledo). Unamended soils were used as control in both conventional and no-tillage management. During the course of the experiment, soil CO2 fluxes, microbial biomass C (MBC) and enzyme activities involved in the biogeochemical cycles of C, N and P were monitored during 12 months. The results obtained during the experiment for soil CO2 fluxes showed a great seasonal fluctuation due to semi-arid climate conditions. Overall, conventional deep-tillage soils exhibited higher CO2 fluxes, which was particularly larger during the first hours after deep-tillage was performed, and smaller MBC content and significantly lower dehydrogenase, beta-glucosidase, phosphatase, urease and BAA protease activities than no-tillage soils. Both MWC and TSL amendments provoked a significant increase of CO2 fluxes in both conventional and no-tillage soils, which was larger in TSL amended soils and particularly in no-tillage soils. The application of these organic amendments also enhanced MBC content and the overall enzyme activities in amended soils, which indicate a global revitalization of soil microbial metabolism in response to the fresh input of organic compounds that are energy sources for microbial growing, especially with TSL that is a raw organic material with no stabilization treatment.
Metal content of earthworms in sludge-amended soils: uptake and loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.F.; Malecki, M.R.; Cukic, Z.V.
1985-11-01
The widespread practice of landspreading of sludge has raised concern about increasing concentrations of potentially toxic metals in soils, with the possibility of these metals adversely impacting terrestrial and aquatic ecosystems. Earthworms, as one of the largest components of the soil biota, are useful indicators of potentially toxic soil metal concentrations. The study describes the metal content of five metals (Cd, Cu, Ni, Pb, and Zn) in one earthworm species, Allolobophora tuberculata, as a function of varying soil metal concentrations in the same soil type and the ability of the earthworms to bioconcentrate the five metals. The rate of uptakemore » of the five metals in earthworms with initially low concentrations of metals placed in a soil with high metal concentrations was evaluated for a 112 day period. The rate of loss of the five metals in earthworms with initially high metal concentrations placed in soil with low metal concentrations was also examined.« less
Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio
2015-09-01
Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil.
Vermiconversion of industrial sludge for recycling the nutrients.
Sangwan, Pritam; Kaushik, C P; Garg, V K
2008-12-01
The aim of the present study was to investigate the transformation of sugar mill sludge (PM) amended with biogas plant slurry (BPS) into vermicompost employing an epigeic earthworm Eisenia fetida. To achieve the objectives experiments were conducted for 13 weeks under controlled environmental conditions. In all the waste mixtures, a decrease in pH, TOC, TK and C:N ratio, but increase in TKN and TP was recorded. Maximum worm biomass and growth rate was attained in 20% PM containing waste mixture. It was inferred from the study that addition of 30-50% of PM with BPS had no adverse effect on the fertilizer value of the vermicompost as well as growth of E. fetida. The results indicated that vermicomposting can be an alternate technology for the management and nutrient recovery from press mud if mixed with bulking agent in appropriate quantities.
Lee, Do Gyun; Cho, Kun-Ching; Chu, Kung-Hui
2015-04-01
This study investigated two possible strategies, increasing ammonia oxidation activity and bioaugmenting with triclosan-degrader Sphingopyxis strain KCY1, to enhance triclosan removal in nitrifying activated sludge (NAS). Triclosan (2 mg L(-1)) was removed within 96-h in NAS bioreactors amended with 5, 25 and 75 mg L(-1) of ammonium (NH4-N). The fastest triclosan removal was observed in 25 mg NH4-NL(-1) amended-bioreactors where high ammonia oxidation occurred. Inhibition of ammonia oxidation and slower triclosan removal were observed in 75 mg NH4-NL(-1) amended-bioreactors. Triclosan removal was correlated to the molar ratio of the amount of nitrate produced to the amount of ammonium removed. Bioaugmentation with strain KCY1 did not enhance triclosan removal in the bioreactors with active ammonia oxidation. Approximately 36-42% and 59% of triclosan added were removed within 24-h by ammonia-oxidizing bacteria and unknown triclosan-degrading heterotrophs, respectively. The results suggested that increasing ammonia oxidation activity can be an effective strategy to enhance triclosan removal in NAS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pang, Long; Yang, Peijie; Ge, Liming; Du, Jingjing; Zhang, Hongzhong
2017-02-01
Organophosphate esters (OPEs), widely used as flame retardants and plasticizers, are regarded as emerging pollutants. OPEs are prone to concentrate into residual activated sludge, which might cause secondary pollution if not suitably treated. Composting is an economical and effective approach to make sewage sludge stable and harmless. Therefore, it is essential to develop a novel method for analyzing OPEs in sewage sludge compost samples. However, in the composting process, large amounts of amendments are doped into the sludge to adjust the carbon-nitrogen ratio. Amendment has a strong capacity for adsorption and thus induces a decrease of extraction efficiency. This study developed a novel procedure for determining OPEs in compost samples. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used for extracting and concentrating the OPEs from sewage sludge compost samples, and then analyzed by UHPLC-MS/MS. Some parameters were optimized in this study, mainly including the extraction solvent type, extraction temperature, static extraction time, extraction cycles, and flush volume. Under the optimal conditions, the proposed method showed good linearity between 0.50 and 100 μg kg -1 with regression coefficients in the range of 0.9984-0.9998. Detection limits were in the range of 0.02-3 μg kg -1 with standard deviations ranging from 2 to 6%. Acceptable recoveries between 56 and 119% for samples spiked at different concentration levels were achieved. In contrast, the recoveries merely ranged from 24 to 58% by using ultrasonic-assisted extraction. Graphical abstract A comparison of recoveries between ultrasonic-assisted extraction (UAS) and accelerated solvent extraction (ASE) for organophosphate esters from sewage sludge compost samples.
Ulfig, Krzysztof; Płaza, Grazyna; Terakowskip, Maciej; Janda-Ulfig, Katarzyna
2006-01-01
The study was to demonstrate the effect of sewage sludge open-air drying on the quantitative and qualitative composition of keratinolytic/keratinophilic and actidione-resistant fungi. The sludge was being dried for up to thirty days (on average fourteen days) at 25-30'C. The composition of these fungi was determined with the hair baiting method along with the dilution method, using the Wiegand medium supplemented with chloramphenicol (100 mgiL) and actidione (500 mg/L). The open-air drying altered the composition of keratinolytic fungi and considerably increased the population of keratinophilic and actidione-resistant fungi in the sludge. This phenomenon can be explained with that the drying process was associated with slow sludge moisture decrease, sludge laceration due to crumbling and the subsequent improvement of sludge aeration and organic matter biodegradation conditions. A considerable increase of fungal populations can be expected in sludges being dried in drying beds at wastewater treatment plants and in sludge-amended soils. Two sludge opportunistic fungi, i.e. Microsporum gypseum and Pseudallescheria boydii, require special attention from the epidemiological point of view. Sludge land applications may increase the number of these fungi in the environment and the subsequent risk to public health posed by them.
Selected heavy metals speciation in chemically stabilised sewage sludge
NASA Astrophysics Data System (ADS)
Wiśniowska, Ewa; Włodarczyk-Makuła, Marła
2017-11-01
Selected heavy metals (Pb, Ni, Cd) were analysed in soil, digested sewage sludge as well as in the sludge stabilised with CaO or Fenton's reagent. The dose of Fenton's reagent was as follows: Fe2+ = 1g.L-1, Fe2+/H2O2=1:100; stabilisation lasted for 2 h. Dose of CaO was equal to 1 g CaO.g d.m.-1 Total concentration of all metals in the digested sewage sludge was higher than in the soil. Chemical stabilisation of sludge with Fenton's reagent increased total metal content in the sludge as a result of total solids removal. Opposite effect was stated when the sludge was mixed with CaO. Also chemical fractions of heavy metals were identified (exchangeable, carbonate bound, iron oxides bound, organic and residual). The results indicate that stabilisation of the sludge with Fenton's reagent increased mobility of heavy metals compared to the digested sludge. Amendment of CaO increased percent share of examined metals in residual fraction, thus immobilised them and decreased their bioavailability.
Marguí, E; Iglesias, M; Camps, F; Sala, L; Hidalgo, M
2016-03-01
The presence of potentially toxic elements (PTEs) may hinder a more widespread application of biosolids in agriculture. At present, the European Directive 86/278/CEE limit the total concentrations of seven metals (Cu, Cr, Ni, Pb, Zn, Cd and Hg) in agricultural soils and in sewage sludges used as fertilizers but it has not taken into consideration the potential impacts of other emerging micropollutants that may be present in the biosolids as well as their mobility. The aim of this study was to evaluate the accumulation and mobility of 13 elements (including regulated metals and other inorganic species) in agricultural soils repeatedly amended with biosolids for 15 years. Firstly, three digestions programs using different acid mixtures were tested to evaluate the most accurate and efficient method for analysis of soil and sludge. Results demonstrated that sewage sludge application increased concentrations of Pb and Hg in soil, but values did not exceed the quality standard established by legislation. In addition, other elements (As, Co, Sb, Ag, Se and Mn) that at present are not regulated by the Spanish and European directives were identified in the sewage sludge, and significant differences were found between Ag content in soils amended with biosolids in comparison with control soils. This fact can be related to the increasing use of silver nanoparticles in consumer products due to their antibacterial properties. Results from the leaching tests show up that, in general, the mobility degree for both regulated and non-regulated elements in soils amended with biosolids was quite low (<10 %).
Antonious, George F; Kochhar, Tejinder S; Coolong, Timothy
2012-01-01
The mobility of heavy metals from soil into the food chain and their subsequent bioaccumulation has increased the attention they receive as major environmental pollutants. The objectives of this investigation were to: i) study the impact of mixing native agricultural soil with municipal sewage sludge (SS) or chicken manure (CM) on yield and quality of cabbage and broccoli, ii) quantify the concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in soil amended with SS or CM, and iii) determine bioavailability of heavy metals to cabbage leaves and broccoli heads at harvest. Analysis of the two soil amendments used in this investigation indicated that Cr, Ni, Cu, Zn, Mo, Cd, Pb, and organic matter content were significantly greater (P < 0.05) in premixed sewage sludge than premixed chicken manure. Total cabbage and broccoli yields obtained from SS and CM mixed soil were both greater than those obtained from no-mulch (bare) soil. Concentration of Ni in cabbage leaves of plants grown in soil amended with CM was low compared to plants grown in no-mulch soil. No significant differences were found in Cd and Pb accumulation between cabbage and broccoli. Concentrations of Ni, Cu, Zn, and Mo were greater in broccoli than cabbage. Total metals and plant available metals were also determined in the native and amended soils. Results indicated that the concentration of heavy metals in soils did not necessary reflect metals available to plants. Regardless of soil amendments, the overall bioaccumulation factor (BAF) of seven heavy metals in cabbage leaves and broccoli heads revealed that cabbage and broccoli were poor accumulators of Cr, Ni, Cu, Cd, and Pb (BAF <1), while BAF values were >1 for Zn and Mo. Elevated Ni and Mo bioaccumulation factor (BAF >1) of cabbage grown in chicken manure mixed soil is a characteristic that would be less favorable when cabbage is grown on sites having high concentrations of these two metals.
Chiochetta, Claudete G; Goetten, Luís C; Almeida, Sônia M; Quaranta, Gaetana; Cotelle, Sylvie; Radetski, Claudemir M
2014-01-01
The chemical and ecotoxicological characteristics of fresh and stabilized industrial organic sludge leachates were compared to obtain information regarding how the stabilization process can influence the ecotoxic potential of this industrial waste, which could be used for the amendment of degraded soil. Physicochemical analysis of the sludge leachates, as well as a battery of eco(geno)toxicity tests on bacteria, algae, daphnids, and higher plants (including Vicia faba genotoxicity test) and the determination of hydrolytic enzyme activity, was performed according to standard methods. The chemical comparison of the two types of leachate showed that the samples obtained from stabilized sludge had a lower organic content and higher metal content than leachates of the fresh sludge. The eco(geno)toxicological results obtained with aquatic organisms showed that the stabilized sludge leachate was more toxic than the fresh sludge leachate, both originating from the same industrial organic sludge sample. Nevertheless, phytotoxicity tests carried out with a reference peat soil irrigated with stabilized sludge leachate showed the same toxicity as the fresh sludge leachate. In the case of the industrial solid organic sludge studied, stabilization through a biodegradation process promoted a higher metal mobility/bioavailability/eco(geno)toxicity in the stabilized sludge leachate compared to the fresh sludge leachate.
Benefits of the Use of Sewage Sludge over EDTA to Remediate Soils Polluted with Heavy Metals.
Hernández, Ana J; Gutiérrez-Ginés, María J; Pastor, Jesús
2015-09-01
Sewage sludges from urban wastewater treatment plants are often used to remediate degraded soils. However, the benefits of their use in metal-polluted soils remain unclear and need to be assessed in terms of factors besides soil fertility. This study examines the use of thermal-dried sewage sludge (TDS) as an amendment for heavy metal-polluted soil in terms of its effects on soil chemical properties, leachate composition, and the growth of native plant communities. To assess the response of the soil and its plant community to an increase in metal mobilization, the effects of TDS amendment were compared with those of the addition of a chelating agent (ethylenediaminetetraacetic acid [EDTA]). The experimental design was based on a real-case scenario in which soils from of an abandoned mine site were used in a greenhouse bioassay. Two doses of TDS and EDTA were applied to a soil containing high Pb, Zn, Cu, and Cd levels (4925, 5675, 404, and 25 mg kg, respectively). Soil pH was 6.4, and its organic matter content was 5.53%. The factors examined after soil amendment were soil fertility and heavy metal contents, leachate element losses, the plant community arising from the seed bank (plant cover, species richness and biodiversity, above/below ground biomass), and phytotoxic effects (chemical contents of abundant species). Thermal-dried sewage sludge emerged as a good phytostabilizer of Pb, Zn, Cu, and Cd given its capacity to reduce the plant uptake of metals and achieve rapid plant cover. This amendment also enhanced the retention of other elements in the plant root system and overall showed a better capacity to remediate soils polluted with several heavy metals. The addition of EDTA led to plant productivity losses and nutritional imbalances because it increased the mobility of several elements in the soil and its leachates. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Evaluation of the performance of biochars as an adsorbent for polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Jung, J.; Kang, S.; Ok, Y.; Choi, Y.
2016-12-01
Biochars, byproducts generated by pyrolysis of biomass, are known to have several advantages as a soil amendment such as carbon sequestration effect, enhancement of soil microbial activity, and nutrient supply. Because of their high surface area and affinity to organic pollutants, biochars are also being evaluated as an adsorbent for hydrophobic organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in soils, stormwater, and wastewater. Depending on their organic precursors and pyrolysis temperatures, biochars have been shown to have various physicochemical properties, which should determine their performance as an adsorbent for hydrophobic organic pollutants. In this study, we obtained biochars derived from soybean stover, wood chip, rice husk, and sewage sludge with pyrolysis temperatures of 700°, 250°, 500°, and 500°, respectively, to investigate their performance for PAH adsorption. Adsorption kinetic and isotherm experiments were conducted using naphthalene and phenanthrene as model compounds. Soybean stover biochar reached close to equilibrium in 7 days while the others did in 25 days in the kinetic experiments. The first-order sorption rate constants were greater for naphthalene than for phenanthrene for all biochars studied, and they were generally in the order of soybean stover>rice husk>sewage sludge>wood chip biochars for the two contaminants. The removal rates of aqueous PAHs at equilibrium were in the order of soybean stover>rice husk>sewage sludge>wood chip biochars at a concentration range of a few ng/mL. The results suggested that the sorption capability and the rate is generally greater for biochar produced from plant materials than that from sludge, and for biochar produced at higher pyrolysis temperature. Comparing the sorption properties of the biochars and granular activated carbon (GAC), it is shown that biochar produced at optimal conditions can exhibit performance for PAH adsorption similar to GAC.
Gonzaga, Maria Isidoria Silva; Mackowiak, Cheryl; Quintão de Almeida, André; Wisniewski, Alberto; Figueiredo de Souza, Danyelle; da Silva Lima, Idamar; Nascimento de Jesus, Amanda
2018-06-01
Copper contamination and toxicity in soils is a worldwide problem, especially in areas where copper-based fungicides are applied. Indian mustard (Brassica juncea L.) plants are used in phytoremediation and are also edible crops commonly cultivated in organic agricultural areas. Application of biochar to Cu contaminated soils may reduce Cu availability and uptake, thereby allowing for greater Indian mustard production. A (3 × 2) + 1) experiment in a randomized complete block design was used to evaluate the effect of three different biochars (coconut shell, orange bagasse and sewage sludge) and two application rates (30 and 60 t ha -1 ) on Cu uptake by Indian mustard during three successive growth cycles and Cu immobilization in soil, under greenhouse conditions. Coconut husk biochar did not influence available soil Cu; however, its presence increased shoot Cu uptake by 117% and 38% in the two last growth cycles. Orange bagasse biochar, at the 60 t ha -1 application rate, reduced Cu availability, but it was not effective in reducing Cu uptake. Sewage sludge biochar did not affect Cu availability and caused an approximated 100% increase in shoot Cu uptake at the highest application rate. Therefore, the orange bagasse biochar is the most effective whereas the sewage sludge biochar is the least in Cu immobilization. None of the biochars was shown to be suitable as soil amendment to reduce the uptake of Cu by Indian mustard. However, coconut shell and sewage sludge biochar can be effectively applied to soil as an auxiliary tool to remediate Cu-contaminated soils. Copyright © 2018. Published by Elsevier Ltd.
Arriagada, C; Sampedro, I; Garcia-Romera, I; Ocampo, J
2009-08-15
Sewage sludge is widely used as an organic soil amendment to improve soil fertility. We investigated the effects of sewage sludge (SS) application on certain biological parameters of Eucalyptus globulus Labill. The plant was either uninoculated or inoculated with saprobe fungi (Coriolopsis rigida and Trichoderma harzianum) or arbuscular mycorrhizal (AM) fungi (Glomus deserticola and Gigaspora rosea). Sewage sludge was applied to the surface of experimental plots at rates of 0, 2, 4, 6 and 8 g 100 g(-1) of soil. Inoculation with both AM and saprobe fungi in the presence of SS was essential for the promotion of plant growth. The AM, saprobe fungi and SS significantly increased dry shoot weight. The AM fungi induced a significant increase in Fluorescein diacetate (FDA) activity but did not increase beta-glucosidase activity. Addition of SS to AM-inoculated soil did not affect either FDA or alpha-glucosidase activities in plants from soil that was either uninoculated or inoculated with the saprobe fungi. SS increased beta-glucosidase activity when it was applied at 4 g 100 g(-1). SS negatively affected AM colonization as well as the mycelium SDH activity for both mycorrhizal fungi. SS increased Eucalyptus shoot biomass and enhanced its nutrient status. Inoculation of the soil with G. deserticola stimulated significant E. globulus growth and increases in shoot tissue content of N, P, K, Ca, Mg and Fe. Dual inoculation with G. deserticola and either of the saprobe fungi had positive effects on K, Ca, Mg and Fe contents. The application of 8 g 100 g(-1) of SS had no positive effects on plant nutrition. The experimental setup provided a suitable tool for evaluating SS in combination with saprobe and AM fungi as a biological fertiliser for its beneficial effects on E. globulus plant growth.
Phosphorus in waters from sewage sludge amended lysimeters.
Hinesly, T D; Jones, R L
1990-01-01
In surface waters, phosphorus (P) concentrations exceeding 0.05 mg liter(-1) may cause eutrophic conditions. This study was undertaken to measure total P concentrations in runoff and tile drainage waters from land receiving either inorganic fertilizer or anaerobically digested sewage sludge. Total P was measured in runoff and tile drainage waters during 2 years of sample collections from instrumented, large-scale lysimeters planted to corn (Zea mays L.). During the 3 years prior to monitoring P concentrations, six of the lysimeter plots had been amended with anaerobically digested sewage sludge which supplied 5033 kg P per ha. Additional sludge applications supplied 1058 and 1989 kg P per ha during the first and second years of monitoring operations, respectively. Another six lysimeters were annually treated with fertilizer which included P applications amounting to 112 kg ha(-1). For years 1 and 2, respectively, annual losses from lysimeters treated with sewage sludge were 4.27 and 0.35 kg P per ha in runoff and 0.91 from 0.91 and 0.51 kg Per P per ha in drainage waters. Parallel annual losses of P from lysimeters treated with superphosphate were 2.15 and 0.17 kg ha(-1) in runoff and 0.53 and 0.35 kg ha(-1) in tile drainage waters. Sludge applications did not significantly change absolute soil contents of organic P, but did decrease the per cent of total P present in organic forms. Sludge and soil, respectively, contained 21 and 36% of their total P contents in organic forms. In sludge and soil about 85 and 64% of their respective total inorganic P contents were associated with the Al and Fe fractions. Sludge applications significantly increased soil contents of P in the saloid (water-soluble plus P extracted with 1 N NH(4)Cl), Al, Fe and reductant soluble P fractions, but contents of Ca-bound P were not changed. Total P contents of the soil below a depth of 30 cm were not affected by sludge incorporated to a depth of about 15 cm by plowing.
Soil amendments and planting techniques : campsite restoration in the Eagle Cap Wilderness, Oregon
David N. Cole; David R. Spildie
2000-01-01
Results of the first three years of revegetation research on closed wilderness campsites are described. Experimental treatments involved soil scarification, an organic soil amendment (a mix of locally collected organic materials and peat moss and an inoculation of native undisturbed soil), an organic matter and composted sewage sludge treatment and surface application...
Chromium fractionation and plant availability in tannery-sludge amended soil
NASA Astrophysics Data System (ADS)
Allué, Josep; Moya Garcés, Alba; Bech, Jaume; Barceló, Juan; Poschenrieder, Charlotte
2013-04-01
The leather industry represents an important economic sector in both developed and developing countries. Chromium tanning is the major process used to obtain high quality leather. Within the REACH regulation the use of Cr, especially CrVI, in the tanning process is under discussion in Europe. High Cr concentration in shoes and other Cr-tanned leather products can cause contact dermatitis in sensitive population. Moreover, the high Cr concentration is the major limiting factor for the use of tannery sludge as a source of organic matter in agricultural soils. Interest in Cr, however is not limited to its potential toxic effects. Chromium III is used as a dietary supplement because there are reports, but also controversy, about the positive effects of Cr III in glucose tolerance and type-2 diabetes. Adequate intake levels for Cr by the diet have been established between 25 and 35 µg/day for adult females and males, respectively. Sufficient supply of Cr III by the diet is preferable to the use of CrIII-salt based dietary supplements. The objective of the present work was to investigate whether Cr from tannery sludge-amended soil is available to Trigonella foenum-graecum plants, a plant used both as a spice and as a medicinal herb, because of its hypoglucemic effects. For this purpose clay loam soil (pH 7.8) was sieved (2mm) and thoroughly mixed with tannery sludge from a depuration station (Igualadina Depuració i Recuperació S.L., Igualada, Barcelona, Spain). The sludge had a Cr concentration of 6,034mg kg-1 and a 0.73 % of NH4-nitrogen. All the Cr was in the form of CrIII. Three treatments were disposed. Control soil receiving no sludge, a 60 mg kg-1 Cr treatment (10 g fresh sludge kg-1 soil) and a 120 mg kg-1 Cr treatment (20 g fresh sludge kg-1 soil). Control soil and the soil treated with 10g kg-1 sludge received NPK fertilizer in the form of ammonium sulfate, superfosfate, and KCl to rise the N,P, and K concentrations to similar levels to those achieved in the soils with the highest sludge dose (20 g kg-1). Soils from the different treatments were potted (5 L) and planted with Trigonella foenum graecum seeds (1 plant per pot). Plants were harvested in the vegetative stage and processed for tissue analysis of Cr, Fe, Zn and Pb. A sequential extraction procedure was applied to the soil for getting insight into the operationally defined soil fractions that incorporate the tannery sludge derived Cr. In any of the treatments Cr was detectable in the exchangeable and easily reducible fractions. In control soils around 10% of soil Cr was in the moderately reducible fraction and the rest in the residual fraction. Contrastingly tannery sludge amended soils incorporated most Cr in the moderately reducible fraction extracted by acid oxalate. This distribution in relation to plant Cr concentrations will be discussed. Acknowledgement: Supported by the Spanish Government (project BFU2010-14873)
The Chemophytostabilisation Process of Heavy Metal Polluted Soil
Grobelak, Anna; Napora, Anna
2015-01-01
Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and the addition of lime and potassium phosphate. Certain doses of inorganic additives decreased the easily exchangeable fraction from 50% to 1%. The addition of sewage sludge caused a decrease in fraction I for Cd and Pb. In combination with the use of inorganic additives, a mobile fraction was not detected and an easily mobilisable fraction was reduced by half. For certain combinations of metals, the concentrations were detected up to a few percent. The application of sewage sludge resulted in a slight decrease in a mobile (water soluble and easily exchangeable metals) fraction of Zn, but when inorganic additives were applied, this fraction was not detected. The highest degree of immobilisation of the tested heavy metals relative to the control was achieved when using both sewage sludge and inorganic additives at an experimentally determined dose. The sequential extraction results confirmed this result. In addition, the results proved that the use of the phytostabilisation process on contaminated soils should be supported. PMID:26115341
The Chemophytostabilisation Process of Heavy Metal Polluted Soil.
Grobelak, Anna; Napora, Anna
2015-01-01
Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and the addition of lime and potassium phosphate. Certain doses of inorganic additives decreased the easily exchangeable fraction from 50% to 1%. The addition of sewage sludge caused a decrease in fraction I for Cd and Pb. In combination with the use of inorganic additives, a mobile fraction was not detected and an easily mobilisable fraction was reduced by half. For certain combinations of metals, the concentrations were detected up to a few percent. The application of sewage sludge resulted in a slight decrease in a mobile (water soluble and easily exchangeable metals) fraction of Zn, but when inorganic additives were applied, this fraction was not detected. The highest degree of immobilisation of the tested heavy metals relative to the control was achieved when using both sewage sludge and inorganic additives at an experimentally determined dose. The sequential extraction results confirmed this result. In addition, the results proved that the use of the phytostabilisation process on contaminated soils should be supported.
Chen, Haoming; Ma, Jinyi; Wei, Jiaxing; Gong, Xin; Yu, Xichen; Guo, Hui; Zhao, Yanwen
2018-09-01
Green roofs have increasingly been designed and applied to relieve environmental problems, such as water loss, air pollution as well as heat island effect. Substrate and vegetation are important components of green roofs providing ecosystem services and benefiting the urban development. Biochar made from sewage sludge could be potentially used as the substrate amendment for green roofs, however, the effects of biochar on substrate quality and plant performance in green roofs are still unclear. We evaluated the effects of adding sludge biochar (0, 5, 10, 15 and 20%, v/v) to natural soil planted with three types of plant species (ryegrass, Sedum lineare and cucumber) on soil properties, plant growth and microbial communities in both green roof and ground ecosystems. Our results showed that sludge biochar addition significantly increased substrate moisture, adjusted substrate temperature, altered microbial community structure and increased plant growth. The application rate of 10-15% sludge biochar on the green roof exerted the most significant effects on both microbial and plant biomass by 63.9-89.6% and 54.0-54.2% respectively. Path analysis showed that biochar addition had a strong effect on microbial biomass via changing the soil air-filled porosity, soil moisture and temperature, and promoted plant growth through the positive effects on microbial biomass. These results suggest that the applications of biochar at an appropriate rate can significantly alter plant growth and microbial community structure, and increase the ecological benefits of green roofs via exerting effects on the moisture, temperature and nutrients of roof substrates. Copyright © 2018 Elsevier B.V. All rights reserved.
Prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated sewage sludges.
Amorós, Inmaculada; Moreno, Yolanda; Reyes, Mariela; Moreno-Mesonero, Laura; Alonso, Jose L
2016-11-01
Treated sludge from wastewater treatment plants (WWTPs) is commonly used in agriculture as fertilizers and to amend soils. The most significant health hazard for sewage sludge relates to the wide range of pathogenic microorganisms such as protozoa parasites.The objective of this study was to collect quantitative data on Cryptosporidium oocysts and Giardia cysts in the treated sludge in wastewater treatment facilities in Spain. Sludge from five WWTPs with different stabilization processes has been analysed for the presence of Cryptosporidium and Giardia in the raw sludge and after the sludge treatment. A composting plant (CP) has also been assessed. After a sedimentation step, sludge samples were processed and (oo)cysts were isolated by immunomagnetic separation (IMS) and detected by immunofluorescence assay (IFA). Results obtained in this study showed that Cryptosporidium oocysts and Giardia cysts were present in 26 of the 30 samples (86.6%) of raw sludge samples. In treated sludge samples, (oo)cysts have been observed in all WWTP's analysed (25 samples) with different stabilization treatment (83.3%). Only in samples from the CP no (oo)cysts were detected. This study provides evidence that (oo)cysts are present in sewage sludge-end products from wastewater treatment processes with the negative consequences for public health.
Pérez-Lomas, A L; Delgado, G; Párraga, J; Delgado, R; Almendros, G; Aranda, V
2010-10-01
The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha(-1) were incubated for 90 days at two temperatures: 5 and 35 degrees C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 2(3) factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 degrees C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E(4)/E(6) ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E(4)/E(6) ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC content in the original soil, the greater are the changes observed in the SOC after amendment with co-compost. The results suggest that proper recommendations for optimum organic matter evolution after soil amendment is possible after considering a small set of characteristics of soil and the corresponding soil organic matter fractions, in particular HA. (c) 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yanwen; Linville, Jessica L.; Ignacio-de Leon, Patricia Anne A.
This study presents an integrated waste-to-energy process, using two waste streams, sludge generated from the municipal wastewater treatment plants (WWTPs) and biochar generated from the biomass gasification systems, to produce fungible biomethane and nutrient-rich digestate with fertilizer value. Two woody biochar, namely pinewood (PBC) and white oak biochar (WOBC) were used as additives during anaerobic digestion (AD) of WWTP sludge to enhance methane production at mesophilic and thermophilic temperatures. The PBC and WOBC have porous structure, large surface area and desirable chemical properties to be used as AD amendment material to sequester CO2 from biogas in the digester. The biochar-amendedmore » digesters achieved average methane content in biogas of up to 92.3% and 79.0%, corresponding to CO2 sequestration by up to 66.2% and 32.4% during mesophilic and thermophilic AD, respectively. Biochar addition enhanced process stability by increasing the alkalinity, but inhibitory effects were observed at high dosage. It also alleviated free ammonia inhibition by up to 10.5%. The biochar-amended digesters generated digestate rich in macro- and micronutrients including K (up to 300 m/L), Ca (up to 750 mg/L), Mg (up to 1800 mg/L) and Fe (up to 390 mg/L), making biochar-amended digestate a potential alternative used as agricultural lime fertilizer.« less
Lozada, Mariana; Basile, Laura; Erijman, Leonardo
2007-01-01
The development of bacterial communities in replicate lab-scale-activated sludge reactors degrading a non-ionic surfactant was evaluated by statistical analysis of denaturing gradient gel electrophoresis (DGGE) fingerprints. Four sequential batch reactors were fed with synthetic sewage, two of which received, in addition, 0.01% of nonylphenol ethoxylates (NPE). The dynamic character of bacterial community structure was confirmed by the differences in species composition among replicate reactors. Measurement of similarities between reactors was obtained by pairwise similarity analysis using the Bray Curtis coefficient. The group of NPE-amended reactors exhibited the highest similarity values (Sjk=0.53+/-0.03), indicating that the bacterial community structure of NPE-amended reactors was better replicated than control reactors (Sjk=0.36+/-0.04). Replicate NPE-amended reactors taken at different times of operation clustered together, whereas analogous relations within the control reactor cluster were not observed. The DGGE pattern of isolates grown in conditioned media prepared with media taken at the end of the aeration cycle grouped separately from other conditioned and synthetic media regardless of the carbon source amendment, suggesting that NPE degradation residuals could have a role in the shaping of the community structure.
Awasthi, Mukesh Kumar; Wang, Meijing; Chen, Hongyu; Wang, Quan; Zhao, Junchao; Ren, Xiuna; Li, Dong-Sheng; Awasthi, Sanjeev Kumar; Shen, Feng; Li, Ronghua; Zhang, Zengqiang
2017-01-01
This study was performed to investigate the effects of biochar as an amendment to a gaseous emissions and sewage sludge (SS) composting dynamics. Six dosage of biochar [low dosage of biochar (LDB) - 2%, 4% and 6%; and higher dosage of biochar (HDB) - 8%, 12% and 18%] were amended to a mixture of SS and wheat straw (4:1 ratio on dry weight basis) and compared to control or without additive. The HDB significantly reduced CH 4 , N 2 O and NH 3 emission by 92.85-95.34%, 95.14-97.30% and 58.03-65.17%, but not the CO 2 emission. Meanwhile, humification results indicated that humic and fulvic acid 35-42% and 24-28% higher in the HDB amended treatments than those in the LDB and control treatments. The HDB significantly decreased total nitrogen losses and greenhouse gas emission, while LDB had significantly (p<0.001) higher CH 4 and N 2 O emissions. Due to effective performance of HDB, the 12% biochar was recommended to be used in SS composting practice. Copyright © 2016 Elsevier Ltd. All rights reserved.
2-undecanone and 2-tridecanone in field-grown onion.
Antonious, George F
2013-01-01
A field study was conducted to investigate the impact of soil amendments on concentrations of two volatile organic compounds, 2-undecanone and 2-tridecanone, in onion bulbs. The soil in five plots was mixed with sewage sludge, five plots were mixed with yard waste compost, five plots were mixed with laying hen manure each at 15 t acre(-1), and five unamended plots that never received soil amendments were used for comparison purposes. Plots (n = 20) were planted with onion, Allium cepa L. var. Super Star-F1 bulbs. Gas chromatographic/mass spetrometric (GC/MS) analyses of mature onion bulbs crude extracts revealed the presence of two major fragment ions that correspond to 2-undecanone and 2-tridecanone. Soil amended with yard waste compost enhanced 2-undecanone and 2-tridecanone production by 31 and 59%, respectively. Soil amended with chicken manure enhanced 2-undecanone and 2-tridecanone production by 28 and 43%, respectively. Concentrations of 2-undecanone and 2-tridecanone were lowest in onion bulbs of plants grown in sewage sludge and unamended soil, respectively. The increased concentrations of 2-undecanone and 2-tridecanone in onion bulbs may provide a protective character against insect and spider mite attack in field grown onions.
NASA Astrophysics Data System (ADS)
García-Gil, Juan Carlos; Soler-Rovira, Pedro; López-de-Sa, Esther G.; Polo, Alfredo
2014-05-01
In semi-arid agricultural soils, seasonal dynamic of soil CO2 efflux (SCE) is highly variable. Based on soil respiration measurements the effects of different management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) was investigated in a long-term field experiment (28 years) conducted on a sandy-loam soil at the experimental station 'La Higueruela' (40o 03'N, 4o 24'W). Both organic amendments were applied at a rate of 30 Mg ha-1 prior to tillage practices. Unamended soils were used as control for each tillage system. SCE was moderate in late spring (2.2-11.8 μmol CO2 m-2 s-1) when amendments were applied and tillage was performed, markedly decreased in summer (0.4-3.2 μmol CO2 m-2 s-1), following a moderate increase in autumn (3.4-14.1 μmol CO2 m-2 s-1), rising sharply in October (5.6-39.8 μmol CO2 m-2 s-1 ). In winter, SCE was low (0.6-6.5 μmol CO2 m-2 s-1). In general, SCE was greater in chisel and moldboard tilled soils, and in CS and particularly TSS-amended soils, due to the addition of labile C with these amendments, meanwhile no-tillage soils exhibited smaller increases in C efflux throughout the seasons. Soil temperature controlled the seasonal variations of SCE. In summer, when drought occurs, a general decrease of SCE was observed due to a deficit in soil water content. After drought period SCE jumped to high values in response to rain events ('Birch effect') that changed soil moisture conditions. Soil drying in summer and rewetting in autumn may promotes some changes on the structure of soil microbial community, affecting associated metabolic processes, and enhancing a rapid mineralization of water-soluble organic C compounds and/or dead microbial biomass that acts as an energy source for soil microorganisms. To assess the effects of tillage and amendments on SCE, Q10 values were calculated. Data were grouped into three groups according to soil moisture (0.03-0.10 m3m-3, 0-11-0.21 m3m-3, 0.22-0.30 m3m-3). In general, Q10 values were lower at elevated temperatures when soil moisture contents decreased, confirming that SCE is less sensitive to soil temperature during drought periods. Q10 values were higher in moldboard and chisel tilled soils, possibly due to the incorporation of residues into soil and the increase of soil C substrate, meanwhile in no-tillage part of the organic C pools are likely protected from microorganisms by physico-chemical mechanisms. TSS-amended soils exhibited higher Q10 values than CS, pointing that the biochemical lability of the organic C added with amendments exerts an influence on SCE. Acknowledgements: this research was supported by the Spanish CICYT, Project no. CTM2011-25557.
Liu, Zheng; Yang, Yang; Bai, Ying; Huang, Yu; Nan, Zhongren; Zhao, Chuanyan; Ma, Jianmin; Wang, Houcheng
2016-10-01
The effect of sewage sludge on the mobility and the bioavailability of trace metals in plant-soil systems have aroused wide interested and been widely explored. Based on a wheat-cultivating experiment, the effect of municipal sludge compost (MSC) on the mobility and bioavailability of Cd in a soil-wheat system was studied. With the application of MSC, soil organic matter (SOM), total nitrogen (TN), and total phosphorus (TP) in the soil increased significantly, while concentrations of trace metals (Cu, Zn, Ni, Pb, Cd) were below the China's minimum thresholds. The application of MSC could improve wheat growth. The application of MSC at the rate of 0.5 % had no significant effect on the chemical fraction distribution of Cd in soil. In two soil treatments, Cd mainly existed in the labile chemical fractions (exchangeable chemical fraction (EXCF) and carbonate chemical fraction (CABF)). However, the application of MSC could reduce accumulation of Cd by wheat. Cd contents in each part of the MSC-applied wheat were significantly less than that of non-MSC-applied wheat. In the tested soils, the extractable concentrations decreased in the order: EDTA > MgCl 2 ≈ NH 4 OAc > DTPA. There were no significant differences between soil treatments in the amounts of extractable Cd when the extraction was done under neutral conditions, although significant differences were observed when the extraction was done under alkaline conditions. In this study, the DTPA extraction procedure provided a good indication of Cd bioavailability. Our results suggest that, in the short term at least, amending soils with MSC may benefit crop dry matter production while not increasing the risk of human exposure to Cd through consumption of wheat grown on MSC-amended soils.
Mohamed, Bourioug; Mounia, Krouna; Aziz, Abouabdillah; Ahmed, Harraq; Rachid, Bouabid; Lotfi, Aleya
2018-06-15
The wastewater treatment and sludge production sectors in Morocco are recent. Considered as waste, no management strategy for sewage sludge (SS) has been implemented. Thus, its disposal definitely represents a major environmental problem since sludge is either incinerated, used as landfill or simply deposited near wastewater treatment plants. The objective of this study was to determine the effects of dehydrated SS on certain soil properties (pH, electrical conductivity (EC), Mineral nitrogen, available phosphate P 2 O 5 , and soluble potassium K 2 O), and also on growth and yield components of the sunflower (Helianthus annuus L.). An experiment was conducted using six treatment rates (0; 0 + NPK; 15; 30; 60 and 120 t ha -1 ). The results showed that soil pH was significantly affected by SS, becoming less alkaline compared to the control, while electrical conductivity increased significantly when the applied doses were above 30 t ha -1 . Also, a significant enrichment in mineral N and available phosphorus was detected in amended soil. However, no differences were found between pots having received the mineral fertilization and the SS at 15 t ha -1 . Stem height growth of the sunflower seedlings receiving SS increased significantly compared to the two controls. For both the aerial and root parts, significant increases in dry biomass accumulation were observed compared to the unamended plants. Net CO 2 assimilation (A n ) increased, while stomatal conductance (g sw ) and transpiration rates (T r ) decreased with increasing SS rates. SS application at 15 t ha -1 presented similar values of the yield components compared to plants fertilized chemically. However, grain yield (in quintals ha -1 ) was noted to be 2.4, 5 and 8 times higher in treatments receiving SS respectively at the rate of 30, 60 and 120 t ha -1 . Copyright © 2018 Elsevier B.V. All rights reserved.
Ma, Guangxiang; Pei, Haiyan; Hu, Wenrong; Xu, Xiangchao; Ma, Chunxia; Pei, Ruoting
2016-01-01
To enhance the degradation efficiency of microcystin (MC) in drinking water sludge (DWS), the underlying mechanisms between organic carbon (glucose) and the biodegradation of MC-LR under anoxic conditions were investigated by polymerase chain reaction-denaturing gradient gel electrophoresis technology. The addition of glucose reduced the rate of the MC-LR biodegradation indicating the occurrence of inhibition of degradation, and an increased inhibition was observed with increases in glucose concentration (0-10,000 mg/L). In addition, the community analysis indicated that the variety and the number of the microbes increased with the concentration of glucose amended (0 -1000 mg/L), but they decreased substantially with the addition of 10,000 mg/L of glucose. The phyla Firmicutes, Proteobacteria and Chloroflexi were found to be the dominant. Methylobacterium and Sphingomonas were MC-degrading bacteria and used glucose as a prior carbon source instead of MC, resulting in the decrease in the MC-LR biodegradation rate under anoxic conditions. Thus, reducing organic carbon could improve the anoxic biodegradation efficiency of MC in DWS.
Zhang, Youchi; Chen, Tingting; Liao, Yongkai; Reid, Brian J; Chi, Haifeng; Hou, Yanwei; Cai, Chao
2016-09-01
Much research has considered the influence of biochars on the availability and phytoaccumulation of potentially toxic elements (PTEs) from soil. However, the vast majority of these studies use, what are arguably, unrealistic and unpractical amounts of biochar (10, 50 and even up to 100 t/ha). To offer a more realistic insight into the influence of biochar on PTE partitioning and phytoaccumulation, a field study, using modest rates of biochar application (1.5, 3.0 t/ha), was undertaken. Specifically, the research investigated the influence of sewage sludge biochar (SSBC) on the accumulation of Cd into rice (Oryza sativa L.) grown in Cd contaminated (0.82 ± 0.07 mg/kg) paddy soil. Results indicated, Cd concentrations in rice grains to significantly (p < 0.05) decrease from 1.35 ± 0.09 mg/kg in the control to 0.82 ± 0.07 mg/kg and 0.80 ± 0.21 mg/kg in the 1.5 t/ha and 3.0 t/ha treatments, respectively. Accordingly, the hazardous quotient (HQ) indices for Cd, associated with rice grain consumption, were also reduced by ∼40%. SSBC amendment significantly (p < 0.05) increased grain yields from 1.90 ± 0.08 g/plant in the control to 2.17 ± 0.30 g/plant and 3.40 ± 0.27 g/plant in the 1.5 t/ha and 3.0 t/ha treatments, respectively. Thus, the amendment of SSBC to contaminated paddy soils, even at low application rates, could be an effective approach to mitigate Cd accumulation into rice plants, to improve rice grain yields, and to thereby improve food security and protect public health. Copyright © 2016 Elsevier Ltd. All rights reserved.
López-Luna, J; González-Chávez, M C; Esparza-García, F J; Rodríguez-Vázquez, R
2009-04-30
This work assessed the effect of soil amended with tannery sludge (0, 500, 1000, 2000, 4000 and 8000 mg Cr kg(-1)soil), Cr(3+) as CrCl(3).6H(2)O (0, 100, 250, 500, 1000 and 2000 mg Cr kg(-1)soil), and Cr(6+) as K(2)Cr(2)O(7) (0, 25, 50, 100, 200 and 500 mg Cr kg(-1)soil) on wheat, oat and sorghum plants. Seed germination, seedling growth (root and shoot) and Cr accumulation in dry tissue were measured. Toxicological parameters; medium effective concentration, no observed adverse effect concentration and low observed adverse effect concentration were determined. Root growth was the most sensitive assessment of Cr toxicity (P<0.05). There was a significant correlation (P<0.0001) between Cr accumulation in dry tissue and toxic effects on seedling growth. The three Cr sources had different accumulation and mobility patterns; tannery sludge was less toxic for all three plant species, followed by CrCl(3).6H(2)O and K(2)Cr(2)O(7).
Effects of sucrose amendment on ammonia assimilation during sewage sludge composting.
Meng, Liqiang; Li, Weiguang; Zhang, Shumei; Wu, Chuandong; Wang, Ke
2016-06-01
The aim of this study was to evaluate the laboratory-scale composting of sewage sludge and pumice mixtures that were amended with sucrose. The variation in temperature, pH, NH4(+)-N, ammonia emission, bacterial community, ammonia assimilating bacteria (AAB) populations and enzymatic activity related to ammonia assimilation were detected. The addition of sucrose increased the AAB population by 2.5-3.5 times, reduced ammonia emission by 24.7-31.1% compared with the control treatment, and promoted the growth of Bacillus and Wautersiella. The activities of glutamate dehydrogenase (GDH), glutamate synthase (GS) and glutamine synthetase (GOGAT), were enhanced by the addition of sucrose. GDH made a substantial contribution to ammonia assimilation when the ammonia concentration was high (⩾1.5g/kg) in the thermophilic phase. The GS/GOGAT cycle played an important role at low ammonia concentrations (⩽1.1g/kg) in the cooling phase. These results suggested that adding sucrose to sludge compost could promote ammonia assimilation and reduce ammonia emission. Copyright © 2016 Elsevier Ltd. All rights reserved.
Beneficial reuse of precast concrete industry sludge to produce alkaline stabilized biosolids.
Gowda, C; Seth, R; Biswas, N
2008-01-01
The precast concrete industry generates waste called concrete sludge during routine mixer tank washing. It is highly alkaline and hazardous, and typically disposed of by landfilling. This study examined the stabilization of municipal sewage sludge using concrete sludge as an alkaline agent. Sewage sludge was amended with 10 to 40% of concrete sludge by wet weight, and 10 and 20% of lime by dry weight of the sludge mix. Mixes containing 30 and 40% of concrete sludge with 20% lime fulfilled the primary requirements of Category 1 and 2 (Canada) biosolids of maintaining a pH of 12 for at least 72 hours. The heavy metals were below Category 1 regulatory limits. The 40% concrete sludge mix was incubated at 52 degrees C for 12 of the 72 hours to achieve the Category 1 and 2 regulations of less than 1000 fecal coliform/g solids. The nutrient content of the biosolids was 8.2, 10 and 0.6 g/kg of nitrogen, phosphorus and potassium respectively. It can be used as a top soil or augmented with potassium for use as fertilizer. The study demonstrates that concrete sludge waste can be beneficially reused to produce biosolids, providing a long-term sustainable waste management solution for the concrete industry.
Oleszczuk, Patryk; Rycaj, Marcin; Lehmann, Johannes; Cornelissen, Gerard
2012-06-01
The goal of the research was to determine the phytotoxicity (using Lepidium sativum) of two activated carbon/biochar-amended sewage sludges. Apart from the impact of the AC/biochar dose, the influence of biochar particle diameter (<300, 300-500 and >500 μm) and the influence of the contact time (7, 60, 90 days) between AC/biochar and sewage sludges on their phytotoxicity was also assessed. No negative impact of sewage sludges on seed germination was observed (P>0.05). The application of AC or biochar to the sludges positively affected root growth by reducing the harmful effect by 7.8 to 42% depending on the material used. Furthermore, the reduction range clearly depended on the type of sewage sludge. No differences were observed in the inhibition of the toxic effect between both biochar types used and the biochar particle size. The extension of the contact time between AC/biochar and sewage sludges had a negative impact on root growth. Copyright © 2012 Elsevier Inc. All rights reserved.
Reuse of textile effluent treatment plant sludge in building materials.
Balasubramanian, J; Sabumon, P C; Lazar, John U; Ilangovan, R
2006-01-01
This study examines the potential reuse of textile effluent treatment plant (ETP) sludge in building materials. The physico-chemical and engineering properties of a composite textile sludge sample from the southern part of India have been studied. The tests were conducted as per Bureau of Indian Standards (BIS) specification codes to evaluate the suitability of the sludge for structural and non-structural application by partial replacement of up to 30% of cement. The cement-sludge samples failed to meet the required strength for structural applications. The strength and other properties met the Bureau of Indian Standards for non-structural materials such as flooring tiles, solid and pavement blocks, and bricks. Results generally meet most ASTM standards for non-structural materials, except that the sludge-amended bricks do not meet the Grade NW brick standard. It is concluded that the substitution of textile ETP sludge for cement, up to a maximum of 30%, may be possible in the manufacturing of non-structural building materials. Detailed leachability and economic feasibility studies need to be carried out as the next step of research.
Ghangrekar, M M; Asolekar, S R; Joshi, S G
2005-03-01
Sludge characteristics available inside the reactor are of vital importance to maximize advantages of UASB reactor. The organic loading rate and sludge loading rate applied during start-up are among the important parameters to govern the sludge characteristics. Effects of these loading rates on the characteristics of the sludge developed are evaluated in six laboratory scale UASB reactors. The sludge characteristics considered are VSS/SS ratio of the sludge, sludge volume index, specific gravity, settling velocity and metal contents of the sludge developed under different loading rates. The experimental results indicate that, for developing good characteristics sludge, during primary start-up from flocculent inoculum sludge, organic loading rate and sludge loading rate should be in the range of 2.0-4.5 kg COD/m3 d and 0.1-0.25 kg COD/kg VSS d, respectively (chemical oxygen demand, COD). Proper sludge granulation and higher COD removal efficiency will be achieved by these loading rates.
Jensen, J; Løkke, H; Holmstrup, M; Krogh, P H; Elsgaard, L
2001-08-01
Linear alkylbenzene sulfonates (LAS) can be found in high concentrations in sewage sludge and, hence, may enter the soil compartment as a result of sludge application. Here, LAS may pose a risk for soil-dwelling organisms. In the present probabilistic risk assessment, statistical extrapolation has been used to assess the risk of LAS to soil ecosystems. By use of a log-normal distribution model, the predicted no-effect concentration (PNEC) was estimated for soil fauna, plants, and a combination of these. Due to the heterogeneous endpoints for microorganisms, including functional as well as structural parameters, the use of sensitivity distributions is not considered to be applicable to this group of organisms, and a direct, expert evaluation of toxicity data was used instead. The soil concentration after sludge application was predicted for a number of scenarios and used as the predicted environmental concentration (PEC) in the risk characterization and calculation of risk quotients (RQ = PEC/PNEC). A LAS concentration of 4.6 mg/kg was used as the current best estimate of PNEC in all RQ calculations. Three levels of LAS contamination (530, 2,600, and 16,100 mg/kg), three half-lives (10, 25, and 40 d), and five different sludge loads (2, 4, 6, 8, and 10 t/ha) were included in the risk scenarios. In Denmark, the initial risk ratio would reach 1.5 in a realistic worst-case consideration. For countries not having similar sludge regulations, the estimated risk ratio may initially be considerably higher. However, even in the most extreme scenarios, the level of LAS is expected to be well beyond the estimated PNEC one year after application. The present risk assessment, therefore, concludes that LAS does not pose a significant risk to fauna, plants, and essential functions of agricultural soils as a result of normal sewage sludge amendment. However, risks have been identified in worst-case scenarios.
Amoah, Isaac Dennis; Adegoke, Anthony Ayodeji; Stenström, Thor Axel
2018-05-19
To review current evidence on infections related to the concentration of soil-transmitted helminth (STH) eggs in wastewater, sludge and vegetables irrigated with wastewater or grown on sludge-amended soils. Search of Web of Science, Science Direct, PubMed and Google Scholar databases for publications reporting on STH egg concentration in wastewater, sludge and vegetables and for epidemiological studies on wastewater/sludge reuse and STH infections. STH egg concentrations were variable but high in wastewater and sludge especially in developing countries. They ranged from 6 to 16,000 eggs/L in wastewater and from 0 to 23,000 eggs/g in sludge and far exceed limits set in the WHO guideline for wastewater/sludge reuse. Numbers of STH eggs on vegetables ranged from 0 to 100 eggs/g. The concentration of STH eggs in wastewater, sludge and vegetables therefore relates to risks of infection through different exposure routes. Epidemiological evidence reveals an increased prevalence of STH infections associated with direct exposure to wastewater or sludge (farmers) and consumption of vegetables grown on soil treated with it. This calls for increased efforts to reduce the adverse health impact of wastewater and sludge reuse in line with the WHO multi-barrier approach. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge.
Withers, P J; Clay, S D; Breeze, V G
2001-01-01
Phosphorus (P) transfer in surface runoff from field plots receiving either no P, triplesuperphoshate (TSP), liquid cattle manure (LCS), liquid anaerobically digested sludge (LDS), or dewatered sludge cake (DSC) was compared over a 2-yr period. Dissolved inorganic P concentrations in runoff increased from 0.1 to 0.2 mg L(-1) on control and sludge-treated plots to 3.8 and 6.5 mg L(-1) following application of LCS and TSP, respectively, to a cereal crop in spring. When incorporated into the soil in autumn, runoff dissolved P concentrations were typically < 0.5 mg L(-1) across all plots, and particulate P remained the dominant P form. When surface-applied in autumn to a consolidated seedbed, direct loss of LCS and LDS increased both runoff volume and P transfers, but release of dissolved P occurred only from LCS. The largest P concentrations (>70 mg L(-1)) were recorded following TSP application without any increase in runoff volume, while application of bulky DSC significantly reduced total P transfers by 70% compared with the control due to a reduced runoff volume. Treatment effects in each monitoring period were most pronounced in the first runoff event. Differences in the release of P from the different P sources were related to the amounts of P extracted by either water or sodium bicarbonate in the order TSP > LCS > LDS > DSC. The results suggest there is a lower risk of P transfer in land runoff following application of sludge compared with other agricultural P amendments at similar P rates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Whole Sludge Application Rate for a Sewage Sludge A Appendix A to Part 503 Protection of Environment.... 503, App. A Appendix A to Part 503—Procedure To Determine the Annual Whole Sludge Application Rate for... application to the land and the annual whole sludge application rate (AWSAR) for the sewage sludge not cause...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, J.A.; Daniels, W.L.; Bell, J.C.
Tall fescue (Festuca arundinacea Schreb.) is a hardy grass species commonly used in surface mine reclamation and soil conservation. This study documented changes in fescue production (five growing seasons) and nutrient status (three growing seasons) as influenced by spoil type and various amendments. In Exp. I, fescue growth and nutrient status on five mixes of fertilized sandstone (SS) and siltstone (SiS) spoils were compared. A 2:1 SS/SiS control and treatments of 112 Mg ha/sup -1/ sawdust, native topsoil, and 22, 56, 112, and 224 Mg ha/sup -1/ municipal sewage sludge were compared in Exp. II. Standing biomass was measured inmore » 1982-1984 and 1986 and tissue nutrient levels were measured in 1982-1984. High SiS spoils inhibited initial biomass production in Exp. I, but parent material effect diminished with time. All spoil mixes maintained adequate fescue production for five growing seasons, primarily due to small annual N additions (56 kg ha/sup -1/). In Exp. II, the highest yields were maintained on greater than or equal to 56 Mg ha/sup -1/ sludge treatments. Heavy metal uptake was not a problem, even in very high sludge treatments. Sludge-amended mine soils were superior to both native topsoil and inorganically fertilized spoils in their ability to sustain long-term fescue production without periodic augmentation.« less
Marín-Benito, Jesús M; Herrero-Hernández, Eliseo; Andrades, M Soledad; Sánchez-Martín, María J; Rodríguez-Cruz, M Sonia
2014-04-01
Dissipation kinetics of pesticides belonging to three chemical groups (linuron, diazinon and myclobutanil) was studied in an unamended agricultural soil and in this soil amended with three organic residues: sewage sludge (SS), grape marc (GM) and spent mushroom substrate (SMS). The soils were incubated with the residues outdoors for one and 12 months. Mineralized, extracted and non-extractable fractions were also studied for (14)C-linuron and (14)C-diazinon. The dissipation kinetics was fitted to single first-order or first-order multicompartment models. The dissipation rate (k) decreased in the order diazinon>linuron>myclobutanil, and DT50 values decreased for linuron (1.6-4.8 times) or increased for myclobutanil (1.7-2.6 times) and diazinon (1.8-2.3 times) in the amended soils relative to the unamended soil. The lowest DT50 values for the three pesticides were recorded in GM-amended soil, and the highest values in SMS-amended soil. After 12 months of soil incubation, DT50 values decreased in both the unamended and amended soils for linuron, but increased for the unamended and SMS-amended soil for diazinon and myclobutanil. A certain relationship was observed between the sorption of pesticides by the soils and DT50 values, although it was significant only for myclobutanil (p<0.05). Dissipation mechanism recorded the lowest mineralization of (14)C-pesticides in the GM-soil despite the highest dissipation rate in this soil. The extracted (14)C-residues decreased with incubation time, with increased formation of non-extractable residues, higher in amended soils relative to the unamended soil. Soil dehydrogenase activity was, in general, stimulated by the addition of the organic amendments and pesticides to the soil after one month and 12 months of incubation. The results obtained revealed that the simultaneous use of amendments and pesticides in soils requires a previous study in order to check the environmental specific persistence of these compounds and their effectiveness in amended soils. Copyright © 2014 Elsevier B.V. All rights reserved.
Gallardo-Lara, Francisco; Azcón, Mariano; Polo, Alfredo
2006-01-01
Little is known about the effects of applying composted urban wastes on the phytoavailability and distribution of iron (Fe) and manganese (Mn) among chemical fractions in soil. In order to study this concern several experiments in pots containing calcareous soil were carried out. The received treatments by adding separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost and/or municipal solid waste and sewage sludge (MSW-SS) co-compost. The cropping sequence was a lettuce crop followed by a barley crop. It was observed that treatments amended with composted urban wastes tended to promote slight increases in lettuce yield compared to the control. The highest Fe levels in lettuce were found when higher rates of MSW-SS co-compost were applied; these values were significant compared to those obtained in the other treatments. In all cases, the application of organic materials increased the concentration and uptake of Mn in lettuce compared to the control; however, these increases were significant only when higher rates of MSW compost were applied. The organic amendments had beneficial delayed effects on barley yields, showing, in most cases, significant increases compared to the control. In this context, treatments with MSW compost were found to be more effective than the equivalent treatments amended with MSW-SS co-compost. Compared to the control, composted urban wastes increased Fe concentration in straw and rachis, and decreased Fe concentration in barley grain. Similarly, a decreased concentration of Mn in the dry matter of barley crop grown in soils treated with composted urban wastes was observed.
Peña, Aránzazu; Mingorance, Mª Dolores; Guzmán-Carrizosa, Ignacio; Fernández-Espinosa, Antonio J
2015-03-01
We assessed the effects of applying stabilized sewage sludge (SSL) and composted sewage sludge (CLV), at 5 and 10% to an acid mining soil. Limed soil (NCL) amended or not with SSL and CLV was incubated for 47 days. We studied the cations and organic and inorganic anions in the soil solution by means of ion chromatography. Liming led to big increases in Ca(2+) and SO4(2-) and to significant decreases in K(+), Mg(2+), NH4(+) and NO3(-). Addition of both organic amendments increased some cations (NH4(+), K(+), Mg(2+), Na(+)) and anions (Cl(-), NO3(-) only with CLV and PO4(3-) only with SSL) and provided a greater amount of low-molecular-weight organic acids (LMWOAs) (SSL more than CLV). Incubation led to decreases in all cations, particularly remarkable for Ca(2+) and Mg(2+) in SSL-10. A decrease in NH4(+) was associated with variations in NO2(-) and NO3(-) resulting from nitrification reactions. During incubation the LMWOAs content tended to decrease similarly to the cations, especially in SSL-10. Chemometric tools revealed a clear discrimination between SSL, CLV and NCL. Furthermore, treatment effects depended upon dose, mainly in SSL. Amendment nature and dose affect the quality of a mining soil and improve conditions for plant establishment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Awasthi, Mukesh Kumar; Awasthi, Sanjeev Kumar; Wang, Quan; Awasthi, Mrigendra Kumar; Zhao, Junchao; Chen, Hongyu; Ren, Xiuna; Wang, Meijing; Zhang, Zengqiang
2018-04-10
This study was aimed to examine the response of Ca-bentonite (CB) amendment to improve the sewage sludge (SS) composting along with wheat straw (WS) as bulking agent. Five treatments (SS + WS) were mixed with or without blending of discrepant concentration of CB (2%, 4%, 6%, and 10%), respectively, and without CB added treatment applied as the control. The results showed that compared to control and 2%CB blended treatments, while the 6-10%CB -amended treatment indicated maximum enzymatic activities with the composting progress and highest organic matter degradation and loss. The amendment of 6-10%CB increased the humic acid, HA/FA ratio, DON, NH 4 + -N, NO 3 and DOC but reduced the fulvic acids content and the maturity period by 2 weeks as compared to control. In addition, maturity parameters also confirmed that the highest seed germination was observed with the 10%CB applied compost followed by 6%CB, 4%CB and 2%CB applied treatments, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Improving sewage sludge composting by addition of spent mushroom substrate and sucrose.
Meng, Liqiang; Zhang, Shumei; Gong, Hainan; Zhang, Xiancheng; Wu, Chuandong; Li, Weiguang
2018-04-01
The effects of spent mushroom substrate (SMS) and sucrose (S) amendment on emissions of nitrogenous gas (mainly NH 3 and N 2 O) and end products quality of sewage sludge (SS) composting were evaluated. Five treatments were composted for 20 days in laboratory-scale using SS with different dosages of SMS and S, without additive amended treatment used as control. The results indicated that SMS amendments especially combination with S promoted dehydrogenase activity, CO 2 production, organic matter degradation and humification in the composting, and maturity indices of composting also showed that the 30%SMS+2%S treatment could be much more appropriate to improve the composting process, such as total Kjeldahl nitrogen, nitrification index, humic acids/fulvic acids ratio and germination index, while the emissions of NH 3 and N 2 O were reduced by 34.1% and 86.2%, respectively. These results shown that the moderate addition of SMS and S could improve the compost maturity and reduce nitrogenous gas emission. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hueso González, Paloma; Elbl, Jakub; Dvořáčková, Helena; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose
2017-04-01
The use of soil quality indicators may be an effective approach to assess the positive effect of the organic amendment as good restoration methods. Relying on the natural fertility of the soil, the most commonly chemical and physical parameters used to evaluate soil quality are depend to the soil biological parameters. The measurement of soil basal respiration and the mineralization of organic matter are commonly accepted as a key indicator for measuring changes to soil quality. Thus, the simultaneous measurement of various enzymes seems to be useful to evaluate soil biochemical activity and related processes. In this line, Dehydrogenase activity is widely used in evaluating the metabolic activity of soil microorganisms and to evaluate the effects caused by the addition of organic amendments. Variations in phosphatase activity, apart from indicating changes in the quantity and quality of soil phosphorated substrates, are also good indicators of soil biological status. This study assesses the effect of five soil amendments as restoration techniques for semiarid Mediterrenean ecosystems. The goal is to interpret the status of biological and chemical parameters in each treatment as soil quality indicators in degraded forests. The main objectives were to: i) analyze the effect of various organic amendments on the enzimatic activity of soil; ii) analyze the effect of the amendments on soil respiration; iii) assess the effect of these parameters on the soil chemical properties which are indicative of soil healthy; and iv) evaluated form the land management point of view which amendment could result a effective method to restore Mediterranean degraded areas. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis Mill.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and; control (without amendment). Five years after the amendment addition, soil from the 12 plots was sampled. Three samples were collected from each plot (36 soil samples in total) from the soil surface, e.g. 0-10 cm, in which most soil transformations occur. Soil indicators analyzed were: i) EC; ii) pH; iii) soil organic C (SOC); iv)total Nitrogen (N); v) Carbon of microbial biomass; vi) Dehydrogenase activity; Phosphatase activity and; vii) basal respiration. According to our results, the straw mulch, pinus mulch and sewage sludge treatments helped to maintain the SOC and N at high levels, five years after the amendment addition and comparing to the control. A similar trend has been registered for the dehydrogenase activity, phosphatase activity and basal respiration. Conversely, regarding to control, when the soils were amended with polymers or manure, no significant differences in soil chemical and biological properties were found. In conclusion, from a land management standpoint, the use of pinus mulch, straw mulch and sewage sludge have been proved as a significant method to increase soil quality on Mediterranean semiarid degraded forests.
Natal-da-Luz, T; Ojeda, G; Pratas, J; Van Gestel, C A M; Sousa, J P
2011-09-01
Regulatory limits for chemicals and ecological risk assessment are usually based on the effects of single compounds, not taking into account mixture effects. The ecotoxicity of metal-contaminated sludge may, however, not only be due to its metal content. Both the sludge matrix and the presence of other toxicants may mitigate or promote metal toxicity. To test this assumption, the toxicity of soils recently amended with an industrial sludge predominantly contaminated with chromium, copper, nickel, and zinc and soils freshly spiked with the same mixture of metals was evaluated through earthworm (Eisenia andrei) and collembolan (Folsomia candida) reproduction tests. The sludge was less toxic than the spiked metal mixture for E. andrei but more toxic for F. candida. Results obtained for the earthworms suggest a decrease in metal bioavailability promoted by the high organic matter content of the sludge. The higher toxicity of the sludge for F. candida was probably due to the additive toxic effect of other pollutants. Copyright © 2011 Elsevier Inc. All rights reserved.
Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian
2015-01-01
Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance.
Agriculture: Nutrient Management and Fertilizer
Fertilizers and soil amendments can be derived from raw materials, composts and other organic matter, and wastes, such as sewage sludge and certain industrial wastes. Overuse of fertilizers can result in contamination of surface water and groundwater.
Effects of biochar on nitrogen transformation and heavy metals in sludge composting.
Liu, Wei; Huo, Rong; Xu, Junxiang; Liang, Shuxuan; Li, Jijin; Zhao, Tongke; Wang, Shutao
2017-07-01
Composting is regarded as an effective treatment to suppress pathogenic organisms and stabilize the organic material in sewage sludge. This study investigated the use of biochar as an amendment to improve the composting effectiveness and reduce the bioavailability of heavy metals and loss of nitrogen during composting. Biochar of 0%, 1%, 3%, 5% and 7% were added into a mixture of sludge and straw, respectively. The use of biochar, even in small amounts, altered the composting process and the properties of the end products. Biochar addition resulted in a higher pile temperature (66°C) and could reduce nitrogen loss by transforming ammonium into nitrite. In the 5% biochar group, the final product from sludge composting, ammonia nitrogen, decreased by 22.4% compared to the control, and nitrate nitrogen increased by 310.6%. Considering temperature and N transformation, the treatment with 5% biochar is suggested for sludge composting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Al-Mutairi, Nayef Z
2011-11-01
Wastewater treatment systems using simultaneous adsorption and biodegradation processes have been successful in treating toxic pollutants present in industrial wastewater. The goal of this investigation was to assess the effectiveness of date seeds in reducing the toxic effects of 2,4-dinitrophenol (DNP) on activated sludge microorganisms. Two identical sequencing batch reactors (SBRs) (4-L glass vessel), each with a 3.5-L working volume, were used. The initial DNP concentrations in the reactor were 50, 75, 100, 250, and 500 mg/L. The reactor amended with date seeds was capable of degrading DNP at significantly greater rates (11 +/- 2.5 mg/L x h) than the control SBR (4 +/- 1.2 mg/L x h) at a 95% confidence level. Date seeds can be added to the mixed liquor of activated sludge treatment plants to remove high concentrations of DNP from wastewater, to protect the treatment plant against toxic components in the influent and enhance the settling characteristics of the mixed liquor.
Organic amendments derived from a pharmaceutical by-product: benefits and risks
NASA Astrophysics Data System (ADS)
Gigliotti, Giovanni; Cucina, Mirko; Zadra, Claudia; Pezzolla, Daniela; Sordi, Simone; Carla Marcotullio, Maria; Curini, Massimo
2015-04-01
The application of organic amendments to soils, such as sewage sludge, anaerobic digestate and compost is considered a tool for improving soil fertility and enhancing C stocks. The addition of these different organic materials allows a good supply of nutrients for plants but also contributes to C sequestration, affects the microbial activity and the transformation of soil organic matter (SOM). Moreover, the addition of organic amendment has gained importance as a source of CO2 emissions and then as a cause of the "Global Warming". Therefore, it is important to investigate the factors controlling the SOM mineralization in order to improve the soil C sequestration and decreasing at the same time CO2 emissions. Moreover, the quality of organic matter added to the soil will play an important role in these dynamics. Based on these considerations, the aim of the present work was to investigate the effect of the application to an arable soil of different organic materials derived from a pharmaceutical by-product which results from the fermentative biomass after the separation of the lipopolypeptidic antibiotic produced. A microcosm soil experiment was carried out using three different materials: a sewage sludge derived from the stabilization process of the by-product, a digestate obtained from the anaerobic treatment of the by-product and a compost produced by the aerobic treatment of the same digestate. To achieve this aim, the short-term variations of CO2 emissions, enzymatic soil activities (Dehydrogenase total activity and Fluoresceine diacetate hydrolysis), SOM quantity and quality were studied. In addition, process-related residues of antibiotic and decanoic acid (a precursor added during the fermentation) were analyzed on the organic materials to assess their possible presence. Through these analyses it was possible to state that the application to the soil of sewage sludge and anaerobic digestate may have a strong influence on the short-term variations of the parameters evaluated, particularly on enzymatic soil activities and on CO2 emissions. Whereas, results obtained from compost amended soils showed that its addition to the soil affects lower the enzymatic soil activities and CO2 emissions than the other materials. Determinations of antibiotic and decanoic acid residues showed that only small traces of them were recognizable in the sewage sludge and in the anaerobic digestate. Compost showed concentrations of these compounds lower than the method sensibility and then, based on these results, further analysis on the amended soil were considered negligible.
Martín, J; Camacho-Muñoz, D; Santos, J L; Aparicio, I; Alonso, E
2012-11-15
The occurrence of sixteen pharmaceutically active compounds in influent and effluent wastewater and in primary, secondary and digested sludge in one-year period has been evaluated. Solid-water partition coefficients (Kd) were calculated to evaluate the efficiency of removal of these compounds from wastewater by sorption onto sludge. The ecotoxicological risk to aquatic and terrestrial ecosystems, due to wastewater discharges to the receiving streams and to the application of digested sludge as fertilizer onto soils, was also evaluated. Twelve of the pharmaceuticals were detected in wastewater at mean concentrations from 0.1 to 32 μg/L. All the compounds found in wastewater were also found in sewage sludge, except diclofenac, at mean concentrations from 8.1 to 2206 μg/kg dm. Ibuprofen, salicylic acid, gemfibrozil and caffeine were the compounds at the highest concentrations. LogKd values were between 1.17 (naproxen) and 3.48 (carbamazepine). The highest ecotoxicological risk in effluent wastewater and digested sludge is due to ibuprofen (risk quotient (RQ): 3.2 and 4.4, respectively), 17α-ethinylestradiol (RQ: 12 and 22, respectively) and 17β-estradiol (RQ: 12 and 359, respectively). Ecotoxicological risk after wastewater discharge and sludge disposal is limited to the presence of 17β-estradiol in digested-sludge amended soil (RQ: 2.7). Copyright © 2012 Elsevier B.V. All rights reserved.
Rossini-Oliva, S; Mingorance, M D; Peña, A
2017-02-01
The effect of the addition (0-10%) of two types of sewage sludge composts (composted sewage sludge [CS] and sewage sludge co-composted with olive prune wastes [CSO]) on a polymetallic acidic soil from the Riotinto mining area was evaluated by i) a soil incubation experiment and ii) a greenhouse pot experiment using tomato (Solanum lycopersicum Mill.), ryegrass (Lolium perenne L.) and ahipa (Pachyrhizus ahipa (Wedd.) Parodi). Compost addition improved the soil organic carbon content, increased the pH and the electrical conductivity and enhanced enzyme activities and soil respiration, more for CSO than for CS. Plant growth was generally enhanced after compost addition, but not proportionally to the dose. Foliar concentrations of some hazardous elements (As, Cr, Fe) in tomato growing in non-amended soil were above the thresholds, questioning the adequacy of using this plant species. However, leaf concentrations of essential and potentially toxic elements (Fe, As, Cr and Pb) in tomato and/or ryegrass were reduced after the amendment with both composts, generally more for CSO than for CS. Conversely, foliar concentrations in ahipa, a plant species which is able to grow without the need of compost addition, were safe except for As and were only slightly affected by compost addition. This plant species would be a suitable candidate due to its low requirements and due to the limited element translocation to the leaves. Concerning the composts, amelioration of plant and soil properties was better accomplished when using CSO, a compost of sewage sludge and plant remains, than when using CS, which only contained the sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thomaidi, Vasiliki S; Stasinakis, Athanasios S; Borova, Viola L; Thomaidis, Nikolaos S
2016-04-01
Greece was used as case study and the environmental risk associated with the existence of 99 emerging organic contaminants (EOCs) in sludge-amended soil was estimated using risk quotient (RQ) approach. Data on the concentration levels of EOCs in sewage sludge was collected after literature review. Chemical analyses were also conducted for 50 pharmaceuticals and illicit drugs in sludge samples from Athens Sewage Treatment Plant. Risk assessment was based on both terrestrial and aquatic acute toxicity data, using both the maximum and the average measured concentrations of the target compounds. EC50/LC50 values were collected through literature review or using the ECOSAR program in cases that experimental values were not available. Triclosan seems to pose an environmental risk on the soil environment, as its RQ values exceeded 1, both in terrestrial and aquatic toxicity data based risk assessment. Calculations based on aquatic toxicity data showed that another eleven compounds had RQs higher than 1, most of them belonging to the classes of synthetic phenolic compounds and siloxanes. Tetradecamethylhexasiloxane presented the highest RQ, while high RQs were also calculated for decamethylcyclopentasiloxane and caffeine. No environmental risk for the terrestrial environment is expected due to the individual action of illicit drugs, perfluorinated compounds and benzotriazoles. The sludge source and the day of sampling affected the estimated threat due to nonylphenolic compounds; however these factors did not affect the estimated risk for siloxanes, caffeine and ofloxacin. Calculation of RQ values for the mixture of EOCs, using either the maximum or the average concentrations, far exceeded 1 (253 and 209, respectively), indicating a presumable threat for the terrestrial environment due to the baseline toxicity of these compounds. Countries that reuse sludge for agricultural purposes should include specific EOCs in national monitoring campaigns and study more thoroughly on their effects to the terrestrial environment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Acosta, Jose A.; Faz, Ángel; Zornoza, Raúl; Martínez-Martínez, Silvia; Bech, Jaume
2015-04-01
Intense mining activities in the past were carried out in Cartagena-La Unión mining district, SE Spain, and caused excessive accumulation of toxic metals in tailing ponds which poses a high environmental and ecological risk. One of the remediation options gaining considerable interest in recent years is the in situ immobilization of metals. A corresponding reduction in the plant-available metal fraction allows re-vegetation and ecosystem restoration of the heavily contaminated sites. In addition, the use of microorganisms to improve the soil condition is a new tool used to increase spontaneous plant colonization. The aim of this research was to assess the effect of amendments (pig manure, sewage sludge, and lime) and microorganisms on the evolution of soil properties and metals in acid and alkaline tailing ponds and to evaluate the content of metals in Zygophylum fabago one year after amendments application. The study was carried out in two mine ponds (acid and alkaline). Twenty seven square field plots, each one consisting of 4 m2, were located in each pond. Four different doses of microorganism (EM) (0 ml, 20 ml, 100 ml and 200 ml of microorganism solution in each plot) and one dose of pig manure (5 kg per plot), sewage sludge (4 kg per plot) and lime (22 kg per plot) were used. Organic amendment doses were calculated according to European nitrogen legislations, and lime dose was calculated according with the potential acid production through total sulphur oxidation. Three replicates of each treatment (organic amendment + lime + microorganism dose 0, 1, 2, or 3) and control soil (with no amendments) were carried out. Plots were left to the semi-arid climate conditions after the addition of amendments to simulate real potential applications of the results. Soil samples was collected every 4 month from each plot during one year, after this time Zygophylum fabago plants were sampled from each plots. Soil properties including: pH, salinity, total, inorganic and organic carbon, total nitrogen, total phosphorus, potassium, total, bioextractable and soluble metals (Pb, Cu, Zn, As and Cd), basal respiration and microbial biomass carbon; and metals (Pb, Cu, Zn, As and Cd) in roots and shoot from Zygophylum fabago were analyzed. The results showed that the lime increased the concentration of inorganic carbon in both ponds and, therefore, increases the pH until neutral/alkaline values, especially in the acid mine pond, reducing the risk of mobility of As, Pb and Zn to the trophic chain and the risk of leaching and runoff. The application of pig manure increased the salinity in the acid mine pond, as well as the content of OC, TN, K and P in both ponds; also it caused a higher concentration of bioavailable and soluble Cu in both ponds due to the high content of Cu in the manure; finally, an higher concentration of bioavailable and soluble As was observed in the alkaline mine pond due to the formation of organic-metal complexes. The application of sewage sludge increased the content of OC and K in both mine ponds; also it caused an increase in the concentration of bioavailable and water soluble As and a slight increase in the water soluble Cu in the alkaline mine pond likely because of the formation of organic-metal complexes. Both organic amendments increased the microbial biomass carbon (MBC), especially pig manure, indicating that this amendment brings more amount of microorganisms than sewage sludge. Similarly, the application of EM increases MBC, especially in doses 2 and 3, improving soil conditions which favour plant colonization. Furthermore, microbial activity is increased after amendments and EM applications, especially when pig manure was used; indicating that organic matter from pig manure is more easily degradable by microorganisms than organic matter from sewage sludge. Finally, the results indicated that the application of EM promotes the absorption and subsequent translocation to leaves of Cu and As, while prevents the absorption of Cd and Zn in Zygophylum fabago.
Chen, Qinglin; An, Xinli; Li, Hu; Su, Jianqiang; Ma, Yibing; Zhu, Yong-Guan
2016-01-01
Sewage sludge and manure are common soil amendments in crop production; however, their impact on the abundance and diversity of the antibiotic resistome in soil remains elusive. In this study, by using high-throughput sequencing and high-throughput quantitative PCR, the patterns of bacterial community and antibiotic resistance genes (ARGs) in a long-term field experiment were investigated to gain insights into these impacts. A total of 130 unique ARGs and 5 mobile genetic elements (MGEs) were detected and the long-term application of sewage sludge and chicken manure significantly increased the abundance and diversity of ARGs in the soil. Genes conferring resistance to beta-lactams, tetracyclines, and multiple drugs were dominant in the samples. Sewage sludge or chicken manure applications caused significant enrichment of 108 unique ARGs and MGEs with a maximum enrichment of up to 3845 folds for mexF. The enrichment of MGEs suggested that the application of sewage sludge or manure may accelerate the dissemination of ARGs in soil through horizontal gene transfer (HGT). Based on the co-occurrence pattern of ARGs subtypes revealed by network analysis, aacC, oprD and mphA-02, were proposed to be potential indicators for quantitative estimation of the co-occurring ARGs subtypes abundance by power functions. The application of sewage sludge and manure resulted in significant increase of bacterial diversity in soil, Proteobacteria, Acidobacteria, Actinobacteria and Chloroflexi were the dominant phyla (>10% in each sample). Five bacterial phyla (Chloroflexi, Planctomycetes, Firmicutes, Gemmatimonadetes and Bacteroidetes) were found to be significantly correlated with the ARGs in soil. Mantel test and variation partitioning analysis (VPA) suggested that bacterial community shifts, rather than MGEs, is the major driver shaping the antibiotic resistome. Additionally, the co-occurrence pattern between ARGs and microbial taxa revealed by network analysis indicated that four bacterial families might be potential hosts of ARGs. These results may shed light on the mechanism underlining the effects of amendments of sewage sludge or manure on the occurrence and dissemination of ARGs in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Araújo, Ademir Sérgio Ferreira; Lima, Luciano Moura; Santos, Vilma Maria; Schmidt, Radomir
2016-10-01
Repeated application of composted tannery sludge (CTS) changes the soil chemical properties and, consequently, can affect the soil microbial properties. The aim of this study was to evaluate the responses of soil microbial biomass and ammonia-oxidizing organisms to repeated application of CTS. CTS was applied repeatedly during 6 years, and, at the sixth year, the soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms were determined in the soil. The treatments consisted of 0 (without CTS application), 2.5, 5, 10, and 20 t ha(-1) of CTS (dry basis). Soil pH, EC, SOC, total N, and Cr concentration increased with the increase in CTS rate. Soil microbial biomass did not change significantly with the amendment of 2.5 Mg ha(-1), while it decreased at the higher rates. Total and specific enzymes activity responded differently after CTS application. The abundance of bacteria did not change with the 2.5-Mg ha(-1) CTS treatment and decreased after this rate, while the abundance of archaea increased significantly with the 2.5-Mg ha(-1) CTS treatment. Repeated application of different CTS rates for 6 years had different effects on the soil microbial biomass and ammonia-oxidizing organisms as a response to changes in soil chemical properties.
Long-Term Impact of Field Applications of Sewage Sludge on Soil Antibiotic Resistome.
Xie, Wan-Ying; McGrath, Steve P; Su, Jian-Qiang; Hirsch, Penny R; Clark, Ian M; Shen, Qirong; Zhu, Yong-Guan; Zhao, Fang-Jie
2016-12-06
Land applications of municipal sewage sludge may pose a risk of introducing antibiotic resistance genes (ARGs) from urban environments into agricultural systems. However, how the sewage sludge recycling and application method influence soil resistome and mobile genetic elements (MGEs) remains unclear. In the present study, high through-put quantitative PCR was conducted on the resistome of soils from a field experiment with past (between 1994 and 1997) and annual (since 1994) applications of five different sewage sludges. Total inputs of organic carbon were similar between the two modes of sludge applications. Intrinsic soil resistome, defined as the ARGs shared by the soils in the control and sludge-amended plots, consisted of genes conferring resistance to multidrug, β-lactam, Macrolide-Lincosamide-Streptogramin B (MLSB), tetracycline, vancomycin, and aminoglycoside, with multidrug resistance genes as the most abundant members. There was a strong correlation between the abundance of ARGs and MGE marker genes in soils. The composition and diversity of ARGs in the five sludges were substantially different from those in soils. Considerable proportions of ARGs and MGE marker genes in the sludges attenuated following the application, especially aminoglycoside and tetracycline resistance genes. Annual applications posed a more significant impact on the soil resistome, through both continued introduction and stimulation of the soil intrinsic ARGs. In addition, direct introduction of sludge-specific ARGs into soil was observed especially from ARG-rich sludge. These results provide a better insight into the characteristics of ARG dissemination from urban environment to the agricultural system through sewage sludge applications.
Lu, Zai-Liang; Li, Jiu-Yu; Jiang, Jun; Xu, Ren-Kou
2012-10-01
Biochars were prepared from wastewater sludge from two wastewater treatment plants in Nanjing using a pyrolysis method at 300, 500 and 700 degrees C. The properties of the biochars were measured, and their amelioration effects on the acidity of a red soil and environmental risk of application of sludge biochars were examined to evaluate the possibility of agricultural application of wastewater sludge biochars in red soils. Results indicated that incorporation of both sludge and sludge biochar increased soil pH due to the alkalinity of sludge and sludge biochar, and the mineralization of organic N and nitrification of ammonium N from wastewater sludge induced soil pH fluctuated during incubation. The amelioration effects of biochars generated at 500 and 700 degrees C on the soil were significantly greater than that of sludge significantly. Sludge and sludge biochar contain ample base cations of Ca2+, Mg2+, K+ and Na+ and thus incorporation of sludge and sludge biochar increased the contents of soil exchangeable base cations and decreased soil exchangeable aluminum and H+. Contents of heavy metals in sludge biochars were greater than these in their feedstock sludge, while the contents of Cu, Pb, Ni and As in sludge biochars were lower than the standard values of heavy metals were wastewater sludge for agricultural use in acid soils in China except for Zn and Cd. The contents of available forms of heavy metals in the biochars generated from sludge from Chengdong wastewater treatment plant was lower than these in the corresponding sludge, suggesting that pyrolysis proceed decreased the activity of heavy metals in wastewater sludge. After 90-day incubation of the soil with sludge and sludge biochar, the differences in the contents of soil available heavy metals were not significant between the biochars and their feedstock sludge from Jiangxizhou wastewater treatment plant, and the contents in the treatments with biochars added was lower than these in the treatments with the corresponding sludge from Chengdong wastewater treatment plant for most of heavy metals. It can be concluded that the biochars from wastewater sludge could be used as soil amendments to adjust soil acidity. Application of sludge biochars did not increase activity and availability of heavy metals compared with direct incorporation of the sludge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-03-01
This memorandum serves to present the Hercules 009 Landfill Superfund Site Explanation of Significant Difference (ESD) for concurrence. The Record of Decision (ROD) was signed on March 25, 1993 (PB94-964070). The ESD amends the ROD by changing the type of cover to be placed on the treated landfill soils and sludges. The ESD also explains EPA`s justification for determining the appropriate treatment depth in the landfill cells.
Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy
2012-01-01
The aim of the present work was to assess the influence of organic amendment applications compared to mineral fertilization on soil microbial activity and functional diversity. The field experiment was set up on a soil classified as an Eutric Cambisol developed from loess (South-East Poland). Two doses of both dairy sewage sludge (20 Mg·ha(-1) and 26 Mg·ha(-1)) and of mineral fertilizers containing the same amount of nutrients were applied. The same soil without any amendment was used as a control. The soil under undisturbed native vegetation was also included in the study as a representative background sample. The functional diversity (catabolic potential) was assessed using such indices as Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H). These indices were calculated, following the community level physiological profiling (CLPP) using Biolog Eco Plates. Soil dehydrogenase and respiratory activity were also evaluated. The indices were sensitive enough to reveal changes in community level physiological profiles due to treatment effects. It was shown that dairy sewage amended soil was characterized by greater AWCD, R, H and dehydrogenase and respiratory activity as compared to control or mineral fertilized soil. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to depict the differences of the soil bacterial functional diversity between the treatments.
Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy
2012-01-01
The aim of the present work was to assess the influence of organic amendment applications compared to mineral fertilization on soil microbial activity and functional diversity. The field experiment was set up on a soil classified as an Eutric Cambisol developed from loess (South-East Poland). Two doses of both dairy sewage sludge (20 Mg·ha−1 and 26 Mg·ha−1) and of mineral fertilizers containing the same amount of nutrients were applied. The same soil without any amendment was used as a control. The soil under undisturbed native vegetation was also included in the study as a representative background sample. The functional diversity (catabolic potential) was assessed using such indices as Average Well Color Development (AWCD), Richness (R) and Shannon–Weaver index (H). These indices were calculated, following the community level physiological profiling (CLPP) using Biolog Eco Plates. Soil dehydrogenase and respiratory activity were also evaluated. The indices were sensitive enough to reveal changes in community level physiological profiles due to treatment effects. It was shown that dairy sewage amended soil was characterized by greater AWCD, R, H and dehydrogenase and respiratory activity as compared to control or mineral fertilized soil. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to depict the differences of the soil bacterial functional diversity between the treatments. PMID:22737006
Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng
2016-12-01
The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.
Belhaj, Dalel; Athmouni, Khaled; Jerbi, Bouthaina; Kallel, Monem; Ayadi, Habib; Zhou, John L
2016-12-01
The occurrence, fate and ecotoxicological assessment of selected estrogenic compounds were investigated at Tunisian urban sewage treatment plant. The influents, effluents, as well as primary, secondary and dehydrated sludge, were sampled and analyzed for the target estrogens to evaluate their fate. All target compounds were detected in both sewage and sludge with mean concentrations from 0.062 to 0.993 μg L -1 and from 11.8 to 792.9 μg kg -1 dry weight, respectively. A wide range of removal efficiencies during the treatment processes were observed, from 6.3 % for estrone to 76.8 % for estriol. Ecotoxicological risk assessment revealed that the highest ecotoxicological risk in sewage effluent and dehydrated sludge was due to 17β-estradiol with a risk quotient (RQ) of 4.6 and 181.9, respectively, and 17α-ethinylestradiol with RQ of 9.8 and 14.85, respectively. Ecotoxicological risk after sewage discharge and sludge disposal was limited to the presence of 17β-estradiol in dehydrated-sludge amended soil with RQ of 1.38. Further control of estrogenic hormones in sewage effluent and sludge is essential before their discharge and application in order to prevent their introduction into the natural environment.
Agricultural recycling of treatment-plant sludge: a case study for a vegetable-processing factory.
Dolgen, Deniz; Alpaslan, M Necdet; Delen, Nafiz
2007-08-01
The present study evaluated the possibility of using the sludge produced by a vegetable-processing factory in agriculture. The sludge was amended with a soil mixture (i.e., a mixture of sand, soil, and manure) and was applied at 0, 165, 330, 495 and 660 t/ha to promote the growth of cucumbers. The effects of various sludge loadings on plant growth were assessed by counting plants and leaves, measuring stem lengths, and weighing the green parts and roots of the plants. We also compared heavy metal uptake by the plants for sludge loadings of 330, 495, and 660 t/ha with various recommended standards for vegetables. Our results showed that plant growth patterns were influenced to some extent by the sludge loadings. In general, the number of leaves, stem length, and dry weight of green parts exhibited a pronounced positive growth response compared with an unfertilized control, and root growth showed a lesser but still significant response at sludge loadings of 165 and 330 t/ha. The sludge application caused no significant increase in heavy metal concentrations in the leaves, though zinc (Zn) and iron (Fe) were found at elevated concentrations. However, despite the Zn and Fe accumulation, we observed no toxicity symptoms in the plants. This may be a result of cucumber's tolerance of high metal levels.
de la Rosa, José M; Paneque, Marina; Miller, Ana Z; Knicker, Heike
2014-11-15
Three pyrolysis biochars (B1: wood, B2: paper-sludge, B3: sewage-sludge) and one kiln-biochar (B4: grapevine wood) were characterized by determining different chemical and physical properties which were related to the germination rates and to the plant biomass production during a pot experiment of 79 days in which a Calcic Cambisol from SW Spain was amended with 10, 20 and 40 t ha(-1) of the four biochars. Biochar 1, B2 and B4 revealed comparable elemental composition, pH, water holding capacity and ash content. The H/C and O/C atomic ratios suggested high aromaticity of all biochars, which was confirmed by (13)C solid-state NMR spectroscopy. The FT-IR spectra confirmed the aromaticity of all the biochars as well as several specific differences in their composition. The FESEM-EDS distinguished compositional and structural differences of the studied biochars such as macropores on the surface of B1, collapsed structures in B2, high amount of mineral deposits (rich in Al, Si, Ca and Fe) and organic phases in B3 and vessel structures for B4. Biochar amendment improved germination rates and soil fertility (excepting for B4), and had no negative pH impact on the already alkaline soil. Application of B3, the richest in minerals and nitrogen, resulted in the highest soil fertility. In this case, increase of the dose went along with an enhancement of plant production. Considering costs due to production and transport of biochar, for all used chars with the exception of B3, the application of 10 t ha(-1) turned out as the most efficient for the crop and soil used in the present incubation experiment. Copyright © 2014 Elsevier B.V. All rights reserved.
Mohajer, Ardavan; Tremier, Anne; Barrington, Suzelle; Teglia, Cecile
2010-01-01
Composting is a feasible biological treatment for the recycling of wastewater sludge as a soil amendment. The process can be optimized by selecting an initial compost recipe with physical properties that enhance microbial activity. The present study measured the microbial O(2) uptake rate (OUR) in 16 sludge and wood residue mixtures to estimate the kinetics parameters of maximum growth rate mu(m) and rate of organic matter hydrolysis K(h), as well as the initial biodegradable organic matter fractions present. The starting mixtures consisted of a wide range of moisture content (MC), waste to bulking agent (BA) ratio (W/BA ratio) and BA particle size, which were placed in a laboratory respirometry apparatus to measure their OUR over 4 weeks. A microbial model based on the activated sludge process was used to calculate the kinetic parameters and was found to adequately reproduced OUR curves over time, except for the lag phase and peak OUR, which was not represented and generally over-estimated, respectively. The maximum growth rate mu(m), was found to have a quadratic relationship with MC and a negative association with BA particle size. As a result, increasing MC up to 50% and using a smaller BA particle size of 8-12 mm was seen to maximize mu(m). The rate of hydrolysis K(h) was found to have a linear association with both MC and BA particle size. The model also estimated the initial readily biodegradable organic matter fraction, MB(0), and the slower biodegradable matter requiring hydrolysis, MH(0). The sum of MB(0) and MH(0) was associated with MC, W/BA ratio and the interaction between these two parameters, suggesting that O(2) availability was a key factor in determining the value of these two fractions. The study reinforced the idea that optimization of the physical characteristics of a compost mixture requires a holistic approach. 2010 Elsevier Ltd. All rights reserved.
LAND REMEDIATION WITH BIOSOLIDS - SLUDGE MAGIC - TIME BOMB?
Addition of biosolids to soils increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) and alters the chemistry and phytoavailability of these metals. This alteration in phytoavailability associated with biosolids amended soil was recognized and utilized by...
Pesticide mobility and leachate toxicity in two abandoned mine soils. Effect of organic amendments.
Rodríguez-Liébana, José Antonio; Mingorance, M Dolores; Peña, Aránzazu
2014-11-01
Abandoned mine areas, used in the past for the extraction of minerals, constitute a degraded landscape which needs to be reintegrated to productive or leisure activities. However these soils, mainly composed by silt or sand and with low organic matter content, are vulnerable to organic and inorganic pollutants posing a risk to the surrounding ecosystems and groundwater. Soils from two mining areas from Andalusia were evaluated: one from Nerva (NCL) in the Iberian Pyrite Belt (SW Andalusia) and another one from the iron Alquife mine (ALQ) (SE Andalusia). To improve soil properties and fertility two amendments, stabilised sewage sludge (SSL) and composted sewage sludge (CSL), were selected. The effect of amendment addition on the mobility of two model pesticides, thiacloprid and fenarimol, was assessed using soil columns under non-equilibrium conditions. Fenarimol, more hydrophobic than thiacloprid, only leached from native ALQ, a soil with lower organic carbon (OC) content than NCL (0.21 and 1.4%, respectively). Addition of amendments affected differently pesticide mobility: thiacloprid in the leachates was reduced by 14% in NCL-SSL and by 4% in ALQ-CSL. Soil OC and dissolved OC were the parameters which explained pesticide residues in soil. Chemical analysis revealed that leachates from the different soil columns did not contain toxic element levels, except As in NCL soil. Finally ecotoxicological data showed moderate toxicity in the initial leachates, with an increase coinciding with pesticide maximum concentration. The addition of SSL slightly reduced the toxicity towards Vibrio fischeri, likely due to enhanced retention of pesticides by amended soils. Copyright © 2014 Elsevier B.V. All rights reserved.
Lu, Yi; Zhang, Chunmei; Zheng, Guanyu; Zhou, Lixiang
2018-04-22
Prior to mechanical dewatering, sludge conditioning is indispensable to reduce the difficulty of sludge treatment and disposal. The effect of bioacidification conditioning driven by Acidithiobacillus ferrooxidans LX5 on the dewatering rate and extent of sewage sludge during compression dewatering process was investigated in this study. The results showed that the bioacidification of sludge driven by A. ferrooxidans LX5 simultaneously improved both the sludge dewatering rate and extent, which was not attained by physical/chemical conditioning approaches, including ultrasonication, microwave, freezing/thawing, or by adding the chemical conditioner cationic polyacrylamide (CPAM). During the bioacidification of sludge, the decrease in sludge pH induced the damage of sludge microbial cell structures, which enhanced the dewatering extent of sludge, and the added Fe 2+ and the subsequent bio-oxidized Fe 3+ effectively flocculated the damaged sludge flocs to improve the sludge dewatering rate. In the compression dewatering process consisting of filtration and expression stages, high removal of moisture and a short dewatering time were achieved during the filtration stage and the expression kinetics were also improved because of the high elasticity of sludge cake and the rapid creeping of the aggregates within the sludge cake. In addition, the usefulness of bioacidification driven by A. ferrooxidans LX5 in improving the compression dewatering of sewage sludge could not be attained by the chemical treatment of sludge through pH modification and Fe 3+ addition. Therefore, the bioacidification of sludge driven by A. ferrooxidans LX5 is an effective conditioning method to simultaneously improve the rate and extent of compression dewatering of sewage sludge.
Modification of the RothC model to simulate soil C mineralization of exogenous organic matter
NASA Astrophysics Data System (ADS)
Mondini, Claudio; Cayuela, Maria Luz; Sinicco, Tania; Fornasier, Flavio; Galvez, Antonia; Sánchez-Monedero, Miguel Angel
2017-07-01
The development of soil organic C (SOC) models capable of producing accurate predictions for the long-term decomposition of exogenous organic matter (EOM) in soils is important for the effective management of organic amendments. However, reliable C modeling in amended soils requires specific optimization of current C models to take into account the high variability in EOM origin and properties. The aim of this work was to improve the prediction of C mineralization rates in amended soils by modifying the RothC model to encompass a better description of EOM quality. The standard RothC model, involving C input to the soil only as decomposable (DPM) or resistant (RPM) organic material, was modified by introducing additional pools of decomposable (DEOM), resistant (REOM) and humified (HEOM) EOM. The partitioning factors and decomposition rates of the additional EOM pools were estimated by model fitting to the respiratory curves of amended soils. For this task, 30 EOMs from 8 contrasting groups (compost, anaerobic digestates, sewage sludge, agro-industrial waste, crop residues, bioenergy by-products, animal residues and meat and bone meals) were added to 10 soils and incubated under different conditions. The modified RothC model was fitted to C mineralization curves in amended soils with great accuracy (mean correlation coefficient 0.995). In contrast to the standard model, the EOM-optimized RothC was able to better accommodate the large variability in EOM source and composition, as indicated by the decrease in the root mean square error of the simulations for different EOMs (from 29.9 to 3.7 % and 20.0 to 2.5 % for soils amended with bioethanol residue and household waste compost, respectively). The average decomposition rates for DEOM and REOM pools were 89 and 0.4 yr-1, higher than the standard model coefficients for DPM (10 yr-1) and RPM (0.3 yr-1). The results indicate that the explicit treatment of EOM heterogeneity enhances the model ability to describe amendment decomposition under laboratory conditions and provides useful information to improve C modeling on the effects of different EOM on C dynamics in agricultural soils. Future research will involve the validation of the modified model with field data and its application in the long-term simulation of SOC patterns in amended soil at regional scales under climate change.
Han, Rong; Liu, Jinwen; Zhang, Yuancheng; Fan, Xiaoqian; Lu, Wenjing; Wang, Hongtao
2012-03-01
A novel two-step technology, fast biophysical drying (BPD) coupling with fast pyrolysis (FP), was investigated for moisture removal and energy recovery from sewage sludge. For BPD, combined operations of extreme thermophilic amendment (with accelerated increasing and controllable maintenance of substrate temperature) and enhanced convective evaporation were conducted, both beneficial for moisture removal (moisture content reaching 23.1% for 7d) and organic preservation. Biophysical-dried sludge (BPDS) was characterized by homogeneous fine-particle morphology and well-developed porous microstructure. The synthesized BPDS particle preserved most organic components (92% volatile matters and 79% HHV of traditional thermal-dried sludge [TTDS]) attributable to the inhibitory effect of BPD adjustment, presenting considerable capacity for subsequent residue-derived energy. For FP, the distribution of products from BPDS pyrolysis indicated that syngas and char yields were higher than those of TTDS. The syngas from BPDS is a type of hydrogen-rich gas composed of 42.6 vol.% H(2) at 900°C. Copyright © 2011 Elsevier Ltd. All rights reserved.
[Drying characteristics and apparent change of sludge granules during drying].
Ma, Xue-Wen; Weng, Huan-Xin; Zhang, Jin-Jun
2011-08-01
Three different weight grades of sludge granules (2.5, 5, 10 g) were dried at constant temperature of 100, 200, 300, 400 and 500 degrees C, respectively. Then characteristics of weight loss and change of apparent form during sludge drying were analyzed. Results showed that there were three stages during sludge drying at 100-200 degrees C: acceleration phase, constant-rate phase, and falling-rate phase. At 300-500 degrees C, there were no constant-rate phase, but due to lots of cracks generated at sludge surface, average drying rates were still high. There was a quadratic nonlinear relationship between average drying rate and drying temperature. At 100-200 degrees C, drying processes of different weight grade sludge granules were similar. At 300-500 degrees C, drying processes of same weight grade of sludge granules were similar. Little organic matter decomposed till sludge burning at 100-300 degrees C, while some organic matter began to decompose at the beginning of sludge drying at 400-500 degrees C.
On the Formation of Sludge Intermetallic Particles in Secondary Aluminum Alloys
NASA Astrophysics Data System (ADS)
Ferraro, Stefano; Bjurenstedt, Anton; Seifeddine, Salem
2015-08-01
The primary precipitation of Fe-rich intermetallics in AlSi9Cu3(Fe) type alloys is studied for different Fe, Mn, and Cr contents and cooling rates. Differential scanning calorimetry, thermal analysis, and interrupted solidification with a rapid quenching technique were used in combination in order to assess the nucleation temperature of sludge particles, as well as to follow their evolution. The results revealed that the sludge nucleation temperature and the release of latent heat during sludge formation are functions of Fe, Mn, and Cr levels in the molten alloy ( i.e., the sludge factor, SF) and cooling rate. Moreover, it can be concluded that sensitivity to sludge formation is not affected by cooling rate; i.e., a decrease in the SF will reduce sludge nucleation temperature to the same extent for a higher cooling rate as for a lower cooling rate. The sludge formation temperature detected will assist foundries in setting the optimal molten metal temperature for preventing sludge formation in holding furnaces and plunger systems.
Nansubuga, Irene; Banadda, Noble; Ronsse, Frederik; Verstraete, Willy; Rabaey, Korneel
2015-09-15
High rate activated sludge (HRAS) is well-biodegradable sludge enabling energy neutrality of wastewater treatment plants via anaerobic digestion. However, even through successful digestion a notable residue still remains. Here we investigated whether this residue can be converted to biochar, for its use as a fertilizer or as a solid fuel, and assessed its characteristics and overall process efficiency. In a first phase, HRAS was anaerobicaly digested under mesophilic conditions at a sludge retention time of 20 days. HRAS digested well (57.9 ± 6.2% VS degradation) producing on average 0.23 ± 0.04 L CH4 per gram VS fed. The digestate particulates were partially air-dried to mimic conditions used in developing countries, and subsequently converted to biochar by fixed-bed slow pyrolysis at a residence time of 15 min and at highest heating temperatures (HHT) of 300 °C, 400 °C and 600 °C. Subsequently, the produced chars were characterized by proximate analysis, CHN-elemental analysis, pH in solution and bomb calorimetry for higher heating value. The yield and volatile matter decreased with increasing HHT while ash content and fixed carbon increased with increasing HHT. The produced biochar showed properties optimal towards soil amendment when produced at a temperature of 600 °C with values of 5.91 wt%, 23.75 wt%, 70.35% on dry basis (db) and 0.44 for volatile matter, fixed carbon, ash content and H/C ratio, respectively. With regard to its use for energy purposes, the biochar represented a lower calorific value than the dried HRAS digestate likely due to high ash content. Based on these findings, it can be concluded that anaerobic digestion of HRAS and its subsequent biochar formation at HHT of 600 °C represents an attractive route for sludge management in tropic settings like in Uganda, coupling carbon capture to energy generation, carbon sequestration and nutrient recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pose-Juan, Eva; Igual, José M.; Sánchez-Martín, María J.; Rodríguez-Cruz, M. S.
2017-01-01
The effect of organic amendments and pesticides on a soil microbial community has garnered considerable interest due to the involvement of microorganisms in numerous soil conservation and maintenance reactions. The aim of this work was to assess the influence on a soil microbial community of the simultaneous application of the herbicide triasulfuron at three doses (2, 10, and 50 mg kg-1), with an organic amendment [sewage sludge (SS) or green compost (GC)]. Dissipation kinetics, soil microbial biomass, dehydrogenase activity (DHA) and respiration, and the profile of phospholipid fatty acids (PLFAs) extracted from the soil, were determined in unamended (S) soil and amended (S+SS and S+GC) ones. Triasulfuron dissipation followed the single first-order kinetics model. Half-life (DT50) values were higher in the amended soils than in the unamended one for the 10 and 50 mg kg-1 doses. The dissipation rates were lower in the S+GC soil for the three herbicide doses applied. In general, soil biomass, DHA and respiration values increased in SS- and GC-amended soils compared to the unamended one. DHA values decreased (S and S+SS) or increased (S+GC) with the incubation time of soil with herbicide at the different doses applied. Respiration values increased with the herbicide doses applied and decreased with the incubation time, although maximum values were obtained for soils treated with the highest dose after 70 days of incubation. PLFA analysis indicated different effects of triasulfuron on the soil microbial community structure depending on the organic amendments. While the increasing triasulfuron doses resulted in deeper alterations in the S soil, the time after triasulfuron application was the most important variation in the S+SS and S+GC soils. The overall results indicate that the soil amendment has an effect on herbicide dissipation rate and the soil microbial community. Initially, a high dose of triasulfuron had detrimental effects on the soil microbial community, which is important in the case of the long-term use of this compound. PMID:28337188
Surface interactions between gold nanoparticles and biochar
USDA-ARS?s Scientific Manuscript database
Engineered nanomaterials are directly applied to agricultural soils as a part of pesticide/fertilize formulations and sludge/manure amendments. Yet, no prior reports are available on the extent and reversibility of gold nanoparticles (nAu) retention by soil components including charcoal black carbo...
De Henau, H; Mathijs, E; Hopping, W D
1986-01-01
Linear Alkylbenzenesulphonates (LAS), a major anionic surfactant used in laundry products, can be measured specifically in the environment by instrumental analysis. In addition to a desulphonation-gas chromatography approach, a method based on high performance liquid chromatography has been developed. The main features of the methods are outlined, and LAS concentrations measured in sewage sludge, sediments and sludge amended soils are reported. Knowledge of usage volumes, sewage treatment practices and environmental transport and transformation mechanisms has been used to predict concentrations of LAS. These calculated concentrations were found to agree well with those actually measured in the environment. Both measured and calculated ambient concentrations of LAS are below those which could produce potentially adverse effects in representative surface water, benthic and terrestrial organisms.
Ahmad, Zahoor; Yamamoto, Sadahiro; Honna, Toshimasa
2008-01-01
Concerns over increased phosphorus (P) application with nitrogen (N)-based compost application have shifted the trend to P-based composed application, but focusing on one or two nutritional elements does not serve the goals of sustainable agriculture. The need to understand the nutrient release and uptake from different composts has been further aggravated by the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, we evaluated the leachability and phytoavailability of P, N, and K from a sandy loam soil amended with animal, poultry, and sludge composts when applied on a total P-equivalent basis (200 kg ha(-1)) under Cl(-) (NaCl)- and SO4(2-) (Na2SO4)-dominated irrigation water. Our results showed that the concentration of dissolved reactive P (DRP) was higher in leachates under SO(4)(2-) than Cl(-) treatments. Compost amendments differed for DRP leaching in the following pattern: sludge > animal > poultry > control. Maize (Zea mays L.) growth and P uptake were severely suppressed under Cl(-) irrigation compared with SO4(2-) and non-saline treatments. All composts were applied on a total P-equivalent basis, but maximum plant (shoot + root) P uptake was observed under sludge compost amendment (73.4 mg DW(-1)), followed by poultry (39.3 mg DW(-1)), animal (15.0 mg DW(-1)), and control (1.2 mg DW(-1)) treatment. Results of this study reveal that irrigation water dominated by SO4(2-) has greater ability to replace/leach P, other anions (NO3(-)), and cations (K+). Variability in P release from different bio-composts applied on a total P-equivalent basis suggested that P availability is highly dependent on compost source.
Collard, Marie; Teychené, Benoit; Lemée, Laurent
2017-12-01
Drying process aims at minimising the volume of wastewater sludge (WWS) before disposal, however it can impact sludge characteristics. Due to its high content in organic matter (OM) and lipids, sludge are mainly valorised by land farming but can also be considered as a feedstock for biodiesel production. As sludge composition is a major parameter for the choice of disposal techniques, the objective of this study was to determine the influence of the drying process. To reach this goal, three sludges obtained from solar, reed beds and thermal drying processes were investigated at the global and molecular scales. Before the drying step the sludges presented similar physico-chemical (OM content, elemental analysis, pH, infrared spectra) characteristics and lipid contents. A strong influence of the drying process on lipids and humic-like substances contents was observed through OM fractionation. Thermochemolysis-GCMS of raw sludge and lipids revealed similar molecular content mainly constituted with steroids and fatty acids. Molecular changes were noticeable for thermal drying through differences in branched to linear fatty acids ratio. Finally the thermal drying induced a weakening of OM whereas the solar drying led to a complexification. These findings show that smooth drying processes such as solar or reed-beds are preferable for amendment production whereas thermal process leads to pellets with a high lipid content which could be considered for fuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prajapati, Kalp Bhusan; Singh, Rajesh
2018-05-10
In present study batch tests were performed to investigate the enhancement in methane production under bio-electrolysis anaerobic co-digestion of sewage sludge and food waste. The bio-electrolysis reactor system (B-EL) yield more methane 148.5 ml/g COD in comparison to reactor system without bio-electrolysis (B-CONT) 125.1 ml/g COD. Whereas bio-electrolysis reactor system (C-EL) Iron Scraps amended yield lesser methane (51.2 ml/g COD) in comparison to control bio-electrolysis reactor system without Iron scraps (C-CONT - 114.4 ml/g COD). Richard and Exponential model were best fitted for cumulative methane production and biogas production rates respectively as revealed modelling study. The best model fit for the different reactors was compared by Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC). The bioelectrolysis process seems to be an emerging technology with lesser the loss in cellulase specific activity with increasing temperature from 50 to 80 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.
Riber, Leise; Poulsen, Pernille H B; Al-Soud, Waleed A; Skov Hansen, Lea B; Bergmark, Lasse; Brejnrod, Asker; Norman, Anders; Hansen, Lars H; Magid, Jakob; Sørensen, Søren J
2014-10-01
We investigated immediate and long-term effects on bacterial populations of soil amended with cattle manure, sewage sludge or municipal solid waste compost in an ongoing agricultural field trial. Soils were sampled in weeks 0, 3, 9 and 29 after fertilizer application. Pseudomonas isolates were enumerated, and the impact on soil bacterial community structure was investigated using 16S rRNA amplicon pyrosequencing. Bacterial community structure at phylum level remained mostly unaffected. Actinobacteria, Proteobacteria and Chloroflexi were the most prevalent phyla significantly responding to sampling time. Seasonal changes seemed to prevail with decreasing bacterial richness in week 9 followed by a significant increase in week 29 (springtime). The Pseudomonas population richness seemed temporarily affected by fertilizer treatments, especially in sludge- and compost-amended soils. To explain these changes, prevalence of antibiotic- and mercury-resistant pseudomonads was investigated. Fertilizer amendment had a transient impact on the resistance profile of the soil community; abundance of resistant isolates decreased with time after fertilizer application, but persistent strains appeared multiresistant, also in unfertilized soil. Finally, the ability of a P. putida strain to take up resistance genes from indigenous soil bacteria by horizontal gene transfer was present only in week 0, indicating a temporary increase in prevalence of transferable antibiotic resistance genes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Peyton, D P; Healy, M G; Fleming, G T A; Grant, J; Wall, D; Morrison, L; Cormican, M; Fenton, O
2016-01-15
Treated municipal sewage sludge ("biosolids") and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising from the land application of four types of treated biosolids and DCS to field micro-plots at three time intervals (24, 48, 360 h) after application. Losses from biosolids-amended plots or DCS-amended plots followed a general trend of highest losses occurring during the first rainfall event and reduced losses in the subsequent events. However, with the exception of total and faecal coliforms and some metals (Ni, Cu), the greatest losses were from the DCS-amended plots. For example, average losses over the three rainfall events for dissolved reactive phosphorus and ammonium-nitrogen from DCS-amended plots were 5 and 11.2 mg L(-1), respectively, which were in excess of the losses from the biosolids plots. When compared with slurry treatments, for the parameters monitored biosolids generally do not pose a greater risk in terms of losses along the runoff pathway. This finding has important policy implications, as it shows that concern related to the reuse of biosolids as a soil fertiliser, mainly related to contaminant losses upon land application, may be unfounded. Copyright © 2015 Elsevier B.V. All rights reserved.
Fate and effects of linear alkylbenzene sulphonates (LAS) in the terrestrial environment.
Jensen, J
1999-02-09
Linear alkylbenzene sulphonates (LAS) are a group of anionic surfactants, characterised by having both a hydrophobic and a hydrophilic group. LAS is one of the major ingredients of synthetic detergents and surfactants and is used world-wide for both domestic and industrial applications. LAS is relatively rapidly aerobically degraded, but only very slowly or not at all degraded under anaerobic conditions. Therefore, LAS can be found in very high concentrations in most sewage sludge and enter the soil compartment as a result of sludge application. LAS can be found in elevated concentrations in soil immediately after sludge amendment, but a half-life of approximately 1-3 weeks will generally prevent accumulation in soil and biota. The concentration in soils that have not received sewage sludge recently, is generally less than 1 mg kg-1 and not more than 5 mg LAS kg-1. This is below the lowest concentration of LAS where effects have been observed in the laboratory. The laboratory data is in accordance with field studies using aqueous solutions of the sodium salt of LAS. However, observations of the ecological impact of sewage sludge applications or application of LAS spiked into sludge indicates a lower toxicity of LAS when applied in sludge. On the basis of the information reviewed in this paper, it is concluded that LAS can be found in high concentrations in sewage sludge, but that the relatively rapid aerobic degradation and the reduced bioavailability when applied via sludge, most likely will prevent LAS from posing a threat to terrestrial ecosystems on a long term basis.
Chand, Sukhmal; Yaseen, M; Rajkumari; Patra, D D
2015-01-01
A field experiment was conducted to evaluate the effective utilization of tannery sludge for cultivation of clarysage (Salvia sclarea) at CIMAP research farm, Lucknow, India during the year 2012-2013. Six doses (0, 20, 40, 60, 80, 100 tha(-1)) of processed tannery sludge were tested in randomised block design with four replications. Results revealed that maximum shoot, root, dry matter and oil yield were obtained with application of 80 tha(-1)of tannery sludge and these were 94, 113 and 61% higher respectively, over control. Accumulation of heavy metals (Cr, Ni, Fe, Pb) were relatively high in shoot portion of the plant than root. Among heavy metals, magnitude of chromium accumulation was higher than nickel, iron and lead in shoot as well as in root. Linalool, linalyl acetate and sclareol content in oil increased by 13,8 and 27% respectively over control, with tannery sludge application at 80 tha(-1). Heavy metals such as chromium, cadmium and lead content reduced in postharvest soil when compared to initial status. Results indicated that clarysage (Salvia sclarea) can be grown in soil amended with 80 tha(-1)sludge and this can be a suitable accumulator of heavy metals for phytoremediation of metal polluted soils.
Code of Federal Regulations, 2010 CFR
2010-07-01
... oil, sludge, oil refuse, and oil mixed with wastes other than dredged spoil. (i) Remove or removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS LIABILITY LIMITS FOR... surface. (b) Act means the Federal Water Pollution Control Act, as amended, 33 U.S.C. 1151, et seq. (c...
González, M M; Martín, J; Santos, J L; Aparicio, I; Alonso, E
2010-01-01
In the present work, the concentrations of the organic pollutants nonylphenol (NP) and nonylphenol mono- and diethoxylates (NP1EO and NP2EO, respectively) in primary, secondary, mixed, aerobically-digested, anaerobically-digested, dehydrated, compost and lagoon sludge samples from different sludge treatments have been evaluated. Toxicological risk assessment of these compounds in sludge and sludge-amended soil has also been reported. NP, NP1EO and NP2EO were monitored in sludge samples obtained from treatment plants located in Andalusia (south of Spain) based on anaerobic treatments (11 anaerobic-digestion wastewater treatment plants and 3 anaerobic wastewater stabilization ponds) or on aerobic treatments (3 aerobic-digestion wastewater treatment plants, 1 dehydration treatment plant and 2 composting plants). The sum of NP, NP1EO and NP2EO (NPE) concentrations has been evaluated in relation to the limit value of 50 mg/kg set by the European Union Sludge Directive draft published in April 2000 (Working Document on Sludge). In most of the samples, NP was present at higher concentration levels (mean value 88.0 mg/kg dm) than NP1EO (mean value 33.8 mg/kg dm) and NP2EO (mean value 14.0 mg/kg dm). The most contaminated samples were compost, anaerobically-digested sludge, lagoon sludge and aerobically-digested sludge samples, which contained NPE concentrations in the ranges 44-962 mg/kg dm, 8-669 mg/kg dm, 27-319 mg/kg dm and 61-282 mg/kg dm, respectively. Risk quotients, expressed as the ratios between environmental concentrations and the predicted no-effect concentrations, were higher than 1 for NP, NP1EO and NP2EO in the 99%, 92% and 36% of the studied samples, respectively; and higher than 1 in the 86%, 6% and 2%, respectively, after sludge application to soil, leading to a significant ecotoxicological risk mainly due to the presence of NP.
Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Duenk, Peter; Lapen, David R; Topp, Edward
2016-07-01
Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -β, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption.
NASA Astrophysics Data System (ADS)
Hueso Gonzalez, Paloma; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose
2016-04-01
During dry periods in the Mediterranean area, the lack of water entering the soil matrix reduces organic contributions to the soil. These processes lead to reduced soil fertility and soil vegetation recovery which creates a positive feedback process that can lead to desertification. Restoration of native vegetation is the most effective way to regenerate soil health, and control runoff and sediment yield. In Mediterranean areas, after a forestry proposal, it is highly common to register a significant number of losses for the saplings that have been introduced due to the lack of rainfall. When no vegetation is established, organic amendments can be used to rapidly protect the soil surface against the erosive forces of rain and runoff. In this study we investigated the hydrological effects of five soil treatments in relation to the temporal variability of the available water for plants. Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. In control plots, during June, July, August and September, soils were registered below the wilting point, and therefore, in the area of water unusable by plants. These months were coinciding with the summer mediterranean drought. This fact justifies the high mortality found on plants after the seeding plan. Similarly, soils have never exceeded the field capacity value measured for control plots. Conversely, in the straw and pinus mulch, soils were above the wilting point during a longer time than in control plots. Thus, the soil moisture only has stayed below the 4.2 pF suction in July, July and August. Regarding the amount of water available was also higher, especially in the months of December, January and February. However, the field capacity value measured has not showed any differences regarding the control. For these treatments, the survival sapling rates measured were the highest. Sludge, manure and polymers showed a moisture retention capacity slightly more limited than straw and pinus mulch. Likewise, it has been found that the area of usable water by plants was also lower, especially during the months of January and February. This situation is especially sharpened in plots amended with manure. In this treatment, the upper part of the soil profile was below the wilting point for six months a year (from April to August). For this treatment, the survival sapling rates measured were the lowest. In conclusion, from a land management standpoint, the pinus and straw mulch treatments have been shown as effective methods reducing water stress for plants. In this research, mulching has been proved as a significant method to reduce the mortality sapling rates during the mediterranean summer drought.
Zielińska, Anna; Oleszczuk, Patryk
2016-11-01
The aim of this study was to evaluate the effect of soils on the sorption of phenanthrene (PHE) and pyrene (PYR) by sewage sludge-derived biochars (SS-derived biochars). The SS-derived biochars were added to soils with varying properties as well as with a different degree and source of polycyclic aromatic hydrocarbons (PAHs) contamination. The biochars (BCs) were produced from sewage sludge during pyrolysis at temperatures of 500 °C (BC500) and 700 °C (BC700). The addition of biochars to the soils (5 %, w/w) increased the sorption of PHE from 8.3 to 20.3 % and PYR from 14.5 to 31.7 % by amended soil. BC700 biochar was characterized by better sorption capacity than BC500 biochar. Nevertheless, the presence of soil reduces the effectiveness of biochars in binding the compounds studied. The sorption capacity of the biochars decreased several times after they had been mixed with the soil compared to pure biochars. The study found dissolved organic carbon (DOC) and clay minerals present in the soils to have a significant effect on reducing the efficiency of PHE and PYR sorption by biochar. A greater impact of fouling was observed in the case of BC500 biochar characterized by lower porosity than BC700 biochar.
Kim, Juhee; Kim, Yong-Seong; Hyun, Seunghun; Moon, Deok Hyun; Chang, Jun Young
2016-10-01
Variation of the chemical extractability and phytoavailability of two metallic elements (e.g., As and Pb) on amendment-treated soils was investigated. Four mine-impacted agricultural soils contaminated with both As (174-491 mg kg -1 ) and Pb (116-357 mg kg -1 ) were amended with an iron-rich sludge at the rate of 5 % (w/w). After a 4-, 8-, and 16-week incubation, the extractability of metallic elements was assessed by sequential extraction procedure (SEP; F1-F5). The control without amendment was also run. In amended soils, the labile element mass (i.e., F1 + F2) promptly decreased (15-48 % of As and 5-10 % of Pb) in 4 weeks, but the decrement was continued over 16 weeks up to 70 and 28 % for As and Pb, respectively. The labile mass decrement was quantitatively corresponded with the increment of F3 (bound to amorphous metal oxides). In plant test assessed by radish (Raphanus sativus) grown on the 16-week soils, up to 57 % of As and 28 % of Pb accumulation was suppressed and 10-43 % of growth (i.e., shoot/root elongation and fresh weight) was improved. For both the control and amended soils, element uptake by plant was well correlated with their labile soil concentrations (r 2 = 0.799 and 0.499 for As and Pb, respectively). The results confirmed that the iron-rich material can effectively suppress element uptake during R. sativus seedling growth, most likely due to the chemical stabilization of metallic elements in growth medium.
Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R; Topp, Edward
2014-11-01
The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Asgari, Alireza; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Dehghani, Mohammad Hadi; Nazmara, Shahrokh; Yaghmaeian, Kamyar
2017-01-01
In Iran, re-refinery industry has been developed many years ago based on the acid-clay treatment. Acidic sludge with high concentration of total petroleum hydrocarbon (TPH) is the final products of some facilities. In this study removal of TPH by aerated in-vessel composting was investigated. In order to microorganisms seeding and nutrient providing, urban immature compost was added as an amendment to acidic sludge. The ratios of acidic sludge (AS) to compost were, 1:0 (as control), 1:5, 1:8, 1:10, 1:15, 1:20, 1:30, 1:40, 1:50, 1:75 and 1:100 (as dry basis) at a C: N: P ratio of 100:5:1 and 45-65% moisture content for 70 days. The removal efficiency in all reactors was more than 48%. The highest and lowest TPH removal was observed in 1:5 (71.56%) and 1:100 (48.53%) mixing ratios, respectively. The results of the control reactors showed that biological treatment was the main mechanism for TPH removal. Experimental data was fitted second order kinetic model ( R 2 > 0.8006). Degradation of TPH in 1:5 mixing ratio (k 2 = 0.0038 gmg -1 d -1 ; half-life = 3.08d) was nearly three times faster than 1:100 mixing ratio (k 2 = 0.0238; half-life = 8.96d). The results of the control reactors showed that biological treatment was the main mechanism for TPH removal. The results of this study revealed in-vessel composting with immature urban compost as the amendment maybe recommended as an effective method for TPH remediation.
Rahube, Teddie O.; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R.
2014-01-01
The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice. PMID:25172864
Chiochetta, Claudete G; Toumi, Hela; Böhm, Renata F S; Engel, Fernanda; Poyer-Radetski, Gabriel; Rörig, Leonardo R; Adani, Fabrizio; Radetski, Claudemir M
2017-11-01
Coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. The arid soil resulting from acid mine drainage affects terrestrial and aquatic ecosystems, and thus, site remediation programs must be implemented to mitigate this sequential deleterious processes. A low-cost alternative material to counterbalance the affected physico-chemical-microbiological aspects of the degraded soil is the amendment with low contaminated and stabilized industrial organic sludge. The content of nutrients P and N, together with stabilized organic matter, makes this material an excellent fertilizer and soil conditioner, fostering biota colonization and succession in the degraded site. However, choice of native plant species to restore a degraded site must be guided by some minimal criteria, such as plant survival/adaptation and plant biomass productivity. Thus, in this 3-month study under environmental conditions, phytoproductivity tests with five native plant species (Surinam cherry Eugenia uniflora L., C. myrianthum-Citharexylum myrianthum, Inga-Inga spp., Brazilian peppertree Schinus terebinthifolius, and Sour cherry Prunus cerasus) were performed to assess these criteria, and additional biochemical parameters were measured in plant tissues (i.e., protein content and peroxidase activity) exposed to different soil/sludge mixture proportions. The results show that three native plants were more adequate to restore vegetation on degraded sites: Surinam cherry, C. myrianthum, and Brazilian peppertree. Thus, this study demonstrates that phytoproductivity tests associated with biochemical endpoint measurements can help in the choice of native plant species, as well as aiding in the choice of the most appropriate soil/stabilized sludge proportion in order to optimize biomass production.
Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen
2016-10-01
Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS. Copyright © 2016. Published by Elsevier Ltd.
Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu
2016-01-01
Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study. PMID:27835687
Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu
2016-01-01
Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.
Environmental risk assessment of the use of different organic wastes as soil amendments
NASA Astrophysics Data System (ADS)
Alvarenga, Paula; Palma, Patrícia; Mourinha, Clarisse; Farto, Márcia; Cunha-Queda, Ana Cristina; Natal-da-Luz, Tiago; Sousa, José Paulo
2013-04-01
The use of organic wastes in agriculture is considered a way of maintaining or restoring the quality of soils, enlarging the slow cycling soil organic carbon pool. However, a wide variety of undesired substances, such as potentially trace elements and organic contaminants, can have adverse effects on the environment. That fact was highlighted by the Proposal for a Soil Framework Directive, which recognized that "soil degradation or soil improvements have a major impact on other areas, (…) such as surface waters and groundwater, human health, climate change, protection of nature and biodiversity, and food safety". Taking that into account, the research project "ResOrgRisk" aims to assess the environmental risk involved in the use of different organic wastes as soil amendments, evidencing their benefits and constraints, and defining the most suitable tests to reach such assessment. The organic wastes selected for this purpose were: sewage sludge, limed, not limed, and co-composted with agricultural wastes, agro-industrial sludge, mixed municipal solid waste compost, compost produced from organic farming residues, and pig slurry digestate. Whereas threshold values for heavy metals in sludge used for agriculture have been set by the European Commission, actually there is no definitive European legislation for organic contaminants. Guide values for some organic contaminants (e.g. polychlorinated biphenyls - PCBs, and polycyclic aromatic hydrocarbons - PAHs) have been adopted at national level by many European countries, such as Portugal. These values should be taken into account when assessing the risk involved in the use of organic wastes as soil amendments. However, chemical analysis of organic waste often gives scarce information because it does not include possible interactions between chemicals. Furthermore, an exhaustive identification and quantification of all substances is impractical. In this study, ecotoxicological tests (comprising solid and aquatic phases) were performed to obtain an integrated assessment on the effects of all contaminants from each organic waste, as a whole, to terrestrial systems. The results for the chemical and ecotoxicological characterization of the organic wastes selected in this study will be discussed, emphasizing the potential benefits and the risks of their use as soil amendments.
Utilizing water treatment residuals to reduce phosphorus runoff from biosolids
USDA-ARS?s Scientific Manuscript database
Approximately 40% of biosolids (sewage sludge) produced in the U.S. are incinerated or landfilled rather than land applied due to concern over non-point source phosphorus (P) runoff. The objective of this study was to determine the impact of chemical amendments on water-extractable P (WEP) in appli...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.
2011-06-08
Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less
[Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].
Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang
2011-09-01
In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in wastewater by the absorption of activated sludge.
Boudjabi, Sonia; Kribaa, Mohammed; Chenchouni, Haroun
2015-01-01
In arid and semi-arid areas, low soil fertility and water deficit considerably limit crop production. The use of sewage sludge as an organic amendment could contribute to the improvement of soil fertility and hence the agronomic production. The study aims to highlight the behaviour of durum wheat to the application of sewage sludge associated with water stress. The assessment focused on morphophysiological parameters of the wheat plant and yield. Under greenhouse conditions, the variety Mohamed Ben Bachir was treated by four water stress levels (100 %, 80 %, 50 % and 30 %). Each stress level comprised five fertilizer treatments: 20, 50 and 100 t/ha of dry sludge, 35 kg/ha of urea, and a control with no fertilization. Results revealed a significant loss in water content and chlorophyll a in leaves. Water stress negatively affected the development of wheat plants by reducing significantly seed yield, leaf area and biomass produced. Plant’s responses to water stress manifested by an accumulation of proline and a decrease in total phosphorus. However, the increasing doses of sewage sludge limited the effect of water stress. Our findings showed an increase in the amount of chlorophyll pigments, leaf area, total phosphorus, biomass and yield. In addition, excessive accumulation of proline (1.11 ± 1.03 µg/g DM) was recorded as a result of the high concentration of sludge (100 t/ha DM). The application of sewage sludge is beneficial for the wheat crop, but the high accumulation of proline in plants treated with high dose of sludge suggests to properly consider this fact. The application of sludge should be used with caution in soils where water is limited. Because the combined effect of these two factors could result in a fatal osmotic stress to crop development. PMID:26417365
Alvarenga, Emilio; Øgaard, Anne Falk; Vråle, Lasse
2017-04-01
More efficient plant utilisation of the phosphorus (P) in sewage sludge is required because rock phosphate is a limited resource. To meet environmental legislation thresholds for P removal from wastewater (WW), primary treatment with iron (Fe) or aluminium (Al) coagulants is effective. There is also a growing trend for WW treatment plants (WWTPs) to be coupled to a biogas process, in order to co-generate energy. The sludge produced, when stabilised, is used as a soil amendment in many countries. This study examined the effects of anaerobic digestion (AD), with or without liming as a post-treatment, on P release from Fe- and Al-precipitated sludges originating from primary WWTPs. Plant uptake of P from Fe- and Al-precipitated sludge after lime treatment but without AD was also compared. Chemical characterisation with sequential extraction of P and a greenhouse experiment with barley (Hordeum vulgare) were performed to assess the treatment effects on plant-available P. Liming increased the P-labile fraction in all cases. Plant P uptake increased from 18.5 mg pot -1 to 53 mg P pot -1 with liming of Fe-precipitated sludge and to 35 mg P pot -1 with liming of the digestate, while it increased from 18.7 mg pot -1 to 39 and 29 mg P pot -1 for the Al-precipitated substrate and digestate, respectively. Thus, liming of untreated Fe-precipitated sludge and its digestate resulted in higher P uptake than liming its Al-precipitated counterparts. AD had a negative impact on P mobility for both sludges.
40 CFR 61.54 - Sludge sampling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... maximum 24-hour period sludge incineration or drying rate shall be determined by use of a flow rate... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Sludge sampling. 61.54 Section 61.54... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.54 Sludge...
40 CFR 61.54 - Sludge sampling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... maximum 24-hour period sludge incineration or drying rate shall be determined by use of a flow rate... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Sludge sampling. 61.54 Section 61.54... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.54 Sludge...
40 CFR 61.54 - Sludge sampling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... maximum 24-hour period sludge incineration or drying rate shall be determined by use of a flow rate... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Sludge sampling. 61.54 Section 61.54... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.54 Sludge...
Contribution of wastes and biochar amendment to the sorption capacity of heavy metals by a minesoil
NASA Astrophysics Data System (ADS)
Forján, Rubén; Asensio, Verónica; Vega, Flora A.; Andrade, Luisa; Covelo, Emma F.
2013-04-01
The use of wastes as soil amendments is a technique applied to reduce the available concentration of heavy metals in polluted sites (Pérez-de-Mora et al., 2005). However, the used wastes sometimes have high concentration of metals such as Cu, Pb, and Zn. Therefore, the sorption capacity of the amendments is important to understand its behavior in soil. The settling pond soil in a mine (S) located at Touro (Spain) was amended with a mixture of sewage sludges, sludges from an aluminum plant, ash, food industry wastes, sands from a wastewater treatment plant and biochar (A). The present study was performed to determine the influence of the addition of the amendment (A) in the sorption capacity of Cu, Pb, and Zn of the studied soil (S). The amendment (A) and the soil (S) were mixed (SA) at 20, 40, 60% and then introduced into glass vessels. The amendment A and S the soil at 100% were also introduced in glass vials as control samples. Mixtures and controls were incubated to field capacity for one month. To evaluate the sorption capacity of the soil and the mixtures soil-amendment, sorption isotherms were constructed using multiple-metal solutions of Cu, Pb and Zn nitrates (0.03, 0.05, 0.08, 0.1 and 0.5 mmol L-1) containing 0.01 M NaNO3 as background electrolyte (Vega et al., 2009). The overall capacity of the soil to sorb Cu, Pb y Zn was evaluated as the slope Kr (Vega et al., 2008). The sorption capacity of the amendment (A) is higher than the soil (S) for the three studied elements, which reflects that this amendment has a binding capacity of Cu, Pb and Zn higher than soil (S) (P <0.05). The soil-amendment mixtures (SA) in all proportions used, except 20% for Zn, also showed higher sorption capacity than the soil (S). The amended soil has higher sorption capacity of Cu, Pb and Zn than the soil without amending (P < 0.05). The element preferably sorbed by SA in the proportions 20, 40 and 60% is Pb and the least sorbed is Zn. The amendment without mixing with the soil (A) sorbed element is preferably Pb and Cu is the least sorbed (P <0.05). References Asensio, V.; Vega, F.A.; Singh, B.R.; Covelo, E.F. 2013. Science of the Total Environment. 443:446-453. Pérez-de-Mora, A.; Madrid, F.; Cabrera, F.; Madejón, E. 2007. Geoderma. 139: 1-10 Vega, F.A.; Covelo, E.F.; Andrade, M.L. 2009. J. Hazard. Mater. 169: 36-45. Vega, F.A.; Covelo, E.F.; Andrade, M.L. 2008. J. Colloid. Interface Sci. 327: 275-286.
Enhancement of ultrasonic disintegration of sewage sludge by aeration.
Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong
2016-04-01
Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.
Rodríguez-Rodríguez, Carlos E; Marco-Urrea, Ernest; Caminal, Gloria
2010-04-01
Growth and activity of the white-rot fungus Trametes versicolor on sewage sludge were assessed in bioslurry and solid-phase systems. Bioslurry cultures with different loads of sludge (10%, 25% and 38%, w/v) were performed. A lag phase of at least 2 d appeared in the 25 and 38%-cultures, however, the total fungal biomass was higher for the latter and lower for the 10%-culture after 30 d, as revealed by ergosterol determination. Detectable laccase activity levels were found in the 10 and 25%-cultures (up to 1308 and 2588 AUL(-1), respectively) while it was negligible in the 38%-culture. Important levels of ergosterol and laccase were obtained over a 60 d period in sludge solid-phase cultures amended with different concentrations of wheat straw pellets as lignocellulosic bulking material. Degradation experiments in 25%-bioslurry cultures spiked with naproxene (NAP, analgesic) and carbamazepine (CBZ, antiepileptic) showed depletion of around 47% and 57% within 24h, respectively. Complete depletion of NAP and around 48% for CBZ were achieved within 72 h in sludge solid cultures with 38% bulking material. CBZ degradation is especially remarkable due to its high persistence in wastewater treatment plants. Results showed that T. versicolor may be an interesting bioremediation agent for elimination of emerging pollutants in sewage sludge. Copyright 2009 Elsevier Ltd. All rights reserved.
Samara, Eftihia; Matsi, Theodora; Balidakis, Athanasios
2017-10-01
The effect of sewage sludge, stabilized with steelmaking slag, on soil chemical properties and fertility and on wheat (Triticum aestivum L.) growth was evaluated. Dewatered sewage sludge [75% (wet weight basis)] stabilized with steelmaking slag (25%) and three soils with different pH values were used in a pot experiment with winter wheat. The following treatments were applied: (i) sludge addition of 30gkg -1 (≈ 120Mgha -1 , rate equivalent to the common inorganic N fertilization for wheat, based on sludge's water soluble NO 3 -N), (ii) sludge addition of 10gkg -1 (≈ 40Mgha -1 , rate equivalent to the common inorganic N fertilization for wheat, based on sludge's Kjeldahl-N), (iii) addition of the common inorganic N fertilization for wheat (120kgNha -1 ) as NH 4 NO 3 , (iv) control (no fertilizer, no sludge). Sludge application at both rates to all soils resulted in a significant increase of pH, electrical conductivity of the saturation extract (EC se ) and soil available NO 3 -N and P, in comparison to the other two treatments and this increase remained constant till the end of the pot experiment. In sludge treatments pH did not exceed the critical value of 8.5, whereas EC se , although it did not reach the limit of 4dSm -1 , exceeded the value of 2dSm -1 at the rate of 30gkg -1 . Concentrations of heavy metals, which regulate the agronomic use of sewage sludge according to the established legislation, ranged from not detectable to lower than the respective permissible levels. Both rates of sludge's addition in all soils improved wheat's growth, as judged by the significant increase of the aboveground biomass yield and the total plant uptake of almost all nutrients, compared to the other two treatments. It was concluded that sewage sludge stabilized with steelmaking slag could be used in agriculture, applied at rates based on sludge's Kjeldahl-N content and crop's demand for N. However, potential environmental impacts must also be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Jia-Heng; Zhao, Hang; Hu, Miao; Yu, Hai-Tian; Xu, Xiang-Yang; Vidonish, Julia; Alvarez, Pedro J J; Zhu, Liang
2015-12-01
Initial cell aggregation plays an important role in the formation of aerobic granules. In this study, three parallel aerobic granular sludge reactors treating low-strength wastewater were established using granular activated carbon (GAC) of different sizes as the nucleating agent. A novel visual quantitative evaluation method was used to discern how GAC size affects velocity field differences (GAC versus flocs) and aggregation behavior during sludge granulation. Results showed that sludge granulation was significantly enhanced by addition of 0.2mm GAC. However, there was no obvious improvement in granulation in reactor amended with 0.6mm GAC. Hydraulic analysis revealed that increase of GAC size enhanced the velocity field difference between flocs and GAC, which decreased the lifecycle and fraction of flocs-GAC aggregates. Overall, based on analysis of aggregation behavior, GAC of suitable sizes (0.2mm) can serve as the nucleating agent to accelerate flocs-GAC coaggregation and formation of aerobic granules. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Influence of accessories mixing ratio on sludge biophysical co-drying].
Yang, Jin-Long; Du, Qiong; Li, Dong; Han, Rong; Zhao, Yan; Wang, Hong-Tao
2011-08-01
Parameters (temperature, water content and so on) in the process of sludge biophysical co-drying were studied in self-made biophysical co-drying reactor. The sludge: tree bark: recycled sludge was set as 7: 3: 0.5, 9: 3: 0.5, 12: 3: 0.5 respectively. The results suggested that sludge temperature first increased then decreased along with drying time, water content decreased in the first 96 h, then had no obvious variability. While sludge: tree bark: recycled sludge was 9: 3: 0.5, the temperature of sludge spiraling, received to max 67 degrees C at 48 h under three different accessories mixture ratio, and was kept for 72 h above 55 degrees C, then spiraling, the final water content of sludge decreased from 74.1% to 61.8%, received the optimal water content removing rate 43.5%. Accessories mixing ratio had important influence on the process of sludge biophysical co-drying, sludge with proper mixing ratio can modify the structure of sludge, improve sludge permeability, arouse and keep microorganic activity, which will enhance sludge temperature and strengthen water content removal rate.
Zhang, Liang; Liu, Miaomiao; Zhang, Shujun; Yang, Yandong; Peng, Yongzhen
2015-12-01
A pilot-scale activated sludge bioreactor was filled with immobile carrier to treat high ammonium wastewater. Autotrophic nitrogen elimination occurred rapidly by inoculating nitrifying activated sludge and anammox biofilm. As the ammonium loading rate increased, nitrogen removal rate of 1.2kgNm(-3)d(-1) was obtained with the removal efficiency of 80%. Activated sludge diameter distribution profiles presented two peak values, indicating simultaneous existence of flocculent and granular sludge. Red granular sludge was observed in the reactor. Furthermore, the results of morphological and molecular analysis showed that the characteristics of granular sludge were similar to that of biofilm, while much different from the flocculent sludge. It was assumed granular sludge was formed through the continuous growth and detachment of anammox biofilm. The mechanism of granular sludge formation was discussed and the procedure model was proposed. According to the experimental results, the integrated fixed-biofilm activated sludge reactor provided an alternative to nitrogen removal based on anammox. Copyright © 2015 Elsevier Ltd. All rights reserved.
46 CFR 170.050 - General terms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of any kind or in any form, and includes but is not limited to petroleum, fuel oil, sludge, oil refuse, and oil mixed with wastes other than dredged spoil. (i) Partially protected waters means— (1... body of water designated by the OCMI. [CGD 79-023, 48 FR 51010, Nov. 4, 1983, as amended by CGD 88-070...
A common disposal practice for municipal biosolids is to spread this material on agricultural fields as a soil amendment. For example, over 3 million dry tons of treated sewage sludge (or biosolids) are applied on agricultural lands in the US. The regulations which govern the lan...
Lei, Yuqing; Sun, Dezhi; Dang, Yan; Chen, Huimin; Zhao, Zhiqiang; Zhang, Yaobin; Holmes, Dawn E
2016-12-01
Bio-methanogenic digestion of incineration leachate is hindered by high OLRs, which can lead to build-up of VFAs, drops in pH and ultimately in reactor souring. It was hypothesized that incorporation of carbon cloth into reactors treating leachate would promote DIET and enhance reactor performance. To examine this possibility, carbon cloth was added to laboratory-scale UASB reactors that were fed incineration leachate. As expected, the carbon-cloth amended reactor could operate stably with a 34.2% higher OLR than the control (49.4 vs 36.8kgCOD/(m 3 d)). Microbial community analysis showed that bacteria capable of extracellular electron transfer and methanogens known to participate in DIET were enriched on the carbon cloth surface, and conductivity of sludge from the carbon cloth amended reactor was almost twofold higher than sludge from the control (9.77 vs 5.47μS/cm), suggesting that microorganisms in the experimental reactor may have been expressing electrically conductive filaments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sripanomtanakorn, S; Polprasert, C
2002-04-01
Agricultural land is an attractive alternative for the disposal of biosolids since it utilises the recyclable nutrients in the production of crops. In Thailand and other tropical regions, limited field-study information exists on the effect of biosolids management strategies on crop N utilisation and plant available N (PAN) of biosolids. A field study was conducted to quantify the PAN of the applied biosolids, and to evaluate the N uptake rates of some tropical crops. Sunflower (Helianthus annuus) and tomato (Lycopersicon esculentum) were chosen in this study. Two types of biosolids used were: anaerobically digested sludge and septic tank sludge. The soil is acid sulfate and is classified as Sulfic Tropaquepts with heavy clay in texture. The anaerobically digested sludge applied rates were: 0, 156 and 312 kg N ha(-1) for the sunflower plots, and 0, 586, and 1172 kg N ha(-1) for the tomato plots. The septic tank sludge applied rates were: 0, 95 and 190 kg N ha(-1) for the sunflower plots, and 0, 354 and 708 kg N ha(-1) for the tomato plots, respectively. The results indicated the feasibility of applying biosolids to grow tropical crops. The applications of the anaerobically digested sludge and the septic tank sludge resulted in the yields of sunflower seeds and tomato fruits and the plant N uptakes comparable or better than that applied with only the chemical fertiliser. The estimated PAN of the anaerobically digested sludge was about 27-42% of the sludge organic N during the growing season. For the septic tank sludge, the PAN was about 15-58% of the sludge organic N. It is interesting to observe that an increase of the rate of septic tank sludge incorporated into this heavy clay soil under the cropping system resulted in the decrease of N mineralisation rate. This situation could cause the reduction of yield and N uptake of crops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, M.M.; Martin, J.; Camacho-Munoz, D.
2012-07-15
Highlights: Black-Right-Pointing-Pointer Degradation of surfactants in soil amended with sewage sludge during 100 days. Black-Right-Pointing-Pointer Temperature influences on the degradation of the studied compounds. Black-Right-Pointing-Pointer Overall, the LAS degradation is faster than the NP compounds degradation. Black-Right-Pointing-Pointer Therefore, the LAS presented lower environmental risk than the NP compounds. - Abstract: In this work, the degradation of anionic and non-ionic surfactants in agricultural soil amended with sewage sludge is reported. The compounds analysed were: linear alkylbenzene sulphonates (LAS) with a 10-13 carbon alkylic chain, and nonylphenolic compounds (NPE), including nonylphenol (NP) and nonylphenol ethoxylates with one and two ethoxy groups (NP1EOmore » and NP2EO). The degradation studies were carried out under winter (12.7 Degree-Sign C) and summer (22.4 Degree-Sign C) conditions in Andalusia region. The concentration of LAS was reduced to 2% of the initial concentration 100 day after sludge-application to the soil. The half-life time measured for LAS homologues were ranged between 4 and 14 days at 12.7 Degree-Sign C and between 4 and 7 days at 22.4 Degree-Sign C. With regard to NPE compounds, after 8 and 4 days from the beginning of the experiment at 12.7 and 22.4 Degree-Sign C, respectively, their concentration levels were increased to 6.5 and 13.5 mg/kg dm (dry matter) as consequence of the degradation of nonylphenol polyethoxylates. These concentration levels were reduced to 5% after 63 and 70 days for 12.7 Degree-Sign C and 22.4 Degree-Sign C, respectively. The half-life times measured for NPEs were from 8 to 16 days at 12.7 Degree-Sign C and from 8 to 18 days at 22.4 Degree-Sign C. Environmental risk assessment revealed that for LAS homologues no environment risk could be expected after 7 and 8 days of sludge application to the soil for 22.4 and 12.7 Degree-Sign C, respectively; however, potential toxic effects could be observed for the nonylphenolic compounds during the first 56 days after sludge application to the soil.« less
Can compost improve Quercus pubescens Willd establishment in a Mediterranean post-fire shrubland?
Larchevêque, Marie; Montès, Nicolas; Baldy, Virginie; Ballini, Christine
2008-06-01
The aim of the study was to evaluate the effects of sewage sludge compost (control, 20 kg m(-2), 40 kg m(-2)) supplied to Quercus pubescens Willd seedlings planted in a post-fire calcareous site in Provence (France). Changes in soil properties, seedling survival, growth and nutrition were monitored 7 months, 1.5 years and 2.5 years after amendment, and possible trace metal contamination of soil and seedlings by compost was also evaluated. Compost improved overall soil fertility by increasing organic matter, cation exchange capacity, total N and exchangeable P, K, Mg and B concentrations, but 40 kg m(-2) induced a more significant and more durable effect than 20 kg m(-2). However, the compost had no effect on seedling survival and growth, but increased foliar P and B concentrations at 40 kg m(-2). No foliar contamination of seedlings by trace metals occurred, although amendment increased exchangeable Cu and Zn concentrations in soil. Compost P and exchangeable Cu and Zn concentrations could induce eutrophication and water pollution, and limit rates that can be applied without environmental hazard.
Lv, Xiao-Mei; Song, Ju-Sheng; Li, Ji; Zhai, Kun
2017-08-01
In the present study, quick-lime-based thermal-alkaline sludge disintegration (SD) under low temperature was combined with cryptic growth to investigate the excess sludge reduction efficiency in the sequencing batch reactor (SBR). The optimized condition of SD was as follows: T = 80℃, pH = 11, t = 180 min, and the SD rate was about 42.1%. With 65.6% of excess sludge disintegrated and returned to the SBR, the system achieved sludge reduction rate of about 40.1%. The lysis-cryptic growth still obtained satisfactory sludge reduction efficiency despite the comparative low SD rate, which suggested that disintegration rate might not be the decisive factor for cryptic-growth-based sludge reduction. Lysis-cryptic growth did not impact the effluent quality, yet the phosphorus removal performance was enhanced, with effluent total phosphorus concentration decreased by 0.3 mg/L (33%). Crystal compounds of calcium phosphate precipitate were detected in the system by Fourier transform infrared spectroscopy and X-ray diffraction, which indicated the phosphorus removal potential of SD using lime. Moreover, endogenous dehydrogenase activity of activated sludge in the lysis-cryptic system was enhanced, which was beneficial for sludge reduction. SD and cryptic growth in the present study demonstrates an economical and effective approach for sludge reduction.
The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation.
Urbaniak, Magdalena; Wyrwicka, Anna; Tołoczko, Wojciech; Serwecińska, Liliana; Zieliński, Marek
2017-05-15
The aim of the study was to determine the impact of sewage sludge from three wastewater treatment plants of different sizes (small, medium and large) applied in two doses (3 and 9 tons per hectare) on soil properties, determined as the content of organic carbon and humus fractions, bacterial abundance, phytotoxicity and PCDD/PCDF TEQ concentrations. The study also evaluated the impact of this sewage sludge on the biometric and physiological parameters and detoxification reaction of willow (Salix sp.) as a typical crop used for the remediation of soil following sludge application. The cultivation of willow on soil treated with sludge was found to result in a gradual increase of humus fractions, total organic carbon content and bacterial abundance as well as soil properties measured using Lepidium sativum. However, it also produced an initial increase of soil phytotoxicity, indicated by Sinapis alba and Sorghum sacharatum, and PCDD/PCDF Toxic Equivalent (TEQ) concentrations, which then fell during the course of the experiment, particularly in areas planted by willow. Although the soil phytotoxicity and PCDD/PCDF TEQ content of the sewage sludge-amended soil initially increased, sludge application was found to have a positive influence on willow, probably due to its high nutrient and carbon content. The obtained results reveal increases in willow biomass, average leaf surface area and leaf length as well as chlorophyll a+b content. Moreover, a strong decline was found in the activity of the detoxifying enzyme glutathione S-transferase (GSTs), a multifunctional enzyme involved in the metabolism of xenobiotics in plants, again demonstrating the used sludge had a positive influence on willow performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Charlton, Alex; Sakrabani, Ruben; Tyrrel, Sean; Rivas Casado, Monica; McGrath, Steve P; Crooks, Bill; Cooper, Pat; Campbell, Colin D
2016-12-01
The Long-Term Sludge Experiments (LTSE) began in 1994 as part of continuing research into the effects of sludge-borne heavy metals on soil fertility. The long-term effects of Zn, Cu, and Cd on soil microbial biomass carbon (C mic ) were monitored for 8 years (1997-2005) in sludge amended soils at nine UK field sites. To assess the statutory limits set by the UK Sludge (Use in Agriculture) Regulations the experimental data has been reviewed using the statistical methods of meta-analysis. Previous LTSE studies have focused predominantly on statistical significance rather than effect size, whereas meta-analysis focuses on the magnitude and direction of an effect, i.e. the practical significance, rather than its statistical significance. The results presented here show that significant decreases in C mic have occurred in soils where the total concentrations of Zn and Cu fall below the current UK statutory limits. For soils receiving sewage sludge predominantly contaminated with Zn, decreases of approximately 7-11% were observed at concentrations below the UK statutory limit. The effect of Zn appeared to increase over time, with increasingly greater decreases in C mic observed over a period of 8 years. This may be due to an interactive effect between Zn and confounding Cu contamination which has augmented the bioavailability of these metals over time. Similar decreases (7-12%) in C mic were observed in soils receiving sewage sludge predominantly contaminated with Cu; however, C mic appeared to show signs of recovery after a period of 6 years. Application of sewage sludge predominantly contaminated with Cd appeared to have no effect on C mic at concentrations below the current UK statutory limit. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Omil, Beatriz; Mosquera-Losada, Rosa; Merino, Agustín
2007-01-01
Amendment of forest soils with dewatered dairy factory sludge (DDFS), characterized by low heavy metal contents and high amounts of degradable C, can prevent the depletion of soil nutrients that results from intensive harvesting in forest plantations. However, this practice involves environmental risks when N supplies exceed the demand of plants or when the strong acidity of the soil favors the mobility of trace metals. These aspects were assessed in a young radiata pine plantation growing in a sandy, acidic, and organic N-rich soil for the 7 yr after application of a DDFS. The supply of limiting nutrients (mainly P, Mg, and Ca) provided by application of the DDFS, along with control of the ground vegetation, improved the nutritional status of the stand and led to increases in timber volume of more than 60 to 100%. Increases in soil inorganic N were observed during the first months after amendment. Data from soil incubation experiments revealed that some of the additional N was immobilized and, to a lesser extent, denitrified due to the readily available organic C content of the DDFS. Leaching and increased plant uptake of N were prevented by a combination of the latter processes and the low rate of nitrification. The strong acidity of the soil enhanced the availability of Mn and Zn to plants, although the maximum concentrations did not reach levels harmful to organisms. We conclude that although application of DDFS has positive effects on tree nutrition and growth and the environmental risks are low, repeated application may favor mobility of N and availability of heavy metals.
Life cycle assessment of sewage sludge co-incineration in a coal-based power station.
Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei
2013-09-01
A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yoon, Seong-Hoon
2003-04-01
In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.
Relative effectiveness of sewage sludge as a nitrogen fertilizer for tall fescue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiemnec, G.L.; Jackson, T.L.; Hemphill, D.D. Jr.
Sewage sludge application rates on grasses are mainly determined by N availability and concentration of toxic metals in sludge. The exact availability of N in sludge is difficult to predict. A 3-yr study was conducted to determine which sludge rates would give yields of tall fescue (Festuca arundinacea Shreb. Alta) comparable to yields obtained from inorganic N application. Sludge and NH/sub 4/NO/sub 3/ were surface applied at annual rates of 0, 110, 220, 440, and 880 (sludge only) kg N/ha. Dry matter yield of tall fescue from sludge-treated soils was 36, 56, and 50% of that on NH/sub 4/NO/sub 3/-treatedmore » soils for 1976, 1977, and 1978, respectively. Sludge was 27, 41, and 44% as effective as NH/sub 4/NO/sub 3/ as a source of available N in 1976, 1977, and 1978, respectively. Ammonium-N in the sewage sludge apparently provided most of the available N for fescue growth. Concentrations of Zn, Cd, and Cu were higher and Mn lower in tall fescue grown on sludge-treated soil with NH/sub 4/NO/sub 3/ and usually increased toward the end of the growing season. However, plant concentrations of these heavy metals never reached toxic levels at any time. Sewage sludge was an effective and safe nutrient source for tall fescue.« less
Bobade, Veena; Baudez, Jean Christophe; Evans, Geoffery; Eshtiaghi, Nicky
2017-05-01
Gas injection is known to play a major role on the particle size of the sludge, the oxygen transfer rate, as well as the mixing efficiency of membrane bioreactors and aeration basins in the waste water treatment plants. The rheological characteristics of sludge are closely related to the particle size of the sludge floc. However, particle size of sludge floc depends partly on the shear induced in the sludge and partly on physico-chemical nature of the sludge. The objective of this work is to determine the impact of gas injection on both the apparent viscosity and viscoelastic property of sludge. The apparent viscosity of sludge was investigated by two methods: in-situ and after sparging. Viscosity curves obtained by in-situ measurement showed that the apparent viscosity decreases significantly from 4000 Pa s to 10 Pa s at low shear rate range (below 10 s -1 ) with an increase in gas flow rate (0.5LPM to 3LPM); however the after sparging flow curve analysis showed that the reduction in apparent viscosity throughout the shear rate range is negligible to be displayed. Torque and displacement data at low shear rate range revealed that the obtained lower apparent viscosity in the in-situ method is not the material characteristics, but the slippage effect due to a preferred location of the bubbles close to the bob, causing an inconsistent decrease of torque and increase of displacement at low shear rate range. In linear viscoelastic regime, the elastic and viscous modulus of sludge was reduced by 33% & 25%, respectively, due to gas injection because of induced shear. The amount of induced shear measured through two different tests (creep and time sweep) were the same. The impact of this induced shear on sludge structure was also verified by microscopic images. Copyright © 2017 Elsevier Ltd. All rights reserved.
Consequences of sludge composition on combustion performance derived from thermogravimetry analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meiyan; Xiao, Benyi; Wang, Xu
Highlights: • Volatiles, particularly proteins, play a key role in sludge combustion. • Sludge combustion performance varies with different sludge organic concentrations. • Carbohydrates significantly affect the combustion rate in the second stage. • Combustion performance of digested sludge is more negative compared with others. - Abstract: Wastewater treatment plants produce millions of tons of sewage sludge. Sewage sludge is recognized as a promising feedstock for power generation via combustion and can be used for energy crisis adaption. We aimed to investigate the quantitative effects of various sludge characteristics on the overall sludge combustion process performance. Different types of sewagemore » sludge were derived from numerous wastewater treatment plants in Beijing for further thermogravimetric analysis. Thermogravimetric–differential thermogravimetric curves were used to compare the performance of the studied samples. Proximate analytical data, organic compositions, elementary composition, and calorific value of the samples were determined. The relationship between combustion performance and sludge composition was also investigated. Results showed that the performance of sludge combustion was significantly affected by the concentration of protein, which is the main component of volatiles. Carbohydrates and lipids were not correlated with combustion performance, unlike protein. Overall, combustion performance varied with different sludge organic composition. The combustion rate of carbohydrates was higher than those of protein and lipid, and carbohydrate weight loss mainly occurred during the second stage (175–300 °C). Carbohydrates have a substantial effect on the rate of system combustion during the second stage considering the specific combustion feature. Additionally, the combustion performance of digested sewage sludge is more negative than the others.« less
Drying characteristics of electro-osmosis dewatered sludge.
Ma, Degang; Qian, Jingjing; Zhu, Hongmin; Zhai, Jun
2016-12-01
Electro-osmotic dewatering (EDW) is one of the effective deeply dewatering technologies that is suitable for treating sludge with 55-80% of moisture content. Regarding EDW as the pre-treatment process of drying or incinerating, this article investigated the drying characteristics of electro-osmosis-dewatered sludge, including shear stress test, drying curves analysis, model analysis, and energy balance calculation. After EDW pre-treatment, sludge adhesion was reduced. The sludge drying rate was higher compared to the non-pre-treated sludge, especially under high temperatures (80-120°C). In addition, it is better to place the sludge cake with cathode surface facing upward for improving the drying rate. An adjusted model based on the Logarithmic model could better describe the EDW sludge drying process. Using the energy balance calculation, EDW can save the energy consumed in the process of sludge incineration and electricity generation and enable the system to run without extra energy input.
Understanding sucrose metabolism and growth in a developing sweetgum plantation.
Shi-Jean S. Sung; Paul P. Kormanik; C.C. Black
1994-01-01
Stem diameter growth of 9-year-old sweetgum (Liquidambar styraciflua) trees was measured and related with the activity of sucrose synthase (SS), an enzyme that has been associated with carbon sink strength in agriculture crops and tree seedlings. In 1984, 10 sweetgum seedlings were transplanted to control plots and plots amended with sewage sludge or nitorgen and...
Land application of treated sewage sludge: community health and environmental justice.
Lowman, Amy; McDonald, Mary Anne; Wing, Steve; Muhammad, Naeema
2013-05-01
In the United States, most of the treated sewage sludge (biosolids) is applied to farmland as a soil amendment. Critics suggest that rules regulating sewage sludge treatment and land application may be insufficient to protect public health and the environment. Neighbors of land application sites report illness following land application events. We used qualitative research methods to evaluate health and quality of life near land application sites. We conducted in-depth interviews with neighbors of land application sites and used qualitative analytic software and team-based methods to analyze interview transcripts and identify themes. Thirty-four people in North Carolina, South Carolina, and Virginia responded to interviews. Key themes were health impacts, environmental impacts, and environmental justice. Over half of the respondents attributed physical symptoms to application events. Most noted offensive sludge odors that interfere with daily activities and opportunities to socialize with family and friends. Several questioned the fairness of disposing of urban waste in rural neighborhoods. Although a few respondents were satisfied with the responsiveness of public officials regarding sludge, many reported a lack of public notification about land application in their neighborhoods, as well as difficulty reporting concerns to public officials and influencing decisions about how the practice is conducted where they live. Community members are key witnesses of land application events and their potential impacts on health, quality of life, and the environment. Meaningful involvement of community members in decision making about land application of sewage sludge will strengthen environmental health protections.
Sludge stabilization through aerobic digestion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, R.B.; Smith, D.G.; Bennett, E.R.
1979-10-01
The aerobic digestion process with certain modifications is evaluated as an alternative for sludge processing capable of developing a product with characteristics required for land application. Environmental conditions, including temperature, solids concentration, and digestion time, that affect the aerobic digestion of a mixed primary sludge-trickling filter humus are investigated. Variations in these parameters that influence the characteristics of digested sludge are determined, and the parameters are optimized to: provide the maximum rate of volatile solids reduction; develop a stable, nonodorous product sludge; and provide the maximum rate of oxidation of the nitrogenous material present in the feed sludge. (3 diagrams,more » 9 graphs, 15 references, 3 tables)« less
NASA Astrophysics Data System (ADS)
Gascó, G.; Paz-Ferreiro, J.; Araujo, F.; Guerrero, F.; Méndez, A.
2012-04-01
In recent years, an increasing proportion of recycled fibres are used in paper industries due to their important environmental and economical benefits. A ton of pulp produced from recycled paper requires 60% less energy to manufacture than a ton of bleached virgin kraft pulp [1]. However, removing the ink, clay, coatings and contaminants from waste paper in order to produce recycled paper creates large amounts of de-inking paper sludge (DPS). Nowadays, more than 200000 t of DPS were produced in Spain. DPS can be used as amendment due to their high organic matter [2] but the high C/N ratio and the heavy metal content can limit its use. For this reason, the preparation of biochar obtained from pyrolysis process for water remediation [3] and soil contaminated by heavy metal can be an valorisation alternative. The main objective of this work is to study the influence of the biochar application prepared from de-inking sewage sludge in the soil enzyme activities of a contaminated soil by Ni+2 at two different concentrations. For this reason, an incubation experiment was performed and several enzymatic activities (dehydrogenase, b-glucosidase, phosphomoesterase and arylsulphatase) were monitored. The study was completed studying the influence of the biochar application in plant-available metals from soil. [1] Thompson C.G. 1992. Recycled Papers. The Essential Guide, MIT Press, Cambridge. [2] Barriga S., Méndez A., Cámara J., Guerrero F., Gascó G. 2010. Agricultural valorisation of de-inking paper sludge as organic amendment in different soils: Thermal study. Journal of Thermal Analysis and Calorimetry 99: 981-986 [3] Méndez A., Barriga S., Fidalgo J.M., Gascó G. 2009. Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water. Journal of Hazardous Materials 165: 736-743.
Tamis, J; van Schouwenburg, G; Kleerebezem, R; van Loosdrecht, M C M
2011-11-15
Sludge predation can be an effective solution to reduce sludge production at a wastewater treatment plant. Oligochaete worms are the natural consumers of biomass in benthic layers in ecosystems. In this study the results of secondary sludge degradation by the aquatic Oligochaete worm Aulophorus furcatus in a 125 m(3) reactor and further sludge conversion in an anaerobic tank are presented. The system was operated over a period of 4 years at WWTP Wolvega, the Netherlands and was fed with secondary sludge from a low loaded activated sludge process. It was possible to maintain a stable and active population of the aquatic worm species A. furcatus during the full period. Under optimal conditions a sludge conversion of 150-200 kg TSS/d or 1.2-1.6 kg TSS/m(3)/d was established in the worm reactor. The worms grew as a biofilm on carrier material in the reactor. The surface specific conversion rate reached 140-180 g TSS/m(2)d and the worm biomass specific conversion rate was 0.5-1 g TSS sludge/g dry weight worms per day. The sludge reduction under optimal conditions in the worm reactor was 30-40%. The degradation by worms was an order of magnitude larger than the endogenous conversion rate of the secondary sludge. Effluent sludge from the worm reactor was stored in an anaerobic tank where methanogenic processes became apparent. It appeared that besides reducing the sludge amount, the worms' activity increased anaerobic digestibility, allowing for future optimisation of the total system by maximising sludge reduction and methane formation. In the whole system it was possible to reduce the amount of sludge by at least 65% on TSS basis. This is a much better total conversion than reported for anaerobic biodegradability of secondary sludge of 20-30% efficiency in terms of TSS reduction. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Katanda, Y.; Mushonga, C.; Banganayi, F.; Nyamangara, J.
The use of sewage effluent as a source of nutrients and water in peri-urban crop production is widespread in developing countries. A study was conducted in 2005 at Crowborough and Firle farms (near Harare) to assess effect of Cd on microbial biomass and activity, effect of sewage sludge and effluent on soybean (Glycine max L (Merr)) nodulation, and uptake of Zn and Cu by lettuce ( Lactuca sativa L.), mustard rape ( Brassica juncea L.), covo ( Brassica napus) and star grass ( Cynodon nlemfuensis). The soil that was used had been irrigated with sewage sludge and effluent for 30 years. Soil collected from Crowborough farm was enriched with Cd to different concentrations (0.4-5 mg Cd kg -1 soil) using Cd(NO 3) 2 and microbial biomass C and N (chloroform-incubation extraction) and respiration rates (CO 2 evolution) determined. A similar experiment to determine the effect of repeated addition of small amounts of Cd to soil over time on the same parameters was conducted. Three vegetables and star grass were grown in a pot experiment and harvested at six weeks after transplanting for the determination of above ground dry matter yield, and Zn and Cu, uptake. In another pot experiment, two soybean varieties, Magoye and Solitaire, were harvested after eight weeks and nodule number and effectiveness, and above ground dry matter yield were then determined. Cd significantly decreased biomass C (68%) and N (73%). Microbial respiration also significantly decreased. It was concluded that long-term application of sewage sludge and effluent to soil has negative effects on soil micro organisms, including Rhizobia. These micro organisms are essential for N-fixation. The damage to Rhizobia, caused diminished nodulation of soybean. Mustard rape and lettuce can accumulate Zn and Cu beyond toxic limits without apparent reduction in growth thereby posing a serious concern to the food chain. The consumption of mustard rape and lettuce grown on soil amended with sewage sludge and effluent at Crowborough and Firle farms poses a health risk to people who consume vegetables grown in this area.
Jayamani, Indumathy; Cupples, Alison M
2013-09-01
Isobutanol is an alternate fuel additive that is being considered because of economic and lower emission benefits. However, future gasoline spills could result in co-contamination of isobutanol with gasoline components such as benzene, toluene, ethyl-benzene and xylene. Hence, isobutanol could affect the degradability of gasoline components thereby having an effect on contaminant plume length and half-life. In this study, the effect of isobutanol on the biodegradation of a model gasoline component (toluene) was examined in laboratory microcosms. For this, toluene and isobutanol were added to six different toluene degrading laboratory microcosms under sulfate amended, nitrate amended or methanogenic conditions. While toluene biodegradation was not greatly affected in the presence of isobutanol in five out of the six different experimental sets, toluene degradation was completely inhibited in one set of microcosms. This inhibition occurred in sulfate amended microcosms constructed with inocula from wastewater treatment plant activated sludge. Our data suggest that toluene degrading consortia are affected differently by isobutanol addition. These results indicate that, if co-contamination occurs, in some cases the in situ half-life of toluene could be significantly extended.
Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong
2016-10-01
The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kampe, Sebastian; Kaegi, Ralf; Schlich, Karsten; Wasmuth, Claus; Hollert, Henner; Schlechtriem, Christian
2018-06-01
Silver nanoparticles (AgNPs) are efficiently converted during the wastewater-treatment process into sparingly soluble Ag sulfides (Ag 2 S). In several countries, sewage sludge is used as a fertilizer in agriculture. The bioavailability of sulfidized Ag to the terrestrial isopod Porcellio scaber was investigated. Sewage sludge containing transformed AgNPs was obtained from a laboratory-scale sewage-treatment plant operated according to Organisation for Economic Co-operation and Development (OECD) guideline 303a. The results of transmission electron microscopy with energy dispersive X-ray of sludge samples suggest that AgNPs were completely transformed to Ag 2 S. Adult isopods were exposed to OECD 207 soil substrate amended with the AgNP spiked sludge for 14 d (uptake phase) followed by an elimination phase in unspiked soil of equal duration. Most of the Ag measured in P. scaber at the end of the uptake phase was found in the hindgut (71%), indicating that only a minor part of the estimated Ag content was actually assimilated by the isopods with 16.3 and 12.7% found in the carcass and hepatopancreas, respectively. As a result of this, the Ag content of the animals dropped following transition to unspiked sludge within 2 d to one-third of the previously measured Ag concentration and remained stable at this level until the end of the elimination period. The present study shows that Ag 2 S in sewage sludge is bioavailable to the terrestrial isopod P. scaber. Environ Toxicol Chem 2018;37:1606-1613. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Chen, Xijuan; Zhuang, Jie; Bester, Kai
2018-05-07
Triclosan is an antimicrobial agent, which is widely used in personal care products including toothpaste, soaps, deodorants, plastics, and cosmetics. Widespread use of triclosan has resulted in its release into wastewater, surface water, and soils and has received considerable attention in the recent years. It has been reported that triclosan is detected in various environmental compartments. Toxicity studies have suggested its potential environmental impacts, especially to aquatic ecosystems. To date, removal of triclosan has attracted rising attention and biodegradation of triclosan in different systems, such as axenic cultures of microorganisms, full-scale WWTPs, activated sludge, sludge treatment systems, sludge-amended soils, and sediments has been described. In this study, an extensive literature survey was undertaken, to present the current knowledge of the biodegradation behavior of triclosan and highlights the removal and transformation processes to help understand and predict the environmental fate of triclosan. Experiments at from lab-scale to full-scale field studies are shown and discussed.
Decomposition of fresh and anaerobically digested plant biomass in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorhead, K.K.; Graetz, D.A.; Reddy, K.R.
Using water hyacinth (Eichhornia crassipes (Mart.) Solms) for waste water renovation produces biomass that must be disposed of. This biomass may be anaerobically digested to produce CH/sub 4/ or added to soil directly as an amendment. In this study, fresh and anaerobically digested water hyacinth biomass, with either low or high N tissue content, were added to soil to evaluate C and N mineralization characteristics. The plant biomass was labeled with /sup 15/N before digestion. The fresh plant biomass and digested biomass sludge were freeze-dried and ground to pass a 0.84-mm sieve. The materials were thoroughly mixed with a Kindrickmore » fine sand at a rate of 5 g kg/sup -1/ soil and incubated for 90 d at 27/sup 0/C at a moisture content adjusted to 0.01 MPa. Decomposition was evaluated by CO/sub 2/ evolution and /sup 15/N mineralization. After 90 d, approximately 20% of the added C of the digested sludges had evolved as CO/sub 2/ compared to 39 and 50% of the added C of the fresh plant biomass with a low and high N content, respectively. First-order kinetics were used to describe decomposition stages. Mineralization of organic /sup 15/N to /sup 15/NO/sub 3//sup -/-N accounted for 8% of applied N for both digested sludges at 90 d. Nitrogen mineralization accounted for 3 and 33% of the applied organic N for fresh plant biomass with a low and high N content, respectively.« less
RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, Y.; Barnes, J.; Fox, S.
Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. Wemore » have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.« less
Land application technique for the treatment and disposal of sewage sludge.
Zain, S M; Basri, H; Suja, F; Jaafar, O
2002-01-01
Some of the major concerns when applying sewage sludge to land include the potential effect on pH and cation exchange capacity; the mobility and the accumulation of heavy metals in sludge treated soil; the potential of applying too much nutrients and the problems associated with odors and insects. The main objective of this study is to identify the effects of sewage sludge application on the physical and chemical properties of sludge treated soil. Sewage sludge was applied to soil at various rates ranging from 0 L/m2 to 341 L/m2. In order to simulate the natural environment, the study was carried out at a pilot treatment site (5.2 m x 6.7 m) in an open area, covered with transparent roofing material to allow natural sunlight to pass through. Simulated rain was applied by means of a sprinkler system. Data obtained from sludge treated soil showed that the pH values decreased when the application rates were increased and the application period prolonged. The effect of sewage sludge on cation exchange capacity was not so clear; the values obtained for every application rate of sewage sludge did not indicate any consistent behaviour. The mobility of heavy metals in soils treated with sludge were described by observing the changes in the concentration of the heavy metals. The study showed that Cd has the highest mobility in sludge treated soil followed by Cu, Cr, Zn, Ni and Pb.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ejlertsson, J.; Oequist, M.; Svensson, B.H.
1999-01-15
The aim of this study was to investigate the extent to which anaerobic digestor sludge, landfilled sludge, and landfilled municipal solid waste (MSW) degrade NPEOs [nonylphenol ethoxylates] under methanogenic conditions. NPEO1 and NPEO2 (NPEO1-2), used in a mixture, were chosen as model compounds. Anaerobic experimental bottles were amended with 100% digestor sludge at three different concentrations of NPEO1-2: 2, 60, and 308 mg L{sup {minus}1}. [U-{sup 14}C]-NPEO1-2 was used to detect any possible decomposition of the aromatic moiety of the NPEO1-2. All inoculates used degraded NPEO1-2 at 2 mg L{sup {minus}1}, with nonylphenol (NP) forming the ultimate degradation product. Themore » NP formed was not further degraded, and the incubations with labeled NPEO showed that the aromatic structure remained intact. Both landfill inoculates also transformed NPEO1-2 at 60 mg L{sup {minus}1}. CH{sub 4} production was temporarily hampered in bottles with MSW landfill inoculum at 60 and 308 mg L{sup {minus}1}. With 2 mg L{sup {minus}1} of NPEO, CH{sub 4} production closely followed that in the controls. Both NP and NPEO1-2 interacted with the organic matter which resulted in sorption to the solid phase.« less
Kinetic characteristic of phenanthrene sorption in aged soil amended with biochar
NASA Astrophysics Data System (ADS)
Kim, Chanyang; Kim, Yong-Seong; Hyun, Seunghun
2015-04-01
Biochar has been recently highlighted as an amendment that affects yield of the crops by increasing pH, cation exchange capacity and water retention, and reduces the lability of contaminants by increasing sorption capacity in the soil system. Biochar's physico-chemical properties, high CEC, surfaces containing abundant micropores and macropores, and various types of functional groups, play important roles in enhancing sorption capacity of contaminants. Aging through a natural weathering process might change physico-chemical properties of biochar amended in soils, which can affect the sorption behavior of contaminants. Thus, in this study, the sorption characteristics of phenanthrene (PHE) on biochar-amended soils were studied with various types of chars depending on aging time. To do this, 1) soil was amended with sludge waste char (SWC), wood char (WC), and municipal waste char (MWC) during 0, 6, and 12 month. Chars were applied to soil at 1% and 2.5% (w/w) ratio. 2) Several batch kinetic and equilibrium studies were conducted. One-compartment first order and two-compartment first order model apportioning the fraction of fast and slow sorbing were selected for kinetic models. Where, qt is PHE concentration in biochar-amended soils at each time t, qeis PHE concentration in biochar-amended soils at equilibrium. ff is fastly sorbing fraction and (1-ff) is slowly sorbing fraction. k is sorption rate constant from one-compartment first order model, k1 and k2 are sorption rate constant from two-compartment first order model, t is time (hr). The equilibrium sorption data were fitted with Fruendlich and Langmuir equation. 3) Change in physico-chemical properties of biochar-amended soils was investigated with aging time. Batch equilibrium sorption results suggested that sorbed amount of PHE on WC was greater than SWC and MWC. The more char contents added to soil, the greater sorption capacity of PHE. Sorption equilibrium was reached after 4 hours and equilibrium pH ranged from 6.5 to 8.0. Sorption capacity was reduced with aging time. From kinetic results, two-compartment first order model was more suitable than one-compartment first order model. Fast sorption site of biochar-amended soils dominated total sorption process (i.e., Fraction of fast sorption site ranged from 0.55 to 0.96). Reduced sorption capacity with aging time could be attributed to changes in physico-chemical properties of biochar-amended soils (e.g., reduced pores and increased hydrophilic carboxyl and carbonyl functional groups). Verification is FI-IR and SSA. It is assumed that biochar is a suitable material for PHE contaminated soil in order to reduce the lability of PHE. However, aging effects would lessen biochar benefit for reducing the sorption capacity of PHE by forming hydrophilic functional group and reducing pores.
Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen
2018-05-01
The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.
Méndez, A; Tarquis, A M; Saa-Requejo, A; Guerrero, F; Gascó, G
2013-10-01
Biochar is a carbon-rich solid product obtained by the pyrolysis of organic materials. The carbon stability of biochar allows that it can be applied to soil for long-term carbon storage. This carbon stability is greatly influenced by the pyrolysis temperature and the raw material used for biochar production. The aim of the present work is to study the soil carbon sequestration after the application of biochar from sewage sludge (SL) pyrolysis at two different temperatures (400 and 600 °C). For this purpose, soil CO2 emissions were measured for 80 d in an incubation experiment after soil amendment with the SL and each biochar at a dosage of 8 wt%. Biochar reduced the CO2 emissions during incubation between 11% and 32% relative to the SL treatment. The CO2 data were fit to a dual exponential model, and the CO2 emissions were simulated at different times (1, 5 and 10 yr). Additionally, the kinetics of the CO2 evolution from SL, two biochar samples, soil and amended soil were well fit to a dual first-order kinetic model with correlation coefficients greater than 0.93. The simulation of CO2 emissions from the soil by applying the proposed double first-order kinetic model (kg CO2-C ha(-1)) showed a reduction of CO2 emissions between 301 and 932 kg CO2-C ha(-1)with respect to the direct application of raw sewage sludge after 10 yr. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bache, C.A.; Reid, C.M.; Hoffman, D.
In the work reported, filter and nonfilter cigarettes were prepared from high-cadmium tobacco grown on a municipal sludge-amended soil or a low-cadmium tobacco grown on untreated soil alone. These were smoked by machine to determine the effectiveness of the cigarette filters in possibly reducing the quantities of cadmium in the mainstream smoke particulates.
Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler.
Tsai, Meng-Yuan; Wu, Keng-Tung; Huang, Chin-Cheng; Lee, Hom-Ti
2002-01-01
Co-firing of coal and paper mill sludge was conducted in a 103 MWth circulating fluidized bed boiler to investigate the effect of the sludge feeding rate on emissions of SOx, NOx, and CO. The preliminary results show that emissions of SOx and Nx decrease with increasing sludge feeding rate, but CO shows the reverse tendency due to the decrease in combustion temperature caused by a large amount of moisture in the sludge. All emissions met the local environmental requirements. The combustion ashes could be recycled as feed materials in the cement manufacturing process.
Amanatidou, Elisavet; Samiotis, Georgios; Trikoilidou, Eleni; Pekridis, George; Taousanidis, Nikolaos
2015-02-01
Zero net sludge growth can be achieved by complete retention of solids in activated sludge wastewater treatment, especially in high strength and biodegradable wastewaters. When increasing the solids retention time, MLSS and MLVSS concentrations reach a plateau phase and observed growth yields values tend to zero (Yobs ≈ 0). In this work, in order to evaluate sedimentation problems arised due to high MLSS concentrations and complete sludge retention operational conditions, two identical innovative slaughterhouse wastewater treatment plants were studied. Measurements of wastewaters' quality characteristics, treatment plant's operational conditions, sludge microscopic analysis and state point analysis were conducted. Results have shown that low COD/Nitrogen ratios increase sludge bulking and flotation phenomena due to accidental denitrification in clarifiers. High return activated sludge rate is essential in complete retention systems as it reduces sludge condensation and hydraulic retention time in the clarifiers. Under certain operational conditions sludge loading rates can greatly exceed literature limit values. The presented methodology is a useful tool for estimation of sedimentation problems encountered in activated sludge wastewater treatment plants with complete retention time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lakshminarasimman, Narasimman; Quiñones, Oscar; Vanderford, Brett J; Campo-Moreno, Pablo; Dickenson, Eric V; McAvoy, Drew C
2018-05-28
This study determined biotransformation rates (k bio ) and sorption-distribution coefficients (K d ) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems. Copyright © 2018. Published by Elsevier B.V.
Pamukoglu, M Yunus; Kargi, Fikret
2007-09-05
Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.
Addition of organic amendments contributes to C sequestration in trace element contaminated soils.
NASA Astrophysics Data System (ADS)
del Mar Montiel Rozas, María; Panettier, Marco; Madejón Rodríguez, Paula; Madejón Rodríguez, Engracia
2015-04-01
Nowadays, the study of global C cycle and the different natural sinks of C have become especially important in a climate change context. Fluxes of C have been modified by anthropogenic activities and, presently, the global objective is the decrease of net CO2 emission. For this purpose, many studies are being conducted at local level for evaluate different C sequestration strategies. These techniques must be, in addition to safe in the long term, environmentally friendly. Restoration of contaminated and degraded areas is considered as a strategy for SOC sequestration. Our study has been carried out in the Guadiamar Green Corridor (Seville, Spain) affected by the Aznalcóllar mining accident. This accident occurred 16 years ago, due to the failure of the tailing dam which contained 4-5 million m3 of toxic tailings (slurry and acid water).The affected soils had a layer of toxic sludge containing heavy metals as As, Cd, Cu, Pb and Zn. Restoration techniques began to be applied just after the accident, including the removal of the toxic sludge and a variable layer of topsoil (10-30 cm) from the surface. In a second phase, in a specific area (experimental area) of the Green Corridor the addition of organic amendments (Biosolid compost (BC) and Leonardite (LE), a low grade coal rich in humic acids) was carried out to increase pH, organic matter and fertility in a soil which lost its richest layer during the clean-up operation. In our experimental area, half of the plots (A) received amendments for four years (2002, 2003, 2006 and 2007) whereas the other half (B) received amendments only for two years (2002-2003). To compare, plots without amendments were also established. Net balance of C was carried out using values of Water Soluble Carbon (WSC) and Total Organic Carbon (TOC) for three years (2012, 2013 and 2015). To eliminate artificial changes carried out in the plots, amendment addition and withdrawal of biomass were taken into account to calculate balance of kg TOC ha ¯¹. Thus, results revealed the effect of amendments. Values of net balance show an increase in C sequestered in amended plots. The retention of carbon in soluble and total forms was reflected in the increase in time. According to the results, application of leonardite (a more stabilized amendment) seems to entail a greater retention of carbon in soil than in the case of biosolid compost. Restoration strategies have multiple benefits for the ecosystem. In our case, the use of organic amendments decreased trace element toxicity, improved soil structure and microbial communities, and contribute to retain C in terrestrial ecosystems.
Land Application of Treated Sewage Sludge: Community Health and Environmental Justice
McDonald, Mary Anne; Wing, Steve; Muhammad, Naeema
2013-01-01
Background: In the United States, most of the treated sewage sludge (biosolids) is applied to farmland as a soil amendment. Critics suggest that rules regulating sewage sludge treatment and land application may be insufficient to protect public health and the environment. Neighbors of land application sites report illness following land application events. Objectives: We used qualitative research methods to evaluate health and quality of life near land application sites. Methods: We conducted in-depth interviews with neighbors of land application sites and used qualitative analytic software and team-based methods to analyze interview transcripts and identify themes. Results: Thirty-four people in North Carolina, South Carolina, and Virginia responded to interviews. Key themes were health impacts, environmental impacts, and environmental justice. Over half of the respondents attributed physical symptoms to application events. Most noted offensive sludge odors that interfere with daily activities and opportunities to socialize with family and friends. Several questioned the fairness of disposing of urban waste in rural neighborhoods. Although a few respondents were satisfied with the responsiveness of public officials regarding sludge, many reported a lack of public notification about land application in their neighborhoods, as well as difficulty reporting concerns to public officials and influencing decisions about how the practice is conducted where they live. Conclusions: Community members are key witnesses of land application events and their potential impacts on health, quality of life, and the environment. Meaningful involvement of community members in decision making about land application of sewage sludge will strengthen environmental health protections. PMID:23562940
Pandey, Janhvi; Chand, Sukhmal; Pandey, Shipra; Rajkumari; Patra, D D
2015-12-01
A field experiment using tannery sludge as a soil amendment material and palmarosa (Cymbopogon martinii) as a potential phytostabilizer was conducted to investigate their synergistic effect in relation to the improvement in soil quality/property. Three consecutive harvests of two cultivars of palmarosa-PRC-1 and Trishna, were examined to find out the influence of different tannery sludge doses on their herb, dry matter, essential oil yield and heavy metal accumulation. Soil fertility parameters (N, P, K, Organic carbon) were markedly affected by different doses of sludge. Enhanced soil nitrogen was positively correlated with herb yield (0.719*) and plant height (0.797*). The highest dose of tannery sludge (100 t ha(-1)) exhibited best performance than other treatments with respect to herb, dry matter and oil yield in all three harvests. Trishna was found to be superior to PRC-1 in relation to same studied traits. Quality of oil varied, but was insignificant statistically. Uptake of heavy metals followed same order (Cr>Ni>Pb>Cd) in roots and shoots. Translocation factor <1 for all trace elements and Bioconcentration factor >1 was observed in case of all heavy metals. Overall, tannery sludge enhanced the productivity of crop and metal accumulation occurred in roots with a meager translocation to shoots, hence it can be used as a phytostabiliser. The major advantage of taking palmarosa in metal polluted soil is that unlike food and agricultural crops, the product (essential oil) is extracted by hydro-distillation and there is no chance of oil contamination, thus is commercially acceptable. Copyright © 2015 Elsevier Inc. All rights reserved.
Fernández, María Dolores; Alonso-Blázquez, María Nieves; García-Gómez, Concepción; Babin, Mar
2014-11-01
To study the environmental impact of nanoparticles, the sludges of wastewater (WWTS) and water treatment (WTS) plants enriched with ZnO nanoparticles were added to agricultural soil, and the toxic effects of the nanoparticles were studied using a microcosm system based on the soil. The WWTS treated soils were characterised by statistically significant decreases (p<0.05) in Vicia sativa germination at the lowest (76.2%) and medium (95.2%) application rates, decreases in the fresh biomass for Triticum aestivum (19.5%), Raphanus sativus (64.1%), V. sativa (37.4%) and Eisenia fetida (33.6%) at the highest application rate and a dose-related significant increase (p<0.05) in earthworm mortality. In WTS amended soils, significant reductions (p<0.05) of the fresh biomass (17.2%) and the chlorophyll index (24.4%) for T. aestivum and the fresh biomass for R. sativus (31.4%) were only recorded at the highest application doses. In addition, the soil phosphatase enzymatic activity decreased significantly (p<0.05) in both WWTS (dose related) and WTS treatments. For water organisms, a slight inhibition of the growth of Chlorella vulgaris was observed (WWTS treated soils), along with statistically significant dose-related inhibition responses on total glutathione cell content, and statistically significant dose-related induction responses on the glutathione S-transferase enzyme activity and the reactive oxygen species generation on the RTG-2 fish cell line. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of Surfactants on the Improvement of Sludge Dewaterability Using Cationic Flocculants
Zhai, Jun; Teng, Houkai; Zhao, Chun; Zhao, Chuanliang; Liao, Yong
2014-01-01
The effects of the cationic surfactant (cationic cetyl trimethyl ammonium bromide, CTAB) on the improvement of the sludge dewaterability using the cationic flocculant (cationic polyacrylamide, CPAM) were analyzed. Residual turbidity of supernatant, dry solid (DS) content, extracellular polymeric substances (EPS), specific resistance to filtration (SRF), zeta potential, floc size, and settling rate were investigated, respectively. The result showed that the CTAB positively affected the sludge conditioning and dewatering. Compared to not using surfactant, the DS and the settling rate increased by 8%–21.2% and 9.2%–15.1%, respectively, at 40 mg·L−1 CPAM, 10×10−3 mg·L−1 CTAB, and pH 3. The residual turbidities of the supernatant and SRF were reduced by 14.6%–31.1% and 6.9%–7.8% compared with turbidities and SRF without surfactant. Furthermore, the release of sludge EPS, the increases in size of the sludge flocs, and the sludge settling rate were found to be the main reasons for the CTAB improvement of sludge dewatering performance. PMID:25347394
Rico, Carlos; Montes, Jesús A; Rico, José Luis
2017-08-01
Three different types of anaerobic sludge (granular, thickened digestate and anaerobic sewage) were evaluated as seed inoculum sources for the high rate anaerobic digestion of pig slurry in UASB reactors. Granular sludge performance was optimal, allowing a high efficiency process yielding a volumetric methane production rate of 4.1LCH 4 L -1 d -1 at 1.5days HRT (0.248LCH 4 g -1 COD) at an organic loading rate of 16.4gCODL -1 d -1 . The thickened digestate sludge experimented flotation problems, thus resulting inappropriate for the UASB process. The anaerobic sewage sludge reactor experimented biomass wash-out, but allowed high process efficiency operation at 3days HRT, yielding a volumetric methane production rate of 1.7LCH 4 L -1 d -1 (0.236LCH 4 g -1 COD) at an organic loading rate of 7.2gCODL -1 d -1 . To guarantee the success of the UASB process, the settleable solids of the slurry must be previously removed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alothman, Zeid A; Yilmaz, Erkan; Habila, Mohamed; Soylak, Mustafa
2015-02-01
1-(2-Pyridylazo)-2-naphthol impregnated activated carbon cloth (PAN-imp-ACC) was prepared as a solid phase sorbent and, for the first time, was used for the simultaneous separation and preconcentration of trace amounts of lead, cadmium and nickel in water, soil and sewage sludge samples prior to determination by flame atomic absorption spectrometry (FAAS). The parameters governing the efficiency of the method were optimized, including the pH, the eluent type and volume, the sample and eluent flow rates, diverse ions effects and the sample volume. A preconcentration factor of 100 was achieved for all the metal ions, with detection limits of 0.1-2.8 µg L(-1) and relative standard deviations below 6.3%. The adsorption capacity of the PAN-imp-ACC for Pb(II), Cd(II) and Ni(II) ions was found to be 45.0 mg g(-1), 45.0 mg g(-1) and 43.2 mg g(-1), respectively. The method was validated by the analysis of the certified reference materials TMDA-64.2 fortified Lake Ontario water and BCR-146R Sewage Sludge Amended Soil (Industrial Origin). The procedure was applied to determine the analytes content in real samples. Copyright © 2014 Elsevier Inc. All rights reserved.
Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.
Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato
2015-01-01
Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.
NASA Astrophysics Data System (ADS)
Rossinskyi, Volodymyr
2018-02-01
The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.
Factors influencing As(V) stabilization in the mine soils amended with iron-rich materials.
Kim, Mijin; Kim, Juhee; Kim, Minhee; Kim, Yong-Seong; Nam, Seung Mo; Moon, Deok Hyun; Hyun, Seunghun
2017-09-04
Chemical stability of As(V) in amended mine-impacted soils was assessed according to functions of incubation period (0, 1, 2, 4, and 6 months), amendment dose (2.5 and 5%), and application timing (0 and 3rd month). Six soils contaminated with 26-209 mg kg -1 of As(V) were collected from two abandoned mine sites and were treated with two alkaline iron-rich materials (mine discharge sludge (MS) and steel-making slag (SS)). Seventeen to 23% of As(V) in soils was labile. After each designated time, As(V) stability was assessed by the labile fractions determined with sequential extraction procedures (F1-F5). Over 6 months, a reduction (26.9-70.4%) of the two labile fractions (F1 and F2) and a quantitative increase (7.4-29.9%) of As(V) in F3 were observed (r 2 = 0.956). Two recalcitrant fractions (F4 and F5) remained unchanged. Temporal change of As(V) stability in a sample was well described by the two-domain model (k fast , k slow , and F fast ). The stabilization (%) correlated well with the fast-stabilizing domain (F fast ), clay content (%), and Fe oxide content (mg kg -1 ), but correlated poorly with kinetic rate constants (k fast and k slow ). Until the 3rd month, the 2.5%-MS amended sample resulted in lower As(V) stabilization (25-40%) compared to the 5% sample (50-60%). However, the second 2.5% MS addition on the 2.5% sample upon the lapse of the 3rd month led to a substantial reduction (up to 38%) of labile As(V) fraction in the following 4th and 6th months. As a result, an additional 15-25% of As(V) stability was obtained when splitting the amendment dose into 3-month intervals. In conclusion, the As(V) stabilization by Fe-rich amendment is time-dependent and its efficacy can be improved by optimizing the amendment dose and its timing.
Nelson, K L
2003-01-01
During treatment in wastewater stabilization ponds (WSPs) many pathogens, in particular helminth eggs, are concentrated in the sludge layer. Because periodic removal of the sludge is often required, information is needed on the concentrations and inactivation of pathogens in the sludge layer to evaluate the public health risk they pose upon removal of the sludge. In this paper, previous reports on the sludge concentrations of various pathogen indicator organisms and helminth eggs are reviewed and results from our own recent experiments are reported. The advantages and disadvantages of several methods for studying inactivation in the sludge layer are discussed, as well as implications for the management of WSP sludge. In our recent experiments, which were conducted at three WSPs in central Mexico, sludge cores, dialysis chambers, and batch experiments were used to measure the inactivation rates of fecal coliform bacteria, fecal enterococci, F+ coliphage, somatic coliphage, and Ascaris eggs. The first-order inactivation rate constants were found to be approximately 0.1, 0.1, 0.01, 0.001, and 0.001 d(-1), respectively. The concentrations of all the organisms were found to vary both vertically and horizontally in the sludge layer; therefore, to determine the maximum and average concentration of organisms in the sludge layer of a WSP, complete sludge cores must be collected from representative locations throughout the pond.
Phosphorus recovery from anaerobic swine lagoon sludge using the quick wash process
USDA-ARS?s Scientific Manuscript database
Long term accumulation of sludge in anaerobic swine lagoons reduces its storage volume and ability to treat waste. Usually, excess accumulation of lagoon sludge is removed using pumping dredges. The dredged sludge is then land applied at agronomic rates according to its nutrient content. The accumul...
Phosphorus recovery from anaerobic swine lagoon sludge using the quick wash process
USDA-ARS?s Scientific Manuscript database
Long term and significant accumulation of sludge in anaerobic swine lagoons reduces its storage volume and ability to treat waste. Usually, excess accumulation of lagoon sludge is removed by dredging. The dredged sludge is then land applied at agronomic rates according to its nutrient content. Becau...
Hossain, Mustafa K; Strezov, Vladimir; Chan, K Yin; Nelson, Peter F
2010-02-01
This work presents agronomic values of a biochar produced from wastewater sludge through pyrolysis at a temperature of 550 degrees C. In order to investigate and quantify effects of wastewater sludge biochar on soil quality, growth, yield and bioavailability of metals in cherry tomatoes, pot experiments were carried out in a temperature controlled environment and under four different treatments consisting of control soil, soil with biochar; soil with biochar and fertiliser, and soil with fertiliser only. The soil used was chromosol and the applied wastewater sludge biochar was 10tha(-1). The results showed that the application of biochar improves the production of cherry tomatoes by 64% above the control soil conditions. The ability of biochar to increase the yield was attributed to the combined effect of increased nutrient availability (P and N) and improved soil chemical conditions upon amendment. The yield of cherry tomato production was found to be at its maximum when biochar was applied in combination with the fertiliser. Application of biochar was also found to significantly increase the soil electrical conductivity as well as phosphorus and nitrogen contents. Bioavailability of metals present in the biochar was found to be below the Australian maximum permitted concentrations for food. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Yoo, Jong-Chan; Beiyuan, Jingzi; Wang, Lei; Tsang, Daniel C W; Baek, Kitae; Bolan, Nanthi S; Ok, Yong Sik; Li, Xiang-Dong
2018-03-01
In this study, soil washing and stabilization as a two-step soil remediation strategy was performed to remediate Pb- and Cu-contaminated soils from shooting range and railway sites. Ferric nitrate (Fe(NO 3 ) 3 ) and [S,S]-ethylenediamine disuccinate (EDDS) were used as washing agents, whereas three types of sludge-derived biochars and phosphogypsum were employed as soil stabilizers. While Fe(NO 3 ) 3 extracted larger amounts of metals compared to EDDS (84% Pb and 64% Cu from shooting range soil; 30% Pb and 40% Cu from railway site soil), it caused severe soil acidification. Both Fe(NO 3 ) 3 and EDDS washing enhanced the mobility of residual metals in the two soils, which in most cases could be mitigated by subsequent 2-month stabilization by sludge-derived biochars or phosphogypsum. By contrast, the metal bioaccessibility could only be reduced by soil washing. Nutrient-rich sludge-derived biochar replenished available P and K in both soils, whereas Fe(NO 3 ) 3 washing provided available nitrogen (N). Soil amendment enhanced acid phosphatase activity but marginally improved soil dehydrogenase and urease activity in the treated soils, possibly due to the influence of residual metals. This study supported the integration of soil washing (by Fe(NO 3 ) 3 or EDDS) with soil stabilization (by sludge-derived biochars or phosphogypsum) for accomplishing the reduction of metal mobility and bioaccessibility, while restoring the environmental quality of the treated soils. Copyright © 2017 Elsevier B.V. All rights reserved.
Meng, Xiang-Zhou; Wang, Ying; Xiang, Nan; Chen, Ling; Liu, Zhigang; Wu, Bing; Dai, Xiaohu; Zhang, Yun-Hui; Xie, Zhiyong; Ebinghaus, Ralf
2014-04-01
The wide production and use of phthalate esters (PAEs) in both industry and commercial products lead to their ubiquitous existence in the environment. However, understanding flow and pathway of human exposure to PAEs from sources to receptors is necessary and challenging. In this study, we selected final sewage sludge, an inevitable byproduct of wastewater treatment plants (WWTP), as one type of important carrier/sources of PAEs to clarify the flow of PAEs between human and the environment, e.g. the release by human to sludge and in turn ingestion by human after these sludges were disposed as soil amendment. Twenty-five sludge samples were collected from 25 wastewater treatment plants (WWTPs) in Shanghai, East China. Of all 16 PAE congeners, di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DnBP) were predominant with mean concentrations of 97.4 and 22.4 μg/g dw, respectively, both locating at the high end of the global range. WWTP treating industrial waster generally contained higher PAEs compared to those treating domestic wastewater, but no positive relationship was found between PAE levels with the percentage of industrial wastewater. Principal component analysis (PCA) showed that similar PAE sources for all WWTPs in Shanghai with three exceptions, in which specific PAE products were made. The annual mass loadings via sludge of DEHP, DnBP, and Σ16PAEs were 31.4, 7.44, and 39.6 tons in Shanghai and 1042, 247, and 1314 tons in China, respectively, only accounting for 0.09% of the total consumption of PAEs in China. If this sludge is applied in soil, human will take 16.4 and 3.8 μg/kg bw for DEHP and DnBP every day, respectively, via dietary and soil ingestion, which were lower than the toxicological safety parameters. To the best of our knowledge, this is the first report to analyze the flow of sludge-borne PAEs from human release to human intake. Copyright © 2014 Elsevier B.V. All rights reserved.
Complete solids retention activated sludge process.
Amanatidou, E; Samiotis, G; Trikoilidou, E; Pekridis, G; Tsikritzis, L
2016-01-01
In a slaughterhouse's full-scale extended aeration activated sludge wastewater treatment plant (WWTP), operating under complete solids retention time, the evolution of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS) concentration, food to micro-organisms ratio (F/M) and substrate utilization rate (SUR) were studied for over a year. Biomass growth phases in correlation to sludge biological and morphological characteristics were studied. Three distinguished growth phases were observed during the 425 days of monitoring. The imposed operational conditions led the process to extended biomass starvation conditions, minimum F/M, minimum SUR and predator species growth. MLSS and MLVSS reached a stabilization phase (plateau phase) where almost zero sludge accumulation was observed. The concept of degradation of the considered non-biodegradable particulate compounds in influent and in biomass (cell debris) was also studied. Comparison of evolution of observed sludge yields (Yobs) in the WWTP with Yobs predictions by activated sludge models verified the degradation concept for the considered non-biodegradable compounds. Control of the sedimentation process was achieved, by predicting the solids loading rate critical point using state point analysis and stirred/unstirred settling velocity tests and by applying a high return activated sludge rate. The nitrogen gas related sedimentation problems were taken into consideration.
Falås, P; Longrée, P; la Cour Jansen, J; Siegrist, H; Hollender, J; Joss, A
2013-09-01
Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (± 25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nutrient leaching and soil retention in mined land reclaimed with stabilized manure.
Dere, Ashlee L; Stehouwer, Richard C; Aboukila, Emad; McDonald, Kirsten E
2012-01-01
Two environmental problems in Pennsylvania are degraded mined lands and excess manure nutrients from intensive animal production. Manure could be used in mine reclamation, but the large application rates required for sustained biomass production could result in significant nutrient discharge. An abandoned mine site in Schuylkill County, Pennsylvania, was used to test manure nutrient stabilization by composting and by mixing with primary paper mill sludge (PMS). Reclamation treatments were lime and fertilizer, composted poultry manure (78 and 156 Mg ha), and poultry manure (50 Mg ha) mixed with PMS (103 and 184 Mg ha) to achieve C-to-N ratios of 20 and 29. Leachates were collected with zero-tension lysimeters, and during 3 yr following amendment application, <1% of added N leached from the compost treatments. The manure+PMS C:N 29 treatment leached more N than any other treatment (393 kg N ha during 3 yr, 12.4 times more N than compost treatments), mostly as pulses of NO in the first two fall seasons following reclamation. The manure+PMS C:N 20 treatment leached 107 kg N ha during 3 yr. Three years after amendment application, most of the N and P added with the manure-based amendments was retained in the mine soil even though net immobilization of N by PMS appeared to be limited to 3 mo following application. Composting or mixing PMS with manure to achieve a C-to-N ratio of 20 can effectively minimize N leaching, retain added N in mine soil, and provide greater improvement in soil quality than lime and fertilizer amendment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Usyskin, Alla; Bukhanovsky, Nadezhda; Borisover, Mikhail
2015-11-01
Triclosan, gemfibrozil and galaxolide, representing acidic and non-ionized hydrophobic organic compounds, are biologically active and can be accumulated during wastewater treatment in sewage sludge. The interactions of these substances with the soils amended by sewage sludge-originating biosolids may control their environmental fate. Therefore, the sorption of three organic compounds was studied in dune sand, loess soil, clay soil and mixtures of these media with three different sewage sludge-originating biosolids that were incubated under aerobic conditions for 6 months. For each compound, 15 sorption isotherms were produced at pH 7.8-8.0. The sorption of triclosan and gemfibrozil on sand-containing sorbents was examined also under acidic conditions. In some soil series, the compound's Freundlich constants (KF) are linearly related to the soil organic carbon (OC) content. Notably, for a given OC content, the sand-containing sorbents tend to demonstrate enhanced interactions with triclosan and galaxolide. This may be related with more hydrophobic and/or less rigid soil organic matter (SOM) as compared with the clay-containing soils, implying indirect effects of minerals. Generally the OC-normalized KF vary among different soil-biosolid combinations which is explained by the differences in the composition and properties of SOM, and is also contributed by the non-zero intercepts of the linear KF upon soil OC dependencies. The negative intercepts suggest that below a certain OC level no considerable organic compound-soil interactions would occur. Interactions of molecular and anionic forms of triclosan with a sand-containing sorbent may be comparable, but interactions involving gemfibrozil molecules could be stronger than interactions involving its anion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Yan-Hui; Chen, Ming-Hua; Wang, Guo; Chen, Wen-Xiang; Yang, Shun-Cheng; Chai, Peng
2010-10-01
The effects of different slopes on nitrogen transport along with runoff from sloping plots amended with sewage sludge on a lateritic red soil were studied under simulated rainfall conditions. When the sludge was broadcasted and mixed with surface soils (BM), the MTN (total nitrogen of mixing sample), STN (total nitrogen of settled sample), TPN (total particulate nitrogen), TSN (total suspended nitrogen), TDN (total dissolved nitrogen) and NH4(+) -N concentrations and nitrogen loss amounts in runoff of all treatments were highest at 1 day or 18 days after application. The highest concentrations and the loss amounts of MTN and STN in the slope runoff for the BM treatment increased with slope degree, showing increasing pollution risks to the surface waters. The STN concentration and loss amounts from the 25 degrees plots were 126.1 mg x L(-1) and 1788.6 mg x m(-2), respectively, being 4.6 times and 5.8 times of the corresponding values from the 10 degrees plots, respectively. Then the concentrations and the loss amounts of nitrogen (except NO3(-) -N) from the BM plots diminished rapidly first and then tended to be stable with dwindling differences between the slopes. The loss of MTN and STN in early runoff (1 day and 18 days) accounted for 68.6% -73.4% and 62.3% -66.7% of the cumulative loss amounts during the experimental period for all the broadcasted treatments. Runoff loss coefficients of MTN increased in the order of 20 degrees > 25 degrees > 15 degrees > 10 degrees. Nitrogen was largely lost in dissolved species while large portion of NH4(+) -N was lost with particulates.
Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.
Yu, Yong-Ho; Chung, Jinwook
2015-01-01
This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.
Effects of topsoil treatments on afforestation in a dry Mediterranean climate (southern Spain)
NASA Astrophysics Data System (ADS)
Hueso-González, Paloma; Francisco Martínez-Murillo, Juan; Damian Ruiz-Sinoga, Jose
2016-10-01
Afforestation programs in semiarid areas are associated with a high level of sapling mortality. Therefore, the development of alternative low-cost and low-environmental-impact afforestation methods that ensure the survival of seedlings is crucial for improving the efficiency of Mediterranean forest management. This study assessed the effects of five types of soil amendments on the afforestation success (e.g., plant growth and survival) of a Mediterranean semiarid area. The amendments tested were (i) straw mulch; (ii) mulch containing chipped branches of Aleppo pine (Pinus halepensis L.); (iii) sheep manure compost; (iv) sewage sludge from a wastewater treatment plant; and (v) TerraCottem hydroabsorbent polymer. We hypothesized that in the context of dry Mediterranean climatic conditions, the use of organic amendments would enhance plant establishment and ensure successful afforestation. The results showed that afforestation success varied among the various soil amendment treatments in the experimental plots. The amendments had no effect on soil organic carbon, pH, or salinity, but the results indicated that the addition of mulch or hydroabsorbent polymer can reduce transplant stress by increasing the soil water available for plant growth throughout the hydrological year, and potentially improve the success of afforestation by reducing plant mortality.
Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang
2015-08-01
Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.
[Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].
Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun
2011-04-01
The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.
Restoration of acidic mine spoils with sewage sludge: II measurement of solids applied
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stucky, D.J.; Zoeller, A.L.
1980-01-01
Sewage sludge was incorporated in acidic strip mine spoils at rates equivalent to 0, 224, 336, and 448 dry metric tons (dmt)/ha and placed in pots in a greenhouse. Spoil parameters were determined 48 hours after sludge incorporation, Time Planting (P), and five months after orchardgrass (Dactylis glomerata L.) was planted, Time Harvest (H), in the pots. Parameters measured were: pH, organic matter content (OM), cation exchange capacity (CEC), electrical conductivity (EC) and yield. Values for each parameter were significantly different at the two sampling times. Correlation coefficient values were calculated for all parameters versus rates of applied sewage sludgemore » and all parameters versus each other. Multiple regressions were performed, stepwise, for all parameters versus rates of applied sewage sludge. Equations to predict amounts of sewage sludge incorporated in spoils were derived for individual and multiple parameters. Generally, measurements made at Time P achieved the highest correlation coefficient and multiple correlation coefficient values; therefore, the authors concluded data from Time P had the greatest predictability value. The most important value measured to predict rate of applied sewage sludge was pH and some additional accuracy was obtained by including CEC in equation. This experiment indicated that soil properties can be used to estimate amounts of sewage sludge solids required to reclaim acidic mine spoils and to estimate quantities incorporated.« less
NASA Astrophysics Data System (ADS)
Luna Ramos, Lourdes; Miralles Mellado, Isabel; Gispert Negrell, María; Pardini, Giovanni; Solé Benet, Albert
2014-05-01
Restoration of limestone quarries in arid environments mainly consists of regenerating a highly degraded soil and/or creating a soil-like substrate with minimal physico-chemical and biological properties. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, with the aim to improve soil/substrate properties and to reduce evaporation and erosion, 18 plots 15 x 5 m were prepared to test organic amendments (sludge, compost, control) and different mulches (gravel, chopped forest residue, control). In order to evaluate the soil quality of the different treatments, their chemical, physical and biological properties were analyzed. Among the most efficient biological indicators are arbuscular mycorrhizal fungi (AMF). AMF play an important role in aggregate stability due to the production of a glycoprotein called glomalin. Therefore, the aim of this study was to quantify, 5 years after the start the experiment, the content of total glomalin (TG) and to analyze its relationship with other soil parameters such as organic matter (OM) and aggregate stability soil (AE). Results indicated a remarkable effect of organic amendments on glomalin content, which was higher in the treatments with compost (6.96 mg g -1) than in sludge and control (0.54 and 0.40 mg g-1, respectively). Amendments also significantly influenced aggregate stability: the highest values were recorded in treatments with sludge and compost (23.14 and 25.09%, respectively) compared to control (13.37%). The gravel mulch had a negative influenced on AE: an average of 16% compared to 23.4% for chopped forest residues and 23.1% of control. Data showed a positive and significant correlation between values of TG and OM content (r = 0.95). We also found a positive and significant correlation between abundance of TG and AE when OM contents were lower than 4% (r = 0.93), however, there was no significant correlation to higher OM when it was higher than 4% (r = 0.34). This suggests that all protein sources which are different to glomalin have not been removed by the extraction process with sodium citrate. Other studies have shown that the ratio between proteins associated to glomalin and AE is curvilinear, meaning that increases in aggregate stability are not detected if the amount of these proteins is very high. In soil restoration, glomalin is an adequate indicator of soil/substrate evolution when organic amendments deliver low to medium OM contents. Nevertheless, further studies are necessary to improve the knowledge about AMF activity on soil aggregate formation and stability.
Consequences of sludge composition on combustion performance derived from thermogravimetry analysis.
Li, Meiyan; Xiao, Benyi; Wang, Xu; Liu, Junxin
2015-01-01
Wastewater treatment plants produce millions of tons of sewage sludge. Sewage sludge is recognized as a promising feedstock for power generation via combustion and can be used for energy crisis adaption. We aimed to investigate the quantitative effects of various sludge characteristics on the overall sludge combustion process performance. Different types of sewage sludge were derived from numerous wastewater treatment plants in Beijing for further thermogravimetric analysis. Thermogravimetric-differential thermogravimetric curves were used to compare the performance of the studied samples. Proximate analytical data, organic compositions, elementary composition, and calorific value of the samples were determined. The relationship between combustion performance and sludge composition was also investigated. Results showed that the performance of sludge combustion was significantly affected by the concentration of protein, which is the main component of volatiles. Carbohydrates and lipids were not correlated with combustion performance, unlike protein. Overall, combustion performance varied with different sludge organic composition. The combustion rate of carbohydrates was higher than those of protein and lipid, and carbohydrate weight loss mainly occurred during the second stage (175-300°C). Carbohydrates have a substantial effect on the rate of system combustion during the second stage considering the specific combustion feature. Additionally, the combustion performance of digested sewage sludge is more negative than the others. Copyright © 2014 Elsevier Ltd. All rights reserved.
Qiao, Sen; Kawakubo, Yuki; Koyama, Toichiro; Furukawa, Kenji
2008-11-01
This study evaluated performance of swim-bed (SB) reactors packed with a novel acrylic fiber carrier (BF) and swim-bed activated sludge (SBAS) reactor for partial nitritation of anaerobic sludge digester liquor from a municipal wastewater treatment plant. Comparison of characteristics of sludge obtained from both the reactors was also made. The average conversion rates of ammonium to nitrite were 52.3% and 40.0% under relatively high nitrogen loading rates over 3.0 kg-N/m(3)/d, respectively in two reactors. The average BOD(5) removal efficiencies were 74.3% and 64.4%, respectively in the two reactors. The size of the sludge pellets taken from SB and SBAS reactors was found to be approximately three times (229 mum versus 88 mum) of that of the seed sludge. This sludge also had relatively high extracellular proteins levels indicating better sludge settling capability as compared to the sludge taken from SBAS reactor. Although the effluent nitrite/ammonium ratios had fluctuated in both reactor in some extent, the low dissolved oxygen concentration (average of 2.5 versus 0.35 mg/l), low suspended solids (average of 33.3 versus 33.5 mg/l), and about 50% ammonium conversion to nitrite demonstrated the application potential of anammox process for nitrogen removal.
Kumar Awasthi, Mukesh; Wang, Meijing; Pandey, Ashok; Chen, Hongyu; Kumar Awasthi, Sanjeev; Wang, Quan; Ren, Xiuna; Hussain Lahori, Altaf; Li, Dong-Sheng; Li, Ronghua; Zhang, Zengqiang
2017-10-01
In the present study, biochar combined with a higher dosage of zeolite (Z) and biochar (B) alone were applied as additives for dewatered fresh sewage sludge (DFSS) composting using 130-L working volume lab-scale reactors. We first observed that the addition of a mixture of B and Z to DFSS equivalent to 12%B+10% (Z-1), 15% (Z-2) and 30% (Z-3) zeolite (dry weight basis) worked synergistically as an amendment and increased the composting efficiency compared with a treatment of 12%B alone amended and a control without any amendment. In a composting reactor, the addition of B+Z may serve as a novel approach for improving DFSS composting and the quality of the end product in terms of the temperature, water-holding capacity, CO 2 emissions, electrical conductivity, water-soluble and total macro-nutrient content and phytotoxicity. The results indicated that during the thermophilic phase, dissolved organic carbon, NH 4 + -N and NO 3 - -N increased drastically in all biochar amended treatments, whereas considerably low water-soluble nutrients were observed in the control treatment throughout and at the end of the composting. Furthermore, the maturity parameters and dissolved organic carbon (DOC) indicated that compost with 12%B+15%Z became more mature and humified within 35days of DFSS composting, with the maturity parameters, such as CO 2 evolution and the concentration of NH 4 + -N in the compost, being within the permissible limits of organic farming in contrast to the control. Furthermore, at the end of composting, the addition of higher dosage of biochar (12%) alone and 12% B+Z lowered the pH by 7.15 to 7.86 and the electrical conductivity by 2.65 to 2.95mScm -1 as compared to the control, while increased the concentrations of water-soluble nutrients (gkg -1 ) including available phosphorus, sodium and potassium. In addition, greenhouse experiments demonstrated that the treatment of 150kgha -1 biochar combined with zeolite and that of 12%B alone improved the yield of Chinese cabbage (Brassica rapa chinensis L.). The highest dry weight biomass (1.41±0.12g/pot) was obtained with 12%B+15%Z amended compost. Therefore, 12%B+15%Z can be potentially applied as an amendment to improve DFSS composting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fu, Bo; Zhang, Jingjing; Fan, Jinfeng; Wang, Jin; Liu, He
2012-01-01
Increasing textile wastewaters and their biotreatment byproduct-waste activated sludge are serious pollution problems. Butyric acid production from textile wastewater sludge by anaerobic digestion at different C/N ratios was investigated. Adding starch to textile wastewater sludge with a C/N ratio of 30 increased the butyric acid concentration and percentage accounting for total volatile fatty acids (TVFAs) to 21.42 g/L and 81.5%, respectively, as compared with 21.42 g/L and 10.6% of textile wastewater sludge alone. The maximum butyric acid yield (0.45 g/g VS), conversion rate (0.74 g/g VS(digest)) and production rate (2.25 g/L d) was achieved at a C/N ratio of 30. The biological toxicity of textile wastewater sludge also significantly decreased after the anaerobic digestion. The study indicated that the anaerobic co-digestion of textile wastewater sludge and carbohydrate-rich waste with appropriate C/N ratio is possible for butyric acid production.
Keating, C; Cysneiros, D; Mahony, T; O'Flaherty, V
2013-01-01
In this study, the ability of various sludges to digest a diverse range of cellulose and cellulose-derived substrates was assessed at different temperatures to elucidate the factors affecting hydrolysis. For this purpose, the biogas production was monitored and the specific biogas activity (SBA) of the sludges was employed to compare the performance of three anaerobic sludges on the degradation of a variety of complex cellulose sources, across a range of temperatures. The sludge with the highest performance on complex substrates was derived from a full-scale bioreactor treating sewage at 37 °C. Hydrolysis was the rate-limiting step during the degradation of complex substrates. No activity was recorded for the synthetic cellulose compound carboxymethylcellulose (CMC) using any of the sludges tested. Increased temperature led to an increase in hydrolysis rates and thus SBA values. The non-granular nature of the mesophilic sludge played a positive role in the hydrolysis of solid substrates, while the granular sludges proved more effective on the degradation of soluble compounds.
D.G. Brockway
1983-01-01
An undigested, nutrient-enriched papermill sludge applied to a 40-year-old red pine (Pinus resinosa Ait.) plantation at rates of 4, 8, 16, and 32 Mg/ha resulted in nitrogen application rates of 282, 565, 1130, and 2260 kg/ha.An anaerobically digested municipal sludge applied to a 36-year-old red pine and white pine (Pinus strobus L....
Flores, Angel; Nisola, Grace M; Cho, Eulsaeng; Gwon, Eun-Mi; Kim, Hern; Lee, Changhee; Park, Shinjung; Chung, Wook-Jin
2007-05-01
The performance of enriched sludge augmented with the B21 strain of Alcaligenes defragrans was compared with that of enriched sludge, as well as with pure Alcaligenes defragrans B21, in the context of a sulfur-oxidizing denitrification (SOD) process. In synthetic wastewater treatment containing 100-1,000 mg NO3-N/L, the single strain-seeded system exhibited superior performance, featuring higher efficiency and a shorter startup period, provided nitrate loading rate was less than 0.2 kg NO3-N/m(3) per day. At nitrate loading rate of more than 0.5 kg NO3-N/m(3) per day, the bioaugmented sludge system showed higher resistance to shock loading than two other systems. However, no advantage of the bioaugmented system over the enriched sludge system without B21 strain was observed in overall efficiency of denitrification. Both the bioaugmented sludge and enriched sludge systems obtained stable denitrification performance of more than 80% at nitrate loading rate of up to 2 kg NO3-N/m(3) per day.
Fernández-Caliani, J C; Barba-Brioso, C
2010-09-15
A one-year field trial was conducted at the abandoned mine site of Tharsis (Spain) in order to assess the potential value of waste sludge generated during the processing of marble stone, as an additive for assisting natural remediation of heavily contaminated acid mine soils. An amendment of 22 cmol(c) of lime per kilogram of soil was applied to raise the pH level from 3.2 to above 6. The amendment application was effective in reducing concentrations of Al, Fe, Mn, sulfate and potentially hazardous trace elements (mainly Cu, Pb, Zn and Cd) in the most labile metal pools (water-soluble and EDTA-extractable fractions). Geochemical equilibrium calculations indicate that sulfate complexes and free metal ions were the dominant aqueous species in the soil solution. Metal coprecipitation with nanocrystalline ferric oxyhydroxides may be the major chemical mechanism of amendment-induced immobilization. The alleviating effect of the soil amendment on the metal bioavailability and phytotoxicity showed promise for assisting natural revegetation of the mine land. Copyright 2010 Elsevier B.V. All rights reserved.
Influence of ultrasonication on anaerobic bioconversion of sludge.
Mao, Taohong; Show, Kuan-Yeow
2007-04-01
The influence of ultrasonication on hydrolysis, acidogenesis, and methanogenesis in anaerobic decomposition of sludge was investigated. The sonicated sludge exhibited prehydrolysis and preacidogenesis effects in the anaerobic decomposition process. First-order hydrolysis rates increased from 0.0384 day(-1) in the control digester to 0.0672 day(-1) in the digester fed, with sludge sonicated at 0.52 W/mL. The sonication appeared to be ineffective in relation to acidogenesis reaction rates, but it provided a better buffering capacity to diminish the adverse effect of acidification. Digesters fed with sonicated sludge demonstrated enhanced methanogenesis over the control unit. Determination by coenzyme F420 verified that sonication is able to promote the growth of methanogenic biomass and facilitate a positive methanogenic microbial development in suppressing the initial methanogenesis limitation. The results suggest that ultrasonication could enhance anaerobic decomposition of sludge, resulting in an accelerated bioconversion, improved organics degradation, improved biogas production, and increased methane content.
Caluwé, Michel; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan
2017-02-01
In the present study, the influence of a changing feeding pattern from continuous to pulse feeding on the characteristics of activated sludge was investigated with a wastewater from the petrochemical industry from the harbour of Antwerp. Continuous seed sludge, adapted to the industrial wastewater, was used to start up three laboratory-scale sequencing batch reactors. After an adaptation period from the shift to pulse feeding, the effect of an increasing organic loading rate (OLR) and volume exchange ratio (VER) were investigated one after another. Remarkable changes of the specific oxygen uptake rate (sOUR), microscopic structure, sludge volume index (SVI), SVI 30 /SVI 5 ratio, and settling rate were observed during adaptation. sOUR increased two to five times and treatment time decreased 43.9% in 15 days. Stabilization of the SVI occurred after a period of 20 days and improved significantly from 300 mL·g -1 to 80 mL·g -1 . Triplication of the OLR and VER had no negative influence on sludge settling and effluent quality. Adaptation time of the microorganisms to a new feeding pattern, OLR and VER was relatively short and sludge characteristics related to aerobic granular sludge were obtained. This study indicates significant potential of the batch activated sludge system for the treatment of this industrial petrochemical wastewater.
Schramm, Andreas; Santegoeds, Cecilia M.; Nielsen, Helle K.; Ploug, Helle; Wagner, Michael; Pribyl, Milan; Wanner, Jiri; Amann, Rudolf; de Beer, Dirk
1999-01-01
A combination of different methods was applied to investigate the occurrence of anaerobic processes in aerated activated sludge. Microsensor measurements (O2, NO2−, NO3−, and H2S) were performed on single sludge flocs to detect anoxic niches, nitrate reduction, or sulfate reduction on a microscale. Incubations of activated sludge with 15NO3− and 35SO42− were used to determine denitrification and sulfate reduction rates on a batch scale. In four of six investigated sludges, no anoxic zones developed during aeration, and consequently denitrification rates were very low. However, in two sludges anoxia in flocs coincided with significant denitrification rates. Sulfate reduction could not be detected in any sludge in either the microsensor or the batch investigation, not even under short-term anoxic conditions. In contrast, the presence of sulfate-reducing bacteria was shown by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes and by PCR-based detection of genes coding for the dissimilatory sulfite reductase. A possible explanation for the absence of anoxia even in most of the larger flocs might be that oxygen transport is not only diffusional but enhanced by advection, i.e., facilitated by flow through pores and channels. This possibility is suggested by the irregularity of some oxygen profiles and by confocal laser scanning microscopy of the three-dimensional floc structures, which showed that flocs from the two sludges in which anoxic zones were found were apparently denser than flocs from the other sludges. PMID:10473433
Patziger, M; Kainz, H; Hunze, M; Józsa, J
2012-05-01
Secondary settling is the final step of the activated sludge-based biological waste water treatment. Secondary settling tanks (SSTs) are therefore an essential unit of producing a clear effluent. A further important function of SSTs is the sufficient thickening to achieve highly concentrated return sludge and biomass within the biological reactor. In addition, the storage of activated sludge is also needed in case of peak flow events (Ekama et al., 1997). Due to the importance of a high SST performance the problem has long been investigated (Larsen, 1977; Krebs, 1991; Takács et al., 1991; Ekama et al., 1997; Freimann, 1999; Patziger et al., 2005; Bürger et al., 2011), however, a lot of questions are still to solve regarding e.g. the geometrical features (inflow, outflow) and operations (return sludge control, scraper mechanism, allowable maximum values of surface overflow rates). In our study we focused on SSTs under dynamic load considering both the overall unsteady behaviour and the features around the peaks, investigating the effect of various sludge return strategies as well as the inlet geometry on SST performance. The main research tool was a FLUENT-based novel mass transport model consisting of two modules, a 2D axisymmetric SST model and a mixed reactor model of the biological reactor (BR). The model was calibrated and verified against detailed measurements of flow and concentration patterns, sludge settling, accompanied with continuous on-line measurement of in- and outflow as well as returned flow rates of total suspended solids (TSS) and water. As to the inlet arrangement a reasonable modification of the geometry could result in the suppression of the large scale flow structures of the sludge-water interface thus providing a significant improvement in the SST performance. Furthermore, a critical value of the overflow rate (q(crit)) was found at which a pronounced large scale circulation pattern develops in the vertical plane, the density current in such a way hitting the outer wall of the SST, turning then to the vertical direction accompanied with significant flow velocities. This phenomenon strengthens with the hydraulic load and can entrain part of the sludge thus resulting in unfavourable turbid effluent. As a representative case study an operating circular SST most commonly used in practice was investigated. Focusing on the sludge return strategies, it was found that up to a threshold peak flow rate the most efficient way is to keep the return sludge flow rate constant, at 0.4Q(MAX). However, once the inflow rate exceeds the threshold value the return sludge flow rate should be slowly increased up to 0.6Q(MAX), performed in a delayed manner, about 20-30 min after the threshold value is exceeded. For preserving the methodology outlined in the present paper, other types of SSTs, however, need further individual investigations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fernández, José M; Nieto, M Aurora; López-de-Sá, Esther G; Gascó, Gabriel; Méndez, Ana; Plaza, César
2014-06-01
Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions. Copyright © 2014 Elsevier B.V. All rights reserved.
Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu
2018-04-01
The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Nguyen, Vivi L; He, Xia; de Los Reyes, Francis L
2016-11-01
If the in situ growth rate of filamentous bacteria in activated sludge can be quantified, researchers can more accurately assess the effect of operating conditions on the growth of filaments and improve the mathematical modeling of filamentous bulking. We developed a method to quantify the in situ specific growth rate of Sphaerotilus natans (a model filament) in activated sludge using the species-specific 16S rRNA:rDNA ratio. Primers targeting the 16S rRNA of S. natans were designed, and real-time PCR and RT-PCR were used to quantify DNA and RNA levels of S. natans, respectively. A positive linear relationship was found between the rRNA:rDNA ratio (from 440 to 4500) and the specific growth rate of S. natans (from 0.036 to 0.172 h -1 ) using chemostat experiments. The in situ growth rates of S. natans in activated sludge samples from three water reclamation facilities were quantified, illustrating how the approach can be applied in a complex environment such as activated sludge. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Abundance and diversity of Archaea in heavy-metal-contaminated soils.
Sandaa, R A; Enger, O; Torsvik, V
1999-08-01
The impact of heavy-metal contamination on archaean communities was studied in soils amended with sewage sludge contaminated with heavy metals to varying extents. Fluorescent in situ hybridization showed a decrease in the percentage of Archaea from 1.3% +/- 0.3% of 4', 6-diamidino-2-phenylindole-stained cells in untreated soil to below the detection limit in soils amended with heavy metals. A comparison of the archaean communities of the different plots by denaturing gradient gel electrophoresis revealed differences in the structure of the archaean communities in soils with increasing heavy-metal contamination. Analysis of cloned 16S ribosomal DNA showed close similarities to a unique and globally distributed lineage of the kingdom Crenarchaeota that is phylogenetically distinct from currently characterized crenarchaeotal species.
National markets for organic waste-derived fertilizers and soil amendments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, T.J.; Pierzynski, G.M.; Pepperman, R.E.
1995-12-31
The last decade has seen enormous growth in the U.S. in the recycling of organic waste materials like sewage sludge, manures, yard waste, solid waste and various industrial wastes. This has been prompted by real or perceived shortages of landfill capacity, state and federal regulations favoring beneficial use of organic wastes, and public support for recycling. Use of fertilizers and soil amendments derived from these wastes has been stimulated by favorable supply-side economics, a shift to organic/sustainable agriculture, and water quality concerns that favor slow-release nutrient sources. This paper summarizes the properties and beneficial use attributes of the various wastesmore » and their derived products, markets for these materials, and constraints/strategies for market penetration.« less
Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals.
Falås, P; Baillon-Dhumez, A; Andersen, H R; Ledin, A; la Cour Jansen, J
2012-03-15
Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to the pharmaceutical removal, the nitrification capacity per unit biomass was lower for the carriers than the sludges, which suggests that neither the nitrite nor the ammonia oxidizing bacteria are primarily responsible for the observed differences in pharmaceutical removal. The low ability of ammonia oxidizing bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process. Copyright © 2011 Elsevier Ltd. All rights reserved.
The thin-layer drying characteristics of sewage sludge by the appropriate foaming pretreatment.
Wang, Hui-Ling; Yang, Zhao-Hui; Huang, Jing; Wang, Li-Ke; Gou, Cheng-Liu; Yan, Jing-Wu; Yang, Jian
2014-01-01
As dewatered sludge is highly viscous and sticky, the combination of foaming pretreatment and drying process seems to be an alternative method to improve the drying performance of dewatered sludge. In this study, CaO addition followed by mechanical whipping was employed for foaming the dewatered sludge. It was found that the foams were stable and the diameters of bubbles mainly ranged from 0.1 to 0.3 mm. The drying experiments were carried out in a drying oven in the convective mode. The results indicated that foamed sludge at 0.70 g/cm(3) had the best drying performance at each level of temperature, which could save 35-45% drying time to reach 20% moisture content compared with the non-foamed sludge. The drying rate of foamed sludge at 0.70 g/cm(3) was improved with the increasing of drying temperature. The impact of sample thickness on drying rate was not obvious when the sample thickness increased from 2 to 8 mm. Different mathematical models were used for the simulation of foamed sludge drying curves. The Wang and Singh model represented the drying characteristics better than other models with coefficient of determination values over 0.99.
Use of anaerobic hydrolysis pretreatment to enhance ultrasonic disintegration of excess sludge.
Li, Xianjin; Zhu, Tong; Shen, Yang; Chai, Tianyu; Xie, Yuanhua; You, Meiyan; Wang, Youzhao
2016-01-01
To improve the excess sludge disintegration efficiency, reduce the sludge disintegration cost, and increase sludge biodegradability, a combined pretreatment of anaerobic hydrolysis (AH) and ultrasonic treatment (UT) was proposed for excess sludge. Results showed that AH had an advantage in dissolving flocs, modifying sludge characteristics, and reducing the difficulty of sludge disintegration, whereas UT was advantageous in damaging cell walls, releasing intracellular substances, and decomposing macromolecular material. The combined AH-UT process was an efficient method for excess sludge pretreatment. The optimized solution involved AH for 3 days, followed by UT for 10 min. After treatment, chemical oxygen demand, protein, and peptidoglycan concentrations reached 3,949.5 mg O2/L, 752.5 mg/L and 619.1 mg/L, respectively. This work has great significance for further engineering applications, namely, reducing energy consumption, increasing the sludge disintegration rate, and improving the biochemical properties of sludge.
Merlo, Rion P; Trussell, R Shane; Hermanowicz, Slawomir W; Jenkins, David
2007-03-01
The properties of sludges from a pilot-scale submerged membrane bioreactor (SMBR) and two bench-scale complete-mix, activated sludge (CMAS) reactors treating municipal primary effluent were determined. Compared with the CMAS sludges, the SMBR sludge contained a higher amount of soluble microbial products (SMP) and colloidal material attributed to the use of a membrane for solid-liquid separation; a higher amount nocardioform bacteria, resulting from efficient foam trapping; and a lower amount of extracellular polymeric substances (EPS), possibly because there was no selective pressure for the sludge to settle. High aeration rates in both the CMAS and SMBR reactors produced sludges with higher numbers of smaller particles. Normalized capillary suction time values for the SMBR sludge were lower than for the CMAS sludges, possibly because of its lower EPS content.
D'Angelo, E
2017-12-01
Tetracycline (TET) is commonly used to treat bacterial diseases in humans and chickens (Gallus gallus domesticus), is largely excreted, and is found at elevated concentrations in treated sewage sludge (biosolids) and poultry litter (excrement plus bedding materials). Routine application of these nutrient-and carbon-enriched materials to soils improves fertility and other characteristics, but the presence of antibiotics (and other pharmaceuticals) in amendments raises questions about potential adverse effects on biota and development of antibiotic resistance in the environment. Hazard risks are largely dictated by sorption-desorption and diffusion behavior in amendments, so these processes were evaluated from sorption-desorption equilibrium isotherm and diffusion cell experiments with four types amendments (biosolids, poultry manure, wood chip litter, and rice hull litter) at three temperatures (8 °C, 20 °C and 32 °C). Linear sorption-desorption equilibrium distribution constants (Kd) in native amendments ranged between 124-2418 L kg -1 . TET sorption was significantly increased after treatment with alum, and there was a strong exponential relationship between Kd and the concentration of bound Al 3+ in amendments (R 2 = 0.94), which indicated that amendments contained functional groups capable of chelating Al 3+ and forming metal bridges with TET. Effective diffusion coefficients of TET in amendments ranged between 0.1 and 5.2 × 10 -6 cm 2 s -1 , which were positively related to temperature and inversely related to Kd by a multiple regression model (R 2 = 0.86). Treatment of organic amendments with alum greatly increased Kd, would decrease D s , and so would greatly reduce hazard risks of applying these organic amendments with this antibiotic to soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Composting of pig manure and forest green waste amended with industrial sludge.
Arias, O; Viña, S; Uzal, M; Soto, M
2017-05-15
The aim of this research was to study the composting of chestnut forest green waste (FGW) from short rotation chestnut stands amended with sludge resulting from the manufacture of Medium Density Fibreboard (MDFS) and pig manure (PM). Both FGW and MDFS presented low biodegradation potential but different characteristics in granulometry and bulk density that make its mixture of interest to achieve high composting temperatures. PM decreased the C/N ratio of the mixture and increased its moisture content (MC). Three mixtures of MDFS:FGW at volume ratios of 1:1.3 (M2), 1:2.4 (M3) and 0:1 (M4) were composted after increasing its MC to about 70% with PM. A control with food waste (OFW) and FGW (1:2.4 in volume) (M1) was run in parallel. Watering ratios reached 0.25 (M1), 1.08 (M2) 1.56 (M3) and 4.35 (M4) L PM/kg TS of added solids wastes. Treatments M2 and M3 reached a thermophilic phase shorter than M1, whilst M4 remained in the mesophilic range. After 48days of composting, temperature gradients in respect to ambient temperature were reduced, but the mineralization process continued for around 8months. Final reduction in total organic carbon reached 35-56%, depending mainly on the content in MDFS. MDFS addition to composting matrices largely reduced nitrogen losses, which range from 22% (M2) to 37% (M3) and 53% (M4). Final products had high nutrient content, low electrical conductivity and low heavy metal content which make it a valuable product for soil fertilization, right to amend in the chestnut forests and as a pillar of their sustainable management. Copyright © 2017 Elsevier B.V. All rights reserved.
Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan
2013-08-06
Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P < 0.01) reduced N2O emissions and stimulated the uptake/oxidation of CH4 enough to make both the cultivated and uncultivated paddy soil a CH4 sink. SSBC can be beneficial in rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown.
NASA Astrophysics Data System (ADS)
Luna Ramos, Lourdes; Miralles Mellado, Isabel; Ángel Domene Ruiz, Miguel; Solé Benet, Albert
2016-04-01
Mining activities generate erosion and loss of plant cover and soil organic matter (SOM), especially in arid and semiarid Mediterranean regions. A precondition for ecosystem restoration in such highly disturbed areas is the development of functional soils with sufficient organic matter. But the SOM quality is also important to long-term C stabilization. The resistance to biodegradation of recalcitrant organic matter fractions has been reported to depend on some intrinsic structural factors of humic acid substances and formation of amorphous organo-mineral recalcitrant complexes. In an experimental soil restoration in limestone quarries in the Sierra de Gádor (Almería), SE Spain, several combinations of organic amendments (sewage sludge and compost from domestic organic waste) and mulches (gravel and woodchip) were added in experimental plots using a factorial design. In each plot, 75 native plants (Anthyllis cytisoides, A. terniflora and Macrochloa tenacissima) were planted and five years after the start of the experiment total organic carbon (TOC), physico-chemical soil properties and organic C fractions (particulate organic matter, H3PO4-fulvic fraction, fulvic acids (FA), humic acids (HA) and humin) were analyzed. We observed significant differences between treatments related to the TOC content and the HA/FA ratio. Compost amendments increased the TOC, HA content and HA/FA ratio, even higher than in natural undisturbed soils, indicating an effective clay humus-complex pointing to progressively increasing organic matter quality. Soils with sewage sludge showed the lowest TOC and HA/FA ratio and accumulated a lower HA proportion indicating poorer organic matter quality and comparatively lower resilience than in natural soils and soils amended with compost.
Investigation of organic nitrogen and carbon removal in the aerobic digestion of various sludges.
Genç, Nevim; Yonsel, Sems; Dağaşan, Levent; Onar, A N
2002-11-01
Nitrification and carbon removal are investigated in aerobic batch digestion of various sludges. The experiments are carried out with activated sludge (Test 1) and with a mixture of activated and primary settling sludge (Test 2). The nitrification rate was monitored, measuring the NO2- concentration. At the 3rd day of the digestion 40.7 mgNO2-N/l and 3.89 mgNO2-N/l were found in Tests 1 and 2 respectively. In a digestion process, the degradation of biomass indicates the beginning of the endogenous phase. Our measure for biomass content of the sludge was protein analysis. In Test 1, the first day values of 50.93 mgTOC/ g(dry) matter/day and 138.53 mg(protein)-C/g(dry) matter/day for specific TOC and protein-C removal rates showed, that the digestion process began in the endogenous phase. For Test 2, since the endogenous phase began after removal of raw organic matter in primary settling sludge, specific TOC and protein-C removal rates were observed to be 60.12 mgTOC/g(dry) matter/day and 26.72 mg(protein-C/g(dry)matter/day, respectively.
Fresno, Teresa; Moreno-Jiménez, Eduardo; Peñalosa, Jesús M
2016-12-01
The efficiency of combining iron sulfate and organic amendments (paper mill sludge, olive mill waste compost and olive tree pruning biochar) for the remediation of an As- and Cu-contaminated soil was evaluated. Changes in As and Cu fractionation and solubility due to the application of the amendments was explored by leachate analysis, single and sequential extractions. Also, the effects on Arrhenatherum elatius growth, germination of Lactuca sativa and toxicity to the bacteria Vibrio fischeri were assessed. The combination of iron sulfate and the organic amendments efficiently reduced As solubility and availability through the formation of amorphous iron oxides, while organic matter did not seem to mobilize As. At the same time, copper fractionation was strongly affected by soil pH and organic matter addition. The soil pH significantly influenced both As and Cu mobility. Within all the amendments tested, FeSO 4 in combination with compost showed to be the most suitable treatment for the overall remediation process, as it reduced As and Cu availability andenhanced soil nutrient concentrations and plant growth. In sipte of contradictory trends between chemical analyses and ecotoxicity tests, we can still conclude that the application of organic amendments in combination with reactive iron salts is a suitable approach for the remediation of soils contaminated by Cu and As. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Sung Chul; Hong, Young Kyu; Oh, Se Jin; Oh, Seung Min; Lee, Sang Phil; Kim, Do Hyung; Yang, Jae E
2017-04-01
Remediation of potentially toxic trace elements (PTEs) in paddy fields is fundamental for crop safety. In situ application of chemical amendments has been widely adapted because of its cost-effectiveness and environmental safety. The main purpose of this research was to (1) evaluate the reduction in dissolved concentrations of cadmium (Cd) and arsenic (As) with the application of chemical amendments and (2) monitor microbial activity in the soil to determine the remediation efficiency. Three different chemical amendments, lime stone, steel slag, and acid mine drainage sludge, were applied to paddy fields, and rice (Oryza sativa L. Milyang 23) was cultivated. The application of chemical amendments immobilized both Cd and As in soil. Between the two PTEs, As reduction was significant (p < 0.05) with the addition of chemical amendments, whereas no significant reduction was observed for Cd than that for the control. Among six soil-related variables, PTE concentration showed a negative correlation with soil pH (r = -0.70 for As and r = -0.54 for Cd) and soil respiration (SR) (r = -0.88 for As and r = -0.45 for Cd). This result indicated that immobilization of PTEs in soil is dependent on soil pH and reduces PTE toxicity. Overall, the application of chemical amendments could be utilized for decreasing PTE (As and Cd) bioavailability and increasing microbial activity in the soil.
Environmental Fate of 14C Radiolabeled 2,4-Dinitroanisole in Soil Microcosms.
Olivares, Christopher I; Madeira, Camila L; Sierra-Alvarez, Reyes; Kadoya, Warren; Abrell, Leif; Chorover, Jon; Field, Jim A
2017-11-21
2,4-Dinitrosanisole (DNAN) is an insensitive munitions component replacing conventional explosives. While DNAN is known to biotransform in soils to aromatic amines and azo-dimers, it is seldom mineralized by indigenous soil bacteria. Incorporation of DNAN biotransformation products into soil as humus-bound material could serve as a plausible remediation strategy. The present work studied biotransformation of DNAN in soil and sludge microcosms supplemented with uniformly ring-labeled 14 C-DNAN to quantify the distribution of label in soil, aqueous, and gaseous phases. Electron donor amendments, different redox conditions (anaerobic, aerobic, sequential anaerobic-aerobic), and the extracellular oxidoreductase enzyme horseradish peroxidase (HRP) were evaluated to maximize incorporation of DNAN biotransformation products into the nonextractable soil humus fraction, humin. Irreversible humin incorporation of 14 C-DNAN occurred at higher rates in anaerobic conditions, with a moderate increase when pyruvate was added. Additionally, a single dose of HRP resulted in an instantaneous increased incorporation of 14 C-DNAN into the humin fraction. 14 C-DNAN incorporation to the humin fraction was strongly correlated (R 2 = 0.93) by the soil organic carbon (OC) amount present (either intrinsic or amended). Globally, our results suggest that DNAN biotransformation products can be irreversibly bound to humin in soils as a remediation strategy, which can be enhanced by adding soil OC.
Hernández-Soriano, Maria del Carmen; Peña, Aránzazu; Dolores Mingorance, Ma
2010-01-01
Anionic surfactants, mainly sulfosuccinamates, can be found in soils as the result of sludge application, wastewater irrigation, and remediation processes. Relatively high concentrations of surfactants together with multimetals can represent an environmental risk. A study was performed to assess the potential of the anionic surfactant Aerosol 22 (A22) for release of Cd, Cu, Pb, and Zn from a metal-amended soil representative of a Mediterranean area. Metal desorption was performed by batch experiments and release kinetics were assessed. Response surface methodology was applied to determine the influence of A22 concentration and the surfactant/soil ratio, as extraction key factors. An increase in solution/soil ratio to 100 (mL g(-1)) caused higher metal release. Leaching predictions found Pb to have the lowest and Cd the highest hazard. Metal release was highly dependent on pH. When extraction was made at pH less than 7, low or negligible amounts of metals were leached, whereas an increase to pH 7 caused desorption rates of 50 to 55% for Cd, Cu, and Zn but only 35% for Pb. Complexed metal-carboxylic groups from A22 were mainly responsible for its higher extractive capacity, especially of Cd and Cu.
Ma, Tingting; Cheng, Lei; Liu, Laiyan; Dai, Lirong; Zhou, Zheng; Zhang, Hui
2015-05-04
We evaluated the role of syntrophic acetate oxidation coupled with hydrogenotrophic methanogens in three different methanogenic consortia. Three methanogenic hexadecane degrading consortia named Y15, M82 and SK were taken from the same oily sludge of Shengli oil-field and enriched. They were incubated at 15, 35 and 55 °C, respectively. The consortia amended with acetate and inhibitors of NH4Cl or CH3F were further transferred and incubated at corresponding temperatures. The cultures atlate logarithmic phase were collected for terminal restriction fragment length polymorphism (T-RFLP) combined with cloning and phylogenetic analysis of 16S rRNA gene fragments. Gas chromatograph analysis showed that all of the consortia could grow and produce methane, but the lag phase was delayed and the growth rate was retarded in the cultures amended with inhibitor. Combination analysis of T-RFLP and clone library revealed the predominance of obligate aceticlastic Methanosaeta in the acetate cultures of Y15, M82 and SK. Under the mesophilic and thermophilic conditions, after add inginhibitor the relative abundance of aceticlastic methanogen decreased but hydrogenotrophic methanogen increased. Syntrophic acetate oxidation during methanogenic degradation of petroleum hydrocarbons occurs under mesophilic and thermophilic conditions, although the situation at low temperature seems uncertain.
Effect of gamma-ray irradiation on the dewaterability of waste activated sludge
NASA Astrophysics Data System (ADS)
Wu, Yuqi; Jiang, Yinghe; Ke, Guojun; Liu, Yingjiu
2017-01-01
The effect of gamma-ray irradiation on waste activated sludge (WAS) dewaterability was investigated with irradiation doses of 0-15 kGy. Time to filter (TTF50), specific resistance of filtration (SRF) and water content of sludge cake were measured to evaluate sludge dewaterability. Soluble chemical oxygen demand (SCOD), soluble extracellular polymeric substances (EPS) concentration and sludge particle size were determined to explain changes in sludge dewaterability. The optimal irradiation dose to obtain the maximum dewaterability characteristics was 1-4 kGy, which generated sludge with optimal disintegration (1.5-4.0%), soluble EPS concentration (590-750 mg/L) and particle size distribution (100-115 μm diameter). The combination of irradiation and cationic polyacrylamide (CPAM) addition exhibited minimal synergistic effect on increasing sludge dewatering rate compared with CPAM conditioning alone.
Zheng, Dong; Gao, Mengchun; Wang, Zhe; She, Zonglian; Jin, Chunji; Chang, Qingbo
2016-09-01
The performance, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater under oxytetracycline stress. The chemical oxygen demand and [Formula: see text]-N removal efficiencies of the SBBR decreased with the increase of oxytetracycline concentration, and no obvious [Formula: see text]-N and [Formula: see text]-N accumulation in the effluent appeared at less than 10 mg L(-1) oxytetracycline. The specific oxygen utilization rate of the suspended sludge was more than that of the biofilm at different oxytetracycline concentrations. The specific ammonium oxidation rate (SAOR) of the biofilm was more easily affected by oxytetracycline than that of the suspended sludge, whereas the effect of oxytetracycline on the specific nitrite oxidation rate (SNOR) of the biofilm was less than that of the suspended sludge. The specific nitrate reduction rate of both the biofilm and suspended sludge was higher than the sum of the SAOR and SNOR at different oxytetracycline concentrations. The protein and polysaccharide contents in the EPS of the biofilm and suspended sludge increased with the increase of oxytetracycline concentration. The appearance of oxytetracycline in the influent could affect the chemical composition of the loosely bound EPS and tightly bound EPS. The amino, carboxyl and hydroxyl groups might be involved with interaction between EPS and oxytetracycline. The denaturing gradient gel electrophoresis profiles indicated that the variation of oxytetracycline concentration in the influent could affect the microbial communities of both the biofilm and suspended sludge.
Research on Treatment Technology and Device of Oily Sludge
NASA Astrophysics Data System (ADS)
Wang, J. Q.; Shui, F. S.; Li, Q. F.
2017-12-01
Oily sludge is a solid oily waste, which is produced during the process of oil exploitation, transportation, refining and treatment of oily sewage. It contains a great number of hazardous substance, and is difficult to handle with. To solve the problem of waste resources of oil sludge with high oil content and usually not easy to aggregate during the preparation of profile control agent, a new oily sludge treatment device was developed. This device consists of heat supply unit, flush and filter unit, oil removal unit and dehydration unit. It can effectively clean and filter out the waste from oily sludge, recycle the oil resources and reduce the water content of the residue. In the process of operation, the water and chemical agent are recycled in the device, eventually producing little sewage. The device is small, easy to move and has high degree of automation control. The experimental application shows that the oil removal rate of the oily sludge is up to 70%, and the higher the oil content rate the better the treatment.
Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun
2017-07-01
Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vestner, R J; Günthert, F Wolfgang
2004-01-01
Full-scale investigations at a WWTP with a two-stage secondary settling tank process revealed relationships between significant operating parameters and performance in terms of effluent suspended solids concentration. Besides common parameters (e.g. surface overflow rate and sludge volume loading rate) feed SS concentration and flocculation time must be considered. Concentration of the return activated sludge may help to estimate the performance of existing secondary settling tanks.
[Treatment of carbonization effluent by the ultrasonic radiation and activated sludge process].
Ning, Ping; Xu, Jinqiu; Huang, Dongbin; Ma, Xiaoli; Xu, Xiaojun; Li, Ziyan
2003-05-01
The paper deals with the degradation of organic pollutants by the ultrasonic irradiation-activated sludge process. The treatment of the real coking wastewater of Kunming coke making-gas plant was studied with the water quality model. Using the ultrasonic irradiation-activated sludge process the organic pollutants in the real coking wastewater can be degraded effectively. The influence factors of the ultrasonic degradation effect such as initial concentration, aerated gas and ultrasonic density were investigated and mechanism was explored. The result shows that the ultrasonic degradation effect was high with the decrease of initial concentration of the CODCr, the presence of aerated gas and the increase of ultrasonic density. At the initial CODCr concentration of 807 mg/L, when air acted as aerated gas and only air itself (no ultrasound) was exerted on the wastewater, the degradation rate of the CODCr will be 4.5%. However, when the ultrasound of the intensity of 119.4 kW/m2 was exerted on the wastewater, the degradation rate of the CODCr will be 65%. Compared with the activated sludge process alone, the combination of the ultrasonic irradiation and activated sludge process can increase the degradation rate of the CODCr from 45% to 81%. The oxygen consumption rate of the carbonization effluent obviously decreased in the presence of the activated sludge. This shows the carbonization effluent is not biotoxic behind the ultrasonic irradiation.
Improvement of sedimentation and dewatering of municipal sludge by radiation
NASA Astrophysics Data System (ADS)
Sawai, Teruko; Yamazaki, Masao; Shimokawa, Toshinari; Sekiguchi, Masayuki; Sawai, Takeshi
As the promotion of sewerage system, the volume of municipal sludge in Tokyo has increased rapidly. Due to recent changes in the properties of the sludge, moreover, it has become difficult to thicken the liquid sewage sludge by sedimentation and to dewater the thickening sludge mechanically. The development of a new effective method for sludge treatment is necessary. Therefore, a study on the improvement of sedimentation and dewatering of sewage sludge by irradiation with 60Co gamma rays and electron beams was undertaken. Sedimentation tests and various dewatering tests were carried out for the waste activated sludge and anaerobically digested sludge. From the changes in the settling rate, capillary suction time, water content of the sludge cake, and the quality of separated water by irradiation, the optimum irradiation conditions for improving the sedimentation and dewatering of 2 types sludge were determined. The necessary dose for improving the sedimentation and dewatering was observed to be 1-3 kGy for the activated sludge and 5-10 kGy for the digested sludge. To confirm the cause of those changes by irradiation, the zeta potential and viscosity of the sludge were measured.
Smith, Stephen R
2009-01-01
The content, behaviour and significance of heavy metals in composted waste materials is important from two potentially conflicting aspects of environmental legislation in terms of: (a) defining end-of-waste criteria and increasing recycling of composted residuals on land and (b) protecting soil quality by preventing contamination. This review examines the effects of heavy metals in compost and amended soil as a basis for achieving a practical and sustainable balance between these different policy objectives, with particular emphasis on agricultural application. All types of municipal solid waste (MSW) compost contain more heavy metals than the background concentrations present in soil and will increase their contents in amended soil. Total concentrations of heavy metals in source-segregated and greenwaste compost are typically below UK PAS100 limits and mechanical segregated material can also comply with the metal limits in UK PAS100, although this is likely to be more challenging. Zinc and Pb are numerically the elements present in the largest amounts in MSW-compost. Lead is the most limiting element to use of mechanically-segregated compost in domestic gardens, but concentrations are typically below risk-based thresholds that protect human health. Composted residuals derived from MSW and greenwaste have a high affinity for binding heavy metals. There is general consensus in the scientific literature that aerobic composting processes increase the complexation of heavy metals in organic waste residuals, and that metals are strongly bound to the compost matrix and organic matter, limiting their solubility and potential bioavailability in soil. Lead is the most strongly bound element and Ni the weakest, with Zn, Cu and Cd showing intermediate sorption characteristics. The strong metal sorption properties of compost produced from MSW or sewage sludge have important benefits for the remediation of metal contaminated industrial and urban soils. Compost and sewage sludge additions to agricultural and other soils, with background concentrations of heavy metals, raise the soil content and the availability of heavy metals for transfer into crop plants. The availability in soil depends on the nature of the chemical association between a metal with the organic residual and soil matrix, the pH value of the soil, the concentration of the element in the compost and the soil, and the ability of the plant to regulate the uptake of a particular element. There is no evidence of increased metal release into available forms as organic matter degrades in soil once compost applications have ceased. However, there is good experimental evidence demonstrating the reduced bioavailability and crop uptake of metals from composted biosolids compared to other types of sewage sludge. It may therefore be inferred that composting processes overall are likely to contribute to lowering the availability of metals in amended soil compared to other waste biostabilisation techniques. The total metal concentration in compost is important in controlling crop uptake of labile elements, like Zn and Cu, which increases with increasing total content of these elements in compost. Therefore, low metal materials, which include source-segregated and greenwaste composts, are likely to have inherently lower metal availabilities overall, at equivalent metal loading rates to soil, compared to composted residuals with larger metal contents. This is explained because the compost matrix modulates metal availability and materials low in metals have stronger sorption capacity compared to high metal composts. Zinc is the element in sewage sludge-treated agricultural soil identified as the main concern in relation to potential impacts on soil microbial activity and is also the most significant metal in compost with regard to soil fertility and microbial processes. However, with the exception of one study, there is no other tangible evidence demonstrating negative impacts of heavy metals applied to soil in compost on soil microbial processes and only positive effects of compost application on the microbial status and fertility of soil are reported. The negative impacts on soil microorganisms apparent in one long-term field experiment could be explained by the exceptionally high concentrations of Cd and other elements in the applied compost, and of Cd in the compost-amended soil, which are unrepresentative of current practice and compost quality. The metal contents of source-segregated MSW or greenwaste compost are smaller compared to mechanically-sorted MSW-compost and sewage sludge, and low metal materials also have the smallest potential metal availabilities. Composting processes also inherently reduce metal availability compared to other organic waste stabilisation methods. Therefore, risks to the environment, human health, crop quality and yield, and soil fertility, from heavy metals in source-segregated MSW or greenwaste-compost are minimal. Furthermore, composts produced from mechanically-segregated MSW generally contain fewer metals than sewage sludge used as an agricultural soil improver under controlled conditions. Consequently, the metal content of mechanically-segregated MSW-compost does not represent a barrier to end-use of the product. The application of appropriate preprocessing and refinement technologies is recommended to minimise the contamination of mechanically-segregated MSW-compost as far as practicable. In conclusion, the scientific evidence indicates that conservative, but pragmatic limits on heavy metals in compost may be set to encourage recycling of composted residuals and contaminant reduction measures, which at the same time, also protect the soil and environment from potentially negative impacts caused by long-term accumulation of heavy metals in soil.
Fixation and partitioning of heavy metals in slag after incineration of sewage sludge.
Chen, Tao; Yan, Bo
2012-05-01
Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cokgor, Emine Ubay; Aydinli, Ebru; Tas, Didem Okutman; Zengin, Gulsum Emel; Orhon, Derin
2014-01-01
The efficiency of aerobic stabilization on the treatment sludge generated from the leather industry was investigated to meet the expected characteristics and conditions of sludge prior to landfill. The sludge types subjected to aerobic stabilization were chemical treatment sludge, biological excess sludge, and the mixture of both chemical and biological sludges. At the end of 23 days of stabilization, suspended solids, volatile suspended solids and total organic carbon removal efficiencies were determined as 17%, 19% and 23% for biological sludge 31%, 35% and 54% for chemical sludge, and 32%, 34% and 63% for the mixture of both chemical and biological sludges, respectively. Model simulations of the respirometric oxygen uptake rate measurements showed that the ratio of active biomass remained the same at the end of the stabilization for all the sludge samples. Although mixing the chemical and biological sludges resulted in a relatively effective organic carbon and solids removal, the level of stabilization achieved remained clearly below the required level of organic carbon content for landfill. These findings indicate the potential risk of setting numerical restrictions without referring to proper scientific support.
Wan, Junfeng; Bessière, Yolaine; Spérandio, Mathieu
2009-12-01
In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.
Influence of gas injection on viscous and viscoelastic properties of Xanthan gum.
Bobade, Veena; Cheetham, Madalyn; Hashim, Jamal; Eshtiaghi, Nicky
2018-05-01
Xanthan gum is widely used as a model fluid for sludge to mimic the rheological behaviour under various conditions including impact of gas injection in sludge. However, there is no study to show the influence of gas injection on rheological properties of xanthan gum specifically at the concentrations at which it is used as a model fluid for sludge with solids concentration above 2%. In this paper, the rheological properties of aqueous xanthan gum solutions at different concentrations were measured over a range of gas injection flow rates. The effect of gas injection on both the flow and viscoelastic behaviour of Xanthan gum (using two different methods - a creep test and a time sweep test) was evaluated. The viscosity curve of different solid concentrations of digested sludge and waste activated sludge were compared with different solid concentrations of Xanthan gum and the results showed that Xanthan gum can mimic the flow behaviour of sludge in flow regime. The results in linear viscoelastic regime showed that increasing gas flow rate increases storage modulus (G'), indicating an increase in the intermolecular associations within the material structure leading to an increase in material strength and solid behaviour. Similarly, in creep test an increase in the gas flow rate decreased strain%, signifying that the material has become more resistant to flow. Both observed behaviour is opposite to what occurs in sludge under similar conditions. The results of both the creep test and the time sweep test indicated that choosing Xanthan gum aqueous solution as a transparent model fluid for sludge in viscoelastic regime under similar conditions involving gas injection in a concentration range studied is not feasible. However Xanthan gum can be used as a model material for sludge in flow regime; because it shows a similar behaviour to sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yibirin, H.; Stehouwer, R. C.; Bigham, J. M.
The Clean Air Act, as revised in 1992, has spurred the development of flue gas desulfurization (FGD) technologies that have resulted in large volumes of wet scrubber sludges. In general, these sludges must be dewatered, chemically treated, and disposed of in landfills. Disposal is an expensive and environmentally questionable process for which suitable alternatives must be found. Wet scrubbing with magnesium (Mg)-enhanced lime has emerged as an efficient, cost effective technology for SO 2 removal. When combined with an appropriate oxidation system, the wet scrubber sludge can be used to produce gypsum (CaSO 4-2H 2O) and magnesium hydroxide [Mg(OH) 2]more » of sufficient purity for beneficial re-use. Product value generally increases with purity of the by-product(s). The pilot plant at the CINERGY Zimmer Station near Cincinnati produces gypsum by products that can be formulated to contain varying amounts of Mg(OH) 2. Such materials may have agricultural value as soil conditioners, liming agents and sources of plant nutrients (Ca, Mg, S). This report describes a greenhouse study designed to evaluate by-product gypsum and Mg gypsum from the Zimmer Station pilot plant as amendments for improving the quality of agricultural soils and mine spoils that are currently unproductive because of phytotoxic conditions related to acidity and high levels of toxic dissolved aluminum (Al). In particular, the technical literature contains evidence to suggest that gypsum may be more effective than agricultural limestone in modifying soil chemical conditions below the immediate zone of application. Representative samples of by-product gypsum and Mg(OH) 2 from the Zimmer Station were initially characterized. The gypsum was of high chemical purity and consisted of well crystalline, lath-shaped particles of low specific surface area. By contrast, the by-product Mg(OH) 2 was a high surface area material (50 m 2 g -1) that contained 20% CaSO 4 with variable hydration state. Artificial blends of these materials containing 4% and 8% Mg(OH) 2 were prepared for comparison with other liming agents in the form of agricultural limestone and gypsum amended with laboratory Ca(OH) 2.« less
Grand Forks - East Grand Forks Urban Water Resources Study. Wastewater Management Appendix.
1981-07-01
SLUIGES FROM AEROBIC DIGESTION . 2. LOADING RATE OF 20 LB/FT 2/YR APPLICABLE TO BIOLOGICAL SLUDGES FROM ANAEROBIC DIGESTION. 3. EXPECTED PERFORMANCE...plant size as follows: Sludge Handling Facilities Flow Range Biological Sludge Lime Sludge Flow <_ 3 MCD Flotation thickening, Gravity thicken & aerobic ... digestion , & drying beds. drying beds. 3 MGD < Mot; < 10 MGD Flotation thickening, Gravity thicken & anaerobic digestion, & vacuum filter. vacuum
Destroying lignocellulosic matters for enhancing methane production from excess sludge.
Hao, Xiaodi; Hu, Yuansheng; Cao, Daqi
2016-01-01
A lot of lignocellulosic matters are usually present in excess sludge, which are hardly degraded in anaerobic digestion (AD) and thus remains mostly in digested sludge. This is a reason why the conversion rate of sludge organics into energy (CH4) is often low. Obviously, the hydrolysis of AD cannot destruct the structure of lignocellulosic matters. Structural destruction of lignocellulosic matters has to be performed in AD. In this study, pretreatments with the same principles as cell disintegration of sludge were applied to destruct lignocellulosic matters so that these materials could be converted to CH4 via AD. Acid, alkali, thermal treatment and ultrasonic were used in the experiments to observe the destructed/degraded efficiency of lignocellulosic matters. Thermal treatment was found to be the most effective pretreatment. Under optimized conditions (T = 150 °C and t = 30 min), pretreated sludge had a degraded rate of 52.6% in AD, due to easy destruction and/or degradation of hemicelluloses and celluloses in pretreatment. The sludge pretreated by thermal treatment could enhance the CH4 yield (mL CH4 g(-1) VSS) by 53.6% compared to raw sludge. Economically, the thermal treatment can balance the input energy with the produced energy (steam and electricity).
Zhang, Yan; Wang, Yong-sheng; Bai, Yu-hua; Chen, Chen; Lü, Jian; Zhang, Jie
2007-10-01
Swimming bed combined with aerobic granular sludge as a novel technology for wastewater treatment was developed, which was on the basis of the biofilm process and activated sludge process, and results demonstrated notable performance of high-efficiency treatment capability and sludge reduction. Even when hydraulic retention time (HRT) was only at 3.2 h with average COD volumetric loading of 2.03 kg/(m3 x d) and NH4(+)-N of 0.52 kg/(m3 X d), 90.9% of average COD removal rate and 98.3% of NH4(+)-N removal rate were achieved. Aerobic granular sludge appeared with spherical or rod shape after 16 days operation. Mixed liquor suspended solid (MLSS) concentrations in the reactor reached 5,640 mg/L at the highest during operation period, and the average ratio of mixed liquor volatile suspended solid (MLVSS) to MLSS reached 0.87. Furthermore, microscopic observation of biofilm and aerobic granules revealed much presence of protozoa and metazoa on the biofilm and suspended sludge, and this long food chain can contribute to the sludge reduction. Only 0. 175 5 of sludge yields (MLSS/ CODremoved) was obtained in the experiment, which was only about 50% of the conventional aerobic processes.
Liu, Hongbo; Leng, Feng; Chen, Piao; Kueppers, Stephan
2016-11-01
This paper studied denitrifying phosphorus removal of a novel two-line biological nutrient removal process treating low strength domestic wastewater under different sludge recycling ratios. Mass balance of intracellular compounds including polyhydroxyvalerate, polyhydroxybutyrate and glycogen was investigated together with total nitrogen (TN) and total phosphorus (TP). Results showed that sludge recycling ratios had a significant influence on the use of organics along bioreactors and 73.6% of the average removal efficiency was obtained when the influent chemical oxygen demand (COD) ranged from 175.9 mgL -1 to 189.9 mgL -1 . The process performed better under a sludge recycling ratio of 100% compared to 25% and 50% in terms of ammonia and COD removal rates. Overall, TN removal efficiency for 50% and 100% sludge recycling ratios were 56.4% and 61.9%, respectively, unlike the big gap for carbon utilization and the TP removal rates, indicating that the effect of sludge recycling ratio on the anaerobic compartments had been counteracted by change in the efficiency of other compartments. The higher ratio of sludge recycling was conducive to the removal of TN, not in favor of TP, and less influence on COD. Thus, 25% was considered to be the optimal sludge recycling ratio.
NASA Astrophysics Data System (ADS)
Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi
2013-03-01
The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions by activated sludge and dried sludge was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto activated sludge and dried sludge was analyzed with Weber-Morris intra-particle diffusion model, Lagergren first-order model and pseudo second-order model. The rate constant of intra-particle diffusion on activated sludge and dried sludge increased in the sequence of Cu(II) > Ni(II) > Cd(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo second-order model compared to the first-order Lagergren model with R 2 > 0.997. The adsorption capacities of metal ions onto activated sludge and dried sludge followed the sequence Ni(II) ≈ Cu(II) > Cd(II) and Cu(II) > Ni(II) > Cd(II).
Composting rice straw with sewage sludge and compost effects on the soil-plant system.
Roca-Pérez, L; Martínez, C; Marcilla, P; Boluda, R
2009-05-01
Composting organic residue is an interesting alternative to recycling waste as the compost obtained may be used as organic fertilizer. This study aims to assess the composting process of rice straw and sewage sludge on a pilot-scale, to evaluate both the quality of the composts obtained and the effects of applying such compost on soil properties and plant development in pot experiments. Two piles, with shredded and non-shredded rice straw, were composted as static piles with passive aeration. Throughout the composting process, a number of parameters were determined, e.g. colour, temperature, moisture, pH, electrical conductivity, organic matter, C/N ratio, humification index, cation exchange capacity, chemical oxygen demand, and germination index. Moreover, sandy and clayey soils were amended with different doses of mature compost and strewed with barley in pot experiments. The results show that compost made from shredded rice straw reached the temperatures required to maximise product sanitisation, and that the parameters indicating compost maturity were all positive; however, the humification index and NH(4) content were more selective. Therefore, using compost-amended soils at a dose of 34 Mg ha(-1) for sandy soil, and of 11 Mg ha(-1) for clayey soil improves soil properties and the growth of Hordeum vulgare plants. Under there conditions, the only limiting factor of agronomic compost utilisation was the increased soil salinity.
Impact of solid discharges from coal usage in the Southwest.
Jones, D G; Straughan, I R
1978-12-01
The Southwestern region of the United States is extremely wealthy in low sulfur coal resources which must be eventually utilized in response to national energy balance priorities. Fly ash and scrubber sludge can be safely disposed of using properly managed techniques to ensure that any potential impact from elements such as boron, molybdenum, or selenium is rendered insignificant. Alternative methods of solids utilization are presently being developed. Fly ash is presently being marketed commercially as an additive for concrete manufacture. Successful experiments have been completed to demonstrate the manufacture of commercial-grade wallboard from scrubber sludge. Also, greenhouse studies and field experiments have been conducted to demonstrate increased yields of selected crops grown on typical soils amended with fly ash in amounts ranging from 2% to 8%, by weight. These studies also indicate that barium and strontium may be good monitoring indices for determining atmospheric deposition of fly ash, due to their concentration ratios in soil and vegetation samples. Further studies are being conducted to confirm encouraging irrigation and crop-yield data obtained with fly ash amended soils. Finally, the composition of many fly ashes and soils are similar in the Southwest, and there are no anticipated solid discharges from coal usage which cannot be rendered insignificant with proper management of existing and emerging methods of treatment. Compared with the water availability impact of coal usage in the Southwest, the impact of solid waste discharges are insignificant.
Ge, Huoqing; Batstone, Damien; Keller, Jurg
2016-01-01
The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.
Ushani, U; Rajesh Banu, J; Kavitha, S; Kaliappan, S; Yeom, Ick Tae
2017-05-01
In this study, an attempt was made to disintegrate waste activated sludge (WAS) in a cost-effective way. During the first phase of this study, effective break down of extracellular polymeric substance (EPS) was performed by deflocculating WAS with 0.1 g/g SS of MgSO 4 . Deflocculation rate was 92% with discharge rate of extractable EPS at 185 mg/L. In the second phase, effective bacterial cell disintegration was obtained at 36 h post treatment. Maximum solubilization of deflocculated sludge was approximately 21%, which was higher than that of flocculated sludge (14.2%) or the control (4.5%). Biodegradability studies were assessed through kinetic analysis by non-linear regression modeling. Results revealed that the deflocculated sludge had higher methane generation (at about 235.8 mL/gVs) compared to flocculated sludge (at 146.1 mL/gVs) or the control (at 34.8 mL/gVs). Cost assessment of the present work revealed that the net yield for each ton of the deflocculated sludge was about 32.99 USD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alburquerque, J A; Gonzálvez, J; García, D; Cegarra, J
2006-01-01
A pollutant solid material called "alperujo" (AL), which is the main by-product from the Spanish olive oil industry, was composted with a cotton waste as bulking agent, and the compost obtained (ALC) was compared with a cattle manure (CM) and a sewage sludge compost (SSC) for use as organic amendment on a calcareous soil. The experiment was conducted with a commercial pepper crop in a greenhouse using fertigation. Composting AL involved a relatively low level of organic matter biodegradation, an increase in pH and clear decreases in the C/N and the fat, water-soluble organic carbon and phenol contents. The resulting compost, which was rich in organic matter and free of phytotoxicity, had a high potassium and organic nitrogen content but was low in phosphorus and micronutrients. The marketable yields of pepper obtained with all three organic amendments were similar, thus confirming the composting performance of the raw AL. When CM and SSC were used for soil amendment, the soil organic matter content was significantly reduced after cultivation, while it remained almost unchanged in the ALC-amended plots.
Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron.
Zhang, Yaobin; Feng, Yinghong; Yu, Qilin; Xu, Zibin; Quan, Xie
2014-05-01
Anaerobic digestion of waste activated sludge usually requires pretreatment procedure to improve the bioavailability of sludge, which involves considerable energy and high expenditures. This study proposes a cost-effective method for enhanced anaerobic digestion of sludge without a pretreatment by directly adding iron into the digester. The results showed that addition of Fe(0) powder could enhance 14.46% methane yield, and Fe scrap (clean scrap) could further enhance methane yield (improving rate 21.28%) because the scrap has better mass transfer efficiency with sludge and liquid than Fe(0) powder. The scrap of Fe with rust (rusty scrap) could induce microbial Fe(III) reduction, which resulted in achieving the highest methane yield (improving rate 29.51%), and the reduction rate of volatile suspended solids (VSS) was also highest (48.27%) among Fe powder, clean scrap and rusty scrap. PCR-DGGE proved that the addition of rusty scrap could enhance diversity of acetobacteria and enrich iron-reducing bacteria to enhance degradation of complex substrates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model.
Zhang, Yuxuan; Zhang, Panyue; Ma, Boqiang; Wu, Hao; Zhang, Sheng; Xu, Xin
2012-01-01
High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DD(COD)), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DD(COD) of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DD(COD) = kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.
Charles R. Berry
1977-01-01
Dried sewage sludge was applied at rates of 0, 17, 34, and 69 metric tons/ha on a badly eroded forest site in the Piedmont region of northeast Georgia. Production of weed bio mass varied directly with amount of sludge applied. Heigh growth for both shortleafand loblolly pine seedlings appeared to be greater on plots receiving 17 metric tons of sludge/ha, bu differences...
Harvester ant bioassay for assessing hazardous chemical waste sites. [Pogonomyrmex owhyeei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gano, K.A.; Carlile, D.W.; Rogers, L.E.
1985-05-01
A technique was developed for using harvester ants, Pogonomyrmex owhyeei, in terrestrial bioassays. Procedures were developed for maintaining stock populations, handling ants, and exposing ants to toxic materials. Relative toxicities were determined by exposing ants to 10 different materials. These materials included three insecticides, Endrin, Aldrin, and Dieldrin; one herbicide, 2,4-D; three complex industrial waste residuals, wood preservative sludge, drilling fluid, and slop oil; and three heavy metals, copper zinc, and cadium. Ants were exposed in petri dishes containing soil amended with a particular toxicant. Under these test conditions, ants showed no sensitivity to the metals or 2,4-D. Ants weremore » sensitive to the insecticides and oils in repeated tests, and relative toxicity remained consistent throughout. Aldrin was the most toxic material followed by Dieldrin, Endrin, wood preservative sludge, drilling fluid, and slop oil. 12 refs., 2 figs., 2 tabs.« less
BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)
Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...
Wen, Qinxue; Chen, Zhiqiang; Wang, Changyong; Ren, Nanqi
2012-01-01
Two acetate-fed sequencing batch reactors (SBR) were operated under an aerobic dynamic feeding (ADF) model (SBR#2) and with anaerobic phase before aerobic phase (SBR#1) to select mixed cultures with a high polyhydroxyalkanoates (PHA) storage response. Although kinetic selection based on storage response should bring about a predominance of floc-formers, a bulking sludge with storage response comparable to well-settled sludge was steadily established. An anaerobic phase was introduced before the aerobic phase in the ADF model to improve the sludge settleability (SBR #1), however, due to the consequent increased feast/famine ratio, the performance of SBR #1, in terms of both the maximum PHB (polyhydroxybutyrate) cell content and deltaPHB, was lower than that of SBR #2. SBR #2 gradually reached a steady state while SBR #1 failed suddenly after 50 days of operation. The maximum specific substrate uptake rate and storage rate for the selected bulking sludge were 0.4 Cmol Ac/(Cmol X x hr) and 0.18 Cmol Ac/(Cmol PHB x hr), respectively, resulting a yield of 0.45 Cmol PHB/(Cmol Ac) in SBR #2 in the culture enrichment phase. A maximum PHB content of 53% of total suspended solids and PHB storage rate of 1.36 Cmol Ac/(Cmol PHB x hr) was achieved at 10.2 hr in batch accumulation tests under nitrogen starvation. The results indicated that it was feasible to utilize filamentous bacteria to accumulate PHA with a rate comparable to well-settled sludge. Furthermore, the lower dissolved oxygen demand of filamentous bacteria would save energy required for aeration in the culture enrichment stage.
Ge, Huoqing; Batstone, Damien J; Keller, Jurg
2013-11-01
Conventional abattoir wastewater treatment processes for carbon and nutrient removal are typically designed and operated with a long sludge retention time (SRT) of 10-20 days, with a relatively high energy demand and physical footprint. The process also generates a considerable amount of waste activated sludge that is not easily degradable due to the long SRT. In this study, an innovative high-rate sequencing batch reactor (SBR) based wastewater treatment process with short SRT and hydraulic retention time (HRT) is developed and characterised. The high-rate SBR process was shown to be most effective with SRT of 2-3 days and HRT of 0.5-1 day, achieving >80% reduction in chemical oxygen demand (COD) and phosphorus and approximately 55% nitrogen removal. A majority of carbon removal (70-80%) was achieved by biomass assimilation and/or accumulation, rather than oxidation. Anaerobic degradability of the sludge generated in the high-rate SBR process was strongly linked to SRT, with measured degradability extent being 85% (2 days SRT), 73% (3 days), and 63% (4 days), but it was not influenced by digestion temperature. However, the rate of degradation for 3 and 4 days SRT sludge was increased by 45% at thermophilic conditions compared to mesophilic conditions. Overall, the treatment process provides a very compact and energy efficient treatment option for highly degradable wastewaters such as meat and food processing, with a substantial space reduction by using smaller reactors and a considerable net energy output through the reduced aerobic oxidation and concurrent increased methane production potential through the efficient sludge digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nogueira, Thiago Assis Rodrigues; Franco, Ademir; He, Zhenli; Braga, Vivian Santoro; Firme, Lucia Pittol; Abreu, Cassio Hamilton
2013-01-15
A field experiment was carried out to study the effect of application rates of sewage sludge and mineral nitrogen and phosphate fertilizers on As, Ba, Cd, Cr, Cu, Ni, Pb, Se, and Zn concentration in soil, cane plant, and first ratoon (residual effect) in a Typic Hapludult soil. To allow an analysis by means of response surface modeling, four rates of sewage sludge (0, 3.6, 7.2 and 10.8 t ha(-1), dry base), of N (0, 30, 60 and 90 kg ha(-1)) and of P(2)O(5) (0, 60, 120 and 180 kg ha(-1)) were applied in randomized block design, in a 4 × 4 × 4 factorial scheme, with confounded degrees of freedom for triple interaction, with two replications. To evaluate the residual effect of the sludge applied to cane plant on the cane ratoon growth, mineral NK fertilizers were applied at the rates of 120 kg ha(-1) N and 140 kg ha(-1) of K(2)O, on all treatments. The application rates of mineral nitrogen and phosphate fertilizers did not affect statistically the heavy metal concentration in the soil and in the sugarcane plants. Sewage sludge application increased As, Cd, Cu, Ni, Pb, and Zn concentrations in soil, but values did not exceed the quality standard established by legislation for agricultural soils. Although the concentrations of metals in the plants were very low, the uptake of heavy metal by sugarcane plants was generally increased by sewage sludge doses. The use of sewage sludge based on N criteria introduces a small amount of heavy metal into the agricultural system, however it poses no hazard to the environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhai, Xiao-Min; Gao, Xu; Zhang, Man-Man; Jia, Li; Guo, Jin-Song
2012-07-01
In order to deeply explore the mechanism of sludge reduction in OSA system, carbon balance was performed in an anoxic-oxic-settling-anaerobic (A + OSA) system and a reference AO system to investigate effects of inserting a sludge holding tank in sludge cycle line on the sludge reduction process. Meanwhile, carbon mass change in each reaction unit was identified in terms of solid, liquid and gas phases. The causes of excess sludge reduction in A + OSA system were deduced. The carbon balance results show that when the hydraulic retention time in the sludge holding tank is 7.14 h, carbon percent in solid phase of the sludge reduction system is nearly 50% higher than that of the reference system, supporting the consequence that sludge reduction rate of 49.98% had been achieved. The insertion of a sludge holding tank in the sludge return circuit can be effective in sludge reduction. Carbon changes in each unit reveal that the amount of carbon consumed for biosynthesis in the anoxic and oxic tanks (main reaction zone) of the sludge reduction system is higher than in that of the reference system. Sludge decay is observed in the sludge holding tank. Furthermore, CH4 released from the sludge holding tank is significantly higher than that from the main reaction zone. The DGGE profiles show that there are hydrolytic-fermentative bacteria in the sludge holding tank related to sludge decay. The excess sludge reduction in the A + OSA system could be a result of the combination of sludge decay in the sludge holding tank and sludge compensatory growth in the main reaction cell.
Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory R. Mockos; William A. Smith; Frank J. Loge
Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensatemore » system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.« less
Fang, Shen'en; Tsang, Daniel C W; Zhou, Fengsha; Zhang, Weihua; Qiu, Rongliang
2016-04-01
Currently, sludge pyrolysis has been considered as a promising technology to solve disposal problem of municipal sewage sludge, recover sludge heating value, sequester carbon and replenish nutrients in farmland soils. The resultant sludge-derived biochar (SDBC) is potentially an excellent stabilizing agent for metal species. This study applied the SDBC into four soils that had been contaminated in field with cationic Pb(II) and Cd(II)/Ni(II), and anionic Cr(VI) and As(III), respectively. The performance of metal stabilization under various operational and environmental conditions was evaluated with acid batch extraction and column leaching tests. Results indicated the SDBC could effectively stabilize these metals, which was favored by elevated temperature and longer aging. Periodic temperature decrease from 45 to 4 °C resulted in the release of immobilized Cr(VI) and As(III) but not Pb(II). However, a longer aging time offset such metal remobilization. This was possibly because more Pb was strongly bound and even formed stable precipitates, as shown by XRD and sequential extraction results. With increasing time, Cr(VI) was sorbed and partly reduced to Cr(III), while immobilized As(III) was co-oxidized to As(V) as indicated by XPS spectra. Column tests revealed that adding SDBC as a separate layer was unfavorable because the concentrated Cd(II) and Ni(II) in localized positions increased the peak levels of metal release under continuous acid leaching. In contrast, uniformly mixed SDBC could effectively delay the metal breakthrough and reduce their released amounts. Yet, a long-term monitoring may be required for evaluating the potential leaching risks and bioavailability/toxicity of these immobilized and transformed species in the SDBC-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams
NASA Astrophysics Data System (ADS)
Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.
Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.
Sabah, A; Bancon-Montigny, C; Rodier, C; Marchand, P; Delpoux, S; Ijjaali, M; Tournoud, M-G
2016-02-01
The aim of this study was to investigate the fate and behaviour of butyltin pollutants, including monobutyltin (MBT), dibutylin (DBT), and tributyltin (TBT), in waste stabilisation ponds (WSP). The study was conducted as part of a baseline survey and included five sampling campaigns comprising bottom sludge and the water column from each pond from a typical WSP in France. Butyltins were detected in all raw wastewater and effluents, reflecting their widespread use. Our results revealed high affinity between butyltins and particulate matter and high accumulation of butyltins in the sludge taken from anaerobic ponds. The dissolved butyltins in the influent ranged from 21.5 to 28.1 ng(Sn).L(-1) and in the effluent, from 8.8 to 29.3 ng(Sn).L(-1). The butyltin concentrations in the sludge ranged from 45.1 to 164 and 3.6-8.1 ng(Sn).g(-1) respectively in the first and last ponds. Our results showed an average treatment efficiency of 71% for MBT, 47% for DBT, 55% for TBT. Laboratory sorption experiments enabled the calculation of a distribution coefficient (Kd = 75,000 L.kg-1) between TBT and particulate matter from the WSPs. The Kd explained the accumulation and persistence of the TBT in the sludge after settling of particulate matter. The continuous supply of contaminated raw wastewater and the sorption-desorption processes in the ponds led to incomplete bio- and photolytic degradation and to the persistence of butyltins in dissolved and particulate matrices throughout the survey period. It is thus recommended to use shallow ponds and to pay particular attention when sludge is used for soil amendment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wen, Bei; Pan, Ying; Shi, Xiaoli; Zhang, Hongna; Hu, Xiaoyu; Huang, Honglin; Lv, Jitao; Zhang, Shuzhen
2018-06-13
Perfluorooctane sulfonate (PFOS) precursors have been found extensively in sewage sludge and biosolids-amended soils. The degradation of these precursors are regarded as a significant source of PFOS in the environment. In this study, the accumulation of N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) in the plants of seven species, namely alfalfa, lettuce, maize, mung bean, radish, ryegrass, and soybean from biosolids-amended soil, and the degradation kinetics of N-EtFOSAA in soil-plant microcosms were evaluated over 60 days. N-EtFOSAA was found in the roots of all plant species, while was not in stems and leaves. The root concentration factors of N-EtFOSAA ranged 0.52-1.37 (pmol/g root )/(pmol/g soil ). Stepwise multiple regression analysis was used to elucidate the accumulation of N-EtFOSAA in the roots of plants. The results showed that the root protein and lipid contents explain 85.0% of the variation in root N-EtFOSAA levels (P < 0.05). Four degradation products, including N-ethyl perfluorooctane sulfonamide (N-EtFOSA), perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (FOSA) and PFOS were found in soils and plant roots, stems and leaves, indicating the degradation of N-EtFOSAA in soil-plant system. Degradation kinetics fitted a first-order kinetic model well. Degradation rate constants of N-EtFOSAA in the microcosms with plants ranged 0.063-0.165 d -1 , which was 1.40-3.6 times higher than those without plants. Degradation rate constant of maize was relatively higher than those of other plant species. The results is the first to reveal N-EtFOSAA accumulation in plants and degradation in soil-plant microcosms. Copyright © 2018. Published by Elsevier B.V.
Kim, Dong-Jin; Lee, Jonghak
2012-01-01
Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.
[Ultrasonic sludge treatment and its application on aerobic digestion].
Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying
2007-07-01
In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.
Factors influencing suspended solids concentrations in activated sludge settling tanks.
Kim, Y; Pipes, W O
1999-05-31
A significant fraction of the total mass of sludge in an activated sludge process may be in the settling tanks if the sludge has a high sludge volume index (SVI) or when a hydraulic overload occurs during a rainstorm. Under those conditions, an accurate estimate of the amount of sludge in the settling tanks is needed in order to calculate the mean cell residence time or to determine the capacity of the settling tanks to store sludge. Determination of the amount of sludge in the settling tanks requires estimation of the average concentration of suspended solids in the layer of sludge (XSB) in the bottom of the settling tanks. A widely used reference recommends averaging the concentrations of suspended solids in the mixed liquor (X) and in the underflow (Xu) from the settling tanks (XSB=0. 5{X+Xu}). This method does not take into consideration other pertinent information available to an operator. This is a report of a field study which had the objective of developing a more accurate method for estimation of the XSB in the bottom of the settling tanks. By correlation analysis, it was found that only 44% of the variation in the measured XSB is related to sum of X and Xu. XSB is also influenced by the SVI, the zone settling velocity at X and the overflow and underflow rates of the settling tanks. The method of averaging X and Xu tends to overestimate the XSB. A new empirical estimation technique for XSB was developed. The estimation technique uses dimensionless ratios; i.e., the ratio of XSB to Xu, the ratio of the overflow rate to the sum of the underflow rate and the initial settling velocity of the mixed liquor and sludge compaction expressed as a ratio (dimensionless SVI). The empirical model is compared with the method of averaging X and Xu for the entire range of sludge depths in the settling tanks and for SVI values between 100 and 300 ml/g. Since the empirical model uses dimensionless ratios, the regression parameters are also dimensionless and the model can be readily adopted for other activated sludge processes. A simplified version of the empirical model provides an estimation of XSB as a function of X, Xu and SVf and can be used by an operator when flow conditions are normal. Copyright 1999 Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
This report describes the work on the Waste Resources Utilization Program for the quarter ending March 31, 1976. The purpose of this program is to develop technologies to utilize a /sup 137/Cs ..gamma.. source to modify sewage sludge for safe application as a fertilizer or an animal feed supplement. Results are reported from studies in microbiology, virology, and physical-chemical studies. Determinations were made of inactivation rates for Salmonella species, coliforms, and fecal strep in sewage sludge when radiation and thermoradiation were applied while bubbling oxygen through the sludge. Virology studies were continued investigating virucidal characteristics of anaerobically digested sludge. Anothermore » area of study was the dewatering of sewage sludge to reduce the drying time of the sewage sludge in the drying beds. A centrifuge was also installed to dewater treated sludge to approximately 30 percent solids. (auth)« less
Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N
2013-01-01
Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation.
Estrogen Degraders and Estrogen Degradation Pathway Identified in an Activated Sludge.
Chen, Yi-Lung; Fu, Han-Yi; Lee, Tzong-Huei; Shih, Chao-Jen; Huang, Lina; Wang, Yu-Sheng; Ismail, Wael; Chiang, Yin-Ru
2018-05-15
The environmental release and fate of estrogens are becoming an increasing public concern. Bacterial degradation has been considered the main process for eliminating estrogens from wastewater treatment plants. Various bacterial isolates are reportedly capable of aerobic estrogen degradation, and several estrogen degradation pathways have been proposed in proteobacteria and actinobacteria. However, the ecophysiological relevance of estrogen-degrading bacteria in the environment is unclear. In this study, we investigated the estrogen degradation pathway and corresponding degraders in activated sludge collected from the Dihua Sewage Treatment Plant, Taipei, Taiwan. Cultivation-dependent and cultivation-independent methods were used to assess estrogen biodegradation in the collected activated sludge. Estrogen metabolite profile analysis revealed the production of pyridinestrone acid and two A/B-ring cleavage products in activated sludge incubated with estrone (1 mM), which are characteristic of the 4,5- seco pathway. PCR-based functional assays detected sequences closely related to alphaproteobacterial oecC , a key gene of the 4,5- seco pathway. Metagenomic analysis suggested that Novosphingobium spp. are major estrogen degraders in estrone-amended activated sludge. Novosphingobium sp. strain SLCC, an estrone-degrading alphaproteobacterium, was isolated from the examined activated sludge. The general physiology and metabolism of this strain were characterized. Pyridinestrone acid and the A/B-ring cleavage products were detected in estrone-grown strain SLCC cultures. The production of pyridinestrone acid was also observed during the aerobic incubation of strain SLCC with 3.7 nM (1 μg/liter) estrone. This concentration is close to that detected in many natural and engineered aquatic ecosystems. The presented data suggest the ecophysiological relevance of Novosphingobium spp. in activated sludge. IMPORTANCE Estrogens, which persistently contaminate surface water worldwide, have been classified as endocrine disruptors and human carcinogens. We contribute new knowledge on the major estrogen biodegradation pathway and estrogen degraders in wastewater treatment plants. This study considerably advances the understanding of environmental estrogen biodegradation, which is instrumental for the efficient elimination of these hazardous pollutants. Moreover, this study substantially improves the understanding of microbial estrogen degradation in the environment. Copyright © 2018 American Society for Microbiology.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Ding, Wen-jie; Chen, Wen-he; Deng, Ming-jia; Luo, Hui; Li, Lin; Liu, Jun-xin
2016-02-15
Co-processing of sewage sludge using the cement kiln can realize sludge harmless treatment, quantity reduction, stabilization and reutilization. The moisture content should be reduced to below 30% to meet the requirement of combustion. Thermal drying is an effective way for sludge desiccation. Odors and volatile organic compounds are generated and released during the sludge drying process, which could lead to odor pollution. The main odor pollutants were selected by the multi-index integrated assessment method. The concentration, olfactory threshold, threshold limit value, smell security level and saturated vapor pressure were considered as indexes based on the related regulations in China and foreign countries. Taking the pollution potential as the evaluation target, and the risk index and odor emission intensity as evaluation indexes, the odor pollution potential rated evaluation model of the pollutants was built according to the Weber-Fechner law. The aim of the present study is to form the rating evaluation method of odor potential pollution capacity suitable for the directly drying process of sludge.
Vincent, Julie; Forquet, Nicolas; Molle, Pascal; Wisniewski, Christelle
2012-07-01
This work was designed to study the hydraulic properties of sludge deposit, focusing on the impact of operating conditions (i.e. loads and feeding frequencies) on air entrance (aerobic mineralization optimization) into the sludge deposit. The studied sludge deposits came from six 2m(2) pilot-scale SDRBs that had been in operation for 50 months with three different loads of 30, 50, and 70 kg of SSm(-2) y(-1). Two influents were assessed (i.e. activated sludge and septage) presenting different characteristics (i.e. pollutant contents, physical properties...). Two experimental approaches were employed based on establishing the water retention curve (capillary pressure versus volumetric water content) and the hydrotextural diagram to determine the hydraulic properties of sludge deposit. The study obtained valuable information for optimizing operating conditions, specifically for efficient management of loading frequency to optimize aerobic conditions within the sludge deposit. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Börjesson, G.; Kätterer, T.; Kirchmann, H.
2012-04-01
Soil organic matter is a key attribute of soil fertility. The pool of soil organic C can be increased, either by mineral fertilisers or by adding organic amendments such as sewage sludge. Sewage sludge has positive effects on agricultural soils through the supply of organic matter and essential plant nutrients, but sludge may also contain unwanted heavy metals, xenobiotic substances and pathogens. One obvious effect of long-term sewage sludge addition is a decrease in soil pH, caused by N mineralisation followed by nitrification, sulphate formation and presence of organic acids with the organic matter added. The objective of this study was to investigate the effect of sewage sludge on the microbial biomass and community structure. Materials and methods We analysed soil samples from four sites where sewage sludge has been repeatedly applied in long-term field experiments situated in different parts of Sweden; Ultuna (59°49'N, 17°39'E, started 1956), Lanna (58°21'N, 13°06'E, started 1997-98), Petersborg (55°32'N, 13°00'E, started 1981) and Igelösa (55°45'N, 13°18'E, started 1981). In these four experiments, at least one sewage sludge treatment is included in the experimental design. In the Ultuna experiment, all organic fertilisers, including sewage sludge, are applied every second year, corresponding to 4 ton C ha-1. The Lanna experiment has a similar design, with 8 ton dry matter ha-1 applied every second year. Lanna also has an additional treatment in which metal salts (Cd, Cu, Ni and Zn) are added together with sewage sludge. At Petersborg and Igelösa, two levels of sewage sludge (4 or 12 ton dry matter ha-1 every 4th year) are compared with three levels of NPK fertiliser (0 N, ½ normal N and normal N). Topsoil samples (0-20 cm depth) from the four sites were analysed for total C, total N, pH and PLFAs (phospholipid fatty acids). In addition, crop yields were recorded. Results At all four sites, sewage sludge has had a positive effect on crop yields and soil organic matter levels. Correlations between soil organic matter and total PLFA contents showed highly positive correlations at all sites (with R-values between 0.72 and 0.88). To find out whether sewage sludge through its metal impurities could impose stress on the microbial biomass, we compared the correlations between all different fertilisers used and PLFAs. The slopes of these comparisons revealed that sludge did not differ from other fertiliser treatments, which means that our results contrast earlier reports on negative effects of metals in sludge on soil microbes. The microbial community structure, studied with principal component analysis of individual PLFAs, was strongly affected by changes in soil pH, and at those sites where sewage sludge had caused a low pH, Gram-positive bacteria were more dominant than in the other treatments. However, differences in community structure were larger between sites than between the treatments investigated in this study, thus indicating that the original soil properties were more important for the microbial community structure than the fertiliser treatments.
Ciarkowska, Krystyna; Hanus-Fajerska, Ewa; Gambuś, Florian; Muszyńska, Ewa; Czech, Tomasz
2017-03-15
Zinc-lead mining wastes remain largely unvegetated and prone to erosion for many years because of phytotoxic levels of residual heavy metals, low nutrient status and poor physical structure. The optimal solution for these areas is to restore plant cover using species which spontaneously appear on the spoils. These species are adapted to the conditions of tailings, and their establishment will promote further vegetation by increasing soil organic matter and development of a soil system capable of supporting the nutrient and water requirements of plants and microoorganisms. The potential of Dianthus carthusianorum and Biscutella laevigata to stabilize mine spoils was analysed in a three-year pot experiment. Post-flotation wastes accumulated after Zn and Pb recovery from ores, were collected from tailings and used as a substrate for plant growth. Seeds for seedling production were collected from plants growing spontaneously on mine tailings. Prior to the establishment of the three-year pot experiment, the substrate was amended with fertilizer NPK or municipal sewage sludge, supplemented with K 2 O (SS). Substrate samples were collected for chemical analyses, dehydrogenase and urease activities measurements each year at the end of the growing season. The plants were harvested three years after the amendments. Both tested plant species were equally suitable for revegetation of the tailings. The amendment including both SS and NPK resulted in an increase of C org , N t , available P, K, Mg contents, an increase of dehydrogenase (DHA) and urease activities and a decrease in the concentrations of the soluble forms of Zn, Pb and Cd. However, nutrient content, DHA activity and plant biomass were higher with SS than NPK addition. NPK application enhanced the substrate properties after the first growing season, while positive effects of SS use were still observed after three years. A longer-lasting positive effect of SS than NPK application was probably due to the high organic matter content in SS, which was gradually decomposing and releasing nutrients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nie, Yafeng; Qiang, Zhimin; Ben, Weiwei; Liu, Junxin
2014-06-01
Sludge ozonation is considered as a promising technology to achieve a complete reduction of excess sludge, but as yet its effects on the removal of endocrine-disrupting chemicals (EDCs) and conventional pollutants (i.e., COD, N and P) in the activated sludge process are still unclear. In this study, two lab-scale continuous-operating activated sludge treatment systems were established: one was operated in conjunction with ozonation for excess sludge reduction, and the other was operated under normal conditions as control. The results indicate that an ozone dose of 100 mg O₃ g(-1)SS led to a zero yield of excess sludge in the sludge-reduction system during a continuous-operating period of 45d. Although ozonation gave a relatively lower specific oxygen uptake rate of activated sludge, it had little effect on the system's removal performance of COD and nitrogen substances. As a plus, sludge ozonation contributed a little more removal of target EDCs (estrone, 17β-estrodiol, estriol, 17α-ethinylestradiol, bisphenol A, and 4-nonylphenol). However, the total phosphorus removal declined notably due to its accumulation in the sludge-reduction system, which necessitates phosphorus recovery for the activated sludge process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Xiaowei; Xing, Meiyan; Yang, Jian; Huang, Zhidong
2011-01-30
The chemical changes occurring in five different substrates of sewage sludge spiked with different proportions of cow dung after vermicomposting with Eisenia foetida for 90 days were investigated. Their humic acid-like (HAL) fractions were isolated to determine the elemental and functional composition, and structural and functional characteristics using ultraviolet/visible, Fourier transform infrared (FT-IR) and fluorescence spectroscopies and scanning electron microscopy. After vermicomposting, the total organic C and C/N ratio decreased, and the total extractable C and humic acid (HA) C increased in all substrates. In the HAL fractions, the C and H contents, C/N and C/O and aliphatic structures, proteinaceous components and carbohydrates decreased, while the O and N and acidic functional group contents and C/H ratio, aromaticity and polycondensation structures increased. Further, the results suggest that the addition of cow dung to sewage sludge could improve the quality of organic matter humification of the substrates. The structures of HAL fractions in vermicomposts resembled those typical of soil HA, especially the vermicompost of cow dung alone. Scanning electron microscopy showed the microstructure of HAL fraction in final product became close-grained and lumpy. Overall results indicate that vermicomposting was an efficient technology for promoting organic matter (OM) humification in sewage sludge and cow dung alone, as well as in mixtures of both materials, improving their quality and environmental safety as a soil OM resource for utilization as soil amendments. Copyright © 2010 Elsevier B.V. All rights reserved.
Pan, Chengyi
2014-01-01
The effects of the molecular weight (MW) and charge density (CD) of cationic polyacrylamide (CPAM) on sludge dewatering and moisture evaporation were investigated in this study. Results indicated that in sludge conditioning, the optimum dosages were 10, 6, 6, 4, and 4 mg g−1 CPAM with 5 million MW and 20% CD, 5 million MW and 40% CD, 3 million MW and 40% CD, 8 million MW and 40% CD, and 5 million MW and 60% CD, respectively. The optimum dosage of CPAM was negatively correlated with its CD or MW if the CD or MW of CPAM was above 20% or 5 million. In the centrifugal dewatering of sludge, the moisture content in the conditioned sludge gradually decreased with the extension of centrifugation time, and the economical centrifugal force was 400×g. The moisture evaporation rates of the conditioned sludge were closely related to sludge dewaterability, which was in turn significantly correlated either positively with the solid content of sludge particles that were >2 mm in size or negatively with that of particles measuring 1 mm to 2 mm in diameter. During treatment, sludge moisture content was reduced from 80% to 20% by evaporation, and the moisture evaporation rates were 1.35, 1.49, 1.62, and 2.24 times faster in the sludge conditioned using 4 mg g−1 CPAM with 5 million MW and 60% CD than in the sludge conditioned using 4 mg g−1 CPAM with 8 million MW and 40% CD, 6 mg g−1 CPAM with 5 million MW and 40% CD, 6 mg g−1 CPAM with 3 million MW and 40% CD, and 10 mg g−1 CPAM with 5 million MW and 20% CD, respectively. Hence, the CPAM with 5 million MW and 60% CD was ideal for sludge dewatering. PMID:24878582
Zhou, Jun; Liu, Fenwu; Pan, Chengyi
2014-01-01
The effects of the molecular weight (MW) and charge density (CD) of cationic polyacrylamide (CPAM) on sludge dewatering and moisture evaporation were investigated in this study. Results indicated that in sludge conditioning, the optimum dosages were 10, 6, 6, 4, and 4 mg g(-1) CPAM with 5 million MW and 20% CD, 5 million MW and 40% CD, 3 million MW and 40% CD, 8 million MW and 40% CD, and 5 million MW and 60% CD, respectively. The optimum dosage of CPAM was negatively correlated with its CD or MW if the CD or MW of CPAM was above 20% or 5 million. In the centrifugal dewatering of sludge, the moisture content in the conditioned sludge gradually decreased with the extension of centrifugation time, and the economical centrifugal force was 400×g. The moisture evaporation rates of the conditioned sludge were closely related to sludge dewaterability, which was in turn significantly correlated either positively with the solid content of sludge particles that were >2 mm in size or negatively with that of particles measuring 1 mm to 2 mm in diameter. During treatment, sludge moisture content was reduced from 80% to 20% by evaporation, and the moisture evaporation rates were 1.35, 1.49, 1.62, and 2.24 times faster in the sludge conditioned using 4 mg g(-1) CPAM with 5 million MW and 60% CD than in the sludge conditioned using 4 mg g(-1) CPAM with 8 million MW and 40% CD, 6 mg g(-1) CPAM with 5 million MW and 40% CD, 6 mg g(-1) CPAM with 3 million MW and 40% CD, and 10 mg g(-1) CPAM with 5 million MW and 20% CD, respectively. Hence, the CPAM with 5 million MW and 60% CD was ideal for sludge dewatering.
Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.
Åkerström, Anette M; Mortensen, Leiv M; Rusten, Bjørn; Gislerød, Hans Ragnar
2014-11-01
The use of microalgae for biomass production and nutrient removal from the reject water produced in the dewatering process of anaerobically digested sludge, sludge liquor, was investigated. The sludge liquor was characterized by a high content of total suspended solids (1590 mg L(-1)), a high nitrogen concentration (1210 mg L(-1)), and a low phosphorus concentration (28 mg L(-1)). Chlorella sp. was grown in sludge liquor diluted with wastewater treatment plant effluent water to different concentrations (12, 25, 40, 50, 70, and 100%) using batch mode. The environmental conditions were 25 °C, a continuous lightning of 115 μmol m(-2) s(-1), and a CO2 concentration of 3.0%. The highest biomass production (0.42-0.45 g dry weight L(-1) Day(-1)) was achieved at 40-50% sludge liquor, which was comparable to the production of the control culture grown with an artificial fertilizer. The biomass production was 0.12 and 0.26 g dry weight L(-1) Day(-1) at 12% and 100% sludge liquor, respectively. The percentage of nitrogen in the algal biomass increased from 3.6% in 12% sludge liquor and reached a saturation of ∼10% in concentrations with 50% sludge liquor and higher. The phosphorus content in the biomass increased linearly from 0.2 to 1.5% with increasing sludge liquor concentrations. The highest nitrogen removal rates by algal biosynthesis were 33.6-42.6 mg TN L(-1) Day(-1) at 40-70% sludge liquor, while the highest phosphorus removal rates were 3.1-4.1 mg TP L(-1) Day(-1) at 50-100% sludge liquor. Published by Elsevier Ltd.
Subedi, Bikram; Lee, Sunggyu; Moon, Hyo-Bang; Kannan, Kurunthachalam
2014-07-01
Concern over the occurrence of artificial sweeteners (ASWs) as well as pharmaceuticals and personal care products (PPCPs) in the environment is growing, due to their high use and potential adverse effects on non-target organisms. The data for this study are drawn from a nationwide survey of ASWs in sewage sludge from 40 representative wastewater treatment plants (WWTPs) that receive domestic (WWTPD), industrial (WWTPI), or mixed (domestic plus industrial; WWTPM) wastewaters in Korea. Five ASWs (concentrations ranged from 7.08 to 5220 ng/g dry weight [dw]) and ten PPCPs (4.95-6930 ng/g dw) were determined in sludge. Aspartame (concentrations ranged from 28.4 to 5220 ng/g dw) was determined for the first time in sewage sludge. The median concentrations of ASWs and PPCPs in sludge from domestic WWTPs were 0.8-2.5 and 1.0-3.4 times, respectively, the concentrations found in WWTPs that receive combined domestic and industrial wastewaters. Among the five ASWs analyzed, the median environmental emission rates of aspartame through domestic WWTPs (both sludge and effluent discharges combined) were calculated to be 417 μg/capita/day, followed by sucralose (117 μg/capita/day), acesulfame (90 μg/capita/day), and saccharin (66μg/capita/day). The per-capita emission rates of select PPCPs, such as antimicrobials (triclocarban: 158 μg/capita/day) and analgesics (acetaminophen: 59 μg/capita/day), were an order of magnitude higher than those calculated for antimycotic (miconazole) and anthelmintic (thiabendazole) drugs analyzed in this study. Multiple linear regression analysis of measured concentrations of ASWs and PPCPs in sludge revealed that several WWTP parameters, such as treatment capacity, population-served, sludge production rate, and hydraulic retention time could influence the concentrations found in sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium.
Weggler, Karin; McLaughlin, Michael J; Graham, Robin D
2004-01-01
Increasing chloride (Cl) concentration in soil solution has been shown to increase cadmium (Cd) concentration in soil solution and Cd uptake by plants, when grown in phosphate fertilizer- or biosolid-amended soils. However, previous experiments did not distinguish between the effect of Cl on biosolid-borne Cd compared with soil-borne Cd inherited from previous fertilizer history. A factorial pot experiment was conducted with biosolid application rates of 0, 20, 40, and 80 g biosolids kg(-1) and Cl concentration in soil solution ranging from 1 to 160 mM Cl. The Cd uptake of wheat (Triticum aestivum L. cv. Halberd) was measured and major cations and anions in soil solution were determined. Cadmium speciation in soil solution was calculated using GEOCHEM-PC. The Cd concentration in plant shoots and soil solution increased with biosolid application rates up to 40 g kg(-1), but decreased slightly in the 80 g kg(-1) biosolid treatment. Across biosolid application rates, the Cd concentration in soil solution and plant shoots was positively correlated with the Cl concentration in soil solution. This suggests that biosolid-borne Cd is also mobilized by chloride ligands in soil solution. The soil solution CdCl+ activity correlated best with the Cd uptake of plants, although little of the variation in plant Cd concentrations was explained by activity of CdCl+ in higher sludge treatments. It was concluded that chlorocomplexation of Cd increased the phytoavailability of biosolid-borne Cd to a similar degree as soil (fertilizer) Cd. There was a nonlinear increase in plant uptake and solubility of Cd in biosolid-amended soils, with highest plant Cd found at the 40 g kg(-1) rate of biosolid application, and higher rates (80 g kg(-1)) producing lower plant Cd uptake and lower Cd solubility in soil. This is postulated to be a result of Cd retention by CaCO3 formed as a result of the high alkalinity induced by biosolid application.
TOC, ATP AND RESPIRATION RATE AS CONTROL PARAMETERS FOR THE ACTIVATED SLUDGE PROCESS
This research was conducted to determine the feasibility of using TOC, ATP and respiration rates as tools for controlling a complete mix activated sludge plant handling a significant amount of industrial waste. Control methodology was centered on using F/M ratio which was determi...
1990-01-01
PERFORMED BY: In-house efforts accomplished by Program Executive Officer for Air De - fense Systems, Program Manager-Line of Sight-Forward- Heavy and U.S...evaluation of mechanisms involved in the recovery of heavy metals from waste sludges * (U) Complete determination of basic mechanisms responsible for...tities for characterization " (U) Refined computer model for design of effective heavy metal spin-insensitive EFP war- head liner * (U) Identified
Inactivation of poliovirus in wastewater sludge with radiation and thermoradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, R.L.
1977-05-01
The effect of sludge on the rate of viral inactivation by radiation and thermoradiation was determined. The virus used for the experiments was the poliovirus type 1 strain CHAT, which was grown in HeLa cells. Radiation, heat, and thermoradiation treatments were carried out in a chamber specifically designed to permit rapid heating and cooling of the samples at the beginning and completion of treatment, respectively. The treated samples were then assayed for plaque-forming units on HeLa cells after sonication in 0.1% sodium dodecylsulfate (SDS). For the radiation treatment virus was diluted 10-fold into PBS containing new sludge, irradiated at 20/supmore » 0/C with /sup 137/Cs at a dose rate of 30 krads/min, and assayed for infectious virus. The results show that raw sludge is protective of poliovirus against ionizing radiation but that small concentrations of sludge are nearly as protective as large concentrations. When heat and radiation are given simultaneously, however, the amount of protection afforded by sludge is less than the additive effects of the individual treatments. This result is especially evident at low concentrations of sludge. It appears, therefore, that thermoradiation treatment may be an effective way of inactivation viruses in waters containing low concentrations of suspended solids. (FMM)« less
Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass.
Zhou, Xiehong; Jia, Hanzhong; Qu, Chengtun; Fan, Daidi; Wang, Chuanyi
2017-02-01
Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and its kinetics and efficiency are expected to be affected by additives. In the present study, the pyrolysis parameters, including heating rate, final pyrolysis temperature, and pyrolysis time of oily sludge in the presence of agricultural biomass, apricot shell, were systematically explored. As a result, maximum oil recovery is achieved when optimizing the pyrolysis conditionas15 K/min, 723 K, and 3 h for heating rate, final pyrolysis temperature, and pyrolysis time, respectively. Thermogravimetric experiments of oily sludge samples in the presence of various biomasses conducted with non-isothermal temperature programmes suggest that the pyrolysis process contains three stages, and the main decomposition reaction occurs in the range of 400-740 K. Taking Flynn-Wall-Ozawa analysis of the derivative thermogravimetry and thermogravimetry results, the activation energy (E a ) values for the pyrolysis of oily sludge in the presence and absence of apricot shell were derived to be 35.21 and 39.40 kJ mol -1 , respectively. The present work supports that the presence of biomass promotes the pyrolysis of oily sludge, implying its great potential as addictive in the industrial pyrolysis of oily sludge.
Heavy metal content (Cd, Ni, Cr and Pb) in soil amendment with a low polluted biosolid
NASA Astrophysics Data System (ADS)
Gomez Lucas, Ignacio; Lag Brotons, Alfonso; Navarro-Pedreño, Jose; Belén Almendro-Candel, Maria; Jordán, Manuel M.; Bech, Jaume; Roca, Nuria
2016-04-01
The progressively higher water quality standards in Europe has led to the generation of large quantities of sewage sludge derived from wastewater treatment (Fytili and Zabaniotou 2008). Composting is an effective method to minimize these risks, as pathogens are biodegraded and heavy metals are stabilized as a result of organic matter transformations (Barker and Bryson 2002; Noble and Roberts 2004). Most of the studies about sewage sludge pollution are centred in medium and high polluted wastes. However, the aim of this study was to assess the effects on soil heavy metal content of a low polluted sewage sludge compost in order to identify an optimal application rate based in heavy metal concentration under a period of cultivation of a Mediterranean horticultural plant (Cynara carducnculus). The experiment was done between January to June: rainfall was 71 mm, the volume of water supplied every week was 10.5 mm, mean air temperatures was 14.2, 20.4 (maximum), and 9.2◦C (minimum). The soil was a clay-loam anthrosol (WRB 2006). The experimental plot (60 m2) was divided into five subplots with five treatments corresponding to 0, 2, 4, 6, and 8 kg compost/m2. Three top-soil (first 20 cm) samples from each treatment were taken (January, April and June) and these parameters were analysed: pH, electrical conductivity, organic matter and total content of heavy metals (microwave acid digestion followed by AAS-spectrometry determination). The results show that sewage sludge compost treatments increase the organic matter content and salinity (electrical conductivity of the soils) and diminish the pH. Cd and Ni total content in top-soil was affected and both slightly reduce their concentration. Pb and Cr show minor changes. In general, the application of this low polluted compost may affect the mobility of Cd and Ni due to the pH modification and the water added by irrigation along time but Pb and Cr remain their content in the top-soil. References Barker, A.V., and G.M. Bryson. 2002. "Bioremediation of Heavy Metals and Organic Toxicants by Composting." The Scientific World Journal 2: 407-420. Fytili, D., and A. Zabaniotou. 2008. "Utilization of Sewage Sludge in EU Application of Old and New Methods - A Review." Renewable and Sustainable Energy Reviews 12: 116-140. Noble, R., and S.J. Roberts. 2004. "Eradication of Plant Pathogens and Nematodes during composting: A Review." Plant Patology 53: 548-568.
Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.
Grübel, Klaudiusz; Machnicka, Alicja
2009-12-01
Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production.
Determining Sludge Fertilization Rates for Forests from Nitrate-N in Leachate and Groundwater
D.G. Brockway; D.H. Urie
1983-01-01
Municipal and papermill wastewater sludges were applied to conifer and hardwood forests growing on sand soils (Entic Haplorthods, Spodle Udipsamments, and Alfic Haplothods), in northwestern Lower Michigan where annual precipitation averages 765 mm/y.To investigate the impact of sludge on nitrate-N concentrations in soil water and groundwater.During the first growing...
Wu, Kai-cheng; Wu, Peng; Shen, Yao-liang; Li, Yue-han; Wang, Han-fang; Xu, Yue-zhong
2015-11-01
Abstract: The last two compartments of the Anaerobic Baffled Readtor ( ABR) were altered into aeration tank and sedimentation tank respectively to get an integrated anaerobic-aerobic reactor, using anaerobic granular sludge in anaerobic zone and aerobic granular sludge in aerobic zone as seed sludge. The research explored the condition to cultivate nitritation granular sludge, under the condition of continuous flow. The C/N rate was decreased from 1 to 0.4 and the ammonia nitrogen volumetric loading rate was increased from 0.89 kg x ( m3 x d)(-1) to 2.23 kg x (m3 x d)(-1) while the setting time of 1 h was controlled in the aerobic zone. After the system was operated for 45 days, the mature nitritation granular sludge in aerobic zone showed a compact structure and yellow color while the nitrite accumulation rate was about 80% in the effluent. The associated inhibition of free ammonia (FA) and free nitrous acid (FNA) dominated the nitritation. Part of granules lost stability during the initial period of operation and flocs appeared in the aerobic zone. However, the flocs were transformed into newly generated small particles in the following reactor operation, demonstrating that organic carbon was benefit to granulation and the enrichment of slow-growing nitrifying played an important role in the stability of granules.
Sludge-grown algae for culturing aquatic organisms: Part I. Algal growth in sludge extracts
NASA Astrophysics Data System (ADS)
Hung, K. M.; Chiu, S. T.; Wong, M. H.
1996-05-01
This project is aimed at studying the feasibility of using sewage sludge to prepare culture media for microalgae ( Chlorella-HKBU) and the use of the sludge-grown algae as a feed for some aquatic organisms. Part I of the project included results on preparing sludge extracts and their use on algal culture. By comparing two culturing techniques, “aeration” and “shaking,” it was noted that both lag and log phases were shortened in the aeration system. A subsequent experiment noted that algal growth subject to aeration rates of 1.0 and 1.5 liters/min had similar lag and log phases. In addition, both aeration rates had a significantly higher ( P < 0.05) final cell density than that of 0.5 liters/min. A detailed study on the variation of growth conditions on the algal growth was done. The results indicated that pH values of all the cultures declined below 5 at day 12. The removal rates of ammonia N ranged from 62% to 70%. The sludge-grown algae contained a rather substantial amount of heavy metals (µg/g): Zn 289 581, Cu 443 682, Ni 310 963, Mn 96 126, Cr 25 118, and Fe 438 653. This implied that the rather high levels of heavy metals may impose adverse effects on higher trophic organisms.
Degradation of PPCPs in activated sludge from different WWTPs in Denmark.
Chen, Xijuan; Vollertsen, Jes; Nielsen, Jeppe Lund; Dall, Agnieszka Gieraltowska; Bester, Kai
2015-12-01
Pharmaceuticals and Personal care products (PPCPs) are often found in effluents from wastewater treatment plants (WWTPs) due to insufficient removal during wastewater treatment processes. To understand the factors affecting the removal of PPCPs in classical activated sludge WWTPs, the present study was performed to assess the removal of frequently occurring pharmaceuticals (Naproxen, Fenoprofen, Ketoprofen, Dichlofenac, Carbamazepine) and the biocide Triclosan in activated sludge from four different Danish WWTPs. The respective degradation constants were compared to operational parameters previous shown to be of importance for degradation of micropollutants such as biomass concentration, and sludge retention time (SRT). The most rapid degradation, was observed for NSAID pharmaceuticals (55-90% for Fenoprofen, 77-94% for Ketoprofen and 46-90% for Naproxen), followed by Triclosan (61-91%), while Dichlofenac and Carbamazepine were found to be persistent in the systems. Degradation rate constants were calculated as 0.0026-0.0407 for NSAID pharmaceuticals and 0.0022-0.0065 for triclosan. No relationships were observed between degradation rates and biomass concentrations in the diverse sludges. However, for the investigated PPCPs, the optimal SRT was within 14-20 days (for these values degradation of these PPCPs was the most efficient). Though all of these parameters influence the degradation rate, none of them seems to be overall decisive. These observations indicate that the biological composition of the sludge is more important than the design parameters of the respective treatment plant.
Zubrowska-Sudol, Monika; Walczak, Justyna
2014-09-15
The purpose of the study was to analyse the impact of hydrodynamic disintegration of thickened excess activated sludge, performed at different levels of energy density (70, 140 and 210 kJ/L), on the activity of microorganisms involved in nutrient removal from wastewater, i.e. nitrifiers, denitrifiers and phosphorus accumulating organisms (PAOs). Ammonium and nitrogen utilisation rates and phosphorus release rates for raw and disintegrated sludge were determined using batch tests. The experiment also included: 1) analysis of organic and nutrient compound release from activated sludge flocs, 2) determination of the sludge disintegration degree (DD), and 3) evaluation of respiratory activity of the biomass by using the oxygen uptake rate (OUR) batch test. It was shown that the activity degree of the examined groups of microorganisms depended on energy density and related sludge disintegration degree, and that inactivation of individual groups of microorganisms occurred at different values of DD. Least resistant to the destruction of activated sludge flocs turned out to be phosphorus accumulating organisms, while the most resistant were denitrifiers. A decrease of 20-40% in PAO activity was noted already at DD equal to 3-5%. The threshold values of DD, after crossing which the inactivation of nitrifiers and denitrifiers occurred, were equal to 8% and 10%, respectively. At lesser DD values an increase in the activity of these groups of microorganisms was observed, averaging 20.2-41.7% for nitrifiers and 9.98-36.3% for denitrifiers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Technologies for reducing sludge production in wastewater treatment plants: State of the art.
Wang, Qilin; Wei, Wei; Gong, Yanyan; Yu, Qiming; Li, Qin; Sun, Jing; Yuan, Zhiguo
2017-06-01
This review presents the state-of-the-art sludge reduction technologies applied in both wastewater and sludge treatment lines. They include chemical, mechanical, thermal, electrical treatment, addition of chemical un-coupler, and predation of protozoa/metazoa in wastewater treatment line, and physical, chemical and biological pretreatment in sludge treatment line. Emphasis was put on their effect on sludge reduction performance, with 10% sludge reduction to zero sludge production in wastewater treatment line and enhanced TS (total solids) or volatile solids removal of 5-40% in sludge treatment line. Free nitrous acid (FNA) technology seems good in wastewater treatment line but it is only under the lab-scale trial. In sludge treatment line, thermal, ultrasonic (<4400kJ/kg TS), FNA pretreatment and temperature-phased anaerobic digestion (TPAD) are promising if pathogen inactivation is not a concern. However, thermal pretreatment and TPAD are superior to other pretreatment technologies when pathogen inactivation is required. The new wastewater treatment processes including SANI®, high-rate activated sludge coupled autotrophic nitrogen removal and anaerobic membrane bioreactor coupled autotrophic nitrogen removal also have a great potential to reduce sludge production. In the future, an effort should be put on the effect of sludge reduction technologies on the removal of organic micropollutants and heavy metals. Copyright © 2017 Elsevier B.V. All rights reserved.
Decreasing effect and mechanism of moisture content of sludge biomass by granulation process.
Zhao, Xia; Xu, Hao; Shen, Jimin; Yu, Bo; Wang, Xiaochun
2016-01-01
Disposal of a high volume of sludge significantly raises water treatment costs. A method for cultivating aerobic granules in a sequencing batch airlift bioreactor to significantly produce lower moisture content is described. Results indicate that optimization of settling time and control of the shear stresses acted on the granules. The diameter of the granule was within the range of 1.0-4.0 mm, and its sludge volume index was stabilized at 40-50 mL g(-1). Its specific gravity was increased by a factor of 0.0392, and specific oxygen uptake rate reached 60.126 mg h(-1) g(-1). Moreover, the percentage of its moisture content in the reactor ranged from 96.73% to 97.67%, and sludge volume was reduced to approximately 60%, greatly due to the presence of extracellular polymeric substances in the granules, as well as changes in their hydrophobic protein content. The removal rate of chemical oxygen demand and [Formula: see text] reaches up to 92.6% and 98%, respectively. The removal rates of total phosphorus is over 85%. Therefore, aerobic granular sludge process illustrates a good biological activity.
High-rate composting of barley dregs with sewage sludge in a pilot scale bioreactor.
Lu, Li-An; Kumar, Mathava; Tsai, Jen-Chieh; Lin, Jih-Gaw
2008-05-01
The feasibility of high-rate composting of barley dregs and sewage sludge was examined using a pilot scale bioreactor. A central composite design (CCD) was used to optimize the mix ratio of barley dregs/sewage sludge and moisture content. The performance of the bioreactor was monitored as a function of carbon decomposition rate (CDR) and total volatile solids (TVS) loss rate. The optimum range of mix ratio and moisture content was found to be 35-40% and 55-60%, respectively. High CO2 evolution rate (CER) and TVS loss rate were observed after 3 days of the composting and the compost was matured/stable after 7 days. Cardinal temperature model with inflection (CTMI) was used to analyze the compost stability with respect to CER as a parameter of composting efficiency. After examining the phytotoxicity, the compost can be promoted for land application.
NASA Astrophysics Data System (ADS)
Ferreiro-Domínguez, Nuria; Nair, Vimala; Rigueiro-Rodríguez, Antonio; Rosa Mosquera-Losada, María
2015-04-01
In Europe, sewage sludge should be stabilised before using as fertiliser in agriculture. Depending on the stabilisation process that is used, sewage sludge has different characteristics, nutrient contents and soil nutrient incorporation rates. Sewage sludge is usually applied on a plant-available N or total metal concentration basic, and therefore, P concentrations can be well above crop needs. Leaching of excess P can threaten surface and ground waters with eutrophication. In this context, recent studies have demonstrated that the implementation of agroforestry systems could reduce the P leaching risk compared with conventional agricultural systems due to the different localisation of tree and crop roots which enhance nutrient uptake. The aim of this study was to evaluate during three consecutive years the effect of municipal sewage sludge stabilised by anaerobic digestion, composting, and pelletisation on concentration of P in soil and pasture compared to control treatments (mineral and no fertilisation) in a silvopastoral system established under Fraxinus excelsior L. in Galicia (Spain). The results showed that at the beginning of the study, the fertilisation with mineral increased more the total and available P in soil than the fertilisation with sewage sludge probably because the sludge nutrient release rate is slower than those from mineral fertilisers. The increment of soil available P caused by the mineral fertiliser implied an improvement of the P concentration in the pasture. However, in the last year of the experiment it was observed a positive effect of the fertilisation with pelletised sludge on the concentration of P in pasture compared with the composted sludge and the mineral fertiliser probably due to the annual application of this type of sludge. Therefore, the establishment of silvopastoral systems and their fertilisation with pelletized sludge should be recommended because the pelletized sludge increases the concentration of P in the pasture and reduces the application and storage costs due to its lower proportion of water than the other types of sludge tested. At the same time, the integration of trees in agricultural areas decreases the problem of environmental impact resulting from addition of organic and inorganic fertilisers on soils.
He, Qiang; Li, Jiang; Liu, Hongxia; Tang, Chuandong; de Koning, Jaap; Spanjers, Henri
2012-06-01
The sludge production from medium- and small-scale wastewater treatment plants in the Three Gorges Reservoir Region is low and non-stable; especially, the organic content in this sludge is low (near 40% of VS/TS). An integrated thickening and digestion (ISTD) reactor was developed to treat this low-organic excess sludge. After a flow test and start-up experiment of the reactor, a running experiment was used to investigate the excess sludge treatment efficiency under five different excess sludge inflows: 200, 300, 400, 500 and 400 L/d (a mixture of excess sludge and primary sludge in a volume ratio of 9:1). This trial was carried out in the wastewater treatment plant in Chongqing, which covers 80% of the Three Gorges Reservoir Region, under the following conditions: (1) sludge was heated to 38-40 degrees C using an electrical heater to maintain anaerobic mesophilic digestion; (2) the biogas produced was recirculated to mix raw sludge with anaerobic sludge in the reactor under the flow rate of 12.5 L/min. There were three main results. Firstly, the flow pattern of the inner reactor was almost completely mixed under the air flow of 12.0 L/min using clear water. Secondly, under all the different sludge inflows, the water content in the outlet sludge was below 93%. Thirdly, the organic content in the outlet sludge was decreased from 37% to 30% and from 24% to 20%, whose removal ratio was in relation to the organic content of the inlet sludge. The excess sludge treatment capacity of the ISTD reactor was according to the organic content in the excess sludge.
Anaerobic digestion of municipal wastewater sludges using anaerobic fluidized bed bioreactor.
Mustafa, Nizar; Elbeshbishy, Elsayed; Nakhla, George; Zhu, Jesse
2014-11-01
The anaerobic digestion of primary sludge (PS) and thickened waste activated sludge (TWAS) using an anaerobic fluidized bed bioreactor (AnFBR) employing zeolite particles as the carrier media was investigated at different organic loading rates (OLRs). PS was tested at OLRs from 4.2 to 39kgCOD/m(3)-d corresponding to hydraulic retention times (HRTs) from 1.0 to 8.9days. The highest COD removal and VSS destruction efficiencies for primary sludge of 85% and 88%, respectively, were achieved at an HRT of 8.9days and OLR of 4.2kgCOD/m(3)-d. For TWAS, VSS destruction efficiencies varied from 42% at an HRT of 2.6days and OLR of 13.1kgCOD/m(3)-d to 69% at an HRT of 8.8days and an OLR of 4.2kgCOD/m(3)-d. The first-order COD biodegradation rates in the AnFBR for PS and TWAS were 0.4d(-1) and 0.1d(-1), respectively, almost double the rates in conventional high-rate digesters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cunningham, Virginia L; D'Aco, Vincent J; Pfeiffer, Danielle; Anderson, Paul D; Buzby, Mary E; Hannah, Robert E; Jahnke, James; Parke, Neil J
2012-07-01
This article presents the capability expansion of the PhATE™ (pharmaceutical assessment and transport evaluation) model to predict concentrations of trace organics in sludges and biosolids from municipal wastewater treatment plants (WWTPs). PhATE was originally developed as an empirical model to estimate potential concentrations of active pharmaceutical ingredients (APIs) in US surface and drinking waters that could result from patient use of medicines. However, many compounds, including pharmaceuticals, are not completely transformed in WWTPs and remain in biosolids that may be applied to land as a soil amendment. This practice leads to concerns about potential exposures of people who may come into contact with amended soils and also about potential effects to plants and animals living in or contacting such soils. The model estimates the mass of API in WWTP influent based on the population served, the API per capita use, and the potential loss of the compound associated with human use (e.g., metabolism). The mass of API on the treated biosolids is then estimated based on partitioning to primary and secondary solids, potential loss due to biodegradation in secondary treatment (e.g., activated sludge), and potential loss during sludge treatment (e.g., aerobic digestion, anaerobic digestion, composting). Simulations using 2 surrogate compounds show that predicted environmental concentrations (PECs) generated by PhATE are in very good agreement with measured concentrations, i.e., well within 1 order of magnitude. Model simulations were then carried out for 18 APIs representing a broad range of chemical and use characteristics. These simulations yielded 4 categories of results: 1) PECs are in good agreement with measured data for 9 compounds with high analytical detection frequencies, 2) PECs are greater than measured data for 3 compounds with high analytical detection frequencies, possibly as a result of as yet unidentified depletion mechanisms, 3) PECs are less than analytical reporting limits for 5 compounds with low analytical detection frequencies, and 4) the PEC is greater than the analytical method reporting limit for 1 compound with a low analytical detection frequency, possibly again as a result of insufficient depletion data. Overall, these results demonstrate that PhATE has the potential to be a very useful tool in the evaluation of APIs in biosolids. Possible applications include: prioritizing APIs for assessment even in the absence of analytical methods; evaluating sludge processing scenarios to explore potential mitigation approaches; using in risk assessments; and developing realistic nationwide concentrations, because PECs can be represented as a cumulative probability distribution. Finally, comparison of PECs to measured concentrations can also be used to identify the need for fate studies of compounds of interest in biosolids. Copyright © 2011 SETAC.
Yoon, Seong-Hoon; Lee, Sangho
2005-09-01
Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results found in literatures.
Leaching of Heavy Metals Using SPLP Method from Fired Clay Brick Incorporating with Sewage Sludge
NASA Astrophysics Data System (ADS)
Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Amira Sarani, Noor; Aqma Izurin Rahmat, Nur
2017-05-01
Sewage sludge is a by-product generate from wastewater treatment process. The sewage sludge contains significant trace metal such as Cr, Mn, Ni, Cu, Zn, As, Cd and Pb which are toxic to the environment. Sewage sludge is disposed of by landfilling method. However, this option not suitable because of land restriction and environmental control regulations imposed. Therefore, sewage sludge from wastewater treatment plant was incorporated into fired clay brick to produce good quality of brick as well as reducing heavy metals from sludge itself. Sewage sludge with 0%, 1%, 5%, 10% and 20% of were incorporated into fired clay bricks and fired at 1050°C temperature with heating rates of 1°C/min. The brick sample then crushed and sieved through 9.5 mm sieve for Synthetic Precipitation Leaching Procedure (SPLP). From the results, incorporation up to 20% of sewage sludge has leached less heavy metals and compliance with USEPA standard.
Comparing alkaline and thermal disintegration characteristics for mechanically dewatered sludge.
Tunçal, Tolga
2011-10-01
Thermal drying is one of the advanced technologies ultimately providing an alternative method of sludge disposal. In this study, the drying kinetics of mechanically dewatered sludge (MDS) after alkaline and thermal disintegration have been studied. In addition, the effect of total organic carbon (TOC) on specific resistance to filtration and sludge bound water content were also investigated on freshly collected sludge samples. The combined effect of pH and TOC on the thermal sludge drying rate for MDS was modelled using the two-factorial experimental design method. Statistical assessment of the obtained results proposed that sludge drying potential has increased exponentially for both increasing temperature and lime dosage. Execution of curve fitting algorithms also implied that drying profiles for raw and alkaline-disintegrated sludge were well fitted to the Henderson and Pabis model. The activation energy of MDS decreased from 28.716 to 11.390 kJ mol(-1) after disintegration. Consequently, the unit power requirement for thermal drying decreased remarkably from 706 to 281 W g(-1) H2O.
Passio, Luca; Rizzoa, Luigi; Fuchs, Stephan
2012-09-01
The unsafe disposal of wastewater and sludge in different areas of developing countries results in significant environmental pollution, particularly for groundwater, thus increasing the risk of waterborne diseases spreading. In this work, a two-phase anaerobic digestion process for post-treatment of partially acidified sewage sludge was investigated to evaluate its feasibility as a safe sludge disposal system. Pilot tests showed that an effective sludge stabilization can be achieved (total volatile solids content <65%, organic acid concentration <200 mg/L at flow rate = 50 L/d and hydraulic residence time = 18 d) as well as a relative low faecal coliform density (<1000 most probable number per g total solids), showing that land application of the sludge without restrictions is possible according to US Environmental Protection Agency criteria for safe sludge disposal. A biogas production as high as 390 L/d with a 60% methane content by volume was achieved, showing that energy production from biogas may be achieved as well.
Simultaneous oxidation of ammonium and p-cresol linked to nitrite reduction by denitrifying sludge.
González-Blanco, G; Beristain-Cardoso, R; Cuervo-López, F; Cervantes, F J; Gómez, J
2012-01-01
The metabolic capability of denitrifying sludge to oxidize ammonium and p-cresol was evaluated in batch cultures. Ammonium oxidation was studied in presence of nitrite and/or p-cresol by 55 h. At 50 mg/L NH4+-N and 76 mg/L NO2--N, the substrates were consumed at 100% and 95%, respectively, being N2 the product. At 50 mg/L NH4+-N and 133 mg/L NO2--N, the consumption efficiencies decreased to 96% and 70%, respectively. The increase in nitrite concentration affected the ammonium oxidation rate. Nonetheless, the N2 production rate did not change. In organotrophic denitrification, the p-cresol oxidation rate was slower than ammonium oxidation. In litho-organotrophic cultures, the p-cresol and ammonium oxidation rates were affected at 133 mg/L NO2--N. Nonetheless, at 76 mg/L NO2--N the denitrifying sludge oxidized ammonium and p-cresol, but at different rate. Finally, this is the first work reporting the simultaneous oxidation of ammonium and p-cresol with the production of N2 from denitrifying sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shen, Yanwen; Forrester, Sara; Koval, Jason; ...
2017-05-29
This study aimed to scale up an integrated waste-to-energy system for producing pipelinequality biomethane from shake flasks experiments to two-stage digester systems with semicontinuous operation. The yearlong operation was successfully conducted to compare the performance of thermophilic anaerobic digestion (AD) of sewage sludge amended with corn stover biochar (CSBC) and pine biochar (PBC) to the control under various conditions. Both CSBC and PBC promoted the substrate utilization, methane productivity, and process stability of AD, while CSBC showed superior potential. CSBC enhanced methane content in biogas (CH 4%) and methane production rate (P CHmore » $$_4$$) by up to 25% and 37% respectively in comparison to the control, with maximum CH 4% of 95% and CH 4 yield of 0.34 L/g volatile solid (VS)-added being achieved at steady state. The biochar supplementation also led to a substantial increase of the macro- and micro-nutrients (P, K, Ca, Mg, Fe) by up to 33 times in the digestate, increasing its fertilizer value. Finally, microbial community structure and dynamics were also investigated and compared, and in particular, CSBC promoted the abundance of Clostridia and Methanosarcina. Collectively, this study proves that pyro-biochar as an effective additive material enhances AD performance with continuous operation and that CSBC shows greater potential.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yanwen; Forrester, Sara; Koval, Jason
This study aimed to scale up an integrated waste-to-energy system for producing pipelinequality biomethane from shake flasks experiments to two-stage digester systems with semicontinuous operation. The yearlong operation was successfully conducted to compare the performance of thermophilic anaerobic digestion (AD) of sewage sludge amended with corn stover biochar (CSBC) and pine biochar (PBC) to the control under various conditions. Both CSBC and PBC promoted the substrate utilization, methane productivity, and process stability of AD, while CSBC showed superior potential. CSBC enhanced methane content in biogas (CH 4%) and methane production rate (P CHmore » $$_4$$) by up to 25% and 37% respectively in comparison to the control, with maximum CH 4% of 95% and CH 4 yield of 0.34 L/g volatile solid (VS)-added being achieved at steady state. The biochar supplementation also led to a substantial increase of the macro- and micro-nutrients (P, K, Ca, Mg, Fe) by up to 33 times in the digestate, increasing its fertilizer value. Finally, microbial community structure and dynamics were also investigated and compared, and in particular, CSBC promoted the abundance of Clostridia and Methanosarcina. Collectively, this study proves that pyro-biochar as an effective additive material enhances AD performance with continuous operation and that CSBC shows greater potential.« less
Trzcinski, Antoine Prandota; Ganda, Lily; Kunacheva, Chinagarn; Zhang, Dong Qing; Lin, Li Leonard; Tao, Guihe; Lee, Yingjie; Ng, Wun Jern
2016-10-01
In light of global warming mitigation efforts, increasing sludge disposal costs, and need for reduction in the carbon footprint of wastewater treatment plants, innovation in treatment technology has been tailored towards energy self-sufficiency. The AB process is a promising technology for achieving maximal energy recovery from wastewaters with minimum energy expenditure and therefore inherently reducing excess sludge production. Characterization of this novel sludge and its comparison with the more conventional B-stage sludge are necessary for a deeper understanding of AB treatment process design. This paper presents a case study of a pilot-scale AB system treating municipal wastewaters as well as a bio- (biochemical methane potential and adenosine tri-phosphate analysis) and physico-chemical properties (chemical oxygen demand, sludge volume index, dewaterability, calorific value, zeta potential and particle size distribution) comparison of the organic-rich A-stage against the B-stage activated sludge. Compared to the B-sludge, the A-sludge yielded 1.4 to 4.9 times more methane throughout the 62-week operation.
The Influence of Ultrasonic Cavitation on the Formation of Fe-Rich Intermetallics in A383 Alloy
NASA Astrophysics Data System (ADS)
Xuan, Yang; Liu, Tao; Nastac, Laurentiu; Brewer, Luke; Levin, Ilya; Arvikar, Vish
2018-06-01
The effect of ultrasonic treatment (UST) on the formation of Fe-rich intermetallics (including sludge) in the A383 alloy is investigated for different processing temperatures in the present study. Differential scanning calorimetry is used to analyze the precipitation temperature of the sludge phase. The results revealed that the sludge will precipitate at a temperature above that of the Al matrix and the precipitation temperature decreases with an increasing cooling rate. UST cavitation applied at different temperatures (600 °C to 750 °C) during the solidification process breaks the sludge into small island-like pieces. However, the aggregation trend of the sludge is not changed. Sludge with small size and uniform distribution is obtained when UST is applied at 600 °C, which is lower than the precipitation temperature of the sludge. At the highest temperature (850 °C), the application of UST has no effect on the formation of either sludge or α-Fe intermetallics. At 750 °C, UST promotes the formation of the sludge when applied at 750 °C.
Highly efficient secondary dewatering of dewatered sewage sludge using low boiling point solvents.
He, Chao; Chena, Chia-Lung; Xu, Zhirong; Wang, Jing-Yuan
2014-01-01
Secondary dewatering of dewatered sludge is imperative to make conventional drying and incineration of sludge more economically feasible. In this study, a secondary dewatering of dewatered sludge with selected solvents (i.e. acetone and ethanol) followed by vacuum filtration and nature drying was investigated to achieve in-depth dewatering. After the entire secondary dewatering process, the sludge was shown to be odourless and the organic matter content was greatly retained. Increased mean particle size of sludge after solvent contact improved solid-liquid separation. With an acetone/sludge ratio of 3:1 (mL:g) in solvent contact and subsequent nature drying at ambient temperature after 24 h, the moisture content of sludge can be reduced to a level less than 20%. It is found that the polysaccharides were mainly precipitated by acetone, whereas the release ratios of protein and DNA were increased significantly as the added acetone volumes were elevated. During nature drying, accumulated evaporation rates of the sludge after solvent contact were 5-6 times higher than original dewatered sludge. Furthermore, sludge after acetone contact had better nature drying performance than ethanol. The two-stage dewatering involves solvent contact dewatering and solvent enhanced evaporation dewatering. Through selecting an appropriate solvent/sludge ratio as well as economical solvents and minimizing the solvent loss in a closed-pilot system, this dewatering process can be competitive in industrial applications. Therefore, this solvent-aided secondary dewatering is an energy-saving technology for effective in-depth dewatering of dewatered sludge and subsequent sludge utilization.
Wastewater and sludge management and research in Oman: An overview.
Jaffar Abdul Khaliq, Suaad; Ahmed, Mushtaque; Al-Wardy, Malik; Al-Busaidi, Ahmed; Choudri, B S
2017-03-01
It is well recognized that management of wastewater and sludge is a critical environmental issue in many countries. Wastewater treatment and sludge production take place under different technical, economic, and social contexts, thus requiring different approaches and involving different solutions. In most cases, a regular and environmentally safe wastewater treatment and associated sludge management requires the development of realistic and enforceable regulations, as well as treatment systems appropriate to local circumstances. The main objective of this paper is to provide useful information about the current wastewater and sludge treatment, management, regulations, and research in Oman. Based on the review and discussion, the wastewater treatment and sludge management in Oman has been evolving over the years. Further, the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman. Wastewater treatment and sludge management in Oman have been evolving over the years. Sludge utilization has been a challenge due to its association with human waste. Therefore, composting of sewage sludge is the best option in agriculture activities. Sludge and wastewater utilization can add up positively in the economic aspects of the country in terms of creating jobs and improving annual income rate. The number of research projects done on wastewater reuse and other ongoing ones related to the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.
Oh, Young-Khee; Lee, Ki-Ryong; Ko, Kwang-Baik; Yeom, Ick-Tae
2007-06-01
A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.
Wang, Can; Zhou, Zhiren; Liu, Hongdan; Li, Junjie; Wang, Ying; Xu, Heng
2017-02-01
This experiment was performed to investigate the effects of acclimated sewage sludge (ASS) and sterilized ASS on the fates of chlorpyrifos (CP) in soil with or without cadmium (Cd), as well as the improvement of soil biochemical properties. Results showed that both ASS and sterilized ASS could significantly promote CP dissipation, and the groups with ASS had the highest efficiency on CP removal, whose degradation rates reached 71.3%-85.9% at the 30th day (40.4%-50.2% higher than non-sludge groups). Besides, the degradation rate of CP was not severely influenced by the existence of Cd, and the population of soil microorganism dramatically increased after adding sludge. The soil enzyme activities (dehydrogenase, acid phosphatase and FDA hydrolase activities) ranked from high to low were as follows: groups with sterilized ASS>groups with ASS>groups without sludge. Simultaneously, 16S rRNA gene sequencing revealed that ASS changed bacterial community structure and diversity in soil. In addition, alkali-hydrolyzable nitrogen and Olsen- phosphorus increased after application of sludge, indicating that the addition of ASS (or sterilized ASS) could effectively improve soil fertility. Copyright © 2016 Elsevier B.V. All rights reserved.
Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song
2014-10-01
Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Anderson Development site is an active chemical manufacturing facility in Adrian, Lenawee County, Michigan. The site occupies approximately 12.5 acres within a 40-acre industrial park, which is surrounded by residential areas. Site features include several onsite buildings used for manufacturing, storage, laboratories, and offices, as well as a 0.5-acre former process wastewater pretreatment lagoon. From 1970 to 1979, the Anderson Development Corporation (ADC) produced specialty chemicals onsite including 4,4-methylene bis (2-chlororaniline) (MBOCA), a hardening agent for the production of polyurethane plastics. The ROD amends the 1990 ROD, which provided for treatment of the contaminated media using in-situ vitrification, andmore » documents the selection of low temperature thermal desorption (LTTD) as the preferred treatment technology. The selected amended remedial action for this site includes excavating and staging 3,000 to 4,000 tons of contaminated soil, clay, and lagoon sludge with MBOCA concentrations above the 1.6 mg/kg clean-up action level in an LTTD device.« less
Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua
2015-01-01
Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510
Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon
2013-11-15
Lab-scale High Efficiency Digestion (HED) systems containing a Mesophilic Anaerobic Reactor (MAR), Thermophilic Aerobic Reactor (TAR), liquid/solid separation unit, and thermal-alkaline treatment were developed to evaluate the efficiencies of sludge reduction and methane production. The HED process was divided into three phases to examine the influence of sludge pretreatment and pretreated sludge recirculation using TCOD and VSS reduction, COD solubilization, and methane production. The VSS removal with a solid/liquid separation unit, sludge recirculation, and thermal-alkaline treatment drastically increased up to 95% compared to the feed concentration. In addition, the results of COD solubilization and VSS/TSS showed that the solubilization of cells and organic matters by the thermal-alkaline treatment was highly increased, which was also consistent with the SEM images. In particular, the methane production rate increased 24-fold when the feed sludge and recirculated sludge were pretreated together. Collectively, the HED experiments performed with sludge recirculation and thermal-alkaline treatment demonstrated that the HED systems can be successfully employed for highly efficient sewage sludge reduction and methane gas production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration.
Wang, Fen; Wang, Yong; Ji, Min
2005-08-31
Ultrasonic energy can be applied as pre-treatment to disintegrate sludge flocs and disrupt bacterial cells' walls, and the hydrolysis can be improved, so that the rate of sludge digestion and methane production is improved. In this paper, by adding NaHCO3 to mask the oxidizing effect of OH, the mechanisms of disintegration are investigated. In addition, kinetics models for ultrasonic sludge disintegration are established by applying multi-variable linear regression method. It has been found that hydro-mechanical shear forces predominantly responsible for the disintegration, and the contribution of oxidizing effect of OH increases with the amount of the ultrasonic density and ultrasonic intensity. It has also been inferred from the kinetics model which dependent variable is SCOD+ that both sludge pH and sludge concentration significantly affect the disintegration.
Ya-Juan, Xing; Jun-Yuan, Ji; Ping, Zheng; Lan, Wang; Abbas, Ghulam; Zhang, Jiqiang; Ru, Wang; Zhan-Fei, He
2018-05-31
The autotrophic process for nitrogen removal has attracted worldwide attention in the field of wastewater treatment, and the performance of this process is greatly influenced by the size of granular sludge particles present in the system. In this work, the granular sludge was divided into three groups, i.e. large size (> 1.2 mm), medium size (0.6-1.2 mm) and small size (< 0.6 mm). The medium granular sludge was observed to dominate at high volumetric nitrogen loading rates, while offering strong support for good performance. Its indispensable contribution was found to originate from improved settling velocity (0.84 ± 0.10 cm/s), high SOUR-A (specific oxygen uptake rate for ammonia oxidizing bacteria, 25.93 mg O 2 /g MLVSS/h), low SOUR-N (specific oxygen uptake rate for nitrite oxidizing bacteria, 3.39 mg O 2 /g MLVSS/h), and a reasonable microbial spatial distribution.
Deng, Liangwei; Chen, Huijuan; Chen, Ziai; Liu, Yi; Pu, Xiaodong; Song, Li
2009-12-01
The feasibility of a new flowchart describing simultaneous hydrogen sulfide removal from biogas and nitrogen removal from wastewater was investigated. It took 30 days for the reactor inoculated with aerobic sludge to attain a removal rate of 60% for H(2)S and NO(x)-N simultaneously. It took 34 and 48 days to attain the same removal rate for the reactor without inoculated sludge and the reactor inoculated with anaerobic sludge respectively. The reactor without inoculated sludge still operated successfully, despite requiring a slightly longer startup time. The packing material was capable of enhancing the removal efficiency of reactors. Based on the concentration of NO(x)-N and H(2)S in the effluent, the loading rate and the ability of the system to resist shock loading, the performance of the reactor filled with hollow plastic balls was greater than that of the reactor filled with elastic packing and the reactor filled with Pall rings.
Process performance of high-solids batch anaerobic digestion of sewage sludge.
Liao, Xiaocong; Li, Huan; Cheng, Yingchao; Chen, Nan; Li, Chenchen; Yang, Yuning
2014-01-01
The characteristics of high-solids anaerobic digestion (AD) of sewage sludge were investigated by comparison with conventional low-solids processes. A series of batch experiments were conducted under mesophilic condition and the initial solid contents were controlled at four levels of 1.79%, 4.47%, 10.28% and 15.67%. During these experiments, biogas production, organic degradation and intermediate products were monitored. The results verified that high-solids batch AD of sewage sludge was feasible. Compared with the low-solids AD with solid contents of 1.79% or 4.47%, the high-solids processes decreased the specific biogas yield per gram of sludge volatile solids slightly, achieved the same organic degradation rate of about 40% within extended degradation time, but increased the volumetric biogas production rate and the treatment capability of digesters significantly. The blocked mass and energy transfer, the low substrate to inoculum rate and the excessive cumulative free ammonia were the main factors impacting the performance of high-solids batch AD.
Hu, Guangji; Li, Jianbing; Zhang, Xinying; Li, Yubao
2017-05-01
The treatment of waste biomass (sawdust) through co-pyrolysis with refinery oily sludge was carried out in a fixed-bed reactor. Response surface method was applied to evaluate the main and interaction effects of three experimental factors (sawdust percentage in feedstock, temperature, and heating rate) on pyrolysis oil and char yields. It was found that the oil and char yields increased with sawdust percentage in feedstock. The interaction between heating rate and sawdust percentage as well as between heating rate and temperature was significant on the pyrolysis oil yield. The higher heating value of oil originated from sawdust during co-pyrolysis at a sawdust/oily sludge ratio of 3:1 increased by 5 MJ/kg as compared to that during sawdust pyrolysis alone, indicating a synergistic effect of co-pyrolysis. As a result, petroleum sludge can be used as an effective additive in the pyrolysis of waste biomass for improving its energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of solid discharges from coal usage in the southwest
Jones, D. G.; Straughan, I. R.
1978-01-01
The Southwestern region of the United States is extremely wealthy in low sulfur coal resources which must be eventually utilized in response to national energy balance priorities. Fly ash and scrubber sludge can be safely disposed of using properly managed techniques to ensure that any potential impact from elements such as boron, molybdenum, or selenium is rendered insignificant. Alternative methods of solids utilization are presently being developed. Fly ash is presently being marketed commercially as an additive for concrete manufacture. Successful experiments have been completed to demonstrate the manufacture of commercial-grade wallboard from scrubber sludge. Also, greenhouse studies and field experiments have been conducted to demonstrate increased yields of selected crops grown on typical soils amended with fly ash in amounts ranging from 2% to 8%, by weight. These studies also indicate that barium and strontium may be good monitoring indices for determining atmospheric deposition of fly ash, due to their concentration ratios in soil and vegetation samples. Further studies are being conducted to confirm encouraging irrigation and crop-yield data obtained with fly ash amended soils. Finally, the composition of many fly ashes and soils are similar in the Southwest, and there are no anticipated solid discharges from coal usage which cannot be rendered insignificant with proper management of existing and emerging methods of treatment. Compared with the water availability impact of coal usage in the Southwest, the impact of solid waste discharges are insignificant. PMID:738243
[Effect of sludge bulking on membrane fouling of MBR under low temperature].
Ren, Nan-qi; Liu, Jiao; Wang, Xiu-heng
2009-01-01
The performance and membrane fouling of submerged membrane bioreactor were studied in the case of active sludge bulking under low temperature. The factors contributing to membrane fouling were discussed from the microorganism aspect. The results showed that COD removal efficiencies of supernatant and permeate were 85% and 92% respectively and filamentous sludge bulking had little impact on them. The sludge settleability became bad and the filament index (FI) increased from 2 to 5 during the formation of filamentous sludge bulking under low temperature. The filamentous bacteria extending from the sludge flocs formed net structure. Membrane fouling changed with time in linear under low temperature and the operation period of MBR was 15 d. However, membrane fouling was more serious in the condition of filamentous sludge bulking at low temperature, shortening the operation period of MBR to 7 d. The extracellular polymeric substances (EPS) content of bulking sludge was three times as that of normal sludge and the relative hydrophobicity (RH) of sludge flocs was decreased as FI increased. The increase of EPS and RH may cause more materials to deposit on the membrane surface, thus the membrane fouling rate improved and the operation period of MBR became short. Further analysis indicated that the mixed liquid viscosity, Zeta potential and sludge floc structure were all important factors of membrane fouling.
Soil biochar amendments: type and dose effects
NASA Astrophysics Data System (ADS)
Ojeda, G.; Domene, X.; Mattana, S.; Sousa, J. P.; Ortiz, O.; Andres, P.; Alcañiz, J. M.
2012-04-01
Biochar is an organic material produced via the pyrolysis of C-based biomass, which is increasingly being recognized by scientists and policy makers for its potential role in carbon sequestration, reducing greenhouse gas emissions, waste mitigation, and as a soil amendment. Recent studies indicated that biochar improves soil fertility through its positive influence on physical-chemical properties, since not only improves water retention, aggregation and permeability, but its high charge density can also hold large amounts of nutrients, increasing crop production. However, it was observed that combustion temperature could affects the degree of aromaticity and the size of aromatic sheets, which in turns determine short-term mineralization rates. To reconcile the different decompasibility observations of biochar, it has sugested that physical protection and interactions with soil minerals play a significant part in biochar stability. In this context, it has initiated one pilot studies which aims to assess the effects of biochar application on physical and chemical properties of agricultural soil under Mediterranean conditions, such as changes in aggregate formation, intra-aggregate carbon sequestration and chemistry of soil water. In the present study, different clases of biochar produced from fast, slow and gasification pyrolisis of vegetal (pine, poplar) and dried sludge biomass, were applied at 1% of biochar-C to mesocosmos of an agricultural soil. Preliminary, it must be pointed out that slow and gasification pyrolisis changes the proportion of particles < 2 mm in diameter, from 10% (original materials) to almost 100%. In contrast, slow pyrolisis not modifies significantly biochar granulometry. As a consequence, bulk density of poplar and pine splinters decreases after fast pyrolisis. Regarding to organic carbon contents of biochar, all biochars obtained from plant biomass presented percentagens of total organic carbon (TOC) between 70 - 90%, while biochar obtained from dried sludge by slow pyrolisis has a TOC around of 22%. On the other hand, pH values of biochar depends of the type of pyrolisis as observed in the biochar obtained from poplar biomass, where pH of slow pyrolisis < fast pyrolisis < gasification pyrolisis. When soil aggregate stability was tested, it was observed that biochars from pine biomass obtained by slow and fast pyrolisis trend to increase the water-stable soil aggregates, while the biochars from poplar and thermally-dreid sludge obtained by slow pyrolisis and from pine biomass obtained by gasification trend to the contrary. These differences were not explained by TOC contents or bulk density of bichars, probably because specific resistence to slaking and wettability of each biochar. At least, when measuring pH values of water where soil aggregates were immersed during soil aggregate stability test, it was observed that biochars from thermally-dried sludge obtained by slow pyrolisis and from pine biomass obtained by gasification pyrolisis increased water pH, which corresponded with high pH values of both biochars. In general, increases in the percentage of water-stable soil aggregates corresponded with increases in water pH values, except in the case of biochar from pine biomass obtained by slow pyrolisis.
Keffala, Chéma; Harerimana, Casimir; Vasel, Jean-luc
2013-01-01
Based on worldwide works available in international literature, this paper describes the status of sewage sludge resulting from settleable solids in waste stabilisation ponds (WSP). This review presents, in detail, sludge characteristics, production and accumulation rates in order to provide background information to those who expect to advise or get involved with sewage disposal in situations where resources are limited. Knowing that several years are usually required for a sludge removal operation and that the long-term sustainability of WSP systems is dependent on the safe and effective management of their sludge, its cost must be estimated and taken into account in the annual maintenance costs of the processes. Thus, this paper intends to summarise desludging methods and their financial estimation. Even when ponds have been functioning for several years, most of the sediments are stabilised well, the final disposal is an issue in terms of risk due, for example, to their content in nematode eggs. More generally, the pathogen content in sludge from WSP ponds has to be known to define an appropriate management and to safeguard public health. Based on existing data, the rates and distribution of helminth eggs will be presented and practical treatment methods will be suggested. A number of sludge utilisation and disposal pathways will also be summarised. Sludge activity in terms of oxygen consumption is also discussed in order to gather more information to improve pond design and keep an economic and sustainable value of WSP. The objectives of the present review are to advance knowledge and gather scientific and technical information on all aspects of sludge management including production, characterisation, management, agricultural reuse and ultimate disposal.
Ibrahim, Muhammad; Li, Gang; Khan, Sardar; Chi, Qiaoqiao; Xu, Yaoyang; Zhu, Yongguan
2017-08-01
Anthropogenic and natural activities can lead to increased greenhouse gas emissions and discharge of potentially toxic elements (PTEs) into soil environment. Biochar amendment to soils is a cost-effective technology and sustainable approach used to mitigate greenhouse gas emissions, improve phytoremediation, and minimize the health risks associated with consumption of PTE-contaminated vegetables. Greenhouse pot experiments were conducted to investigate the effects of peanut shell biochar (PNB) and sewage sludge biochar (SSB) on greenhouse gas (GHG) emissions, plant growth, PTE bioaccumulation, and arsenic (As) speciation in bean plants. Results indicated that amendments of PNB and SSB increased plant biomass production by increasing soil fertility and reducing bioavailability of PTEs. Addition of biochars also increased soil pH, total nitrogen (TN), total carbon (TC), dissolved organic carbon (DOC), and ammonium-nitrogen (NH 4 -N) but decreased available concentrations of PTEs such as cadmium (Cd), lead (Pb), and As. The concentration of nitrate-nitrogen (NO 3 - -N) was also decreased in biochar-amended soils. In addition, PNB and SSB amendments significantly (P < 0.01) reduced the bioaccumulation of chromium (Cr), As, Cd, Pb, and nickel (Ni) in stalks, leaves, and fruits of Phaseolus vulgaris L. Similarly, PNB and SSB amendments significantly (P ≤ 0.05) reduced inorganic As species like arsenite (As (III)) and arsenate (As (V)). Greenhouse gases such as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions were significantly (P < 0.01) reduced but nitrous oxide (N 2 O) emissions first increased and then decreased amended with both biochars. Current findings demonstrate that SSB and PNB are two beneficial soil amendments simultaneous mitigating greenhouse gas emissions and PTE bioaccumulation as well as arsenic speciation in P. vulgaris L.
Sludge settling processes in SBR-related sewage treatment plants according to the Biocos method.
Meusel, S; Englert, R
2004-01-01
This paper describes the investigations in a sedimentation and circulation reactor (SU-reactor) of a three-phase Biocos plant. The aim of these investigations was the determination of the temporal and depth-dependent distribution of suspended solid contents, as well as describing the sludge sedimentation curves. The calculated results reveal peculiarities of the Biocos method with regard to sedimentation processes. In the hydraulically uninterrupted (pre-)settling phase, a sludge level depth was observed, which remained constant over the reactor surface and increased linearly according to the sludge volume. The settling and the thickening processes of this phase corresponded to a large extent to the well-known settling test in a one-litre measuring cylinder. During the discharge phase, the investigated settling rate was overlaid by the surface loading rate and the sludge level changed depending on the difference between those two parameters. The solid distribution of the A-phase indicated a formation of functional zones, which were influenced by the surface loading. The formation was comparable to the formation of layers in secondary settling tanks with vertical flow. The concentration equalisation between the biological reactor and the SU-reactor proved to be problematic during the circulation phase, because a type of internal sludge circulation occurred in the SU-reactor. A permanent sludge recirculation seems to be highly recommendable.
Heavy metals in summer squash fruits grown in soil amended with municipal sewage sludge.
Antonious, George F; Snyder, John C; Dennis, Sam O
2010-02-01
The increasing awareness of the value of vegetables and fruits in the human diet requires monitoring of heavy metals in food crops. The effects of amending soil with compost made from municipal sewage sludge (MSS) and MSS mixed with yard waste (MSS-YW) on Cd, Cr, Mo, Cu, Zn, Pb, and Ni concentrations in soil and the potential bioaccumulation of heavy metals in squash fruits at harvest were investigated. A field study was conducted in a silty-loam soil at Kentucky State University Research Farm. Eighteen plots of 22 x 3.7 m each were separated using metal borders and the soil in six plots was mixed with MSS at 15 t acre(-1), six plots were mixed with MSS-YW at 15 t acre(-1) (on dry weight basis), and six unamended plots (no-mulch) were used for comparison purposes. Plots were planted with summer squash and heavy metals were analyzed in soil and mature fruits at harvest. Analysis of heavy metals in squash fruits was conducted using inductively coupled plasma spectrometry. Zinc and Cu concentrations in soil mixed with MSS were extremely high compared to other metals. In squash fruits, concentrations of Zn were generally greater than Cu. Total squash marketable yield was greatest in MSS-YW and MSS treatments compared to no-mulch conventional soil. Concentrations of Cd and Pb in soil amended with MSS averaged 0.1 and 1.4 mg kg(-1), respectively. These levels were much lower than the limits in the U.S. guidelines for using MSS in land farming. Data revealed that maximum concentrations of Cd and Pb in squash fruits were 0.03 and 0.01 microg g(-1) dry fruit, respectively. Nickel concentration in squash fruits fluctuated among harvest dates reaching a maximum of 2.5 microg g(-1) dry fruit. However, these concentrations were far below their permissible limits in edible fruits.
Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor.
Lee, Kuo-Shing; Wu, Ji-Fang; Lo, Yung-Sheng; Lo, Yung-Chung; Lin, Ping-Jei; Chang, Jo-Shu
2004-09-05
A novel bioreactor containing self-flocculated anaerobic granular sludge was developed for high-performance hydrogen production from sucrose-based synthetic wastewater. The reactor achieved an optimal volumetric hydrogen production rate of approximately 7.3 L/h/L (7,150 mmol/d/L) and a maximal hydrogen yield of 3.03 mol H2/mol sucrose when it was operated at a hydraulic retention time (HRT) of 0.5 h with an influent sucrose concentration of 20 g COD/L. The gas-phase hydrogen content and substrate conversion also exceeded 40 and 90%, respectively, under optimal conditions. Packing of a small quantity of carrier matrices on the bottom of the upflow reactor significantly stimulated sludge granulation that can be accomplished within 100 h. Among the four carriers examined, spherical activated carbon was the most effective inducer for granular sludge formation. The carrier-induced granular sludge bed (CIGSB) bioreactor was started up with a low HRT of 4-8 h (corresponding to an organic loading rate of 2.5-5 g COD/h/L) and enabled stable operations at an extremely low HRT (up to 0.5 h) without washout of biomass. The granular sludge was rapidly formed in CIGSB supported with activated carbon and reached a maximal concentration of 26 g/L at HRT = 0.5 h. The ability to maintain high biomass concentration at low HRT (i.e., high organic loading rate) highlights the key factor for the remarkable hydrogen production efficiency of the CIGSB processes.
Sludge Settling Rate Observations and Projections at the Savannah River Site - 13238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillam, Jeffrey M.; Shah, Hasmukh B.; Keefer, Mark T.
2013-07-01
Since 2004, sludge batches have included a high percentage of stored sludge generated from the H- modified (HM) process. The slow-settling nature of HM sludge means that the settling is often the major part of the washing tank quiescent period between required pump runs to maintain flammability control. Reasonable settling projections are needed to wash soluble salts from sludge in an efficient manner, to determine how much sludge can be washed in a batch within flammability limits, and to provide composition projections for batch qualification work done in parallel with field preparation. Challenges to providing reasonably accurate settling projections includemore » (1) large variations in settling behavior from tank-to-tank, (2) accounting for changing initial concentrations, sludge masses, and combinations of different sludge types, (3) changing the settling behavior upon dissolving some sludge compounds, and (4) sludge preparation schedules that do not allow for much data collection for a particular sludge before washing begins. Scaling from laboratory settling tests has provided inconsistent results. Several techniques have been employed to improve settling projections and therefore the overall batch preparation efficiency. Before any observations can be made on a particular sludge mixture, projections can only be made based on historical experience with similar sludge types. However, scaling techniques can be applied to historical settling models to account for different sludge masses, concentrations, and even combinations of types of sludge. After sludge washing/settling cycles begin, the direct measurement of the sludge height, once generally limited to a single turbidity meter measurement per settle period, is now augmented by examining the temperature profile in the settling tank, to help determine the settled sludge height over time. Recently, a settling model examined at PNNL [1,2,3] has been applied to observed thermocouple and turbidity meter readings to quickly provide settling correlations to project settled heights for other conditions. These tools improve the accuracy and adaptability of short and mid-range planning for sludge batch preparation. (authors)« less
Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng
2011-10-01
A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was operationally divided into six sections along the direction of the sludge movement. Ten duration of continuous operation of sludge bioleaching with Acidibacillus spp. and 1.2 m3 x h(-1) aeration amount was conducted. In this system, sludge retention time was 2.5 d, and the added amount of microbial nutritional substance was 4 g x L(-1). During sludge bioleaching, the dynamic changes of pH, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections, the moisture content and moisture evaporation rate of dewatered bioleached sludge cake obtained by chamber filter press were investigated. The results showed that the SRF of sludge significantly decreased from initial 1.50 x 10(13) m x kg(-1) to the final 0.34 x 10(13) m x kg(-1). The wasted bioleached sludge was collected and dewatered by chamber filter press under the following pressures as 0.3 MPa for 4 h (2 h for feeding sludge, 2 h for holding pressure), 3 h (1.5 h for feeding sludge, 1.5 h for holding pressure), 2 h (1 h for feeding sludge, 1 h for holding pressure), and 1 h (0.5 h for feeding sludge, 0.5 h for holding pressure). Correspondingly, the moisture of dewatered sludge was reduced to 57.9%, 59.2%, 59.6%, and 63.4% of initial moisture, respectively. Moreover, the moisture content of bioleached sludge cake was reduced to about 45% and less than 10% if the cake was placed at 25 degrees C for 15 h and 96 h, respectively. Obviously, sludge bioleaching followed by sludge dewatering using chamber filter press is a promising attractive approach for sludge half-dryness treatment in engineering application.
Jimenez, Jose; Miller, Mark; Bott, Charles; Murthy, Sudhir; De Clippeleir, Haydee; Wett, Bernhard
2015-12-15
The high-rate activated sludge (HRAS) process is a technology suitable for the removal and redirection of organics from wastewater to energy generating processes in an efficient manner. A HRAS pilot plant was operated under controlled conditions resulting in concentrating the influent particulate, colloidal, and soluble COD to a waste solids stream with minimal energy input by maximizing sludge production, bacterial storage, and bioflocculation. The impact of important process parameters such as solids retention time (SRT), hydraulic residence time (HRT) and dissolved oxygen (DO) levels on the performance of a HRAS system was demonstrated in a pilot study. The results showed that maximum removal efficiencies of soluble COD were reached at a DO > 0.3 mg O2/L, SRT > 0.5 days and HRT > 15 min which indicates that minimizing the oxidation of the soluble COD in the high-rate activated sludge process is difficult. The study of DO, SRT and HRT exhibited high degree of impact on the colloidal and particulate COD removal. Thus, more attention should be focused on controlling the removal of these COD fractions. Colloidal COD removal plateaued at a DO > 0.7 mg O2/L, SRT > 1.5 days and HRT > 30 min, similar to particulate COD removal. Concurrent increase in extracellular polymers (EPS) production in the reactor and the association of particulate and colloidal material into sludge flocs (bioflocculation) indicated carbon capture by biomass. The SRT impacted the overall mass and energy balance of the high-rate process indicating that at low SRT conditions, lower COD mineralization or loss of COD content occurred. In addition, the lower SRT conditions resulted in higher sludge yields and higher COD content in the WAS. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newell, J; Miller, D; Stone, M
The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets.more » Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit 510 based system without Al-dissolution relative to the Frit 418 based system with Al-dissolution. Though the without aluminum dissolution scenario suggests a slightly higher melt rate with frit 510, several points must be taken into consideration: (1) The MRF does not have the ability to assess liquid feeds and, thus, rheology impacts. Instead, the MRF is a 'static' test bed in which a mass of dried melter feed (SRAT product plus frit) is placed in an 'isothermal' furnace for a period of time to assess melt rate. These conditions, although historically effective in terms of identifying candidate frits for specific sludge batches and mapping out melt rate versus waste loading trends, do not allow for assessments of the potential impact of feed rheology on melt rate. That is, if the rheological properties of the slurried melter feed resulted in the mounding of the feed in the melter (i.e., the melter feed was thick and did not flow across the cold cap), melt rate and/or melter operations (i.e., surges) could be negatively impacted. This could affect one or both flowsheets. (2) Waste throughput factors were not determined for Frit 510 and Frit 418 over multiple waste loadings. In order to provide insight into the mission life versus canister count question, one needs to define the maximum waste throughput for both flowsheets. Due to funding limitations, the melt rate testing only evaluated melt rate at a fixed waste loading. (3) DWPF will be processing SB5 through their facility in mid-November 2008. Insight into the over arching questions of melt rate, waste throughput, and mission life can be obtained directly from the facility. It is recommended that processing of SB5 through the facility be monitored closely and that data be used as input into the decision making process on whether to implement Al-dissolution for future sludge batches.« less
NASA Astrophysics Data System (ADS)
Wassmann, R.; Wang, M. X.; Shangguan, X. J.; Xie, X. L.; Shen, R. X.; Wang, Y. S.; Papen, H.; Rennenberg, H.; Seiler, W.
Fertilizer effects on methane emission from Chinese rice fields were investigated by a praxis-oriented approach applying balanced amendments of N, P and K. The data set obtained covered the emission rates of app. one month in early rice and one month in late rice 1991. An intercomparison between the 4 treatments showed pronounced differences in the magnitudes of methane emission rates. The combined organic/mineral fertilizer application, commonly used as local farming practice, resulted in relatively high seasonal averages of methane emission rates (26.5 mg CH4 m-2 h-1 in early rice and 50.1 mg CH4 m-2 h-1 in late rice). The lowest emission rates were observed in the plot with pure mineral fertilization (6.5 mg CH4 m-2 h-1 in early rice and 14.3 mg CH4 m-2 h-1 in late rice). Pure organic fertilizers by unfermented substances yielded the highest methane emission rates of all field trials (38.6 mg CH4 m-2 h-1 in early rice and 56.2 CH4 m-2 h-1 in late rice). The fertilization with fermented material derived from biogas generators resulted in substantially lower emission rates than the other trials with organic amendments, the seasonal averages corresponded to 15.9 mg CH4 m-2 h-1 (early rice) and 22.5 mg CH4 m-2 h-1 (late rice). Interpretation of the results can be obtained from the different potentials of these fertilizers for methane production. Based on this concept the different methane emission rates observed with organic/mineral, pure mineral and pure unfermented-organic fertilizers could directly be attributed to the different quantities of organic matter incorporated into the soil. The low methane emission from the plot treated with fermented material could be explained by a depletion of potential methane precursors resulting from the preceding fermentation. The results of this investigation provide evidence that the extensive use of specific chemical fertilizers and the application of sludge from the operation of biogas generators could lead to a net reduction of the methane emission from rice fields.
Bobay, K.E.
1988-01-01
The groundwater beneath eight sewage sludge lagoons, was studied to characterize the flow regime and to determine whether leachate had infiltrated into the glacio-fluvial sediments. Groundwater quality beneath the lagoons was compared with the groundwater quality beneath a landfill where sludge had been applied. The lagoons and landfills overlie outwash sand and gravel deposits separated by discontinuous clay layers. Shallow groundwater flows away from the lagoons and discharges into the White River. Deep groundwater discharges to the White River and flows southwest beneath Eagle Creek. After an accumulation of at least 2 inches of precipitation during 1 week, groundwater flow is temporarily reversed in the shallow aquifer, and all deep flow is along a relatively steep hydraulic gradient to the southwest. The groundwater is predominantly a calcium bicarbonate type, although ammonium accounts for more than 30% of the total cations in water from three wells. Concentrations of sodium, chloride, sulfate, iron, arsenic, boron, chemical oxygen demand, total dissolved solids, and methylene-blue-active substances indicate the presence of leachate in the groundwater. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were less than detection limits. The concentrations of 16 of 19 constituents or properties of groundwater beneath the lagoons are statistically different than groundwater beneath the landfill at the 0.05 level of significance. Only pH and concentrations of dissolved oxygen and bromide are higher in groundwater beneath the landfill than beneath the lagoons.
Qiao, Sen; Nishiyama, Takashi; Fujii, Tatsuo; Bhatti, Zafar; Furukawa, Kenji
2012-02-01
In this study, a single-stage autotrophic nitrogen removal reactor, packed with a novel acrylic fiber biomass carrier material (Biofix), was applied for nitrogen removal from sludge digester liquor. For rapid start-up, conventional activated sludge was added to the reactor soon after the attachment of anammox biomass on the Biofix carriers, which allowed conventional activated sludge to form a protective layer of biofilm around the anammox biomass. The Nitrogen removal efficiency reached 75% within 1 week at a nitrogen loading rate of 0.46 kg-N/m(3)/day for synthetic wastewater treatment. By the end of the synthetic wastewater treatment period, the maximum nitrogen removal rate had increased to 0.92 kg-N/m(3)/day at a nitrogen loading rate of 1.0 kg-N/m(3)/day. High nitrogen removal rate was also achieved during the actual raw digester liquor treatment with the highest nitrogen removal rate being 0.83 kg-N/m(3)/day at a nitrogen loading rate of 0.93 kg-N/m(3)/day. The thick biofilm on Biofix carriers allowed anammox bacteria to survive under high DO concentration of 5-6 mg/l resulting in stable and high nitrogen removal performance. FISH and CLSM analysis demonstrated that anammox bacteria coexisted and surrounded by ammonium oxidizing bacteria.
Erden, G
2013-01-01
Meat processing wastewater sludge has high organic content but it is very slow to degrade in biological processes. Anaerobic digestion may be a good alternative for this type of sludge when the hydrolysis, known to be the rate-limiting step of biological sludge anaerobic degradation, could be eliminated by disintegration. This investigation deals with disintegration of meat processing wastewater sludge. Microwave (MW) irradiation and combined alkaline pretreatment and MW irradiation were applied to sludge for disintegration purposes. Disintegration performance of the methods was evaluated with disintegration degree based on total and dissolved organic carbon calculations (DD(TOC)), and the solubilization of volatile solids (S(VS)) in the pretreated sludge. Optimum conditions were found to be 140 degrees C and 30 min for MW irradiation using response surface methodology (RSM) and pH = 13 for combined pretreatment. While DD(TOC) was observed as 24.6% and 54.9, S(VS) was determined as 8.54% and 42.5% for MW pretreated and combined pretreated sludge, respectively. The results clearly show that pre-conditioning of sludge with alkaline pretreatment played an important role in enhancing the disintegration efficiency of subsequent MW irradiation. Disintegration methods also affected the anaerobic biodegradability and dewaterability of sludge. An increase of 23.6% in biogas production in MW irradiated sludge was obtained, comparing to the raw sludge at the end of the 35 days of incubation. This increase was observed as 44.5% combined pretreatment application. While MW pretreatment led to a little improvement of the dewatering performance of sludge, in combined pretreatment NaOH deteriorates the sludge dewaterability.
NASA Astrophysics Data System (ADS)
Zhong, Xiao; Sun, Peide; Song, Yingqi; Wang, Ruyi; Fang, Zhiguo
2010-11-01
Based on the fully coupled activated sludge model (FCASM), the novel model Tubificidae -Fully Coupled Activated Sludge Model-hydraulic (T-FCASM-Hydro), has been developed in our previous work. T-FCASM-Hydro not only describe the interactive system between Tubificidae and functional microorganisms for the sludge reduction and nutrient removal simultaneously, but also considere the interaction between biological and hydraulic field, After calibration and validation of T-FCASM-Hydro at Zhuji Feida-hongyu Wastewater treatment plant (WWTP) in Zhejiang province, T-FCASM-Hydro was applied for determining optimal operating condition in the WWTP. Simulation results showed that nitrogen and phosphorus could be removed efficiently, and the efficiency of NH4+-N removal enhanced with increase of DO concentration. At a certain low level of DO concentration in the aerobic stage, shortcut nitrification-denitrification dominated in the process of denitrification in the novel system. However, overhigh agitation (>6 mgṡL-1) could result in the unfavorable feeding behavior of Tubificidae because of the strong flow disturbance, which might lead to low rate of sludge reduction. High sludge reduction rate and high removal rate of nitrogen and phosphorus could be obtained in the new-style oxidation ditch when DO concentration at the aerobic stage with Tubificidae was maintained at 3.6 gṡm-3.
Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo
2016-01-21
Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.
Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo
2016-01-01
Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d−1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952
Gong, Miao; Wang, Yulan; Fan, Yujie; Zhu, Wei; Zhang, Huiwen; Su, Ying
2018-02-01
The formation of polycyclic aromatic hydrocarbon is a widespread issue during the supercritical water gasification of sewage sludge, which directly reduces the gasification efficiency and restricts the technology practical application. The changes of the concentrations and forms as well as the synthesis rate of polycyclic aromatic hydrocarbons in the residues from supercritical water gasification of dewatered sewage sludge were investigated to understand influence factors and the reaction pathways. Results showed that the increase of reaction temperature during the heating period favours directly concentration of polycyclic aromatic hydrocarbon (especially higher-molecular-weight), especially when it raise above 300 °C. Lower heating and cooling rate essentially extend the total reaction time. Higher polycyclic aromatic hydrocarbon concentration and higher number of rings were generally promoted by lower heating and cooling rate, longer reaction time and higher reaction temperature. The lower-molecular-weight polycyclic aromatic hydrocarbons can be directly generated through the decomposition of aromatic-containing compounds in sewage sludge, as well as 3-ring and 4-ring polycyclic aromatic hydrocarbons can be formed by aromatization of steroids. Possible mechanisms of reaction pathways of supercritical water gasification of sewage sludge were also proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo
2016-01-01
Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.
Guo, Qia; Dai, Xiaohu
2017-11-01
With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anaerobic bioassay of methane potential of microalgal biomass
NASA Astrophysics Data System (ADS)
Yen, Hong-Wei
This study was undertaken to investigate the feasibility of using anaerobic digestion as a technique to recover solar energy embodied in excess algal biomass production harvested from Clemson University's high rate algal based Partitioned Aquaculture System (PAS) as an energy source to support PAS operations. In this study, four different organic substrates were loaded to anaerobic digesters in eight experimental trials, to ascertain the optimal combination of operational variables and effect of algal, or modified algal substrate upon methane production rate. The four substrates used in this study were: (1) a synthetic feedstock consisting of molasses and dog food, (2) a commercially obtained, readily degradable algal biomass (Spirulina ) in dry form, (3) PAS harvested and dewatered algal sludge, and (4) algal biomass blended with shredded waste paper or molasses as a carbon supplement for the adjustment of algal C/N ratio. Eight experimental trials using combinations of the four substrates were conducted in 15 liter digesters to investigate the effects of controlled digester parameters upon digester performance. Digesters operating at 20 days HRT, mesophilic digestion (35°C), and twice per day mixing at maximal loading rates produced maximal methane gas using PAS algal sludge. However, under these conditions overall methane production was less than 1000 ml CH4/l day. This low level of energy recovery from the fermentation of algal biomass (alone) is not energetically or economically favorable. Co-digestion of algal sludge and waste paper was investigated as a way to increase methane production. The data obtained from these trials suggest an optimum C/N ratio for co-digestion of algal sludge and waste paper in the range of 20--25/l. A balanced C/N ratio along with the stimulated increase in cellulase activity is suggested as likely reasons for increased methane production seen in co-digestion of algal sludge and waste paper. Yeast extract addition to anaerobic digesters was also seen to be beneficial to the process resulting in an increase in methane production. Similar performances in digesters fed Spirulina plus paper and yeast extract plus paper suggests that yeast extract served a similar function as Spirulina in anaerobic digestion. Digestion of algal sludge alone was not energetically or economically favorable. However, co-digestion of algal sludge and paper improves the methane production rate. At 4 g VS/l/day loading rate with 50% paper fraction, methane production rate at 10 days HRT was 1170 +/- 75 ml CH4/l day. A maximum methane production rate was observed at 10 days HRT with a combined paper and algal sludge loading of 5 g VS/l/day (60% paper fraction), yielding 1607 +/- 17 ml/l. (Abstract shortened by UMI.)
Lei, Li; Ni, Jinren
2014-04-15
A three-dimensional three-phase fluid model, supplemented by laboratory data, was developed to simulate the hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification processes in an oxidation ditch. The model provided detailed phase information on the liquid flow field, gas hold-up distribution and sludge sedimentation. The three-phase model described water-gas, water-sludge and gas-sludge interactions. Activated sludge was taken to be in a pseudo-solid phase, comprising an initially separated solid phase that was transported and later underwent biological reactions with the surrounding liquidmedia. Floc parameters were modified to improve the sludge viscosity, sludge density, oxygen mass transfer rate, and carbon substrate uptake due to adsorption onto the activated sludge. The validation test results were in very satisfactory agreement with laboratory data on the behavior of activated sludge in an oxidation ditch. By coupling species transport and biological process models, reasonable predictions are made of: (1) the biochemical kinetics of dissolved oxygen, chemical oxygen demand (COD) and nitrogen variation, and (2) the physical kinematics of sludge sedimentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].
Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang
2014-11-01
In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.
Evaluation of sludge management alternatives in Istanbul metropolitan area.
Cakmakci, M; Erdim, E; Kinaci, C; Akca, L
2005-01-01
The main concern of this paper was to predict the sludge quantities generated from 18 wastewater treatment plants, which were stated to be established in the "Istanbul Water Supply, Sewerage and Drainage, Sewage Treatment and Disposal Master Plan", 10 of which are in operation at present. Besides this, obtaining the required data to compare various treatment schemes was another goal of the study. Especially, the estimation of the sludge quantity in the case of enhanced primary sedimentation was of importance. Wastewater sludge management strategies were discussed in order to develop suggestions for Istanbul Metropolitan city. Within this context, the wastewater treatment facilities, mentioned in the Master Plan that had been completed by 2000, were evaluated in terms of sludge production rates, locations and technical and management aspects. Disposal alternatives of the wastewater treatment sludge were also evaluated in this study. Using of the dewatered sludge as a landfill cover material seems the best alternative usage. Up to the year of 2040, the requirement of cover material for landfills in Istanbul will be met by the dewatered sludge originated from wastewater treatment plants in the region.
Yu, Yaqin; Lu, Xiwu
2017-09-01
The microbial characteristics of granular sludge during the rapid start of an enhanced external circulating anaerobic reactor were studied to improve algae-laden water treatment efficiency. Results showed that algae laden water was effectively removed after about 35 d, and the removal rates of chemical oxygen demand (COD) and algal toxin were around 85% and 92%, respectively. Simultaneously, the gas generation rate was around 380 mL/gCOD. The microbial community structure in the granular sludge of the reactor was complicated, and dominated by coccus and filamentous bacteria. Methanosphaera , Methanolinea , Thermogymnomonas , Methanoregula , Methanomethylovorans , and Methanosaeta were the major microorganisms in the granular sludge. The activities of protease and coenzyme F 420 were high in the granular sludge. The intermittent stirring device and the reverse-flow system were further found to overcome the disadvantage of the floating and crusting of cyanobacteria inside the reactor. Meanwhile, the effect of mass transfer inside the reactor can be accelerated to help give the reactor a rapid start.
Degradation of anionic surfactants during drying of UASBR sludges on sand drying beds.
Mungray, Arvind Kumar; Kumar, Pradeep
2008-09-01
Anionic surfactant (AS) concentrations in wet up-flow anaerobic sludge blanket reactor (UASBR) sludges from five sewage treatment plants (STPs) were found to range from 4480 to 9,233 mg kg(-1)dry wt. (average 7,347 mg kg(-1)dry wt.) over a period of 18 months. After drying on sand drying beds (SDBs), AS in dried-stabilized sludges averaged 1,452 mg kg(-1)dry wt., a reduction of around 80%. The kinetics of drying followed simple first-order reduction of moisture with value of drying constant (k(d))=0.051 d(-1). Reduction of AS also followed first-order kinetics. AS degradation rate constant (k(AS)) was found to be 0.034 d(-1) and half-life of AS as 20 days. The order of rates of removal observed was k(d)>k(AS)>k(COD)>k(OM) (drying >AS degradation>COD reduction>organic matter reduction). For the three applications of dried-stabilized sludges (soil, agricultural soil, grassland), values of risk quotient (RQ) were found to be <1, indicating no risk.
Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G
2013-09-01
The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load. Copyright © 2013. Published by Elsevier Ltd.
Environmental fate and effect of biodegradable electro-spun scaffolds (biomaterial)-a case study.
Irizar, A; Amorim, M J B; Fuller, K P; Zeugolis, D I; Scott-Fordsmand, J J
2018-04-30
Poly-ε-caprolactone (PCL) based medical devices are increasingly produced and thus, their presence in the environment is likely to increase. The present study analysed the biodegradation of PCL electro-spun scaffolds (alone) and PCL electro-spun scaffolds coated with human recombinant (hR) collagen and Bovine Achilles tendon (BAT) collagen in sewage sludge and in soil. Additionally, an eco-toxicological test with the model organism Enchytraeus crypticus was performed to assess environmental hazard of the produced materials in soils. The electro-spun scaffolds were exposed to activated sludge and three different soils for various time periods (0-7-14-21-28-56-180 days); subsequently the degradation was determined by weight loss and microscopical analysis. Although no toxicity occurred in terms of Enchytraeus crypticus reproduction, our data indicate that biodegradation was dependent on the coating of the material and exposure condition. Further, only partial PCL decomposition was possible in sewage treatment plants. Collectively, these data indicate that electro-spun PCL scaffolds are transferred to amended soils.
Composting oily sludges: Characterizing microflora using randomly amplified polymorphic DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persson, A.; Quednau, M.; Ahrne, S.
1995-12-31
Laboratory-scale composts in which oily sludge was composted under mesophilic conditions with amendments such as peat, bark, and fresh or decomposed horse manure, were studied with respect to basic parameters such as oil degradation, respirometry, and bacterial numbers. Further, an attempt was made to characterize a part of the bacterial flora using randomly amplified polymorphic DNA (RAPD). The compost based on decomposed horse manure showed the greatest reduction of oil (85%). Comparison with a killed control indicated that microbial degradation actually had occurred. However, a substantial part of the oil was stabilized rather than totally broken down. Volatiles, on themore » contrary, accounted for a rather small percentage (5%) of the observed reduction. RAPD indicated that a selection had taken place and that the dominating microbial flora during the active degradation of oil were not the same as the ones dominating the different basic materials. The stabilized compost, on the other hand, had bacterial flora with similarities to the ones found in peat and bark.« less
Effect of sewage sledge and their bio-char on some soil qualities
NASA Astrophysics Data System (ADS)
Fathi, Hamed; Movahedi Naeini, Seyed Alireza; Mirzanejad, Mojan
2015-04-01
Bio char (BC) application as a soil amendment has achieved much interest and has been found that considerably improves soil nutrient status and crop yields on poor soils. However, information on the effect of BC on illitic soils in temperate climates is still insufficient. The primary objective in this study was to assess the influence of biochar on the soil physical properties, nutrient status and plant production. The result may also provide a reference for the use of biochars as a solution in agricultural waste management when sludge with considerable load of pathogens are involved. Soybean was already grown one year and will be repeated one more year with same treatments. The investigated soil properties included soil water content and mechanical resistance, pH, electrical conductivity (EC), calcium- acetate-lactate (CAL)-extractable P (PCAL) and K (KCAL), C, N, and nitrogen-supplying potential (NSP). The results show soil water content, potassium uptake and plant yield were increased. Heating sludge removed all pathogens and soybean yield was increased by 6%.
Li, Kexun; Wang, Yi; Zhang, Zhongpin; Liu, Dongfang
2014-01-01
Batch experiments were conducted to determine the effect of oxidation reduction potential (ORP) on sludge reduction in a bypass micro-aerobic sludge reduction system. The system was composed of a modified oxic-settling-anaerobic process with a sludge holding tank in the sludge recycle loop. The ORPs in the micro-aerobic tanks were set at approximately +350, -90, -150, -200 and -250 mV, by varying the length of aeration time for the tanks. The results show that lower ORP result in greater sludge volume reduction, and the sludge production was reduced by 60% at the lowest ORP. In addition, low ORP caused extracellular polymer substances dissociation and slightly reduced sludge activity. Comparing the sludge backflow characteristics of the micro-aerobic tank's ORP controlled at -250 mV with that of +350 mV, the average soluble chemical oxygen (SCOD), TN and TP increased by 7, 0.4 and 2 times, median particle diameter decreased by 8.5 μm and the specific oxygen uptake rate (SOUR) decreased by 0.0043 milligram O2 per gram suspended solids per minute. For the effluent, SCOD and TN and TP fluctuated around 30, 8.7 and 0.66 mg/L, respectively. Therefore, the effective assignment of ORP in the micro-aerobic tank can remarkably reduce sludge volume and does not affect final effluent quality.
Deng, Wenyi; Su, Yaxin
2014-07-01
Drying experiments of dewatered sewage sludge (DSS) were conducted on a agitated paddle dryer, and the effects of additive agents, i.e., CaO, pulverized coal (PC), heavy oil (HO), and dried sludge ("DS" through back mixing) on the agitated drying characteristics of DSS were investigated. The results indicated that CaO can significantly increase the drying rate of DSS. The drying rate at CaO/DSS (mass ratio)=1/100 was 135% higher than that of CaO/DSS=0. Pulverized coal has no obvious effect on drying rate, but the increase of PC/DSS can promote breaking up of sludge lump. Heavy oil was found to be slightly effective in improving the drying rate of DSS in the examined experimental range of HO/DSS=0-1/20. It is also found that HO can reduce the torque of the dryer shaft, due to its lubrication effect. Back mixing of DS was found to be effective in alleviating the unfavorable effect of the lumpy phase by improving the mixing effect of the paddle dryer. There was a marked increase of drying rate with an increase of the DS/DSS in the experimental range of DS/DSS=0-1/3. Copyright © 2014. Published by Elsevier B.V.
Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS.
Magdziarz, Aneta; Werle, Sebastian
2014-01-01
In this study, the combustion and pyrolysis processes of three sewage sludge were investigated. The sewage sludge came from three wastewater treatment plants. Proximate and ultimate analyses were performed. The thermal behaviour of studied sewage sludge was investigated by thermogravimetric analysis with mass spectrometry (TGA-MS). The samples were heated from ambient temperature to 800 °C at a constant rate 10 °C/min in air (combustion process) and argon flows (pyrolysis process). The thermal profiles presented in form of TG/DTG curves were comparable for studied sludges. All TG/DTG curves were divided into three stages. The main decomposition of sewage sludge during the combustion process took place in the range 180-580 °C with c.a. 70% mass loss. The pyrolysis process occurred in lower temperature but with less mass loss. The evolved gaseous products (H2, CH4, CO2, H2O) from the decomposition of sewage sludge were identified on-line. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aerobic granular sludge: a promising technology for decentralised wastewater treatment.
Li, Z H; Kuba, T; Kusuda, T
2006-01-01
In order to evaluate the characteristics of aerobic granular sludge, a sequencing batch reactor, feeding with synthetic wastewater at the organic loading rate of 8 kg COD/m3 d, was employed on the laboratory scale. Granules occurred in the reactor within 1 week after the inoculation from conventional flocculent sludge. Aerobic granular sludge was characterised by the outstanding settling properties and considerable contaminates removal efficiencies. The SVI30 values were in the range of 20 to 40 ml g(-1). However, the sludge volume index of short settling time (e.g. SVI10--10 min) is suggested to describe the fast settling properties of aerobic granular sludge. The potential application in the decentralised system is evaluated from the point view of footprint and high bioactivity. The occurrence of sloughing, resulting from the outgrowth of filamentous organisms, would be responsible for the instability of aerobic granules. The starvation phase should therefore be carefully controlled for the maintenance and stability of aerobic granular sludge system.
Sinha, Rajiv K; Herat, Sunil; Bharambe, Gokul; Brahambhatt, Ashish
2010-10-01
Earthworms feed readily upon sludge components, rapidly converting them into vermicompost, reduce the pathogens to safe levels and ingest the heavy metals. Volume is significantly reduced from 1 m³ of wet sludge (80% moisture) to 0.5 m³ of vermicompost (30% moisture). Earthworms have real potential both to increase the rate of aerobic decomposition and composting of organic matter and also to stabilize the organic residues in the sludge--removing the harmful pathogens (by devouring them and also by discharge of antibacterial coelomic fluid) and heavy metals (by bio-accumulation). They also mineralize the essential nutrients nitrogen, phosphorus and potassium from the sludge. It may not be possible to remove toxic substances completely, but at least change the 'chemical make-up' of the sludge to make it harmless to the soil and enable its use as a nutritive organic fertilizer. This method has been found to comply with grade A standards for sludge stabilization.
Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe
2014-09-01
To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of EPA`s new methods to quantify vector attraction of wastewater sludges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, J.B.; Bhide, V.; Smith, J.E. Jr.
1996-05-01
EPA`s 1979 and 1993 sludge regulations require that sewage sludge be reduced in vector attraction before it can be applied to the land. In the 1979 regulation, satisfactory vector attraction reduction (VAR) could be demonstrated if treatment processes reduced the volatile solids content of sludge by 38%. The 1993 regulation adds two alternative test methods for aerobic sludges for determining whether VAR has been adequate. In the first method, specific oxygen uptake rate (SOUR) of the sludge must be <1.5 mg O{sub 2}/hr/g total solids, and in the second method, the additional volatile solids reduction (AVSR) that occurs when themore » sludge is further digested for 30 days must be <15%. Experimentation with the new tests is described. Comparisons among the three methods showed that the 38% VSR requirement and the SOUR test were equivalent only near 20{degree}C. The AVSR test was more conservative than either of the other tests. 18 refs., 7 figs., 3 tabs.« less
Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf
2018-05-29
The cost associated with treatment and disposal of excess sludge produced is one of the greatest operational expenses in wastewater treatment plants. In this study, we quantify and explain greatly reduced excess sludge production in the novel glycogen accumulating organism (GAO) dominated drained biofilm system previously shown to be capable of extremely energy efficient removal of organic carbon (biological oxygen demand or BOD) from wastewater. The average excess sludge production rate was 0.05 g VSS g -1 BOD (acetate) removed, which is about 9-times lower than that of comparative studies using the same acetate based synthetic wastewater. The substantially lower sludge yield was attributed to a number of features such as the high oxygen consumption facilitated by direct oxygen uptake from air, high biomass content (21.41 g VSS L -1 of reactor), the predominance of the GAO (Candidatus competibacter) with a low growth yield and the overwhelming presence of the predatory protozoa (Tetramitus) in the biofilm. Overall, the combination of low-energy requirement for air supply (no compressed air supply) and the low excess sludge production rate, could make this novel "GAO drained biofilm" process one of the most economical ways of biological organic carbon removal from wastewater. Copyright © 2018. Published by Elsevier B.V.
Intrinsic kinetic parameters of substrate utilization by immobilized anaerobic sludge.
Zaiat, M; Vieira, L G; Foresti, E
1997-01-20
This article presents a method for evaluating the intrinsic kinetic parameters of the specific substrate utilization rate (r) equation and discusses the results obtained for anaerobic sludge-bed samples taken from a horizontal-flow anaerobic immobilized sludge (HAIS) reactor. This method utilizes a differential reactor filled with polyurethane foam matrices containing immobilized anaerobic sludge which is subjected to a range of feeding substrate flow rates. The range of liquid superficial velocities thus obtained are used for generating data of observed specific substrate utilization rates (r(obs)) under a diversity of external mass transfer resistance conditions. The r(obs) curves are then adjusted to permit their extrapolation for the condition of no external mass transfer resistance, and the values determined are used as a test for the condition of absence of limitation of internal mass transfer. The intrinsic parameters r(max), the maximum specific substrate utilization rate, and K(s), the half-velocity coefficient, are evaluated from the r values under no external mass transfer resistance and no internal mass transfer limitation. The application of such a method for anaerobic sludge immobilized in polyurethane foam particles treating a glucose substrate at 30 degrees C resulted in intrinsic r(max) and K(s), respectively, of 0.330 mg chemical oxygen demand (COD) . mg(-1) volatile suspended solids (VSS) . h(-1) and 72 mg COD . L(-1). In comparison with the values found in the literature, intrinsic r(max) is significantly high and intrinsic K(s) is relatively low. (c) 1997 John Wiley & Sons, Inc.
Fluorescence-based monitoring of tracer and substrate distribution in an UASB reactor.
Lou, S J; Tartakovsky, B; Zeng, Y; Wu, P; Guiot, S R
2006-11-01
In this work, rhodamine-related fluorescence was measured on-line at four reactor heights in order to study hydrodynamics within an upflow anaerobic sludge bed reactor. A linear dependence of the dispersion coefficient (D) on the upflow velocity was observed, while the influence of the organic loading rate (OLR) was insignificant. Furthermore, the Bodenstein number of the reactor loaded with granulated sludge was found to be position-dependent with the largest values measured at the bottom of the sludge bed. This trend was not observed in the reactor without sludge. Chemical oxygen demand (COD) and volatile fatty acid (VFA) concentrations were measured at the same reactor heights as in rhodamine tests using conventional off-line analytical methods and on-line multiwavelength fluorometry. Significant spatial COD and VFA gradients were observed at organic loading rates above 6g COD l(R)(-1)d(-1) and linear upflow velocities below 0.8m h(-1).
Leaching of heavy metals and alkylphenolic compounds from fresh and dried sewage sludge.
Milinovic, Jelena; Vidal, Miquel; Lacorte, Silvia; Rigol, Anna
2014-02-01
Reusing sewage sludge as a soil fertiliser has become a common alternative to disposal. Although this practice has a few benefits, it may contribute to the medium- and long-term contamination of the trophic chain because sewage sludge may contain heavy metals and organic contaminants. As the leaching of contaminants may depend on the sludge pre-treatment, the leaching of heavy metals (Cu, Ni, Pb, Zn and Cr) and alkylphenolic compounds (APCs) (octylphenol (OP), nonylphenol (NP), nonylphenol-mono-ethoxylate (NP1EO)) was investigated in five fresh and 40 °C dried sewage sludge samples from north-eastern Spain. FT-IR analyses and full-scan GC-MS chromatograms showed that sludge drying changed the nature of organic compounds leading to changes in their solubility. Moreover, sludge drying led to a higher relative contribution of dissolved organic carbon than the particulate organic carbon in the leachates. Leaching of Pb, Zn and Cr was below 5 % in both fresh and dried sludge samples, whereas Cu and Ni leached at rates up to 12 and 43 %, respectively, in some of the dried sludge samples. The leaching yields of OP, NP and NP1EO ranged from 1.3 to 35 % for fresh samples, but they decreased from 0.8 to 3.4 % in dried samples. The decrease in the leachability of APCs observed in dried sludge samples might be attributed to the fact that these compounds are associated with particulate organic matter, with significantly lower concentration or even absent in dried sludge than in fresh sludge samples. Therefore, it is recommended to dry the sludge before its disposal.
Electricity generation from bio-treatment of sewage sludge with microbial fuel cell.
Jiang, Junqiu; Zhao, Qingliang; Zhang, Jinna; Zhang, Guodong; Lee, Duu-Jong
2009-12-01
A two-chambered microbial fuel cell (MFC) with potassium ferricyanide as its electron acceptor was utilized to degrade excess sewage sludge and to generate electricity. Stable electrical power was produced continuously during operation for 250 h. Total chemical oxygen demand (TCOD) of sludge was reduced by 46.4% when an initial TCOD was 10,850 mg/l. The MFC power output did not significantly depend on process parameters such as substrate concentration, cathode catholyte concentration, and anodic pH. However, the MFC produced power was in close correlation with the soluble chemical oxygen demand (SCOD) of sludge. Furthermore, ultrasonic pretreatment of sludge accelerated organic matter dissolution and, hence, TCOD removal rate in the MFC was increased, but power output was insignificantly enhanced. This study demonstrates that this MFC can generate electricity from sewage sludge over a wide range of process parameters.
Upgrading the hydrolytic potential of immobilized bacterial pretreatment to boost biogas production.
Ushani, U; Kavitha, S; Johnson, M; Yeom, Ick Tae; Banu, J Rajesh
2017-01-01
In this study, surfactant dioctyl sodium sulphosuccinate (DOSS)-mediated immobilized bacterial pretreatment of waste activated sludge (WAS) was experimentally proved to be an efficient and economically feasible process for enhancing the biodegradability of WAS. The maximal floc disruption with negligible cell cleavage was achieved at surfactant dosage of 0.009 g/g SS. Results of the outcome of bacterial pretreatment of sludge biomass revealed that chemical oxygen demand (COD) solubilization for deflocculated (EPS removed-bacterially pretreated) sludge was 20 %, which was higher than that of flocculated (14 %) or control (5 %). The pretreatment was swift in deflocculated sludge with a rate constant of about 0.064 h -1 . Biochemical methane potential (BMP) assay resulted in significant methane yield at 0.24 gCOD/gCOD for deflocculated sludge. Economic assessment of the proposed method showed a net profit of about 57.39 USD/ton of sludge.
Martínez-García, C G; Olguín, M T; Fall, C
2014-08-01
Aerobic digestion batch tests were run on a sludge model that contained only two fractions, the heterotrophic biomass (XH) and its endogenous residue (XP). The objective was to describe the stabilization of the sludge and estimate the endogenous decay parameters. Modeling was performed with Aquasim, based on long-term data of volatile suspended solids and chemical oxygen demand (VSS, COD). Sensitivity analyses were carried out to determine the conditions for unique identifiability of the parameters. Importantly, it was found that the COD/VSS ratio of the endogenous residues (1.06) was significantly lower than for the active biomass fraction (1.48). The decay rate constant of the studied sludge (low bH, 0.025 d(-1)) was one-tenth that usually observed (0.2d(-1)), which has two main practical significances. Digestion time required is much more long; also the oxygen uptake rate might be <1.5 mg O₂/gTSSh (biosolids standards), without there being significant decline in the biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mäkelä, Mikko; Fraikin, Laurent; Léonard, Angélique; Benavente, Verónica; Fullana, Andrés
2016-03-15
The effects of hydrothermal treatment on the drying properties of sludge were determined. Sludge was hydrothermally treated at 180-260 °C for 0.5-5 h using NaOH and HCl as additives to influence reaction conditions. Untreated sludge and attained hydrochar samples were then dried under identical conditions with a laboratory microdryer and an X-ray microtomograph was used to follow changes in sample dimensions. The effective moisture diffusivities of sludge and hydrochar samples were determined and the effect of process conditions on respective mean diffusivities evaluated using multiple linear regression. Based on the results the drying time of untreated sludge decreased from approximately 80 min to 37-59 min for sludge hydrochar. Drying of untreated sludge was governed by the falling rate period where drying flux decreased continuously as a function of sludge moisture content due to heat and mass transfer limitations and sample shrinkage. Hydrothermal treatment increased the drying flux of sludge hydrochar and decreased the effect of internal heat and mass transfer limitations and sample shrinkage especially at higher treatment temperatures. The determined effective moisture diffusivities of sludge and hydrochar increased as a function of decreasing moisture content and the mean diffusivity of untreated sludge (8.56·10(-9) m(2) s(-1)) and sludge hydrochar (12.7-27.5·10(-9) m(2) s(-1)) were found statistically different. The attained regression model indicated that treatment temperature governed the mean diffusivity of hydrochar, as the effects of NaOH and HCl were statistically insignificant. The attained results enabled prediction of sludge drying properties through mean moisture diffusivity based on hydrothermal treatment conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Y.; Kawase, Y.
2006-07-01
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less
Marín-Benito, J M; Brown, C D; Herrero-Hernández, E; Arienzo, M; Sánchez-Martín, M J; Rodríguez-Cruz, M S
2013-10-01
Soil amendment with organic wastes is becoming a widespread management practice since it can effectively solve the problems of uncontrolled waste accumulation and improve soil quality. However, when simultaneously applied with pesticides, organic wastes can significantly modify the environmental behaviour of these compounds. This study evaluated the effect of sewage sludges (SS), grape marc (GM) and spent mushroom substrates (SMS) on the leaching of linuron, diazinon and myclobutanil in packed columns of a sandy soil with low organic matter (OM) content (<1%). Soil plus amendments had been incubated for one month (1 m) or 12 months (12 m). Data from the experimental breakthrough curves (BTCs) were fitted to the one-dimensional transport model CXTFIT 2.1. All three amendments reduced leaching of linuron and myclobutanil relative to unamended soil. SMS was the most effective in reducing leaching of these two compounds independent of whether soil was incubated for 1 m or 12 m. Soil amendments increased retardation coefficients (Rexp) by factors of 3 to 5 for linuron, 2 to 4 for diazinon and 3 to 5 for myclobutanil relative to unamended soil. Leaching of diazinon was relatively little affected by soil amendment compared to the other two compounds and both SS and SMS amendment with 1m incubation resulted in enhanced leaching of diazinon. The leaching data for linuron and myclobutanil were well described by CXTFIT (mean square error, MSE<4.9·10(-7) and MSE<7.0·10(-7), respectively) whereas those of diazinon were less well fitted (MSE<2.1·10(-6)). The BTCs for pesticides were similar in soils incubated for one month or one year, indicating that the effect of amendment on leaching persists over relatively long periods of time. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kupchishin, A. I.; Niyazov, M. N.; Taipova, B. G.; Voronova, N. A.; Khodarina, N. N.
2018-01-01
Complex experimental studies on the effect of electron irradiation on the deposition rate of active sludge in aqueous systems by the optical method have been carried out. The obtained dependences of density (ρ) on time (t) are of the same nature for different radiation sources. The experimental curves of the dependence of the active sludge density on time are satisfactorily described by an exponential model.
Habermacher, Jonathan; Benetti, Antonio Domingues; Derlon, Nicolas; Morgenroth, Eberhard
2016-07-01
One strategy for the management of excess sludge in small wastewater treatment plants (WWTPs) consists in minimizing the excess sludge production by operating the WWTP at very long solids retention times (SRTs > 30 days). A number of recent studies have suggested that sludge minimization at very long SRT results from the degradation of the unbiodegradable particulate fraction (XU) (influent unbiodegradable compounds and endogenous decay products). But the biodegradability of the unbiodegradable particulate fraction has only been evaluated during batch digestion test performed at ambient temperature with sludge fed with synthetic wastewaters. It is not clear to what extent observations made for sludge fed with synthetic influents can be transposed to sludge fed with real influent. The current study thus focused on evaluating the biodegradability of the unbiodegradable particulate fraction for sludge fed with real wastewater. Batch digestion tests (400 days, ambient temperature) were conducted with three different sludges fed with either synthetic or real influents and exposed to aerobic or intermittent aeration conditions. Our results indicate that volatile suspended solids (VSS) decreased even after complete decay of the active biomass (i.e., after 30 days of aerobic batch digestion) indicating that the unbiodegradable particulate fraction is biodegradable. However, very low degradation rates of the unbiodegradable particulate fraction were monitored after day 30 of digestion (0.7-1.7·10(-3) d(-1)). These values were in the lower range of previously published values for synthetic wastewaters (1-7.5·10(-3) d(-1)). The low values determined in our study indicate that the rate could decrease over time or that sludge composition influences the degradability of the unbiodegradable particulate fraction. But our results also demonstrate that extracellular polymeric substances (EPS) have a minor impact on the biodegradability of the unbiodegradable particulate fraction. Overall bound EPS were indeed biodegradable under all conditions and thus did not accumulate in the unbiodegradable particulate fraction. Different bound EPS pools (e.g., cation bound EPS) were associated with specific degradation behaviors. Besides improved mechanistic understanding of sludge degradation processes, our results have implications for the development of decentralized wastewater treatment technologies with on-site reduction of excess sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rapid Estimation of TPH Reduction in Oil-Contaminated Soils Using the MED Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edenborn, H.M.; Zenone, V.A.
2007-09-01
Oil-contaminated soil and sludge generated during federal well plugging activities in northwestern Pennsylvania are currently remediated on small landfarm sites in lieu of more expensive landfill disposal. Bioremediation success at these sites in the past has been gauged by the decrease in total petroleum hydrocarbon (TPH) concentrations to less than 10,000 mg/kg measured using EPA Method 418.1. We tested the “molarity of ethanol droplet” (MED) water repellency test as a rapid indicator of TPH concentration in soil at one landfarm near Bradford, PA. MED was estimated by determining the minimum ethanol concentration (0 – 6 M) required to penetrate air-driedmore » and sieved soil samples within 10 sec. TPH in soil was analyzed by rapid fluorometric analysis of methanol soil extracts, which correlated well with EPA Method 1664. Uncontaminated landfarm site soil amended with increasing concentrations of waste oil sludge showed a high correlation between MED and TPH. MED values exceeded the upper limit of 6 M as TPH estimates exceed ca. 25,000 mg/kg. MED and TPH at the land farm were sampled monthly during summer months over two years in a grid pattern that allowed spatial comparisons of site remediation effectiveness. MED and TPH decreased at a constant rate over time and remained highly correlated. Inexpensive alternatives to reagent-grade ethanol gave comparable results. The simple MED approach served as an inexpensive alternative to the routine laboratory analysis of TPH during the monitoring of oily waste bioremediation at this landfarm site.« less
Daigger, Glen T; Siczka, John S; Smith, Thomas F; Frank, David A; McCorquodale, J A
The performance characteristics of relatively shallow (3.3 and 3.7 m sidewater depth in 30.5 m diameter) activated sludge secondary clarifiers were extensively evaluated during a 2-year testing program at the City of Akron Water Reclamation Facility (WRF), Ohio, USA. Testing included hydraulic and solids loading stress tests, and measurement of sludge characteristics (zone settling velocity (ZSV), dispersed and flocculated total suspended solids), and the results were used to calibrate computational fluid dynamic (CFD) models of the various clarifiers tested. The results demonstrated that good performance could be sustained at surface overflow rates in excess of 3 m/h, as long as the clarifier influent mixed liquor suspended solids (MLSS) concentration was controlled to below critical values. The limiting solids loading rate (SLR) was significantly lower than the value predicted by conventional solids flux analysis based on the measured ZSV/MLSS relationship. CFD analysis suggested that this resulted because mixed liquor entering the clarifier was being directed into the settled sludge blanket, diluting it and also creating a 'thin' concentration sludge blanket that overlays the thicker concentration sludge blanket typically expected. These results indicate the need to determine the allowable SLR for shallow clarifiers using approaches other than traditional solids flux analysis. A combination of actual testing and CFD analyses are demonstrated here to be effective in doing so.
NASA Astrophysics Data System (ADS)
Yang, Lan; Wei, Jie; Zhang, Yumei; Wang, Jianli; Wang, Dongtian
2014-06-01
Acid coagulant-recovered drinking waterworks sludge residual (DWSR) is a waste product from drinking waterworks sludge (DWS) treatment with acid for coagulant recovery. In this study, we evaluated DWSR as a potential phosphorus (P) removing material in wastewater treatment by conducting a series of batch and semi-continuous tests. Batch tests were carried out to study the effects of pH, initial concentration, and sludge dose on P removal. Batch test results showed that the P removal efficiency of DWSR was highly dependent on pH. Calcinated DWSR (C-DWSR) performed better in P removal than DWSR due to its higher pH. At an optimum initial pH value of 5-6 and a sludge dose of 10 g/L, the P removal rates of DWSR and DWS decreased from 99% and 93% to 84% and 14%, respectively, and the specific P uptake of DWSR and DWS increased from 0.19 and 0.19 mg P/g to 33.60 and 5.72 mg P/g, respectively, when the initial concentration was increased from 2 to 400 mg/L. The effective minimum sludge doses of DWSR and DWS were 0.5 g/L and 10 g/L, respectively, when the P removal rates of 90% were obtained at an initial concentration of 10 mg/L. Results from semi-continuous test indicated that P removal rates over 99% were quickly achieved for both synthetic and actual wastewater (lake water and domestic sewage). These rates could be maintained over a certain time under a certain operational conditions including sludge dose, feed flow, and initial concentration. The physicochemical properties analysis results showed that the contents of aluminum (Al) and iron (Fe) in DWSR were reduced by 50% and 70%, respectively, compared with DWS. The insoluble Al and Fe hydroxide in DWS converted into soluble Al and Fe in DWSR. Metal leaching test results revealed that little soluble Al and Fe remained in effluent when DWSR was used for P removal. We deduced that chemical precipitation might be the major action for P removal by DWSR and that adsorption played only a marginal role.