Uggetti, Enrica; Llorens, Esther; Pedescoll, Anna; Ferrer, Ivet; Castellnou, Roger; García, Joan
2009-09-01
Optimization of sludge management can help reducing sludge handling costs in wastewater treatment plants. Sludge drying reed beds appear as a new and alternative technology which has low energy requirements, reduced operating and maintenance costs, and causes little environmental impact. The objective of this work was to evaluate the efficiency of three full-scale drying reed beds in terms of sludge dewatering, stabilization and hygienisation. Samples of influent sludge and sludge accumulated in the reed beds were analysed for pH, Electrical Conductivity, Total Solids (TS), Volatile Solids (VS), Chemical Oxygen Demand, Biochemical Oxygen Demand, nutrients (Total Kjeldahl Nitrogen (TKN) and Total Phosphorus (TP)), heavy metals and faecal bacteria indicators (Escherichiacoli and Salmonella spp.). Lixiviate samples were also collected. There was a systematic increase in the TS concentration from 1-3% in the influent to 20-30% in the beds, which fits in the range obtained with conventional dewatering technologies. Progressive organic matter removal and sludge stabilization in the beds was also observed (VS concentration decreased from 52-67% TS in the influent to 31-49% TS in the beds). Concentration of nutrients of the sludge accumulated in the beds was quite low (TKN 2-7% TS and TP 0.04-0.7% TS), and heavy metals remained below law threshold concentrations. Salmonella spp. was not detected in any of the samples, while E. coli concentration was generally lower than 460MPN/g in the sludge accumulated in the beds. The studied systems demonstrated a good efficiency for sludge dewatering and stabilization in the context of small remote wastewater treatment plants.
Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin
2014-12-01
An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.
Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.
Yu, Yong-Ho; Chung, Jinwook
2015-01-01
This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.
[Comparison of PAHs distribution in stabilized sludge by sludge drying bed and reed bed].
Cui, Yu-Bo; Sun, Hong-Jie; Ran, Chun-Qiu; Li, Jin-Feng; Xie, Yao
2013-03-01
The difference in the removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) in planted and unplanted sludge drying bed was investigated. Pilot-scale sludge drying bed and reed bed had the same size of 3.0 m x 1.0 m x 1.3 m (L x W x H), and the bed height consisted of a 65 cm media layer and a 65 cm super height. Both beds had a ventilation pipe which was mounted on the drainage pipes. The experiment lasted for three years, and the first two years was the sludge loading period, and the third year was the natural stabilization period. In the first two years, a total thickness of 8.4 m of sludge was loaded and the average sludge loading rate was 41.3 kg x (m2 x a)(-1). After the three-year stabilization, the contents of the sixteen PAHs decreased with time in both the sludge drying bed and the reed bed. The total PAHs contents in the surface, middle and bottom sludge layers in the sludge drying bed were 4.161, 3.543 and 3.118 mg x kg(-1) (DW), corresponding to 26.91%, 37.77% and 45.23% of removal; and the values in the reed bed were 2.722, 1.648 and 1.218 mg x kg(-1) (DW), corresponding to 52.18%, 71.05% and 78.60% of removal. The average PAHs removal in the reed bed was 29.86% higher than that in the sludge drying bed. In the stabilized sludge, the removal of low-molecular-weight PAHs predominated. The results suggested that reed played a positive role in the removal of PAHs.
Organic matter and heavy metals content modeling in sewage sludge treated with reed bed system
NASA Astrophysics Data System (ADS)
Boruszko, Dariusz; Dąbrowski, Wojciech; Malinowski, Paweł
2017-11-01
The long process of sludge stabilization (7-15 years) remarkably reduces the organic matter content and causes the process of sludge humifaction. This paper presents the results of using low-cost methods of sludge treatment in the wastewater treatment plant located in Zambrow, Podlaskie Province. The results of studies on the organic matter and heavy metals content in sewage sludge after treatment in a reed bed system are presented. The aim of the research was to evaluate and model organic matter and heavy metals concentrations during sewage stabilization in reed bed lagoons. The lowest concentration, below 1.3 mg/kg DM of the examined seven heavy metals was mercury (Hg). The highest concentration, exceeding 1300 mg/kg DM was zinc (Zn). The obtained results for the heavy metals in sewage sludge from the reed bed lagoons in Zambrow show that the average content of the analyzed heavy metals is approximately 1620 mg/kg DM. The results of the study demonstrate a high efficiency of low-cost methods used in Zambrów WWTP in terms of the quality of the processed sludge. Sewage sludge from the lowest layer of the reed lagoon (12-14 years of dewatering and transformation) is characterized by the lowest organic matter and heavy metals content. The higher a sediment layer lies, i.e. the shorter the time of processing, the higher is the heavy metals content. This indicates a great role of reeds in the accumulation of these compounds.
Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin
2009-08-15
Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.
Gustavsson, Lillemor; Hollert, Henner; Jonsson, Sofie; van Bavel, Bert; Engwall, Magnus
2007-05-01
Sweden has prohibited the deposition of organic waste since January, 2005. Since 1 million tons of sludge is produced every year in Sweden and the capacity for incineration does not fill the demands, other methods of sludge management have to be introduced to a larger degree. One common method in the USA and parts of Europe is the use of wetlands to treat wastewater and sewage sludge. The capacity of reed beds to affect the toxicity of a complex mixture of nitroaromatics in sludge, however, is not fully elucidated. In this study, an industrial sludge containing explosives and pharmaceutical residues was therefore treated in artificial reed beds and the change in toxicity was studied. Nitroaromatic compounds, which are the main ingredients of many pharmaceuticals and explosives, are well known to cause cytotoxicity and genotoxicity. Recently performed studies have also showed that embryos of zebrafish (Danio rerio) are sensitive to nitroaromatic compounds. Therefore, we tested the sludge passing through constructed wetlands in order to detect any changes in levels of embryotoxicity, genotoxicity and dioxin-like activity (AhR-agonists). We also compared unplanted and planted systems in order to examine the impact of the root system on the fate of the toxicants. An industrial sludge containing a complex mixture of nitroaromatics was added daily to small-scale constructed wetlands (vertical flow), both unplanted and planted with Phragmites australis. Sludge with an average dry weight of 1.25%, was added with an average hydraulic loading rate of 1.2 L/day. Outgoing water was collected daily and stored at -20 degrees C. The artificial wetland sediment was Soxhlet extracted, followed by clean-up with multi-layer silica, or extracted by ultrasonic treatment, yielding one organic extract and one water extract of the same sample. Genotoxicity of the extracts was measured according to the ISO protocol for the umu-C genotoxicity assay (ISO/TC 147/SC 5/ WG9 N8), using Salmonella typhimurium TA1535/pSK1002 as test organism. Embryotoxicity and teratogenicity were studied using the fish egg assay with zebrafish (Danio rerio) and the dioxin-like activity was measured using the DR-CALUX assay. Chemical analyses of nitroaromatic compounds were performed using Solid Phase Micro Extraction (SPME) and GC-MS. Organic extracts of the bed material showed toxic potential in all three toxicity tests after two years of sludge loading. There was a difference between the planted and the unplanted beds, where the toxicity of organic extracts overall was higher in the bed material from the planted beds. The higher toxicity of the planted beds could have been caused by the higher levels of total carbon in the planted beds, which binds organic toxicants, and by enrichment caused by lower volumes of outgoing water from the planted beds. Developmental disorders were observed in zebrafish exposed directly in contact to bed material from unplanted beds, but not in fish exposed to bed material from planted beds. Hatching rates were slightly lower in zebrafish exposed to outgoing water from unplanted beds than in embryos exposed to outgoing water from planted beds. Genotoxicity in the outgoing water was below detection limit for both planted and unplanted beds. Most of the added toxicants via the sludge were unaccounted for in the outgoing water, suggesting that the beds had toxicant removal potential, although the mechanisms behind this remain unknown. During the experimental period, the beds received a sludge volume (dry weight) of around three times their own volume. In spite of this, the toxicity in the bed material was lower than in the sludge. Thus, the beds were probably able to actually decrease the toxicity of the added, sludge-associated toxicants. When testing the acetone extracts of the bed material, the planted bed showed a higher toxicity than the unplanted beds in all three toxicity tests. The toxicity of water extracts from the unplanted beds, detected by the fish egg assay, were higher than the water extracts from the planted beds. No genotoxicity was detected in outgoing water from either planted or unplanted beds. All this together indicates that the planted reed beds retained semi-lipophilic acetone-soluble toxic compounds from the sludge better than the unplanted beds, which tended to leak out more of the water soluble toxic compounds in the outgoing water. The compounds identified by SPME/GC in the outgoing water were not in sufficient concentrations to have caused induction in the genotoxicity test. This study has pointed out the benefits of using constructed wetlands receiving an industrial sludge containing a complex mixture of nitroaromatics to reduce toxicity in the outgoing water. The water from planted, constructed wetlands could therefore be directed to a recipient without further cleaning. The bed material should be investigated over a longer period of time in order to evaluate potential accumulation and leakage prior to proper usage or storage. The plants should be investigated in order to examine uptake and possible release when the plant biomass is degraded.
Boltz, Joshua P; Johnson, Bruce R; Daigger, Glen T; Sandino, Julian; Elenter, Deborah
2009-06-01
A steady-state model presented by Boltz, Johnson, Daigger, and Sandino (2009) describing integrated fixed-film activated sludge (IFAS) and moving-bed biofilm reactor (MBBR) systems has been demonstrated to simulate, with reasonable accuracy, four wastewater treatment configurations with published operational data. Conditions simulated include combined carbon oxidation and nitrification (both IFAS and MBBR), tertiary nitrification MBBR, and post denitrification IFAS with methanol addition as the external carbon source. Simulation results illustrate that the IFAS/MBBR model is sufficiently accurate for describing ammonia-nitrogen reduction, nitrate/nitrite-nitrogen reduction and production, biofilm and suspended biomass distribution, and sludge production.
A super high-rate sulfidogenic system for saline sewage treatment.
Tsui, To-Hung; Chen, Lin; Hao, Tianwei; Chen, Guang-Hao
2016-11-01
This study proposes a novel approach to resolve the challenging issue of sludge bed clogging in a granular sulfate-reducing upflow sludge bed (GSRUSB) reactor by means of introducing intermittent gas sparging to advance it into a super high-rate anaerobic bioreactor. Over a 196-day lab-scale trial, the GSRUSB system was operated from nominal hydraulic retention time of 4-hr to 40-min and achieved the highest organic loading rate of 13.31 kg COD/m 3 ·day which is substantially greater than the typical loading of 2.0-3.5 kg COD/m 3 ·day in a conventional upflow anaerobic sludge bed reactor treating dilute organic strength wastewater. The average organic removal efficiency and total dissolved sulfide of this system were 90 ± 4.2% and 158 ± 28 mg S/L, while organics residual in the effluent was 34 ± 14 mg COD/L. The control stage (without gas sparging) revealed that the sludge bed clogging happened concomitantly with the significant drop in extracellular polymeric substance content of granular sludge, through relevant chemical measurements and confocal laser scanning microscopy analyses. On the other hand, compared with increasing the effluent recirculation ratio (from 1.4 to 5), the three-dimensional computational fluid dynamics modeling in combination with energy dissipation analysis demonstrated that the gas sparging (at a superficial gas velocity of 0.8 m s -1 ) can create a 23 times higher liquid shear as well as enhanced particle attrition. Overall, this study not only developed a super high-rate anaerobic bioreactor for saline sewage treatment, but also shed light on the role of intermittent gas sparging in control of sludge bed clogging for anaerobic bioreactors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characteristics of oily sludge combustion in circulating fluidized beds.
Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo
2009-10-15
Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles.
Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.
Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte
2017-11-01
Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .
Qiao, Sen; Kawakubo, Yuki; Koyama, Toichiro; Furukawa, Kenji
2008-11-01
This study evaluated performance of swim-bed (SB) reactors packed with a novel acrylic fiber carrier (BF) and swim-bed activated sludge (SBAS) reactor for partial nitritation of anaerobic sludge digester liquor from a municipal wastewater treatment plant. Comparison of characteristics of sludge obtained from both the reactors was also made. The average conversion rates of ammonium to nitrite were 52.3% and 40.0% under relatively high nitrogen loading rates over 3.0 kg-N/m(3)/d, respectively in two reactors. The average BOD(5) removal efficiencies were 74.3% and 64.4%, respectively in the two reactors. The size of the sludge pellets taken from SB and SBAS reactors was found to be approximately three times (229 mum versus 88 mum) of that of the seed sludge. This sludge also had relatively high extracellular proteins levels indicating better sludge settling capability as compared to the sludge taken from SBAS reactor. Although the effluent nitrite/ammonium ratios had fluctuated in both reactor in some extent, the low dissolved oxygen concentration (average of 2.5 versus 0.35 mg/l), low suspended solids (average of 33.3 versus 33.5 mg/l), and about 50% ammonium conversion to nitrite demonstrated the application potential of anammox process for nitrogen removal.
Evaluation of sludge from paper recycling as bedding material for broilers.
Villagrá, A; Olivas, I; Benitez, V; Lainez, M
2011-05-01
Several materials have been used as bedding substrates in broiler production. In this work, the sludge from paper recycling was tested for its potential use as litter material and was compared with wood shavings. Moisture content, apparent density, and water-holding capacity were measured and characterized in both materials. Later, 192 male broiler chickens were distributed among 16 experimental pens, 8 of which contained wood shavings as bedding material and 8 of which contained the sludge. Growth rate, consumption, tonic immobility, gait score, breast lesions, foot pad dermatitis, hock burn, tibial dyschondroplasia, and metatarsal thickness were determined in the birds. Although the moisture content of the sludge was high, it decreased strongly after 7 d of drying, reaching lower values than those of wood shavings. In general, few differences were found between the materials in terms of bird performance and welfare and only the incidence of hock burn was higher in the sludge than in the wood shavings. Although further research is needed, sludge from paper recycling is a possible alternative to traditional bedding materials because it achieves most of the requirements for broiler bedding materials and does not show negative effects on the birds.
Grand Forks - East Grand Forks Urban Water Resources Study. Wastewater Management Appendix.
1981-07-01
SLUIGES FROM AEROBIC DIGESTION . 2. LOADING RATE OF 20 LB/FT 2/YR APPLICABLE TO BIOLOGICAL SLUDGES FROM ANAEROBIC DIGESTION. 3. EXPECTED PERFORMANCE...plant size as follows: Sludge Handling Facilities Flow Range Biological Sludge Lime Sludge Flow <_ 3 MCD Flotation thickening, Gravity thicken & aerobic ... digestion , & drying beds. drying beds. 3 MGD < Mot; < 10 MGD Flotation thickening, Gravity thicken & anaerobic digestion, & vacuum filter. vacuum
Yang, Yao Bin; Sharifi, Vida; Swithenbank, Jim
2008-11-01
Fluidised bed combustor (FBC) is one of the key technologies for sewage sludge incineration. In this paper, a mathematical model is developed for the simulation of a large-scale sewage sludge incineration plant. The model assumes the bed consisting of a fast-gas phase, an emulsion phase and a fuel particle phase with specific consideration for thermally-thick fuel particles. The model further improves over previous works by taking into account throughflow inside the bubbles as well as the floating and random movement of the fuel particles inside the bed. Validation against both previous lab-scale experiments and operational data of a large-scale industrial plant was made. Calculation results indicate that combustion split between the bed and the freeboard can range from 60/40 to 90/10 depending on the fuel particle distribution across the bed height under the specific conditions. The bed performance is heavily affected by the variation in sludge moisture level. The response time to variation in feeding rate is different for different parameters, from 6 min for outlet H2O, 10 min for O2, to 34 min for bed temperature.
Devolatilization of oil sludge in a lab-scale bubbling fluidized bed.
Liu, Jianguo; Jiang, Xiumin; Han, Xiangxin
2011-01-30
Devolatilization of oil sludge pellets was investigated in nitrogen and air atmosphere in a lab-scale bubbling fluidized bed (BFB). Devolatilization times were measured by the degree of completion of the evolution of the volatiles for individual oil sludge pellets in the 5-15 mm diameter range. The influences of pellet size, bed temperature and superficial fluidization velocity on devolatilization time were evaluated. The variation of devolatilization time with particle diameter was expressed by the correlation, τ(d) = Ad(p)(N). The devolatilization time to pellet diameter curve shows nearly a linear increase in nitrogen, whereas an exponential increase in air. No noticeable effect of superficial fluidization velocity on devolatilization time in air atmosphere was observed. The behavior of the sludge pellets in the BFB was also focused during combustion experiments, primary fragmentation (a micro-explosive combustion phenomenon) was observed for bigger pellets (>10mm) at high bed temperatures (>700 °C), which occurred towards the end of combustion and remarkably reduce the devolatilization time of the oil sludge pellet. The size analysis of bed materials and fly ash showed that entire ash particle was entrained or elutriated out of the BFB furnace due to the fragile structure of oil sludge ash particles. Copyright © 2010 Elsevier B.V. All rights reserved.
Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler.
Tsai, Meng-Yuan; Wu, Keng-Tung; Huang, Chin-Cheng; Lee, Hom-Ti
2002-01-01
Co-firing of coal and paper mill sludge was conducted in a 103 MWth circulating fluidized bed boiler to investigate the effect of the sludge feeding rate on emissions of SOx, NOx, and CO. The preliminary results show that emissions of SOx and Nx decrease with increasing sludge feeding rate, but CO shows the reverse tendency due to the decrease in combustion temperature caused by a large amount of moisture in the sludge. All emissions met the local environmental requirements. The combustion ashes could be recycled as feed materials in the cement manufacturing process.
Phyto-dewatering of sewage sludge using Panicum repens L.
El-Gendy, A S; El-Kassas, H I; Razek, T M A; Abdel-Latif, H
2017-04-01
Experiments in the field environment have been conducted to study the growth of Panicum repens L., an aquatic plant, in the sewage sludge matrix. The experiments were also carried out to investigate the ability of this plant to dewater sewage sludge to increase the capacity of conventional drying beds. In addition, the ability of Panicum repens L. to reduce the sludge contents of certain elements (copper (Cu), Iron (Fe), Sodium (Na), lead (Pb), and Zinc (Zn)) was also investigated. All experiments were carried out in batch reactors. Different plant coverage densities were tested (0.00 to 27.3 kg/m 2 ). The liquid sewage sludge was collected from a wastewater treatment plant in Helwan city, Cairo Governorate, Egypt. The collected sludge represents a mixture of the primary sludge and waste activated sludge before discharging into drying beds.
Calderón-Vallejo, Luisa Fernanda; Andrade, Cynthia Franco; Manjate, Elias Sete; Madera-Parra, Carlos Arturo; von Sperling, Marcos
2015-01-01
This study investigated the performance of sludge drying reed beds (SDRB) at full- and pilot-scale treating sludge from septic tanks in the city of Belo Horizonte, Brazil. The treatment units, planted with Cynodon spp., were based on an adaptation of the first-stage of the French vertical-flow constructed wetland, originally developed for treating sewage. Two different operational phases were investigated; in the first one, the full-scale unit was used together with six pilot-scale columns in order to test different feeding strategies. For the second phase, only the full-scale unit was used, including a recirculation of the filtered effluent (percolate) to one of the units of the French vertical wetland. Sludge application was done once a week emptying a full truck, during 25 weeks. The sludge was predominantly diluted, leading to low solids loading rates (median values of 18 kgTS m(-2) year(-1)). Chemical oxygen demand removal efficiency in the full-scale unit was reasonable (median of 71%), but the total solids removal was only moderate (median of 44%) in the full-scale unit without recirculation. Recirculation did not bring substantial improvements in the overall performance. The other loading conditions implemented in the pilot columns also did not show statistically different performances.
Non-slag co-gasification of biomass and coal in entrained-bed furnace
NASA Astrophysics Data System (ADS)
Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke
2018-02-01
Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a thermogravimetric analysis. It was revealed that co-gasification rate of sludge and coal chars was influenced negatively due to high ash content in sludge.
NASA Astrophysics Data System (ADS)
Murakami, Takahiro; Suzuki, Yoshizo; Nagasawa, Hidekazu; Yamamoto, Takafumi; Koseki, Takami; Hirose, Hitoshi; Ochi, Shuichi
An epoch-making incineration plant, which is equipped with a pressurized fluidized-bed combustor coupled to a turbocharger, for the recovery of the energy contained in sewage sludge is proposed. This plant has three main advantages. (1) A pressure vessel is unnecessary because the maximum operating pressure is 0.3 MPa (absolute pressure). The material cost for plant construction can be reduced. (2) CO2 emissions originating from power generation can be decreased because the FDF (Forced Draft Fan) and the IDF (Induced Draft Fan) are omitted. (3) Steam in the flue gas becomes a working fluid of the turbocharger, so that in addition to the combustion air, the surplus air is also generable. Therefore, this proposed plant will not only save energy but also the generate energy. The objective of this study is to elucidate the fundamental combustion characteristics of the sewage sludge using a lab-scale pressurized fluidized bed combustor (PFBC). The tested fuels are de-watered sludge and sawdust. The temperature distribution in the furnace and N2O emissions in the flue gas are experimentally clarified. As the results, for sludge only combustion, the temperature in the sand bed decreases by drying and pyrolysis, and the pyrolysis gas burns in the freeboard so that the temperature rises. On the other hand, the residual char of sawdust after pyrolysis burns stably in the sand bed for the co-firing of sludge and sawdust. Thus the temperature of the co-firing is considerably higher than that of the sludge only combustion. N2O emissions decreases with increasing freeboard temperature, and are controlled by the temperature for all experimental conditions. These data can be utilize to operation the demonstration plant.
Kim, Boram; Bel, Thomas; Bourdoncle, Pascal; Dimare, Jocelyne; Troesch, Stéphane; Molle, Pascal
2018-01-01
Sustainable treatment and management of fecal sludge in rural areas require adapted solutions. Rustic and simple operating processes such as sludge treatment reed beds (STRB) have been increasingly considered for this purpose. The biggest full scale (2,600 m 2 of STRB) septage treatment unit in France had been built in Nègrepelisse with the final objectives of reusing treated sludge and leachates for agriculture spreading and tree irrigation, respectively. The aim of this investigation was to validate the treatment chain of this installation. The obtained field data showed firstly that the overall removal efficiencies of STRB were satisfactory and stable. Removal rates higher than 98% for chemical oxygen demand and suspended solids and a 95% for Kjeldahl nitrogen represented so far a beneficial septage treatment by STRB. The highlighted necessity of a suitable complementary leachate treatment (before tree irrigation) justified the presence of the second stage of vertical flow constructed wetland. The sludge deposit drying and mineralization efficiencies were on the right track. According to hydrotextural diagram analysis, surface deposit was however found to have high deformability probably due to the youth of the installation. An in-depth understanding of STRB system needs continuous long-term studies.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... than 3 percent. (b) The owner or operator of any multiple hearth, fluidized bed, or electric sludge... over each 1-hour incinerator operating period. (3) Temperatures of every hearth in multiple hearth...
Performance Evaluation of Existing Wedgewater and Vacuum-Assisted Bed Dewatering Systems
1992-01-01
prior to dewatering by the wedgewater method. Of the 20 satisfied users, 11 preferred aerobic digestion , two employed anaerobic digestion, and seven...did not further process their sludge. Of the seven dissatisfied users, four used aerobic digestion and three employed anaerobic digestion. A meelic...queried, 11 employed aerobic digestion , two employed anaerobic digestion, and three did not process their sludge. Eight dissatisfied users employed
Deep Sludge Gas Release Event Analytical Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sams, Terry L.
2013-08-15
Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environmentmore » from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this technical report is to (1) present and discuss current understandings of gas retention and release mechanisms for deep sludge in U.S. Department of Energy (DOE) complex waste storage tanks; and (2) to identify viable methods/criteria for demonstrating safety relative to deep sludge gas release events (DSGRE) in the near term to support the Hanford C-Farm retrieval mission. A secondary purpose is to identify viable methods/criteria for demonstrating safety relative to DSGREs in the longer term to support the mission to retrieve waste from the Hanford Tank Farms and deliver it to the Waste Treatment and Immobilization Plant (WTP). The potential DSGRE issue resulted in the declaration of a positive Unreviewed Safety Question (USQ). C-Farm retrievals are currently proceeding under a Justification for Continued Operation (JCO) that only allows tanks 241-AN-101 and 241-AN-106 sludge levels of 192 inches and 195 inches, respectively. C-Farm retrievals need deeper sludge levels (approximately 310 inches in 241-AN-101 and approximately 250 inches in 241-AN-106). This effort is to provide analytical data and justification to continue retrievals in a safe and efficient manner.« less
Feasibility Study of the Geotextile Waste Filtration Unit.
2000-02-10
Treatment Module 3-32 Figure 3-20. THE SCHEMATIC OF THE MOVING BED BIOFILM REACTOR ( MBBR ) 3൪ Figure 4-1. The Original Distributed Concept for WFUs...Moving Bed Biofilm Reactor ( MBBR ) process appears to be one of the most feasible processes available to meet Force Provider liquid waste stream...Moving Bed Biofilm Reactor ( MBBR ) process was then examined.31 In this system, both activated sludge and fixed-film processes occur in a bioreactor
Chen, Xijuan; Pauly, Udo; Rehfus, Stefan; Bester, Kai
2009-10-15
Sludge reed beds have been used for dewatering (draining and evapotranspiration) and mineralisation of sludge in Europe since 1988. Although reed beds are considered as a low cost and low contamination method in reducing volume, breaking down organic matter and increasing the density of sludge, it is not yet clear whether this enhanced biological treatment is suitable for degradation of organic micro-pollutants such as personal care products. Within this project the effect of biological sludge treatment in a reed bed on reducing the concentrations of the fragrances HHCB, AHTN, OTNE was studied as on the bactericide Triclosan. Additionally, the capacity of different macrophytes species to affect the treatment process was examined. Three different macrophyte species were compared: bulrush (Typha latifolia), reed (Phragmites australis) and reed canary grass (Phalaris arundinacea). They were planted into containers (lysimeters) with a size of 1 m x 1 m x 1 m which were filled with 20 cm gravel at the bottom and 50 cm sludge on top, into which the macrophytes were planted. During the twelve months experiment reduction of 20-30% for HHCB and AHTN, 70% for Triclosan and 70% for OTNE were determined under environmental conditions. The reduction is most likely due to degradation, since volatilization, uptake into plants and leaching are insignificant. No difference between the containers with different macrophyte species or the unplanted containers was observed. Considering the usual operation time of 10 years for reed beds, an assessment was made for the whole life time.
CFD Modelling Applied to the Co-Combustion of Paper Sludge and Coal in a 130 t/h CFB Boiler
NASA Astrophysics Data System (ADS)
Yu, Z. S.; Ma, X. Q.; Lai, Z. Y.; Xiao, H. M.
Three-dimensional mathematical model has been developed as a tool for co-combustion of paper sludge and coal in a 130 tJh Circulating Fluidized Bed (CFB) boiler. Mathematical methods had been used based on a commercial software FLUENT for combustion. The predicted results of CFB furnace show that the co-combustion of paper sludge/coal is initially intensively at the bottom of bed; the temperature reaches its maximum in the dense-phase zone, around l400K. It indicates that paper sludge spout into furnace from the recycle inlet can increase the furnace maximum temperature (l396.3K), area-weighted average temperature (l109.6K) and the furnace gas outlet area-weighted average temperature(996.8K).The mathematical modeling also predicts that 15 mass% paper sludge co-combustion is the highest temperature at the flue gas outlet, it is 1000.8K. Moreover, it is proved that mathematical models can serve as a tool for detailed analysis of co-combustion of paper sludge and coal processes in a circulating fluidized bed furnace when in view of its convenience. The results gained from numerical simulation show that paper sludge enter into furnace from the recycle inlet excelled than mixing with coal and at the underside of phase interface.
Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Müller-Stöver, Dorette Sophie
2017-08-01
The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Drying Beds. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.
ERIC Educational Resources Information Center
Klopping, Paul H.
Provided in this lesson is introductory material on sand and surfaced sludge drying beds. Typical construction and operation, proper maintenance, and safety procedures are considered. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a description of the lesson, estimated presentation time,…
Surplus activated sludge dewatering in pilot-scale sludge drying reed beds.
Stefanakis, A I; Akratos, C S; Melidis, P; Tsihrintzis, V A
2009-12-30
A pilot-scale experiment on dewatering of surplus activated sludge (SAS) is presented, where two pilot-scale vertical flow, sludge drying reed beds (SDRBs), planted with Phragmites australis are used. The bottom of the beds is filled with cobbles, connected to the atmosphere through perforated PVC ventilation tubes, in order to achieve oxygen diffusion through the overlying porous medium that is colonized by roots and an abundant nitrifying biomass. Two layers of gravel, of decreasing size from bottom to top, make the drainage layer where the reeds are planted. The two beds were fed according to the following cycle: one week feeding with SAS at rates one 30 kg/m(2)/year and the other 75 kg/m(2)/year, and resting for three weeks. The results show that planted SDRBs can effectively dewater SAS from domestic sewage, the produced residual sludge presents a high dry weight content, the degree of volume reduction depends upon the initial SAS concentration and can be of the order of 90%, and decomposition of organic matter and high levels of mineralization can be achieved. Furthermore, the percolating water is not septic. The fertilizer value of the treated SAS, which contains no added chemicals, is comparable to that of SAS treated by other methods.
Connelly, Stephanie; Shin, Seung G.; Dillon, Robert J.; Ijaz, Umer Z.; Quince, Christopher; Sloan, William T.; Collins, Gavin
2017-01-01
Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB—a one-dimensional and a three- dimensional scale-down of a full-scale design—were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory-scale bioreactors was associated with increased richness in the underlying microbial community at species (OTU) level and improved overall performance. PMID:28507535
Collard, Marie; Teychené, Benoit; Lemée, Laurent
2017-12-01
Drying process aims at minimising the volume of wastewater sludge (WWS) before disposal, however it can impact sludge characteristics. Due to its high content in organic matter (OM) and lipids, sludge are mainly valorised by land farming but can also be considered as a feedstock for biodiesel production. As sludge composition is a major parameter for the choice of disposal techniques, the objective of this study was to determine the influence of the drying process. To reach this goal, three sludges obtained from solar, reed beds and thermal drying processes were investigated at the global and molecular scales. Before the drying step the sludges presented similar physico-chemical (OM content, elemental analysis, pH, infrared spectra) characteristics and lipid contents. A strong influence of the drying process on lipids and humic-like substances contents was observed through OM fractionation. Thermochemolysis-GCMS of raw sludge and lipids revealed similar molecular content mainly constituted with steroids and fatty acids. Molecular changes were noticeable for thermal drying through differences in branched to linear fatty acids ratio. Finally the thermal drying induced a weakening of OM whereas the solar drying led to a complexification. These findings show that smooth drying processes such as solar or reed-beds are preferable for amendment production whereas thermal process leads to pellets with a high lipid content which could be considered for fuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tang, Kai; Ooi, Gordon T H; Litty, Klaus; Sundmark, Kim; Kaarsholm, Kamilla M S; Sund, Christina; Kragelund, Caroline; Christensson, Magnus; Bester, Kai; Andersen, Henrik R
2017-07-01
Previous studies have demonstrated that aerobic moving bed biofilm reactors (MBBRs) remove pharmaceuticals better than activated sludge. Thus we used a MBBR system to polish the effluent of an activated sludge wastewater treatment plant. To overcome that effluent contains insufficient organic matter to sustain enough biomass, the biofilm was intermittently fed with raw wastewater. The capacity of pharmaceutical degradation was investigated by spiking pharmaceuticals. Actual removal during treatment was assessed by sampling the inlets and outlets of reactors. The removal of the majority of pharmaceuticals was enhanced through the intermittent feeding of the MBBR. First-order rate constants for pharmaceutical removal, normalised to biomass, were significantly higher compared to other studies on activated sludge and suspended biofilms, especially for diclofenac, metoprolol and atenolol. Due to the intermittently feeding, degradation of diclofenac occurred with a half-life of only 2.1h and was thus much faster than any hitherto described wastewater bioreactor treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gaseous emissions from sewage sludge combustion in a moving bed combustor.
Batistella, Luciane; Silva, Valdemar; Suzin, Renato C; Virmond, Elaine; Althoff, Chrtistine A; Moreira, Regina F P M; José, Humberto J
2015-12-01
Substantial increase in sewage sludge generation in recent years requires suitable destination for this residue. This study evaluated the gaseous emissions generated during combustion of an aerobic sewage sludge in a pilot scale moving bed reactor. To utilize the heat generated during combustion, the exhaust gas was applied to the raw sludge drying process. The gaseous emissions were analyzed both after the combustion and drying steps. The results of the sewage sludge characterization showed the energy potential of this residue (LHV equal to 14.5 MJ kg(-1), db) and low concentration of metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). The concentration of CO, NOx, BTEX (benzene, toluene, ethylbenzene and xylenes) emitted from the sludge combustion process were lower than the legal limits. The overall sludge combustion and drying process showed low emissions of PCDD/PCDF (0.42 ng I-TEQ N m(-3)). BTEX and PAH emissions were not detected. Even with the high nitrogen concentration in the raw feed (5.88% db), the sludge combustion process presented NOx emissions below the legal limit, which results from the combination of appropriate feed rate (A/F ratio), excess air, and mainly the low temperature kept inside the combustion chamber. It was found that the level of CO emissions from the overall sludge process depends on the dryer operating conditions, such as the oxygen content and the drying temperature, which have to be controlled throughout the process in order to achieve low CO levels. The aerobic sewage sludge combustion process generated high SO2 concentration due to the high sulfur content (0.67 wt%, db) and low calcium concentration (22.99 g kg(-1)) found in the sludge. The high concentration of SO2 in the flue gas (4776.77 mg N m(-3)) is the main factor inhibiting PCDD/PCDF formation. Further changes are needed in the pilot plant scheme to reduce SO2 and particulate matter emissions, such as the installation of exhaust gas-cleaning systems. According to previous studies, the efficient operation of such cleaning systems is also effective for metals emission control, which makes the combustion of sewage sludge a feasible treatment method from both energetic and environmental perspectives. Copyright © 2015 Elsevier Ltd. All rights reserved.
Manga, M; Evans, B E; Camargo-Valero, M A; Horan, N J
2016-12-01
The effect of sand filter media thickness on the performance of faecal sludge (FS) drying beds was determined in terms of: dewatering time, contaminant load removal efficiency, solids generation rate, nutrient content and helminth eggs viability in the dried sludge. A mixture of ventilated improved pit latrine sludge and septage in the ratio 1:2 was dewatered using three pilot-scale sludge drying beds with sand media thicknesses of 150, 250 and 350 mm. Five dewatering cycles were conducted and monitored for each drying bed. Although the 150 mm filter had the shortest average dewatering time of 3.65 days followed by 250 mm and 350 mm filters with 3.83 and 4.02 days, respectively, there was no significant difference (p > 0.05) attributable to filter media thickness configurations. However, there was a significant difference for the percolate contaminant loads in the removal and recovery efficiency of suspended solids, total solids, total volatile solids, nitrogen species, total phosphorus, chemical oxygen demand, dissolved chemical oxygen demand and biochemical oxygen demand, with the highest removal efficiency for each parameter achieved by the 350 mm filter. There were also significant differences in the nutrient content (NPK) and helminth eggs viability of the solids generated by the tested filters. Filtering media configurations similar to 350 mm have the greatest potential for optimising nutrient recovery from FS.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Model Rule-Emission Limits and Standards for Existing Fluidized Bed Sewage Sludge Incineration Units 2 Table 2 to Subpart MMMM of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Model Rule-Emission Limits and Standards for Existing Fluidized Bed Sewage Sludge Incineration Units 2 Table 2 to Subpart MMMM of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors.
Lee, Kuo-Shing; Lo, Yung-Sheng; Lo, Yung-Chung; Lin, Ping-Jei; Chang, Jo-Shu
2003-01-01
Packed-bed bioreactors containing activated carbon as support carrier were used to produce H2 anaerobically from a sucrose-limiting medium while acclimated sewage sludge was used as the H2 producer. The effects of bed porosity (epsilon(b)) and substrate loading rate on H2 fermentation were examined using packed beds with epsilon(b) of 70-90% being operated at hydraulic retention times (HRT) of 0.5-4 h. Higher epsilon(b) and lower HRT favored H2 production. With 20 g COD l(-1) of sucrose in the feed, the optimal H2 production rate (7.4 l h(-1) l(-1)) was obtained when the bed with epsilon(b) = 90% was operated at HRT = 0.5 h. Flocculation of cells enhanced the retention of sludge for stable operations of the bioreactor at low HRTs. The gas products resulting from fermentative H2 production consisted of 30-40% H2 and 60-70% CO2. Butyric acid was the primary soluble product, followed by propionic acid and valeric acid.
Reif, R; Besancon, A; Le Corre, K; Jefferson, B; Lema, J M; Omil, F
2011-01-01
The presence in the aquatic environment of xenobiotics such as Pharmaceutical and Personal Care Products (PPCPs) has emerged as an issue of concern. Upgrading sewage treatment quality with modern technologies such as Membrane Bioreactors (MBRs) and/or implementing a further posttreatment might mitigate the release of xenobiotics into surface waters. The performance of two processes treating municipal sewage, a MBR and an Activated Sludge (AS) unit, have been compared in terms of PPCPs removal. Moreover, their effluents were treated using vertical flow reed beds. Both systems were operated under similar conditions, more specifically Hydraulic Retention Time (HRT), maintained at 8 hours, and Sludge Retention Time (SRT) set at 6 and 20 days. Pharmaceuticals belong to therapeutic groups such as antiepileptics (carbamazepine) and analgesics (ibuprofen, naproxen, diclofenac), whereas the personal care products are musk fragrances (galaxolide and tonalide). Xenobiotics removals achieved in the MBR showed better results, particularly for the acidic drugs ibuprofen (87% vs. 50%) and naproxen (56% vs. 6%) operating at low SRT. After filtration through vertical flow reed-beds, PPCPs content in effluents was decreased, below 1 ppb in most cases, improving the effluent quality and confirming reed-beds as an interesting low cost alternative in order to attenuate xenobiotics contamination.
Sludge incineration tests on circulating fluidised bed furnace.
Lotito, V; Mininni, G; Di Pinto, A C; Spinosa, L
2001-01-01
Results of sludge incineration tests on a demonstrative fluidised bed furnace are reported and discussed. They show that particulate, heavy metals and acidic compounds in the emissions can be easily controlled both when sludge is spiked with chlorinated hydrocarbons up to a chlorine concentration in the feed of 5%, and when the afterburner is switched off. As for organic micropollutants, polynuclear aromatic hydrocarbons (PAH) were much lower than the Italian limits of 10 microg/m3 (no limits are at present considered in the European Directives). Dioxins (PCDDs) and furans (PCDFs) in some tests exceeded the limit of 0.1 ng/m3 (TE) but the concentrations in the fly ashes were much lower, thus evidencing a possible presence of contaminants in gas phase. PAHs and PCDD/PCDFs were not depending on the afterburning operation, the presence of organic chlorine in the feed sludge and the copper addition to sewage sludge.
Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P
2009-01-01
In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.
NASA Astrophysics Data System (ADS)
Fisher, D. A.; Hecht, M.; Kounaves, S.; Catling, D.
2009-03-01
The north cap of Mars has basal temperature that precludes the flow of ice. Phoenix discovered polar soils contain perchlorate salts. These salts depress the melting point so it could form a sludge that provides a mobile bed that moves the ice outwards.
Mendonça, N M; Niciura, C L; Gianotti, E P; Campos, J R
2004-01-01
This paper describes the performance, sludge production and biofilm characteristics of a full scale fluidized bed anaerobic reactor (32 m3) for domestic wastewater treatment. The reactor was operated with 10.5 m x h(-1) upflow velocity, 3.2 h hydraulic retention time, and recirculation ratio of 0.85 and it presented removal efficiencies of 71+/-8% of COD and 77+/-14% of TSS. During the apparent steady-state period, specific sludge production and sludge age in the reactor were (0.116+/-0.033) kgVSS. kgCOD(-1) and (12+/-5)d, respectively. Biofilm formed in the reactor presented two different patterns: one of them at the beginning of the colonization and the other of mature biofilm. These different colonization patterns are due to bed stratification in the reactor, caused by the difference in local-energy dissipation rates along the reactor's height, and density, shape, etc. of the bioparticles. The biofilm population is formed mainly of syntrophic consortia among sulfate reducing bacteria, methanogenic archaea such as Methanobacterium and Methanosaeta-like cells.
Mu, Lin; Chen, Jianbiao; Yao, Pikai; Zhou, Dapeng; Zhao, Liang; Yin, Hongchao
2016-12-01
Co-pyrolysis characteristics of petrochemical wastewater sludge and Huolinhe lignite were investigated using thermogravimetric analyzer and packed-bed reactor coupled with Fourier transform infrared spectrometer and gas chromatography. The pyrolysis characteristics of the blends at various sludge blending ratios were compared with those of the individual materials. Thermogravimetric experiments showed that the interactions between the blends were beneficial to generate more residues. In packed-bed reactor, synergetic effects promoted the release of gas products and left less liquid and solid products than those calculated by additive manner. Fourier transform infrared spectrometer analysis showed that main functional groups in chars gradually disappeared with pyrolysis temperatures increasing, and H 2 O, CH 4 , CO, and CO 2 appeared in volatiles during pyrolysis. Gas compositions analysis indicated that, the yields of H 2 and CO clearly increased as the pyrolysis temperature and sludge blending ratio increasing, while the changes of CH 4 and CO 2 yields were relatively complex. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gaseous fuels production from dried sewage sludge via air gasification.
Werle, Sebastian; Dudziak, Mariusz
2014-07-01
Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic. © The Author(s) 2014.
Lapa, N; Barbosa, R; Lopes, M H; Mendes, B; Abelha, P; Boavida, D; Gulyurtlu, I; Oliveira, J Santos
2007-08-17
In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub-products of such type of thermal processes.
Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture.
Malhautier, Luc; Gracian, Catherine; Roux, Jean-Claude; Fanlo, Jean-Louis; Le Cloirec, Pierre
2003-01-01
The physico-chemical characteristics of granulated sludge lead us to develop its use as a packing material in air biofiltration. Then, the aim of this study is to investigate the potential of unit systems packed with this support in terms of ammonia and hydrogen sulfide emissions treatment. Two laboratory scale pilot biofilters were used. A volumetric load of 680 g H2S m(-3) empty bed day(-1) and 85 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to a unit called BGSn (column packed with granulated sludge and mainly supplied with hydrogen sulfide); a volumetric load of 170 g H2S m(-3) empty bed day(-1) and 340 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to the other called BGNs (column packed with granulated sludge and mainly supplied with ammonia). Ammonia and hydrogen sulfide elimination occur in the biofilters simultaneously. The hydrogen sulphide and ammonia removal efficiencies reached are very high: 100% and 80% for BGSn; 100% and 80% for BGNs respectively. Hydrogen sulfide is oxidized into sulphate and sulfur. The ammonia oxidation products are nitrite and nitrate. The nitrogen error mass balance is high for BGSn (60%) and BGNs (36%). This result could be explained by the denitrification process which would have occurred in anaerobic zones. High percentages of ammonia or hydrogen sulfide are oxidized on the first half of the column. The oxidation of high amounts of hydrogen sulfide would involve some environmental stress on nitrifying bacterial growth and activity.
Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor.
Qin, Linbo; Han, Jun; He, Xiang; Zhan, Yiqiu; Yu, Fei
2015-05-01
In the steel industry, about 0.86 ton of oily sludge is produced for every 1000 tons of rolling steel. Due to the adverse impact on human health and the environment, oily sludge is designated as a hazardous waste in the Resource Conservation and Recovery Act (RCRT). In this paper, the pyrolysis treatment of oily sludge is studied in a fluidized bed reactor at a temperature range of 400-600 °C. During oily sludge pyrolysis, a maximum oil yield of 59.2% and a minimum energy loss of 19.0% are achieved at 500 °C. The energy consumption of treating 1 kg oily sludge is only 2.4-2.9 MJ. At the same time, the energy of produced oil, gas and solid residue are 20.8, 6.32, and 0.83 MJ, respectively. In particular, it is found that the solid residue contains more than 42% iron oxide, which can be used as the raw material for iron production. Thus, the simultaneous recovery of energy and iron from oil sludge by pyrolysis is feasible. Copyright © 2015 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Zhang, Yan; Wang, Yong-sheng; Bai, Yu-hua; Chen, Chen; Lü, Jian; Zhang, Jie
2007-10-01
Swimming bed combined with aerobic granular sludge as a novel technology for wastewater treatment was developed, which was on the basis of the biofilm process and activated sludge process, and results demonstrated notable performance of high-efficiency treatment capability and sludge reduction. Even when hydraulic retention time (HRT) was only at 3.2 h with average COD volumetric loading of 2.03 kg/(m3 x d) and NH4(+)-N of 0.52 kg/(m3 X d), 90.9% of average COD removal rate and 98.3% of NH4(+)-N removal rate were achieved. Aerobic granular sludge appeared with spherical or rod shape after 16 days operation. Mixed liquor suspended solid (MLSS) concentrations in the reactor reached 5,640 mg/L at the highest during operation period, and the average ratio of mixed liquor volatile suspended solid (MLVSS) to MLSS reached 0.87. Furthermore, microscopic observation of biofilm and aerobic granules revealed much presence of protozoa and metazoa on the biofilm and suspended sludge, and this long food chain can contribute to the sludge reduction. Only 0. 175 5 of sludge yields (MLSS/ CODremoved) was obtained in the experiment, which was only about 50% of the conventional aerobic processes.
Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua
2015-12-01
Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta
2015-03-01
In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Removal and fate of micropollutants in a sponge-based moving bed bioreactor.
Luo, Yunlong; Guo, Wenshan; Ngo, Huu Hao; Nghiem, Long Duc; Hai, Faisal Ibney; Kang, Jinguo; Xia, Siqing; Zhang, Zhiqiang; Price, William Evan
2014-05-01
This study investigated the removal of micropollutants using polyurethane sponge as attached-growth carrier. Batch experiments demonstrated that micropollutants could adsorb to non-acclimatized sponge cubes to varying extents. Acclimatized sponge showed significantly enhanced removal of some less hydrophobic compounds (log D<2.5), such as ibuprofen, acetaminophen, naproxen, and estriol, as compared with non-acclimatized sponge. The results for bench-scale sponge-based moving bed bioreactor (MBBR) system elucidated compound-specific variation in removal, ranging from 25.9% (carbamazepine) to 96.8% (β-Estradiol 17-acetate) on average. In the MBBR system, biodegradation served as a major removal pathway for most compounds. However, sorption to sludge phase was also a notable removal mechanism of some persistent micropollutants. Particularly, carbamazepine, ketoprofen and pentachlorophenol were found at high concentrations (7.87, 6.05 and 5.55 μg/g, respectively) on suspended biosolids. As a whole, the effectiveness of MBBR for micropollutant removal was comparable with those of activated sludge processes and MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Biogas: Production and utilization
NASA Astrophysics Data System (ADS)
Price, E. C.; Cheremisinoff, P. N.
Among the aspects of biogas production and utilization covered are: (1) the microbiology and biochemistry of the acid and methane production stages in the anaerobic process; (2) factors affecting the process, such as temperature, acidity and alkalinity, nutrients, and cations; (3) denitrification processes and systems; and (4) the process kinetics of suspended growth systems, packed columns, and fluidized beds. Also considered are such issues in the application of this technology as the digestion of municipal treatment plant sludges, animal wastes, food processing wastes and energy crops. Attention is in addition given to anaerobic digester design, offgas measurement of anaerobic digesters, and sludge treatment through soil conditioning and composting.
Luo, Jinghuan; Lu, Xueqin; Liu, Jianyong; Qian, Guangren; Lu, Yongsheng
2014-12-01
Biogas, generated from an expanded granular sludge bed (EGSB) reactor treating municipal solid waste (MSW) leachate, was recirculated for calcium removal from the leachate via a carbonation process with simultaneous biogas purification. Batch trials were performed to optimize the solution pH and imported biogas (CO2) for CaCO3 precipitation. With applicable pH of 10-11 obtained, continuous trials achieved final calcium concentrations of 181-375 mg/L (removal efficiencies≈92.8-96.5%) in the leachate and methane contents of 87.1-91.4% (purification efficiencies≈65.4-82.2%) in the biogas. Calcium-balance study indicates that 23-986 mg Ca/d was released from the bio-system under the carbonized condition where CaCO3 precipitating was moved outside the bioreactor, whereas 7918-9517 mg Ca/d was trapped into the system for the controlled one. These findings demonstrate that carbonation removal of calcium by biogas recirculation could be a promising alternative to pretreat calcium-rich MSW leachate and synergistically to improve methane content. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fluorescence-based monitoring of tracer and substrate distribution in an UASB reactor.
Lou, S J; Tartakovsky, B; Zeng, Y; Wu, P; Guiot, S R
2006-11-01
In this work, rhodamine-related fluorescence was measured on-line at four reactor heights in order to study hydrodynamics within an upflow anaerobic sludge bed reactor. A linear dependence of the dispersion coefficient (D) on the upflow velocity was observed, while the influence of the organic loading rate (OLR) was insignificant. Furthermore, the Bodenstein number of the reactor loaded with granulated sludge was found to be position-dependent with the largest values measured at the bottom of the sludge bed. This trend was not observed in the reactor without sludge. Chemical oxygen demand (COD) and volatile fatty acid (VFA) concentrations were measured at the same reactor heights as in rhodamine tests using conventional off-line analytical methods and on-line multiwavelength fluorometry. Significant spatial COD and VFA gradients were observed at organic loading rates above 6g COD l(R)(-1)d(-1) and linear upflow velocities below 0.8m h(-1).
Fux, C; Huang, D; Monti, A; Siegrist, H
2004-01-01
Nitrogen can be eliminated effectively from sludge digester effluents by anaerobic ammonium oxidation (anammox), but 55-60% of the ammonium must first be oxidized to nitrite. Although a continuous flow stirred tank reactor (CSTR) with suspended biomass could be used, its hydraulic dilution rate is limited to 0.8-1 d(-1) (30 degrees C). Higher specific nitrite production rates can be achieved by sludge retention, as shown here for a moving-bed biofilm reactor (MBBR) with Kaldnes carriers on laboratory and pilot scales. The maximum nitrite production rate amounted to 2.7 gNO2-Nm(-2)d(-1) (3 gO2m(-3)d(-1), 30.5 degrees C), thus doubling the dilution rate compared to CSTR operation with suspended biomass for a supernatant with 700 gNH4-Nm(-3). Whenever the available alkalinity was fully consumed, an optimal amount of nitrite was produced. However, a significant amount of nitrate was produced after 11 months of operation, making the effluent unsuitable for anaerobic ammonium oxidation. Because the sludge retention time (SRT) is relatively long in biofilm systems, slow growth of nitrite oxidizers occurs. None of the selection criteria applied - a high ammonium loading rate, high free ammonia or low oxygen concentration - led to selective suppression of nitrite oxidation. A CSTR or SBR with suspended biomass is consequently recommended for full-scale operation.
Personal care compounds in a reed bed sludge treatment system.
Chen, Xijuan; Pauly, Udo; Rehfus, Stefan; Bester, Kai
2009-08-01
Sewage sludge (also referred to as biosolids) has long been used as fertilizer on agricultural land. The usage of sludge as fertilizer is controversial because of possible high concentration of xenobiotic compounds, heavy metals as well as pathogens. In this study, the fate of the xenobiotic compounds triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol), OTNE (1-(2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydro-naphthalen-2-yl)ethan-1-one), HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran), HHCB-lactone, AHTN (7-acetyl-1,1,3,4,4,6 hexamethyl-1,2,3,4 tetrahydronaphthalene), and DEHP (bis(2-ethylhexyl)phthalate) in advanced biological treatment of sludge was determined. During 13months of field-incubation of the sludge in reed beds, the xenobiotic compounds were analysed. The bactericide triclosan was reduced to 60%, 45%, and 32% of its original concentration in the top, middle, and bottom layer. The fragrance OTNE was decreased to 42% in the top layer, 53% in the middle layer, and 70% in the bottom layer, respectively. For DEHP a reduction of 70%, 71%, and 40% was observed in the top, middle, and bottom layer, respectively. The polycyclic musk compounds HHCB, AHTN, and the primary metabolite of HHCB, i.e., HHCB-lactone showed no degradation in 13months during the experimental period in this installation. Tentative half-lives of degradation of triclosan, OTNE and DEHP were estimated to be 315-770d, 237-630d, and 289-578d, respectively.
Electroosmotically enhanced drying of biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, S.; Law, S.E.
A laboratory system for experimentally characterizing electroosmotic dewatering of biomass has been developed. The system was used to investigate the dewatering at both constant voltage and constant current of two biomass materials, organic humus with peat and composted wastewater sludge (WWS). The moisture content of humus decreased to 22.5% from an initial value of 44.3% wet basis (wb) after 2 h 10 min of electroosmosis at 50 V across a 2.9-cm-thick bed, whereas that of sludge decreased to 54.5% from an initial value of 68.4% after 2 h 20 min at 40 V across the bed. The electrical energy requiredmore » to remove 1 kg of water by constant-voltage electroosmosis of humus varied from 23% to 61%, in the voltage range of 10--50 V, of the thermal energy required to change the same quantity of free water from liquid to vapor state. For WWS, the energy remained constant at a higher value of 88% over the 20--40-V range studied. The flowrate of liquid water out of the bed at constant voltage linearly increased with the applied electric field, and the electrical energy expended in the constant-current dewatering mode was seen to be a quadratic function of time as predicted by classical electrokinetic theory.« less
Impact of fine mesh sieve primary treatment on nitrogen removal in moving bed biofilm reactors.
Rusten, B; Razafimanantsoa, V A; Andriamiarinjaka, M A; Otis, C L; Sahu, A K; Bilstad, T
2016-01-01
The purpose of this project was to investigate the effect of selective particle removal during primary treatment on nitrogen removal in moving bed biofilm reactors (MBBRs). Two small MBBR pilot plants were operated in parallel, where one train treated 2 mm screened municipal wastewater and the other train treated wastewater that had passed through a Salsnes Filter SF1000 rotating belt sieve (RBS) with a 33 µs sieve cloth. The SF1000 was operated without a filter mat on the belt. The tests confirmed that, for the wastewater characteristics at the test plant, Salsnes Filter primary treatment with a 33 µs RBS and no filter mat produced a primary effluent that was close to optimum. Removal of organic matter with the 33 µs sieve had no negative effect on the denitrification process. Nitrification rates improved by 10-15% in the train with 33 µs RBS primary treatment. Mass balance calculations showed that without RBS primary treatment, the oxygen demand in the biological system was 36% higher. Other studies have shown that the sludge produced by RBS primary treatment is beneficial for biogas production and will also significantly improve sludge dewatering of the combined primary and biological sludge.
Gong, Lingxiao; Jun, Li; Yang, Qing; Wang, Shuying; Ma, Bin; Peng, Yongzhen
2012-09-01
In this work, a novel integrated reactor incorporating anoxic fixed bed biofilm reactor (FBBR), oxic moving bed biofilm reactor (MBBR) and settler sequentially was proposed for nitrogen removal from rural domestic sewage. For purposes of achieving high efficiency, low costs and easy maintenance, biomass characteristics and simultaneous nitrification-denitrification (SND) were investigated under long sludge retention time during a 149-day period. The results showed that enhanced SND with proportions of 37.7-42.2% tapped the reactor potentials of efficiency and economy both, despite of C/N ratio of 2.5-4.0 in influent. TN was removed averagely by 69.3% at least, even under internal recycling ratio of 200% and less proportions of biomass assimilation (<3%). Consequently, lower internal recycle and intermittent wasted sludge discharge were feasible to save costs, together with cancellations of sludge return and anoxic stir. Furthermore, biomass with low observed heterotrophic yields (0.053 ± 0.035 g VSS/g COD) and VSS/TSS ratio (<0.55) in MBBR, simplified wasted sludge disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chen, Chunmao; Liang, Jiahao; Yoza, Brandon A; Li, Qing X; Zhan, Yali; Wang, Qinghong
2017-11-01
Novel diatomite (R1) and maifanite (R2) were utilized as support materials in an up-flow anaerobic sludge bed (UASB) reactor for the treatment of recalcitrant petroleum wastewater. At high organic loadings (11kg-COD/m 3 ·d), these materials were efficient at reducing COD (92.7% and 93.0%) in comparison with controls (R0) (88.4%). Higher percentages of large granular sludge (0.6mm or larger) were observed for R1 (30.3%) and R2 (24.6%) compared with controls (22.6%). The larger portion of granular sludge provided a favorable habitat that resulted in greater microorganism diversity. Increased filamentous bacterial communities are believed to have promoted granular sludge formation promoting a conductive environment for stimulation methanogenic Archaea. These communities had enhanced pH tolerance and produced more methane. This study illustrates a new potential use of diatomite and maifanite as support materials in UASB reactors for increased efficiency when treating refractory wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Degradation of anionic surfactants during drying of UASBR sludges on sand drying beds.
Mungray, Arvind Kumar; Kumar, Pradeep
2008-09-01
Anionic surfactant (AS) concentrations in wet up-flow anaerobic sludge blanket reactor (UASBR) sludges from five sewage treatment plants (STPs) were found to range from 4480 to 9,233 mg kg(-1)dry wt. (average 7,347 mg kg(-1)dry wt.) over a period of 18 months. After drying on sand drying beds (SDBs), AS in dried-stabilized sludges averaged 1,452 mg kg(-1)dry wt., a reduction of around 80%. The kinetics of drying followed simple first-order reduction of moisture with value of drying constant (k(d))=0.051 d(-1). Reduction of AS also followed first-order kinetics. AS degradation rate constant (k(AS)) was found to be 0.034 d(-1) and half-life of AS as 20 days. The order of rates of removal observed was k(d)>k(AS)>k(COD)>k(OM) (drying >AS degradation>COD reduction>organic matter reduction). For the three applications of dried-stabilized sludges (soil, agricultural soil, grassland), values of risk quotient (RQ) were found to be <1, indicating no risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castillo, E.; Vergara, M.; Moreno, Y.
2007-07-01
This paper describes the feasibility of an aerobic system (rotating biological contactor, RBC) and a biological anaerobic system (upward-flow anaerobic sludge bed reactor) at small scale for the treatment of a landfill leachate. In the first phase of the aerobic system study, a cyclic-batch RBC system was used to select perforated acetate discs among three different acetate disc configurations. These discs were chosen on the basis of high COD removal (65%) and biological stability. In the second phase, the RBC system (using four stages) was operated continuously at different hydraulic retention times (HRT), at different rotational speeds, and with varyingmore » organic concentrations of the influent leachate (2500-9000 mg L{sup -1}). Forty percent of the total surface area of each perforated disc was submerged in the leachate. A COD removal of about 52% was obtained at an HRT of 24 h and a rotational speed of 6 rpm. For the anaerobic system, the reactor was evaluated with a volumetric organic load of 3273 g-COD m{sup -3} day{sup -1} at an HRT of 54, 44, 39, 24 and 17 h. At these conditions, the system reached COD removal efficiencies of 62%, 61%, 59%, 44% and 24%, respectively.« less
Upgrading of a small overloaded activated sludge plant using a MBBR system.
Andreottola, G; Foladori, P; Gatti, G; Nardelli, P; Pettena, M; Ragazzi, M
2003-01-01
The aim of this research was the application of a biofilm system for the upgrading of a full-scale overloaded activated sludge MWWTP using the MBBR (Moving Bed Biofilm Reactor) technology. The choice of this fixed biomass system appeared appropriate because it offers several advantages including good potential in nitrification process, easiness of management and above all, the possibility to use the existing tank with very few modifications. MBBR system counts only few full-scale plants in Italy at the moment, thus a pilot-scale experimentation was preliminarily carried out. The acquired parameters were used for the fullscale MWWTP upgrading. The upgrading of the activated sludge reactor in the MBBR system has given (1) a relevant increase in the flowrate treated up to 60%; (2) a good efficiency in organic carbon removal and nitrification, equal to 88% and 90% respectively, with HRTs of 5.5-7 h; (3) the overcoming of the hydraulic overload of the secondary settler, applying a lamellar settler. It was observed a good correlation between the results obtained at pilot-scale and those observed in the full-scale plant.
Nordgård, A S R; Bergland, W H; Bakke, R; Vadstein, O; Østgaard, K; Bakke, I
2015-12-01
To elucidate how granular sludge inoculum and particle-rich organic loading affect the structure of the microbial communities and process performance in upflow anaerobic sludge bed (UASB) reactors. We investigated four reactors run on dairy manure filtrate and four on pig manure supernatant for three months achieving similar methane yields. The reactors fed with less particle rich pig manure stabilized faster and had highest capacity. Microbial community dynamics analysed by a PCR/denaturing gradient gel electrophoresis approach showed that influent was a major determinant for the composition of the reactor communities. Comparisons of pre- and non-adapted inoculum in the reactors run on pig manure supernatant showed that the community structure of the nonadapted inoculum adapted in approximately two months. Microbiota variance partitioning analysis revealed that running time, organic loading rate and inoculum together explained 26 and 31% of the variance in bacterial and archaeal communities respectively. The microbial communities of UASBs adapted to the reactor conditions in treatment of particle rich manure fractions, obtaining high capacity, especially on pig manure supernatant. These findings provide relevant insight into the microbial community dynamics in startup and operation of sludge bed reactors for methane production from slurry fractions, a major potential source of biogas. © 2015 The Society for Applied Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seggiani, Maurizia, E-mail: m.seggiani@diccism.unipi.it; Puccini, Monica, E-mail: m.puccini@diccism.unipi.it; Raggio, Giovanni, E-mail: g.raggio@tiscali.it
2012-10-15
Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effectmore » of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was within the limits for landfilling inert residues. On the other hand, sulfate and chloride releases were found to comply with the limits for non-hazardous residues.« less
NASA Astrophysics Data System (ADS)
Salatino, P.; Solimene, R.; Chirone, R.
The de-NOx potential of coal and of dried and pelletized sewage sludge, a waste-derived fuel candidate for cofiring with coal, is assessed. The experimental procedure is based on operation of a bench scale fluidized bed reactor where NO-doped nitrogen is contacted with batches of the fuel. A second type of experiment has been purposely designed to assess the loss of reactivity of chars toward gasification by NOx as char is heat-treated for pre-set times at temperatures typical of fluidized bed combustion. A simple phenomenological model is developed to shed light on the basic features of the interaction between heterogeneous char-NOx reaction and thermal annealing of the char.
Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung
2005-01-01
In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.
Onodera, Takashi; Sase, Shinya; Choeisai, Pairaya; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Yamaguchi, Takashi; Ebie, Yoshitaka; Xu, Kaiqin; Tomioka, Noriko; Syutsubo, Kazuaki
2011-01-01
A combination of an acidification reactor and an up-flow staged sludge bed (USSB) reactor was applied for treatment of molasses wastewater containing a large amount of organic compounds and sulfate. The USSB reactor had three gas-solid separators (GSS) along the height of the reactor. The combined system was continuously operated at mesophilic temperature over 400 days. In the acidification reactor, acid formation and sulfate reduction were effectively carried out. The sugars contained in the influent wastewater were mostly acidified into acetate, propionate, and n-butyrate. In addition, 10-30% of influent sulfur was removed from the acidification reactor by means of sulfate reduction followed by stripping of hydrogen sulfide. The USSB achieved a high organic loading rate (OLR) of 30 kgCOD m(-3) day(-1) with 82% COD removal. Vigorous biogas production was observed at a rate of 15 Nm(3) biogas m(-3) reactor day(-1). The produced biogas, including hydrogen sulfide, was removed from the wastewater mostly via the GSS. The GSS provided a moderate superficial biogas flux and low sulfide concentration in the sludge bed, resulting in the prevention of sludge washout and sulfide inhibition of methanogens. By advantages of this feature, the USSB may have been responsible for achieving sufficient retention (approximately 60 gVSS L(-1)) of the granular sludge with high methanogenic activity (0.88 gCOD gVSS(-1) day(-1) for acetate and as high as 2.6 gCOD gVSS(-1) day(-1) for H(2)/CO(2)). Analysis of the microbial community revealed that sugar-degrading acid-forming bacteria proliferated in the sludge of the USSB as well as the acidification reactor at high OLR conditions.
Li, Tiantao; Guo, Feiqiang; Li, Xiaolei; Liu, Yuan; Peng, Kuangye; Jiang, Xiaochen; Guo, Chenglong
2018-04-10
High ash-containing paper sludge which is rich in various metal oxides is employed in herb residue pyrolysis to enhance the yield of fuel gas and reduce tar yield in a drop tube fixed bed reactor. Effects of heat treatment temperature and blending ratio of paper sludge on the yields and composition of pyrolysis products (gas, tar and char) were investigated. Results indicate that paper sludge shows a significantly catalytic effect during the pyrolysis processes of herb residue, accelerating the pyrolysis reactions. The catalytic effect resulted in an increase in gas yield but a decrease in tar yield. The catalytic effect degree is affected by the paper sludge proportions, and the strongest catalytic effect of paper sludge is noted at its blending ratio of 50%. At temperature lower than 900 °C, the catalytic effect of paper sludge in the pyrolysis of herb residue promotes the formation of H 2 and CO 2 , inhibits the formation of CH 4 , but shows slight influence on the formations of CO, while the formation of the four gas components was all promoted at 900 °C. SEM results of residue char show that ash particles from paper sludge adhere to the surface of the herb residue char after pyrolysis, which may promote the pyrolysis process of herb residue for more gas releasing. FT-IR results indicate that most functional groups disappear after pyrolysis. The addition of paper sludge promotes deoxidisation and aromatization reactions of hetero atoms tars, forming heavier polycyclic aromatic hydrocarbons and leading to tar yield decrease. Copyright © 2018 Elsevier Ltd. All rights reserved.
Oxygen Transfer in Moving Bed Biofilm Reactor and Integrated Fixed Film Activated Sludge Processes.
2017-11-17
A demonstrated approach to design the, so-called, medium-bubble air diffusion network for oxygen transfer into the aerobic zone(s) of moving bed biofilm reactor (MBBR) and integrated fixed-film activated sludge (IFAS) processes is described in this paper. Operational full-scale biological water resource recovery systems treating municipal sewerage demonstrate that medium-bubble air diffusion networks designed using the method presented here provide reliable service. Further improvement is possible, however, as knowledge gaps prevent more rational process designs. Filling such knowledge gaps can potentially result in higher performing and more economical systems. Small-scale system testing demonstrates significant enhancement of oxygen transfer capacity due to the presence of media, but quantification of such effects in full-scale systems is lacking, and is needed. Establishment of the relationship between diffuser submergence, aeration rate, and biofilm carrier fill fraction will enhance MBBR and IFAS aerobic process design, cost, and performance. Limited testing of full-scale systems is available to allow computation of alpha valuess. As with clean water testing of full-scale systems, further full-scale testing under actual operating conditions is required to more fully quantify MBBR and IFAS system oxygen transfer performance under a wide range of operating conditions. Control of MBBR and IFAS aerobic zone oxygen transfer systems can be optimized by recognizing that varying residual dissolved oxygen (DO) concentrations are needed, depending on operating conditions. For example, the DO concentration in the aerobic zone of nitrifying IFAS processes can be lowered during warm weather conditions when greater suspended growth nitrification can occur, resulting in the need for reduced nitrification by the biofilm compartment. Further application of oxygen transfer control approaches used in activated sludge systems to MBBR and IFAS systems, such as ammonia-based oxygen transfer system control, has been demonstrated to further improve MBBR and IFAS system energy-efficiency.
An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor
Calvo, L. F.; García, A. I.; Otero, M.
2013-01-01
The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass : fuel mass ratio (A/F) of 0.2 < A/F < 0.4. Fuel characterization, mass and power balances, produced gas composition, gas phase alkali and ammonia, tar concentration, agglomeration tendencies, and gas efficiencies were assessed. Although accumulation of material inside the reactor was a main problem, this was avoided by removing and adding bed media along gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4 MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%. PMID:24453863
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
This report describes the work on the Waste Resources Utilization Program for the quarter ending March 31, 1976. The purpose of this program is to develop technologies to utilize a /sup 137/Cs ..gamma.. source to modify sewage sludge for safe application as a fertilizer or an animal feed supplement. Results are reported from studies in microbiology, virology, and physical-chemical studies. Determinations were made of inactivation rates for Salmonella species, coliforms, and fecal strep in sewage sludge when radiation and thermoradiation were applied while bubbling oxygen through the sludge. Virology studies were continued investigating virucidal characteristics of anaerobically digested sludge. Anothermore » area of study was the dewatering of sewage sludge to reduce the drying time of the sewage sludge in the drying beds. A centrifuge was also installed to dewater treated sludge to approximately 30 percent solids. (auth)« less
NASA Astrophysics Data System (ADS)
Nikolaeva, L. A.; Khusaenova, A. Z.
2014-05-01
A method for utilizing production wastes is considered, and a process circuit arrangement is proposed for utilizing a mixture of activated silt and sludge from chemical water treatment by incinerating it with possible heat recovery. The sorption capacity of the products from combusting a mixture of activated silt and sludge with respect to gaseous emissions is experimentally determined. A periodic-duty adsorber charged with a fixed bed of sludge is calculated, and the heat-recovery boiler efficiency is estimated together with the technical-economic indicators of the proposed utilization process circuit arrangement.
Ward, Ralph C.
1983-01-01
The disclosure relates to a sludge sampler comprising an elongated generally cylindrical housing containing a baffle containing an aperture. Connected to the aperture is a flexible tubing having a valve for maintaining and releasing pressure in the lower end of the housing and exiting the upper end of the housing. The lower end of the housing contains a ball check valve maintained in closed position by pressure. When the lower end of the device contacts the sludge bed, the pressure valve is opened, enabling sludge to enter the lower end of the housing. After the sample is collected the valve is closed. An upsetting pin opens the valve to empty a sludge sample after the sample is removed from the fluid.
Oily wastewater treatment using a novel hybrid PBR-UASB system.
Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet
2007-04-01
In this study, anaerobic treatability of oily wastewater was investigated in a hybrid reactor system consisting of a packed bed reactor (PBR) followed by an upflow anaerobic sludge blanket (UASB) reactor at 35 degrees C. The system was operated using real pet food wastewater at different hydraulic retention times and loading rates for 165 d. The PBR was packed with sol-gel/alginate beads containing immobilized enzyme which hydrolyzed the oil and grease (O&G) into free long chain fatty acids, that were biodegraded by the UASB. The hybrid system was operated up to an oil loading rate of 4.9 kg O&Gm(-3)d(-1) (to the PBR) without any operational problems for a period of 100 d, with COD and O&G removal efficiencies above 90% and no sludge flotation was observed in the UASB. Beads supplement to the PBR was less than 2 g d(-1) and the relative activity was about 70%. Further increment in O&G loading to 18.7 kg O&Gm(-3)d(-1) caused destabilization of the system with 0.35% (v float/v feed) sludge float removed from the UASB.
2012-03-01
Propylene Glycol Deicer Biodegredation Kinetics: Complete-Mix Stirred Tank Reactors , Filter, and Fluidized Bed . Journal of Environmental...scale sequencing batch reactor containing municipal waste water treatment facility activated sludge (AS) performing simultaneous organic carbon...Sequencing Batch Reactor Operation ..................................................................... 13 PG extraction from AS
40 CFR 503.41 - Special definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles... combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device... accordance with 40 CFR 51.100 (ii). (p) Total hydrocarbons means the organic compounds in the exit gas from a...
40 CFR 503.41 - Special definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles... combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device... accordance with 40 CFR 51.100 (ii). (p) Total hydrocarbons means the organic compounds in the exit gas from a...
40 CFR 503.41 - Special definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles... combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device... accordance with 40 CFR 51.100 (ii). (p) Total hydrocarbons means the organic compounds in the exit gas from a...
40 CFR 503.41 - Special definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles... combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device... accordance with 40 CFR 51.100 (ii). (p) Total hydrocarbons means the organic compounds in the exit gas from a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, J.R.; Price, M.; Thurston, J.
The rates of uptake by a turtle grass (Thalassia testudinum) ecosystem of Cd, Cr, Cu, Ni, Pb, and Zn which were leached from sewage sludge by seawater were determined. The experimental design used aerated flowing seawater (8.4l min/sup -1/), which passed over a 0.1 m/sup 3/ bed of sewage sludge before traversing the model ecosystem.
Anaerobic digestion of municipal wastewater sludges using anaerobic fluidized bed bioreactor.
Mustafa, Nizar; Elbeshbishy, Elsayed; Nakhla, George; Zhu, Jesse
2014-11-01
The anaerobic digestion of primary sludge (PS) and thickened waste activated sludge (TWAS) using an anaerobic fluidized bed bioreactor (AnFBR) employing zeolite particles as the carrier media was investigated at different organic loading rates (OLRs). PS was tested at OLRs from 4.2 to 39kgCOD/m(3)-d corresponding to hydraulic retention times (HRTs) from 1.0 to 8.9days. The highest COD removal and VSS destruction efficiencies for primary sludge of 85% and 88%, respectively, were achieved at an HRT of 8.9days and OLR of 4.2kgCOD/m(3)-d. For TWAS, VSS destruction efficiencies varied from 42% at an HRT of 2.6days and OLR of 13.1kgCOD/m(3)-d to 69% at an HRT of 8.8days and an OLR of 4.2kgCOD/m(3)-d. The first-order COD biodegradation rates in the AnFBR for PS and TWAS were 0.4d(-1) and 0.1d(-1), respectively, almost double the rates in conventional high-rate digesters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vincent, Julie; Forquet, Nicolas; Molle, Pascal; Wisniewski, Christelle
2012-07-01
This work was designed to study the hydraulic properties of sludge deposit, focusing on the impact of operating conditions (i.e. loads and feeding frequencies) on air entrance (aerobic mineralization optimization) into the sludge deposit. The studied sludge deposits came from six 2m(2) pilot-scale SDRBs that had been in operation for 50 months with three different loads of 30, 50, and 70 kg of SSm(-2) y(-1). Two influents were assessed (i.e. activated sludge and septage) presenting different characteristics (i.e. pollutant contents, physical properties...). Two experimental approaches were employed based on establishing the water retention curve (capillary pressure versus volumetric water content) and the hydrotextural diagram to determine the hydraulic properties of sludge deposit. The study obtained valuable information for optimizing operating conditions, specifically for efficient management of loading frequency to optimize aerobic conditions within the sludge deposit. Copyright © 2012 Elsevier Ltd. All rights reserved.
Schlegel, S; Koeser, H
2007-01-01
Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.
Qian, Jin; Liu, Rulong; Wei, Li; Lu, Hui; Chen, Guang-Hao
2015-09-01
A sulfur cycle-based wastewater treatment process, namely the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process (SANI(®) process) has been recently developed for organics and nitrogen removal with 90% sludge minimization and 35% energy reduction in the biological treatment of saline sewage from seawater toilet flushing practice in Hong Kong. In this study, sulfate- and sulfite-rich wastes from simple wet flue gas desulfurization (WFGD) were considered as a potential low-cost sulfur source to achieve beneficial co-treatment with non-saline (freshwater) sewage in continental areas, through a Mixed Denitrification (MD)-SANI process trialed with synthetic mixture of simple WFGD wastes and freshwater sewage. The system showed 80% COD removal efficiency (specific COD removal rate of 0.26 kg COD/kg VSS/d) at an optimal pH of 7.5 and complete denitrification through MD (specific nitrogen removal rate of 0.33 kg N/kg VSS/d). Among the electron donors in MD, organics and thiosulfate could induce a much higher denitrifying activity than sulfide in terms of both NO3(-) reduction and NO2(-) reduction, suggesting a much higher nitrogen removal rate in organics-, thiosulfate- and sulfide-based MD in MD-SANI compared to sulfide alone-based autotrophic denitrification in conventional SANI(®). Diverse sulfate/sulfite-reducing bacteria (SRB) genera dominated in the bacterial community of sulfate/sulfite-reducing up-flow sludge bed (SRUSB) sludge without methane producing bacteria detected. Desulfomicrobium-like species possibly for sulfite reduction and Desulfobulbus-like species possibly for sulfate reduction are the two dominant groups with respective abundance of 24.03 and 14.91% in the SRB genera. Diverse denitrifying genera were identified in the bacterial community of anoxic up-flow sludge bed (AnUSB) sludge and the Thauera- and Thiobacillus-like species were the major taxa. These results well explained the successful operation of the lab-scale MD-SANI process. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stanczyk-Mazanek, Ewa; Pasonl, Lukasz; Kepa, Urszula
2017-11-01
This study evaluated the effect of the use of sewage sludge in nature on biological soil parameters. The study was conducted is field experiment environment (small beds). The sandy soil was fertilized with sewage sludge dried naturally (in heaps) and in solar drying facilities. The fertilization was based on the doses of sewage sludge and manure with the amounts of 10, 20, 30 and 40 Mg/ha. The experiment duration was 3 years. The sanitary status of the soils fertilized with the sludge and manure was evaluated (coliform index, Clostridium perfrinens). Furthermore, the content of pathogenic bacteria was evaluated, with determination of its resistance to first-line antibiotics.
Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor.
Lee, Kuo-Shing; Wu, Ji-Fang; Lo, Yung-Sheng; Lo, Yung-Chung; Lin, Ping-Jei; Chang, Jo-Shu
2004-09-05
A novel bioreactor containing self-flocculated anaerobic granular sludge was developed for high-performance hydrogen production from sucrose-based synthetic wastewater. The reactor achieved an optimal volumetric hydrogen production rate of approximately 7.3 L/h/L (7,150 mmol/d/L) and a maximal hydrogen yield of 3.03 mol H2/mol sucrose when it was operated at a hydraulic retention time (HRT) of 0.5 h with an influent sucrose concentration of 20 g COD/L. The gas-phase hydrogen content and substrate conversion also exceeded 40 and 90%, respectively, under optimal conditions. Packing of a small quantity of carrier matrices on the bottom of the upflow reactor significantly stimulated sludge granulation that can be accomplished within 100 h. Among the four carriers examined, spherical activated carbon was the most effective inducer for granular sludge formation. The carrier-induced granular sludge bed (CIGSB) bioreactor was started up with a low HRT of 4-8 h (corresponding to an organic loading rate of 2.5-5 g COD/h/L) and enabled stable operations at an extremely low HRT (up to 0.5 h) without washout of biomass. The granular sludge was rapidly formed in CIGSB supported with activated carbon and reached a maximal concentration of 26 g/L at HRT = 0.5 h. The ability to maintain high biomass concentration at low HRT (i.e., high organic loading rate) highlights the key factor for the remarkable hydrogen production efficiency of the CIGSB processes.
The effect of bioleaching on sewage sludge pyrolysis.
Chen, Zhihua; Hu, Mian; Cui, Baihui; Liu, Shiming; Guo, Dabin; Xiao, Bo
2016-02-01
The effects of bioleaching on sewage sludge pyrolysis were studied. Sewage sludge was treated by bioleaching with solid concentrations of 6% (w/v), 8% (w/v), 10% (w/v). Results showed that bioleaching treatment could modify the physicochemical properties of sewage sludge and enhance the metals removal. The optimum removal efficiencies of heavy metals were achieved with solid concentration of 6% (w/v) bioleaching treatment: Cu, 73.08%; Zn, 78.67%; Pb, 24.65%; Cd, 79.46%. The characterization results of thermogravimetric analysis (TGA) showed that the bioleached sewage sludge with a 6% (w/v) solid concentration treatment was the easiest to decompose. Pyrolytic experiments of bioleached sewage sludge were performed in a laboratory-scale fixed bed reactor. Results indicated that bioleaching treatment greatly influenced the product yields and gas composition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ding, An; Liang, Heng; Qu, Fangshu; Bai, Langming; Li, Guibai; Ngo, Huu Hao; Guo, Wenshan
2014-11-01
To mitigate membrane fouling of membrane-coupled anaerobic process, granular activated carbon (GAC: 50 g/L) was added into an expanded granular sludge bed (EGSB). A short-term ultrafiltration test was investigated for analyzing membrane fouling potential and underlying fouling mechanisms. The results showed that adding GAC into the EGSB not only improved the COD removal efficiency, but also alleviated membrane fouling efficiently because GAC could help to reduce soluble microbial products, polysaccharides and proteins by 26.8%, 27.8% and 24.7%, respectively, compared with the control system. Furthermore, excitation emission matrix (EEM) fluorescence spectroscopy analysis revealed that GAC addition mainly reduced tryptophan protein-like, aromatic protein-like and fulvic-like substances. In addition, the resistance distribution analysis demonstrated that adding GAC primarily decreased the cake layer resistance by 53.5%. The classic filtration mode analysis showed that cake filtration was the major fouling mechanism for membrane-coupled EGSB process regardless of the GAC addition. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao
2012-06-01
A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%. Copyright © 2012 Elsevier Ltd. All rights reserved.
Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater.
Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet
2006-10-15
Complex oily wastewater from a food industry was treated in three different UASB reactors at different operating conditions. Although all three systems achieved fat, oil, and grease (FOG) and COD removal efficiencies above 80% at an organic loading of 3 kg COD/m3 x d, system performance deteriorated sharply at higher loading rates, and the presence of high FOG caused a severe sludge flotation resulting in failure. Initially, FOG accumulated onto the biomass which led to sludge flotation and washout of biomass. The loss of sludge in the bed increased the FOG loading to the biomass and failure ensued. Contrary to previous findings, accumulation of FOG rather than influent FOG concentrations or volumetric FOG loading rate was the most importantfactor governing the high-rate anaerobic reactor performance. The critical accumulated FOG loading was identified as 1.04 +/- 0.13 g FOG/g VSS for all three reactors. Furthermore, FOG accumulation onto the biomass was identified mainly as palmitic acid (>60%) whereas the feed LCFA contained only 30% of palmitic acid and 50% of oleic acid.
Ulfig, Krzysztof; Płaza, Grazyna; Terakowskip, Maciej; Janda-Ulfig, Katarzyna
2006-01-01
The study was to demonstrate the effect of sewage sludge open-air drying on the quantitative and qualitative composition of keratinolytic/keratinophilic and actidione-resistant fungi. The sludge was being dried for up to thirty days (on average fourteen days) at 25-30'C. The composition of these fungi was determined with the hair baiting method along with the dilution method, using the Wiegand medium supplemented with chloramphenicol (100 mgiL) and actidione (500 mg/L). The open-air drying altered the composition of keratinolytic fungi and considerably increased the population of keratinophilic and actidione-resistant fungi in the sludge. This phenomenon can be explained with that the drying process was associated with slow sludge moisture decrease, sludge laceration due to crumbling and the subsequent improvement of sludge aeration and organic matter biodegradation conditions. A considerable increase of fungal populations can be expected in sludges being dried in drying beds at wastewater treatment plants and in sludge-amended soils. Two sludge opportunistic fungi, i.e. Microsporum gypseum and Pseudallescheria boydii, require special attention from the epidemiological point of view. Sludge land applications may increase the number of these fungi in the environment and the subsequent risk to public health posed by them.
Manufacturing ceramic bricks with polyaluminum chloride (PAC) sludge from a water treatment plant.
da Silva, E M; Morita, D M; Lima, A C M; Teixeira, L Girard
2015-01-01
The objective of this research work is to assess the viability of manufacturing ceramic bricks with sludge from a water treatment plant (WTP) for use in real-world applications. Sludge was collected from settling tanks at the Bolonha WTP, which is located in Belém, capital of the state of Pará, Brazil. After dewatering in drainage beds, sludge was added to the clay at a local brickworks at different mass percentages (7.6, 9.0, 11.7, 13.9 and 23.5%). Laboratory tests were performed on the bricks to assess their resistance to compression, water absorption, dimensions and visual aspects. Percentages of 7.6, 9.0, 11.7 and 13.9% (w/w) of WTP sludge presented good results in terms of resistance, which indicates that technically, ceramic bricks can be produced by incorporating up to 13.9% of WTP sludge.
Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Frandsen, Flemming Jappe; Henriksen, Ulrik Birk
2017-08-01
Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg of MSS dry matter was gasified during 133h of operation. The average thermal loads during the five experiments were 62-100% of nominal capacity. The short term stability of all campaigns was excellent, but gasification of dry MSS lead to substantial accumulation of coarse and rigid, but un-sintered, ash particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied substantially, hot gas efficiencies of around 90% could be achieved for all MSS fuel types. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fluidized bed combustion of pelletized biomass and waste-derived fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirone, R.; Scala, F.; Solimene, R.
2008-10-15
The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away frommore » the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)« less
Jiang, Feng; Zhang, Liang; Peng, Guo-Liang; Liang, Si-Yun; Qian, Jin; Wei, Li; Chen, Guang-Hao
2013-10-01
SANI (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated) process has been approved to be a sludge-minimized sewage treatment process in warm and coastal cities with seawater supply. In order to apply this sulfur-based process in inland cold areas, wet flue gas desulfurization (FGD) can be simplified and integrated with SANI process, to provide sulfite as electron carrier for sulfur cycle in sewage treatment. In this study, a lab-scale system of the proposed novel process was developed and run for over 200 days while temperature varied between 30 and 5 °C, fed with synthetic FGD wastewaters and sewage. The sulfite-reducing upflow anaerobic sludge bed (SrUASB) reactor, as the major bioreactor of the system, removed 86.9% of organics while the whole system removed 94% of organics even when water temperature decreased to around 10 °C. The bactericidal effect of sulfite was not observed in the SrUASB reactor, while thiosulfate was found accumulated under psychrophilic conditions. The sludge yield of the SrUASB reactor was determined to be 0.095 kg VSS/kg COD, higher than of sulfate reduction process but still much lower than of conventional activated sludge processes. The dominant microbes in the SrUASB reactor were determined as Lactococcus spp. rather than sulfate-reducing bacteria, but sulfite reduction still contributed 85.5% to the organic carbon mineralization in this reactor. Ammonia and nitrate were effectively removed in the aerobic and anoxic filters, respectively. This study confirms the proposed process was promising to achieve sludge-minimized sewage treatment integrating with flue gas desulfurization in inland and cold areas. Copyright © 2013 Elsevier Ltd. All rights reserved.
Werle, Sebastian
2014-10-01
This work presents results of experimental studies on the gasification process of granulated sewage sludge in a laboratory fixed bed gasifier. Nowadays, there is a large and pressing need for the development of thermal methods for sewage sludge disposal. Gasification is an example of thermal method that has several advantages over the traditional combustion. Gasification leads to a combustible gas, which can be used for the generation of useful forms of final energy. It can also be used in processes, such as the drying of sewage sludge directly in waste treatment plant. In the present work, the operating parameters were varied over a wide range. Parameters, such as air ratio λ = 0.12 to 0.27 and the temperature of air preheating t = 50 °C to 250 °C, were found to influence temperature distribution and syngas properties. The results indicate that the syngas heating value decreases with rising air ratio for all analysed cases: i.e. for both cold and preheated air. The increase in the concentration of the main combustible components was accompanied by a decrease in the concentration of carbon dioxide. Preheating of the gasification agent supports the endothermic gasification and increases hydrogen and carbon monoxide production. © The Author(s) 2014.
Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.
2009-01-01
Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.
Fang, Peixiang; He, Xinlin; Li, Junfeng; Yang, Guang; Wang, Zhaoyang; Sun, Zhihua; Zhang, Xuan; Zhao, Chun
2018-05-15
The long-term and short-term effects of salinity on the multivalent metal ions within extracellular polymeric substance (EPS) were investigated in this study. The results indicated that the Na + content within the EPS increased significantly from 19.53% to 60.86% under high salinity, and this content in the saline system was 2.2 times higher than that of the control system at the end of the operation. The K + , Ca 2+ and Mg 2+ contents within the EPS decreased from 33.85%, 39.19% and 5.54% to 7.07%, 25.64% and 3.28%, respectively, when the salinity was increased from 0 g/L to 30 g/L. These ions were replaced by Na + through ion exchange and competing ionic binding sites under salt stress. The interaction between divalent metal ions and Na + was reversible with the adaption of anammox to salinity. Salinity exhibited a limited influence on the Fe 3+ within the EPS. Sludge granulation was inhibited under conditions of high salinity due to the replacement of multivalent metal ions by Na + .
High rate manure supernatant digestion.
Bergland, Wenche Hennie; Dinamarca, Carlos; Toradzadegan, Mehrdad; Nordgård, Anna Synnøve Røstad; Bakke, Ingrid; Bakke, Rune
2015-06-01
The study shows that high rate anaerobic digestion may be an efficient way to obtain sustainable energy recovery from slurries such as pig manure. High process capacity and robustness to 5% daily load increases are observed in the 370 mL sludge bed AD reactors investigated. The supernatant from partly settled, stored pig manure was fed at rates giving hydraulic retention times, HRT, gradually decreased from 42 to 1.7 h imposing a maximum organic load of 400 g COD L(-1) reactor d(-1). The reactors reached a biogas production rate of 97 g COD L(-1) reactor d(-1) at the highest load at which process stress signs were apparent. The yield was ∼0.47 g COD methane g(-1) CODT feed at HRT above 17 h, gradually decreasing to 0.24 at the lowest HRT (0.166 NL CH4 g(-1) CODT feed decreasing to 0.086). Reactor pH was innately stable at 8.0 ± 0.1 at all HRTs with alkalinity between 9 and 11 g L(-1). The first stress symptom occurred as reduced methane yield when HRT dropped below 17 h. When HRT dropped below 4 h the propionate removal stopped. The yield from acetate removal was constant at 0.17 g COD acetate removed per g CODT substrate. This robust methanogenesis implies that pig manure supernatant, and probably other similar slurries, can be digested for methane production in compact and effective sludge bed reactors. Denaturing gradient gel electrophoresis (DGGE) analysis indicated a relatively fast adaptation of the microbial communities to manure and implies that non-adapted granular sludge can be used to start such sludge bed bioreactors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dodane, Pierre-Henri; Mbéguéré, Mbaye; Sow, Ousmane; Strande, Linda
2012-04-03
A financial comparison of a parallel sewer based (SB) system with activated sludge, and a fecal sludge management (FSM) system with onsite septic tanks, collection and transport (C&T) trucks, and drying beds was conducted. The annualized capital for the SB ($42.66 capita(-1) year(-1)) was ten times higher than the FSM ($4.05 capita(-1) year(-1)), the annual operating cost for the SB ($11.98 capita(-1) year(-1)) was 1.5 times higher than the FSM ($7.58 capita(-1) year(-1)), and the combined capital and operating for the SB ($54.64 capita(-1) year(-1)) was five times higher than FSM ($11.63 capita(-1) year(-1)). In Dakar, costs for SB are almost entirely borne by the sanitation utility, with only 6% of the annualized cost borne by users of the system. In addition to costing less overall, FSM operates with a different business model, with costs spread among households, private companies, and the utility. Hence, SB was 40 times more expensive to implement for the utility than FSM. However, the majority of FSM costs are borne at the household level and are inequitable. The results of the study illustrate that in low-income countries, vast improvements in sanitation can be affordable when employing FSM, whereas SB systems are prohibitively expensive.
2012-01-01
A financial comparison of a parallel sewer based (SB) system with activated sludge, and a fecal sludge management (FSM) system with onsite septic tanks, collection and transport (C&T) trucks, and drying beds was conducted. The annualized capital for the SB ($42.66 capita–1 year–1) was ten times higher than the FSM ($4.05 capita–1 year–1), the annual operating cost for the SB ($11.98 capita–1 year–1) was 1.5 times higher than the FSM ($7.58 capita–1 year–1), and the combined capital and operating for the SB ($54.64 capita–1 year–1) was five times higher than FSM ($11.63 capita–1 year–1). In Dakar, costs for SB are almost entirely borne by the sanitation utility, with only 6% of the annualized cost borne by users of the system. In addition to costing less overall, FSM operates with a different business model, with costs spread among households, private companies, and the utility. Hence, SB was 40 times more expensive to implement for the utility than FSM. However, the majority of FSM costs are borne at the household level and are inequitable. The results of the study illustrate that in low-income countries, vast improvements in sanitation can be affordable when employing FSM, whereas SB systems are prohibitively expensive. PMID:22413875
Improving hydrolysis of food waste in a leach bed reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, James D.; Allen, Eoin; Murphy, Jerry D., E-mail: jerry.murphy@ucc.ie
2013-11-15
Highlights: • This paper assesses leaching of food waste in a two phase digestion system. • Leaching is assessed with and without an upflow anaerobic sludge blanket (UASB). • Without the UASB, low pH reduces hydrolysis, while increased flows increase leaching. • Inclusion of the UASB increases pH to optimal levels and greatly improves leaching. • The optimal conditions are suggested as low flow with connection to the UASB. - Abstract: This paper examines the rate of degradation of food waste in a leach bed reactor (LBR) under four different operating conditions. The effects of leachate recirculation at a lowmore » and high flow rate are examined with and without connection to an upflow anaerobic sludge blanket (UASB). Two dilution rates of the effective volume of the leach bed reactors were investigated: 1 and 6 dilutions per LBR per day. The increase in dilution rate from 1 to 6 improved the destruction of volatile solids without connection to the UASB. However connection to the UASB greatly improved the destruction of volatile solids (by almost 60%) at the low recirculation rate of 1 dilution per day. The increase in volatile solids destruction with connection to the UASB was attributed to an increase in leachate pH and buffering capacity provided by recirculated effluent from the UASB to the leach beds. The destruction of volatile solids for both the low and high dilution rates was similar with connection to the UASB, giving 82% and 88% volatile solids destruction respectively. This suggests that the most efficient leaching condition is 1 dilution per day with connection to the UASB.« less
Influence of mass transfer resistance on overall nitrate removal rate in upflow sludge bed reactors.
Ting, Wen-Huei; Huang, Ju-Sheng
2006-09-01
A kinetic model with intrinsic reaction kinetics and a simplified model with apparent reaction kinetics for denitrification in upflow sludge bed (USB) reactors were proposed. USB-reactor performance data with and without sludge wasting were also obtained for model verification. An independent batch study showed that the apparent kinetic constants k' did not differ from the intrinsic k but the apparent Ks' was significantly larger than the intrinsic Ks suggesting that the intra-granule mass transfer resistance can be modeled by changes in Ks. Calculations of the overall effectiveness factor, Thiele modulus, and Biot number combined with parametric sensitivity analysis showed that the influence of internal mass transfer resistance on the overall nitrate removal rate in USB reactors is more significant than the external mass transfer resistance. The simulated residual nitrate concentrations using the simplified model were in good agreement with the experimental data; the simulated results using the simplified model were also close to those using the kinetic model. Accordingly, the simplified model adequately described the overall nitrate removal rate and can be used for process design.
Wastewater treatment using a novel bioreactor with submerged packing bed of polyethylene tape.
Mijaylova Nacheva, P; Moeller Chávez, G
2010-01-01
The performance of a novel aerobic bioreactor with a specially designed submerged packing bed of high specific surface area density, made of polyethylene tape, was studied for the treatment of domestic wastewater. The reactor has a volume of 0.71 m(3) and the specific area of the packing bed was 1,098 m(2)/m(3). The operation was performed with and without effluent recycling, applying different organic loads in the range of 4.0-17.6 g COD m(-2) d(-1). No back-washings were carried out. Overall BOD(5) removals of 90-95% were obtained with organic loads of 4.0-17.6 g COD m(-2) d(-1) and HRT of 0.2-1.1 h. Overall TN removal of 69-72% was obtained at loads of 0.8-4.6 g TN m(-2) d(-1) when effluent recycling was used. The reactor allowed obtaining high quality water for urban reuse and demonstrated an effective process performance and resistance to load variations. The developed biofilm was completely penetrated by the organic matter, ammonia and oxygen, providing high removal rates. Large biomass quantities, up to 13 g dry VS/m(2), were reached in the reactor and the determined sludge yield coefficient was relatively low, of 0.25 g VSS/g COD. These results allow obtaining compact treatment systems with low sludge production and make the technology a suitable option for small wastewater treatment plants.
Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.
Meier, Christoph; Voegelin, Andreas; Pradas del Real, Ana; Sarret, Geraldine; Mueller, Christoph R; Kaegi, Ralf
2016-04-05
Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of <50 nm extending into the sub-nm range was revealed by electron microscopy analyses. The rapid formation of Ag(0)-NP from Ag2S during sewage sludge incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.
Mungray, Arvind Kumar; Kumar, Pradeep
2008-05-01
Compared to low concentrations of anionic surfactants (AS) in activated sludge process effluents (ASP) (<0.2 mg/L), upflow anaerobic sludge blanket-polishing pond (UASB-PP) effluents were found to contain very high concentrations of AS (>3.5 mg/L). AS (or linear alkylbenzen sulfonate, LAS) removals >99% have been found for ASP while in case of UASB-PP it was found to be < or = 30%. AS concentrations averaged 7347 and 1452 mg/kg dry wt. in wet UASB and dried sludges, respectively. Treated sewage from UASB based sewage treatment plants (STPs) when discharged to aquatic ecosystems are likely to generate substantial risk. Post-treatment using 1-1.6d detention, anaerobic, non-algal polishing ponds was found ineffective. Need of utilizing an aerobic method of post-treatment of UASB effluent in place of an anaerobic one has been emphasized. Natural drying of UASB sludges on sludge drying beds (SDBs) under aerobic conditions results in reduction of adsorbed AS by around 80%. Application of UASB sludges on SDBs was found simple, economical and effective. While disposal of treated UASB effluent may cause risk to aquatic ecosystems, use of dried UASB sludges is not likely to cause risk to terrestrial ecosystems.
Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César
2016-10-01
In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.
Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowak, Benedikt, E-mail: benedikt.nowak@tuwien.ac.at; Perutka, Libor; Aschenbrenner, Philipp
2011-06-15
Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 {+-} 100 deg. C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor andmore » a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl{sub 2}. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 deg. C, 10 and 30 min and 3.4 and 4.6 m s{sup -1}. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu. In the pellet, three major reactions occur: formation of HCl and Cl{sub 2} from CaCl{sub 2}; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl{sub 2} out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.« less
Sibrell, Philip L.; Tucker, T.W.
2012-01-01
Phosphorus (P) releases to the environment have been implicated in the eutrophication of important water bodies worldwide. Current technology for the removal of P from wastewaters consists of treatment with aluminum (Al) or iron (Fe) salts, but is expensive. The neutralization of acid mine drainage (AMD) generates sludge rich in Fe and Al oxides that has hitherto been considered a waste product, but these sludges could serve as an economical adsorption media for the removal of P from wastewaters. Therefore, we have evaluated an AMD-derived media as a sorbent for P in fixed bed sorption systems. The homogenous surface diffusion model (HSDM) was used to analyze fixed bed test data and to determine the value of related sorption parameters. The surface diffusion modulus Ed was found to be a useful predictor of sorption kinetics. Values of Ed < 0.2 were associated with early breakthrough of P, while more desirable S-shaped breakthrough curves resulted when 0.2 < Ed < 0.5. Computer simulations of the fixed bed process with the HSDM confirmed that if Ed was known, the shape of the breakthrough curve could be calculated. The surface diffusion coefficient D s was a critical factor in the calculation of Ed and could be estimated based on the sorption test conditions such as media characteristics, and influent flow rate and concentration. Optimal test results were obtained with a relatively small media particle size (average particle radius 0.028 cm) and resulted in 96 % removal of P from the influent over 46 days of continuous operation. These results indicate that fixed bed sorption of P would be a feasible option for the utilization of AMD residues, thus helping to decrease AMD treatment costs while at the same time ameliorating the impacts of P contamination.
Mininni, Giuseppe; Sbrilli, Andrea; Guerriero, Ettore; Rotatori, Mauro
2004-03-01
The factors affecting polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) formation were studied in sewage sludge incineration tests carried out on a demonstrative plant. The plant includes a circulating fluidised bed furnace (FBF) and a rotary kiln furnace (RKF), operating alternatively. During the tests sewage sludge was spiked with chlorinated hydrocarbons and the operating parameters of the afterburning chamber were varied. PCDD/F were sampled in each test before the bag filter, thus collecting the above contaminants before abatement systems. From the tests it appeared that PCDD/F were always produced in more abundance in the tests carried out by FBF than by RKF. The higher PCDD/F concentrations in the tests by FBF were reached when sewage sludge was spiked with a high dosage of a surrogate organic mixture of chlorinated hydrocarbons and when the afterburning chamber was used only as transit equipment with the burner off. The distribution of the different PCDD/F homologues was compared. P5CDFs were generally the prevalent fraction, with very few exceptions for the tests by RKF at high temperature of the afterburning chamber. As for FBF tests, it was found that the PCDD/F homologue profile depends on the afterburning chamber temperature.
Nutrient enhanced short rotation coppice for biomass in central Wales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodson, R.W.; Slater, F.M.; Lynn, S.F.
1993-12-31
Two projects involving short rotation willow coppice are taking place on the eastern side of the Cambrian Mountains in central Wales. One project examines, as an alternative land use, the potential of short rotation willow coppice variously enhanced by combinations of lime, phosphorous and potassium fertilizers and also digested sewage sludge on an acidic upland site at an altitude of 260m. The first year results of this project are described in detail, showing the necessity for limestone additions and also demonstrating that of the four willow varieties established, Salix dasyclados is the only possible, profitable fuel crop. The other projectmore » involving willow in a filter bed system is outlined along with an additional project investigating the effect of sewage sludge additions on the Rubus fruticosus production in a birch dominated mixed deciduous woodland.« less
Meng, Lingwei; Li, Xiangkun; Wang, Xinran; Ma, Kaili; Liu, Gaige; Zhang, Jie
2017-11-01
This study aimed to reveal how amoxicillin (AMX) affected the microbial community and the spread mechanism of antibiotic resistance genes (ARGs) in the AMX manufacture wastewater treatment system. For this purpose, a 1.47 L expanded granular sludge bed (EGSB) reactor was designed and run for 241days treating artificial AMX manufacture wastewater. 454 pyrosequencing was applied to analyze functional microorganisms in the system. The antibiotic genes OXA- 1 , OXA -2 , OXA -10 , TEM -1 , CTX-M -1 , class I integrons (intI1) and 16S rRNA genes were also examined in sludge samples. The results showed that the genera Ignavibacterium, Phocoenobacter, Spirochaeta, Aminobacterium and Cloacibacillus contributed to the degradation of different organic compounds (such as various sugars and amines). And the relative quantification of each β-lactam resistance gene in the study was changed with the increasing of AMX concentration. Furthermore the vertical gene transfer was the main driver for the spread of ARGs rather than horizontal transfer pathways in the system. Copyright © 2017. Published by Elsevier B.V.
Baawain, Mahad S; Al-Jabri, Mohsin; Choudri, B S
2014-02-01
There are more than 350 wastewater treatment plants distributed across different parts of Oman. Some of them produce large quantities of domestic sewage sludge, particularly this study focused on characterizing domestic sludge of six treatment plants that may contain various pollutants, therefore the proper management of domestic sewage sludge is essential. Samples of domestic sewage sludge were collected for each month over a period of one year in 2010. Samples of retained/recycled activated sludge (RAS) and waste activated sludge (WAS) were analyzed for elec-trical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content. All tests were conducted according to the Standard Method for the Examination of Water and Wastewater. Monitoring ofelectrical conductivity, nitrite and nitrate, the presence of chloride, sulfate and phosphate were higher than the other anions, the phosphate was found very high in all domestic STPs. The average obtained values of the cations in both domestic RAS and WAS samples were within the Omani Standards. The study showed the very high concentration of phosphate, it might be worth to further investigate on the sources of phosphate. Cations in both domestic RAS and WAS samples were low and suggest that the domestic sludge can be re used in agriculture. A regular maintenance should be performed to prevent any accumulation of some harmful substances which may affect the sludge quality and the sludge drying beds should be large enough to handle the produced sludge for better management.
Reconstruction of a constructed wetland with horizontal subsurface flow after 18 years of operation.
Hudcová, Tereza; Vymazal, Jan; Dunajský, Michal Kriška
2013-01-01
The constructed wetland (CW) for 326 PE with horizontal subsurface flow at Kotenčice, Central Bohemia, Czech Republic, was built in 1994. Despite the relatively high efficiency of the CW, the filtration beds suffered from clogging, and therefore it was decided in 2011 to rebuild the whole system. The new treatment system was built as an experimental system consisting of four different combinations of horizontal and vertical beds. The major aim of the design was to determine the best hybrid combination which then could be used in the future for refurbishment of older horizontal flow CWs or for the new systems. The mechanical pretreatment consists of mechanical bar screens, a new Imhoff tank, and the original settling tank which has been converted into the accumulation tank from where the wastewater is pumped into the wetlands. The filters are planted with Phragmites australis, Phalaris arundinacea, Iris pseudacorus, Iris sibirica, Glyceria maxima and Lythrum salicaria in order to evaluate and compare various plant species' effect on the treatment process. The new technology includes a tertiary treatment which consists of a greenhouse with a photo-reactor for the cultivation of algae and hydroponic systems (residual nutrients removal), sludge reed-beds and a composting field.
A new recycling technique for the waste tires reuse.
Derakhshan, Zahra; Ghaneian, Mohammad Taghi; Mahvi, Amir Hossein; Oliveri Conti, Gea; Faramarzian, Mohammad; Dehghani, Mansooreh; Ferrante, Margherita
2017-10-01
In this series of laboratory experiments, the feasibility of using fixed bed biofilm carriers (FBBC) manufactured from existing reclaimed waste tires (RWTs) for wastewater treatment was evaluated. To assess polyamide yarn waste tires as a media, the fixed bed sequence batch reactor (FBSBR) was evaluated under different organic loading rate (OLRs). An experimental model was used to study the kinetics of substrate consumption in biofilm. Removal efficiency of soluble chemical oxygen demand (SCOD) ranged by 76-98% for the FBSBR compared to 71-96% in a sequencing batch reactor (SBR). Removal efficiency of FBBC was significantly increased by inoculating these RWTs carriers. The results revealed that the sludge production yield (Y obs ) was significantly less in the FBSBR compared to the SBR (p < 0.01). It also produced less sludge and recorded a lower stabilization ratio (VSS/TSS). The findings show that the Stover-Kincannon model was the best fit (R 2 > 99%) in a FBSBR. Results from this study suggest that RWTs to support biological activity for a variety of wastewater treatment applications as a biofilm carrier have high potential that better performance as COD and TSS removal and sludge settling properties and effluent quality supported these findings. Copyright © 2017. Published by Elsevier Inc.
Cytryn, Eddie; Gelfand, Ilya; Barak, Yoram; van Rijn, Jaap; Minz, Dror
2003-01-01
Bacterial community structure and physiochemical parameters were examined in a sedimentation basin of a zero-discharge mariculture system. The system consisted of an intensively stocked fish basin from which water was recirculated through two separate treatment loops. Surface water from the basin was pumped over a trickling filter in one loop while bottom-water was recirculated through a sedimentation basin followed by a fluidized bed reactor in the other. Ammonia oxidation to nitrate in the trickling filter and organic matter digestion together with nitrate reduction in the sedimentation basin and fluidized bed reactor, allowed zero-discharge operation of the system. Relatively high concentrations of oxygen, nitrate, sulphate and organic matter detected simultaneously in the digestion basin suggested the potential for a wide range of microbially-mediated transformation processes. In this study, physiochemical parameters were correlated to bacterial diversity and distribution in horizontal and vertical profiles within this basin in an effort to obtain a basic understanding of the chemical and microbial processes in this system. Chemical activity and microbial diversity, the latter measured by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR) amplified 16S rDNA fragments, were higher in the sludge layer than in the overlying aqueous layer of the basin. Chemical parameters in sludge samples close to the basin inlet suggested enhanced microbial activity relative to other sampling areas with evidence of both nitrate and sulphate reduction. Four of the nine DGGE bands identified in this zone were affiliated with the Bacteroidetes phylum. Detected sequences closely related to sequences of organisms involved in the sulphur cycle included Desulfovibrio, Dethiosulfovibrio and apparent sulphur oxidizers from the gamma-proteobacteria. In addition, a number of sequences from the beta and alpha-proteobacteria were identified.
Wojciechowska, Ewa; Gajewska, Magdalena
2013-01-01
The retention of heavy metals at two pilot-scale treatment wetlands (TWs), consisting of two vertical flow beds (VSSF) followed by a horizontal flow bed (HSSF) was studied. The TWs received high-strength wastewater: reject waters from sewage sludge centrifugation (RW) and landfill leachate (LL). The concentrations of the metals Fe, Mn, Zn, Al, Pb, Cu, Cd, Co, and Ni were measured in treated wastewater, substrate of the beds and in plant material harvested from the beds (separately in above ground (ABG) parts and below ground (BG) parts). The TWs differed in metals retention. In the RW treating TW the metal removal efficiencies varied from 27% for Pb to over 97% for Fe and Al. In the LL treating system the concentrations of most metals decreased after VSSF-1 and VSSF-2 beds; however, in the outflow from the last (HSSF) bed, the concentrations of metals (apart from Al) increased again, probably due to the anaerobic conditions at the bed. A major removal pathway was sedimentation and adsorption onto soil substrate as well as precipitation and co-precipitation. In the LL treating facility the plants contained substantially higher metal concentrations in BG parts, while the upward movement of metals was restricted. In the RW treating facility the BG/ABG ratios were lower, indicating that metals were transported to shoots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, V.M.; Wright, M.A.
1995-12-31
The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first two quarters of the project, the thrust of the work directed towards characterizing the various coal combustion residues and FGD residue, i.e., scrubber sludge. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADK unit l-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM, unit l-6), bottom ash, and scrubbermore » sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}.0.5H{sub 2}O) phase. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disk,- from coal combustion residues. This has been achieved. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites. Also, these results along with mechanical behavior of the fabricated disks lead us to believe that the combination of surface altered PCC fly ash and scrubber sludge particles, together ed ash particles are ideal for our composite materials.« less
Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Zhang, Xinbo; Wang, Xiaochang C; Zhang, Qionghua; Chen, Rong
2016-05-01
In this study, new sponge modified plastic carriers for moving bed biofilm reactor (MBBR) was developed. The performance and membrane fouling behavior of a hybrid MBBR-membrane bioreactor (MBBR-MBR) system were also evaluated. Comparing to the MBBR with plastic carriers (MBBR), the MBBR with sponge modified biocarriers (S-MBBR) showed better effluent quality and enhanced nutrient removal at HRTs of 12h and 6h. Regarding fouling issue of the hybrid systems, soluble microbial products (SMP) of the MBR unit greatly influenced membrane fouling. The sponge modified biocarriers could lower the levels of SMP in mixed liquor and extracellular polymeric substances in activated sludge, thereby mitigating cake layer and pore blocking resistances of the membrane. The reduced SMP and biopolymer clusters in membrane cake layer were also observed. The results demonstrated that the sponge modified biocarriers were capable of improving overall MBBR performance and substantially alleviated membrane fouling of the subsequent MBR unit. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao
2013-01-01
In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.
Physicochemical changes of microbe and solid surface properties during biofilm formation
NASA Astrophysics Data System (ADS)
Sfaelou, Stavroula; Vakros, John; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.
2013-04-01
Cell immobilization is a promising biotechnology process. For example, entrapment of bacteria cells on synthetic polymeric matrices such as biocarriers is widely used for wastewater treatment because they have strong mechanical strength and durability in contrast to natural polymers. This method is based on the formation of biofilm on the surface of the used carriers and combines two different processes; attached and suspended biomass in a hybrid system. Previous studies have shown that immobilized cell systems have the potential to degrade toxic chemicals faster than conventional wastewater treatment systems because high densities of specialized microorganisms are used in immobilized cell systems. The present study elucidates the surface charge and properties of activated sludge and their role in the formation of biofilm. This information can be used for the optimization of the formation of biofilms as well as for the study of the transport of microorganisms in different environments. The two types of biocarriers that were used in this study are polyvinyl alcohol (PVA)-gel beads and Moving Bed Biofilm Reactor (MBBR) carriers. The sludge samples that were investigated were taken from the aeration tank of the wastewater treatment plant of University of Patras (Greece). Measurements of the surface charge of the sludge, the biocarriers and the formed biofilm, were performed using potentiometric mass titrations with different kinds of electrolytes (e.g. NaCl, NaNO3) and at pH ranging from 3 to 11. The determination of pzc and surface charge of activated sludge and biocarriers is significant, because it can provide new valuable informations about the interaction mechanisms and the formation of biofilms. In each case, the point of zero charge (pzc) was identified as the common intersection point of the potentiometric curve of the blank solution of the electrolyte with the corresponding curves of each material. The pzc value for the biofilm was 6.1 to 6.7 and 6.6 to 6.9 for PVA gel and MBBR, respectively. These values differ both from the pzc values found for PVA biocarriers (pzc = 9.4; no pzc value was obtained for MBBR as expected based on its hydrophobic nature and the absence of surface groups with acid-base behavior) and the pzc value of activated sludge (activated sludge mixed liquor: pzc = 8.0 to 8.2, solid activated sludge: pzc = 7.2 to 7.3). These results lead us to the conclusion that the formed biofilms have different acid-base behavior and properties in relation to the activated sludge and the biocarriers. This fact is in accordance to previous studies, where biofilm-associated cells can be differentiated from their suspended counterparts due to the generation of an extracellular polymeric substance (EPS) matrix. One other possible explanation is that the complicated processes of the biofilm formation can alter the distribution of different cells in the sludge compared with the cell distribution in the suspended unsupported sludge.
BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.
2014-01-01
Abstract Background There are more than 350 wastewater treatment plants distributed across different parts of Oman. Some of them produce large quantities of domestic sewage sludge, particularly this study focused on characterizing domestic sludge of six treatment plants that may contain various pollutants, therefore the proper management of domestic sewage sludge is essential. Methods Samples of domestic sewage sludge were collected for each month over a period of one year in 2010. Samples of retained/recycled activated sludge (RAS) and waste activated sludge (WAS) were analyzed for elec-trical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content. All tests were conducted according to the Standard Method for the Examination of Water and Wastewater. Results Monitoring ofelectrical conductivity, nitrite and nitrate, the presence of chloride, sulfate and phosphate were higher than the other anions, the phosphate was found very high in all domestic STPs. The average obtained values of the cations in both domestic RAS and WAS samples were within the Omani Standards. Conclusion The study showed the very high concentration of phosphate, it might be worth to further investigate on the sources of phosphate. Cations in both domestic RAS and WAS samples were low and suggest that the domestic sludge can be re used in agriculture. A regular maintenance should be performed to prevent any accumulation of some harmful substances which may affect the sludge quality and the sludge drying beds should be large enough to handle the produced sludge for better management. PMID:26060740
Kaindl, Nikolaus
2010-01-01
A paper mill producing 500,000 ton of graphic paper annually has an on-site wastewater treatment plant that treats 7,240,000 m³ of wastewater per year, mechanically first, then biologically and at last by ozonation. Increased paper production capacity led to higher COD load in the mill effluent while production of higher proportions of brighter products gave worse biodegradability. Therefore the biological capacity of the WWTP needed to be increased and extra measures were necessary to enhance the efficiency of COD reduction. The full scale implementation of one MBBR with a volume of 1,230 m³ was accomplished in 2000 followed by another MBBR of 2,475 m³ in 2002. An ozonation step with a capacity of 75 kg O₃/h was added in 2004 to meet higher COD reduction demands during the production of brighter products and thus keeping the given outflow limits. Adding a moving bed biofilm reactor prior to the existing activated sludge step gives: (i) cost advantages when increasing biological capacity as higher COD volume loads of MBBRs allow smaller reactors than usual for activated sludge plants; (ii) a relief of strain from the activated sludge step by biological degradation in the MBBR; (iii) equalizing of peaks in the COD load and toxic effects before affecting the activated sludge step; (iv) a stable volume sludge index below 100 ml/g in combination with an optimization of the activated sludge step allows good sludge separation--an important condition for further treatment with ozone. Ozonation and subsequent bio-filtration pre-treated waste water provide: (i) reduction of hard COD unobtainable by conventional treatment; (ii) controllable COD reduction in a very wide range and therefore elimination of COD-peaks; (iii) reduction of treatment costs by combination of ozonation and subsequent bio-filtration; (iv) decrease of the color in the ozonated wastewater. The MBBR step proved very simple to operate as part of the biological treatment. Excellent control of the COD-removal rate in the ozone step allowed for economical usage and therefore acceptable operation costs in relation to the paper production.
Study on the biomass and size spectra of bio-particles in vermifilter biofilms.
Di, Wanyin; Xing, Meiyan
2018-09-15
In biological processes of sludge treatment, the sludge yield is closely related to the energy dissipation of entire microbial system. The vermifilter (VF), a novel biofilter, works efficiently due to the introduction of earthworms, which modifies the energy flow pathway through the variations of microbial size structure. For a deep insight into the sludge reduction in the VF, the biomass size spectrum (BSS) was employed to map the energy dissipation in the VF. The results indicated that bio-particles in the size class of [31, 63] μm were reduced most in the excess sludge after the VF treatment. In biofilms, bio-particles in the size class of [31, 63] μm varied most with the filter depth and earthworm density. Eight biomass and size spectra (BSS) were established for all beds of the VF and BF (the control of the VF, without earthworms). The normalized BSS were all linear both in the VF and BF, and their linear regression parameters, the slopes (k) and intercepts (b), varied with the filter depth and the earthworm density. The k and b of the VF were both significantly different from those of the BF. According to the k, the productivity level of largest bio-particles was higher in the VF than in the BF. According to the b, bio-particles at the bottom of size structure could be taken faster in the VF than in the BF. At last, some improvement approaches with some tries were proposed to enhance the sludge treatment capacity of the VF. Copyright © 2018 Elsevier B.V. All rights reserved.
Baawain, Mahad S; Al-Jabri, Mohsin; Choudri, B S
2015-11-01
Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 μS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management.
BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.
2015-01-01
Background: Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Methods: Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). Results: The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 μS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. Conclusion: The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management. PMID:26744704
Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri
2014-12-15
Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Valipour, Alireza; Sithebe, Thami
2013-01-01
This study was undertaken to evaluate the potential future use of three biological processes in order to designate the most desired solution for on-site treatment of wastewater from residential complexes, that is, conventional activated sludge process (CASP), moving-bed biofilm reactor (MBBR), and packed-bed biofilm reactor (PBBR). Hydraulic retention time (HRT) of 6, 3, and 2 h can be achieved in CASP, MBBR, and PBBR, respectively. The PBBR dealt with a particular arrangement to prevent the restriction of oxygen transfer efficiency into the thick biofilms. The laboratory scale result revealed that the overall reduction of 87% COD, 92% BOD5, 82% TSS, 79% NH3-N, 43% PO4-P, 95% MPN, and 97% TVC at a HRT of 2 h was achieved in PBBR. The microflora present in the system was also estimated through the isolation, identification, and immobilization of the microorganisms with an index of COD elimination. The number of bacterial species examined on the nutrient agar medium was 22 and five bacterial species were documented to degrade the organic pollutants by reducing COD by more than 43%. This study illustrated that the present PBBR with a specific modified internal arrangement could be an ideal practice for promoting sustainable decentralization and therefore providing a low wastage sludge biomass concentration. PMID:24327802
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, V.M.; Wright, M.A.
1995-12-31
The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADM unit1-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM unit1-6), bottom ash, and scrubber sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whosemore » lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}0.5H{sub 2}O) phase. In the second and third quarters the focus of research has been on developing protocols for the formation of advanced brake composites and structural composites. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disks from coal combustion residues. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites.« less
Zhao, Bowei; Li, Jiangzheng; Buelna, Gerardo; Dubé, Rino; Le Bihan, Yann
2016-01-01
A combined upflow anaerobic sludge blanket (UASB)-trickling biofilter (TBF) process was constructed to treat swine wastewater, a typical high-strength organic wastewater with low carbon/nitrogen ratio and ammonia toxicity. The results showed that the UASB-TBF system can remarkably enhance the removal of pollutants in the swine wastewater. At an organic loading rate of 2.29 kg/m(3) d and hydraulic retention time of 48 h in the UASB, the chemical oxygen demand (COD), Suspended Solids and Total Kjeldahl Nitrogen removals of the combined process reached 83.6%, 84.1% and 41.2%, respectively. In the combined system the UASB served as a pretreatment process for COD removal while nitrification and denitrification occurred only in the TBF process. The TBF performed reasonably well at a surface hydraulic load as high as 0.12 m(3)/m(2) d. Since the ratio of influent COD to total mineral nitrogen was less than 3.23, it is reasonable to suggest that the wood chips in TBF can serve as a new carbon source for denitrification.
40 CFR 60.153 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator subject to...) Install, calibrate, maintain and operate temperature measuring devices at every hearth in multiple hearth... zones of electric incinerators. For multiple hearth furnaces, a minimum of one temperature measuring...
Locally produced natural conditioners for dewatering of faecal sludge
Gold, Moritz; Dayer, Pauline; Faye, Marie Christine Amie Sene; Clair, Guillaume; Seck, Alsane; Niang, Seydou; Morgenroth, Eberhard; Strande, Linda
2016-01-01
ABSTRACT In urban areas of low-income countries, treatment of faecal sludge (FS) is insufficient or non-existent. This results in large amounts of FS being dumped into the environment. Existing treatment technologies for FS, such as settling-thickening tanks and drying beds, are land intensive which is limiting in urban areas. Enhanced settling and dewatering by conditioning was evaluated in order to reduce the treatment footprint (or increase treatment capacity). Conventional wastewater conditioners, such as commercially available lime and polymers, are expensive, and commonly rely on complex supply chains for use in low-income countries. Therefore, the treatment performance of five conditioners which could be produced locally was evaluated: Moringa oleifera seeds and press cake, Jatropha curcas seeds, Jatropha Calotropis leaves and chitosan. M. oleifera seeds and press cake, and chitosan improved settling and dewatering and had a similar performance compared to lime and polymers. Optimal dosages were 400–500 kg M. oleifera/t TS, 300–800 kg lime/t TS and 25–50 kg polymer solution/t TS. In comparison, chitosan required 1.5–3.75 kg/t TS. These dosages are comparable to those recommended for wastewater (sludge). The results indicate that conditioning of FS can reduce total suspended solids (TSS) in the effluent of settling-thickening tanks by 22–81% and reduce dewatering time with drying beds by 59–97%. This means that the area of drying beds could be reduced by 59–97% with end-use as soil conditioner, or 9–26% as solid fuel. Least expensive options and availability will depend on the local context. In Dakar, Senegal, chitosan produced from shrimp waste appears to be most promising. PMID:26984372
Locally produced natural conditioners for dewatering of faecal sludge.
Gold, Moritz; Dayer, Pauline; Faye, Marie Christine Amie Sene; Clair, Guillaume; Seck, Alsane; Niang, Seydou; Morgenroth, Eberhard; Strande, Linda
2016-11-01
In urban areas of low-income countries, treatment of faecal sludge (FS) is insufficient or non-existent. This results in large amounts of FS being dumped into the environment. Existing treatment technologies for FS, such as settling-thickening tanks and drying beds, are land intensive which is limiting in urban areas. Enhanced settling and dewatering by conditioning was evaluated in order to reduce the treatment footprint (or increase treatment capacity). Conventional wastewater conditioners, such as commercially available lime and polymers, are expensive, and commonly rely on complex supply chains for use in low-income countries. Therefore, the treatment performance of five conditioners which could be produced locally was evaluated: Moringa oleifera seeds and press cake, Jatropha curcas seeds, Jatropha Calotropis leaves and chitosan. M. oleifera seeds and press cake, and chitosan improved settling and dewatering and had a similar performance compared to lime and polymers. Optimal dosages were 400-500 kg M. oleifera/t TS, 300-800 kg lime/t TS and 25-50 kg polymer solution/t TS. In comparison, chitosan required 1.5-3.75 kg/t TS. These dosages are comparable to those recommended for wastewater (sludge). The results indicate that conditioning of FS can reduce total suspended solids (TSS) in the effluent of settling-thickening tanks by 22-81% and reduce dewatering time with drying beds by 59-97%. This means that the area of drying beds could be reduced by 59-97% with end-use as soil conditioner, or 9-26% as solid fuel. Least expensive options and availability will depend on the local context. In Dakar, Senegal, chitosan produced from shrimp waste appears to be most promising.
Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A
2016-01-01
In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant.
Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor
Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong
2015-01-01
Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485
Hu, Guangji; Li, Jianbing; Zhang, Xinying; Li, Yubao
2017-05-01
The treatment of waste biomass (sawdust) through co-pyrolysis with refinery oily sludge was carried out in a fixed-bed reactor. Response surface method was applied to evaluate the main and interaction effects of three experimental factors (sawdust percentage in feedstock, temperature, and heating rate) on pyrolysis oil and char yields. It was found that the oil and char yields increased with sawdust percentage in feedstock. The interaction between heating rate and sawdust percentage as well as between heating rate and temperature was significant on the pyrolysis oil yield. The higher heating value of oil originated from sawdust during co-pyrolysis at a sawdust/oily sludge ratio of 3:1 increased by 5 MJ/kg as compared to that during sawdust pyrolysis alone, indicating a synergistic effect of co-pyrolysis. As a result, petroleum sludge can be used as an effective additive in the pyrolysis of waste biomass for improving its energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lamoureux, E.M.; Brownawell, Bruce J.; Bothner, Michael H.
1996-01-01
Linear alkylbenzenes (LABs) are sensitive source-specific tracers of sewage inputs to the marine environment. Because they are highly particle reactive and nonspecifically sorbed to organic matter, LABs are potential tracers of the transport of both sludge-derived organic matter and other low solubility hydrophobic contaminants (e.g., PCBs and PAHs); sediment trap studies at the 106-Mile Site have shown LABs to be valuable in testing models of sludge deposition to the sea floor. In this study we report on the distributions of LABs, PCBs, PAHs, and Ag in surface sediments collected within a month of the complete cessation of dumping (July, 1992) in the vicinity of the dump site. Total LAB concentrations were lower than those measured by Takada and coworkers in samples from nearby sites collected in 1989. LABs from both studies appear to be significantly depleted (6 to 25-fold) in surface sediments relative to excess Ag (another sludge tracer) when compared to sewage sludge and sediment trap compositions. Comparison of LAB sediment inventories to model predictions of sludge particle fluxes supports the contention that LABs have been lost from the bed. The use of LABs to examine the short-or long-term fate of sludge derived materials in deep-sea sediments should be questioned. The causes of this LAB depletion are unclear at this point, and we discuss several hypotheses. The concentrations of total PCBs and PAHs are both correlated with sludge tracers, suggesting that there may be a measurable contribution of sludge-derived inputs on top of other nonpoint sources of these contaminant classes. This possibility is consistent with the composition of these contaminants determined in recent and historical analyses of sewage sludge.
Bressani-Ribeiro, T; Brandt, E M F; Gutierrez, K G; Díaz, C A; Garcia, G B; Chernicharo, C A L
2017-04-01
This paper aims to present perspectives for energy (thermal and electric) and nutrient (N and S) recovery in domestic sewage treatment systems comprised of upflow anaerobic sludge blanket (UASB) reactors followed by sponge-bed trickling filters (SBTF) in developing countries. The resource recovery potential was characterized, taking into account 114 countries and a corresponding population of 968.9 million inhabitants living in the tropical world, which were grouped into three desired ranges in terms of cities' size. For each of these clusters, a technological arrangement flow-sheet was proposed, depending on their technical and economic viability from our best experience. Considering the population living in cities over 100, 000 inhabitants, the potential of energy and nutrient recovery via the sewage treatment scheme would be sufficient to generate electricity for approximately 3.2 million residents, as well as thermal energy for drying purposes that could result in a 24% volume reduction of sludge to be transported and disposed of in landfills. The results show that UASB/SBTF systems can play a very important role in the sanitation and environmental sector towards more sustainable sewage treatment plants.
SOURCES OF PCBS TO THE ATMOSPHERE IN CHICAGO
The project will obtain additional short-term PCB samples in southwestern Chicago to determine the amount of PCB emissions to the air from a sludge drying facility. Four different types of samples will be collected: (1) short-term ambient air samples surrounding the drying beds,...
Wongnoi, Rachbordin; Songkasiri, Warinthorn; Phalakornkule, Chantaraporn
2007-02-01
The objective of this study was to investigate the influence of a three-phase separator configuration on the performance of an upflow anaerobic sludge bed (USAB) treating wastewater from a fruit canning factory. The performances of two 30-L UASB reactors--one with a modified three-phase separator giving a spiral flow pattern and the other with a conventional configuration-were investigated in parallel. Wastewater, with a chemical oxygen demand (COD) concentration between 2000 and 7000 mg/L, was obtained from a fruit-canning factory. Based on the effluent data of the first 100 operation days, the UASB with the three-phase separator giving spiral flow patterns yielded up to 25% lower biomass washout. It also showed better efficiencies in treating wastewater--up to 60% lower effluent COD, up to 20% higher COD percent removal, and up to 29% higher biogas production. This work presents evidence of an improvement on the conventional physical design of a UASB.
Zhai, Xiao-Min; Gao, Xu; Zhang, Man-Man; Jia, Li; Guo, Jin-Song
2012-07-01
In order to deeply explore the mechanism of sludge reduction in OSA system, carbon balance was performed in an anoxic-oxic-settling-anaerobic (A + OSA) system and a reference AO system to investigate effects of inserting a sludge holding tank in sludge cycle line on the sludge reduction process. Meanwhile, carbon mass change in each reaction unit was identified in terms of solid, liquid and gas phases. The causes of excess sludge reduction in A + OSA system were deduced. The carbon balance results show that when the hydraulic retention time in the sludge holding tank is 7.14 h, carbon percent in solid phase of the sludge reduction system is nearly 50% higher than that of the reference system, supporting the consequence that sludge reduction rate of 49.98% had been achieved. The insertion of a sludge holding tank in the sludge return circuit can be effective in sludge reduction. Carbon changes in each unit reveal that the amount of carbon consumed for biosynthesis in the anoxic and oxic tanks (main reaction zone) of the sludge reduction system is higher than in that of the reference system. Sludge decay is observed in the sludge holding tank. Furthermore, CH4 released from the sludge holding tank is significantly higher than that from the main reaction zone. The DGGE profiles show that there are hydrolytic-fermentative bacteria in the sludge holding tank related to sludge decay. The excess sludge reduction in the A + OSA system could be a result of the combination of sludge decay in the sludge holding tank and sludge compensatory growth in the main reaction cell.
Yamaguchi, T; Yao, Y; Kihara, Y
2006-01-01
A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.
Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors
Fermoso, Fernando G.; Collins, Gavin; Bartacek, Jan; O’Flaherty, Vincent
2008-01-01
The effect of nickel deprivation from the influent of a mesophilic (30°C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5–15 g COD l−1 day−1 for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (±0.167) g CH4-COD g VSS−1 day−1 compared to 2.027 (±0.111) g CH4-COD g VSS−1 day−1 in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 μM Ni (dosed as NiCl2) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation. PMID:18247139
A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment.
Wu, Yuanyuan; Wang, Cuiping; Liu, Xiaoji; Ma, Hailing; Wu, Jing; Zuo, Jiane; Wang, Kaijun
2016-07-01
A novel method of two-phase anaerobic digestion where the acid reactor is operated at low pH 4.0 was proposed and investigated. A completely stirred tank acid reactor and an up-flow anaerobic sludge bed methane reactor were operated to examine the possibility of efficient degradation of lactate and to identify their optimal operating conditions. Lactate with an average concentration of 14.8g/L was the dominant fermentative product and Lactobacillus was the predominant microorganism in the acid reactor. The effluent from the acid reactor was efficiently degraded in the methane reactor and the average methane yield was 261.4ml/gCOD removed. Organisms of Methanosaeta were the predominant methanogen in granular sludge of methane reactor, however, after acclimation hydrogenotrophic methanogens enriched, which benefited for the conversion of lactate to acetate. The two-phase AD system exhibited a low hydraulic retention time of 3.56days and high methane yield of 348.5ml/g VS removed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dereli, Recep Kaan; van der Zee, Frank P; Heffernan, Barry; Grelot, Aurelie; van Lier, Jules B
2014-02-01
The potential of anaerobic membrane bioreactors (AnMBRs) for the treatment of lipid rich corn-to-ethanol thin stillage was investigated at three different sludge retention times (SRT), i.e. 20, 30 and 50 days. The membrane assisted biomass retention in AnMBRs provided an excellent solution to sludge washout problems reported for the treatment of lipid rich wastewaters by granular sludge bed reactors. The AnMBRs achieved high COD removal efficiencies up to 99% and excellent effluent quality. Although higher organic loading rates (OLRs) up to 8.0 kg COD m(-3) d(-1) could be applied to the reactors operated at shorter SRTs, better biological degradation efficiencies, i.e. up to 83%, was achieved at increased SRTs. Severe long chain fatty acid (LCFA) inhibition was observed at 50 days SRT, possibly caused by the extensive dissolution of LCFA in the reactor broth, inhibiting the methanogenic biomass. Physicochemical mechanisms such as precipitation with divalent cations and adsorption on the sludge played an important role in the occurrence of LCFA removal, conversion, and inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biological Nitrogen Removal through Nitritation Coupled with Thiosulfate-Driven Denitritation
Qian, Jin; Zhou, Junmei; Zhang, Zhen; Liu, Rulong; Wang, Qilin
2016-01-01
A novel biological nitrogen removal system based on nitritation coupled with thiosulfate-driven denitritation (Nitritation-TDD) was developed to achieve a high nitrogen removal rate and low sludge production. A nitritation sequential batch reactor (nitritation SBR) and an anoxic up-flow sludge bed (AnUSB) reactor were applied for effective nitritation and denitritation, respectively. Above 75% nitrite was accumulated in the nitritation SBR with an influent ammonia loading rate of 0.43 kg N/d/m3. During Nitritation-TDD operation, particle sizes (d50) of the sludge decreased from 406 to 225 um in nitritation SBR and from 327–183 um in AnUSB reactor. Pyrosequencing tests revealed that ammonium-oxidizing bacteria (AOB) population was stabilized at approximately 7.0% (calculated as population of AOB-related genus divided by the total microbial population) in the nitritation SBR. In contrast, nitrite-oxidizing bacteria (NOB) population decreased from 6.5–0.6% over the same time, indicating the effective nitrite accumulation in the nitritation SBR. Thiobacillus, accounting for 34.2% in the AnUSB reactor, was mainly responsible for nitrogen removal via autotrophic denitritation, using an external source of thiosulfate as electron donor. Also, it was found that free nitrous acid could directly affect the denitritation activity. PMID:27272192
The application of moving bed biofilm reactor to denitrification process after trickling filters.
Kopec, Lukasz; Drewnowski, Jakub; Kopec, Adam
2016-12-01
The paper presents research of a prototype moving bed biofilm reactor (MBBR). The device was used for the post-denitrification process and was installed at the end of a technological system consisting of a septic tank and two trickling filters. The concentrations of suspended biomass and biomass attached on the EvU Perl moving bed surface were determined. The impact of the external organic carbon concentration on the denitrification rate and efficiency of total nitrogen removal was also examined. The study showed that the greater part of the biomass was in the suspended form and only 6% of the total biomass was attached to the surface of the moving bed. Abrasion forces between carriers of the moving bed caused the fast stripping of attached microorganisms and formation of flocs. Thanks to immobilization of a small amount of biomass, the MBBR was less prone to leaching of the biomass and the occurrence of scum and swelling sludge. It was revealed that the maximum rate of denitrification was an average of 0.73 gN-NO 3 /gDM·d (DM: dry matter), and was achieved when the reactor was maintained in external organic carbon concentration exceeding 300 mgO 2 /dm 3 chemical oxygen demand. The reactor proved to be an effective device enabling the increase of total nitrogen removal from 53.5% to 86.0%.
Effects of deliquescent salts in soils of polar Mars on the flow of the Northern Ice Cap
NASA Astrophysics Data System (ADS)
Fisher, D. A.; Hecht, M. H.; Kounaves, S.; Catling, D.
2008-12-01
The discovery of substantial amounts of magnesium and perchlorate by Phoenix' "Wet Chemistry Lab" (WCL) in the soil of Polar Mars suggests that magnesium perchlorate could be the dominant salt in the polar region's soils. This prospect opens some unexpected doors for moving liquid water around at temperatures as low as -68C. In its fully hydrated form ,this salt water mixture has a high density (~ 1700 kgm /cubic meter) (Besley and Bottomley,1969) and a freezing point of -68C (Pestova et al., 2005).This perchlorate is very deliquescent and gives off heat as it melts ice. About 1.8 gram of ice can be 'melted' by 1 gm of pure magnesium perchlorate . If the reported 1 percent perchlorate is typical of polar soils and if 5 percent of the Northern Permanent Ice Cap is soil then the perchorate , makes up about 0.0005 the of the ice cap. Given the average thickness of the ice cap is about 2000 meters,this suggests there enough perchorate in the ice cap to generate about 2m of salty water at the bed. Because of its density the perclorate salty water would pool over impervious layers and make the bed into a perchorate sludge that could be mobilized and deformed by the overburden of ice. The deformation of mobile beds is a well known phenomenon on some terrestrial glaciers presently and was thought to have played a major role during the Wisconsinan ice age (Fisher et al., 1985) . The perchorate sludge would be deformed and moved outwards possibly resulting its re-introduction to the polar environment. Having a deliquescent salt sludge at the bed whose melting point is -68C would mean that the ice cap could slide on its deformable bed while the ice itself was still very cold and stiff . This possibility has been modeled with a 2D time varying model . Adding the deformable bed material allows ice cap motion even at ice temperatures cold enough to generate and preserve the scarp/trough features. When the perchlorate formation mechanisms and rates are known the ultimate importance of it in the water cycle of Mars will be clearer. The ice cap has long been thought of as a possible re-charge area for the deep water return flow (Clifford , 1987) . If perchlorate is formed sufficiently quickly, this view would be strengthened in spite of the low temperatures. Clifford S.M. 1987. Polar basal melting. JGR. Vol. 92, No. B9, pp 9135-9152. Besley L. M. and G.A. Bottomley. 1969. The water vapour equilibria over magnesium perchlorate hydrates. Journal of Chemical Thermodynamics. 1, pp13-19. Fisher, D.A., Reeh, N., and Langley, K. 1985. Objective reconstructions of the late Wisconsinan Laurentide Ice Sheet and the significance of deformable beds. Géographie physique et Quaternaire, v. 39, no. 3, p. 229-238. Pestova O. N.,Myund L.A.,Khripun M.K. and A.V. Prigaro. 2005. Polythermal study of systems M(ClO4)2-H2O (M2+=Mg2+, Ca2+, Sr2+, Ba2+). Russian Journal of Applied Chemistry , Vol.78.No.3,pp409-413. class="ab'>
Maharjan, Namita; Nomoto, Naoki; Tagawa, Tadashi; Okubo, Tsutomu; Uemura, Shigeki; Khalil, Nadeem; Hatamoto, Masashi; Yamaguchi, Takashi; Harada, Hideki
2018-04-06
This paper assesses the technical and economic sustainability of a combined system of an up-flow anaerobic sludge blanket (UASB)-down-flow hanging sponge (DHS) for sewage treatment. Additionally, this study compares UASB-DHS with current technologies in India like trickling filters (TF), sequencing batch reactor (SBR), moving bed biofilm reactor (MBBR), and other combinations of UASB with post-treatment systems such as final polishing ponds (FPU) and extended aeration sludge process (EASP). The sustainability of the sewage treatment plants (STPs) was evaluated using a composite indicator, which incorporated environmental, societal, and economic dimensions. In case of the individual sustainability indicator study, the results showed that UASB-FPU was the most economically sustainable system with a score of 0.512 and aeration systems such as MBBR, EASP, and SBR were environmentally sustainable, whereas UASB-DHS system was socially sustainable. However, the overall comparative analysis indicated that the UASB-DHS system scored the highest value of 2.619 on the global sustainability indicator followed by EASP and MBBR with scores of 2.322 and 2.279, respectively. The highlight of this study was that the most environmentally sustainable treatment plants were not economically and socially sustainable. Moreover, sensitivity analysis showed that five out of the seven scenarios tested, the UASB-DHS system showed good results amongst the treatment system.
Liao, Runhua; Li, Yan; Yu, Xuemin; Shi, Peng; Wang, Zhu; Shen, Ke; Shi, Qianqian; Miao, Yu; Li, Wentao; Li, Aimin
2014-04-01
The disposal of waste brines has become a major challenge that hinders the wide application of ion-exchange resins in the water industry in recent decades. In this study, high sulfate removal efficiency (80%-90%) was achieved at the influent sulfate concentration of 3600 mg/L and 3% NaCl after 145 days in an expanded granular sludge bed (EGSB) reactor. Furthermore, the feasibility of treating synthetic waste brine containing high levels of sulfate and nitrate was investigated in a single EGSB reactor during an operation period of 261 days. The highest nitrate and sulfate loading rate reached 6.38 and 5.78 kg/(m(3)·day) at SO(2-)4-S/NO(-)3-N mass ratio of 4/3, and the corresponding removal efficiency was 99.97% and 82.26% at 3% NaCl, respectively. Meanwhile, 454-pyrosequencing technology was used to analyze the bacterial diversity of the sludge on the 240th day for stable operation of phase X. Results showed that a total of 9194 sequences were obtained, which could be affiliated to 14 phyla, including Proteobacteria, Firmicutes, Chlorobi, Bacteroidetes, Synergistetes and so on. Proteobacteria (77.66%) was the dominant microbial population, followed by Firmicutes (12.23%) and Chlorobi (2.71%). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Development and Design of Sludge Freezing Beds
1988-12-01
Wastewater Treatment/Disposal/Reuse. New York: McGraw Hill, 2nd ed. Morin, W., R. Lewandowski and R. Zaloum (1986) Le traitement des boues a l’aide du gel...degel naturel et epandage des boues en foret. Draft report for Environment Canada, Mon- treal. National Oceanic and Atmospheric Administration (1984
Vinyl chloride removal from an air stream by biotrickling filter.
Faraj, S H Esmaeili; Esfahany, M Nasr; Kadivar, M; Zilouei, H
2012-01-01
A biofiltration process was used for degradation of vinyl chloride as a hazardous material in the air stream. Three biotrickling filters in series-parallel allowing uniform feed and moisture distribution all over the bed were used. Granular activated carbon mixed with compost was employed as carrier bed. The biological culture consisted of mixture of activated sludge from PVC wastewater treatment plant. Concurrent flow of gas and liquid was used in the bed. Results indicated that during the operation period of 110 days, the biotrickling bed was able to remove over 35% of inlet vinyl chloride. Maximum elimination capacity was calculated to be 0.56 g.m(-3).hr(-1). The amount of chlorine accumulated in the circulating liquid due to the degradation of vinyl chloride was measured to be equal to the vinyl chloride removed from the air stream.
Koné, Doulaye; Cofie, Olufunke; Zurbrügg, Christian; Gallizzi, Katharina; Moser, Daya; Drescher, Silke; Strauss, Martin
2007-11-01
This study investigates helminth eggs removal and inactivation efficiency in a treatment process combining faecal sludge (FS) dewatering and subsequent co-composting with organic solid waste as a function of windrow turning frequency. Fresh public toilet sludge and septage mixed at a 1:2 ratio were dewatered on a drying bed. Biosolids with initial loads of 25-83 helminth eggs/g total solids (TS) were mixed with solid waste as bulking material for co-composting at a 1:2 volume ratio. Two replicate sets of compost heaps were mounted in parallel and turned at different frequencies during the active composting period: (i) once every 3 days and (ii) once every 10 days. Turning frequency had no effect on helminth eggs removal efficiency. In both setups, helminth eggs were reduced to <1 viable egg/g TS, thereby complying with the WHO guidelines 2006 for the safe reuse of FS.
Ongen, Atakan; Ozcan, H Kurtulus; Arayıcı, Semiha
2013-12-15
This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity. Copyright © 2013 Elsevier B.V. All rights reserved.
Sibrell, P.L.; Watten, B.; Boone, T.; ,
2003-01-01
A new process utilizing pulsed fluidized limestone beds was tested for the remediation of acid mine drainage at the Friendship Hill National Historic Site, in southwestern Pennsylvania. A 230 liter-per-minute treatment system was constructed and operated over a fourteen-month period from June 2000 through September 2001. Over this period of time, 50,000 metric tons of limestone were used to treat 50 million liters of water. The influent water pH was 2.5 and acidity was 1000 mg/L as CaCO3. Despite the high potential for armoring at the site, effluent pH during normal plant operation ranged from 5.7 to 7.8 and averaged 6.8. As a result of the high influent acidity, sufficient CO2 was generated and recycled to provide a net alkaline discharge with about 50 mg/L as CaCO3 alkalinity. Additions of commercial CO2 increased effluent alkalinity to as high as 300 mg/L, and could be a useful process management tool for transient high flows or acidities. Metal removal rates were 95% for aluminum (60 mg/L in influent), 50 to 90% for iron (Fe), depending on the ratio of ferrous to ferric iron, which varied seasonally (200 mg/L in influent), and <10% of manganese (Mn) (10 mg/L in influent). Ferrous iron and Mn removal was incomplete because of the high pH required for precipitation of these species. Iron removal could be improved by increased aeration following neutralization, and Mn removal could be effected by a post treatment passive settling/oxidation pond. Metal hydroxide sludges were settled in settling tanks, and then hauled from the site for aesthetic purposes. Over 450 metric tons of sludge were removed from the water over the life of the project. The dried sludge was tested by the Toxicity Characteristics Leaching Protocol (TCLP) and was found to be non-hazardous. Treatment costs were $43,000 per year and $1.08 per m 3, but could be decreased to $22,000 and $0.51 per m3 by decreasing labor use and by onsite sludge handling. These results confirm the utility of the new process in treatment of acid impaired waters that were previously not amenable to low cost limestone treatment.
Kelessidis, Alexandros; Stasinakis, Athanasios S
2012-06-01
Municipal wastewater treatment results to the production of large quantities of sewage sludge, which requires proper and environmentally accepted management before final disposal. In European Union, sludge management remains an open and challenging issue for the Member States as the relative European legislation is fragmentary and quite old, while the published data concerning sludge treatment and disposal in different European countries are often incomplete and inhomogeneous. The main objective of the current study was to outline the current situation and discuss future perspectives for sludge treatment and disposal in EU countries. According to the results, specific sludge production is differentiated significantly between European countries, ranging from 0.1 kg per population equivalent (p.e.) and year (Malta) to 30.8 kg per p.e. and year (Austria). More stringent legislations comparing to European Directive 86/278/EC have been adopted for sludge disposal in soil by several European countries, setting lower limit values for heavy metals as well as limit values for pathogens and organic micropollutants. A great variety of sludge treatment technologies are used in EU countries, while differences are observed between Member States. Anaerobic and aerobic digestion seems to be the most popular stabilization methods, applying in 24 and 20 countries, respectively. Mechanical sludge dewatering is preferred comparing to the use of drying beds, while thermal drying is mainly applied in EU-15 countries (old Member States) and especially in Germany, Italy, France and UK. Regarding sludge final disposal, sludge reuse (including direct agricultural application and composting) seems to be the predominant choice for sludge management in EU-15 (53% of produced sludge), following by incineration (21% of produced sludge). On the other hand, the most common disposal method in EU-12 countries (new Member States that joined EU after 2004) is still landfilling. Due to the obligations set by Directive 91/271/EC, a temporary increase of sludge amounts that are disposed in landfills is expected during the following years in EU-12 countries. Beside the above, sludge reuse in land and sludge incineration seem to be the main practices further adopted in EU-27 (all Member States) up to 2020. The reinforcement of these disposal practices will probably result to adoption of advanced sludge treatment technologies in order to achieve higher pathogens removal, odors control and removal of toxic compounds and ensure human health and environmental protection. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hroncová, Emília; Ladomerský, Juraj; Musil, Juraj
2018-03-01
Currently, it is necessary to deal with issues related to the emissions as there is a constantly increasing interest in combusting sludge from sewage treatment plants in the boilers for wood. An analysis of the energetic importance of the combustion of sewage sludge has already been carried out, but the effects of various treatments of the sludge are not always clear, e.g. composting and subsequent combustion to the air pollution. Investments in other thermal processes of energetic utilisation of sewage sludge and organic waste are not always successfully implemented. The objective of this paper is to point out some problematic cases for acceptance of thermal processes related to energetic use of waste in terms of the air protection. The other aim is to mention the experience with solutions of such issues in Slovakia. There are mentioned first results of the operational validation experiments during the energy generation in circulating fluidized bed boiler in peaking power plant (Power 110MW) with the addition of the so-called alternative fuel based on wood and sewage sludge to the main fuel - black coal (anthracite). And there has already been achieved the highest share of 12.4%w. (dry matter) of sewage sludge in form of compost in blend with black coal, which is technologically viable. Moreover analyzed the problems of the authorization and operation of the co-combustion of sewage sludge and of combustion of products of various kinds of pyrolysis waste - pyrolysis gas and pyrolysis oil are analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 CFR part 60, appendix A-8). Use GFAAS or ICP/MS for the analytical finish. Lead 0.00062 milligrams... per run) Performance test (Method 29 at 40 CFR part 60, appendix A-8. Use GFAAS or ICP/MS for the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 CFR part 60, appendix A-8). Use GFAAS or ICP/MS for the analytical finish. Lead 0.00062 milligrams... per run) Performance test (Method 29 at 40 CFR part 60, appendix A-8. Use GFAAS or ICP/MS for the...
Application of Ozone MBBR Process in Refinery Wastewater Treatment
NASA Astrophysics Data System (ADS)
Lin, Wang
2018-01-01
Moving Bed Biofilm Reactor (MBBR) is a kind of sewage treatment technology based on fluidized bed. At the same time, it can also be regarded as an efficient new reactor between active sludge method and the biological membrane method. The application of ozone MBBR process in refinery wastewater treatment is mainly studied. The key point is to design the ozone +MBBR combined process based on MBBR process. The ozone +MBBR process is used to analyze the treatment of concentrated water COD discharged from the refinery wastewater treatment plant. The experimental results show that the average removal rate of COD is 46.0%~67.3% in the treatment of reverse osmosis concentrated water by ozone MBBR process, and the effluent can meet the relevant standard requirements. Compared with the traditional process, the ozone MBBR process is more flexible. The investment of this process is mainly ozone generator, blower and so on. The prices of these items are relatively inexpensive, and these costs can be offset by the excess investment in traditional activated sludge processes. At the same time, ozone MBBR process has obvious advantages in water quality, stability and other aspects.
Anaerobic co-digestion of sewage sludge and food waste.
Prabhu, Meghanath S; Mutnuri, Srikanth
2016-04-01
Anaerobic co-digestion of organic matter improves digester operating characteristics and its performance. In the present work, food waste was collected from the institute cafeteria. Two types of sludge (before centrifuge and after centrifuge) were collected from the fluidised bed reactor of the institute treating sewage wastewater. Food waste and sludge were studied for their physico-chemical characteristics, such as pH, chemical oxygen demand, total solids, volatile solids, ammoniacal nitrogen, and total nitrogen. A biomethane potential assay was carried out to find out the optimum mixing ratio of food waste and sludge for anaerobic co-digestion. Results indicated that food waste mixed with sludge in the ratio of 1:2 produced the maximum biogas of 823 ml gVS(-1)(21 days) with an average methane content of 60%. Batch studies were conducted in 5 L lab-glass reactors at a mesophilic temperature. The effect of different substrate loading rates on biogas production was investigated. The mixing ratio of food waste and sludge was 1:2. A loading rate of 1 gVS L d(-1)gave the maximum biogas production of 742 ml g(-1)VS L d(-1)with a methane content of 50%, followed by 2 gVS L d(-1)with biogas of 539 ml g(-1)VS L d(-1) Microbial diversity of the reactor during fed batch studies was investigated by terminal restriction fragment length polymorphism. A pilot-scale co-digestion of food waste and sludge (before centrifuge) indicated the process stability of anaerobic digestion. © The Author(s) 2016.
Anaerobic bioprocessing of organic wastes.
Verstraete, W; de Beer, D; Pena, M; Lettinga, G; Lens, P
1996-05-01
Anaerobic digestion of dissolved, suspended and solid organics has rapidly evolved in the last decades but nevertheless still faces several scientific unknowns. In this review, some fundamentals of bacterial conversions and adhesion are addressed initially. It is argued in the light of ΔG-values of reactions, and in view of the minimum energy quantum per mol, that anaerobic syntrophs must have special survival strategies in order to support their existence: redistributing the available energy between the partners, reduced end-product fermentation reactions and special cell-to-cell physiological interactions. In terms of kinetics, it appears that both reaction rates and residual substrate thresholds are strongly related to minimum ΔG-values. These new fundamental insights open perspectives for efficient design and operation of anaerobic bioprocesses. Subsequently, an overview is given of the current anaerobic biotechnology. For treating wastewaters, a novel and high performance new system has been introduced during the last decade; the upflow anaerobic sludge blanket system (UASB). This reactor concept requires anaerobic consortia to grow in a dense and eco-physiologically well-organized way. The microbial principles of such granular sludge growth are presented. Using a thermodynamic approach, the formation of different types of aggregates is explained. The application of this bioprocess in worldwide wastewater treatment is indicated. Due to the long retention times of the active biomass, the UASB is also suitable for the development of bacterial consortia capable of degrading xenobiotics. Operating granular sludge reactors at high upflow velocities (5-6 m/h) in expanded granular sludge bed (EGSB) systems enlarges the application field to very low strength wastewaters (chemical oxygen demand < 1 g/l) and psychrophilic temperatures (10°C). For the treatment of organic suspensions, there is currently a tendency to evolve from the conventional mesophilic continuously stirred tank system to the thermophilic configuration, as the latter permits higher conversion rates and easier sanitation. Integration of ultrafiltration in anaerobic slurry digestion facilitates operation at higher volumetric loading rates and at shorter residence times. With respect to organic solids, the recent trend in society towards source separated collection of biowaste has opened a broad range of new application areas for solid state anaerobic fermentation.
Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglin, E.J.
1997-07-31
Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in themore » Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ``as low as reasonably achievable`` (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford`s OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types.« less
The role and control of sludge age in biological nutrient removal activated sludge systems.
Ekama, G A
2010-01-01
The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, J.S.; Hayhurst, A.N.; Scott, S.A.
Particles of char derived from a variety of fuels (e.g., biomass, sewage sludge, coal, or graphite), with diameters in excess of {approx}1.5mm, burn in fluidized bed combustors containing smaller particles of, e.g., sand, such that the rate is controlled by the diffusion both of O{sub 2} to the burning solid and of the products CO and CO{sub 2} away from it into the particulate phase. It is therefore important to characterize these mass transfer processes accurately. Measurements of the burning rate of char particles made from sewage sludge suggest that the Sherwood number, Sh, increases linearly with the diameter ofmore » the fuel particle, d{sub char} (for d{sub char}>{approx}1.5mm). This linear dependence of Sh on d{sub char} is expected from the basic equation Sh=2{epsilon}{sub mf}(1+d{sub char}/2{delta}{sub diff})/{tau}, provided the thickness of the boundary layer for mass transfer, {delta}{sub diff}, is constant in the region of interest (d{sub char}>{approx}1.5mm). Such a dependence is not seen in the empirical equations currently used and based on the Frossling expression. It is found here that for chars made from sewage sludge (for d{sub char}>{approx}1.5mm), the thickness of the boundary layer for mass transfer in a fluidized bed, {delta}{sub diff}, is less than that predicted by empirical correlations based on the Frossling expression. In fact, {delta}{sub diff} is not more than the diameter of the fluidized sand particles. Finally, the experiments in this study indicate that models based on surface renewal theory should be rejected for a fluidized bed, because they give unrealistically short contact times for packets of fluidized particles at the surface of a burning sphere. The result is the new correlation Sh = 2{epsilon}{sub mf}/{tau} + (A{sub cush}/A{sub char})(d{sub char}/ {delta}{sub diff}) for the dependence of Sh on d{sub char}, the diameter of a burning char particle. This equation is based on there being a gas-cushion of fluidizing gas underneath a burning char particle; the implication of this correlation is that a completely new picture emerges for the combustion of a char particle in a hot fluidized bed. (author)« less
Lo, Yung-Chung; Lee, Kuo-Shing; Lin, Ping-Jei; Chang, Jo-Shu
2009-10-01
Anaerobic granular sludge bed (AnGSB) bioreactors were supplemented with activated carbon carriers and combined with distributors (e.g., acrylic resin board, stainless steel net and plastic net) installed at different locations to investigate the effect of distributor/carrier on biohydrogen production efficiency. The results show that plastic net stimulated the substrate/microorganisms contact and sludge granulation, thereby leading to a much better H(2) production performance when compared with those obtained from traditional CSTR. The highest H(2) production rate (7.89 L/h/L) and yield (3.42 mol H(2)/mol sucrose) were obtained when two pieces of plastic nets were installed at both 4 cm and 16 cm from the bottom of AnGSB without carrier addition and the bioreactor was operated at a HRT of 0.5h. For the AnGSB installed with two pieces of plastic net distributors, addition of carriers led to significant improvement on the H(2) production efficiency at a longer HRT (1-4h) when compared with the carrier-absent system.
Gu, Jun; Xu, Guangjing; Liu, Yu
2017-03-01
The conventional activated sludge (CAS) process has been widely employed for wastewater treatment for more than one hundred years. Recently, more and more concerns have been raised on the CAS process due to its high energy consumption and production of huge amount of waste activated sludge, which are inevitably linked to the issue of environmental sustainability and global climate change. Facing to such emerging and challenging situation, this study reported a novel A-B process in which an anaerobic moving bed biofilm reactor (AMBBR) served a lead A-stage for COD capture towards biogas production and an integrated fixed-biofilm and activated sludge sequencing batch reactor (IFAS-SBR) was employed as B-stage for biological nitrogen removal. Results showed that about 85% of wastewater COD was removed in the steady-state AMBBR with a total energy production rate of 0.28 kWh/m 3 wastewater treated, while 85% of N-removal was achieved when the stable nitrite shunt was established in the IFAS-SBR. Moreover, 90% of dissolved methane in the AMBBR effluent could be removed by the proposed flash chamber at the lower energy demand of 0.12 kWh/m 3 which could be offset by the potential energy harvested from produced methane. Compared to the CAS process, the production of waste sludge was reduced by about 75% in the proposed A-B process due to the efficient COD capture at the A-stage, leading to significant energy savings from aeration for COD oxidation and post-treatment of waste sludge at the B-stage. Consequently, this study offers in-depth insights into A-B process which should be considered as an ideal candidate for achieving the energy-neutral or even energy positive operation of a municipal wastewater treatment. Given the complex situation in A-B process, future study is needed to look into the system optimization towards the operational synergy between A- and B-stage in terms of energy recovery and nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehmat, A.; Khinkis, M.
The Institute of Gas Technology (IGT) is currently developing a two-stage fluidized-bed/cyclonic agglomerating incineration system for waste disposal that is based on combining the fluidized-bed agglomeration/incineration and cyclonic combustion techologies. Both technologies have been developed individually at IGT over many years. This combination has resulted in a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes including municipal sludges. The system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of wastes. In the combined system, solid, liquid, and gaseous organic wastes are incinerated withmore » ease and great efficiency (>99.99% destruction and removal efficiency (DRE)), while solid inorganic contaminants contained within a glassy matrix are rendered benign and suitable for disposal in an ordinary landfill. The heat generated within the incinerator can be recovered using the state-of-the-art boilers. The development of the two-stage incinerator is a culmination of extensive research and development efforts on each stage of the incinerator. The variety of data obtained with solid, liquid, and gaseous wastes for both stages includes agglomeration of ash, incineration and reclamation of used blast grit and foundry sand, partial combustion of carbonaceous fuels, in-situ desulfurization, combustion of low-Btu gases, incineration of industrial wastewater, and incineration of carbon tetrachloride. 5 refs., 7 figs., 12 tabs.« less
Yang, Shuai; Yang, Fenglin; Fu, Zhimin; Lei, Ruibo
2009-04-01
A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated for simultaneously removing organic carbon and nitrogen in wastewater. Its performance was compared with a conventional membrane bioreactor (CMBR) at various influent COD/TN ratios of 8.9-22.1. The operational parameters were optimized to increase the treatment efficiency. COD removal efficiency averaged at 95.6% and 96.2%, respectively, for MBMBR and CMBR during the 4 months experimental period. The MBMBR system demonstrated good performance on nitrogen removal at different COD/TN ratios. When COD/TN was 8.9 and the total nitrogen (TN) load was 7.58 mg/l h, the TN and ammonium nitrogen removal efficiencies of the MBMBR were maintained over 70.0% and 80.0%, respectively, and the removed total nitrogen (TN) load reached to 5.31 mg/l h. Multifunctional microbial reactions in the carrier, such as simultaneous nitrification and denitrification (SND), play important roles in nitrogen removal. In comparison, the CMBR did not perform so well. Its TN removal was not stable, and the removed total nitrogen (TN) load was only 1.02 mg/l h at COD/TN ratio 8.9. The specific oxygen utilization rate (SOUR) showed that the biofilm has a better microbial activity than an activated sludge. Nevertheless, the membrane fouling behavior was more severe in the MBMBR than in the CMBR due to a thick and dense cake layer formed on the membrane surface, which was speculated to be caused by the filamentous bacteria in the MBMBR.
Wessman, F G; Yan Yuegen, E; Zheng, Q; He, G; Welander, T; Rusten, B
2004-01-01
The Kaldnes biomedia K1, which is used in the patented Kaldnes Moving Bed biofilm process, has been tested along with other types of biofilm carriers for biological pretreatment of a complex chemical industry wastewater. The main objective of the test was to find a biofilm carrier that could replace the existing suspended carrier media and at the same time increase the capacity of the existing roughing filter-activated sludge plant by 20% or more. At volumetric organic loads of 7.1 kg COD/m3/d the Kaldnes Moving Bed process achieved much higher removal rates and much lower effluent concentrations than roughing filters using other carriers. The Kaldnes roughing stage achieved more than 85% removal of organic carbon and more than 90% removal of BOD5 at the tested organic load, which was equivalent to a specific biofilm surface area load of 24 g COD/m2/d. Even for the combined roughing filter-activated sludge process, the Kaldnes carriers outperformed the other carriers, with 98% removal of organic carbon and 99.6% removal of BOD5. The Kaldnes train final effluent concentrations were only 22 mg FOC/L and 7 mg BOD5/L. Based on the successful pilot testing, the full-scale plant was upgraded with Kaldnes Moving Bed roughing filters. During normal operation the upgraded plant has easily met the discharge limits of 100 mg COD/L and 50 mg SS/L. For the month of September 2002, with organic loads between 100 and 115% of the design load for the second half of the month, average effluent concentrations were as low as 9 mg FOC/L, 51 mg COD/L and 12 mg SS/L.
2013-01-01
The aim of this study was to investigate the effectiveness of dried activated sludge (DAS) and mixed dried activated sludge with rice husk silica (DAS & RHS) for removal of hydrogen sulfide (H2S). Two laboratory-scale filter columns (packed one litter) were operated. Both systems were operated under different conditions of two parameters, namely different inlet gas concentrations and different inlet flow rates. The DAS & RHS packed filter showed more than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 45 to 90 s and 300 mg/L inlet concentration of H2S. However, the RE decreased to 96.87% with the EBRT of 30 s. In the same condition, the DAS packed filter showed 99.37% RE. Nonetheless, the RE was shown to have dropped to 82.09% with the EBRT of 30 s. The maximum elimination capacity (EC) was obtained in the DAS & RHS packed filter up to 52.32 g/m3h, with the RE of 96.87% and H2S mass loading rate of 54 g/m3h. The maximum EC in the DAS packed filter was obtained up to 44.33 g/m3h with the RE of 82.09% and the H2S mass loading rate of 54 g/m3h. After 53 days of operating time and 54 g/m3h of loading rates, the maximum pressure drop reached to 3.0 and 8.0 (mm H2O) for the DAS & RHS packed and DAS packed filters, respectively. Based on the findings of this study, the DAS & RHS could be considered as a more suitable packing material to remove H2S. PMID:23497048
Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhao, Chuanqi; Yang, Fenglin; Wang, Dong
2017-05-01
The objective of this study was to investigate the influence of extracellular polymeric substance (EPS) on the coupling effects between ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria for the completely autotrophic nitrogen removal over nitrite (CANON) biofilm formation in a moving bed biofilm reactor (MBBR). Analysis of the quantity of EPS and cyclic diguanylate (c-di-GMP) confirmed that the contents of polysaccharides and c-di-GMP were correlated in the AOB sludge, anammox sludge, and CANON biofilm. The anammox sludge secreted more EPS (especially polysaccharides) than AOB with a markedly higher c-di-GMP content, which could be used by the bacteria to regulate the synthesis of exopolysaccharides that are ultimately used as a fixation matrix, for the adhesion of biomass. Indeed, increased intracellular c-di-GMP concentrations in the anammox sludge enhanced the regulation of polysaccharides to promote the adhesion of AOB and formation of the CANON biofilm. Overall, the results of this study provide new comprehensive information regarding the coupling effects of AOB and anammox bacteria for the nitrogen removal process.
Ma, Huaji; Zhang, Shuting; Lu, Xuebin; Xi, Bo; Guo, Xingli; Wang, Han; Duan, Jingxiao
2012-07-01
A pilot-scale lysis-cryptic growth system was built and operated continuously for excess sludge reduction. Combined ultrasonic/alkaline disintegration and hydrolysis/acidogenesis were integrated into its sludge pretreatment system. Continuous operation showed that the observed biomass yield and the sludge reduction efficiency of the lysis-cryptic growth system were 0.27 kg VSS/kg COD consumed and 56.5%, respectively. The water quality of its effluent was satisfactory. The sludge pretreatment system performed well and its TCOD removal efficiency was 7.9% which contributed a sludge reduction efficiency of 2.1%. The SCOD, VFA, TN, NH(4)(+)-N, TP and pH in the supernatant of pretreated sludge were 1790 mg/L, 1530 mg COD/L, 261.1mg/L, 114.0mg/L, 93.1mg/L and 8.69, respectively. The total operation cost of the lysis-cryptic growth system was $ 0.186/m(3) wastewater, which was 11.4% less than that of conventional activated sludge (CAS) system without excess sludge pretreatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yoon, Seong-Hoon
2003-04-01
In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.
Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters.
Díaz, I; Ramos, I; Fdz-Polanco, M
2015-09-01
The application of microaerobic conditions during sludge digestion has been proven to be an efficient method for H2S removal from biogas. In this study, three microaerobic treatments were considered as an alternative to the technique of biogas desulfurization applied (FeCl3 dosing to the digesters) in a WWTP comprising three full-scale anaerobic reactors treating sewage sludge, depending on the reactant: pure O2 from cryogenic tanks, concentrated O2 from PSA generators, and air. These alternatives were compared in terms of net present value (NPV) with a fourth scenario consisting in the utilization of iron-sponge-bed filter inoculated with thiobacteria. The analysis revealed that the most profitable alternative to FeCl3 addition was the injection of concentrated O2 (0.0019 €/m(3) biogas), and this scenario presented the highest robustness towards variations in the price of FeCl3, electricity, and in the H2S concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Weijiang; Yuan, Chengyong; Xu, Jiao; Yang, Xiao
2015-05-01
A vacuum fixed bed reactor was used to pyrolyze sewage sludge, biomass (rice husk) and their blend under high temperature (900°C). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2h) for their interactions. Remarkable synergetic effect on gas production was observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The syngas (CO and H2) content and gas lower heating value (LHV) were obviously improved as well. It was highly possible that sewage sludge provided more CO2 and H2O during co-pyrolysis, promoting intense CO2-char and H2O-char gasification, which benefited the increase of gas yield and lower heating value. The beneficial synergetic effect, as a result, made this method a feasible one for gas production. Copyright © 2015. Published by Elsevier Ltd.
Escolà Casas, Mònica; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M S; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R; Bester, Kai
2015-10-15
Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h(-1), from 0 to 7.78 × 10(-1)h(-1), from 0 to 7.86 × 10(-1)h(-1) and from 0 to 1.07 × 10(-1)h(-1) for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase during the first treatment step. Such increase could be attributed to de-conjugation or formation from other metabolites. Copyright © 2015 Elsevier B.V. All rights reserved.
Diak, James; Örmeci, Banu
2018-06-15
This study evaluated the ability of potassium ferrate(VI) and freeze-thaw to stabilise and dewater primary sludge. Potassium ferrate(VI) additions of 0.5 and 5.0 g/L were used as a pre-treatment prior to freeze-thaw. Samples were frozen at -10, -20 and -30 °C, and were kept frozen for 1, 8 and 15 days. The samples were subsequently thawed at room temperature in a setup which allowed meltwater to be separated from the sludge cake via gravity drainage. The meltwater was characterised in terms of fecal coliform, soluble chemical oxygen demand (COD), soluble proteins, soluble carbohydrates, pH and turbidity. The sludge cake was characterised in terms of fecal coliform, total solids (TS) and volatile solids (VS). Freeze-thaw with gravity meltwater drainage reduced the sludge volume by up to 79%. After being frozen for only 1 day, the concentrations of fecal coliform in many of the primary sludge samples were reduced to <1000 MPN/g dry solids (DS), representing >3-log inactivation in some cases. However, pre-treatment of the primary sludge with ≤5.0 g/L potassium ferrate(VI) resulted in significant increases in soluble proteins, soluble carbohydrates, and sCOD, and reduced the effectiveness of stand-alone freeze-thaw. Follow-up experiments using higher doses ranging from 5.1 to 24.9 g/L of potassium ferrate(VI) demonstrated that >5-log inactivation of fecal coliform in raw primary sludge can be achieved within 15 min using 15 g/L of potassium ferrate(VI), and the resulting concentration of fecal coliform in the sludge was 1023 MPN/g DS. Pre-treatment with 22.0 g/L of potassium ferrate(VI), followed by freeze-thaw, with only 3 days frozen, reduced the concentration of fecal coliform to below the detection limit in the meltwater and the sludge cake. This demonstrates that potassium ferrate(VI) and freeze-thaw offers the flexibility to adjust the ferrate(VI) dose to meet treatment requirements for land application, and can be used as a stand-alone sludge treatment technology for primary sludge that achieves both treatment and dewatering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nie, Yafeng; Qiang, Zhimin; Ben, Weiwei; Liu, Junxin
2014-06-01
Sludge ozonation is considered as a promising technology to achieve a complete reduction of excess sludge, but as yet its effects on the removal of endocrine-disrupting chemicals (EDCs) and conventional pollutants (i.e., COD, N and P) in the activated sludge process are still unclear. In this study, two lab-scale continuous-operating activated sludge treatment systems were established: one was operated in conjunction with ozonation for excess sludge reduction, and the other was operated under normal conditions as control. The results indicate that an ozone dose of 100 mg O₃ g(-1)SS led to a zero yield of excess sludge in the sludge-reduction system during a continuous-operating period of 45d. Although ozonation gave a relatively lower specific oxygen uptake rate of activated sludge, it had little effect on the system's removal performance of COD and nitrogen substances. As a plus, sludge ozonation contributed a little more removal of target EDCs (estrone, 17β-estrodiol, estriol, 17α-ethinylestradiol, bisphenol A, and 4-nonylphenol). However, the total phosphorus removal declined notably due to its accumulation in the sludge-reduction system, which necessitates phosphorus recovery for the activated sludge process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ramos-Ruiz, Adriana; Sesma-Martin, Juan; Sierra-Alvarez, Reyes; Field, Jim A
2017-01-01
According to the U.S. Department of Energy and the European Union, tellurium is a critical element needed for energy and defense technology. Thus methods are needed to recover tellurium from waste streams. The objectives of this study was to determine the feasibility of utilizing upflow anaerobic sludge bed (UASB) reactors to convert toxic tellurite (Te IV ) oxyanions to non-toxic insoluble elemental tellurium (Te 0 ) nanoparticles (NP) that are amendable to separation from aqueous effluents. The reactors were supplied with ethanol as the electron donating substrate to promote the biological reduction of Te IV . One reactor was additionally amended with the redox mediating flavonoid compound, riboflavin (RF), with the goal of enhancing the bioreduction of Te IV . Its performance was compared to a control reactor lacking RF. The continuous formation of Te 0 NPs using the UASB reactors was found to be feasible and remarkably improved by the addition of RF. The presence of this flavonoid was previously shown to enhance the conversion rate of Te IV by approximately 11-fold. In this study, we demonstrated that this was associated with the added benefit of reducing the toxic impact of Te IV towards the methanogenic consortium in the UASB and thus enabled a 4.7-fold higher conversion rate of the chemical oxygen demand. Taken as a whole, this work demonstrates the potential of a methanogenic granular sludge to be applied as a bioreactor technology producing recoverable Te 0 NPs in a continuous fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vyrides, Ioannis; Drakou, Efi-Maria; Ioannou, Stavros; Michael, Fotoula; Gatidou, Georgia; Stasinakis, Athanasios S
2018-07-01
The bilge water that is stored at the bottom of the ships is saline and greasy wastewater with a high Chemical Oxygen Demand (COD) fluctuations (2-12 g COD L -1 ). The aim of this study was to examine at a laboratory scale the biodegradation of bilge water using first anaerobic granular sludge followed by aerobic microbial consortium (consisted of 5 strains) and vice versa and then based on this to implement a pilot scale study. Batch results showed that granular sludge and aerobic consortium can remove up to 28% of COD in 13 days and 65% of COD removal in 4 days, respectively. The post treatment of anaerobic and aerobic effluent with aerobic consortium and granular sludge resulted in further 35% and 5% COD removal, respectively. The addition of glycine betaine or nitrates to the aerobic consortium did not enhance significantly its ability to remove COD from bilge water. The aerobic microbial consortium was inoculated in 3 pilot (200 L) Moving Bed Biofilm Reactors (MBBRs) under filling fractions of 10%, 20% and 40% and treated real bilge water for 165 days under 36 h HRT. The MBBR with a filling fraction of 40% resulted in the highest COD decrease (60%) compared to the operation of the MBBRs with a filling fraction of 10% and 20%. GC-MS analysis on 165 day pointed out the main organic compounds presence in the influent and in the MBBR (10% filling fraction) effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yi, Qizhen; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Yang, Min
2017-03-01
The presence of high concentration antibiotics in wastewater can disturb the stability of biological wastewater treatment systems and promote generation of antibiotic resistance genes (ARGs) during the treatment. To solve this problem, a pilot system consisting of enhanced hydrolysis pretreatment and an up-flow anaerobic sludge bed (UASB) reactor in succession was constructed for treating oxytetracycline production wastewater, and the performance was evaluated in a pharmaceutical factory in comparison with a full-scale anaerobic system operated in parallel. After enhanced hydrolysis under conditions of pH 7 and 85 °C for 6 h, oxytetracycline production wastewater with an influent chemical oxygen demand (COD) of 11,086 ± 602 mg L -1 was directly introduced into the pilot UASB reactor. With the effective removal of oxytetracycline and its antibacterial potency (from 874 mg L -1 to less than 0.61 mg L -1 and from 900 mg L -1 to less than 0.84 mg L -1 , respectively) by the enhanced hydrolysis pretreatment, an average COD removal rate of 83.2%, 78.5% and 68.9% was achieved at an organic loading rate of 3.3, 4.8 and 5.9 kg COD m -3 d -1 , respectively. At the same time, the relative abundances of the total tetracycline (tet) genes and a mobile element (Class 1 integron (intI1)) in anaerobic sludge on day 96 were one order of magnitude lower than those in inoculated sludge on day 0 (P < 0.01). The reduction of ARGs was further demonstrated by metagenomic sequencing. By comparison, the full-scale anaerobic system treating oxytetracycline production wastewater with an influent COD of 3720 ± 128 mg L -1 after dilution exhibited a COD removal of 51 ± 4% at an organic loading rate (OLR) 1.2 ± 0.2 kg m -3 d -1 , and a total tet gene abundance in sludge was five times higher than the pilot-scale system (P < 0.01). The above result demonstrated that enhanced hydrolysis as a pretreatment method could enable efficient anaerobic treatment of oxytetracycline production wastewater containing high concentrations of oxytetracycline with significantly lower generation of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Activated Sludge. Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Boe, Owen K.; Klopping, Paul H.
This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…
Onizuka, Y; Mizuta, Y; Isomoto, H; Takeshima, F; Murase, K; Miyazaki, M; Ogata, H; Otsuka, K; Murata, I; Kohno, S
2001-05-01
The incidence of gallbladder sludge or gallstone formation in bedridden patients with cerebrovascular disease (CVD) remains obscure. The aim of this study was to determine the incidence, relationship to feeding method, and mechanisms of gallbladder sludge and gallstone formation in elderly patients with CVD. Using ultrasonography, we determined the development of gallbladder sludge and gallstone over a 12-month period, the area of the gallbladder, the gallbladder contractile response to cerulein, and fasting levels of plasma cholecystokinin (CCK) in 40 bedridden elderly patients with CVD. The patients were divided into three groups based on the feeding method: oral ingestion (OI), nasogastric feeding (NF), and total parenteral nutrition (TPN). Gallbladder sludge and gallstone were not observed in any of the 14 OI patients, but occurred in 6 and 1 of the 11 NF patients, and in 14 and 3 of the 15 TPN patients, respectively. Fasting gallbladder areas were significantly larger in the TPN group than in the other two groups. The TPN group showed a marked decrease in cerulein-induced gallbladder contractility. Fasting plasma CCK levels were lower in the TPN group than in the OI group. Our results indicate that elderly patients with CVD confined to bed over long periods are not necessarily at risk of gallbladder sludge or gallstone formation, and the development of these features may be associated with the feeding method. The predisposition of CVD patients on TPN to gallbladder disease is probably caused by failure of gallbladder contraction, resulting from insufficient secretion of CCK and impaired sensitivity of the gallbladder to CCK.
Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian
2015-01-01
Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance.
Manios, T; Stentiford, E I; Millner, P
2003-06-01
Subsurface horizontal flow experimental wetlands (reed beds), were designed and built based on a combination of two design methodologies, that of the WRc and Severn Trent Water plc (1996) and that of the USA, EPA (1988). Four different growing media were used with a combination of top soil, gravel, river sand, and mature sewage sludge compost, to determine the best substrate for total suspended solids (TSS) removal. Eight units were constructed, two for each growing media. One bed for each pair was planted with Typha latifolia plants commonly known as cattails. Primary treated domestic wastewater, was continuously fed to the beds for more than six months. All eight beds performed very well. The best performance was achieved by the gravel reed beds with an almost constant removal rate above 95% and an average effluent concentration of less than 10 mg/L. Soil based beds containing top soil and sand, managed to reach values of removal around 90%. The wetlands containing compost in their substrate, produced an effluent with average concentration of less than 30 mg/L and a percentage removal between 80% and 90%. As expected, there was no significant difference in the performance of planted and unplanted wetlands.
Principles of an enhanced MBR-process with mechanical cleaning.
Rosenberger, S; Helmus, F P; Krause, S; Bareth, A; Meyer-Blumenroth, U
2011-01-01
Up to date, different physical and chemical cleaning protocols are necessary to limit membrane fouling in membrane bioreactors. This paper deals with a mechanical cleaning process, which aims at the avoidance of hypochlorite and other critical chemicals in MBR with submerged flat sheet modules. The process basically consists of the addition of plastic particles into the loop circulation within submerged membrane modules. Investigations of two pilot plants are presented: Pilot plant 1 is equipped with a 10 m(2) membrane module and operated with a translucent model suspension; pilot plant 2 is equipped with four 50 m(2) membrane modules and operated with pretreated sewage. Results of pilot plant 1 show that the establishment of a fluidised bed with regular particle distribution is possible for a variety of particles. Particles with maximum densities of 1.05 g/cm(3) and between 3 and 5 mm diameter form a stable fluidised bed almost regardless of activated sludge concentration, viscosity and reactor geometry. Particles with densities between 1.05 g/cm(3) and 1.2 g/cm(3) form a stable fluidised bed, if the velocity at the reactor bottom is sufficiently high. Activities within pilot plant 2 focused on plant optimisation and the development of an adequate particle retention system.
Leyva-Díaz, J C; Poyatos, J M
2015-01-01
A hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass=0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass=0.00308 h(-1) and half-saturation coefficient for organic matter=3.54908 mg O2 L(-1). The removal of organic matter was supported by the kinetic study of heterotrophic biomass.
Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle.
Deng, Dongyang; Lin, Lian-Shin
2017-05-01
This study evaluated the technical feasibility of packed-bed sulfidogenic bioreactors dosed with ferrous chloride for continuous wastewater treatment over a 450-day period. In phase I, the bioreactors were operated under different combinations of carbon, iron, and sulfate mass loads without sludge recycling to identify optimal treatment conditions. A COD/sulfate mass ratio of 2 and a Fe/S molar ratio of 1 yielded the best treatment performance with COD oxidation rate of 786 ± 82 mg/(L⋅d), which resulted in 84 ± 9% COD removal, 94 ± 6% sulfate reduction, and good iron retention (99 ± 1%) under favorable pH conditions (6.2-7.0). In phase II, the bioreactors were operated under this chemical load combination over a 62-day period, during which 7 events of sludge collection, oxidation, and recycling were performed. The collected sludge materials contained both inorganic and organic matter with FeS and FeS 2 as the main inorganic constituents. In each event, the sludge materials were oxidized in an oxidizing basin before recycling to mix with the wastewater influent. Sludge recycling yielded enhanced COD removal (90 ± 6% vs. 75 ± 7%), and better effluent quality in terms of pH (6.8 ± 0.1 vs. 6.5 ± 0.2), iron (0.7 ± 0.5 vs. 1.9 ± 1.7 mg/L), and sulfide-S (0.3 ± 0.1 vs. 0.4 ± 0.1 mg/L) removal compared to the baseline operation without sludge recycling during phase II. This process exhibited treatment stability with reasonable variations, and fairly consistent sludge content over long periods of operation under a range of COD/sulfate and Fe/S ratios without sludge recycling. The bioreactors were found to absorb recycling-induced changes efficiently without causing elevated suspended solids in the effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.
1989-12-29
Por- nography and Appeals to Every Locality in Jilin To Block Pornography at Its Source, Clean Up ’ Porno - graphic Sludge,’ Eliminate ’Dead Spaces...essentially been eliminated; porno - graphic and obscene pirated tapes have essentially disap- peared from the audiovisual market; and public places of...households for many years, and a large number of porno - graphic books and periodicals can be found on book- shelves, under beds, and in students
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate the effects of tillage and cover treatments of solar drying on the conversion of Class B treated sewage sludge to a Class A product. The experiments were performed over two years at Green Valley, Arizona in steel-constructed sand-filled drying beds of 1.0m...
Meesap, Kanlayanee; Boonapatcharoen, Nimaradee; Techkarnjanaruk, Somkiet; Chaiprasert, Pawinee
2012-01-01
The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2 g COD/L day, composed mainly of suspended solids (SS) and oil and grease (O&G) concentrations between 5.2 to 10.2 and 0.9 to 1.9 g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD), SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane potentials were higher, and the methane yield increased to 0.30 L CH4/g CODremoved. It was observed these effects on the microbial population and activity in the sludge and packed zones. The eubacterial population and activity in the sludge zone increased to 6.4 × 109 copies rDNA/g VSS and 1.65 g COD/g VSS day, respectively, whereas those in the packed zone were lower. The predominant hydrolytic and fermentative bacteria were Pseudomonas, Clostridium, and Bacteroidetes. In addition, the archaeal population and activity in the packed zone were increased from to 9.1 × 107 copies rDNA/g VSS and 0.34 g COD-CH4/g VSS day, respectively, whereas those in the sludge zone were not much changed. The most represented species of methanogens were the acetoclastic Methanosaeta, the hydrogenotrophic Methanobacterium sp., and the hydrogenotrophic Methanomicrobiaceae. PMID:22927723
Intrinsic kinetic parameters of substrate utilization by immobilized anaerobic sludge.
Zaiat, M; Vieira, L G; Foresti, E
1997-01-20
This article presents a method for evaluating the intrinsic kinetic parameters of the specific substrate utilization rate (r) equation and discusses the results obtained for anaerobic sludge-bed samples taken from a horizontal-flow anaerobic immobilized sludge (HAIS) reactor. This method utilizes a differential reactor filled with polyurethane foam matrices containing immobilized anaerobic sludge which is subjected to a range of feeding substrate flow rates. The range of liquid superficial velocities thus obtained are used for generating data of observed specific substrate utilization rates (r(obs)) under a diversity of external mass transfer resistance conditions. The r(obs) curves are then adjusted to permit their extrapolation for the condition of no external mass transfer resistance, and the values determined are used as a test for the condition of absence of limitation of internal mass transfer. The intrinsic parameters r(max), the maximum specific substrate utilization rate, and K(s), the half-velocity coefficient, are evaluated from the r values under no external mass transfer resistance and no internal mass transfer limitation. The application of such a method for anaerobic sludge immobilized in polyurethane foam particles treating a glucose substrate at 30 degrees C resulted in intrinsic r(max) and K(s), respectively, of 0.330 mg chemical oxygen demand (COD) . mg(-1) volatile suspended solids (VSS) . h(-1) and 72 mg COD . L(-1). In comparison with the values found in the literature, intrinsic r(max) is significantly high and intrinsic K(s) is relatively low. (c) 1997 John Wiley & Sons, Inc.
The influence of sludge retention time on sludge flocculation in IFAS system
NASA Astrophysics Data System (ADS)
Wang, Mengdi; Wen, Yue
2017-11-01
The IFAS system was cultivated in five sequencing batch reactors. The sludge retention times (SRT) were 6 d, 8 d, 10 d, 15 d and 25 d respectively. In this dissertation, the influence of SRT on suspended sludge flocculation in IFAS system and its mechanisms were studied. It was found that in the IFAS system, the specific turbidity of supernatant and SVI value of suspended sludge both decreased as the SRT increased. In addition, extending SRT was capable of reducing the extracellular polymeric substances (EPS) content and the interaction energy barriers, increasing the percentage of bivalent and trivalent cations in pellet, thus improved the sludge flocculation and reduced effluent turbidity.
Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua
2015-01-01
Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510
40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit
Code of Federal Regulations, 2012 CFR
2012-07-01
... and leachate collection system. I—firing of sewage sludge in a sewage sludge incinerator. 1 The... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate collection system. 2 Active sewage sludge unit with a liner and leachate collection system. 3 Value expressed...
40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit
Code of Federal Regulations, 2011 CFR
2011-07-01
... and leachate collection system. I—firing of sewage sludge in a sewage sludge incinerator. 1 The... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate collection system. 2 Active sewage sludge unit with a liner and leachate collection system. 3 Value expressed...
40 CFR Appendix G to Part 403 - Pollutants Eligible for a Removal Credit
Code of Federal Regulations, 2014 CFR
2014-07-01
... and leachate collection system. I—firing of sewage sludge in a sewage sludge incinerator. 1 The... Trichloroethylene 3 10 9500 3 10 Zinc 4500 4500 4500 1 Active sewage sludge unit without a liner and leachate collection system. 2 Active sewage sludge unit with a liner and leachate collection system. 3 Value expressed...
Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin
2015-04-01
Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study on anaerobic treatment of wastewater containing hexavalent chromium.
Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu
2005-06-01
A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and COD(Cr) of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.
Li, Weiguang; Su, Chengyuan; Liu, Xingzhe; Zhang, Lei
2014-01-01
The effects of the organic loading rate (OLR) on the performance and the granular sludge characteristics of an expanded granular sludge bed (EGSB) reactor used for treating real traditional Chinese medicine (TCM) wastewater were investigated. Over 90% of the COD removal by the EGSB reactor was observed at the OLRs of 4 to 13 kg COD/(m(3) day). However, increasing the OLR to 20 kg COD/(m(3) day) by reducing the hydraulic retention time (HRT 6 h) reduced the COD removal efficiency to 78%. The volatile fatty acid (VFA) concentration was 512.22 mg/L, resulting in an accumulation of VFAs, and propionic acid was the main acidification product, accounting for 66.51% of the total VFAs. When the OLR increased from 10 to 20 kg COD/(m(3) day), the average size of the granule sludge decreased from 469 to 258 μm. There was an obvious reduction in the concentration of Ca(2+) and Mg(2+) in the granular sludge. The visible humic acid-like peak was identified in the three-dimensional excitation-emission matrix (EEM) fluorescence spectra of the soluble microbial products (SMPs). The fatty acid bond, amide II bond, amide III bond, and C-H bond bending were also observed in the Fourier transform infrared (FTIR) spectra of the SMPs. Methanobacterium formicicum, Methanococcus, and Bacteria populations exhibited significant shifts, and these changes were accompanied by an increase in VFA production. The results indicated that a short HRT and high OLR in the EGSB reactor caused the accumulation of polysaccharides, protein, and VFAs, thereby inhibiting the activity of methanogenic bacteria and causing granular sludge corruption.
A study on the use of the BioBall® as a biofilm carrier in a sequencing batch reactor.
Masłoń, Adam; Tomaszek, Janusz A
2015-11-01
Described in this study are experiments conducted to evaluate the removal of organics and nutrients from synthetic wastewater by a moving bed sequencing batch biofilm reactor using BioBall® carriers as biofilm media. The work involving a 15L-laboratory scale MBSBBR (moving bed sequencing batch biofilm reactor) model showed that the wastewater treatment system was based on biochemical processes taking place with activated sludge and biofilm microorganisms developing on the surface of the BioBall® carriers. Classical nitrification and denitrification and the typical enhanced biological phosphorus removal process were achieved in the reactor analyzed, which operated with a volumetric organic loading of 0.84-0.978gCODL(-1)d(-1). The average removal efficiencies for COD, total nitrogen and total phosphorus were found to be 97.7±0.5%, 87.8±2.6% and 94.3±1.3%, respectively. Nitrification efficiency reached levels in the range 96.5-99.7%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Su Yun; Lam, Hoi Pui; Karthikeyan, O Parthiba; Wong, Jonathan W C
2011-02-01
The effects of pH and bulking agents on hydrolysis/acidogenesis of food waste were studied using leach bed reactor (LBR) coupled with methanogenic up-flow anaerobic sludge blanket (UASB) reactor. The hydrolysis rate under regulated pH (6.0) was studied and compared with unregulated one during initial experiment. Then, the efficacies of five different bulking agents, i.e. plastic full particles, plastic hollow sphere, bottom ash, wood chip and saw dust were experimented under the regulated pH condition. Leachate recirculation with 50% water replacement was practiced throughout the experiment. Results proved that the daily leachate recirculation with pH control (6.0) accelerated the hydrolysis rate (59% higher volatile fatty acids) and methane production (up to 88%) compared to that of control without pH control. Furthermore, bottom ash improved the reactor alkalinity, which internally buffered the system that improved the methane production rate (0.182 l CH(4)/g VS(added)) than other bulking agents. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fate of personal care and household products in source separated sanitation.
Butkovskyi, A; Rijnaarts, H H M; Zeeman, G; Hernandez Leal, L
2016-12-15
Removal of twelve micropollutants, namely biocides, fragrances, ultraviolet (UV)-filters and preservatives in source separated grey and black water treatment systems was studied. All compounds were present in influent grey water in μg/l range. Seven compounds were found in influent black water. Their removal in an aerobic activated sludge system treating grey water ranged from 59% for avobenzone to >99% for hexylcinnamaldehyde. High concentrations of hydrophobic micropollutants in sludge of aerobic activated sludge system indicated the importance of sorption for their removal. Six micropollutants were found in sludge of an Up-flow anaerobic sludge blanket (UASB) reactor treating black water, with four of them being present at significantly higher concentrations after addition of grey water sludge to the reactor. Hence, addition of grey water sludge to the UASB reactor is likely to increase micropollutant content in UASB sludge. This approach should not be followed when excess UASB sludge is designed to be reused as soil amendment. Copyright © 2016 Elsevier B.V. All rights reserved.
Cao, Yucheng; Pawłowski, Artur
2013-01-01
A "cradle-to-grave" life cycle assessment was conducted to examine the energy and greenhouse gas (GHG) emission footprints of two emerging sludge-to-energy systems. One system employs a combination of anaerobic digestion (AD) and fast pyrolysis for bioenergy conversion, while the other excludes AD. Each system was divided into five process phases: plant construction, sludge pretreatment, sludge-to-bioenergy conversion, bioenergy utilizations and biochar management. Both systems achieved energy and GHG emission benefits, and the AD-involving system performed better than the AD-excluding system (5.30 vs. 0.63 GJ/t sludge in net energy gain and 0.63 vs. 0.47 t CO(2)eq/t sludge in emission credit for base case). Detailed contribution and sensitivity analyses were conducted to identify how and to what degree the different life-cycle phases are responsible for the energy and emission impacts. The energy and emission performances were significantly affected by variations in bioenergy production, energy requirement for sludge drying and end use of bioenergy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Key issues to consider when using alum sludge as substrate in constructed wetland.
Zhao, Xiaohong; Zhao, Yaqian; Wang, Wenke; Yang, Yongzhe; Babatunde, Akintunde; Hu, Yuansheng; Kumar, Lordwin
2015-01-01
Globally, alum sludge is an easily, locally and largely available by-product from water treatment plants where aluminium sulphate is used as the coagulant for raw water purification. Owing to the high content of Al ions (29.7±13.3% dry weight) in alum sludge and the strong affinity of Al ions to adsorb various pollutants especially phosphorus (P), alum sludge (in the form of dewatered cakes) has been investigated in recent years as a low-cost alternative substrate in constructed wetland (CW) systems to enhance the treatment efficiency especially for high strength P-containing wastewater. Long-term trials in different scales have demonstrated that the alum sludge-based CW is a promising technique with a two-pronged feature of using 'waste' for wastewater treatment. Alum sludge cakes in CW can serve as a medium for wetland plant growth, as a carrier for biofilm development and as a porous material for wastewater infiltration. After the intensive studies of the alum sludge-based CW system, this paper aims to address the key issues and concerns pertaining to this kind of CW system. These include: (1) Is alum sludge suitable for reuse in CWs? (2) Is Al released from the sludge a concern? (3) What is the lifespan of the alum sludge in CWs? (4) How can P be recovered from the used alum sludge? (5) Does clogging happen in alum sludge-based CW systems and what is the solution?
NASA Astrophysics Data System (ADS)
Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco
2014-05-01
Traditionally, bathymetry mapping of ponds, lakes and rivers have used techniques which are low in spatial resolution, sometimes subjective in terms of precision and accuracy, labour intensive, and that require a high level of safety precautions. In waste stabilisation ponds (WSP) in particular, sludge heights, and thus sludge volume, are commonly measured using a sludge judge (a clear plastic pipe with length markings). A remote control boat fitted with a GPS-equipped sonar unit can improve the resolution of depth measurements, and reduce safety and labour requirements. Sonar devices equipped with GPS technology, also known as fish finders, are readily available and widely used by people in boating. Through the use of GPS technology in conjunction with sonar, the location and depth can be recorded electronically onto a memory card. However, despite its high applicability to the field, this technology has so far been underutilised. In the case of WSP, the sonar can measure the water depth to the top of the sludge layer, which can then be used to develop contour maps of sludge distribution and to determine sludge volume. The coupling of sonar technology with a remotely operative vehicle has several advantages of traditional measurement techniques, particularly in removing human subjectivity of readings, and the sonar being able to collect more data points in a shorter period of time, and continuously, with a much higher spatial resolution. The GPS-sonar equipped remote control boat has been tested on in excess of 50 WSP within Western Australia, and has shown a very strong correlation (R2 = 0.98) between spot readings taken with the sonar compared to a sludge judge. This has shown that the remote control boat with GPS-sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution, while greatly reducing profiling time. Remotely operated vehicles, such as the one built in this study, are useful for not only determining sludge distribution, but also in calculating sludge accumulation rates, and in evaluating pond hydraulic efficiency (e.g., as input bathymetry for computational fluid dynamics models). This technology is not limited to application for wastewater management, and could potentially have a wider application in the monitoring of other small to medium water bodies, including reservoirs, channels, recreational water bodies, river beds, mine tailings dams and commercial ports.
NASA Astrophysics Data System (ADS)
Hao, Ping
2017-10-01
Potentiality of sequential hydrogen bioproduction from sugary wastewater treatment was investigated using continuous stirred tank reactor (CSTR) for various substrate COD concentrations and HRTs. At optimum substrate concentration of 6 g COD/L, hydrogen could be efficiently produced from CSTR with the highest production rate of 3.00 (±0.04) L/L reactor d at HRT of 6 h. The up flow anaerobic sludge bed (UASB) reactor was used for continuous methane bioproduction from the effluents of hydrogen bioproduction. At optimal HRT 12 h, methane could be produced with a production rate of 2.27 (±0.08) L/L reactor d and the COD removal efficiency reached up to the maximum 82.3%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARRO CA
2011-07-15
This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volumemore » of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand filter is then backwashed into the STSC. The STSC and STS cask are then inerted and transported to T Plant.« less
Liang, Jialin; Huang, Shaosong; Dai, Yongkang; Li, Lei; Sun, Shuiyu
2015-11-01
Sludge conditioning with Fenton's reagent and lime is a valid method for sludge dewatering. This study investigated the influence of different organic matter content sludge on sludge dewatering and discussed the main mechanism of sludge conditioning by combined Fenton's reagent and lime. The results indicated that the specific resistance to filterability (SRF) of sludge was reduced efficiently by approximately 90%, when conditioned with Fenton's reagent and lime. Through single factor experiments, the optimal conditioning combinations were found. In addition, the relationship between VSS% and consumption of the reagents was detected. Furthermore, it was also demonstrated that the SRF and filtrate TOC values had a significant correlation with VSS% of sludge (including raw and conditioned). The main mechanism of sludge dewatering was also investigated. Firstly, it revealed that the dewaterability of sludge was closely correlated to extracellular polymeric substances (EPS) and bound water contents. Secondly, the results of scanning electron microscopy (SEM) stated that sludge particles were to be smaller and thinner after conditioning. And this structure could easily form outflow channels for releasing free water. Additionally, with the ultrahigh pressure filtration system, the water content of sludge cake conditioned with Fenton's reagent and lime could be reduced to below 50%. Moreover, the economic assessment shows that Fenton's reagent and lime combined with ultrahigh pressure filtration system can be an economical and viable technology for sewage sludge dewatering. Finally, three types of sludge were classified: (1) Fast to dewater; (2) Moderately fast to dewater; (3) Slow to dewater sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zuo, N.; Ji, F. Y.
2013-02-01
By researching the influence of sludge age (SRT) on phosphorous removal and sludge characteristics in the HA-A/A-MCO (hydrolysis-acidification-anaerobic/anoxic-multistep continuous oxic tank) process, which has the effect of simultaneous phosphorous and nitrogen removal and sludge reduction, it is found that extended SRT is helpful for improving the ability of anaerobic phosphorous release and chemical recovery of phosphate, but the hosphorous removal efficiency is not affected. Extended SRT causes the system to have even more active sludge; it can also lead to the system having a powerful ability of biochemical reaction by using superiority of concentration. Meanwhile, extended SRT can still reduce sludge yield. Extended SRT cannot make soluble metabolic product (SMP) accumulate in the reactor, so that the pollutant removal power is reduced; it also cannot affect the activity of the sludge. However, extended SRT is able to make the coagulation of the sludge hard, and cause the sludge volume index value increase, but cannot cause sludge bulking.
Qian, Jin; Wei, Li; Liu, Rulong; Jiang, Feng; Hao, Xiaodi; Chen, Guang-Hao
2016-01-01
Electroplating wastewater contains both Cr (VI) and sulfate. So Cr (VI) removal under sulfate-rich condition is quite complicated. This study mainly investigates the pathways for Cr (VI) removal under biological sulfate-reducing condition in the up-flow anaerobic sludge bed (UASB) reactor. Two potential pathways are found for the removal of Cr (VI). The first one is the sulfidogenesis-induced Cr (VI) reduction pathway (for 90% Cr (VI) removal), in which Cr (VI) is reduced by sulfide generated from biological reduction of sulfate. The second one leads to direct reduction of Cr (VI) which is utilized by bacteria as the electron acceptor (for 10% Cr (VI) removal). Batch test results confirmed that sulfide was oxidized to elemental sulfur instead of sulfate during Cr (VI) reduction. The produced extracellular polymeric substances (EPS) provided protection to the microbes, resulting in effective removal of Cr (VI). Sulfate-reducing bacteria (SRB) genera accounted for 11.1% of the total bacterial community; thus they could be the major organisms mediating the sulfidogenesis-induced reduction of Cr (VI). In addition, chromate-utilizing genera (e.g. Microbacterium) were also detected, which were possibly responsible for the direct reduction of Cr (VI) using organics as the electron donor and Cr (VI) as the electron acceptor. PMID:27021522
Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester
2013-07-01
To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment resulted in removal efficiencies of >90% for clofibric acid and >98% for carbamazepine and diclofenac, while the remaining compounds were reduced to levels below the LOD. For ibuprofen, naproxen, ketoprofen and diclofenac the highest contribution to overall removal was attributed to biological treatment, for clofibric acid UV treatment was the most efficient, while for carbamazepine hydrodynamic cavitation/hydrogen peroxide process and UV treatment were equally efficient. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Marlina, E. T.; Kurnani, Tb. B. A.; Hidayati, Y. A.; Rahmah, K. N.; Joni, I. M.; Harlia, E.
2018-02-01
Coal-bed Methane (CBM) is a form of natural gas extracted from coal and has been developed as future energy source. Organic materials are required as nutrition source for methanogenic microbes. The addition of cattle waste in the formation of CBM on coal media can be utilized as organic materials as well as methanogenic microbe sources. This research covered study of total amount of anaerobic microbes, methane production, protozoa, fungi and endoparasites. Descriptive approach is conducted for this study. Media used for culturing methanogens is Nutrient Agar in powder form and Lactose Broth with the addition of rumen fluid. The technique for counting microbes is through Total Plate Count in anaerobic Hungate tube, methane was analyzed using Gas Chromatography (GC), while identification of protozoa, fungi and endoparasites based on its morphology is conducted before and after anaerobic fermentation process. Incubation period is 30 days. The results showed that growth of anaerobic microbes from dairy cattle waste i.e. biogas sludge is 3.57×103 CFU/ml and fresh feces is 3.38 × 104 CFU/ml, growth of anaerobic microbes from beef cattle waste i.e. biogas sludge is 7.0 × 105 CFU/ml; fresh feces is 7.5 x 104 CFU/ml; and rumen contents of about 1.33 × 108 CFU/ml. Methane production in dairy cattle waste in sludge and fresh feces amounted to 10.57% and 2.39%, respectively. Methane production in beef cattle waste in sludge accounted for 5.95%; in fresh feces it is about 0.41%; and rumen contents of 4.92%. Decreasing of protozoa during fermentation to 84.27%, dominated by Eimeria sp. Decreasing of fungi to 16%, dominated by A. Niger, A. Flavus, A. Fumigatus and Monilia sitophila. Decreasing of endoparasitic worms to 15%, dominated by Strongylus sp. and Fasciola sp. The growth of anaerobic microbes and methane production indicated that dairy cattle waste and beef cattle waste have potential as source of methanogenic microbes, meanwhile the decreasing amount of protozoa, fungi and endoparasites indicated that CBM formation process can reduce pollutants from microorganism in the environment.
Nguyen, Nguyen Cong; Chen, Shiao-Shing; Nguyen, Hau Thi; Ray, Saikat Sinha; Ngo, Huu Hao; Guo, Wenshan; Lin, Po-Hsun
2016-03-15
For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on sponge carriers. Subsequently less membrane fouling was observed during the wastewater treatment process. A water flux of 11.38 L/(m(2) h) and a negligible reverse salt flux were documented when deionized water served as the feed solution and a mixture of 1.5 M MgCl2 and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid system indicated that a stable water flux of 10.5 L/(m(2) h) and low salt accumulation were achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed system was close to 100%, confirming the effectiveness of simultaneous nitrification and denitrification in the biofilm layer on sponge carriers. The overall performance of the SMB-OsMBR hybrid system using MgCl2 coupled with Triton X-114 as the draw solution demonstrates its potential application in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan
2012-01-01
A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was divided into six sections along the direction of the sludge movement. Fourteen days of continuous operation of sludge bioleaching with different sludge retention time (SRT) under the condition of 1.2 m3 x h(-1) aeration amount and 4 g x L(-1) of microbial nutritional substance was conducted. During sludge bioleaching, the dynamic changes of pH, DO, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections were investigated in the present study. The results showed that sludge pH were maintained at 5.00, 3.00, 2.90, 2.70, 2.60 and 2.40 from section 1 to section 6 and the SRF of sludge was drastically decreased from initial 0.64 x 10(13) m x kg(-1) to the final 0.33 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 72 with SRT 2.5d. In addition, the sludge pH were maintained at 5.10, 4.10, 3.20, 2.90, 2.70 and 2.60, the DO value were 0.43, 1.47, 3.29, 4.76, 5.75 and 5.88 mg x L(-1) from section 1 to section 6, and the SRF of sludge was drastically decreased from initial 0.56 x 10(13) to the final 0.20 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 120 with SRT 2 d. The pH value was increased to 3.00 at section 6 at hour 48 h with SRT 1.25 d. The bioleaching system imbalanced in this operation conditions because of the utilization efficiency of microbial nutritional substance by Acidibacillus spp. was decreased. The longer sludge retention time, the easier bioleaching system reached stable. 2 d could be used as the optimum sludge retention time in engineering application. The bioleached sludge was collected and dewatered by plate-and-frame filter press to the moisture content of dewatered sludge cake under 60%. This study would provide the necessary data to the engineering application on municipal sewage sludge bioleaching.
K Basins sludge removal temporary sludge storage tank system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mclean, M.A.
1997-06-12
Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issuesmore » related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.« less
Abreu, A A; Alves, J I; Pereira, M A; Sousa, D Z; Alves, M M
2011-08-01
Treatment of anaerobic granules with heat and two chemical treatments, contacting with 2-bromoethanesulfonate (BES) and with BES + Chloroform, were applied to suppress hydrogen-consuming microorganisms. Three mesophilic expanded granular sludge bed (EGSB) reactors-R(Heat), R(BES), and R(BES + Chlo)--were inoculated with the treated sludges and fed with synthetic sugar-based wastewater (5 g(COD) L(-1), HRT 20-12 h). Morphological integrity of granules and bacterial communities were assessed by quantitative image analysis and 16S rRNA gene based techniques, respectively. Hydrogen production in R(Heat) was under 300 mL H(2) L(-1) day(-1), with a transient peak of 1,000 mL H(2) L(-1) day(-1) after decreasing HRT. In R(BES + Chlo) hydrogen production rate did not exceed 300 mL H(2) L(-1) day(-1) and there was granule fragmentation, release of free filaments from aggregates, and decrease of granule density. In R(BES), there was an initial period with unstable hydrogen production, but a pulse of BES triggered its production rate to 700 ± 200 mL H(2) L(-1) day(-1). This strategy did not affect granules structure significantly. Bacteria branching within Clostridiaceae and Ruminococcaceae were present in this sludge. This work demonstrates that, methods applied to suppress H(2)-consuming microorganisms can cause changes in the macro- and microstructure of granular sludge, which can be incompatible with the operation of high-rate reactors. Copyright © 2011 Wiley Periodicals, Inc.
Yuan, Xiangjuan; Qiang, Zhimin; Ben, Weiwei; Zhu, Bing; Qu, Jiuhui
2015-03-01
The occurrence, fate and environmental impact of 30 pharmaceuticals including sulfonamides, fluoroquinolones, tetracyclines, macrolides, dihydrofolate reductase inhibitors, β-blockers, antiepileptics, lipid regulators, and stimulants were studied in two municipal wastewater treatment plants (WWTPs) located in Wuxi City, East China. A total of 23 pharmaceuticals were detected in wastewater samples, with a maximum concentration of 16.1 μg L(-1) (caffeine) in the influent and 615.5 ng L(-1) (azithromycin) in the effluent; 19 pharmaceuticals were detected in sludge samples at concentrations up to 12.13 mg kg(-1), with ofloxacin, azithromycin and norfloxacin being the predominant species. Mass balance analysis showed that biodegradation primarily accounted for the removal of sulfonamides, most of the macrolides, and other miscellaneous pharmaceuticals, while adsorption onto the sludge was the primary removal pathway for fluoroquinolones, tetracylines, and azithromycin during biological treatment. The total mass loads of target pharmaceuticals per capita in the two WWTPs were in the ranges of 2681.8-4333.3, 248.0-416.6 and 214.6-374.5 μg per day per inhabitant in the influent, effluent and dewatered sludge, respectively. The upgraded Plant A adopting the combined anaerobic/anoxic/oxic and moving bed biofilm process exhibited a much higher removal of target pharmaceuticals than the conventional Plant B adopting the C-Orbal oxidation ditch process. The concentration levels of sulfamethoxazole, ofloxacin, ciprofloxacin and clarithromycin in the effluent, ofloxacin in the sludge, and the mixture of all target pharmaceuticals in both effluent and sludge posed a high risk to algae in aquatic environments.
Di Trapani, Daniele; Christensso, Magnus; Odegaard, Hallvard
2011-01-01
A hybrid activated sludge/biofilm process was investigated for wastewater treatment in a cold climate region. This process, which contains both suspended biomass and biofilm, usually referred as IFAS process, is created by introducing plastic elements as biofilm carrier media into a conventional activated sludge reactor. In the present study, a hybrid process, composed of an activated sludge and a moving bed biofilm reactor was used. The aim of this paper has been to investigate the performances of a hybrid process, and in particular to gain insight the nitrification process, when operated at relatively low MLSS SRT and low temperatures. The results of a pilot-scale study carried out at the Department of Hydraulic and Environmental Engineering at the Norwegian University of Science and Technology in Trondheim are presented. The experimental campaign was divided into two periods. The pilot plant was first operated with a constant HRT of 4.5 hours, while in the second period the influent flow was increased so that HRT was 3.5 hours. The average temperature was near 11.5°C in the overall experimental campaign. The average mixed liquor SRT was 5.7 days. Batch tests on both carriers and suspended biomass were performed in order to evaluate the nitrification rate of the two different biomasses. The results demonstrated that this kind of reactor can efficiently be used for the upgrading of conventional activated sludge plant for achieving year-round nitrification, also in presence of low temperatures, and without the need of additional volumes.
Martins, C L; Velho, V F; Ramos, S R A; Pires, A S C D; Duarte, E C N F A; Costa, R H R
2016-01-01
The aim of this study was to investigate the ability of the oxic-settling-anaerobic (OSA)-process and the folic acid addition applied in the activated sludge process to reduce the excess sludge production. The study was monitored during two distinct periods: activated sludge system with OSA-process, and activated sludge system with folic acid addition. The observed sludge yields (Yobs) were 0.30 and 0.08 kgTSS kg(-1) chemical oxygen demand (COD), control phase and OSA-process (period 1); 0.33 and 0.18 kgTSS kg(-1) COD, control phase and folic acid addition (period 2). The Yobs decreased by 73 and 45% in phases with the OSA-process and folic acid addition, respectively, compared with the control phases. The sludge minimization alternatives result in a decrease in excess sludge production, without negatively affecting the performance of the effluent treatment.
SLUDGE PARTICLE SEPAPATION EFFICIENCIES DURING SETTLER TANK RETRIEVAL INTO SCS-CON-230
DOE Office of Scientific and Technical Information (OSTI.GOV)
DEARING JI; EPSTEIN M; PLYS MG
2009-07-16
The purpose of this document is to release, into the Hanford Document Control System, FA1/0991, Sludge Particle Separation Efficiencies for the Rectangular SCS-CON-230 Container, by M. Epstein and M. G. Plys, Fauske & Associates, LLC, June 2009. The Sludge Treatment Project (STP) will retrieve sludge from the 105-K West Integrated Water Treatment System (IWTS) Settler Tanks and transfer it to container SCS-CON-230 using the Settler Tank Retrieval System (STRS). The sludge will enter the container through two distributors. The container will have a filtration system that is designed to minimize the overflow of sludge fines from the container to themore » basin. FAI/09-91 was performed to quantify the effect of the STRS on sludge distribution inside of and overflow out of SCS-CON-230. Selected results of the analysis and a system description are discussed. The principal result of the analysis is that the STRS filtration system reduces the overflow of sludge from SCS-CON-230 to the basin by roughly a factor of 10. Some turbidity can be expected in the center bay where the container is located. The exact amount of overflow and subsequent turbidity is dependent on the density of the sludge (which will vary with location in the Settler Tanks) and the thermal gradient between the SCS-CON-230 and the basin. Attachment A presents the full analytical results. These results are applicable specifically to SCS-CON-230 and the STRS filtration system's expected operating duty cycles.« less
Löschau, Margit
2018-04-01
This article describes a pilot test at a sewage sludge incineration plant and shows its results considering the impacts of reducing the minimum combustion temperature from 850°C to 800°C. The lowering leads to an actual reduction of the average combustion temperature by 25 K and a significant reduction in the fuel oil consumption for support firing. The test shall be used for providing evidence that the changed combustion conditions do not result in higher air pollutant emissions. The analysis focusses on the effects of the combustion temperature on nitrogen oxides (NO x ) and total organic carbon emissions. The evaluation of all continuously monitored emissions shows reduced emission levels compared to the previous years, especially for NO x .
Butkovskyi, A; Leal, L Hernandez; Zeeman, G; Rijnaarts, H H M
2017-07-01
The quality of anaerobic sludge and struvite from black water treatment system, aerobic sludge from grey water treatment system and effluents of both systems was assessed for organic micropollutant content in order to ensure safety when reusing these products. Use of anaerobic black water sludge and struvite as soil amendments is recommended based on the low micropollutant content. Aerobic grey water sludge is recommended for disposal, because of the relatively high micropollutant concentrations, exceeding those in sewage sludge. Effluents of black and grey water treatment systems require post-treatment prior to reuse, because the measured micropollutant concentrations in the effluents are above ecotoxicological thresholds. Copyright © 2017 Elsevier Inc. All rights reserved.
Gajurel, D; Deegener, S; Shalabi, M; Otterpohl, R
2007-01-01
Septic tank systems have been widely used to separate and digest solid matter in the household wastewater for a long time. However, they contaminate groundwater with pathogens and nutrients and deprive agriculture of valuable nutrients and soil conditioner from human excreta. Compared with septic tank systems the filter-composter (Rottebehaelter), which usually consists of an underground monolithic concrete tank having two filter beds at its bottom or two filter bags that are hung side by side and used alternately at intervals of 6-12 months, is an efficient component for solid-liquid separation, pre-treatment and collection/storage of solid matter in household wastewater. The solids are retained and decompose in the filter bags or on the filter bed while the liquid filters through. However, because of the high moisture content of the retained solids decomposition is slow. Therefore, secondary treatment of the retained solids is required for sanitisation. The breakthrough was the combination of vermicomposting with the filter-composter system. Relatively dry and stable retained materials were obtained in the filter bags in about 3 months only. No secondary treatment is required as the human excreta will be converted to vermicastings, which are hygienically safe and can be reused as soil conditioner. Therefore, further development of the filter-composter with vermicomposting is worthwhile, especially the aspects of sanitisation of the faecal matter and its reuse as a soil conditioner.
Enhancing metaproteomics-The value of models and defined environmental microbial systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbst, Florian-Alexander; Lünsmann, Vanessa; Kjeldal, Henrik
2016-01-21
Metaproteomics - the large-scale characterization of the entire protein complement of environmental microbiota at a given point in time - added unique features and possibilities to study environmental microbial communities and to unravel these “black boxes”. New technical challenges arose which were not an issue for classical proteome analytics before and choosing the appropriate model system applicable to the research question can be difficult. Here, we reviewed different model systems for metaproteome analysis. Following a short introduction to microbial communities and systems, we discussed the most used systems ranging from technical systems over rhizospheric models to systems for the medicalmore » field. This includes acid mine drainage, anaerobic digesters, activated sludge, planted fixed bed reactors, gastrointestinal simulators and in vivo models. Model systems are useful to evaluate the challenges encountered within (but not limited to) metaproteomics, including species complexity and coverage, biomass availability or reliable protein extraction. The implementation of model systems can be considered as a step forward to better understand microbial responses and ecological distribution of member organisms. In the future, novel improvements are necessary to fully engage complex environmental systems.« less
Zhang, Xueying; Zhou, Lixiang
2014-01-01
Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92) and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide) in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement. PMID:25050971
Zhou, Jun; Zheng, Guanyu; Zhang, Xueying; Zhou, Lixiang
2014-01-01
Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92) and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide) in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement.
Jin, Zhan; He, Yin; Xu, Xuan; Zheng, Xiang-yong
2017-01-01
There are two biological systems available for removing phosphorus from waste water, conventional phosphorus removal (CPR) and denitrifying phosphorus removal (DPR) systems, and each is characterized by the type of sludge used in the process. In this study, we compared the characteristics associated with the efficiency of carbon utilization between CPR and DPR sludge using acetate as a carbon source. For DPR sludge, the heat emitted during the phosphorus release and phosphorus uptake processes were 45.79 kJ/mol e- and 84.09 kJ/mol e-, respectively. These values were about 2 fold higher than the corresponding values obtained for CPR sludge, suggesting that much of the energy obtained from the carbon source was emitted as heat. Further study revealed a smaller microbial mass within the DPR sludge compared to CPR sludge, as shown by a lower sludge yield coefficient (0.05 gVSS/g COD versus 0.36 gVSS/g COD), a result that was due to the lower energy capturing efficiency of DPR sludge according to bioenergetic analysis. Although the efficiency of anoxic phosphorus removal was only 39% the efficiency of aerobic phosphorus removal, the consumption of carbon by DPR sludge was reduced by 27.8% compared to CPR sludge through the coupling of denitrification with dephosphatation. PMID:29065157
Upflow anaerobic sludge blanket reactor--a review.
Bal, A S; Dhagat, N N
2001-04-01
Biological treatment of wastewater basically reduces the pollutant concentration through microbial coagulation and removal of non-settleable organic colloidal solids. Organic matter is biologically stabilized so that no further oxygen demand is exerted by it. The biological treatment requires contact of the biomass with the substrate. Various advances and improvements in anaerobic reactors to achieve variations in contact time and method of contact have resulted in development of in suspended growth systems, attached growth or fixed film systems or combinations thereof. Although anaerobic systems for waste treatment have been used since late 19th century, they were considered to have limited treatment efficiencies and were too slow to serve the needs of a quickly expanding wastewater volume, especially in industrialized and densely populated areas. At present aerobic treatment is the most commonly used process to reduce the organic pollution level of both domestic and industrial wastewaters. Aerobic techniques, such as activated sludge process, trickling filters, oxidation ponds and aerated lagoons, with more or less intense mixing devices, have been successfully installed for domestic wastewater as well as industrial wastewater treatment. Anaerobic digestion systems have undergone modifications in the last two decades, mainly as a result of the energy crisis. Major developments have been made with regard to anaerobic metabolism, physiological interactions among different microbial species, effects of toxic compounds and biomass accumulation. Recent developments however, have demonstrated that anaerobic processes might be an economically attractive alternative for the treatment of different types of industrial wastewaters and in (semi-) tropical areas also for domestic wastewaters. The anaerobic degradation of complex, particulate organic matter has been described as a multistep process of series and parallel reactions. It involves the decomposition of organic and inorganic matter in the absence of molecular oxygen. Complex polymeric materials such as polysaccharides, proteins, and lipids (fat and grease) are first hydrolyzed to soluble products by extracellular enzymes, secreted by microorganisms, so as to facilitate their transport or diffusion across the cell membrane. These relatively simple, soluble compounds are fermented or anaerobically oxidized, further to short-chain fatty acids, alcohols, carbon dioxide, hydrogen, and ammonia. The short-chain fatty acids (other than acetate) are converted to acetate, hydrogen gas, and carbon dioxide. Methanogenesis finally occurs from the reduction of carbon dioxide and acetate by hydrogen. The initial stage of anaerobic degradation, i.e. acid fermentation is essentially a constant BOD stage because the organic molecules are only rearranged. The first stage does not stabilize the organics in the waste. However this step is essential for the initiation of second stage methane fermentation as it converts the organic material to a form, usable by the methane producing bacteria. The second reaction is initiated when anaerobic methane forming bacteria act upon the short chain organic acids produced in the 1st stage. Here these acids undergo methane fermentation with carbon dioxide acting as hydrogen acceptor and getting reduced to methane. The methane formed, being insoluble in water, escapes from the system and can be tapped and used as an energy source. The production and subsequent escape of methane causes the stabilization of the organic material. The methane-producing bacteria consist of several different groups. Each group has the ability to ferment only specific compounds. Therefore, the bacterial consortia in a methane producing system should include a number of different groups. When the rate of bacterial growth is considered, then the retention time of the solids becomes important parameter. The acid fermentation stage is faster as compared to the methane fermentation stage. This means that a sudden increase in the easily degradable organics will result in increased acid production with subsequent accumulation of acids. This inhibits the methanogenesis step. Acclimatization of the microorganisms to a substrate has been reported to take more than five weeks. Sufficiently acclimated bacteria have shown greater stability towards stress-inducing events such as hydraulic overloads, fluctuations in temperature, fluctuations in volatile acid and ammonia concentrations etc. Several environmental factors can affect anaerobic digestion, by altering the parameters such as specific growth rate, decay rate, gas production, substrate utilization, start-up and response to changes in input. It has long been recognized that an anaerobic process is in many ways ideal for wastewater treatment and has following merits: A high degree of waste stabilization A low production of excess A low nutrient requirements No oxygen requirement Production of methane gas Anaerobic microorganisms, especially methanogens have a slow growth rate. At lower HRTs, the possibility of washout of biomass is more prominent. This makes it difficult to maintain the effective number of useful microorganisms in the system. To maintain the population of anaerobes, large reactor volumes or higher HRTs are required. This may ultimately provide longer SRTs upto 20 days for high rate systems. Thus, provision of larger reactor volumes or higher HRTs ultimately lead to higher capital cost. Among notable disadvantages, it has low synthesis/reaction rate hence long start up periods and difficulty in recovery from upset conditions. Special attention is, therefore, warranted towards, controlling the factors that affect process adversely; important among them being environmental factors such as temperature, pH and concentration of toxic substances. The conventional anaerobic treatment process consists of a reactor containing waste and biological solids (bacteria) responsible for the digestion process. Concentrated waste (usually sewage sludge) can be added continuously or periodically (semi-batch operation), where it is mixed with the contents of the reactor. Theoretically, the conventional digester is operated as a once-through, completely mixed, reactor. In this particular mode of operation the hydraulic retention time (HRT) is equal to the solids retention time (SRT). Basically, the required process efficiency is related to the sludge retention time (SRT), and hence longer SRT provided, results in satisfactory population (by reproduction) for further waste stabilization. By reducing the hydraulic retention time (HRT) in the conventional mode reactor, the quantity of biological solids within the reactor is also decreased as the solids escape with the effluent. The limiting HRT is reached when the bacteria are removed from the reactor faster than they can grow. Methanogenic bacteria are slow growers and are considered the rate-limiting component in the anaerobic digestion process. The first anaerobic process developed, which separated the SRT from the HRT was the anaerobic contact process. In 1963, Young and McCarty (1968) began work, which eventually led to the development of the anaerobic upflow filter (AF) process. The anaerobic filter represented a significant advance in anaerobic waste treatment, since the filter can trap and maintain a high concentration of biological solids. By trapping these solids, long SRT's could be obtained at large waste flows, necessary to anaerobically treat low strength wastes at nominal temperatures economically. Another anaerobic process which relies on the development of biomass on the surfaces of a media is an expanded bed upflow reactor. The primary concept of the process consists of passing wastewater up through a bed of inert sand sized particles at sufficient velocities to fluidize and partially expand the sand bed. One of the more interesting new processes is the upflow anaerobic sludge blanket process (UASB), which was developed by Lettinga and his co-workers in Holland in the early 1970's. The key to the process was the discovery that anaerobic sludge inherently has superior flocculation and settling characteristics, provided the physical and chemical conditions for sludge flocculation are favorable. When these conditions are met, a high solids retention time (at high HRT loadings) can be achieved, with separation of the gas from the sludge solids. The UASB reactor is one of the reactor types with high loading capacity. It differs from other processes by the simplicity of its design. UASB process is a combination of physical & biological processes. The main feature of physical process is separation of solids and gases from the liquid and that of biological process is degradation of decomposable organic matter under anaerobic conditions. No separate settler with sludge return pump is required, as in the anaerobic contact process. There is no loss of reactor volume through filter or carrier material, as in the case with the anaerobic filter and fixed film reactor types, and there is no need for high rate effluent recirculation and concomitant pumping energy, as in the case with fluidized bed reactor. Anaerobic sludge inherently possesses good settling properties, provided the sludge is not exposed to heavy mechanical agitation. For this reason mechanical mixing is generally omitted in UASB-reactors. At high organic loading rates, the biogas production guarantees sufficient contact between substrate and biomass. Regarding the dynamic behaviour of the water phase UASB reactor approaches the completely mixed reactor. For achieving the required sufficient contact between sludge and wastewater, the UASB-system relies on the agitation brought about by the natural gas production and on an even feed inlet distribution at the bottom of the reactor. (ABSTRACT TRUNCATED)
Toledo, José M; Corella, José; Corella, Luis M
2005-11-11
This work addresses the behavior, fate and/or partitioning of six targeted (Cd, Pb, Cr, Cu, Zn and Ni) heavy metals (HMs) in the incineration of sludges and waste in a bubbling fluidized bed (BFB) of 15 cm i.d. and 5.2m high followed by a filter chamber operated at 750-760 degrees C with a commercial ceramic filter. This paper presents three different things: (1) an in depth review of the published work relating to the problem of partitioning of the HMs in BFBs, (2) some more experimental incineration tests regarding the influence of the temperature of the bed of the BFB and the effect of the chlorine content in the feedstock on the partitioning of the HMs, and (3) the modelling of the partitioning of the HMs in the exit flows: bottom ash, coarse fly ashes, fine fly ash and vapour phase. The partitioning of the HMs is governed by fluid dynamic principles together with the kinetics of the diffusion of the HMs inside the ash particles and the kinetics of the reactions between the HMs and the components of the matrix of the ash. Some thermodynamic predictions do not fit the results from the BFB incinerator well enough because equilibria are not reached in at least three exit ash flows: coarse fly ash, fine fly ash and submicron particles. The residence time of these ash particles in these type of incinerators is very short and most of the HMs have no time to diffuse out of the ash particle. Finally, an examination was made on how in the ceramic hot filter the partition coefficients for the HMs increased, mainly for Cd and Pb, when the Cl-content in the feedstock was increased.
Tamis, J; van Schouwenburg, G; Kleerebezem, R; van Loosdrecht, M C M
2011-11-15
Sludge predation can be an effective solution to reduce sludge production at a wastewater treatment plant. Oligochaete worms are the natural consumers of biomass in benthic layers in ecosystems. In this study the results of secondary sludge degradation by the aquatic Oligochaete worm Aulophorus furcatus in a 125 m(3) reactor and further sludge conversion in an anaerobic tank are presented. The system was operated over a period of 4 years at WWTP Wolvega, the Netherlands and was fed with secondary sludge from a low loaded activated sludge process. It was possible to maintain a stable and active population of the aquatic worm species A. furcatus during the full period. Under optimal conditions a sludge conversion of 150-200 kg TSS/d or 1.2-1.6 kg TSS/m(3)/d was established in the worm reactor. The worms grew as a biofilm on carrier material in the reactor. The surface specific conversion rate reached 140-180 g TSS/m(2)d and the worm biomass specific conversion rate was 0.5-1 g TSS sludge/g dry weight worms per day. The sludge reduction under optimal conditions in the worm reactor was 30-40%. The degradation by worms was an order of magnitude larger than the endogenous conversion rate of the secondary sludge. Effluent sludge from the worm reactor was stored in an anaerobic tank where methanogenic processes became apparent. It appeared that besides reducing the sludge amount, the worms' activity increased anaerobic digestibility, allowing for future optimisation of the total system by maximising sludge reduction and methane formation. In the whole system it was possible to reduce the amount of sludge by at least 65% on TSS basis. This is a much better total conversion than reported for anaerobic biodegradability of secondary sludge of 20-30% efficiency in terms of TSS reduction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Flores, Angel; Nisola, Grace M; Cho, Eulsaeng; Gwon, Eun-Mi; Kim, Hern; Lee, Changhee; Park, Shinjung; Chung, Wook-Jin
2007-05-01
The performance of enriched sludge augmented with the B21 strain of Alcaligenes defragrans was compared with that of enriched sludge, as well as with pure Alcaligenes defragrans B21, in the context of a sulfur-oxidizing denitrification (SOD) process. In synthetic wastewater treatment containing 100-1,000 mg NO3-N/L, the single strain-seeded system exhibited superior performance, featuring higher efficiency and a shorter startup period, provided nitrate loading rate was less than 0.2 kg NO3-N/m(3) per day. At nitrate loading rate of more than 0.5 kg NO3-N/m(3) per day, the bioaugmented sludge system showed higher resistance to shock loading than two other systems. However, no advantage of the bioaugmented system over the enriched sludge system without B21 strain was observed in overall efficiency of denitrification. Both the bioaugmented sludge and enriched sludge systems obtained stable denitrification performance of more than 80% at nitrate loading rate of up to 2 kg NO3-N/m(3) per day.
NASA Astrophysics Data System (ADS)
Ferreiro-Domínguez, Nuria; Nair, Vimala; Rigueiro-Rodríguez, Antonio; Rosa Mosquera-Losada, María
2015-04-01
In Europe, sewage sludge should be stabilised before using as fertiliser in agriculture. Depending on the stabilisation process that is used, sewage sludge has different characteristics, nutrient contents and soil nutrient incorporation rates. Sewage sludge is usually applied on a plant-available N or total metal concentration basic, and therefore, P concentrations can be well above crop needs. Leaching of excess P can threaten surface and ground waters with eutrophication. In this context, recent studies have demonstrated that the implementation of agroforestry systems could reduce the P leaching risk compared with conventional agricultural systems due to the different localisation of tree and crop roots which enhance nutrient uptake. The aim of this study was to evaluate during three consecutive years the effect of municipal sewage sludge stabilised by anaerobic digestion, composting, and pelletisation on concentration of P in soil and pasture compared to control treatments (mineral and no fertilisation) in a silvopastoral system established under Fraxinus excelsior L. in Galicia (Spain). The results showed that at the beginning of the study, the fertilisation with mineral increased more the total and available P in soil than the fertilisation with sewage sludge probably because the sludge nutrient release rate is slower than those from mineral fertilisers. The increment of soil available P caused by the mineral fertiliser implied an improvement of the P concentration in the pasture. However, in the last year of the experiment it was observed a positive effect of the fertilisation with pelletised sludge on the concentration of P in pasture compared with the composted sludge and the mineral fertiliser probably due to the annual application of this type of sludge. Therefore, the establishment of silvopastoral systems and their fertilisation with pelletized sludge should be recommended because the pelletized sludge increases the concentration of P in the pasture and reduces the application and storage costs due to its lower proportion of water than the other types of sludge tested. At the same time, the integration of trees in agricultural areas decreases the problem of environmental impact resulting from addition of organic and inorganic fertilisers on soils.
Reduction of excess sludge production using mechanical disintegration devices.
Strünkmann, G W; Müller, J A; Albert, F; Schwedes, J
2006-01-01
The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.
Micropollutant and sludge characterization for modeling sorption equilibria.
Barret, Maialen; Carrère, Hélène; Latrille, Eric; Wisniewski, Christelle; Patureau, Dominique
2010-02-01
The sorption of hydrophobic micropollutants in sludge is one of the major mechanisms which drive their fate within wastewater treatment systems. The objective of this study was to investigate the influence of both sludge and micropollutant characteristics on the equilibria of sorption to particles and to dissolved and colloidal matter (DCM). For this purpose, the equilibrium constants were measured for 13 polycyclic aromatic hydrocarbons, 5 polychlorobiphenyls and the nonylphenol, and five different sludge types encountered in treatment systems: a primary sludge, a secondary sludge, the same secondary sludge after thermal treatment, after anaerobic digestion, and after both treatments. After thermal treatment, no more sorption to DCM was observed. Anaerobic biological treatment was shown to enhance micropollutants sorption to particles and to DCM of one logarithmic unit, due to matter transformation. Partial least-squares linear regressions of sorption data as a function of micropollutant and sludge properties revealed that sludge physical and chemical characteristics were more influential than micropollutant characteristics. Two models were provided to predict the sorption of such micropollutants in any sludge. To our knowledge, this is the first time that a three-compartment approach is used to accurately model micropollutant sorption in sludge and to understand the driving mechanisms.
NASA Astrophysics Data System (ADS)
Yang, Shan-Shan; Pang, Ji-Wei; Jin, Xiao-Man; Wu, Zhong-Yang; Yang, Xiao-Yin; Guo, Wan-Qian; Zhao, Zhi-Qing; Ren, Nan-Qi
2018-03-01
Redundant excess sludge production and considerable non-standard wastewater discharge from existing activated sludge processes are facing more and more challenges. The investigations on lower sludge production and higher sewage treatment efficiency are urgently needed. In this study, an anaerobic/anoxic/micro-aerobic/oxic-MBR combining a micro-aerobic starvation sludge holding tank (A2MMBR-M) system is developed. Batch tests on the optimization of the staged dissolved oxygen (DO) in the micro-aerobic, the first oxic, and the second oxic tanks were carried out by a 3-factor and 3-level Box-Behnken design (BBD). The optimal actual values of X1 , X2 , and X3 were DO1 of 0.3-0.5 mg/L, DO2 of 3.5-4.5 mg/L, and DO3 of 3-4 mg/L. After the optimization tests, continuous-flow experiments of anaerobic/anoxic/oxic (AAO) and A2MMBR-M systems were further conducted. Compared to AAO system, a 37.45% reduction in discharged excess sludge in A2MMBR-M system was achieved. The COD, TN, and TP removal efficiencies in A2MMBR-M system were respective 4.06%, 2.68%, and 4.04% higher than AAO system. The A2MMBR-M system is proved a promising wastewater treatment technology possessing enhanced in-situ sludge reduction and improved effluent quality. The staged optimized DO concentrations are the key controlling parameters for the realization of simultaneous in-situ sludge reduction and nutrient removal.
Zeng, Qingling; Li, Yongmei; Yang, Shijia
2013-01-01
Abstract Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic–anoxic–oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10–25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%–81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (Kd) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%–80.1% was biodegraded; 18.9%–34.7% was released in effluent; and 0.88%–3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants. PMID:23633892
Evaluation of hybrid processes for nitrification by comparing MBBR/AS and IFAS configurations.
Germain, E; Bancroft, L; Dawson, A; Hinrichs, C; Fricker, L; Pearce, P
2007-01-01
An integrated fixed-film activated sludge (IFAS) pilot plant and a moving bed biofilm reactor coupled with an activated sludge process (MBBR/AS) were operated under different temperatures, carbon loadings and solids retention times (SRTs). These two types of hybrid systems were compared, focusing on the nitrification capacity and the nitrifiers population of the media and suspended biomass alongside other process performances such as carbonaceous and total nitrogen (TN) removal rates. At high temperatures and loadings rates, both processes were fully nitrifying and achieved similarly high carbonaceous removal rates. However, under these conditions, the IFAS configuration performed better in terms of TN removal. Lower temperatures and carbon loadings led to lower carbonaceous removal rates for the MBBR/AS configuration, whereas the IFAS configuration was not affected. However, the nitrification capacity of the IFAS process decreased significantly under these conditions and the MBBR/AS process was more robust in terms of nitrification. Ammonia oxidising bacteria (AOB) and nitrite oxidising bacteria (NOB) population counts accurately reflected the changes in nitrification capacity. However, significantly less NOBs than AOBs were observed, without noticeable nitrite accumulation, suggesting that the characterisation method used was not as sensitive for NOBs and/or that the NOBs had a higher activity than the AOBs.
This project was initiated with the overall objective of developing organized information pertaining to the costs of various sewage sludge transport systems. Transport of liquid and dewatered sludge by truck and rail and liquid sludge by barge and pipeline is included. The report...
Alyaseri, Isam; Zhou, Jianpeng
2017-03-01
The aim of this study is to use the life cycle assessment method to measure the environmental performance of the sludge incineration process in a wastewater treatment plant and to propose an alternative that can reduce the environmental impact. To show the damages caused by the treatment processes, the study aimed to use an endpoint approach in evaluating impacts on human health, ecosystem quality, and resources due to the processes. A case study was taken at Bissell Point Wastewater Treatment Plant in Saint Louis, Missouri, U.S. The plant-specific data along with literature data from technical publications were used to build an inventory, and then analyzed the environmental burdens from sludge handling unit in the year 2011. The impact assessment method chosen was ReCipe 2008. The existing scenario (dewatering-multiple hearth incineration-ash to landfill) was evaluated and three alternative scenarios (fluid bed incineration and anaerobic digestion with and without land application) with energy recovery from heat or biogas were proposed and analyzed to find the one with the least environmental impact. The existing scenario shows that the most significant impacts are related to depletion in resources and damage to human health. These impacts mainly came from the operation phase (electricity and fuel consumption and emissions related to combustion). Alternatives showed better performance than the existing scenario. Using ReCipe endpoint methodology, and among the three alternatives tested, the anaerobic digestion had the best overall environmental performance. It is recommended to convert to fluid bed incineration if the concerns were more about human health or to anaerobic digestion if the concerns were more about depletion in resources. The endpoint approach may simplify the outcomes of this study as follows: if the plant is converted to fluid bed incineration, it could prevent an average of 43.2 DALYs in human life, save 0.059 species in the area from extinction, and make a 62% reduction in the plant's current expenses needed by future generations to extract resources per year. At the same time it may prevent 36.1 DALYs in humans, save 0.157 species, and make a 101% reduction in current expenses on resources per year, if converting to anaerobic digestion.
NASA Astrophysics Data System (ADS)
Vainikka, P.; Silvennoinen, J.; Yrjas, P.; Frantsi, A.; Hietanen, L.; Hupa, M.; Taipale, R.
Aerosol and fly ash sampling was carried out at a 80MWth bubbling fluidised bed (BFB) boiler plant co-firing solid recovered fuel (SRF), spruce bark and paper mill wastewater sludge in two experimental conditions. The SRF-Bark ratio in the fuel mix was kept constant at 50%-50% on dry mass basis in both experiments but two sludge proportions were used: 15% and 4% on dry mass basis. Aerosol samples were collected from the superheater region of the boiler furnace and fly ash from the electrostatic precipitator (ESP). Na, K, Cl and S were found to be in mainly water soluble compounds in the aerosols sampled by means of a Dekati type Low Pressure Impactor (DLPI). Bromine was found in several weight percentages in aerosols and it was amongst the main elements in some of the samples collected. Bromine is assumed to mainly originate from flame retarded plastics and textiles in the SRF. According to the measurements, the fate of Br seems to be analogous to the other main halogen, Cl, and its conversion from fuel to aerosols was high, indicating a strong tendency to form bromine salts.
Biodegradation of phytosanitary products in biological wastewater treatment.
Massot, A; Estève, K; Noilet, P; Méoule, C; Poupot, C; Mietton-Peuchot, M
2012-04-15
Agricultural activity generates two types of waste: firstly, biodegradable organic effluents generally treated by biological processes and, secondly, phytosanitary effluents which contain residues of plant protection products. The latter are collected and treated. Current technological solutions are essentially based on concentration or physical-chemical processes. However, recent improvements in the biodegradability of pesticides open the way to the consideration of alternative, biological, treatment using mixed liquor from wastewater plant activated sludge. The feasibility of the biological treatment of viticultural effluents has been evaluated by the application of pesticides to activated sludge. The necessity for selection of a pesticide-resistant biomass has been highlighted. The elimination of the phytosanitary products shows the potential of a resistant biomass in the treatment of pesticides. The aerated biological storage ponds at three wineries, followed by a sand or reed-bed filter, were used for the treatment of the total annual volume of the viticulture effluents and validate the laboratory experiments. The results show that the biological purification of pesticides by activated sludge is possible by allowing approximately 8 days for biomass adaptation. Stability of purification occurs between 20 and 30 days. Copyright © 2012 Elsevier Ltd. All rights reserved.
High performance biological methanation in a thermophilic anaerobic trickle bed reactor.
Strübing, Dietmar; Huber, Bettina; Lebuhn, Michael; Drewes, Jörg E; Koch, Konrad
2017-12-01
In order to enhance energy efficiency of biological methanation of CO 2 and H 2 , this study investigated the performance of a thermophilic (55°C) anaerobic trickle bed reactor (ATBR) (58.1L) at ambient pressure. With a methane production rate of up to 15.4m 3 CH4 /(m 3 trickle bed ·d) at methane concentrations above 98%, the ATBR can easily compete with the performance of other mixed culture methanation reactors. Control of pH and nutrient supply turned out to be crucial for stable operation and was affected significantly by dilution due to metabolic water production, especially during demand-orientated operation. Considering practical applications, inoculation with digested sludge, containing a diverse biocenosis, showed high adaptive capacity due to intrinsic biological diversity. However, no macroscopic biofilm formation was observed at thermophilic conditions even after 313days of operation. The applied approach illustrates the high potential of thermophilic ATBRs as a very efficient energy conversion and storage technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Paing, J; Voisin, J
2005-01-01
This paper presents the purification performance of 20 wastewater treatment plants with vertical reed bed filters (Macrophyltres), built between 1998 and 2003 by SAS Voisin, for communities of between 150 and 1400 PE. The first stage vertical reed bed (directly fed with raw wastewater by intermittent feeding) achieved high removal of SS, BOD and COD (mean respectively 96%, 98%, 92%). The second stage permitted compliance easily with effluent standards (SS < 15 mg/l, BOD < 15 mg/l, COD < 90 mg/l and mean TKN < 10 mg/l). Performance was not significantly influenced by variations of organic and hydraulic load, nor by seasonal variations. Rigorous operation and maintenance were required to obtain optimal performances. Another application of vertical reed beds is the treatment of septage (sludge from individual septic tanks). The results obtained on two sites operating for 2 and 3 years are presented. The first site achieved complete treatment of septage (solid and liquid fraction), the second permitted a pre-treatment for co-treatment of percolate with wastewater.
Rajasimman, M; Karthikeyan, C
2007-05-08
A solid-liquid-gas, multiphase, fluidized bed bioreactor with low density particles was used in this study to treat the high organic content starch industry wastewater. The characteristics of starch wastewater were studied. It shows high organic content and acidic nature. The performance of a three phase fluidized bed bioreactor with low density biomass support was studied under various average initial substrate concentrations, by varying COD values (2250, 4475, 6730 and 8910 mg/L) and for various hydraulic retention times (8, 16, 24, 32 and 40 h) based on COD removal efficiency. The optimum bed height for the maximum COD reduction was found to be 80 cm. Experiments were carried out in the bioreactor at an optimized bed height, after the formation of biofilm on the surface of low-density particles (density=870 kg/m(3)). Mixed culture obtained from the sludge, taken from starch industry effluent treatment plant, was used as the source for microorganisms. From the results it was observed that increase in initial substrate concentration leads to decrease in COD reduction and COD reduction increases with increase in hydraulic retention time. The optimum COD removal of 93.8% occurs at an initial substrate concentration of 2250 mg/L and for the hydraulic retention time of 24h.
Kim, Young Mo; Chon, Dong-Hyun; Kim, Hee-Sik; Park, Chul
2012-09-01
The goal of this study was to investigate the bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR), a process permitting significant decrease in sludge production during wastewater treatment. The study operated five activated sludge systems with different sludge treatment schemes serving as various controls for the activated sludge with ASSR. Bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE), sequencing and construction of phylogenetic relationships of the identified bacteria. The DGGE data showed that activated sludge incorporating ASSR contained higher diversity of bacteria, resulting from long solids retention time and recirculation of sludge under aerobic and anaerobic conditions. The similarity of DGGE profiles between ASSR and separate anaerobic digester (control) was high indicating that ASSR is primarily related to conventional anaerobic digesters. Nevertheless, there was also unique bacteria community appearing in ASSR. Interestingly, sludge in the main system and in ASSR showed considerably different bacterial composition indicating that ASSR allowed enriching its own bacterial community different than that from the aeration basin, although two reactors were connected via sludge recirculation. In activated sludge with ASSR, sequences represented by predominant DGGE bands were affiliated with Proteobacteria. The remaining groups were composed of Spirochaetes, Clostridiales, Chloroflexi, and Actinobacteria. Their putative role in the activated sludge with ASSR is also discussed in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lv, Xiao-Mei; Song, Ju-Sheng; Li, Ji; Zhai, Kun
2017-08-01
In the present study, quick-lime-based thermal-alkaline sludge disintegration (SD) under low temperature was combined with cryptic growth to investigate the excess sludge reduction efficiency in the sequencing batch reactor (SBR). The optimized condition of SD was as follows: T = 80℃, pH = 11, t = 180 min, and the SD rate was about 42.1%. With 65.6% of excess sludge disintegrated and returned to the SBR, the system achieved sludge reduction rate of about 40.1%. The lysis-cryptic growth still obtained satisfactory sludge reduction efficiency despite the comparative low SD rate, which suggested that disintegration rate might not be the decisive factor for cryptic-growth-based sludge reduction. Lysis-cryptic growth did not impact the effluent quality, yet the phosphorus removal performance was enhanced, with effluent total phosphorus concentration decreased by 0.3 mg/L (33%). Crystal compounds of calcium phosphate precipitate were detected in the system by Fourier transform infrared spectroscopy and X-ray diffraction, which indicated the phosphorus removal potential of SD using lime. Moreover, endogenous dehydrogenase activity of activated sludge in the lysis-cryptic system was enhanced, which was beneficial for sludge reduction. SD and cryptic growth in the present study demonstrates an economical and effective approach for sludge reduction.
Characterization of sulfate-reducing granular sludge in the SANI(®) process.
Hao, Tianwei; Wei, Li; Lu, Hui; Chui, Hokwong; Mackey, Hamish R; van Loosdrecht, Mark C M; Chen, Guanghao
2013-12-01
Hong Kong practices seawater toilet flushing covering 80% of the population. A sulfur cycle-based biological nitrogen removal process, the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process, had been developed to close the loop between the hybrid water supply and saline sewage treatment. To enhance this novel process, granulation of a Sulfate-Reducing Up-flow Sludge Bed (SRUSB) reactor has recently been conducted for organic removal and provision of electron donors (sulfide) for subsequent autotrophic denitrification, with a view to minimizing footprint and maximizing operation resilience. This further study was focused on the biological and physicochemical characteristics of the granular sulfate-reducing sludge. A lab-scale SRUSB reactor seeded with anaerobic digester sludge was operated with synthetic saline sewage for 368 days. At 1 h nominal hydraulic retention time (HRT) and 6.4 kg COD/m(3)-d organic loading rate, the SRUSB reactor achieved 90% COD and 75% sulfate removal efficiencies. Granular sludge was observed within 30 days, and became stable after 4 months of operation with diameters of 400-500 μm, SVI5 of 30 ml/g, and extracellular polymeric substances of 23 mg carbohydrate/g VSS. Fluorescence in situ hybridization (FISH) analysis revealed that the granules were enriched with abundant sulfate-reducing bacteria (SRB) as compared with the seeding sludge. Pyrosequencing analysis of the 16S rRNA gene in the sulfate-reducing granules on day 90 indicated that the microbial community consisted of a diverse SRB genera, namely Desulfobulbus (18.1%), Desulfobacter (13.6%), Desulfomicrobium (5.6%), Desulfosarcina (0.73%) and Desulfovibrio (0.6%), accounting for 38.6% of total operational taxonomic units at genera level, with no methanogens detected. The microbial population and physicochemical properties of the granules well explained the excellent performance of the granular SRUSB reactor. Copyright © 2013 Elsevier Ltd. All rights reserved.
Removal of Triclocarban and Triclosan during Municipal Biosolid Production
Ogunyoku, Temitope A.; Young, Thomas M.
2014-01-01
The antimicrobial compounds triclosan (TCS) and triclocarban (TCC) accumulate in sludges produced during municipal wastewater treatment and persist through sludge treatment processes into finished biosolids. The objective of this research was to determine the extent to which conventional sludge processing systems such as aerobic digestion, anaerobic digestion, and lime stabilization were able to remove TCC and TCS. Sludge and biosolid samples were collected from 10 municipal wastewater treatment plants in the United States. The concentrations of TCC and TCS in sludge and biosolid samples were determined via heated solvent extraction and analysis with liquid chromatography electrospray ionization mass spectrometry. Dry weight concentrations of TCC and TCS frequently were higher in finished biosolids than in the source sludges because of sludge mass reduction during digestion. The removal of TCC and TCS in municipal biosolid processing systems was determined from the measured concentration change after correcting for reductions in solid mass during sludge treatment. Removal in the digester systems ranged from 15 – 68 % for TCC and 20 – 75 % for TCS. Increased solid retention times during sludge treatment operations were correlated with higher removals of TCC and TCS. Apparent first order degradation rates for TCC ranged from 0.015–0.08 1/d and for TCS were between 0.003–0.15 1/d. PMID:24734467
Agar, David A; Kwapinska, Marzena; Leahy, James J
2018-02-26
Sludge from municipal wastewater treatment plants and organic fines from mechanical sorting of municipal solid waste (MSW) are two common widespread waste streams that are becoming increasingly difficult to utilise. Changing perceptions of risk in food production has limited the appeal of sludge use on agricultural land, and outlets via landfilling are diminishing rapidly. These factors have led to interest in thermal conversion technologies whose aim is to recover energy and nutrients from waste while reducing health and environmental risks associated with material re-use. Pyrolysis yields three output products: solid char, liquid oils and gas. Their relative distribution depends on process parameters which can be somewhat optimised depending on the end use of product. The potential of pyrolysis for the conversion of wastewater sludge (SS) and organic fines of MSW (OF) to a combustion gas and a carbon-rich char has been investigated. Pyrolysis of SS and OF was done using a laboratory fixed-bed reactor. Herein, the physical characterisation of the reactor is described, and results on pyrolysis yields are presented. Feedstock and chars have been characterised using standard laboratory methods, and the composition of pyrolysis gases was analysed using micro gas chromatography. Product distribution (char/liquid/gas) from the pyrolysis of sewage sludge and composted MSW fines at 700°C for 10 min were 45/26/29 and 53/14/33%, respectively. The combustible fractions of pyrolysis gases range from 36 to 54% for SS feedstock and 62 to 72% from OF. The corresponding lower heating value range of sampled gases were 11.8-19.1 and 18.2-21.0 MJ m -3 , respectively.
Cost Reductions for Wastewater Treatment Utilizing Water Management at Holston Army Ammunition Plant
1976-05-01
says that the granular carbon used is made from bituminous coal. As the waste stream pass through a bed of carbon granules, com- pounds are adsorbed to...findings of laboratory-scale reactor studies conducted at Purdue University for * Clark, Dietz and Associates. The original recommendations and cost...Pretreatment Denitrification by Submerged Anaerbbic I ilters I ~ Trickling Filters S F ,2al Clarification "•’i Pump - ~ Sludge ,Treatment Dual Media Filh:ration
Pérez-Pérez, T; Pereda-Reyes, I; Pozzi, E; Oliva-Merencio, D; Zaiat, M
2018-01-01
This paper shows the effect of organic shock loads (OSLs) on the anaerobic digestion (AD) of synthetic swine wastewater using an expanded granular sludge bed (EGSB) reactor modified with zeolite. Two reactors (R1 and R2), each with an effective volume of 3.04 L, were operated for 180 days at a controlled temperature of 30 °C and hydraulic retention time of 12 h. In the case of R2, 120 g of zeolite was added. The reactors were operated with an up-flow velocity of 6 m/h. The evolution of pH, total Kjeldahl nitrogen, chemical oxygen demand (COD) and volatile fatty acids (VFAs) was monitored during the AD process with OSL and increases in the organic loading rate (OLR). In addition, the microbial composition and changes in the structure of the bacterial and archaeal communities were assessed. The principal results demonstrate that the presence of zeolite in an EGSB reactor provides a more stable process at higher OLRs and after applying OSL, based on both COD and VFA accumulation, which presented with significant differences compared to the control. Denaturing gradient gel electrophoresis band profiles indicated differences in the populations of Bacteria and Archaea between the R1 and R2 reactors, attributed to the presence of zeolite.
Giannakis, Stefanos; Gamarra Vives, Franco Alejandro; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César
2015-11-01
In this study, wastewater from the output of three different secondary treatment facilities (Activated Sludge, Moving Bed Bioreactor and Coagulation-Flocculation) present in the municipal wastewater treatment plant of Vidy, Lausanne (Switzerland), was further treated with various oxidation processes (UV, UV/H2O2, solar irradiation, Fenton, solar photo-Fenton), at laboratory scale. For this assessment, 6 organic micropollutants in agreement with the new environmental legislation requirements in Switzerland were selected (Carbamazepine, Clarithromycin, Diclofenac, Metoprolol, Benzotriazole, Mecoprop) and monitored throughout the treatment. Also, the overall removal of the organic load was assessed. After each secondary treatment, the efficiency of the AOPs increased in the following order: Coagulation-Flocculation < Activated Sludge < Moving Bed Bioreactor, in almost all cases. From the different combinations tested, municipal wastewater subjected to biological treatment followed by UV/H2O2 resulted in the highest elimination levels. Wastewater previously treated by physicochemical treatment demonstrated considerably inhibited micropollutant degradation rates. The degradation kinetics were determined, yielding: k (UV) < k (UV/H2O2) and k (Fenton) < k (solar irradiation) < k (photo-Fenton). Finally, the evolution of global pollution parameters (COD & TOC elimination) was followed and the degradation pathways for the effluent organic matter are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kalyuzhnyi, Sergey; Gladchenko, Marina; Epov, Andrey; Appanna, Vasu
2003-01-01
As a first step of treatment of landfill leachates (total chemical oxygen demand [COD]: 1.43-3.81 g/L; total nitrogen: 90-162 mg/L), performance of laboratory upflow anaerobic sludge bed reactors was investigated under mesophilic (30 degrees C), submesophilic (20 degrees C), and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRTs) of about 0.3 d, when the average organic loading rates (OLRs) were about 5 g of COD/(L.d), the total COD removal accounted for 81% (on average) with the effluent concentrations close to the anaerobic biodegradability limit (0.25 g of COD/L) for mesophilic and submesophilic regimes. The psychrophilic treatment conducted under an average HRT of 0.34 d and an average OLR of 4.22 g of COD/(L.d) showed a total COD removal of 47%, giving effluents (0.75 g of COD/L) more suitable for subsequent biologic nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulfides inside the sludge bed. The application of aerobic/ anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.
Xu, Tianfen; Qiu, Jinrong; Wu, Qi-Tang; Guo, Xiaofang; Wei, Zebin; Xie, Fangwen; Wong, Jonathan W C
2013-01-01
Land application of sewage sludge usually leads to increased levels of heavy metals in soil, plants and groundwater. Pre-treatment using plants has been proposed to reduce the contents of heavy metals and water in sludge prior to land application. This study quantified the transfer of Zn, Cd, Pb and major nutrients in a sludge-soil-plant-leachate system during the treatment of sewage sludge. To accomplish this, a two year pot experiment was carried out to collect leachate, mono- and co-cropping of Sedum alfredii and feed crops was conducted in sludge with an under-layer soil support. Sludge phyto-treatment increased Zn and Cd concentrations in the under-layer soil, but not Pb. Specifically, 70%, 70% and 80% of the original Zn, Cd and Pb, respectively, remained in the sludge, while about 40%, 70% and 60% of the original N, P and K remained. Only 3% to 5% of Cd and Zn and < 1% of Pb were transferred into the under-layer soils or leachates, while more than 12% of the N and P were transferred. Co-planting S. alfredii and feed crops led to a significant reduction of heavy metals in leachates when compared with sludge without planting. Overall, sludge leachate is more appropriate than whole sludge for recycling in agriculture since it reduces the chance of heavy metal contamination in the agro-ecosystem; therefore, co-cropping phytotreatment of sludge can be coupled with sludge leachate recycling for crop production and re-collection of the sludge residue for landfilling.
Kinetics of heterotrophic biomass and storage mechanism in wetland cores measured by respirometry.
Ortigara, A R C; Foladori, P; Andreottola, G
2011-01-01
Although oxygen uptake rate has been widely used in activated sludge for measuring kinetic and stoichiometric parameters or for wastewater characterization, its application in constructed wetlands (CWs) cores has been recently proposed. The aim of this research is to estimate the kinetic and stoichiometric parameters of the heterotrophic biomass in CW cores. Respirometric tests were carried out with pure carbonaceous substrate and real wastewater. Endogenous respiration was about 2 gO2 m(-3) h(-1) (per unit of bed volume), while the kinetic parameters obtained for COD oxidation were very high (maximum rate per unit of bed volume of 10.7-26.8 gCOD m(-3) h(-1)) which indicates high biodegradation potential in fully aerobic environment. Regarding to stoichiometric parameter, the maximum growth yield, Y(H), was 0.56-0.59 mgCOD/mgCOD, while the storage yield, Y(STO), was 0.75-0.77 mgCOD/mgCOD. The storage mechanism was observed in CW cores during COD oxidation, which leads to the transformation of the external soluble substrate in internal storage products, probably as response to intermittent loads applied in CW systems, transient concentrations of readily biodegradable substrate and alternance of feast/famine periods.
Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian
2014-08-01
Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coskun, T; Kabuk, H A; Varinca, K B; Debik, E; Durak, I; Kavurt, C
2012-10-01
In this study, an upflow anaerobic sludge blanket (UASB) mesophilic reactor was used to remove antibiotic fermentation broth wastewater. The hydraulic retention time was held constant at 13.3 days. The volumetric organic loading value increased from 0.33 to 7.43 kg(COD)m(-3)d(-1) using antibiotic fermentation broth wastewater gradually diluted with various ratios of domestic wastewater. A COD removal efficiency of 95.7% was obtained with a maximum yield of 3,700 L d(-1) methane gas production. The results of the study were interpreted using the modified Stover-Kincannon, first-order, substrate mass balance and Van der Meer and Heertjes kinetic models. The obtained kinetic coefficients showed that antibiotic fermentation broth wastewater can be successfully treated using a UASB reactor while taking COD removal and methane production into account. Copyright © 2012 Elsevier Ltd. All rights reserved.
Molle, Pascal
2014-01-01
French vertical flow constructed wetlands, treating directly raw wastewater, have become the main systems implemented for communities under 2,000 population equivalent in France. Like in sludge drying reed beds, an organic deposit layer is formed over time at the top surface of the filter. This deposit layer is a key factor in the performance of the system as it impacts hydraulic, gas transfers, filtration efficiency and water retention time. The paper discusses the role of this deposit layer on the hydraulic and biological behaviour of the system. It presents results from different studies to highlight the positive role of the layer but, as well, the difficulties in modelling this organic layer. As hydraulic, oxygen transfers, and biological activity are interlinked and impacted by the deposit layer, it seems essential to focus on its role (and its quantification) to find new developments of vertical flow constructed wetlands fed with raw wastewater.
Study on anaerobic treatment of wastewater containing hexavalent chromium*
Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu
2005-01-01
A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms. PMID:15909347
Araujo, Moacir Messias de; Lermontov, André; Araujo, Philippe Lopes da Silva; Zaiat, Marcelo
2013-09-01
An innovative biomass carrier (Biobob®) was tested for municipal wastewater treatment in an activated sludge system to evaluate the pollutant removal performance and the sludge generation for different carrier volumes. The experiment was carried out in a pilot-scale cyclic activated sludge system (CASS®) built with three cylindrical tanks in a series: an anoxic selector (2.1 m(3)), an aerobic selector (2.5 m(3)) and the main aerobic reactor (25.1 m(3)). The results showed that by adding the Biobob® carrier decreased the MLVSS concentration, which consequently reduced the waste sludge production of the system. Having 7% and 18% (v/v) support material in the aerobic reactor, the observed biomass yield decreased 18% and 36%, respectively, relative to the reactor operated with suspended biomass. The addition of media did not affect the system's performance for COD and TSS removal. However, TKN and TN removal were improved by 24% and 14%, respectively, using 18% (v/v) carrier. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon
2013-11-15
Lab-scale High Efficiency Digestion (HED) systems containing a Mesophilic Anaerobic Reactor (MAR), Thermophilic Aerobic Reactor (TAR), liquid/solid separation unit, and thermal-alkaline treatment were developed to evaluate the efficiencies of sludge reduction and methane production. The HED process was divided into three phases to examine the influence of sludge pretreatment and pretreated sludge recirculation using TCOD and VSS reduction, COD solubilization, and methane production. The VSS removal with a solid/liquid separation unit, sludge recirculation, and thermal-alkaline treatment drastically increased up to 95% compared to the feed concentration. In addition, the results of COD solubilization and VSS/TSS showed that the solubilization of cells and organic matters by the thermal-alkaline treatment was highly increased, which was also consistent with the SEM images. In particular, the methane production rate increased 24-fold when the feed sludge and recirculated sludge were pretreated together. Collectively, the HED experiments performed with sludge recirculation and thermal-alkaline treatment demonstrated that the HED systems can be successfully employed for highly efficient sewage sludge reduction and methane gas production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Trzcinski, Antoine Prandota; Ganda, Lily; Kunacheva, Chinagarn; Zhang, Dong Qing; Lin, Li Leonard; Tao, Guihe; Lee, Yingjie; Ng, Wun Jern
2016-10-01
In light of global warming mitigation efforts, increasing sludge disposal costs, and need for reduction in the carbon footprint of wastewater treatment plants, innovation in treatment technology has been tailored towards energy self-sufficiency. The AB process is a promising technology for achieving maximal energy recovery from wastewaters with minimum energy expenditure and therefore inherently reducing excess sludge production. Characterization of this novel sludge and its comparison with the more conventional B-stage sludge are necessary for a deeper understanding of AB treatment process design. This paper presents a case study of a pilot-scale AB system treating municipal wastewaters as well as a bio- (biochemical methane potential and adenosine tri-phosphate analysis) and physico-chemical properties (chemical oxygen demand, sludge volume index, dewaterability, calorific value, zeta potential and particle size distribution) comparison of the organic-rich A-stage against the B-stage activated sludge. Compared to the B-sludge, the A-sludge yielded 1.4 to 4.9 times more methane throughout the 62-week operation.
[Anaerobic biodegradation of phthalic acid esters (Paes) in municipal sludge].
Liang, Zhi-Feng; Zhou, Wen; Lin, Qing-Qi; Yang, Xiu-Hong; Wang, Shi-Zhong; Cai, Xin-De; Qiu, Rong-Liang
2014-04-01
Phthalic acid esters (PAEs), a class of organic pollutants with potent endocrine-disrupting properties, are widely present in municipal sludge. Study of PAEs biodegradation under different anaerobic biological treatment processes of sludge is, therefore, essential for a safe use of sludge in agricultural practice. In this study, we selected two major sludge PAEs, i.e. di-n-butyl phthalate (DBP) and di-(2-enthylhexyl) phthalate (DEHP), to investigate their biodegradation behaviors in an anaerobic sludge digestion system and a fermentative hydrogen production system. The possible factors influencing PAEs biodegradation in relation to changes of sludge properties were also discussed. The results showed that the biodegradation of DBP reached 99.6% within 6 days, while that of DEHP was 46.1% during a 14-day incubation period in the anaerobic digestion system. By comparison, only 19.5% of DBP was degraded within 14 days in the fermentative hydrogen production system, while no degradation was detected for DEHP. The strong inhibition of the degradation of both PAEs in the fermentative hydrogen production system was ascribed to the decreases in microbial biomass and ratios of gram-positive bacteria/gram-negative bacteria and fungi/ bacteria, and the increase of concentrations of volatile fatty acids (e. g. acetic acid, propionic acid and butyric acid) during the fermentative hydrogen-producing process.
40 CFR 503.24 - Management practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...
40 CFR 503.24 - Management practices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...
40 CFR 503.24 - Management practices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...
40 CFR 503.24 - Management practices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...
Irradiation of municipal sludge for agricultural use
NASA Astrophysics Data System (ADS)
Ahlstrom, Scott B.
Research has demonstrated that irradiation is an effective means for reducing pathogens in sewage sludge to levels where sludge reuse in public areas meets criteria for protection of the public health. Complementary research has demonstrated the value of the irradiated sludge in both agronomic and animal science applications. The benefits of sludge application to cropland are well documented. The irradiation process does not increase the extractability and plant uptake of a broad range of nutrients and heavy metals from sludge-amended soils. However, it does eliminate the hazards associated with pathogen contamination when applying sludge to agricultural land. Irradiated sludge has also been evaluated as a supplemental foodstuff for cattle and sheep. The data indicate that products derived from raw sewage may have a substantial nutritive value for ruminant animals. Irradiation of sewage sludge is a practical means of sludge disinfection. Where a highly disinfected sludge is required, it should be considered as a viable sludge management alternative. Evaluation of sludge irradiation technology and its associated costs must be done with consideration of other sludge treatment processes to develop an acceptable sludge management system.
Sodhi, Vijay; Bansal, Ajay; Jha, Mithilesh Kumar
2018-04-30
This study proposed a maintenance metabolism based upgraded activated sludge as MANODOX system that restricts excess biosludge generation from high strength real tannery effluent. The MANODOX experimental demonstration has been done using a sequenced operational arrangement of a MBBR, anaerobic digester, and oxidation ditch connected to CAS reactor, discussed in detail manner. Experimental trends revealed a prominently lower sludge yield upto 0.271 gVSS/gCOD (72% overall sludge reduction) that corresponds to parallel run CAS (0.92 gVSS/gCOD). MANODOX implementation confirmed high quality treated effluent with prominent COD and suspended solids reduction upto 97.1% and 96% respectively. The biodegradability observation was further supported by anaerobic and aerobic batch digestion analysis. The variation of soluble component turbidity analysis reflects the enriched non-flocculating predatory microbial population appears to may have been responsible for sludge reduction. MANODOX system provided a sustainable practical alternative for under capacity activated sludge based treatment facilities for a variety of wastewater types. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biswas, Kristi; Turner, Susan J
2012-02-01
Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (<5%). Biovolume estimates of the SRBs were higher in biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.
Ghrabi, Ahmed; Bousselmi, Latifa; Masi, Fabio; Regelsberger, Martin
2011-01-01
The paper presents the detailed design and some preliminary results obtained from a study regarding a wastewater treatment pilot plant (WWTPP), serving as a multistage constructed wetland (CW) located at the rural settlement of 'Chorfech 24' (Tunisia). The WWTPP implemented at Chorfech 24 is mainly designed as a demonstration of sustainable water management solutions (low-cost wastewater treatment), in order to prove the efficiency of these solutions working under real Tunisian conditions and ultimately allow the further spreading of the demonstrated techniques. The pilot activity also aims to help gain experience with the implemented techniques and to improve them when necessary to be recommended for wide application in rural settlements in Tunisia and similar situations worldwide. The selected WWTPP at Chorfech 24 (rural settlement of 50 houses counting 350 inhabitants) consists of one Imhoff tank for pre-treatment, and three stages in series: as first stage a horizontal subsurface flow CW system, as second stage a subsurface vertical flow CW system, and a third horizontal flow CW. The sludge of the Imhoff tank is treated in a sludge composting bed. The performances of the different components as well as the whole treatment system were presented based on 3 months monitoring. The results shown in this paper are related to carbon, nitrogen and phosphorus removal as well as to reduction of micro-organisms. The mean overall removal rates of the Chorfech WWTPP during the monitored period have been, respectively, equal to 97% for total suspended solids and biochemical oxygen demand (BOD5), 95% for chemical oxygen demand, 71% for total nitrogen and 82% for P-PO4. The removal of E. coli by the whole system is 2.5 log units.
From biofilm ecology to reactors: a focused review.
Boltz, Joshua P; Smets, Barth F; Rittmann, Bruce E; van Loosdrecht, Mark C M; Morgenroth, Eberhard; Daigger, Glen T
2017-04-01
Biofilms are complex biostructures that appear on all surfaces that are regularly in contact with water. They are structurally complex, dynamic systems with attributes of primordial multicellular organisms and multifaceted ecosystems. The presence of biofilms may have a negative impact on the performance of various systems, but they can also be used beneficially for the treatment of water (defined herein as potable water, municipal and industrial wastewater, fresh/brackish/salt water bodies, groundwater) as well as in water stream-based biological resource recovery systems. This review addresses the following three topics: (1) biofilm ecology, (2) biofilm reactor technology and design, and (3) biofilm modeling. In so doing, it addresses the processes occurring in the biofilm, and how these affect and are affected by the broader biofilm system. The symphonic application of a suite of biological methods has led to significant advances in the understanding of biofilm ecology. New metabolic pathways, such as anaerobic ammonium oxidation (anammox) or complete ammonium oxidation (comammox) were first observed in biofilm reactors. The functions, properties, and constituents of the biofilm extracellular polymeric substance matrix are somewhat known, but their exact composition and role in the microbial conversion kinetics and biochemical transformations are still to be resolved. Biofilm grown microorganisms may contribute to increased metabolism of micro-pollutants. Several types of biofilm reactors have been used for water treatment, with current focus on moving bed biofilm reactors, integrated fixed-film activated sludge, membrane-supported biofilm reactors, and granular sludge processes. The control and/or beneficial use of biofilms in membrane processes is advancing. Biofilm models have become essential tools for fundamental biofilm research and biofilm reactor engineering and design. At the same time, the divergence between biofilm modeling and biofilm reactor modeling approaches is recognized.
An Evaluation of Reed Bed Technology to Dewater Army Wastewater Treatment Plant Sludge
1993-09-01
speculated that the plants produced "root exudations" that were active against pathogens, and that the plants specifically showed an affinity for cadmium , zinc...Schwenksville, PA Topton Sewage Treatment Topton. PA Wabash WWTP Wabash . IN Wallingford Fire District #lWastewater Treatment Plant Wallingford. VT...Navy Group 06/88 Tom Severance Security 207-963-5534 Winter Harbour. ME Wabash WWTP. IN 09/91 Vincent J. Bauco 219-563-2941 20 Table 4 (Cont’d
Boonnorat, Jarungwit; Chiemchaisri, Chart; Chiemchaisri, Wilai; Yamamoto, Kazuo
2014-08-01
Biodegradation of toxic organic micro-pollutants in municipal solid waste (MSW) leachate by membrane bioreactor (MBR) was investigated. The MBR systems were seeded with different sludge sources, one was from a pilot-scale MBR system treating MSW leachate and the other was from an activated sludge sewage treatment plant. The biodegradation of BPA, 2,6-DTBP, BHT, DEP, DBP and DEHP, DCP and BBzP, by sludge from both reactors were found improved with time. However, enhanced biodegradation of micro-pollutants was observed in MBR operated under long sludge age condition. Bacterial population analyses determined by PCR-DGGE revealed the development of phenol and phthalate degrading bacteria consortium in MBR sludge during its operation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of alkali types on waste activated sludge (WAS) fermentation and microbial communities.
Li, Xiaoling; Peng, Yongzhen; Li, Baikun; Wu, Changyong; Zhang, Liang; Zhao, Yaqian
2017-11-01
The effects of two alkali agents, NaOH and Ca(OH) 2 , on enhancing waste activated sludge (WAS) fermentation and short chain fatty acids (SCFAs) accumulation were studied in semi-continuous stirred tank reactors (semi-CSTR) at different sludge retention time (SRT) (2-10 d). The optimum SRT for SCFAs accumulation of NaOH and Ca(OH) 2 adding system was 8 d and 10 d, respectively. Results showed that the average organics yields including soluble chemical oxygen demand (SCOD), protein, and carbohydrate in the NaOH system were as almost twice as that in the Ca(OH) 2 system. For Ca(OH) 2 system, sludge hydrolysis and protein acidification efficiencies were negatively affected by Ca 2+ precipitation, which was revealed by the decrease of Ca 2+ concentration, the rise of zeta potential and better sludge dewaterability in Ca(OH) 2 system. In addition, Firmicutes, Proteobacteria and Actinobacteria were the main microbial functional groups in both types of alkali systems. NaOH system obtained higher microbial quantities which led to better acidification. For application, however, Ca(OH) 2 was more economically feasible owning to its lower price and better dewaterability of residual sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Effect of agricultural application of municipal sewage sludge on plant-soil system: A review].
Liu, Meng Jiao; Xia, Shao Pan; Wang, Jun; Ma, Qing Xu; Wang, Zhong Qiang; Wu, Liang Huan
2017-12-01
Currently, reasonable disposal of municipal sewage sludge is one of the important issues in the field of resources and environmental science. Sludge is rich in large amounts of organic matter and available nutrients, promoting soil fertility, soil physical structure and biological properties. However, sludge contains a variety of heavy metals, organic contaminants and other hazardous substance, especially heavy metals, which are the bottlenecks of agricultural application of sludge. To improve the sewage sludge utilization efficiency and decrease the effect on soil, this essay made a summary on domestic and foreign studies on plant-soil interaction ecosystem with sewage sludge to provide a theoretical basis and scientific guidance for advancing sewage sludge utilization efficiency.
Li, Kexun; Wang, Yi; Zhang, Zhongpin; Liu, Dongfang
2014-01-01
Batch experiments were conducted to determine the effect of oxidation reduction potential (ORP) on sludge reduction in a bypass micro-aerobic sludge reduction system. The system was composed of a modified oxic-settling-anaerobic process with a sludge holding tank in the sludge recycle loop. The ORPs in the micro-aerobic tanks were set at approximately +350, -90, -150, -200 and -250 mV, by varying the length of aeration time for the tanks. The results show that lower ORP result in greater sludge volume reduction, and the sludge production was reduced by 60% at the lowest ORP. In addition, low ORP caused extracellular polymer substances dissociation and slightly reduced sludge activity. Comparing the sludge backflow characteristics of the micro-aerobic tank's ORP controlled at -250 mV with that of +350 mV, the average soluble chemical oxygen (SCOD), TN and TP increased by 7, 0.4 and 2 times, median particle diameter decreased by 8.5 μm and the specific oxygen uptake rate (SOUR) decreased by 0.0043 milligram O2 per gram suspended solids per minute. For the effluent, SCOD and TN and TP fluctuated around 30, 8.7 and 0.66 mg/L, respectively. Therefore, the effective assignment of ORP in the micro-aerobic tank can remarkably reduce sludge volume and does not affect final effluent quality.
Treatment and disposal of refinery sludges: Indian scenario.
Bhattacharyya, J K; Shekdar, A V
2003-06-01
Crude oil is a major source of energy and feedstock for petrochemicals. Oily sludge, bio-sludge and chemical sludge are the major sludges generated from the processes and effluent treatment plants of the refineries engaged in crude oil refining operations. Refineries in India generate about 28,220 tons of sludge per annum. Various types of pollutants like phenols, heavy metals, etc. are present in the sludges and they are treated as hazardous waste. Oily sludge, which is generated in much higher amount compared to other sludges, contains phenol (90-100 mg/kg), nickel (17-25 mg/kg), chromium (27-80 mg/kg), zinc (7-80 mg/kg), manganese (19-24 mg/kg), cadmium (0.8-2 mg/kg), copper (32-120 mg/kg) and lead (0.001-0.12 mg/ kg). Uncontrolled disposal practices of sludges in India cause degradation of environmental and depreciation of aesthetic quality. Environmental impact due to improper sludge management has also been identified. Salient features of various treatment and disposal practices have been discussed. Findings of a case study undertaken by the authors for Numaligarh Refinery in India have been presented. Various system alternatives have been identified for waste management in Numaligarh Refinery. A ranking exercise has been carried out to evaluate the alternatives and select the appropriate one. A detailed design of the selected waste management system has been presented.
Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen
2017-02-01
In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
K basins sludge removal sludge pretreatment system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, H.L.
1997-06-12
The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task formore » this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08.« less
Cheng, Jiehong; Ji, Yuehong; Kong, Feng; Chen, Xian
2013-12-01
One-stage autothermal thermophilic aerobic digestion (ATAD) is effective for the reduction of volatile solids (VSs) and pathogen in sewage sludges. A novel process of combining mesophilic (<35 °C) anaerobic digestion with a thermophilic (55 °C) aerobic digestion process (AN/TAD) occurred in a one-stage digester, which was designed for aeration energy savings. The efficiency of sludge degradation and variation of sludge properties by batch experiments were evaluated for the AN/TAD digester with an effective volume of 23 L for 30 days compared with conventional thermophilic aerobic digestion (TAD). The AN/TAD system can efficiently achieve sludge stabilization on the 16th day with a VS removal rate of 38.1 %. The AN/TAD system was operated at lower ORP values in a digestion period with higher contents of total organic compounds, volatile fatty acids, protein, and polysaccharide in the soluble phase than those of the TAD system, which can rapidly decreased and had low values in the late period of digestion for the AN/TAD system. In the AN/TAD system, intracellular substances had lysis because of initial hydrolytic acidification.
Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa
2017-01-01
The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.
Sirianuntapiboon, Suntud; Sadahiro, Ohmomo; Salee, Paneeta
2007-10-01
Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.
Sun, Li; Tian, Yu; Zhang, Jun; Li, Lipin; Zhang, Jian; Li, Jianzheng
2018-03-01
This study combined sludge MBR technology with algae to establish an effective wastewater treatment and low membrane fouling system (ASB-MBR). Compared with control-MBR (C-MBR), the amelioration of microbial activity and the improvement of sludge properties and system environment were achieved after introducing algae resulting in high nutrients removal in the combined system. Further statistical analysis revealed that the symbiosis of algae and sludge displayed more remarkable impacts on nutrients removal than either of them. Additionally, membrane permeability was improved in ASB-MBR with respect to the decreased concentration, the changed of characteristics and the broken particular functional groups of extracellular polymeric substances (EPSs). Moreover, the algae inoculation reduced sludge diversity and shifted sludge community structure. Meantime, the stimulated bacteria selectively excite algal members that would benefit for the formation of algal-bacterial consortia. Consequently, the stimulated or inhibited of some species might be responsible for the performance of ASB-MBR. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newell, J; Miller, D; Stone, M
The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets.more » Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit 510 based system without Al-dissolution relative to the Frit 418 based system with Al-dissolution. Though the without aluminum dissolution scenario suggests a slightly higher melt rate with frit 510, several points must be taken into consideration: (1) The MRF does not have the ability to assess liquid feeds and, thus, rheology impacts. Instead, the MRF is a 'static' test bed in which a mass of dried melter feed (SRAT product plus frit) is placed in an 'isothermal' furnace for a period of time to assess melt rate. These conditions, although historically effective in terms of identifying candidate frits for specific sludge batches and mapping out melt rate versus waste loading trends, do not allow for assessments of the potential impact of feed rheology on melt rate. That is, if the rheological properties of the slurried melter feed resulted in the mounding of the feed in the melter (i.e., the melter feed was thick and did not flow across the cold cap), melt rate and/or melter operations (i.e., surges) could be negatively impacted. This could affect one or both flowsheets. (2) Waste throughput factors were not determined for Frit 510 and Frit 418 over multiple waste loadings. In order to provide insight into the mission life versus canister count question, one needs to define the maximum waste throughput for both flowsheets. Due to funding limitations, the melt rate testing only evaluated melt rate at a fixed waste loading. (3) DWPF will be processing SB5 through their facility in mid-November 2008. Insight into the over arching questions of melt rate, waste throughput, and mission life can be obtained directly from the facility. It is recommended that processing of SB5 through the facility be monitored closely and that data be used as input into the decision making process on whether to implement Al-dissolution for future sludge batches.« less
ERIC Educational Resources Information Center
Filer, Herb; Broste, Dale
This lesson was developed for a course in sludge treatment and disposal. The lesson describes the Porteous heat treatment method of sludge conditioning and compares that system to the Zimpro wet air oxidation process. The theory of heat treatment, system of components and functions, and concepts of operation are addressed in the lesson. The…
Ge, Huoqing; Batstone, Damien; Keller, Jurg
2016-01-01
The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.
Mesophilic and thermophilic activated sludge post-treatment of paper mill process water.
Vogelaar, J C T; Bouwhuis, E; Klapwijk, A; Spanjers, H; van Lier, J B
2002-04-01
Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper mill using recycled wastepaper was studied. Two lab-scale plug flow activated sludge reactors were run in parallel for 6 months; a thermophilic reactor at 55 degrees C and a reference reactor at 30 degrees C. Both reactors were operated simultaneously at 20, 15 and 10 days SRT. The effects of temperature and SRT on sludge settleability and chemical oxygen demand (COD) removal efficiencies of different fractions were studied. Total COD removal percentages over the whole experimental period were 58+/-5% at 30 degrees C and 48 +/- 10% at 55 degrees C. The effect of the SRT on the total COD removal was negligible. Differences in total COD removal between both systems were due to a lesser removal of soluble and colloidal COD at 55 degrees C compared to the reference system. At 30 degrees C, colloidal COD removal percentages were 65+/-25%, 75+/-17% and 86+/-22% at 20, 15 and 10 days SRT, respectively. At 55 degrees C, these percentages were 48+/-34%, 40+/-28% and 70+/-25%, respectively. The effluent concentrations of colloidal COD in both systems were related to the influent concentration of colloidal material. The thermophilic sludge was not able to retain influent colloidal material as well as the mesophilic sludge causing a higher thermophilic effluent turbidity. Sludge settling properties were excellent in both reactor systems. These were neither temperature nor SRT dependent but were rather caused by extensive calcium precipitation in the aeration tanks creating a very dense sludge. For application in the board industry, a thermophilic in line treatment system seems feasible. The higher effluent turbidity is most likely offset by the energy gains of treatment under thermophilic conditions.
Aerobic granular sludge: a promising technology for decentralised wastewater treatment.
Li, Z H; Kuba, T; Kusuda, T
2006-01-01
In order to evaluate the characteristics of aerobic granular sludge, a sequencing batch reactor, feeding with synthetic wastewater at the organic loading rate of 8 kg COD/m3 d, was employed on the laboratory scale. Granules occurred in the reactor within 1 week after the inoculation from conventional flocculent sludge. Aerobic granular sludge was characterised by the outstanding settling properties and considerable contaminates removal efficiencies. The SVI30 values were in the range of 20 to 40 ml g(-1). However, the sludge volume index of short settling time (e.g. SVI10--10 min) is suggested to describe the fast settling properties of aerobic granular sludge. The potential application in the decentralised system is evaluated from the point view of footprint and high bioactivity. The occurrence of sloughing, resulting from the outgrowth of filamentous organisms, would be responsible for the instability of aerobic granules. The starvation phase should therefore be carefully controlled for the maintenance and stability of aerobic granular sludge system.
Improvement of sedimentation and dewatering of municipal sludge by radiation
NASA Astrophysics Data System (ADS)
Sawai, Teruko; Yamazaki, Masao; Shimokawa, Toshinari; Sekiguchi, Masayuki; Sawai, Takeshi
As the promotion of sewerage system, the volume of municipal sludge in Tokyo has increased rapidly. Due to recent changes in the properties of the sludge, moreover, it has become difficult to thicken the liquid sewage sludge by sedimentation and to dewater the thickening sludge mechanically. The development of a new effective method for sludge treatment is necessary. Therefore, a study on the improvement of sedimentation and dewatering of sewage sludge by irradiation with 60Co gamma rays and electron beams was undertaken. Sedimentation tests and various dewatering tests were carried out for the waste activated sludge and anaerobically digested sludge. From the changes in the settling rate, capillary suction time, water content of the sludge cake, and the quality of separated water by irradiation, the optimum irradiation conditions for improving the sedimentation and dewatering of 2 types sludge were determined. The necessary dose for improving the sedimentation and dewatering was observed to be 1-3 kGy for the activated sludge and 5-10 kGy for the digested sludge. To confirm the cause of those changes by irradiation, the zeta potential and viscosity of the sludge were measured.
Life cycle assessment of sewage sludge co-incineration in a coal-based power station.
Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei
2013-09-01
A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Transformation of heavy metal speciation during sludge drying: mechanistic insights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Huanxin; Ma, Xue-Wen; Fu, Feng-Xia
2014-01-30
Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized the Cr, Cu, Cd and Pb in sludge by transforming acid-soluble, reducible andmore » oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.« less
Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min
2015-09-15
A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same. Copyright © 2015 Elsevier B.V. All rights reserved.
Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds.
Coggins, Liah X; Ghisalberti, Marco; Ghadouani, Anas
2017-03-01
Waste stabilisation ponds (WSPs) are used worldwide for wastewater treatment, and throughout their operation require periodic sludge surveys. Sludge accumulation in WSPs can impact performance by reducing the effective volume of the pond, and altering the pond hydraulics and wastewater treatment efficiency. Traditionally, sludge heights, and thus sludge volume, have been measured using low-resolution and labour intensive methods such as 'sludge judge' and the 'white towel test'. A sonar device, a readily available technology, fitted to a remotely operated vehicle (ROV) was shown to improve the spatial resolution and accuracy of sludge height measurements, as well as reduce labour and safety requirements. Coupled with a dedicated software package, the profiling of several WSPs has shown that the ROV with autonomous sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution in a greatly reduced profiling time, leading to a better understanding of the role played by sludge accumulation in hydraulic performance of WSPs. The high-resolution bathymetry collected was used to support a much more detailed hydrodynamic assessment of systems with low, medium and high accumulations of sludge. The results of the modelling show that hydraulic performance is not only influenced by the sludge accumulation, but also that the spatial distribution of sludge plays a critical role in reducing the treatment capacity of these systems. In a range of ponds modelled, the reduction in residence time ranged from 33% in a pond with a uniform sludge distribution to a reduction of up to 60% in a pond with highly channelized flow. The combination of high-resolution measurement of sludge accumulation and hydrodynamic modelling will help in the development of frameworks for wastewater sludge management, including the development of more reliable computer models, and could potentially have wider application in the monitoring of other small to medium water bodies, such as channels, recreational water bodies, and commercial ports. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu
2018-04-01
The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Kasprzyk-Hordern, Barbara; Dinsdale, Richard M; Guwy, Alan J
2009-02-01
A 5-month monitoring program was undertaken in South Wales in the UK to determine the fate of 55 pharmaceuticals, personal care products, endocrine disruptors and illicit drugs (PPCPs) in two contrasting wastewater plants utilising two different wastewater treatment technologies: activated sludge and trickling filter beds. The impact of treated wastewater effluent on the quality of receiving waters was also assessed. PPCPs were found to be present at high loads reaching 10kgday(-1) in the raw sewage. Concentrations of PPCPs in raw sewage were found to correlate with their usage/consumption patterns in Wales and their metabolism. The efficiency of the removal of PPCPs was found to be strongly dependent on the technology implemented in the wastewater treatment plant (WWTP). In general, the WWTP utilising trickling filter beds resulted in, on average, less than 70% removal of all 55 PPCPs studied, while the WWTP utilising activated sludge treatment gave a much higher removal efficiency of over 85%. The monitoring programme revealed that treated wastewater effluents were the main contributors to PPCPs concentrations (up to 3kg of PPCPsday(-1)) in the rivers studied. Bearing in mind that in the cases examined here the WWTP effluents were also major contributors to rivers' flows (dilution factor for the studied rivers did not exceed 23 times) the effect of WWTP effluent on the quality of river water is significant and cannot be underestimated.
NASA Astrophysics Data System (ADS)
Paramitadevi, Y. V.; Rahmatullah
2017-05-01
Crude palm oil produced in Indonesia has already been known as the largest in the world. Unfortunately many of palm oil factories (CPOF) spread out in Indonesia have not good wastewater treatments (WWTP) yet. PT Socfin Indonesia, as an example, which is located in Aceh Tamiang Regency, still has BOD contained in its final effluent of the waswater treatment plant more than 150 ppm. In fact, the capability and capacity of WWTP in PT Socfin are 192 m3per day. Because of improper operational and maintenance of the WWTP, the technical prob lem are accumulated, such as, increasing the deposition of sludge and decreasing the retention time. The following affect is the treatment process is not going well and the quality of effluent is getting worse. The objective of this paper is to solve the technical problems by means remov ing the deposition of sludge periodically and fixing floating aeration in the aerobic pond. Method using for this paper is survey and wastewater sampling. A recommendation of the was tewater treatment system has been proposed after average BOD from WWTP outlet is defined 158 mg/L. The recommendation has seven procesess including oil separation, neutralization, closed tank anaerobic digester equipped with gas holder, extended aeration, settling tank, sand drying bed and land application.
Thomsen, Tobias Pape; Sárossy, Zsuzsa; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Frandsen, Flemming J; Müller-Stöver, Dorette Sophie
2017-08-01
Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed and the oxidized materials were investigated as well. Sequential extraction with full elemental balances of the extracted pools as well as scanning electron microscopy with energy dispersive X-ray spectroscopy were used to investigate the mechanisms driving the observed differences in composition and P plant availability in a short-term soil incubation study. The compositional changes related mainly to differences in the proximate composition as well as to the release of especially nitrogen, sulfur, cadmium and to some extent, phosphorus (P). The cadmium load per unit of P was reduced with 75-85% in gasification processes and 10-15% in pyrolysis whereas no reduction was observed in incineration processes. The influence on other heavy metals was less pronounced. The plant availability of P in the substrates varied from almost zero to almost 100% of the plant availability of P in the untreated sludge. Post-oxidized slow pyrolysis char was found to be the substrate with the highest P fertilizer value while ash from commercial fluid bed sludge incineration had the lowest P fertilizer quality. The high P fertilizer value in the best substrate is suggested to be a function of several different mechanisms including structural surface changes and improvements in the association of P to especially magnesium, calcium and aluminum. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Zhao; Dang, Yan; Li, Caihua; Sun, Dezhi
2015-09-01
Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH4(+)-N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by both static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH4(+)-N concentration increasing to 1000mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH4(+)-N concentration rising to 1000mg/L, without any rebounding during 30days of operation. Decreasing NH4(+)-N concentration to 500mg/L in influent, the COD removal efficiency recovered to about 85% after 26days. 1000mg/L of NH4(+)-N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH4(+)-N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lu, Yong-Ze; Wang, Hou-Feng; Kotsopoulos, Thomas A; Zeng, Raymond J
2016-05-01
In this study, a novel process for phosphorus (P) recovery without excess sludge production from granular sludge in simultaneous nitrification-denitrification and P removal (SNDPR) system is presented. Aerobic microbial granules were successfully cultivated in an alternating aerobic-anaerobic sequencing batch reactor (SBR) for removing P and nitrogen (N). Dense and stable granular sludge was created, and the SBR system showed good performance in terms of P and N removal. The removal efficiency was approximately 65.22 % for N, and P was completely removed under stable operating conditions. Afterward, new operating conditions were applied in order to enhance P recovering without excess sludge production. The initial SBR system was equipped with a batch reactor and a non-woven cloth filter, and 1.37 g of CH3COONa·3H2O was added to the batch reactor after mixing it with 1 L of sludge derived from the SBR reactor to enhance P release in the liquid fraction, this comprises the new system configuration. Under the new operating conditions, 93.19 % of the P contained in wastewater was released in the liquid fraction as concentrated orthophosphate from part of granular sludge. This amount of P could be efficiently recovered in the form of struvite. Meanwhile, a deterioration of the denitrification efficiency was observed and the granules were disintegrated into smaller particles. The biomass concentration in the system increased firstly and then maintained at 4.0 ± 0.15 gVSS/L afterward. These results indicate that this P recovery operating (PRO) mode is a promising method to recover P in a SNDPR system with granular sludge. In addition, new insights into the granule transformation when confronted with high chemical oxygen demand (COD) load were provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... wastewater treatment plant (WWTP) sludge filter cake (called sludge hereinafter) generated by Tokusen in... brass coating. The facility generates F006 filter cake by the dewatering of wastewater sludge generated...
Jobbágy, A; Tardy, G M; Literáthy, B
2004-01-01
In 1999 the existing activated sludge unit of the Southpest Wastewater Treatment Plant was supplemented by a two-stage biofilter system aiming for nitrification and post-denitrification. In this arrangement excess biomass of the filters is wasted through the activated sludge unit, facilitating backseeding, and recirculation of the nitrate-rich effluent of the N-filter serves for decreasing the methanol demand of the DN-filter and for saving aeration energy at the same time. The paper reports on the development of an ASM1-based mathematical model that proved to be adequate for describing the interactions in the combined system and was used to compare the efficiency of different treatment options. Full-scale results verified that backseeding may considerably improve performance. However, nitrification ability of the activated sludge unit depends on the treatment temperature and, if unexpected, can be limited by insufficient oxygen supply. The upgrading possibilities outlined may serve as a new perspective for implementation of combined activated sludge-biofilter systems.
Zhou, Junwen; Liu, Shiyu; Zhou, Nan; Fan, Liangliang; Zhang, Yaning; Peng, Peng; Anderson, Erik; Ding, Kuan; Wang, Yunpu; Liu, Yuhuan; Chen, Paul; Ruan, Roger
2018-05-01
A continuous fast microwave-assisted pyrolysis system was designed, fabricated, and tested with sewage sludge. The system is equipped with continuous biomass feeding, mixing of biomass and microwave absorbent, and separated catalyst upgrading. The effect of the sludge pyrolysis temperature (450, 500, 550, and 600 °C) on the products yield, distribution and potentially energy recovery were investigated. The physical, chemical, and energetic properties of the raw sewage sludge and bio-oil, char and gas products obtained were analyzed using elemental analyzer, GC-MS, Micro-GC, SEM and ICP-OES. While the maximum bio-oil yield of 41.39 wt% was obtained at pyrolysis temperature of 550 °C, the optimal pyrolysis temperature for maximum overall energy recovery was 500 °C. The absence of carrier gas in the process may be responsible for the high HHV of gas products. This work could provide technical support for microwave-assisted system scale-up and sewage sludge utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Barañao, P A; Hall, E R
2004-01-01
Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature.
Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky
2016-09-01
Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Drying characteristics of electro-osmosis dewatered sludge.
Ma, Degang; Qian, Jingjing; Zhu, Hongmin; Zhai, Jun
2016-12-01
Electro-osmotic dewatering (EDW) is one of the effective deeply dewatering technologies that is suitable for treating sludge with 55-80% of moisture content. Regarding EDW as the pre-treatment process of drying or incinerating, this article investigated the drying characteristics of electro-osmosis-dewatered sludge, including shear stress test, drying curves analysis, model analysis, and energy balance calculation. After EDW pre-treatment, sludge adhesion was reduced. The sludge drying rate was higher compared to the non-pre-treated sludge, especially under high temperatures (80-120°C). In addition, it is better to place the sludge cake with cathode surface facing upward for improving the drying rate. An adjusted model based on the Logarithmic model could better describe the EDW sludge drying process. Using the energy balance calculation, EDW can save the energy consumed in the process of sludge incineration and electricity generation and enable the system to run without extra energy input.
Sequencing batch reactor biofilm system for treatment of milk industry wastewater.
Sirianuntapiboon, Suntud; Jeeyachok, Narumon; Larplai, Rarintorn
2005-07-01
A sequencing batch reactor biofilm (MSBR) system was modified from the conventional sequencing batch reactor (SBR) system by installing 2.7 m2 surface area of plastic media on the bottom of the reactor to increase the system efficiency and bio-sludge quality by increasing the bio-sludge in the system. The COD, BOD5, total kjeldahl nitrogen (TKN) and oil & grease removal efficiencies of the MSBR system, under a high organic loading of 1340 g BOD5/m3 d, were 89.3+/-0.1, 83.0+/-0.2, 59.4+/-0.8, and 82.4+/-0.4%, respectively, while they were only 87.0+/-0.2, 79.9+/-0.3, 48.7+/-1.7 and 79.3+/-10%, respectively, in the conventional SBR system. The amount of excess bio-sludge in the MSBR system was about 3 times lower than that in the conventional SBR system. The sludge volume index (SVI) of the MSBR system was lower than 100 ml/g under an organic loading of up to 1340 g BOD5/m3 d. However, the MSBR under an organic loading of 680 g BOD5/m3 d gave the highest COD, BOD5, TKN and oil & grease removal efficiencies of 97.9+/-0.0, 97.9+/-0.1, 79.3+/-1.0 and 94.8+/-0.5%, respectively, without any excess bio-sludge waste. The SVI of suspended bio-sludge in the MSBR system was only 44+/-3.4 ml/g under an organic loading of 680 g BOD5/m3 d.
Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions.
Lv, Dong; Zhu, Tianle; Liu, Runwei; Lv, Qingzhi; Sun, Ye; Wang, Hongmei; Liu, Yu; Zhang, Fan
2016-09-01
The effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions were systematically investigated in a cement production line in Beijing. The results show that co-processing the sewage sludge was helpful to reduce NOx emission, which primarily depends on the NH3 amount released from the sewage sludge. Meanwhile, NOx and NH3 concentrations in the flue gas have a negative correlation, and the contribution of feeding the sewage sludge to NOx removal decreased with the increase of injection amount of ammonia water in the SNCR system. Therefore, it is suggested that the injection amount of ammonia water in SNCR system may reduce to cut down the operating costs during co-processing the sewage sludge in cement kiln. In addition, the emission of total PAHs seems to increase with the increased amount of the sewage sludge feeding to the cement kiln. However, the distributions of PAHs were barely changed, and lower molecular weight PAHs were mainly distributed in gaseous phase, accounted for the major portion of PAHs when co-processing sewage sludge in cement kiln. Copyright © 2016 Elsevier Ltd. All rights reserved.
Retrofitting activated sludge systems to intermittent aeration for nitrogen removal.
Hanhan, O; Artan, N; Orhon, D
2002-01-01
The paper provides the basis and the conceptual approach of applying process kinetics and modelling to the design of alternating activated sludge systems for retrofitting existing activated sludge plants to intermittent aeration for nitrogen removal. It shows the significant role of the two specific parameters, namely, the aerated fraction and the cycle time ratio on process performance through model simulations and proposes a way to incorporate them into a design procedure using process stoichiometry and mass balance. It illustrates the effect of these parameters, together with the sludge age, in establishing the balance between the denitrification potential and the available nitrogen created in the anoxic/aerobic sequences of system operation.
NASA Astrophysics Data System (ADS)
Suzuki, Ryosuke; Nishimura, Motoki; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Yoichi; Daimon, Hiroyuki
2017-10-01
Utilization of sewage sludge using anaerobic digestion has been promoted for decades. However, it is still relatively uncommon especially in Japan. As an approach to promote the utilization of sewage sludge using anaerobic digestion, an integrated system that combines anaerobic digestion with greenhouse, composting and seaweed cultivation was proposed. Based on the concept of the integrated system, not only sewage sludge can be treated using anaerobic digestion that creates green energy, but also the by-products such as CO2 and heat produced during the process can be utilized for crops production. In this study, the potentials of such integrated system were discussed through the estimation of possible commercialized scale as well as comparison of energy consumption with conventional approach for sewage sludge treatment, which is the incineration. The estimation of possible commercialized scale was calculated based on the carbon flow of the system. Results showed that 25% of the current total electricity of the wastewater treatment plant can be covered by the energy produced using anaerobic digestion of sewage sludge. It was estimated that the total energy consumption of the integrated system was actually 14% lower when compared to incineration approach. In addition to the large amount of crops that can be produced, all in all this study aimed to be the showcase of the potentials of sewage sludge as a biomass by implementing the proposed integrated system. The extra values of producing crops through the utilization of CO2 and heat can serve as a stimulus to the public, which would surely lead to higher interest to implement the utilization of sewage sludge using anaerobic digestion.
Performance indicators and indices of sludge management in urban wastewater treatment plants.
Silva, C; Saldanha Matos, J; Rosa, M J
2016-12-15
Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Accurate evaluation for the biofilm-activated sludge reactor using graphical techniques
NASA Astrophysics Data System (ADS)
Fouad, Moharram; Bhargava, Renu
2018-05-01
A complete graphical solution is obtained for the completely mixed biofilm-activated sludge reactor (hybrid reactor). The solution consists of a series of curves deduced from the principal equations of the hybrid system after converting them in dimensionless form. The curves estimate the basic parameters of the hybrid system such as suspended biomass concentration, sludge residence time, wasted mass of sludge, and food to biomass ratio. All of these parameters can be expressed as functions of hydraulic retention time, influent substrate concentration, substrate concentration in the bulk, stagnant liquid layer thickness, and the minimum substrate concentration which can maintain the biofilm growth in addition to the basic kinetics of the activated sludge process in which all these variables are expressed in a dimensionless form. Compared to other solutions of such system these curves are simple, easy to use, and provide an accurate tool for analyzing such system based on fundamental principles. Further, these curves may be used as a quick tool to get the effect of variables change on the other parameters and the whole system.
Long-Term Impact of Field Applications of Sewage Sludge on Soil Antibiotic Resistome.
Xie, Wan-Ying; McGrath, Steve P; Su, Jian-Qiang; Hirsch, Penny R; Clark, Ian M; Shen, Qirong; Zhu, Yong-Guan; Zhao, Fang-Jie
2016-12-06
Land applications of municipal sewage sludge may pose a risk of introducing antibiotic resistance genes (ARGs) from urban environments into agricultural systems. However, how the sewage sludge recycling and application method influence soil resistome and mobile genetic elements (MGEs) remains unclear. In the present study, high through-put quantitative PCR was conducted on the resistome of soils from a field experiment with past (between 1994 and 1997) and annual (since 1994) applications of five different sewage sludges. Total inputs of organic carbon were similar between the two modes of sludge applications. Intrinsic soil resistome, defined as the ARGs shared by the soils in the control and sludge-amended plots, consisted of genes conferring resistance to multidrug, β-lactam, Macrolide-Lincosamide-Streptogramin B (MLSB), tetracycline, vancomycin, and aminoglycoside, with multidrug resistance genes as the most abundant members. There was a strong correlation between the abundance of ARGs and MGE marker genes in soils. The composition and diversity of ARGs in the five sludges were substantially different from those in soils. Considerable proportions of ARGs and MGE marker genes in the sludges attenuated following the application, especially aminoglycoside and tetracycline resistance genes. Annual applications posed a more significant impact on the soil resistome, through both continued introduction and stimulation of the soil intrinsic ARGs. In addition, direct introduction of sludge-specific ARGs into soil was observed especially from ARG-rich sludge. These results provide a better insight into the characteristics of ARG dissemination from urban environment to the agricultural system through sewage sludge applications.
Toxicity assessment of untreated/treated electroplating sludge using human and plant bioassay.
Orescanin, Visnja; Durgo, Ksenija; Mikelic, Ivanka Lovrencic; Halkijevic, Ivan; Kuspilic, Marin
2018-04-30
The purpose of this work was to assess the risk to the environment arising from the electroplating sludge from both chemical and toxicological point of view. Both approaches were used for the assessment of the treatment efficiency which consisted of CaO based solidification followed by thermal treatment at 400°C. The elemental composition was determined in the bulk samples and the leachates of untreated sludge. The toxicity of the leachate was determined using two human colorectal adenocarcinoma cell lines (Caco-2 and SW 480) and Hordeum vulgare L. based plant bioassay. The same toxicity tests were employed to the leachate of the treated sludge. Untreated sludge showed extremely high cytotoxic effect to both human and plant bio-system in dose-dependent manner. The percentages higher than 0.5% and 0.05% of the leachate caused significant cytotoxic effect on Caco-2 and SW 480 cells, respectively. The percentages of the leachate higher than 0.05% also showed significant toxic effect to H. vulgare L. bio-system with complete arrest of seed germination following the treatment with 100% to 5% of the leachate. The leachate of the treated sludge showed no toxicity to any of the test systems confirming the efficiency and justification of the employed procedures for the detoxification of electroplating sludge.
Energy saving system with high effluent quality for municipal sewage treatment by UASB-DHS.
Tanaka, H; Takahashi, M; Yoneyama, Y; Syutsubo, K; Kato, K; Nagano, A; Yamaguchi, T; Harada, H
2012-01-01
An up-flow anaerobic sludge blanket (UASB) - down-flow hanging sponge (DHS) was applied to Japanese municipal sewage treatment, and its treatability, energy consumption, and sludge production were evaluated. The designed sewage load was 50 m(3)/d. The sewage typically had a chemical oxygen demand (COD) of 402 mg/L, a suspended solids (SS) content of 167 mg/L, and a temperature of 17-29 °C. The UASB and DHS exhibited theoretical hydraulic retention times of 9.7 and 2.5 h, respectively. The entire system was operated without temperature control. Operation was started with mesophilic anaerobic digested sludge for the UASB and various sponge media for the DHS. Continuous operational data suggest that although the cellulose decomposition and methanogenic process in the UASB are temperature sensitive, stable operation can be obtained by maintaining a satisfactory sludge volume index and sludge concentration. For the DHS, the cube-type medium G3-2 offers superior filling rates, biological preservation and operational execution. The SS derived from the DHS contaminated the effluent but could be removed by optional sand filtration. A comparison with conventional activated sludge (CAS) treatment confirmed that this system is adequate for municipal sewage treatment, with an estimated energy requirement and excess sludge production approximately 75 and 85% less than those of CAS, respectively.
Transformation of heavy metal speciation during sludge drying: mechanistic insights.
Weng, Huan-Xin; Ma, Xue-Wen; Fu, Feng-Xia; Zhang, Jin-Jun; Liu, Zan; Tian, Li-Xun; Liu, Chongxuan
2014-01-30
Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized Cr, Cu, Cd, and Pb in sludge by transforming acid-soluble, reducible, and oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Benqin; Zhang, Lei; Lee, Yongwoo; Jahng, Deokjin
2013-10-01
A novel process termed as bioevaporation was established to completely evaporate wastewater by metabolic heat released from the aerobic microbial degradation of the organic matters contained in the highly concentrated organic wastewater itself. By adding the glucose solution and ground food waste (FW) into the biodried sludge bed, the activity of the microorganisms in the biodried sludge was stimulated and the water in the glucose solution and FW was evaporated. As the biodegradable volatile solids (BVS) concentration in wastewater increased, more heat was produced and the water removal ratio increased. When the volatile solids (VS) concentrations of both glucose and ground FW were 120 g L(-1), 101.7% and 104.3% of the added water was removed, respectively, by completely consuming the glucose and FW BVS. Therefore, the complete removal of water and biodegradable organic contents was achieved simultaneously in the bioevaporation process, which accomplished zero-discharge treatment of highly concentrated organic wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modelling anaerobic digestion acclimatisation to a biodegradable toxicant: application to cyanide.
Zaher, U; Moussa, M S; Widyatmika, I N; van Der Steen, P; Gijzen, H J; Vanrolleghem, P A
2006-01-01
The observed acclimatisation to biodegradable toxicants in anaerobic cassava wastewater treatment is explained by modelling anaerobic cyanide degradation. A complete degradation pathway is proposed for cyanide. Cyanide degradation is modelled as enzymatic hydrolysis to formate and ammonia. Ammonia is added to the inorganic nitrogen content of the digester while formate is degraded by the hydrogenotrophic methanogens. Cyanide irreversible enzyme inhibition is modelled as an inhibition factor to acetate uptake processes. Cyanide irreversible toxicity is modelled as a decay factor to the acetate degraders. Cyanide as well as added phosphorus buffer solution were considered in the chemical equilibrium calculations of pH. The observed reversible effect after acclimatisation of sludge is modelled by a population shift between two aceticlastic methanogens that have different tolerance to cyanide toxicity. The proposed pathway is added to the IWA Anaerobic Digestion Model no.1 (ADM1). The ADM1 model with the designed extension is validated by an experiment using three lab-scale upflow anaerobic sludge bed reactors which were exposed to different cyanide loadings.
Kuroda, Kyohei; Hatamoto, Masashi; Nakahara, Nozomi; Abe, Kenichi; Takahashi, Masanobu; Araki, Nobuo; Yamaguchi, Takashi
2015-04-01
Microbial systems are widely used to treat different types of wastewater from domestic, agricultural, and industrial sources. Community composition is an important factor in determining the successful performance of microbial treatment systems; however, a variety of uncultured and unknown lineages exist in sludge that requires identification and characterization. The present study examined the archaeal community composition in methanogenic, denitrifying, and nitrogen-/phosphate-removing wastewater treatment sludge by Archaea-specific 16S rRNA gene sequencing analysis using Illumina sequencing technology. Phylotypes belonging to Euryarchaeota, including methanogens, were most abundant in all samples except for nitrogen-/phosphate-removing wastewater treatment sludge. High levels of Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), WSA2, Terrestrial Miscellaneous Euryarchaeotal Group, and Miscellaneous Crenarchaeotic Group were also detected. Interestingly, DHVEG-6 was dominant in nitrogen-/phosphate-removing wastewater treatment sludge, indicating that unclear lineages of Archaea still exist in the anaerobic wastewater treatment sludges. These results reveal a previously unknown diversity of Archaea in sludge that can potentially be exploited for the development of more efficient wastewater treatment strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, D.B.; Borup, M.B.; Adams, V.D.
The city of Cookeville, Tennessee, has been experiencing problems with municipal sludge management. Of particular concern was the high concentration of regulated trace metals in the sludge. Primarily, cadmium limited the amount of sludge which was spread on the available cropland in 1985. The purpose of this project was to determine the major sources of heavy metal influx to the city's sanitary sewer system and the potential effects of heavy metals on sludge management. In general, the findings of the study indicate that city enforcement of existing State of Tennessee and city industrial pretreatment requirements will most likely extend themore » useful life of the currently available 388 ha land application sites to as much as ten years for certain sites. Cadmium governed the annual sludge application rates to the agricultural land. One plating industry discharged over 90% of the cadmium, copper, nickel, and zinc mass to the sanitary sewer. In addition, during 1986, the average concentration of most of the trace metals monitored in the municipal sludge deceased from levels reported in 1985.« less
Xiao, Benyi; Luo, Meng; Wang, Xiao; Li, Zuoxing; Chen, Hong; Liu, Junxin; Guo, Xuesong
2017-11-01
To produce energy and reduce sludge production from the treatment of municipal wastewater, four identical microbial fuel cells (MFCs) were constructed in an anoxic-oxic (A/O) process (MFCs-A/O system). Experimental results indicated that this system enhance the removals of chemical oxygen demand (COD) and total nitrogen (TN). The electricity produced by each MFC were ranged from 0.371 to 0.477V (voltage) and from 138 to 227mW/m 3 (power density) at the stable stage, when the external resistance was fixed at 1000Ω. The coulombic efficiency of the MFCs-A/O system ranged from 0.31% to 1.68% (mean=0.72%) at the stable stage, respectively. The removals of COD and TN in the MFCs-A/O system were slightly higher than those in the control system. Compared with the control system, the MFCs-A/O system can reduce waste activated sludge production and sludge yield by 24.0% and 24.2%, respectively. The experimental results indicated that the MFC constructed in A/O system improves wastewater treatment and the MFCs-A/O system can produce electricity while reducing sludge production and increasing wastewater treatment efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Hui; Wu, Di; Jiang, Feng; Ekama, George A; van Loosdrecht, Mark C M; Chen, Guang-Hao
2012-11-01
Saline water supply has been successfully practiced for toilet flushing in Hong Kong since 1950s, which saves 22% of freshwater in Hong Kong. In order to extend the benefits of saline water supply into saline sewage management, we have recently developed a novel biological organics and nitrogen removal process: the Sulfate reduction, Autotrophic denitrification, and Nitrification Integrated (SANI®) process. The key features of this novel process include elimination of oxygen demand in organic matter removal and production of minimal sludge. Following the success of a 500-day lab-scale trial, this study reports a pilot scale evaluation of this novel process treating 10 m(3) /day of 6-mm screened saline sewage in Hong Kong. The SANI® pilot plant consisted of a sulfate reduction up-flow sludge bed (SRUSB) reactor, an anoxic bioreactor for autotrophic denitrification and an aerobic bioreactor for nitrification. The plant was operated at a steady state for 225 days, during which the average removal efficiencies of both chemical oxygen demand (COD) and total suspended solids (TSS) at 87% and no excess sludge was purposefully withdrawn. Furthermore, a tracer test revealed 5% short circuit flow and a 34.6% dead zone in the SRUSB, indicating a good possibility to further optimize the treatment capacity of the process for full-scale application. Compared with conventional biological nitrogen removal processes, the SANI® process reduces 90% of waste sludge, which saves 35% of the energy and reduces 36% of fossil CO(2) emission. The SANI® process not only eliminates the major odor sources originating from primary treatment and subsequent sludge treatment and disposal during secondary saline sewage treatment, but also promotes saline water supply as an economic and sustainable solution for water scarcity and sewage treatment in water-scarce coastal areas. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhao; Dang, Yan; Li, Caihua
2015-09-15
Highlights: • High NH{sub 4}{sup +}–N concentrations inhibit anaerobic treatment of leachate. • Inhibitory effect of NH{sub 4}{sup +}–N concentrations on anaerobic granular sludge is reversible. • High NH{sub 4}{sup +}–N concentrations inhibit bioactivities of microorganisms instead of survival. - Abstract: Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH{sub 4}{sup +}–N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by bothmore » static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH{sub 4}{sup +}–N concentration increasing to 1000 mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH{sub 4}{sup +}–N concentration rising to 1000 mg/L, without any rebounding during 30 days of operation. Decreasing NH{sub 4}{sup +}–N concentration to 500 mg/L in influent, the COD removal efficiency recovered to about 85% after 26 days. 1000 mg/L of NH{sub 4}{sup +}–N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH{sub 4}{sup +}–N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency.« less
Sun, Xinbo; Du, Lingfeng; Hou, Yuqian; Cheng, Shaoju; Zhang, Xuxiang; Liu, Bo
2018-02-21
The anaerobic ammonia oxidation (anammox) and sulfocompound-oxidizing autotrophic denitrification coupling system (A/SAD) was initiated in an expanded granular sludge bed (EGSB) reactor for nitrogen removal from high-strength wastewater. Owing to cooperation between anammox and partial sulfocompound-oxidation autotrophic denitrification coupling system (PSAD), the highest nitrogen removal efficiency (NRE) of 98.1% ± 0.4% achieved at the optimal influent conditions of conversion efficiency of ammonium (CEA) of 55% and S 2 O 3 2- -S/NO 3 - -N (S/N) of 1.4 mol mol -1 . The activity of the short-cut sulfocompound-oxidizing autotrophic denitrification (SSAD) was also regulated to cope with dynamic CEA in the influent by changing the S/N, which was demonstrated to be effective in alleviating nitrite accumulation when the CEA was between 57% and 61%. Both the anammox and SAD bacteria enriched in the reactor after long-term incubation. Candidatus Brocadia and Candidatus Jettenia might be potentially contributing the most to anammox, while the Thiobacillus was the dominant taxa related to SAD. Copyright © 2018. Published by Elsevier Ltd.
Lakshminarasimman, Narasimman; Quiñones, Oscar; Vanderford, Brett J; Campo-Moreno, Pablo; Dickenson, Eric V; McAvoy, Drew C
2018-05-28
This study determined biotransformation rates (k bio ) and sorption-distribution coefficients (K d ) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems. Copyright © 2018. Published by Elsevier B.V.
Hu, Bo; Qi, Rong; An, Wei; Yang, Min
2012-01-01
Changes of protists, which were categorized into different functional groups primarily according to their feeding habits, in two full-scale municipal wastewater treatment systems experiencing sludge bulking were investigated over a period of 14 months. Protist biomass represented 3.7% to 5.2% of total biomass on average under normal sludge conditions, and the percentage increased significantly (p < 0.05) under sludge bulking conditions. The biomass of Chilodonella spp., capable of eating filamentous bacteria, tended to decrease in both systems when sludge bulking occurred, showing that the abnormal growth of filamentous bacteria did not lead to a biomass bloom of this group of protists. On the other hand, the bactivorous protists represented more than 96% of total protist biomass, and the biomass of this group, particularly the attached ciliates, increased significantly (p < 0.05) when sludge bulking occurred. The significant increase of the attached ciliates may have possibly facilitated the growth of filamentous bacteria through selectively preying on non-filamentous bacteria and further exacerbated sludge bulking. The redundancy analysis and correlation analysis results showed that the biomass changes of the attached ciliates were primarily related to the sludge volume index and to some extent related to five-day biochemical oxygen demand loading and hydraulic retention time.
SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
ERPENBECK EG; LESHIKAR GA
In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentiallymore » agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.« less
Fang, Di; Zhou, Li-Xiang
2007-09-01
Bioleaching process has been demonstrated to be an effective technology in removing Cr from tannery sludge, but a large quantity of dissolved organic matter (DOM) present in tannery sludge often exhibits a marked toxicity to chemolithoautotrophic bioleaching bacteria such as Acidithiobacillus thiooxidans. The purpose of the present study was therefore to enhance Cr bioleaching efficiencies through introducing sludge DOM-degrading heterotrophic microorganism into the sulfur-based sludge bioleaching system. An acid-tolerant DOM-degrading yeast strain Brettanomyces B65 was successfully isolated from a local Haining tannery sludge and it could metabolize sludge DOM as a source of energy and carbon for growth. A combined bioleaching experiment (coupling Brettanomyces B65 and A. thiooxidans TS6) performed in an air-lift reactor indicated that the rates of sludge pH reduction and ORP increase were greatly improved, resulting in enhanced Cr solubilization. Compared with the 5 days required for maximum solubilization of Cr for the control (single bioleaching process without inoculation of Brettanomyces B65), the bioleaching period was significantly shorten to 3 days for the combined bioleaching system. Moreover, little nitrogen and phosphorous were lost and the content of Cr was below the permitted levels for land application after 3 days of bioleaching treatment.
Stabilization of waste-activated sludge through the anoxic-aerobic digestion process.
Hashimoto, S; Fujita, M; Terai, K
1982-08-01
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.
Release and control of hydrogen sulfide during sludge thermal drying.
Weng, Huanxin; Dai, Zhixi; Ji, Zhongqiang; Gao, Caixia; Liu, Chongxuan
2015-10-15
The release of hydrogen sulfide (H2S) during sludge drying is a major environmental problem because of its toxicity to human health. A series of experiments were performed to investigate the mechanisms and factors controlling the H2S release. Results of this study show that: (1) the biomass and activity of sulfate-reducing bacteria (SRB) in sludge were the major factors controlling the amount of H2S release, (2) the sludge drying temperature had an important effect on both the extent and the timing of H2S release from the sludge, and (3) decreasing sludge pH increased the H2S release. Based on the findings from this study, a new system that integrates sludge drying and H2S gas treatment was developed, by which 97.5% of H2S and 99.7% of smoke released from sludge treatments was eliminated. Copyright © 2015 Elsevier B.V. All rights reserved.
Release and control of hydrogen sulfide during sludge thermal drying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Huanxin; Dai, Zhixin; Ji, Zhongqiang
2015-04-15
The release of hydrogen sulfide (H2S) during sludge drying is a major environmental problem because of its toxicity to human health. A series of experiments were performed to investigate the mechanisms and factors controlling the H2S release. Results of this study show that: 1) the biomass and activity of sulfate-reducing bacteria (SRB) in sludge were the major factors controlling the amount of H2S release, 2) the sludge drying temperature had an important effect on both the extent and the timing of H2S release from the sludge, and 3) decreasing sludge pH increased the H2S release. Based on the findings frommore » this study, a new system that integrates sludge drying and H2S gas treatment was developed to reduce the amount of H2S released from sludge treatments.« less
Biogas potential from anaerobic co-digestion of faecal sludge with food waste and garden waste
NASA Astrophysics Data System (ADS)
Afifah, Ukhtiy; Priadi, Cindy Rianti
2017-03-01
The limited faecal sludge management can be optimized by converting the sludge into biogas. This study purposed to optimize the biogas potential of faecal sludge with food waste and garden waste. The system using Anaerobic Co-digestion on the variation 25% and 50% concentration of faecal sludge based on Volatile Solids (VS). Inoculum used was cow's rumen. The study was operated using lab-scale batch reactor 51 L for 42 days. Biogas produced at 25% concentration of faecal sludge is 0,30 m3CH4/kg with 71,93% VS and 72,42% COD destruction. Meanwhile, at 50% concentration of faecal sludge produce 0,56 m3CH4/kg VS biogas with 92,43% VS and 87,55% COD destruction. This study concludes that biogas potential of 50% concentration greater than 25% concentration of faecal sludge.
The investigation of solid slag obtained by neutralization of sewage sludge.
Kavaliauskas, Zydrunas; Valincius, Vitas; Stravinskas, Giedrius; Milieska, Mindaugas; Striugas, Nerijus
2015-11-01
The purpose of this research is to investigate the feasibility of utilizing the slag collected after gasification of organic fuel combined with sewage sludge. The residue left after gasification process is likely usable as raw material for production of supercondensers. The sewage sludge neutralization system consists of a dosing system (fuel tank), gasifier, plasma reactor, electrostatic filter, and heat exchangers. For the gasification process, dried solid sewage is supplied in proportion of 70% to biomass 30% by weight. The slag is collected in a specially designed chamber beneath the gasifier. A scanning electron microscope (SEM) was used to evaluate surface morphology of the samples. Elemental analysis of the sewage sludge slag was performed using the energy-dispersive spectroscopy (EDS) method, which showed different solid-state elements contained in the porous structure of the solid phase: carbon 29%, aluminum 26%, potassium 20%, chlorine 1%, and others. The specific surface area of the sewage sludge slag is 6.15 m(2)/g as the BET analysis shows. In order to use the slag as a secondary raw material, detailed analysis of the structure and properties is necessary for a decision on whether the slag left after gasification of sewage sludge is suitable for any further usages. Initial results indicate that the slag may be used for production of electrodes for supercapacitors. Every year thousands of tons of sewage sludge are formed in Lithuania. Sewage sludge consists of organic and inorganic compounds. Partial combustion, plasma decomposition, and other methods are used to neutralize the sewage sludge. The incineration of sewage sludge results in generation of solid-phase slag. In this paper the material structure and composition of a solid slag (formed during neutralization of sewage sludge) is considered. Also, the impact the ambient temperature on structure and composition of solid slag is analyzed.
ERIC Educational Resources Information Center
Wing, Steve
2010-01-01
Sewage sludge is composed of residuals removed from wastewater that comes from homes, hospitals, and industries. Wastewater-treatment systems are designed to remove pollutants that could contaminate public waterways. Sludge--called "biosolids" by those who produce it, spread it, and regulate it--includes these pollutants as well as…
On the Formation of Sludge Intermetallic Particles in Secondary Aluminum Alloys
NASA Astrophysics Data System (ADS)
Ferraro, Stefano; Bjurenstedt, Anton; Seifeddine, Salem
2015-08-01
The primary precipitation of Fe-rich intermetallics in AlSi9Cu3(Fe) type alloys is studied for different Fe, Mn, and Cr contents and cooling rates. Differential scanning calorimetry, thermal analysis, and interrupted solidification with a rapid quenching technique were used in combination in order to assess the nucleation temperature of sludge particles, as well as to follow their evolution. The results revealed that the sludge nucleation temperature and the release of latent heat during sludge formation are functions of Fe, Mn, and Cr levels in the molten alloy ( i.e., the sludge factor, SF) and cooling rate. Moreover, it can be concluded that sensitivity to sludge formation is not affected by cooling rate; i.e., a decrease in the SF will reduce sludge nucleation temperature to the same extent for a higher cooling rate as for a lower cooling rate. The sludge formation temperature detected will assist foundries in setting the optimal molten metal temperature for preventing sludge formation in holding furnaces and plunger systems.
Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V
2006-01-01
Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60) and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs (no primary settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.
Amanatidou, Elisavet; Samiotis, Georgios; Trikoilidou, Eleni; Pekridis, George; Taousanidis, Nikolaos
2015-02-01
Zero net sludge growth can be achieved by complete retention of solids in activated sludge wastewater treatment, especially in high strength and biodegradable wastewaters. When increasing the solids retention time, MLSS and MLVSS concentrations reach a plateau phase and observed growth yields values tend to zero (Yobs ≈ 0). In this work, in order to evaluate sedimentation problems arised due to high MLSS concentrations and complete sludge retention operational conditions, two identical innovative slaughterhouse wastewater treatment plants were studied. Measurements of wastewaters' quality characteristics, treatment plant's operational conditions, sludge microscopic analysis and state point analysis were conducted. Results have shown that low COD/Nitrogen ratios increase sludge bulking and flotation phenomena due to accidental denitrification in clarifiers. High return activated sludge rate is essential in complete retention systems as it reduces sludge condensation and hydraulic retention time in the clarifiers. Under certain operational conditions sludge loading rates can greatly exceed literature limit values. The presented methodology is a useful tool for estimation of sedimentation problems encountered in activated sludge wastewater treatment plants with complete retention time. Copyright © 2014 Elsevier Ltd. All rights reserved.
SUMMARY REPORT: THE CAUSES AND CONTROL OF ACTIVATED SLUDGE BULKING AND FOAMING
This 92-page Technology Transfer Summary Report provides reference material on the causes and controls of sludge bulking and foaming in activated sludge treatment that can be readily understood, and it includes sufficient detail to help plant operators control their systems. The ...
Niu, Tianhao; Zhou, Zhen; Shen, Xuelian; Qiao, Weimin; Jiang, Lu-Man; Pan, Wei; Zhou, Jijun
2016-03-01
A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Presence and destruction of tubercle bacilli in sewage*
Jensen, K. Erik
1954-01-01
The author examined the sewage from 5 towns with tuberculosis sanatoria and from one institution for the care of the feeble-minded, which had a tuberculosis ward, for the presence of tubercle bacilli. The 6 effluents were treated in biological-purification plants and average samples taken. These were centrifuged, and the sediment treated for 1 hour at 37°C with 4% NaOH before inoculation into guinea-pigs. Tubercle bacilli were demonstrated in the influent to all the plants and in the digested sludge of all those operating on sewage where the ratio of infective patients to all persons connected with the plant was up to 1:600. Experiments with cultivated tubercle bacilli showed that centrifuging of sewage resulted in only an insignificant loss of bacilli, but that NaOH treatment caused a loss of over 99%. After consideration of the risk of infection to both man and cattle from the sewage of tuberculosis institutions, the author reports on his own studies on the killing of tubercle bacilli in sewage. It took about 11½-15 months before tubercle bacilli could no longer be demonstrated in sludge that had been kept on the drying beds. The addition of 10 mg of chlorine per litre of biologically purified effluent from an activated-sludge plant was found effectively to destroy tubercle bacilli. Disinfection of sludge was also carried out with 0.5% lysol and 0.1%-0.2% formol; 3.1% copper sulfate proved ineffective. The author concludes that the disinfection of sewage from tuberculosis institutions presents no special difficulties, but that work on this subject in different countries should be co-ordinated in an effort to improve plant and reduce costs. PMID:13160757
Zamyadi, Arash; Dorner, Sarah; Sauvé, Sébastien; Ellis, Donald; Bolduc, Anouka; Bastien, Christian; Prévost, Michèle
2013-05-15
Accumulation and breakthrough of several potentially toxic cyanobacterial species within drinking water treatment plants (DWTP) have been reported recently. The objectives of this project were to test the efficiency of different treatment barriers in cyanobacterial removal. Upon observation of cyanobacterial blooms, intensive sampling was conducted inside a full scale DWTP at raw water, clarification, filtration and oxidation processes. Samples were taken for microscopic speciation/enumeration and microcystins analysis. Total cyanobacteria cell numbers exceeded World Health Organisation and local alert levels in raw water (6,90,000 cells/mL). Extensive accumulation of cyanobacteria species in sludge beds and filters, and interruption of treatment were observed. Aphanizomenon cells were poorly coagulated and they were not trapped efficiently in the sludge. It was also demonstrated that Aphanizomenon cells passed through and were not retained over the filter. However, Microcystis, Anabaena, and Pseudanabaena cells were adequately removed by clarification and filtration processes. The breakthrough of non toxic cyanobacterial cells into DWTPs could also result in severe treatment disruption leading to plant shutdown. Application of intervention threshold values restricted to raw water does not take into consideration the major long term accumulation of potentially toxic cells in the sludge and the risk of toxins release. Thus, a sampling regime inside the plant adapted to cyanobacterial occurrence and intensity is recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of cover materials on leaching of constituents from dolomitic lead mine tailings
Harwood, J.J.; Koirtyohann, S.R.; Schmitt, C.J.
1987-01-01
Five raised-bed test plots were used to study the effects of cover materials on the leaching of constituents from dolomitic Pb mine tailings over a 2-yr period. The cover materials studied were a fertilizer and seed mixture, anaerobically digested sewage sludge, loam and sod, and fallen leaves from silver maples (Acer Saccharinum); one plot was not covered. Fresh leachates and receiving pool waters were analyzed for ten metals, Si, P, inorganic anions, filterable organic carbon (FOC), and alkalinity. The mixture of fertilizer and seed decreased leaching of Pb and Zn during the first year. The leaf cover increased leaching of Pb during both years; this effect decreased as the leaves weathered. Sludge caused some increase in Pb leaching during the first year, and increased Cd leaching during both years. Concentrations of most leachate constituents decreased, and pH increased in the receiving pools. Concentrations of Pb remained higher in the receiving pool for the leaf-covered plot than in the other pools. Increases in leaching of Pb and Cd with a sludge cover were moderate, and the ability of the material to support plant growth on the tailings suggested that it may be a good medium for inducing growth of vegetative cover on the dolomitic tailings. Other organic materials may cause pronounced increase in the concentration of toxic trace metals in leachate from the tailings.
Impact of sludge layer geometry on the hydraulic performance of a waste stabilization pond.
Ouedraogo, Faissal R; Zhang, Jie; Cornejo, Pablo K; Zhang, Qiong; Mihelcic, James R; Tejada-Martinez, Andres E
2016-08-01
Improving the hydraulic performance of waste stabilization ponds (WSPs) is an important management strategy to not only ensure protection of public health and the environment, but also to maximize the potential reuse of valuable resources found in the treated effluent. To reuse effluent from WSPs, a better understanding of the factors that impact the hydraulic performance of the system is needed. One major factor determining the hydraulic performance of a WSP is sludge accumulation, which alters the volume of the pond. In this study, computational fluid dynamics (CFD) analysis was applied to investigate the impact of sludge layer geometry on hydraulic performance of a facultative pond, typically used in many small communities throughout the developing world. Four waste stabilization pond cases with different sludge volumes and distributions were investigated. Results indicate that sludge distribution and volume have a significant impact on wastewater treatment efficiency and capacity. Although treatment capacity is reduced with accumulation of sludge, the latter may induce a baffling effect which causes the flow to behave closer to that of plug flow reactor and thus increase treatment efficiency. In addition to sludge accumulation and distribution, the impact of water surface level is also investigated through two additional cases. Findings show that an increase in water level while keeping a constant flow rate can result in a significant decrease in the hydraulic performance by reducing the sludge baffling effect, suggesting a careful monitoring of sludge accumulation and water surface level in WSP systems. Published by Elsevier Ltd.
Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Lemmiksoo, Vallo; Menert, Anne; Loorits, Liis; Vabamäe, Priit; Tomingas, Martin; Tenno, Taavo
2012-07-01
The anammox bacteria were enriched from reject water of anaerobic digestion of municipal wastewater sludge onto moving bed biofilm reactor (MBBR) system carriers-the ones initially containing no biomass (MBBR1) as well as the ones containing nitrifying biomass (MBBR2). Duration of start-up periods of the both reactors was similar (about 100 days), but stable total nitrogen (TN) removal efficiency occurred earlier in the system containing nitrifying biomass. Anammox TN removal efficiency of 70% was achieved by 180 days in both 20 l volume reactors at moderate temperature of 26.0°C. During the steady state phase of operation of MBBRs the average TN removal efficiencies and maximum TN removal rates in MBBR1 were 80% (1,000 g-N/m(3)/day, achieved by 308 days) and in MBBR2 85% (1,100 g-N/m(3)/day, achieved by 266 days). In both reactors mixed bacterial cultures were detected. Uncultured Planctomycetales bacterium clone P4, Candidatus Nitrospira defluvii and uncultured Nitrospira sp. clone 53 were identified by PCR-DGGE from the system initially containing blank biofilm carriers as well as from the nitrifying biofilm system; from the latter in addition to these also uncultured ammonium oxidizing bacterium clone W1 and Nitrospira sp. clone S1-62 were detected. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. Using previously grown nitrifying biofilm matrix for anammox enrichment has some benefits over starting up the process from zero, such as less time for enrichment and protection against severe inhibitions in case of high substrate loading rates.
Virus elimination in activated sludge systems: from batch tests to mathematical modeling.
Haun, Emma; Ulbricht, Katharina; Nogueira, Regina; Rosenwinkel, Karl-Heinz
2014-01-01
A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents.
Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor.
Gonzalez-Gil, G; Lens, P N; Van Aelst, A; Van As, H; Versprille, A I; Lettinga, G
2001-08-01
The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH(4)/g of volatile suspended solids [VSS].day or 1.1 g of CH(4) chemical oxygen demand/g of VSS.day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates.
Cluster Structure of Anaerobic Aggregates of an Expanded Granular Sludge Bed Reactor
Gonzalez-Gil, G.; Lens, P. N. L.; Van Aelst, A.; Van As, H.; Versprille, A. I.; Lettinga, G.
2001-01-01
The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH4/g of volatile suspended solids [VSS]·day or 1.1 g of CH4 chemical oxygen demand/g of VSS·day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates. PMID:11472948
Biomethanation under psychrophilic conditions.
Dhaked, Ram Kumar; Singh, Padma; Singh, Lokendra
2010-12-01
The biomethanation of organic matter represents a long-standing, well-established technology. Although at mesophilic and thermophilic temperatures the process is well understood, current knowledge on psychrophilic biomethanation is somewhat scarce. Methanogenesis is particularly sensitive to temperature, which not only affects the activity and structure of the microbial community, but also results in a change in the degradation pathway of organic matter. There is evidence of psychrophilic methanogenesis in natural environments, and a number of methanogenic archaea have been isolated with optimum growth temperatures of 15-25 °C. At psychrophilic temperatures, large amounts of heat are needed to operate reactors, thus resulting in a marginal or negative overall energy yield. Biomethanation at ambient temperature can alleviate this requirement, but for stable biogas production, a microbial consortium adapted to low temperatures or a psychrophilic consortium is required. Single-step or two-step high rate anaerobic reactors [expanded granular sludge bed (EGSB) and up flow anaerobic sludge bed (UASB)] have been used for the treatment of low strength wastewater. Simplified versions of these reactors, such as anaerobic sequencing batch reactors (ASBR) and anaerobic migrating blanket reactor (AMBR) have also been developed with the aim of reducing volume and cost. This technology has been further simplified and extended for the disposal of night soil in high altitude, low temperature areas of the Himalayas, where the hilly terrain, non-availability of conventional energy, harsh climate and space constraints limit the application of complicated reactors. Biomethanation at psychrophilic temperatures and the contribution made to night-soil degradation in the Himalayas are reviewed in this article. Copyright © 2010 Elsevier Ltd. All rights reserved.
Barbosa, V L; Tandlich, R; Burgess, J E
2007-07-01
Platinum group metal (PGM) refining processes produce large quantities of wastewater, which is contaminated with the compounds that make up the solvents/extractants mixtures used in the process. These compounds often include solvesso, beta-hydroxyxime, amines, amides and methyl isobutyl ketone. A process to clean up PGM refinery wastewaters so that they could be re-used in the refining process would greatly contribute to continual water storage problems and to cost reduction for the industry. Based on the concept that organic compounds that are produced biologically can be destroyed biologically, the use of biological processes for the treatment of organic compounds in other types of waste stream has been favoured in recent years, owing to their low cost and environmental acceptability. This review examines the available biotechnologies and their effectiveness for treating compounds likely to be contained in precious metal extraction process wastewaters. The processes examined include: biofilters, fluidized bed reactors, trickle-bed bioreactors, bioscrubbers, two-phase partitioning bioreactors, membrane bioreactors and activated sludge. Although all processes examined showed adequate to excellent removal of organic compounds from various gaseous and fewer liquid waste streams, there was a variation in their effectiveness. Variations in performance of laboratory-scale biological processes are probably due to the inherent change in the microbial population composition due to selection pressure, environmental conditions and the time allowed for adaptation to the organic compounds. However, if these factors are disregarded, it can be established that activated sludge and membrane bioreactors are the most promising processes for use in the treatment of PGM refinery wastewaters.
The Basic Extractive Sludge Treatment (B.E.S.T.®) process is a solvent extraction system that separates organic contaminants from sludges, soils, and sediments. The primary distinguishing feature of the process is the extraction agent, triethylamine. The key to the success of tri...
WET OXIDATION OF MUNICIPAL SLUDGE BY THE VERTICAL TUBE REACTOR
A study was undertaken to assess the feasibility of carrying out oxidation of dilute sewage sludge by means of the vertical tube reactor (VTR) system. A pilot scale facility along with a laboratory reactor were used for this study. Dilute sewage sludge was oxidized in the laborat...
Highly efficient secondary dewatering of dewatered sewage sludge using low boiling point solvents.
He, Chao; Chena, Chia-Lung; Xu, Zhirong; Wang, Jing-Yuan
2014-01-01
Secondary dewatering of dewatered sludge is imperative to make conventional drying and incineration of sludge more economically feasible. In this study, a secondary dewatering of dewatered sludge with selected solvents (i.e. acetone and ethanol) followed by vacuum filtration and nature drying was investigated to achieve in-depth dewatering. After the entire secondary dewatering process, the sludge was shown to be odourless and the organic matter content was greatly retained. Increased mean particle size of sludge after solvent contact improved solid-liquid separation. With an acetone/sludge ratio of 3:1 (mL:g) in solvent contact and subsequent nature drying at ambient temperature after 24 h, the moisture content of sludge can be reduced to a level less than 20%. It is found that the polysaccharides were mainly precipitated by acetone, whereas the release ratios of protein and DNA were increased significantly as the added acetone volumes were elevated. During nature drying, accumulated evaporation rates of the sludge after solvent contact were 5-6 times higher than original dewatered sludge. Furthermore, sludge after acetone contact had better nature drying performance than ethanol. The two-stage dewatering involves solvent contact dewatering and solvent enhanced evaporation dewatering. Through selecting an appropriate solvent/sludge ratio as well as economical solvents and minimizing the solvent loss in a closed-pilot system, this dewatering process can be competitive in industrial applications. Therefore, this solvent-aided secondary dewatering is an energy-saving technology for effective in-depth dewatering of dewatered sludge and subsequent sludge utilization.
Wastewater and sludge management and research in Oman: An overview.
Jaffar Abdul Khaliq, Suaad; Ahmed, Mushtaque; Al-Wardy, Malik; Al-Busaidi, Ahmed; Choudri, B S
2017-03-01
It is well recognized that management of wastewater and sludge is a critical environmental issue in many countries. Wastewater treatment and sludge production take place under different technical, economic, and social contexts, thus requiring different approaches and involving different solutions. In most cases, a regular and environmentally safe wastewater treatment and associated sludge management requires the development of realistic and enforceable regulations, as well as treatment systems appropriate to local circumstances. The main objective of this paper is to provide useful information about the current wastewater and sludge treatment, management, regulations, and research in Oman. Based on the review and discussion, the wastewater treatment and sludge management in Oman has been evolving over the years. Further, the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman. Wastewater treatment and sludge management in Oman have been evolving over the years. Sludge utilization has been a challenge due to its association with human waste. Therefore, composting of sewage sludge is the best option in agriculture activities. Sludge and wastewater utilization can add up positively in the economic aspects of the country in terms of creating jobs and improving annual income rate. The number of research projects done on wastewater reuse and other ongoing ones related to the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.
Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng
2011-10-01
A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was operationally divided into six sections along the direction of the sludge movement. Ten duration of continuous operation of sludge bioleaching with Acidibacillus spp. and 1.2 m3 x h(-1) aeration amount was conducted. In this system, sludge retention time was 2.5 d, and the added amount of microbial nutritional substance was 4 g x L(-1). During sludge bioleaching, the dynamic changes of pH, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections, the moisture content and moisture evaporation rate of dewatered bioleached sludge cake obtained by chamber filter press were investigated. The results showed that the SRF of sludge significantly decreased from initial 1.50 x 10(13) m x kg(-1) to the final 0.34 x 10(13) m x kg(-1). The wasted bioleached sludge was collected and dewatered by chamber filter press under the following pressures as 0.3 MPa for 4 h (2 h for feeding sludge, 2 h for holding pressure), 3 h (1.5 h for feeding sludge, 1.5 h for holding pressure), 2 h (1 h for feeding sludge, 1 h for holding pressure), and 1 h (0.5 h for feeding sludge, 0.5 h for holding pressure). Correspondingly, the moisture of dewatered sludge was reduced to 57.9%, 59.2%, 59.6%, and 63.4% of initial moisture, respectively. Moreover, the moisture content of bioleached sludge cake was reduced to about 45% and less than 10% if the cake was placed at 25 degrees C for 15 h and 96 h, respectively. Obviously, sludge bioleaching followed by sludge dewatering using chamber filter press is a promising attractive approach for sludge half-dryness treatment in engineering application.
Nason, Peter; Johnson, Raymond H; Neuschütz, Clara; Alakangas, Lena; Öhlander, Björn
2014-02-28
Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation. Copyright © 2014 Elsevier B.V. All rights reserved.
Nason, Peter; Johnson, Raymond H.; Neuschutz, Clara; Alakangas, Lena; Ohlander, Bjorn
2014-01-01
Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2 m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6 m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3 m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.
Leaching properties of stabilised/solidified cement-admixtures-sewage sludges systems.
Valls, S; Vàzquez, E
2002-01-01
One of the main objectives of this work is to present an effective alternative for the final destination of sludge from urban waste water treatment plants by its use as a component of mortar or concrete. A binding and stabilizing matrix of sludge-cement and sludge-cement-coal fly-ash was investigated and the effects of various percentages of waste and binder, on the behavior of sludge in the system are presented. Assessment of the environmental quality of the final product and the consequent guarantee of its use in the building industry demand that it meets a number of requisites, one of which is that the effluents extracted by water action should be contamination-free, or at least that the concentration of contaminants should be below certain pre-set limits. For this a number of leaching tests must be carried out, such as the Netherlands Leaching Test .
Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater.
Keating, Ciara; Chin, Jason P; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J; McGrath, John W; O'Flaherty, Vincent
2016-01-01
We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4', 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m(-3) d(-1) and hydraulic retention times of 8-24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies.
Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater
Keating, Ciara; Chin, Jason P.; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J.; McGrath, John W.; O’Flaherty, Vincent
2016-01-01
We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4′, 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m-3 d-1 and hydraulic retention times of 8–24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies. PMID:26973608
Chen, Sheng; Sun, De-zhi; Yu, Guang-lu
2010-03-01
Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.
Rahaman, Md Saifur; Mavinic, Donald S; Meikleham, Alexandra; Ellis, Naoko
2014-03-15
The cost associated with the disposal of phosphate-rich sludge, the stringent regulations to limit phosphate discharge into aquatic environments, and resource shortages resulting from limited phosphorus rock reserves, have diverted attention to phosphorus recovery in the form of struvite (MAP: MgNH4PO4·6H2O) crystals, which can essentially be used as a slow release fertilizer. Fluidized-bed crystallization is one of the most efficient unit processes used in struvite crystallization from wastewater. In this study, a comprehensive mathematical model, incorporating solution thermodynamics, struvite precipitation kinetics and reactor hydrodynamics, was developed to illustrate phosphorus depletion through struvite crystal growth in a continuous, fluidized-bed crystallizer. A thermodynamic equilibrium model for struvite precipitation was linked to the fluidized-bed reactor model. While the equilibrium model provided information on supersaturation generation, the reactor model captured the dynamic behavior of the crystal growth processes, as well as the effect of the reactor hydrodynamics on the overall process performance. The model was then used for performance evaluation of the reactor, in terms of removal efficiencies of struvite constituent species (Mg, NH4 and PO4), and the average product crystal sizes. The model also determined the variation of species concentration of struvite within the crystal bed height. The species concentrations at two extreme ends (inlet and outlet) were used to evaluate the reactor performance. The model predictions provided a reasonably good fit with the experimental results for PO4-P, NH4-N and Mg removals. Predicated average crystal sizes also matched fairly well with the experimental observations. Therefore, this model can be used as a tool for performance evaluation and process optimization of struvite crystallization in a fluidized-bed reactor. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Utilization of urban sewage sludge: Chinese perspectives.
Chen, H; Yan, S-H; Ye, Z-L; Meng, H-J; Zhu, Y-G
2012-06-01
Urbanization and industrialization in China has resulted in a dramatic increase in the volume of wastewater and sewage sludge produced from wastewater treatment plants. Problems associated with sewage sludge have attracted increasing attention from the public and urban planners. How to manage sludge in an economically and environmentally acceptable manner is one of the critical issues that modern societies are facing. Sludge treatment systems consist of thickening, dewatering, and several different alternative main treatments (anaerobic digestion, aerobic digestion, drying, composting, and incineration). Agricultural application, landfill, and incineration are the principal disposal methods for sewage sludge in China. However, sewage sludge disposal in the future should focus on resource recovery, reducing environmental impacts and saving economic costs. The reuse of biosolids in all scenarios can be environmentally beneficial and cost-effective. Anaerobic digestion followed by land application is the preferable options due to low economic and energy costs and material reuse. It is necessary to formulate a standard suitable for the utilization of sewage sludge in China.
Passio, Luca; Rizzoa, Luigi; Fuchs, Stephan
2012-09-01
The unsafe disposal of wastewater and sludge in different areas of developing countries results in significant environmental pollution, particularly for groundwater, thus increasing the risk of waterborne diseases spreading. In this work, a two-phase anaerobic digestion process for post-treatment of partially acidified sewage sludge was investigated to evaluate its feasibility as a safe sludge disposal system. Pilot tests showed that an effective sludge stabilization can be achieved (total volatile solids content <65%, organic acid concentration <200 mg/L at flow rate = 50 L/d and hydraulic residence time = 18 d) as well as a relative low faecal coliform density (<1000 most probable number per g total solids), showing that land application of the sludge without restrictions is possible according to US Environmental Protection Agency criteria for safe sludge disposal. A biogas production as high as 390 L/d with a 60% methane content by volume was achieved, showing that energy production from biogas may be achieved as well.
Leal, Cristiano; Amaral, António Luís; Costa, Maria de Lourdes
2016-08-01
Activated sludge systems are prone to be affected by foaming occurrences causing the sludge to rise in the reactor and affecting the wastewater treatment plant (WWTP) performance. Nonetheless, there is currently a knowledge gap hindering the development of foaming events prediction tools that may be fulfilled by the quantitative monitoring of AS systems biota and sludge characteristics. As such, the present study focuses on the assessment of foaming events in full-scale WWTPs, by quantitative protozoa, metazoa, filamentous bacteria, and sludge characteristics analysis, further used to enlighten the inner relationships between these parameters. In the current study, a conventional activated sludge system (CAS) and an oxidation ditch (OD) were surveyed throughout a period of 2 and 3 months, respectively, regarding their biota and sludge characteristics. The biota community was monitored by microscopic observation, and a new filamentous bacteria index was developed to quantify their occurrence. Sludge characteristics (aggregated and filamentous biomass contents and aggregate size) were determined by quantitative image analysis (QIA). The obtained data was then processed by principal components analysis (PCA), cross-correlation analysis, and decision trees to assess the foaming occurrences, and enlighten the inner relationships. It was found that such events were best assessed by the combined use of the relative abundance of testate amoeba and nocardioform filamentous index, presenting a 92.9 % success rate for overall foaming events, and 87.5 and 100 %, respectively, for persistent and mild events.
ERIC Educational Resources Information Center
Carnegie, John W.
This lesson is an introduction to sludge conditioning. Topics covered include a brief explanation of colloidal systems, theory of chemical and heat conditioning, and conditioning aids. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a description of the lesson, estimated presentation time,…
[Inhibition of Denitrification by Total Phenol Load of Coal Gasification Wastewater].
Zhang, Yu-ying; Chen, Xiu-rong; Wang, Lu; Li, Jia-hui; Xu, Yan; Zhuang, You-jun; Yu, Ze-ya
2016-03-15
High loaded phenolic pollutants, refractory and high toxic, which existed in coal gasification wastewater, could cause the inhibition of sludge activity. In biological denitrification process of activated sludge treatment system, people tend to focus on the phenol inhibition on the efficiency and activity of nitrifying bacteria while there are few researches on the denitrification process. In order to investigate the inhibition of phenolic compounds from coal gasification wastewater on the denitrification and sludge activity, we used anoxic denitrification system to indentify the influence of different phenol load on denitrification efficiency (removal efficiency of NO₃⁻-N and NO₂⁻-N) as well as the stress and degradation activity of sludge. The results showed that when the concentration of total phenol was changed from 50 mg · L⁻¹ to 200 mg · L⁻¹, the removal rates of NO₃⁻-N and NO₂⁻-N were changed from 55% and 25% to 83% and 83% respectively. In the process of sludge domestication, the characteristics of denitrifying sludge were influenced to a certain degree.
NASA Astrophysics Data System (ADS)
Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek
2016-04-01
Due to increasing mass of sewage sludge, problems in its management have appeared. Over years sewage sludge was landfilled, however due to EU directives concerning environmental issues this option is no longer possible. This type of material is considered hazardous due to highly concentrated metals and harmful elements, toxic organic substances and biological components (e.g. parasites, microbes). Currently in Europe, incineration is considered to be the most reasonable method for sewage sludge treatment. As a result of sludge incineration significant amount of energy is recovered due to high calorific value of sewage sludge but bottom ash and APC residues are being produced. In this study we show the preliminary results of chemical and mineral analyses of both bottom ash and APC residues produced in fluidized bed boiler in sewage sludge incineration plant in Poland, with a special emphasis on metals which, as a part of incombustible fraction can accumulate in the residual materials after thermal processing. The bottom ash was a SiO2-P2O5-Fe2O3-CaO-Al2O3 dominated material. Main mineral phases identified in X-ray diffraction patterns were: quartz, feldspar, hematite, and phosphates (apatite and scholzite). The bottom ash was characterized by high content of Zn - 4472 mg kg-1, Cu - 665.5 mg kg-1, Pb - 138 mg kg-1, Ni - 119.5 mg kg-1, and interestingly high content of Au - 0.858 mg kg-1 The APC residues composition was dominated by soluble phases which represent more than 90% of the material. The XRD patterns indicated thenardite, halite, anhydrite, calcite and apatite as main mineral phases. The removal of soluble phases by dissolution in deionised water caused a significant mass reduction (ca. 3% of material remained on the filters). Calcite, apatite and quartz were main identified phases. The content of metals in insoluble material is relatively high: Zn - 6326 mg kg-1, Pb - 514.3 mg kg-1, Cu - 476.6 mg kg-1, Ni - 43.3 mg kg-1. The content of Cd, As, Se and Hg was noted also what can be a reason of potential environmental concerns. A significant reduction of sludge volume after incineration causes concentration of numerous elements in both types of residues. The removal of soluble fraction from APC residues caused almost a 30-fold additional concentration of elements what makes this material interesting in terms of metals recovery. A detailed identification of metals occurrences and their distribution within mineral phases will be of a great importance in determination of possibilities of their recovery. Acknowledgment: The study was supported by Polish Nacional Science Centre NCN grant No UMO-2014/15/B/ST10/04171
Parasites in soil/sludge systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandon, J.R.
1978-03-01
The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 55/sup 0/C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for themore » same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities.« less
Zhou, Cuihong; Huang, Xintong; Zeng, Meng
2018-05-01
Dehydrating large amounts of sludge produced by sewage treatment plants is difficult. Microwave pretreatment can effectively and significantly improve the dewaterability and hydrogen production of sludge subjected to anaerobic digestion. The aim of this study was to investigate the effects of different microwave conditions on hydrogen production from anaerobic digestion and dewaterability of sludge. Based on an analysis of the electric field distribution, a spiral reactor was designed and a continuous microwave system was built to conduct intermittent and continuous experiments under different conditions. Settling Volume, Capillary Suction Time, particle size, and moisture content of the sludge were measured. The results show that sludge pretreatment in continuous experiments has equally remarkable dehydration performance as in intermittent experiments; the minimum moisture content was 77.29% in the intermittent experiment under a microwave power of 300W and an exposure time of 60sec, and that in the continuous experiment was 77.56% under a microwave power of 400W and an exposure time of 60sec. The peak measured by Differential Scanning Calorimeter appeared earliest under a microwave power of 600W and an exposure time of 180sec. The heat flux at the peak was 4.343W/g, which is relatively small. This indicates that microwave pretreatment induced desirable effects. The maximum yield of hydrogen production was 7.967% under the conditions of microwave power of 500W, exposure time of 120sec, and water bath at 55°C. This research provides a theoretical and experimental basis for the development of a continuous microwave sludge-conditioning system. Copyright © 2017. Published by Elsevier B.V.
Consequences of sludge composition on combustion performance derived from thermogravimetry analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meiyan; Xiao, Benyi; Wang, Xu
Highlights: • Volatiles, particularly proteins, play a key role in sludge combustion. • Sludge combustion performance varies with different sludge organic concentrations. • Carbohydrates significantly affect the combustion rate in the second stage. • Combustion performance of digested sludge is more negative compared with others. - Abstract: Wastewater treatment plants produce millions of tons of sewage sludge. Sewage sludge is recognized as a promising feedstock for power generation via combustion and can be used for energy crisis adaption. We aimed to investigate the quantitative effects of various sludge characteristics on the overall sludge combustion process performance. Different types of sewagemore » sludge were derived from numerous wastewater treatment plants in Beijing for further thermogravimetric analysis. Thermogravimetric–differential thermogravimetric curves were used to compare the performance of the studied samples. Proximate analytical data, organic compositions, elementary composition, and calorific value of the samples were determined. The relationship between combustion performance and sludge composition was also investigated. Results showed that the performance of sludge combustion was significantly affected by the concentration of protein, which is the main component of volatiles. Carbohydrates and lipids were not correlated with combustion performance, unlike protein. Overall, combustion performance varied with different sludge organic composition. The combustion rate of carbohydrates was higher than those of protein and lipid, and carbohydrate weight loss mainly occurred during the second stage (175–300 °C). Carbohydrates have a substantial effect on the rate of system combustion during the second stage considering the specific combustion feature. Additionally, the combustion performance of digested sewage sludge is more negative than the others.« less
2018-04-30
operating issue was that the sludge pump routinely clogs. The system operator, Mr. Vick Hasie, was available to answer questions. The ERDC team also...reason for this is that the tank may contain sludge buildup, and at seven feet, entrainment of this sludge could occur. The ERDC team did not review...this time. However, this is cumbersome and potentially dangerous as a routine method since the equalization tank is very high (estimated around 30
Organotins' fate in lagoon sewage system: dealkylation and sludge sorption/desorption.
Ophithakorn, Thiwari; Sabah, Aboubakr; Delalonde, Michele; Bancon-Montigny, Chrystelle; Suksaroj, Thunwadee Tachapattaworakul; Wisniewski, Christelle
2016-11-01
Organotin compounds (OTs) have been widely used for their biocidal properties and as stabilizers in various industrial applications. Due to their high toxicity, organotins are subject to many studies regarding their behavior in wastewater treatment plant and aquatic environment. However, few studies are available regarding their behavior in lagoon sewage system, although such treatment is commonly used for sewage treatment in low-population areas. The present study aimed at studying the fate of organotins (monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT)) in lagoon sewage system. Short-term experiments, carried out at lab scale, consisted in sampling sludge from aerobic stabilization ponds, and then quantifying sorption and desorption of the different organotin species, as well as their respective transformation, under defined operating conditions (e.g., tributyltin spike and dilution) simulating possible change in the surrounding environment of sludge in the lagoon. Results established that a very important percentage of the OTs was localized in the solid phase of the sludge (more than 98 %), whatever the operating conditions may be; however, transformation and locations of the three OT species differed according to the different conditions of sludge dilution, TBT spiking, and test duration. After dilution of lagoon sludge, TBT desorption from sludge was observed; it was supposed that dealkylation of TBT after desorption occurred rapidly and increased dissolved MBT and DBT in liquid phase; MBT sorbed subsequently on solid phase. The nature of the diluent (i.e., tap water or saline solution) appeared to slightly influence the sludge behavior. After TBT spiking, TBT was supposed to be rapidly sorbed but also transformed in DBT and MBT that would as well sorbed on the sludge, which explained the decrease of these species in the liquid phase. Tests aimed at studying long-term effect of TBT spiking demonstrated that the sorbed species could be remobilized and transformed after a dilution.
A pilot-scale microwave technology for sludge sanitization and drying.
Mawioo, Peter M; Garcia, Hector A; Hooijmans, Christine M; Velkushanova, Konstantina; Simonič, Marjana; Mijatović, Ivan; Brdjanovic, Damir
2017-12-01
Large volumes of sludge are produced from onsite sanitation systems in densely populated areas (e.g. slums and emergency settlements) and wastewater treatment facilities that contain high amounts of pathogens. There is a need for technological options which can effectively treat the rapidly accumulating sludge under these conditions. This study explored a pilot-scale microwave (MW) based reactor as a possible alternative for rapid sludge treatment. The reactor performance was examined by conducting a series of batch tests using centrifuged waste activated sludge (C-WAS), non-centrifuged waste activated sludge (WAS), faecal sludge (FS), and septic tank sludge (SS). Four kilograms of each sludge type were subjected to MW treatment at a power of 3.4kW for various time durations ranging from 30 to 240min. During the treatment the temperature change, bacteria inactivation (E. coli, coliforms, Staphylococcus aureus, and enterococcus faecalis) and sludge weight/volume reduction were measured. Calorific values (CV) of the dried sludge and the nutrient content (total nitrogen (TN) and total phosphorus (TP)) in both the dried sludge and the condensate were also determined. It was found that MW treatment was successful to achieve a complete bacterial inactivation and a sludge weight/volume reduction above 60%. Besides, the dried sludge and condensate had high energy (≥16MJ/kg) and nutrient contents (solids; TN≥28mg/g TS and TP≥15mg/g TS; condensate TN≥49mg/L TS and TP≥0.2mg/L), having the potential to be used as biofuel, soil conditioner, fertilizer, etc. The MW reactor can be applied for the rapid treatment of sludge in areas such as slums and emergency settlements. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Preliminary design review report - sludge offload system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcwethy, L.M. Westinghouse Hanford
1996-06-05
This report documents the conceptual design review of the sludge offload system for the Spent Nuclear Fuel Project. The design description, drawings, available analysis, and safety analysis were reviewed by a peer group. The design review comments and resolutions are documented.
Yan, Peng; Guo, Jin-Song; Xu, Yu-Feng; Chen, You-Peng; Wang, Jing; Liu, Zhi-Ping; Fang, Fang
2018-06-01
Sludge reduction based on regulating substrate allocation between catabolism and anabolism as a strategy is proposed to reduce energy and chemicals consumption during wastewater treatment. The results indicated that a sludge reduction of 14.8% and excellent nutrient removal were simultaneously achieved in the low dissolved oxygen (LDO) activated sludge system with a hydraulic retention time of 24 h at 25 °C. Denitrifiers comprised nearly 1/4 of all microorganisms in the system. These denitrifiers converted NO x - to N 2 obtaining a lower biomass yield. The oxidoreductase activity proteins in the LDO sample was more than twice that of the normal DO sample, indicating that catabolism was stimulated by NO x - when replacing O 2 as electron acceptor. Less substrate was used for cell synthesis in the LDO system. Stable sludge reduction without extra energy and chemicals inputs was achieved by regulating the substrate allocation by inducing the bacteria to utilize NO x - instead of O 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.
Kiuru, H J
2001-01-01
This paper gives a brief description of the development of dissolved air flotation DAF (or so-called high pressure flotation) as an unit operation for removal of solids in water and wastewater treatment during the last 80 years up to this time. The first DAF-systems used in the water industry were the ADKA and Sveen-Pedersen ones from the 1920s. Some of these are still in use. The tanks in which the flotation phenomenon takes place in these systems are very shallow and narrow as well as rather long. The flow rate of water is some 2-3 m/h (at most less than 5 m/h only) and there is a very thin micro-bubble blanket below the water surface between the dry sludge blanket on that and the clarified water which flows almost horizontally below the bubble blanket toward the end of the tanks to be taken out there from near the bottom. The second generation of DAF was introduced in the 1960s and these units are widely in use today. Their tanks are almost square ones having usually a little bit more length than breadth. They are rather deep, too. There is an under-flow wall in front of the back wall of the units having a narrow horizontal gap on the bottom of the tanks for letting out the clarified water from the flotation space. The flow rate of water is usually 5-7 m/h or at most less than 10 m/h. The direction of flow is 30-45 degrees below the horizontal. There is a rather thick micro-bubble bed at the beginning of the tank below the dry sludge blanket. This bubble-bed becomes clearly thinner, when going toward the end of the tank. There are also round DAF tanks which are based on the same hydraulic principles as the rectangular ones presented above. A special application of DAF called the flotation filter was invented at the very end of the 1960s. It is a combination of flotation and rapid sand filtration, both of those being placed in the same tank. Flotation takes place in the upper part of the tank and the filter has been placed in the lower part of it. The direction of water flow is now vertically down from the free surface of water in the tank toward the deep-bed filter. This controls the direction of flow in the flotation space of the tank above the filter bed. The flow rate of water in flotation filters may be 10-15 m/h, but the flow conditions are still laminar. It is the threat that the head-loss of filters would grow too rapidly which in practice is limiting the hydraulic flow rate of flotation filters in this area. The third generation of DAF has been developed at the end of the 1990s. The operational idea is based on that of the flotation filter. The filter bed on the bottom of the tank has been replaced by a thin stiff plate with plenty of round orifices throughout the plate. This plate, having a very much lower flowing resistance than a sand filter can have, controls the vertical flow of water in the flotation space above the plate and distributes it evenly throughout the horizontal cross-section of the tank. The flotation tank is almost square seen from above and its depth is clearly more than the length and breadth of it. This kind of flotation unit can be operated with flow rates of water in the range 25-40 m/l. Even a flow rate of more than 60 m/h has been reported from this kind of DAF-units. There is no risk of clogging of the plate by suspended solids which could limit the flow rate. This is to say that it is possible to operate DAF also in turbulent flow conditions. The depth of the micro-bubble bed below the surface of water can be 1.5-2.5 m. There actually is a continuously regenerated micro-bubble bed in the tank filtering water which is going through this bed. The lower surface of the micro-bubble bed is really a horizontal one a little bit above the plate controlling the flow in the flotation space. The clarified water below the micro-bubble bed is totally clear. It can be said that in this case the removal of suspended solids takes place much more by filtering water by a deep-bed micro-bubble filter than by attaching micro-bubbles onto solids, when both of these are mixed with each other in the inlet shaft of the flotation unit, because the retention time of water in the inlet shaft is very short indeed.
Sun, Yafei; Qi, Shiyue; Zheng, Fanping; Huang, Linli; Pan, Jing; Jiang, Yingying; Hou, Wanyuan; Xiao, Lu
2018-02-01
Organics removal, nitrogen removal, N 2 O emission and nitrogen removal functional gene abundances in four subsurface wastewater infiltration systems (SWISs), named SWIS A (no intermittent aeration without biochar and sludge), SWIS B (no intermittent aeration with biochar and sludge), SWIS C (intermittent aeration without biochar and sludge), SWIS D (intermittent aeration with biochar and sludge) were investigated. Intermittent aeration enhanced chemical oxygen demand (COD), ammonia nitrogen (NH 4 + -N), total nitrogen (TN) removal and the abundances of nitrogen removal functional genes (amoA, nxrA, napA, narG, nirS, nirK, qnorB and nosZ) compared to non-aerated SWISs. High COD (95.4 ± 0.2%), NH 4 + -N (96.2 ± 0.6%), TN (86.4 ± 0.5%) removal efficiencies and low N 2 O emission rate (18.4 mg/(m 2 d)) were obtained simultaneously in intermittent aerated SWIS amended with biochar and sludge. The results suggested that intermittent aerated SWISs amended with biochar and sludge could be an effective and appropriate method for improving treatment performance and reducing N 2 O emission. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nguyen, Tien Thanh; Ngo, Huu Hao; Guo, Wenshan; Li, Jianxin; Listowski, Andrzej
2012-07-01
The performance of a novel sponge-submerged membrane bioreactor (SSMBR) was evaluated to treat primary treated sewage effluent at three different activated sludge concentrations. Polyurethane sponge cubes with size of 1 × 1 × 1 cm were used as attached growth media in the bioreactor. The results indicated the successful removal of organic carbon and phosphorous with the efficiency higher than 98% at all conditions. Acclimatised sponge MBR showed about 5% better ammonia nitrogen removal at 5 and 10 g/L sludge concentration as compared to the new sponge system. The respiration test revealed that the specific oxygen uptake rate was around 1.0-3.5 mgO(2)/gVSS.h and likely more stable at 10 g/L sludge concentration. The sludge volume index of less than 100 mL/g during the operation indicated the good settling property of the sludge. The low mixed liquor suspended solid increase indicated that SSMBR could control the sludge production. This SSMBR was also successful in reducing membrane fouling with significant lower transmembrane pressure (e.g. only 0.5 kPa/day) compared to the conventional MBR system. Further study will be conducted to optimise other operating conditions.
Liu, Hong-Tao; Wang, Yan-Wen; Huang, Wei-Dong; Lei, Mei
2016-12-01
Sludge is an organic waste after domestic sewage being treated and contains phytonutrients and organic matter. In this study, recycling of sludge compost (SC) and its compound fertilizer (SCF) to wine grape resulted in improvement in vegetative growth, reproductive development of wine grape, and potential wine quality of grape fruit. The amounts of Cu, Pb, and Cd in grape fruit were significantly higher in response to sludge amendment than in the control, but were all below the permissible limits for agricultural product. The contents of Cu and Pb in sludge-amended soil decreased with increasing soil depth, but Cd content increased with soil depth. Ongoing monitoring of on mobility of Cd downward is proposed with sludge recycling to wine grape soil.
Sander, S; Behnisch, J; Wagner, M
2017-02-01
With the MBBR IFAS (moving bed biofilm reactor integrated fixed-film activated sludge) process, the biomass required for biological wastewater treatment is either suspended or fixed on free-moving plastic carriers in the reactor. Coarse- or fine-bubble aeration systems are used in the MBBR IFAS process. In this study, the oxygen transfer efficiency (OTE) of a coarse-bubble aeration system was improved significantly by the addition of the investigated carriers, even in-process (∼1% per vol-% of added carrier material). In a fine-bubble aeration system, the carriers had little or no effect on OTE. The effect of carriers on OTE strongly depends on the properties of the aeration system, the volumetric filling rate of the carriers, the properties of the carrier media, and the reactor geometry. This study shows that the effect of carriers on OTE is less pronounced in-process compared to clean water conditions. When designing new carriers in order to improve their effect on OTE further, suppliers should take this into account. Although the energy efficiency and cost effectiveness of coarse-bubble aeration systems can be improved significantly by the addition of carriers, fine-bubble aeration systems remain the more efficient and cost-effective alternative for aeration when applying the investigated MBBR IFAS process.
Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R
2016-01-01
Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the granular sludge showed a negative impact on their methanogenic activity, confirming that the acetoclastic methanogens were the most sensitive to CO, and a contrario, the advantage of using granular sludge for further development toward large-scale methane production from CO-rich syngas.
Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R.
2016-01-01
Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09–1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the granular sludge showed a negative impact on their methanogenic activity, confirming that the acetoclastic methanogens were the most sensitive to CO, and a contrario, the advantage of using granular sludge for further development toward large-scale methane production from CO-rich syngas. PMID:27536280
Zhang, Hongzi; Xiang, Hai; Zhang, Guoliang; Cao, Xia; Meng, Qing
2009-08-15
The presence of high-strength oil and grease (O&G) in wastewater poses serious challenges for environment. Addition of surfactant into the activated sludge bioreactor is feasible in reducing high concentrations of O&G via enhancing its bioavailability. In this paper, an aqueous biosurfactant solution of rhamnolipid as a cell-free culture broth of Pseudomonas aeruginosa zju.um1 was added into a batch of aerobic activated sludge system for treatment of the waste frying oil. This treatment was conducted on both bench and pilot-scales, whereas the removal efficiency of frying oil was determined by analyzing the residue concentration of O&G and chemical oxygen demand (COD). In the presence of varying concentrations of rhamnolipid from 22.5 mg/L to 90 mg/L, aerobic treatment for 30 h was enough to remove over 93% of O&G while this biodegradability was only 10% in the control system with the absence of rhamnolipids. The equivalent biodegradability was similarly obtained on COD under addition of rhamnolipid. Compared with bench studies, a higher treatment efficiency with the presence of rhamnolipids was achieved on a pilot-scale of activated sludge system, in which a short time of 12h was required for removing approximately 95% of O&G while the control treatment attained a low efficiency of 17%. Finally, foaming and biodegradability of rhamnolipids in activated sludge system were further examined in the whole treatment process. It seems that the addition of rhamnolipid-containing culture broth showed great potential for treatment of oily wastewater by activated sludge.
ERIC Educational Resources Information Center
Carnegie, John W.
The rise time test (along with the settleometer procedure) is used to monitor sludge behavior in the secondary clarifier of an activated sludge system. The test monitors the effect of the nitrification/denitrification process and aids the operator in determining optimum clarifier sludge detention time and, to some extent, optimum degree of…
España-Gamboa, Elda; Vicent, Teresa; Font, Xavier; Dominguez-Maldonado, Jorge; Canto-Canché, Blondy; Alzate-Gaviria, Liliana
2017-01-01
During hydrous ethanol production from the sugar refinery industry in Mexico, vinasse is generated. Phenolic compounds and melanoidins contribute to its color and make degradation of the vinasse a difficult task. Although anaerobic digestion (AD) is feasible for vinasse treatment, the presence of recalcitrant compounds can be toxic or inhibitory for anaerobic microorganism. Therefore, this study presents new data on the coupled of the FBR (Fluidized Bed Bioreactor) to the UASB (Upflow Anaerobic Sludge Blanket) reactor under non-sterile conditions by T. versicolor . Nevertheless, for an industrial application, it is necessary to evaluate the performance in this kind of proposal system. Therefore, this study used a FBR for the removal of phenolic compounds (67%) and COD (38%) at non-sterile conditions. Continuous operation of the FBR was successfully for 26 days according to the literature. When the FBR was coupled to the UASB reactor, we obtained a better quality of effluent, furthermore methane content and yield were 74% and 0.18 m 3 CH 4 / kg COD removal respectively. This study demonstrated the possibility of using for an industrial application the coupled of the FBR to the UASB reactor under non-sterile conditions. Continuous operation of the FBR was carried out successfully for 26 days, which is the highest value found in the literature.
Hirota, Kikue; Yokota, Yuji; Sekimura, Toru; Uchiumi, Hiroshi; Guo, Yong; Ohta, Hiroyuki; Yumoto, Isao
2016-08-01
A dairy wastewater treatment system composed of the 1st segment (no aeration) equipped with a facility for the destruction of milk fat particles, four successive aerobic treatment segments with activated sludge and a final sludge settlement segment was developed. The activated sludge is circulated through the six segments by settling sediments (activated sludge) in the 6th segment and sending the sediments beck to the 1st and 2nd segments. Microbiota was examined using samples from the non-aerated 1st and aerated 2nd segments obtained from two farms using the same system in summer or winter. Principal component analysis showed that the change in microbiota from the 1st to 2nd segments concomitant with effective wastewater treatment is affected by the concentrations of activated sludge and organic matter (biological oxygen demand [BOD]), and dissolved oxygen (DO) content. Microbiota from five segments (1st and four successive aerobic segments) in one location was also examined. Although the activated sludge is circulating throughout all the segments, microbiota fluctuation was observed. The observed successive changes in microbiota reflected the changes in the concentrations of organic matter and other physicochemical conditions (such as DO), suggesting that the microbiota is flexibly changeable depending on the environmental condition in the segments. The genera Dechloromonas, Zoogloea and Leptothrix are frequently observed in this wastewater treatment system throughout the analyses of microbiota in this study. Copyright © 2016. Published by Elsevier B.V.
Li, Hua; Zhu, Jia; Flamming, James J; O'Connell, Jack; Shrader, Michael
2015-01-01
Many wastewater treatment plants in the USA, which were originally designed as secondary treatment systems with no or partial nitrification requirements, are facing increased flows, loads, and more stringent ammonia discharge limits. Plant expansion is often not cost-effective due to either high construction costs or lack of land. Under these circumstances, integrated fixed-film activated sludge (IFAS) systems using both suspended growth and biofilms that grow attached to a fixed plastic structured sheet media are found to be a viable solution for solving the challenges. Multiple plants have been retrofitted with such IFAS systems in the past few years. The system has proven to be efficient and reliable in achieving not only consistent nitrification, but also enhanced bio-chemical oxygen demand removal and sludge settling characteristics. This paper presents long-term practical experiences with the IFAS system design, operation and maintenance, and performance for three full-scale plants with distinct processes; that is, a trickling filter/solids contact process, a conventional plug flow activated sludge process and an extended aeration process.
Ding, Wenjie; Li, Lin; Liu, Junxin
2015-01-01
Sludge drying is a necessary step for sludge disposal. In this study, sludge was collected from two wastewater treatment plants, and dried at different temperatures in the laboratory. The emission of odor and total volatile organic compounds (TVOCs) during the sludge drying process were determined by an online odor monitoring system. The volatile organic compounds (VOCs) in off-gas were analyzed by gas chromatography-mass spectrometry. Results showed that sludge with 30% moisture content could be obtained in 51 minutes under drying temperature 100 °C but only within 27 minutes under 150 °C. Concentration of odor, TVOCs, sulfur-containing compounds (SCCs), and amines were changed with drying temperature and sludge sources. The maximum concentration of odor, TVOCs, SCCs, and amines were 503.13 ppm, 3.01 ppm, 8.15 ppm, and 11.27 ppm, respectively, at drying temperature 100 °C. These values reached 1,250.79, 8.10, 53.51, and 37.80 ppm when sludge dried at 150 °C. Odor concentration had a close relationship with emission of SCCs, amines, and TVOCs. The main VOCs released were benzene series and organic acid. Potential migration of substances in sludge was examined via analysis of off-gas and condensate, aiming to provide scientific data for effective sludge treatment and off-gas control.
Preliminary Study of Thermal Treatment of Coke Wastewater Sludge Using Plasma Torch
NASA Astrophysics Data System (ADS)
Li, Mingshu; Li, Shengli; Sun, Demao; Liu, Xin; Feng, Qiubao
2016-10-01
Thermal plasma was applied for the treatment of coke wastewater sludge derived from the steel industry in order to investigate the feasibility of the safe treatment and energy recovery of the sludge. A 30 kW plasma torch system was applied to study the vitrification and gas production of coke wastewater sludge. Toxicity leaching results indicated that the sludge treated via the thermal plasma process converted into a vitrified slag which resisted the leaching of heavy metals. CO2 was utilized as working gas to study the production and heat energy of the syngas. The heating value of the gas products by thermal plasma achieved 8.43 kJ/L, indicating the further utilization of the gas products. Considering the utilization of the syngas and recovery heat from the gas products, the estimated treatment cost of coke wastewater sludge via plasma torch was about 0.98 CNY/kg sludge in the experiment. By preliminary economic analysis, the dehydration cost takes an important part of the total sludge treatment cost. The treatment cost of the coke wastewater sludge with 50 wt.% moisture was calculated to be about 1.45 CNY/kg sludge dry basis. The treatment cost of the coke wastewater sludge could be effectively controlled by decreasing the water content of the sludge. These findings suggest that an economic dewatering pretreatment method could be combined to cut the total treatment cost in an actual treatment process.
Elmitwalli, Tarek
2013-01-01
Although the septic tank is the most applied on-site system for wastewater pre-treatment, limited research has been performed to determine sludge accumulation and biogas production in the tank. Therefore a dynamic mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) was developed for anaerobic digestion of the accumulated sludge in a septic tank treating domestic wastewater or black water. The results showed that influent chemical oxygen demand (COD) concentration and hydraulic retention time (HRT) of the tank mainly control the filling time with sludge, while operational temperature governs characteristics of the accumulated sludge and conversion to methane. For obtaining stable sludge and high conversion, the tank needs to be operated for a period more than a year without sludge wasting. Maximum conversion to methane in the tank is about 50 and 60% for domestic wastewater and black water, respectively. The required period for sludge wasting depends on the influent COD concentration and the HRT, while characteristics of the wasted sludge are affected by operational temperature followed by the influent COD concentration and the HRT. Sludge production from the tank ranges between 0.19 to 0.22 and 0.13 to 0.15 L/(person.d), for the domestic wastewater and black water, respectively.
Consequences of sludge composition on combustion performance derived from thermogravimetry analysis.
Li, Meiyan; Xiao, Benyi; Wang, Xu; Liu, Junxin
2015-01-01
Wastewater treatment plants produce millions of tons of sewage sludge. Sewage sludge is recognized as a promising feedstock for power generation via combustion and can be used for energy crisis adaption. We aimed to investigate the quantitative effects of various sludge characteristics on the overall sludge combustion process performance. Different types of sewage sludge were derived from numerous wastewater treatment plants in Beijing for further thermogravimetric analysis. Thermogravimetric-differential thermogravimetric curves were used to compare the performance of the studied samples. Proximate analytical data, organic compositions, elementary composition, and calorific value of the samples were determined. The relationship between combustion performance and sludge composition was also investigated. Results showed that the performance of sludge combustion was significantly affected by the concentration of protein, which is the main component of volatiles. Carbohydrates and lipids were not correlated with combustion performance, unlike protein. Overall, combustion performance varied with different sludge organic composition. The combustion rate of carbohydrates was higher than those of protein and lipid, and carbohydrate weight loss mainly occurred during the second stage (175-300°C). Carbohydrates have a substantial effect on the rate of system combustion during the second stage considering the specific combustion feature. Additionally, the combustion performance of digested sewage sludge is more negative than the others. Copyright © 2014 Elsevier Ltd. All rights reserved.
Co-composting of palm oil mill sludge-sawdust.
Yaser, Abu Zahrim; Abd Rahman, Rakmi; Kalil, Mohd Sahaid
2007-12-15
Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40 degrees C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the process with final pH compost is acidic (pH 5.7). The highest maximum organic losses are about 50% with final C/N ratio of the compost is about 19. Final compost also showed some fertilizing value but need to be adjusted to obtain an ideal substrate. Addition of about 70% sandy soil causes highest yield and excellent root development for C. citratus in potted media. Beside that, compost from POMS-sawdust also found to have fertilizer value and easy to handle. Composting of POMS with sawdust shows potential as an alternative treatment to dispose and recycle waste components.
Li, Xiang; Zhang, Wenjuan; Ma, Li; Lai, Sizhou; Zhao, Shu; Chen, Yinguang; Liu, Yanan
2016-11-01
This study investigated the feasibility of improved production propionic acid-enriched volatile fatty acid (VFA) from high concentration (Cs) of food waste and waste activated sludge (WAS) via lactic acid pathway by using of Propionibacterium acidipropionici. It was observed that production of l-lactate overwhelmed to d-lactate at first stage, which improved from 3.21 to 35.45gCOD/L with increase of substrate Cs. However, kinetic model analysis indicated that P. acidipropionici growth rate μmax was decreased with increase of l-lactate concentration, which explained second stage free cell fermentation of propionic acid was inhibited when fed by first stage liquid from R-40, R-55 and R-70. Then, the fibrous bed bioreactor was employed to eliminate the feed inhibition. The maximal percentage of propionic acid (68.3%) and production (16.31gCOD/L) was obtained by feeding liquid of R-55, which was improved by 3.33 folds compared to the free cell fermentation. Copyright © 2016. Published by Elsevier Ltd.
Three years experience of operating and selling recovered struvite from full-scale plant.
Ueno, Y; Fujii, M
2001-11-01
The adoption of phosphorus removal at sewage treatment works (STW) creates two main problems. Firstly large amounts of sludge are produced and secondly the quantity of the effluent deteriorates due to the increase in the phosphorus load of the sidestream. Furthermore, these processes do not remove phosphorus in a form that would enable it to be recycled. Therefore in order to control these process difficulties and produce a recyclable phosphorus product a sidestream struvite crystallisation reactor was developed. The struvite was produced in a fluidised bed reactor using dewatered filtrate from anaerobic sludge digestion. Magnesium hydroxide was added in a magnesium to phosphate ratio of 1:1 and the pH was adjusted to between 8.2-8.8 with the addition of sodium hydroxide. A retention time of 10 days alowed the growth of pellets between 0.5-1.0 mm in size. The recovered struvite contained only minute traces of toxic substances and was sold to fertiliser companies for 27,000 yen tonne(-1). It is used to enhance existing fertilisers, which are widely used on paddy rice, vegetables and flowers.
Fykse, Else Marie; Aarskaug, Tone; Madslien, Elisabeth H; Dybwad, Marius
2016-12-01
High-throughput amplicon sequencing of six biomass samples from a full-scale anaerobic reactor at a Norwegian wood and pulp factory using Biothane Biobed Expanded Granular Sludge Bed (EGSB) technology during start-up and first year of operation was performed. A total of 106,166 16S rRNA gene sequences (V3-V5 region) were obtained. The number of operational taxonomic units (OTUs) ranged from 595 to 2472, and a total of 38 different phyla and 143 families were observed. The predominant phyla were Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, and Spirochaetes. A more diverse microbial community was observed in the inoculum biomass coming from an Upflow Anaerobic Sludge Blanket (USAB) reactor, reflecting an adaptation of the inoculum diversity to the specific conditions of the new reactor. In addition, no taxa classified as obligate pathogens were identified and potentially opportunistic pathogens were absent or observed in low abundances. No Legionella bacteria were identified by traditional culture-based and molecular methods. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ghrib, Amina; Friaa, Athar; Ouerghi, Aymen; Naoui, Slim; Belayouni, Habib
2017-01-01
Solar dried sewage sludge (SS) conversion by pyrolysis and gasification processes has been performed, separately, using two laboratory-scale reactors, a fixed-bed pyrolyzer and a downdraft gasifier, to produce mainly hydrogen-rich syngas. Prior to SS conversion, solar drying has been conducted in order to reduce moisture content (up to 10%). SS characterization reveals that these biosolids could be appropriate materials for gaseous products production. The released gases from SS pyrolysis and gasification present relatively high heating values (up to 9.96 MJ/kg for pyrolysis and 8.02 9.96 MJ/kg for gasification) due to their high contents of H2 (up to 11 and 7 wt%, resp.) and CH4 (up to 17 and 5 wt%, resp.). The yields of combustible gases (H2 and CH4) show further increase with pyrolysis. Stoichiometric models of both pyrolysis and gasification reactions were determined based on the global biomass formula, CαHβOγNδSε, in order to assist in the products yields optimization. PMID:28856162
Verma, Shilpi; Prasad, Basheshwar; Mishra, I M
2012-01-01
The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation.
Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.
Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni
2014-05-01
Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Boonnorat, Jarungwit; Techkarnjanaruk, Somkiet; Honda, Ryo; Ghimire, Anish; Angthong, Sivakorn; Rojviroon, Thammasak; Phanwilai, Supaporn
2018-05-11
This research investigated the micropollutant biodegradation and nitrous oxide (N 2 O) concentration reduction in high strength wastewater treated by two-stage activated sludge (AS) systems with (bioaugmented) and without (non-bioaugmented) acclimatized sludge bioaugmentation. The bioaugmented and non-bioaugmented systems were operated in parallel for 228 days, with three levels of concentrations of organics, nitrogen, and micropollutants in the influent: conditions 1 (low), 2 (moderate), and 3 (high). The results showed that, under condition 1, both systems efficiently removed the organic and nitrogen compounds. However, the bioaugmented system was more effective in the micropollutant biodegradation and N 2 O concentration reduction than the non-bioaugmented one. Under condition 2, the nitrogen and micropollutant biodegradation efficiency of the non-bioaugmented system slightly decreased, while the N 2 O concentration declined in the bioaugmented system. Under condition 3, the treatment performance and N 2 O concentration abatement were substantially lowered as the compounds concentration increased. Further analysis also showed that the acclimatized sludge bioaugmentation increased the bacterial diversity in the system. In essence, the acclimatized sludge bioaugmentation strategy was highly effective for the influent with low compounds concentration, achieving the organics and nitrogen removal efficiencies of 92-97%, relative to 71-97% of the non-bioaugmented system. The micropollutant treatment efficiency of the bioaugmented system under condition 1 was 75-92%, indicating significant improvement in the treatment performance (p < 0.05), compared with 60-79% of the non-bioaugmented system. Copyright © 2018 Elsevier B.V. All rights reserved.
Aged refuse enhances anaerobic digestion of waste activated sludge.
Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi
2017-10-15
In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of domestication on microorganism diversity and anaerobic digestion of food waste.
Bi, S J; Hong, X J; Wang, G X; Li, Y; Gao, Y M; Yan, L; Wang, Y J; Wang, W D
2016-08-19
To accomplish the rapid start-up and stable operation of biogas digesters, an efficient inoculum is required. To obtain such an inoculum for food waste anaerobic digestion, we domesticated dairy manure anaerobic digestion residue by adding food waste every day. After 36 days, the pH and biogas yield stabilized signifying the completion of domestication. During domestication, the microbial communities in the inocula were investigated by constructing 16S rDNA clone libraries. We evaluated the effect of the domesticated inoculum by testing batch food waste anaerobic digestion with a non-domesticated inoculum as a control. The pH and methane yield of the digestion systems were determined as measurement indices. Domestication changed the composition and proportion of bacteria and archaea in the inocula. Of the bacteria, Clostridia (49.3%), Bacteroidales (19.5%), and Anaerolinaceae (8.1%) species were dominant in the seed sludge; Anaerolinaceae (49.0%), Clostridia (28.4%), and Bacteroidales (9.1%), in domestication sludge. Methanosaeta was the dominant genus in both of the seed (94.3%) and domestication (74.3%) sludge. However, the diversity of methanogenic archaea was higher in the domestication than in seed sludge. Methanoculleus, which was absent from the seed sludge, appeared in the domestication sludge (21.7%). When the domesticated inoculum was used, the digestion system worked stably (organic loading rate: 20 gVS/L; methane yield: 292.2 ± 9.8 mL/gVS; VS = volatile solids), whereas the digestion system inoculated with seed sludge failed to generate biogas. The results indicate that inoculum domestication ensures efficient and stable anaerobic digestion by enriching the methanogenic strains.
Zhong, Jia; Wei, Yuan-Song; Zhao, Zhen-Feng; Ying, Mei-Juan; Zhou, Guo-Sheng; Xiong, Jian-Jun; Liu, Pei-Cai; Ge, Zhen; Ding, Gang-Qiang
2013-11-01
There is a great uncertainty of greenhouse gas (GHG) reduction and nitrogen conservation from the full process of sludge composting and land application of compost in China due to the lack of emission data of GHG such as N2O and CH4 and ammonia (NH3). The purpose of this study is to get emission characteristics of GHGs and NH3 from the full process with on-site observation. Results showed that the total GHG emission factor from full process of the turning windrow (TW) system (eCO2/dry sludge, 196.21 kg x t(-1)) was 1.61 times higher of that from the ATP system. Among the full process, N2O was mostly from the land application of compost, whereas CH4 mainly resulted from the sludge composting. In the sludge composting of ATP, the GHG emission equivalence of the ATP (eCO2/dry sludge, 12.47 kg x t(-1) was much lower than that of the TW (eCO2/dry sludge, 86.84 kg x t(-1)). The total NH3 emission factor of the TW (NH3/dry sludge, 6.86 kg x t(-1)) was slightly higher than that of the ATP (NH3/dry sludge, 6.63 kg x t(-1)). NH3 was the major contributor of nitrogen loss in the full process. During the composting, the nitrogen loss as NH3 from both TW and ATP was nearly the same as 30% of TN loss from raw materials, and the N and C loss caused by N2O and CH4 were negligible. These results clearly showed that the ATP was a kind of environmentally friendly composting technology.
Kumar, Rajesh; Singh, Ravi Inder
2017-12-01
The behavior of municipal sewage sludge (MSS) with biomass (Guar stalks (GS), Mustard Husk (MH), Prosopis Juliflora Wood (PJW)) has been investigated in a 20kW bubbling fluidized bed (BFB) combustor under both air-fired (A-F) and oxygen-enriched (O-E) conditions. The work presented is divided into three parts, first part cover the thermogravimetric analysis (TGA), second part cover the experimental investigation of BFB combustor, and third part covers the ash analysis. TGA was performed with a ratio of 50%MSS/50%biomass (GS, MH, PJW) and results show that 50%MSS/50%GS has highest combustion characteristic factor (CCF). The experimental investigation of BFB combustor was performed for two different ratios of MSS/biomass (50%/50% and 25%/75%) and the combustion characteristics of blends were distinctive under both A-F and O-E condition. Despite 50%MSS/50%GS showing the highest combustion performance in TGA analysis, it formed agglomerates during burning in BFB. Due to this formation of large amount of agglomerates, de-fluidization was observed in the combustor bed after 65-75min in A-F conditions. The rate of de-fluidization increased under O-E condition. The de-fluidization problem disappeared when the share of MSS was reduced to 25%, but small amounts of the agglomerate were still present in the bed. With oxygen enhancement, the combustion efficiency of BFB combustor was improved and flue gasses were found within permissible limit. The maximum conceivable combustion efficiency (97.1%) for BFB combustor was accomplished by using 50% MSS/50%PJW under O-E condition. Results show that a ratio of 25%MSS/75%biomass combusted successfully inside the BFB combustor and extensive work is required for efficient utilization of significant share of MSS with biomass. SEM/EDS analyses were performed for agglomerate produced and for the damaged heater to study the surface morphology and compositions. The elemental heterogeneity of fly ash generated during MSS/biomass combustion was analyzed using Microwave Plasma-Atomic Emission Spectroscopy (MP-AES). Copyright © 2017 Elsevier Ltd. All rights reserved.
Persistence of pathogenic prion protein during simulated wastewater treatment processes
Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.
2008-01-01
Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.
Nansubuga, Irene; Banadda, Noble; Ronsse, Frederik; Verstraete, Willy; Rabaey, Korneel
2015-09-15
High rate activated sludge (HRAS) is well-biodegradable sludge enabling energy neutrality of wastewater treatment plants via anaerobic digestion. However, even through successful digestion a notable residue still remains. Here we investigated whether this residue can be converted to biochar, for its use as a fertilizer or as a solid fuel, and assessed its characteristics and overall process efficiency. In a first phase, HRAS was anaerobicaly digested under mesophilic conditions at a sludge retention time of 20 days. HRAS digested well (57.9 ± 6.2% VS degradation) producing on average 0.23 ± 0.04 L CH4 per gram VS fed. The digestate particulates were partially air-dried to mimic conditions used in developing countries, and subsequently converted to biochar by fixed-bed slow pyrolysis at a residence time of 15 min and at highest heating temperatures (HHT) of 300 °C, 400 °C and 600 °C. Subsequently, the produced chars were characterized by proximate analysis, CHN-elemental analysis, pH in solution and bomb calorimetry for higher heating value. The yield and volatile matter decreased with increasing HHT while ash content and fixed carbon increased with increasing HHT. The produced biochar showed properties optimal towards soil amendment when produced at a temperature of 600 °C with values of 5.91 wt%, 23.75 wt%, 70.35% on dry basis (db) and 0.44 for volatile matter, fixed carbon, ash content and H/C ratio, respectively. With regard to its use for energy purposes, the biochar represented a lower calorific value than the dried HRAS digestate likely due to high ash content. Based on these findings, it can be concluded that anaerobic digestion of HRAS and its subsequent biochar formation at HHT of 600 °C represents an attractive route for sludge management in tropic settings like in Uganda, coupling carbon capture to energy generation, carbon sequestration and nutrient recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seo, Kyu Won; Choi, Yong-Su; Gu, Man Bock; Kwon, Eilhann E; Tsang, Yiu Fai; Rinklebe, Jörg; Park, Chanhyuk
2017-11-01
A pilot-scale investigation of membrane-based aerobic digestion system dominated by endospore-forming bacteria was evaluated as one of the potential sludge treatment processes (STP). Most of the organic matter in the sludge was removed (90.1%) by the particular bacteria in the STP, which consisted of mixed liquor suspended solid (MLSS) contact reactor (MCR), MLSS oxidation reactor (MOR), and membrane bioreactor (MBR). The sludge was accumulated in the MBR without wasting, and then the effluent in STP was fed into the first step in water resource recovery facility (WRRF). According to the analysis of microbial communities in all reactors, various Bacillus species were present in the STP, mainly due to their intrinsic resistance to the extreme conditions. As the surviving Bacillus species might consume degraded microorganisms for their growth, these endospore-forming bacteria-based STP could be suitable for the sludge reduction when they operated for a long time. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Sludge Drum in the APNea System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, D.
1998-11-17
The assay of sludge drums pushes the APNea System to a definite extreme. Even though it seems clear that neutron based assay should be the method of choice for sludge drums, the difficulties posed by this matrix push any NDA technique to its limits. Special emphasis is given here to the differential die-away technique, which appears to approach the desired sensitivity. A parallel analysis of ethafoam drums will be presented, since the ethafoam matrix fits well within the operating range of the AIWea System, and, having been part of the early PDP trials, has been assayed by many in themore » NDA community.« less
[Effects of sludge compost used as lawn medium on lawn growth and soil and water environment].
Jin, Shu-Quan; Zhou, Jin-Bo; Chen, Ruo-Xia; Lin, Bin; Wang, De-Yao
2013-10-01
To address effect of the sludge compost-containing medium on the growth of Manila lawn and environment quality, a pot experiment was conducted using six treatments based on contrasting sludge compost addition volume ratios in the soil system (i. e., 0% , 10% , 25% , 50% , 75% and 100%). The results indicated that the growth potential of Manila lawn was increased with increasing sludge compost addition volume ratio. The content of Hg in Manila plant was significantly positively correlated with that in the lawn medium. Although the contents of Cr, Cd and Hg in the lawn medium were synchronously increased with increasing sludge compost addition volume ratio in the soil system, their contents were all lower than the critical levels of third-class standard in the National Soil Environmental Quality Standard. The heavy metal and nitrate concentrations detected in percolating water were significantly positively correlated with those in the lawn medium, respectively. When the sludge compost addition volume ratio was more than 50% in this study, both heavy metal and nitrate concentrations in percolating water would exceed the maximum allowable levels of the National Groundwater Environment Quality Standard.
Saliba, Pollyane Diniz; von Sperling, Marcos
2017-10-01
The objective of this study was to evaluate the behaviour of a system comprising an upflow anaerobic sludge blanket reactor followed by activated sludge to treat domestic sewage. The Betim Central sewage treatment plant, Brazil, was designed to treat a mean influent flow of 514 L/s. The study consisted of statistical treatment of monitoring data from the treatment plant covering a period of 4 years. This work presents the concentrations and removal efficiencies of the main constituents in each stage of the treatment process, and a mass balance of chemical oxygen demand (COD) and nitrogen. The results highlight the good overall performance of the system, with high mean removal efficiencies: BOD (biochemical oxygen demand) (94%), COD (91%), ammonia (72%) and total suspended solids (92%). As expected, this system was not effective for the removal of nutrients, since it was not designed for this purpose. The removal of Escherichia coli (99.83%) was higher than expected. There was no apparent influence of operational and design parameters on the effluent quality in terms of organic matter removal, with the exceptions of the BOD load upstream of the aeration tank and the sludge age in the unit. Results suggest that this system is well suited for the treatment of domestic sewage.
Yang, Guang; Wang, Jianlong
2017-11-01
The low C/N ratio and low carbohydrate content of sewage sludge limit its application for fermentative hydrogen production. In this study, perennial ryegrass was added as the co-substrate into sludge hydrogen fermentation with different mixing ratios for enhancing hydrogen production. The results showed that the highest hydrogen yield of 60mL/g-volatile solids (VS) added was achieved when sludge/perennial ryegrass ratio was 30:70, which was 5 times higher than that from sole sludge. The highest VS removal of 21.8% was also achieved when sludge/perennial ryegrass ratio was 30:70, whereas VS removal from sole sludge was only 0.7%. Meanwhile, the co-fermentation system simultaneously improved hydrogen production efficiency and organics utilization of ryegrass. Kinetic analysis showed that the Cone model fitted hydrogen evolution better than the modified Gompertz model. Furthermore, hydrogen yield and VS removal increased with the increase of dehydrogenase activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Helness, H; Melin, E; Ulgenes, Y; Järvinen, P; Rasmussen, V; Odegaard, H
2005-01-01
Many cities around the world are looking for compact wastewater treatment alternatives since space for treatment plants is becoming scarce. In this paper development of a new compact, high-rate treatment concept with results from experiments in lab-scale and pilot-scale are presented. The idea behind the treatment concept is that coagulation/floc separation may be used to separate suspended and colloidal matter (resulting in > 70% organic matter removal in normal wastewater) while a high-rate biofilm process (based on Moving Bed biofilm reactors) may be used for removing low molecular weight, easily biodegradable, soluble organic matter. By using flotation for floc/biomass separation, the total residence time for a plant according to this concept will normally be < 1 hour. A cationic polymer combined with iron is used as coagulant at low dosages (i.e. 1-2 mg polymer/l, 5-10 mg Fe/l) resulting in low sludge production (compared to conventional chemical treatment) and sufficient P-removal.
Dong, Zhiyong; Lu, Mang; Huang, Wenhui; Xu, Xiaochun
2011-11-30
In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier. Copyright © 2011 Elsevier B.V. All rights reserved.
Geohydrologic evaluation of a landfill in a coastal area, St Petersburg, Florida
Hutchinson, C.B.; Stewart, Joseph W.
1978-01-01
The 250-acre Toytown landfill site is in a poorly-drained area in coastal Pinellas County, Florida. Average altitude of land surface at the landfill is less than 10 feet. About 1000 tons of solid waste and about 200,000 gallons of digested sewage sludge are disposed of daily at the landfill. The velocity of ground-water flow through the 23-foot thick surficial aquifer northeast from the landfill toward Old Tampa Bay probably ranges from 1 to 10 feet per year, and downward velocity through the confining bed is about 0.00074 foot per day. The horizontal and vertical flow velocities indicate that leachate moves slowly downgradient, and that leachate has not yet seeped through the confining bed after 12 years of landfill operation. Untreated surface run-off from the site averages about 15 inches per year, and ground-water outflow averages about 3.3 inches per year. The Floridan aquifer is used as a limited source of water for domestic supply in this area. (Woodard-USGS)
Lievens, P; Verbinnen, B; Bollaert, P; Alderweireldt, N; Mertens, G; Elsen, J; Vandecasteele, C
2011-10-01
Blocking of the collection hoppers of the baghouse filters in a fluidized bed incinerator for co-incineration of high calorific industrial solid waste and sludge was observed. The composition of the flue gas cleaning residue (FGCR), both from a blocked hopper and from a normal hopper, was investigated by (differential) thermogravimetric analysis, quantitative X-ray powder diffraction and wet chemical analysis. The lower elemental carbon concentration and the higher calcium carbonate concentration of the agglomerated sample was the result of oxidation of carbon and subsequent reaction of CO2 with CaO. The evolved heat causes a temperature increase, with the decomposition of CaOHCl as a consequence. The formation of calcite and calcium chloride and the evolution of heat caused agglomeration of the FGCR. Activated lignite coke was replaced by another adsorption agent with less carbon, so the auto-ignition temperature increased; since then no further block formation has occurred.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
Land application systems are discussed with reference to the options available for applying wastewater and sludge to the site. Spray systems, surface flow methods, and sludge application schemes are all included with discussions of the advantages and disadvantages of each option within these categories. A distinction is made between the choice of…
Yu, Qilin; Jin, Xiaochen; Zhang, Yaobin
2018-05-15
Sludge cell disruption was generally considered as the rate-limiting step for the anaerobic digestion of waste activated sludge (WAS). Advanced oxidation processes and bio-electro-chemical systems were recently reported to enhance the hydrolysis of WAS and sludge cell disruption, while the cell-breaking processes of these systems remain unclear yet. In this study, an innovative Bio-electro-Fenton system was developed to pretreat the WAS sequentially with cathode Fenton process and anode anaerobic digestion. Significant cell disruption and dissolution intracellular organics were founded after the treatment. X-ray photoelectron spectroscopy (XPS) analysis and fourier transform infrared spectroscopy (FT-IR) spectra indicated that Gram-negative bacteria were more sensitive to free radicals yielded in cathode to induce a chain reaction that destroyed the lipid-contained outer membrane, while Gram-positive bacteria with thick peptidoglycan layer were liable to be biologically decomposed in the anode. Compared with the oxidation of organic matters in the cathode Fenton, the secretion of enzyme increased in the anode which was beneficial to break down the complex matters (peptidoglycans) into simples that were available for anode oxidation by exoelectrogens. The results also showed a possible prospect for the application of this sequential pretreatment in bio-electro-Fenton systems to disrupt sludge cells and enhance the anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nitrous oxide from moving bed based integrated fixed film activated sludge membrane bioreactors.
Mannina, Giorgio; Capodici, Marco; Cosenza, Alida; Di Trapani, Daniele; Laudicina, Vito Armando; Ødegaard, Hallvard
2017-02-01
The present paper reports the results of a nitrous oxide (N 2 O) production investigation in a moving bed based integrated fixed film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant designed in accordance with the University of Cape Town layout for biological phosphorous removal. Gaseous and liquid samples were collected in order to measure the gaseous as well as the dissolved concentration of N 2 O. Furthermore, the gas flow rate from each reactor was measured and the gas flux was estimated. The results confirmed that the anoxic reactor represents the main source of nitrous oxide production. A significant production of N 2 O was, however, also found in the anaerobic reactor, thus indicating a probable occurrence of the denitrifying phosphate accumulating organism activity. The highest N 2 O fluxes were emitted from the aerated reactors (3.09 g N 2 ON m -2 h -1 and 9.87 g N 2 ON m -2 h -1 , aerobic and MBR tank, respectively). The emission factor highlighted that only 1% of the total treated nitrogen was emitted from the pilot plant. Furthermore, the measured N 2 O concentrations in the permeate flow were comparable with other reactors. Nitrous oxide mass balances outlined a moderate production also in the MBR reactor despite the low hydraulic retention time. On the other hand, the mass balance showed that in the aerobic reactor a constant consumption of nitrous oxide (up to almost 15 mg N 2 O h -1 ) took place, due to the high amount of stripped gas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang
2015-08-01
Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.
Removal of metals in leachate from sewage sludge using electrochemical technology.
Meunier, N; Drogui, P; Gourvenec, C; Mercier, G; Hausler, R; Blais, J F
2004-02-01
Heavy metals in acidic leachates from sewage sludge are usually removed by chemical precipitation, which often requires high concentration of chemicals and induces high metallic sludge production. Electrochemical technique has been explored as an alternative method in a laboratory pilot scale reactor for heavy metals (Cu and Zn) removal from sludge leachate. Three electrolytic cell arrangements using different electrodes materials were tested: mild steel or aluminium bipolar electrode (EC cell), Graphite/stainless steel monopolar electrodes (ER cell) and iron-monopolar electrodes (EC-ER cell). Results showed that the best performances of metal removal were obtained with EC and EC-ER cells using mild steel electrodes operated respectively at current intensities of 0.8 and 2.0 A through 30 and 60 min of treatment. The yields of Cu and Zn removal from leachate varied respectively from 92.4 to 98.9% and from 69.8 to 76.6%. The amounts of 55 and 44 kg tds(-1) of metallic sludge were respectively produced using EC and EC-ER cells. EC and EC-ER systems involved respectively a total cost of 21.2 and 13.1 CAN dollars per ton of dry sludge treated including only energy consumption and metallic sludge disposal. The treatment using EC-ER system was found to be effective and more economical than the traditional metal precipitation using either Ca(OH)2 and/or NaOH.
Pronk, M; Abbas, B; Kleerebezem, R; van Loosdrecht, M C M
2015-01-01
The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes. PMID:26059251
Stabilization of waste-activated sludge through the anoxic-aerobic digestion process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, S.; Fujita, M.; Terai, K.
1982-08-01
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludgemore » continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q /SUB r/ /Q /SUB s/ ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q /SUB r/ /Q /SUB s/ ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.« less
NASA Astrophysics Data System (ADS)
Lariyah, M. S.; Mohiyaden, H. A.; Hayder, G.; Hayder, G.; Hussein, A.; Basri, H.; Sabri, A. F.; Noh, MN
2016-03-01
This review paper present the MBBR and IFAS technology for urban river water purification including both conventional methods and new emerging technologies. The aim of this paper is to present the MBBR and IFAS technology as an alternative and successful method for treating different kinds of effluents under different condition. There are still current treatment technologies being researched and the outcomes maybe available in a while. The review also includes many relevant researches carried out at the laboratory and pilot scales. This review covers the important processes on MBBR and IFAS basic treatment process, affecting of carrier type and influent types. However, the research concluded so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the news approach. The research concluded so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the news approach. To this end, the most feasible technology could be the combination of advanced biological process (bioreactor systems) including MBBR and IFAS system.
Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T
2016-01-01
A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.
Zhao, Zhiqiang; Zhang, Yaobin; Wang, Liying; Quan, Xie
2015-06-09
Direct interspecies electron transfer (DIET) between Geobacter species and Methanosaeta species is an alternative to interspecies hydrogen transfer (IHT) in anaerobic digester, which however has not been established in anaerobic sludge digestion as well as in bioelectrochemical systems yet. In this study, it was found that over 50% of methane production of an electric-anaerobic sludge digester was resulted from unknown pathway. Pyrosequencing analysis revealed that Geobacter species were significantly enriched with electrodes. Fluorescence in situ hybridization (FISH) further confirmed that the dominant Geobacter species enriched belonged to Geobacter metallireducens. Together with Methanosaeta species prevailing in the microbial communities, the direct electron exchange between Geobacter species and Methanosaeta species might be an important reason for the "unknown" increase of methane production. Conductivity of the sludge in this electric-anaerobic digester was about 30% higher than that of the sludge in a control digester without electrodes. This study not only revealed for the first time that DIET might be the important mechanism on the methanogenesis of bioelectrochemical system, but also provided a new method to enhance DIET by means of bioelectric enrichment of Geobacter species.
Zhao, Zhiqiang; Zhang, Yaobin; Wang, Liying; Quan, Xie
2015-01-01
Direct interspecies electron transfer (DIET) between Geobacter species and Methanosaeta species is an alternative to interspecies hydrogen transfer (IHT) in anaerobic digester, which however has not been established in anaerobic sludge digestion as well as in bioelectrochemical systems yet. In this study, it was found that over 50% of methane production of an electric-anaerobic sludge digester was resulted from unknown pathway. Pyrosequencing analysis revealed that Geobacter species were significantly enriched with electrodes. Fluorescence in situ hybridization (FISH) further confirmed that the dominant Geobacter species enriched belonged to Geobacter metallireducens. Together with Methanosaeta species prevailing in the microbial communities, the direct electron exchange between Geobacter species and Methanosaeta species might be an important reason for the “unknown” increase of methane production. Conductivity of the sludge in this electric-anaerobic digester was about 30% higher than that of the sludge in a control digester without electrodes. This study not only revealed for the first time that DIET might be the important mechanism on the methanogenesis of bioelectrochemical system, but also provided a new method to enhance DIET by means of bioelectric enrichment of Geobacter species. PMID:26057581
Effects of using arsenic-iron sludge wastes in brick making.
Hassan, Khondoker Mahbub; Fukushi, Kensuke; Turikuzzaman, Kazi; Moniruzzaman, S M
2014-06-01
The arsenic-iron sludge generated in most of the treatment systems around the world is discharged into the nearest watercourse, which leads to accumulative rise of arsenic and iron concentrations in water. In this study, attempts were made to use the arsenic-iron sludge in making bricks and to analyze the corresponding effects on brick properties. The water treatment plant sludge is extremely close to brick clay in chemical composition. So, the sludge could be a potential substitute for brick clay. This study involved the addition of sludge with ratios 3%, 6%, 9% and 12% of the total weight of sludge-clay mixture. The physical and chemical properties of the produced bricks were then determined and evaluated and compared to control brick made entirely from clay. Results of different tests indicated that the sludge proportion and firing temperature were the two key factors in determining the quality of bricks. The compressive strength of 3%, 6%, 9% and 12% sludge containing brick samples were found to be 14.1 MPa, 15.1 MPa, 9.4 MPa and 7.1 MPa, respectively. These results indicate that the compressive strength of prepared bricks initially increased and then decreased with the increase of sludge proportion. Leaching characteristics of burnt bricks were determined with the variation of pH at a constant temperature. The optimum amount of sludge that could be mixed with clay to produce good bonding of clay-sludge bricks was found to be 6% (safely maximum) by weight. Copyright © 2013 Elsevier Ltd. All rights reserved.
Murray, Ashley; Horvath, Arpad; Nelson, Kara L
2008-05-01
Sewage sludge management poses environmental, economic, and political challenges for wastewater treatment plants and municipalities around the globe. To facilitate more informed and sustainable decision making, this study used life-cycle inventory (LCI) to expand upon previous process-based LCIs of sewage sludge treatmenttechnologies. Additionally, the study evaluated an array of productive end-use options for treated sewage sludge, such as fertilizer and as an input into construction materials, to determine how the sustainability of traditional manufacturing processes changes with sludge as a replacement for other raw inputs. The inclusion of the life-cycle of necessary inputs (such as lime) used in sludge treatment significantly impacts the sustainability profiles of different treatment and end-use schemes. Overall, anaerobic digestion is generally the optimal treatment technology whereas incineration, particularly if coal-fired, is the most environmentally and economically costly. With respect to sludge end use, offsets are greatest for the use of sludge as fertilizer, but all of the productive uses of sludge can improve the sustainability of conventional manufacturing practices. The results are intended to help inform and guide decisions about sludge handling for existing wastewater treatment plants and those that are still in the planning phase in cities around the world. Although additional factors must be considered when selecting a sludge treatment and end-use scheme, this study highlights how a systems approach to planning can contribute significantly to improving overall environmental sustainability.
Land application technique for the treatment and disposal of sewage sludge.
Zain, S M; Basri, H; Suja, F; Jaafar, O
2002-01-01
Some of the major concerns when applying sewage sludge to land include the potential effect on pH and cation exchange capacity; the mobility and the accumulation of heavy metals in sludge treated soil; the potential of applying too much nutrients and the problems associated with odors and insects. The main objective of this study is to identify the effects of sewage sludge application on the physical and chemical properties of sludge treated soil. Sewage sludge was applied to soil at various rates ranging from 0 L/m2 to 341 L/m2. In order to simulate the natural environment, the study was carried out at a pilot treatment site (5.2 m x 6.7 m) in an open area, covered with transparent roofing material to allow natural sunlight to pass through. Simulated rain was applied by means of a sprinkler system. Data obtained from sludge treated soil showed that the pH values decreased when the application rates were increased and the application period prolonged. The effect of sewage sludge on cation exchange capacity was not so clear; the values obtained for every application rate of sewage sludge did not indicate any consistent behaviour. The mobility of heavy metals in soils treated with sludge were described by observing the changes in the concentration of the heavy metals. The study showed that Cd has the highest mobility in sludge treated soil followed by Cu, Cr, Zn, Ni and Pb.
Digital image processing and analysis for activated sludge wastewater treatment.
Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed
2015-01-01
Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.
Properties of wastepaper sludge in geopolymer mortars for masonry applications.
Yan, Shiqin; Sagoe-Crentsil, Kwesi
2012-12-15
This paper presents the results of an investigation into the use of wastepaper sludge in geopolymer mortar systems for manufacturing construction products. The investigation was driven by the increasing demand for reuse options in paper-recycling industry. Both fresh and hardened geopolymer mortar properties are evaluated for samples incorporating dry wastepaper sludge, and the results indicate potential end-use benefits in building product manufacture. Addition of wastepaper sludge to geopolymer mortar reduces flow properties, primarily due to dry sludge absorbing water from the binder mix. The average 91-day compressive strength of mortar samples incorporating 2.5 wt% and 10 wt% wastepaper sludge respectively retained 92% and 52% of the reference mortar strength. However, contrary to the normal trend of increasing drying shrinkage with increasing paper sludge addition to Portland cement matrices, the corresponding geopolymer drying shrinkage decreased by 34% and 64%. Equally important, the water absorption of hardened geopolymer mortar decreased with increasing paper sludge content at ambient temperatures, providing good prospects of overall potential for wastepaper sludge incorporation in the production of building and masonry elements. The results indicate that, despite its high moisture absorbance due to the organic matter and residual cellulose fibre content, wastepaper sludge appears compatible with geopolymer chemistry, and hence serves as a potential supplementary additive to geopolymer cementitious masonry products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comett-Ambriz, I; Gonzalez-Martinez, S; Wilderer, P
2003-01-01
Anaerobic reactor biowaste effluent was treated with biofilm and activated sludge sequencing batch reactors to compare the performance of both systems. The treatment targets were organic carbon removal and nitrification. The pilot plant was operated in two phases. During the first phase, it was operated like a Moving Bed Biofilm Reactor (MBBR) with the Natrix media, with a specific surface area of 210 m2/m3. The MBBR was operated under Sequencing Batch Reactor (SBR) modality with three 8-hour cycles per day over 70 days. During the second phase of the experiment, the pilot plant was operated over 79 days as a SBR. In both phases the influent was fed to the reactor at a flow rate corresponding to a Hydraulic Retention Time (HRT) of 4 days. Both systems presented a good carbon removal for this specific wastewater. The Chemical Oxygen Demand (COD) total removal was 53% for MBBR and 55% for SBR. MBBR offered a higher dissolved COD removal (40%) than SBR (30%). The limited COD removal achieved is in agreement with the high COD to BOD5 ratio (1/3) of the influent wastewater. In both systems a complete nitrification was obtained. The different efficiencies in both systems are related to the different biomass concentrations.
Hybrid moving bed biofilm reactors: a pilot plant experiment.
Di Trapani, D; Mannina, G; Torregrossa, M; Viviani, G
2008-01-01
The growing increment of the urbanization and, on the other hand, the even more strict effluent limits imposed by the Water Framework Directive for the receiving water body quality state have led to the need for upgrading several existing WWTP. With this respect HMBBR systems are an innovative solution since they allow to upgrade existing high loaded WWTP without building new tanks. However, some uncertainties in their design, maintenance as well as performance have to be addressed due to their recent acquisition compared with well consolidated technologies such as activated sludge systems. In this light, a data gathering campaign on a HMBBR pilot plant has been performed. The aim was to detect the performance of such new technology as well as to survey the influencing effect of the carrier media filling ratio. Indeed, there may be problem of competitiveness between attached and suspended biomass that jointly operate in the same system for carbon and nitrogen removal. Such competitiveness may lead to a worsening of the system efficiency. The results are interesting and the gathered data in the experimental period show a slight difference in terms of performance behaviour, between the two systems (35 and 66%). Such result leads to address the filling ratio choice towards the 35%. IWA Publishing 2008.
Shan, Lili; Yu, Yanling; Zhu, Zebing; Zhao, Wei; Wang, Haiman; Ambuchi, John J; Feng, Yujie
2015-11-01
This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.
Treatment of industrial effluents by a continuous system: electrocoagulation--activated sludge.
Moisés, Tejocote-Pérez; Patricia, Balderas-Hernández; Barrera-Díaz, C E; Gabriela, Roa-Morales; Natividad-Rangel, Reyna
2010-10-01
A continuous system electrocoagulation--active sludge was designed and built for the treatment of industrial wastewater. The system included an electrochemical reactor with aluminum electrodes, a clarifier and a biological reactor. The electrochemical reactor was tested under different flowrates (50, 100 and 200 mL/min). In the biological reactor, the performance of different cultures of active sludge was assessed: coliform bacterial, ciliate and flagellate protozoa and aquatic fungus. Overall treatment efficiencies of color, turbidity and COD removal were 94%, 92% and 80%, respectively, under optimal conditions of 50 mL/min flowrate and using ciliate and flagellate protozoa. It was concluded that the system was efficient for the treatment of industrial wastewater. Copyright © 2010 Elsevier Ltd. All rights reserved.
Emily J. Goodwin; Andrew M. Burrow
2006-01-01
Use of Kraft primary sludge and boiler ash in forest production systems holds promise as a cost-effective alternative to landfilling. From a soil quality perspective, particularly in coarse-textured sandy soils, increases in organic matter content from inputs of sludge/ash may improve soil chemical, biological, and physical properties. The objective of this study was...
Hu, Weitong; Zheng, Guanyu; Fang, Di; Cui, Chunhong; Liang, Jianru; Zhou, Lixiang
2015-10-01
Sludge bioleaching technology with Acidithiobacillus species has been commercially adopted for improving advanced dewatering of sludge in China since 2010. However, up to now, little information on bioleached dewatered sludge (BS) composting is available. Here, we report the changes of physicochemical and biological properties in BS composting and evaluate compost product quality compared to conventional dewatered sludge (CS) composting in an engineering scale composting facility. The results showed that the amount of bulking agents required in BS composting was only about 10% of CS composting to obtain optimum moisture content, reducing about 700 kg bulking agents per ton fresh sludge. pH of BS composting mixture was slightly lower consistently by about 0.2-0.3 pH units than that in CS mixture in the first 30 days. Organic matter biodegradation in BS system mainly occurred in the first 9 days of composting. In spite of higher content of NH4(+)-N was found in BS mixture in related to CS mixture; unexpectedly the cumulative ammonia volatilization in the former was only 51% of the latter, indicating that BS composting drastically reduced nitrogen loss. Compared to CS composting system, the relative lower pH, the higher intensity of microbial assimilation, and the presence of water soluble Fe in BS system might jointly reduce ammonia volatilization. Consequently, BS compost product exhibited higher fertilizer values (N+P2O5+K2O=8.38%) as well as lower heavy metal levels due to the solubilization of sludge-borne heavy metals during bioleaching process. Therefore, composting of BS possesses more advantages over the CS composting process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Linting; She, Zonglian; Jin, Chunji; Yang, Shiying; Guo, Liang; Zhao, Yangguo; Gao, Mengchun
2016-09-01
The composition and distribution of extracellular polymeric substance (EPS) both from suspended sludge and attached biofilm were investigated in a simultaneous nitrification and denitrification (SND) system with the increase of the salinity from 1.0 to 3.0 %. Fourier-transform infrared (FTIR) spectroscopy and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy were used to examine proteins (PN), polysaccharides (PS) and humic substances (HS) present in EPS. High total nitrogen removal (above 83.9 %) via SND was obtained in the salinity range of 1.0-2.5 %. Total EPS in the sludge increased from 150.2 to 200.6 mg/gVSS with the increase of salinity from 1.0 to 3.0 %, whereas the corresponding values in the biofilm achieved the maximum of 288.6 mg/g VSS at 2.0 % salinity. Dominant composition of EPS was detected as HS in both sludge and biofilm, having the percentages of 50.6-68.6 and 41.1-69.9 % in total EPS, respectively. Both PN and PS contents in soluble EPS (S-EPS), loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) of sludge and biofilm increased with the increased salinity. The FTIR spectrum and 3D-EEM fluorescence spectroscopy of S-EPS, LB-EPS and TB-EPS in the sludge and biofilm showed the changes of functional groups and conformations of the compositions in EPS with the increase of salinity. The results demonstrated that the characteristics of EPS varied from sludge to biofilm. The obtained results could provide a better understanding of the salinity effect on the EPS characteristics in a SND system.
Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.
Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo
2013-07-01
Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hafner, Sasha D; Madsen, Johan T; Pedersen, Johanna M; Rennuit, Charlotte
2018-02-01
Combining aerobic and anaerobic digestion in a two-stage system can improve the degradation of wastewater sludge over the use of either technology alone. But use of aerobic digestion as a pre-treatment before anaerobic digestion generally reduces methane production due to loss of substrate through oxidation. An inter-stage configuration may avoid this reduction in methane production. Here, we evaluated the use of thermophilic aerobic digestion (TAD) as an inter-stage treatment for wastewater sludge using laboratory-scale semi-continuous reactors. A single anaerobic digester was compared to an inter-stage system, where a thermophilic aerobic digester (55 °C) was used between two mesophilic anaerobic digesters (37 °C). Both systems had retention times of approximately 30 days, and the comparison was based on measurements made over 97 days. Results showed that the inter-stage system provided better sludge destruction (52% volatile solids (VS) removal vs. 40% for the single-stage system, 44% chemical oxygen demand (COD) removal vs. 34%) without a decrease in total biogas production (methane yield per g VS added was 0.22-0.24 L g -1 for both systems).
Wan, Junfeng; Bessière, Yolaine; Spérandio, Mathieu
2009-12-01
In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.
Mosquera-Losada, M R; Ferreiro-Domínguez, N; Daboussi, S; Rigueiro-Rodríguez, A
2016-10-01
Copper (Cu) is one of the heavy metals with highest proportion in sewage sludge. In Europe, sewage sludge should be stabilised before using it as a fertiliser in agriculture. Depending on the stabilisation process, sewage sludge has different Cu contents, and soil Cu incorporation rates. This study was undertaken to examine the effect of fertilisation with different types of sewage sludge (anaerobic, composted, and pelletised) on the concentration of total and available Cu in the soil, the tree growth, the pasture production, and the concentration of Cu in the pasture when compared with control treatments (i.e. no fertilisation and mineral fertilisation) in a silvopastoral system under Eucalyptus nitens Maiden. The results of this experiment show that an improvement of the soil pH increased the incorporation and the mineralisation of the sewage sludge and litter, and therefore, the release of Cu from the soil. Moreover, the concentration of Cu in the pasture and the levels of Cu extracted by the pasture improved when the soil organic matter decreased because the high levels of organic matter in the soil could have formed Cu complex. The composted sewage sludge (COM) increased a) the soil variables studied (pH, total Cu, and available Cu) and b) the Cu extracted by the pasture, both probably due to the higher inputs of cations made with it. In any case, the levels of Cu found in the soil never exceeded the maximums as set by Spanish regulations and did not cause harmful effects on the plants and animals. Therefore, the use of COM as an organic fertiliser should be promoted in silvopastoral systems established in edaphoclimatic conditions similar to this study because COM enhanced the productivity of the system from a viewpoint of the soil and the pasture, without causing any environmental damage. Copyright © 2016 Elsevier B.V. All rights reserved.
Eid, Ebrahem M; Alrumman, Sulaiman A; El-Bebany, Ahmed F; Hesham, Abd El-Latif; Taher, Mostafa A; Fawy, Khaled F
2017-07-01
When sewage sludge is incorrectly applied, it may adversely impact agro-system productivity. Thus, this study addresses the reaction of Cucumis sativus L. (cucumber) to different amendment rates (0, 10, 20, 30, 40 and 50 g kg -1 ) of sewage sludge in a greenhouse pot experiment, in which the plant growth, heavy metal uptake and biomass were evaluated. A randomized complete block design with six treatments and six replications was used as the experimental design. The soil electrical conductivity, organic matter and Cr, Fe, Zn and Ni concentrations increased, but the soil pH decreased in response to the sewage sludge applications. As approved by the Council of European Communities, all of the heavy metal concentrations in the sewage sludge were less than the permitted limit for applying sewage sludge to land. Generally, applications of sewage sludge of up to 40 g kg -1 resulted in a considerable increase in all of the morphometric parameters and biomass of cucumbers in contrast to plants grown on the control soil. Nevertheless, the cucumber shoot height; root length; number of leaves, internodes and fruits; leaf area; absolute growth rate and biomass decreased in response to 50 g kg -1 of sewage sludge. All of the heavy metal concentrations (except the Cu, Zn and Ni in the roots, Mn in the fruits and Pb in the stems) in different cucumber tissues increased with increasing sewage sludge application rates. However, all of the heavy metal concentrations (except the Cr and Fe in the roots, Fe in the leaves and Cu in the fruits) were within the normal range and did not reach phytotoxic levels. A characteristic of these cucumbers was that all of the heavy metals had a bioaccumulation factor <1.0. All of the heavy metals (except Cd, Cu and Zn) had translocation factors that were <1.0. As a result, the sewage sludge used in this study could be considered for use as a fertilizer in cucumber production systems in Saudi Arabia and can also serve as a substitute method of sewage sludge disposal. Graphical Abstract The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers.
Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review
Gebreeyessus, Getachew D.; Jenicek, Pavel
2016-01-01
During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs) is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD) of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH). In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so as to optimize the connection between the two systems. In addition, many other relevant AD process parameters, including sludge rheology, which need to be addressed, are also reviewed and presented. PMID:28952577
Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries.
Junqua, Guillaume; Spinelli, Sylvie; Gonzalez, Catherine
2015-05-01
Acrylamide is a hazardous substance having irritant and toxic properties as well as carcinogen, mutagen, and impaired fertility possible effects. Acrylamide might be found in the environment as a consequence of the use of polyacrylamides (PAMs) widely added as a flocculant for water treatment. Acrylamide is a monomer used to produce polyacrylamide (PAM) polymers. This reaction of polymerization can be incomplete, and acrylamide molecules can be present as traces in the commercial polymer. Thus, the use of PAMs may generate a release of acrylamide in the environment. In aggregate industries, PAM is widely involved in recycling process and water reuse (aggregate washing). Indeed, these industries consume large quantities of water. Thus, European and French regulations have favored loops of recycling of water in order to reduce water withdrawals. The main goal of this article is to study the occurrence and fate of acrylamide in water-recycling process as well as in the sludge produced by the flocculation treatment process in aggregate production plants. Moreover, to strengthen the relevance of this article, the objective is also to demonstrate if the recycling system leads to an accumulation effect in waters and sludge and if free acrylamide could be released by sludge during their storage. To reach this objective, water sampled at different steps of recycling water process has been analyzed as well as different sludge corresponding to various storage times. The obtained results reveal no accumulation effect in the water of the water-recycling system nor in the sludge.
The influence of solid retention time on IFAS-MBR systems: Assessment of nitrous oxide emission.
Mannina, Giorgio; Capodici, Marco; Cosenza, Alida; Laudicina, Vito Armando; Di Trapani, Daniele
2017-12-01
The aim of the present study was to investigate the nitrous oxide (N 2 O) emissions from a moving bed based Integrated Fixed Film Activated Sludge (IFAS) - membrane bioreactor (MBR) pilot plant, designed according to the University of Cape Town (UCT) layout. The experimental campaign had a duration of 110 days and was characterized by three different sludge retention time (SRT) values (∞, 30 d and 15 d). Results highlighted that N 2 O concentrations decreased when the biofilm concentrations increased within the aerobic reactor. Results have shown an increase of N 2 O with the decrease of SRT. Specifically, an increase of N 2 O-N emission factor occurred with the decrease of the SRT (0.13%, 0.21% and 0.76% of influent nitrogen for SRT = ∞, SRT = 30 d and SRT = 15 d, respectively). Moreover, the MBR tank resulted the key emission source (up to 70% of the total N 2 O emission during SRT = ∞ period) whereas the highest N 2 O production occurred in the anoxic reactor. Moreover, N 2 O concentrations measured in the permeate flow were not negligible, thus highlighting its potential detrimental contribution for the receiving water body. The role of each plant reactor as N 2 O-N producer/consumer varies with the SRT variation, indeed the aerobic reactor was a N 2 O consumer at SRT = ∞ and a producer at SRT = 30 d. Copyright © 2017 Elsevier Ltd. All rights reserved.
Masi, F; Rizzo, A; Martinuzzi, N; Wallace, S D; Van Oirschot, D; Salazzari, P; Meers, E; Bresciani, R
2017-07-01
Swine wastewater management is often affected by two main issues: a too high volume for optimal reuse as a fertilizer and a too high strength for an economically sustainable treatment by classical solutions. Hence, an innovative scheme has been tested to treat swine wastewater, combining a low cost anaerobic reactor, upflow anaerobic sludge blanket (UASB), with intensified constructed wetlands (aerated CWs) in a pilot scale experimental study. The swine wastewater described in this paper is produced by a swine production facility situated in North Italy. The scheme of the pilot plant consisted of: (i) canvas-based thickener; (ii) UASB; (iii) two intensified aerated vertical subsurface flow CWs in series; (iv) a horizontal flow subsurface CW. The influent wastewater quality has been defined for total suspended solids (TSS 25,025 ± 9,323 mg/l), organic carbon (chemical oxygen demand (COD) 29,350 ± 16,983 mg/l), total reduced nitrogen and ammonium (total Kjeldahl nitrogen (TKN) 1,783 ± 498 mg/l and N-NH 4 + 735 ± 251 mg/l) and total phosphorus (1,285 ± 270 mg/l), with nitrates almost absent. The overall system has shown excellent performances in terms of TSS, COD, N-NH 4 + and TKN removal efficiencies (99.9%, 99.6%, 99.5%, and 99.0%, respectively). Denitrification (N-NO 3 - effluent concentration equal to 614 ± 268 mg/l) did not meet the Italian quality standards for discharging in water bodies, mainly because the organic carbon was almost completely removed in the intensified CW beds.
Fox, Peter; Suidan, Makram T.
1990-01-01
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (Ks) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for Ks. However, Ks was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of Ks on the effluent 3-ethylphenol concentration. A two-parameter search determined a Ks of 8.99 mg of acetate per liter and a Ki of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made. PMID:16348175
Fox, P; Suidan, M T
1990-04-01
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (K(s)) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for K(s). However, K(s) was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of K(s) on the effluent 3-ethylphenol concentration. A two-parameter search determined a K(s) of 8.99 mg of acetate per liter and a K(i) of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made.
Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf
2017-03-01
Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.
Nájera, S; Gil-Martínez, M; Zambrano, J A
2015-01-01
The aim of this paper is to establish and quantify different operational goals and control strategies in autothermal thermophilic aerobic digestion (ATAD). This technology appears as an alternative to conventional sludge digestion systems. During the batch-mode reaction, high temperatures promote sludge stabilization and pasteurization. The digester temperature is usually the only online, robust, measurable variable. The average temperature can be regulated by manipulating both the air injection and the sludge retention time. An improved performance of diverse biochemical variables can be achieved through proper manipulation of these inputs. However, a better quality of treated sludge usually implies major operating costs or a lower production rate. Thus, quality, production and cost indices are defined to quantify the outcomes of the treatment. Based on these, tradeoff control strategies are proposed and illustrated through some examples. This paper's results are relevant to guide plant operators, to design automatic control systems and to compare or evaluate the control performance on ATAD systems.
Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi
2016-03-01
A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. Copyright © 2016. Published by Elsevier Ltd.
Romero-Pareja, P M; Aragon, C A; Quiroga, J M; Coello, M D
2017-05-01
Sludge production is an undesirable by-product of biological wastewater treatment. The oxic-settling-anaerobic (OSA) process constitutes one of the most promising techniques for reducing the sludge produced at the treatment plant without negative consequences for its overall performance. In the present study, the OSA process is applied in combination with ultrasound treatment, a lysis technique, in a lab-scale wastewater treatment plant to assess whether sludge reduction is enhanced as a result of mechanical treatment. Reported sludge reductions of 45.72% and 78.56% were obtained for the two regimes of combined treatment tested in this study during two respective stages: UO1 and UO2. During the UO1 stage, the general performance and nutrient removal improved, obtaining 47.28% TN removal versus 21.95% in the conventional stage. However, the performance of the system was seriously damaged during the UO2 stage. Increases in dehydrogenase and protease activities were observed during both stages. The advantages of the combined process are not necessarily economic, but operational, as US treatment acts as contributing factor in the OSA process, inducing mechanisms that lead to sludge reduction in the OSA process and improving performance parameters. Copyright © 2016 Elsevier B.V. All rights reserved.
MiDAS: the field guide to the microbes of activated sludge.
McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær
2015-01-01
The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes--knowledge that will be an invaluable resource for the optimal design and operation of these systems. © The Author(s) 2015. Published by Oxford University Press.
MiDAS: the field guide to the microbes of activated sludge
McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær
2015-01-01
The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes—knowledge that will be an invaluable resource for the optimal design and operation of these systems. Database URL: http://www.midasfieldguide.org PMID:26120139
Improved sustainability of feedstock production with sludge and interacting mycorrhiza.
Seleiman, Mahmoud F; Santanen, Arja; Kleemola, Jouko; Stoddard, Frederick L; Mäkelä, Pirjo S A
2013-05-01
Recycling nutrients saves energy and improves agricultural sustainability. Sewage sludge contains 2.6% P and 3.1% N, so the availability of these nutrients was investigated using four crops grown in either soil or sand. Further attention was paid to the role of mycorrhiza in improvement of nutrient availability. The content of heavy metals and metalloids in the feedstock was analyzed. Sewage sludge application resulted in greater biomass accumulation in ryegrass than comparable single applications of either synthetic fertilizer or digested sludge. Sewage sludge application resulted in more numerous mycorrhizal spores in soil and increased root colonization in comparison to synthetic fertilizer. All plants studied had mycorrhizal colonized roots, with the highest colonization rate in maize, followed by hemp. Sewage sludge application resulted in the highest P uptake in all soil-grown plants. In conclusion, sewage sludge application increased feedstock yield, provided beneficial use for organic wastes, and contributed to the sustainability of bioenergy feedstock production systems. It also improves the soil conditions and plant nutrition through colonization by mycorrhizal fungi as well as reducing leaching and need of synthetic fertilizers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Indirect methods of dried sewage sludge contamination assessments.
Werle, Sebastian; Dudziak, Mariusz; Grübel, Klaudiusz
2016-07-28
Thermal conversion (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for sewage sludge management in the future. Nevertheless, safe and ecological usage of sewage sludge as a fuel requires information about their contamination. The aim of this paper is to present the photoacoustic spectroscopy (PAS) as a good method for contamination assessments of dried sewage sludge. Two types of granular sewage sludge: Sewage sludge 1 (SS1) taken from Polish wastewater treatment plant operating in the mechanical-biological system and sewage sludge 2 (SS2) taken from mechanical-biological-chemical wastewater treatment plant with phosphorus precipitation were analysed. The spectrophotometer FTIR Nicolet 6700 equipped with photoacoustic cell (Model 300, MTEC, USA) was used. The comparison with the most popular analytical methods (GC-MS) was also done. The results of PAS studies confirm the difference between the SS1 and SS2 which is in agreement with the GC-MS analysis. Higher absorbance was observed at each wavelength characteristics for the oscillator of chemical moieties for the SS1 with respect to the SS2.
Zhang, Yunshu; Zhao, Qingliang; Jiang, Junqiu; Wang, Kun; Wei, Liangliang; Ding, Jing; Yu, Hang
2017-11-01
Conversion of biomass energy of dewatered oily sludge to electricity is the rate-limiting process in bioelectrochemical system (BES). In this study, 2mgg -1 rhamnolipids were added to dewatered oily sludge, resulting in a significant enhancement in maximum power density from 3.84±0.37 to 8.63±0.81Wm -3 , together with an increase in total organic carbon (TOC) and total petroleum hydrocarbon (TPH) removal from 24.52±4.30 to 36.15±2.79mgg -1 and 29.51±3.30 to 39.80±2.47mgg -1 , respectively. Rhamnolipids can also enhance the solubilization and promote the hydrolysis of dewatered oily sludge with increases in SOCD from 14.93±2.44 to 18.40±0.08mgg -1 and VFAs from 1.02±0.07 to 1.39±0.12mgg -1 . Furthermore, bacteria related to substrate degradation were predominant in dewatered oily sludge, and bacteria related to the sulfate/sulfide cycle were significantly enriched by rhamnolipid addition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kinetics and reversibility of micropollutant sorption in sludge.
Barret, Maialen; Carrère, Hélène; Patau, Mathieu; Patureau, Dominique
2011-10-01
The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.
Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman
2008-06-01
Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra ((226)Ra plus (228)Ra) concentrations commonly exceed 0.185 Bq L(-1)) were determined. Softeners, when maintained, reduced combined Ra about 10-fold (<0.024 Bq L(-1)). Combined Ra exceeded 0.185 Bq L(-1) at 1 non-maintained system. Combined Ra was enriched in regeneration brine waste (maximum, 81.2 Bq L(-1)), but concentrations in septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg(-1) dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg(-1)), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region.
Szabo, Z.; Jacobsen, E.; Kraemer, T.F.; Parsa, B.
2008-01-01
Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra (226Ra plus 228Ra) concentrations commonly exceed 0.185 Bq L-1) were determined. Softeners, when maintained, reduced combined Ra about 10-fold (<0.024 Bq L-1). Combined Ra exceeded 0.185 Bq L-1 at 1 non-maintained system. Combined Ra was enriched in regeneration brine waste (maximum, 81.2 Bq L-1), but concentrations in septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg-1 dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg-1), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region.
Zheng, Guanyu; Zhou, Lixiang
2011-10-15
Four inorganic mineral nutrients including NH4+, K+, Mg2+ and soluble inorganic phosphate (Pi) were investigated to reveal the potential limiting nutrients for tannery sludge bioleaching process driven by Acidithiobacillus species, and the feasibility of supplementing the limiting nutrients to accelerate tannery sludge bioleaching was studied in the present study. It was found that the concentration of Pi was lower than 3.5 mg/L throughout the whole bioleaching process, which is the most probable restricting nutrient for tannery sludge bioleaching. Further experiments revealed that the deficiency of Pi could seriously influence the growth of Acidithiobacillus thiooxidans and lower its oxidization capacity for S0, and the limiting concentration of Pi for the growth of A. thiooxidans was 6 mg/L. The low concentration of soluble Pi in sludge matrix was resulted from the extremely strong sorbing/binding capacity of tannery sludge for phosphate. The supplementation of more than 1.6 g/L KH2PO4 into tannery sludge bioleaching system could effectively stimulate the growth of Acidithiobacillus species, enhance Cr removal rate and further shorten tannery sludge bioleaching period from 10 days to 7 days. Therefore, inorganic phosphate supplementation is an effective and feasible method to accelerate tannery sludge bioleaching process, and the optimum dosage of KH2PO4 was 1.6 g/L for tannery sludge with 5.1% of total solids. Copyright © 2011 Elsevier Ltd. All rights reserved.
Accident Analyses in Support of the Sludge Water System Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
FINFROCK, S.H.
This document quantifies the potential health effects of the unmitigated hazards identified Hey (2002) for retrieval of sludge from the KE basin. It also identifies potential controls and any supporting mitigative analyses.
Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi
2017-11-30
High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process "thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)". Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H₂ and CO₂ to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance.
Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi
2017-01-01
High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process “thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)”. Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H2 and CO2 to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance. PMID:29189754
Zhuang, Haifeng; Han, Hongjun; Shan, Shengdao
2016-06-01
A novel integrated system of anoxic-pure oxygen microbubble-activated sludge reactor-moving bed biofilm reactor was employed in treatment of real coal gasification wastewater. The results showed the integrated system had efficient performance of pollutants removal in short hydraulic retention time. While pure oxygen microbubble with the flow rate of 1.5 L/h and NaHCO3 dosage ratio of 2:1 (amount NaHCO3 to NH4 (+)-N ratio, mol: mol) were used, the removal efficiencies of COD, total phenols (TPh) and NH4 (+)-N reached 90, 95, and 95 %, respectively, with the influent loading rates of 3.4 kg COD/(m(3) d), 0.81 kg TPh/(m(3) d), and 0.28 kg NH4 (+)-N/(m(3) d). With the recycle ratio of 300 %, the concentrations of NO2 (-)-N and NO3 (-)-N in effluent decreased to 12 and 59 mg/L, respectively. Meanwhile, pure oxygen microbubble significantly improved the enzymatic activities and affected the effluent organic compositions and reduced the foam expansion. Thus, the novel integrated system with efficient, stable, and economical advantages was suitable for engineering application.
NASA Astrophysics Data System (ADS)
Zhong, Xiao; Sun, Peide; Song, Yingqi; Wang, Ruyi; Fang, Zhiguo
2010-11-01
Based on the fully coupled activated sludge model (FCASM), the novel model Tubificidae -Fully Coupled Activated Sludge Model-hydraulic (T-FCASM-Hydro), has been developed in our previous work. T-FCASM-Hydro not only describe the interactive system between Tubificidae and functional microorganisms for the sludge reduction and nutrient removal simultaneously, but also considere the interaction between biological and hydraulic field, After calibration and validation of T-FCASM-Hydro at Zhuji Feida-hongyu Wastewater treatment plant (WWTP) in Zhejiang province, T-FCASM-Hydro was applied for determining optimal operating condition in the WWTP. Simulation results showed that nitrogen and phosphorus could be removed efficiently, and the efficiency of NH4+-N removal enhanced with increase of DO concentration. At a certain low level of DO concentration in the aerobic stage, shortcut nitrification-denitrification dominated in the process of denitrification in the novel system. However, overhigh agitation (>6 mgṡL-1) could result in the unfavorable feeding behavior of Tubificidae because of the strong flow disturbance, which might lead to low rate of sludge reduction. High sludge reduction rate and high removal rate of nitrogen and phosphorus could be obtained in the new-style oxidation ditch when DO concentration at the aerobic stage with Tubificidae was maintained at 3.6 gṡm-3.
Inhibition kinetics and granular sludge in an ANAMMOX reactor treating mature landfill leachate.
Yun, Li; Zhaoming, Zheng; Jun, Li; Baihang, Zhao; Wei, Bian; Yanzhuo, Zhang; Xiujie, Wang
2016-12-01
The present study reports the inhibition kinetics and granular sludge in an anaerobic ammonium oxidation (ANAMMOX) - up-flow anaerobic sludge blanket reactor fed with diluted mature landfill leachate. The activity of ANAMMOX bacteria was inhibited by addition of mature landfill leachate, but gradually adapted to the leachate. The system achieved efficient nitrogen removal during 65-75 d and the average removal efficiencies for NH 4 + -N, NO 2 - -N and total nitrogen (TN) were 96%, 95% and 87%, respectively. ANAMMOX was the main pathway of nitrogen removal in the system, and heterotrophic denitrification occurred simultaneously. In addition, aerobic ammonia oxidation and aerobic nitrite oxidation were active in this system. Inhibition kinetic experiments showed that the NH 4 + -N and NO 2 - -N inhibition concentration threshold of ANAMMOX were 489.03 mg/L and 192.36 mg/L, respectively. ANAMMOX was significantly inhibited by mature landfill leachate, and was completely inhibited when the leachate concentration was 1,450.69 mg/L (calculated in chemical oxygen demand). Thus, the inhibition concentration of substrate and landfill leachate should be considered when applying the ANAMMOX process to landfill leachate. The color of granular sludge ANAMMOX changed from brick-red into a reddish-brown. The particle size increased from small to large, with evident granulation of the ANAMMOX sludge.
Wang, Lin; Li, Yongmei; He, Guodong
2014-01-01
N-nitrosodimethylamine (NDMA) is an emerging disinfection byproduct. Removal of its potential precursors is considered as an effective method to control NDMA. In this study, four typical NDMA precursors (dimethylamine (DMA), trimethylamine (TMA), dimethylformamide (DMFA) and dimethylaminobenzene (DMAB)) were selected, and their removal capacities by activated sludge were investigated. Batch experiments indicated that removal of NDMA precursors was better under aerobic condition than anoxic condition; and their specific degradation rates follow the order of DMA > TMA > DMFA > DMAB. In anoxic-aerobic (AO) activated sludge system, the optimal hydraulic retention time and sludge retention time were 10 h and 20 d, respectively, for the removal of both NDMA precursors (four selected NDMA precursors and NDMA formation potential (NDMA FP)) and nutrients. Our results also suggested that there was a positive correlation between NDMA FP and dissolved organic nitrogen (DON) in wastewater. The removal efficiency of NDMA FP was in the range of 46.8-72.5% in the four surveyed wastewater treatment plants except the one which adopted chemically enhanced primary process. The results revealed that the AO system had the advantage of removing NDMA FP. Our results are helpful for the knowledge of the removals of NDMA precursors during activated sludge treatment processes.
A study on the dewatering of industrial waste sludge by fry-drying technology.
Ohm, Tae-In; Chae, Jong-Seong; Kim, Jeong-Eun; Kim, Hee-Kyum; Moon, Seung-Hyun
2009-08-30
In sludge treatment, drying sludge using typical technology with high water content to a water content of approximately 10% is always difficult because of adhesive characteristics of sludge. Many methods have been applied, including direct and indirect heat drying, but these approaches of reducing water content to below 40% after drying is very inefficient in energy utilization of drying sludge. In this study, fry-drying technology with a high heat transfer coefficient of approximately 500 W/m(2) degrees C was used to dry industrial wastewater sludge. Also waste oil was used in the fry-drying process, and because the oil's boiling point is between 240 and 340 degrees C and the specific heat is approximately 60% of that of water. In the fry-drying system, the sludge is input by molding it into a designated form after heating the waste oil at temperatures between 120 and 170 degrees C. At these temperatures, the heated oil rapidly evaporates the water contained in the sludge, leaving the oil itself. After approximately 10 min, the water content of the sludge was less than 10%, and its heating value surpassed 5300 kcal/kg. Indeed, this makes the organic sludge appropriate for use as a solid fuel. The wastewater sludge used in this study was the designated waste discharged from chemical, leather and plating plants. These samples varied in characteristics, especially with regard to heavy metal concentration. After drying the three kinds of wastewater sludge at oil temperatures 160 degrees C for 10 min, it was found that the water content in the sludge from the chemical, leather, and plating plants reduced from 80.0 to 5.5%, 81.6 to 1.0%, and 65.4 to 0.8%, respectively. Furthermore, the heat values of the sludge from the chemical, leather, and plating plants prior to fry-drying were 217, 264, and 428 kcal/kg, respectively. After drying, these values of sludge increased to 5317, 5983 and 6031 kcal/kg, respectively. The heavy metals detected in the sludge after drying were aluminum, lead, zinc, mercury, and cadmium. Most importantly, if the dried sludge is used as a solid fuel, these heavy metals can be collected from the dust collector after combustion.
NASA Astrophysics Data System (ADS)
Sarif, S. F. Z. Mohd; Alias, S. S.; Ridwan, F. Muhammad; Salim, K. S. Ku; Abidin, C. Z. A.; Ali, U. F. Md.
2018-03-01
Ozonation of activated sludge in the present of titanium dioxide (TiO2) as catalyst to enhance the production of hydroxyl radical was evaluated in comparison to the sole ozonation process. In this process, the catalytic ozontion showed improvement in increasing ozone consumption and improving activated sludge disintegration and solubilisation. The reduction of total suspended solid (TSS), volatile suspended solid (VSS) and soluble chemical oxygen demand (SCOD) solubilisation was better in the catalytic ozonation system. Initial pH 7 of activated sludge was found best to disintegrate and solubilise the sludge flocs. However upon additional of sodium hydroxide (NaOH) in pH adjustment enhanced the solubilisation of organic matter from the flocs and cells, making the initial pH 9 is the best condition for activated sludge solubilisation. Yet the initial pH 7 of activated sludge supernatant was the best condition to achieve SCOD solubilisation due to sludge floc disintegration, when it had stronger correlation between TSS reduction and SCOD solubilisation (R2=0.961). Lower amount of catalyst of 100 mgTiO2/gTSS was found to disintegrate and solubilise the activated sludge better with 30.4% TSS reduction and 25.2% SCOD solubilisation efficiency, compared to 200 mgTiO2/gTSS with 21.9% and 17.1% TSS reduction and SCOD solubilisation, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummer, J.S.
A mobile, automated tank-cleaning system, used in the past 3 years at more than 50 sites in Scandinavia and northern Europe, requires no tank entry or contact with hydrocarbons by personnel, and it has proven faster than manual systems. Developed and marketed by Toftejorg Technology AS, Denmark, and called the Blabo system, it also simultaneously separates the resulting sludge. This allows nearly 100% recovery of oil and the least sludge for disposal. The paper describes the new system, its costs, and applications.
Sripanomtanakorn, S; Polprasert, C
2002-04-01
Agricultural land is an attractive alternative for the disposal of biosolids since it utilises the recyclable nutrients in the production of crops. In Thailand and other tropical regions, limited field-study information exists on the effect of biosolids management strategies on crop N utilisation and plant available N (PAN) of biosolids. A field study was conducted to quantify the PAN of the applied biosolids, and to evaluate the N uptake rates of some tropical crops. Sunflower (Helianthus annuus) and tomato (Lycopersicon esculentum) were chosen in this study. Two types of biosolids used were: anaerobically digested sludge and septic tank sludge. The soil is acid sulfate and is classified as Sulfic Tropaquepts with heavy clay in texture. The anaerobically digested sludge applied rates were: 0, 156 and 312 kg N ha(-1) for the sunflower plots, and 0, 586, and 1172 kg N ha(-1) for the tomato plots. The septic tank sludge applied rates were: 0, 95 and 190 kg N ha(-1) for the sunflower plots, and 0, 354 and 708 kg N ha(-1) for the tomato plots, respectively. The results indicated the feasibility of applying biosolids to grow tropical crops. The applications of the anaerobically digested sludge and the septic tank sludge resulted in the yields of sunflower seeds and tomato fruits and the plant N uptakes comparable or better than that applied with only the chemical fertiliser. The estimated PAN of the anaerobically digested sludge was about 27-42% of the sludge organic N during the growing season. For the septic tank sludge, the PAN was about 15-58% of the sludge organic N. It is interesting to observe that an increase of the rate of septic tank sludge incorporated into this heavy clay soil under the cropping system resulted in the decrease of N mineralisation rate. This situation could cause the reduction of yield and N uptake of crops.
NASA Astrophysics Data System (ADS)
Kupchishin, A. I.; Niyazov, M. N.; Taipova, B. G.; Voronova, N. A.; Khodarina, N. N.
2018-01-01
Complex experimental studies on the effect of electron irradiation on the deposition rate of active sludge in aqueous systems by the optical method have been carried out. The obtained dependences of density (ρ) on time (t) are of the same nature for different radiation sources. The experimental curves of the dependence of the active sludge density on time are satisfactorily described by an exponential model.
2013-09-01
after anaerobic digestion at thermophilic conditions (60- 70C). Application of biofilm covered activated carbon particles as a microbial inoculum...Sludge Thickener; Sludge = Sludge after anaerobic digestion at thermophilic conditions (60- 70C). C3. Microscopic evaluation of dechlorinating...associated enzymes are capable of opening the biphenyl ring structure and transform the molecule into a linear structure, this changed structure was not
Preliminary acclimation strategies for successful startup in conventional biofilters.
Elías, Ana; Barona, Astrid; Gallastegi, Gorka; Rojo, Naiara; Gurtubay, Luis; Ibarra-Berastegi, Gabriel
2010-08-01
The question of how to obtain the best inocula for conventional biofilters arises when an acclimation/adaptation procedure is to be applied. Bearing in mind that no standardized procedure for acclimating inocula exists, certain preliminary strategies for obtaining an active inoculum from wastewater treatment sludge are proposed in this work. Toluene was the contaminant to be degraded. Concerning the prior separation of sludge phases, no obvious advantage was found in separating the supernatant phase of the sludge before acclimation. As far as a continuous or discontinuous acclimation mode is concerned, the latter is recommended for rapidly obtaining acclimated sludge samples by operating the system for no longer than 1 month. The continuous mode rendered similar degradation rates, although it required longer operating time. Nevertheless, the great advantage of the continuous system lay in the absence of daily maintenance and the ready availability of the activated sample.
Gu, Lin; Li, Binglian; Wen, Haifeng; Zhang, Xin; Wang, Liang; Ye, Jianfeng
2018-06-01
The hydrothermal carbonization (HTC) was performed on Metasequoia Leaves (ML) in the presence of iron sludge, both of which were generated as solid residuals. The relations between sludge, char's properties and operating conditions were systemically investigated. Iron sludge primarily catalyzed the efficient formation of char with higher heating value (HHV) becoming 1.15-1.65 times of ML (18.21 MJ/kg) and was meanwhile reduced to magnetite. The hydrated Fe ions in octahedron crystals acted as nucleophiles facilitating the dehydration and decarboxylation reactions. The increased HHV is found strong temperature dependent while prolonging the residence time is more preferable for low organic acids generation. Thermogravimetric analysis confirmed the iron sludge enhanced conversion of volatile to fixed carbon. The as-prepared solid char showed better stability after catalytic HTC treatment, having ignition temperature increased from 253 to 426 °C as compared to the char prepared without iron sludge addition. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mesquita, D P; Dias, O; Amaral, A L; Ferreira, E C
2009-04-01
In recent years, a great deal of attention has been focused on the research of activated sludge processes, where the solid-liquid separation phase is frequently considered of critical importance, due to the different problems that severely affect the compaction and the settling of the sludge. Bearing that in mind, in this work, image analysis routines were developed in Matlab environment, allowing the identification and characterization of microbial aggregates and protruding filaments in eight different wastewater treatment plants, for a combined period of 2 years. The monitoring of the activated sludge contents allowed for the detection of bulking events proving that the developed image analysis methodology is adequate for a continuous examination of the morphological changes in microbial aggregates and subsequent estimation of the sludge volume index. In fact, the obtained results proved that the developed image analysis methodology is a feasible method for the continuous monitoring of activated sludge systems and identification of disturbances.
Utilization of Drinking Water Treatment Slurry to Produce Aluminum Sulfate Coagulant.
Fouad, Mahmoud M; Razek, Taha M A; Elgendy, Ahmed S
2017-02-01
In Egypt, water treatment consumes about 365 000 tons of aluminum sulfate and produces more than 100 million tons of sludge per year. The common disposal system of sludge in Egypt is to discharge it into natural waterways. Toxicity of aluminum, environmental regulations and costs of chemicals used in water treatment and sludge treatment processes led to an evaluation of coagulant recovery and subsequent reuse. The present work aimed at aluminum recovery from sludge of El-Shiekh Zayd water treatment plant (WTP) to produce aluminum sulfate coagulant. Sludge was characterized and the effect of five variables was tested and the process efficiency was evaluated at different operating conditions. Maximum recovery is 94.2% at acid concentration 1.5 N, sludge weight 5 g, mixing speed 60 rpm, temperature 60 °C and leaching time 40 min. Then optimum conditions were applied to get maximum recovery for aluminum sulfate and compared to commercial coagulant on raw water of El-Shiekh Zayd (WTP).
Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo
2014-04-01
Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Effect of gas-lift device on the morphology and performance of ANAMMOX sludge].
Li, Xiang; Huang, Yong; Yuan, Yi; Zhou, Cheng; Chen, Zong-Heng; Zhang, Da-Lin
2014-12-01
The upflow reactor with gas-lift device was started up by inoculating ANAMMOX sludge granules of less than 0.9 mm. The effects of gas lift device system on the morphology and performance of ANAMMOX sludge were studied by using the nitrogen gas produced in ANAMMOX to drive the effluent circulation in the reactor. The results showed that, the airlift circulation function was not clear in the startup stage of the reactor, because the nitrogen gas production was very low. At the same time, the ANAMMOX granular sludge was easy to condensate. When the load rate of nitrogen removal reached 3.4 kg x (m3 x d)(-1), the function of gas lift was significant, resulting in gradually increased effluent self-circulation, and the granules were dispersed and grew gradually. After 183d of operation, the granular sludge was dominated by the granules with sizes of 1.6-2.5 mm, which accounted for 53.2% of the total sludge volume. The MLVSS content increased with the increase of sludge particle size. The gas lift device had the same function as the external reflux pump, and was helpful for sludge granulation in the ANAMMOX reactor, while reducing power consumption and the cost of the equipment.
Behavior of radioactive materials and safety stock of contaminated sludge.
Tsushima, Ikuo
2017-01-28
The radioactive fallout from the Fukushima Dai-ichi nuclear power plant disaster in 2011 has flowed into and accumulated in many wastewater treatment plants (WWTPs) via sewer systems; this has had a negative impact on WWTPs in eastern Japan. The behavior of radioactive materials was analyzed at four WWTPs in the Tohoku and Kanto regions to elucidate the mechanism by which radioactive materials are concentrated during the sludge treatment process from July 2011 to March 2013. Furthermore, numerical simulations were conducted to study the safe handling of contaminated sewage sludge stocked temporally in WWTPs. Finally, a dissolution test was conducted by using contaminated incinerated ash and melted slag derived from sewage sludge to better understand the disposal of contaminated sewage sludge in landfills. Measurements indicate that a large amount of radioactive material accumulates in aeration tanks and is becoming trapped in the concentrated sludge during the sludge condensation process. The numerical simulation indicates that a worker's exposure around contaminated sludge is less than 1 µSv/h when maintaining an isolation distance of more than 10 m, or when shielding with more than 20-cm-thick concrete. The radioactivity level of the eluate was undetectable in 9 out of 12 samples; in the remaining three samples, the dissolution rates were 0.5-2.7%.
Guan, Zeyu; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Shu, Yajie
2015-01-01
A novel amino-functionalized silica-coated nanoscale zerovalent iron (NZVI@SiO2-NH2) was successfully synthesized by using one-step liquid-phase method with the surface functionalization of nanoscale zerovalent iron (NZVI) to enhance degradation of chlorinated organic contaminants from anaerobic microbial system. NZVI@SiO2-NH2 nanoparticles were synthesized under optimal conditions with the uniform core-shell structure (80-100 nm), high loading of amino functionality (~0.9 wt%), and relatively large specific surface area (126.3 m(2)/g). The result demonstrated that well-dispersed NZVI@SiO2-NH2 nanoparticle with nFe(0)-core and amino-functional silicon shell can effectively remove 2,4,6-trichlorophenol (2,4,6-TCP) in the neutral condition, much higher than that of NZVI. Besides, the surface-modified nanoparticles (NZVI@SiO2-NH2) in anaerobic granule sludge system also showed a positive effect to promote anaerobic biodechlorination system. More than 94.6% of 2,4,6-TCP was removed from the combined NZVI@SiO2-NH2-anaerobic granular sludge system during the anaerobic dechlorination processes. Moreover, adding the appropriate concentration of NZVI@SiO2-NH2 in anaerobic granular sludge treatment system can decrease the toxicity of 2,4,6-TCP to anaerobic microorganisms and improved the cumulative amount of methane production and electron transport system activity. The results from this study clearly demonstrated that the NZVI@SiO2-NH2/anaerobic granular sludge system could become an effective and promising technology for the removal of chlorophenols in industrial wastewater.
Guan, Zeyu; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Shu, Yajie
2015-01-01
A novel amino-functionalized silica-coated nanoscale zerovalent iron (NZVI@SiO2-NH2) was successfully synthesized by using one-step liquid-phase method with the surface functionalization of nanoscale zerovalent iron (NZVI) to enhance degradation of chlorinated organic contaminants from anaerobic microbial system. NZVI@SiO2-NH2 nanoparticles were synthesized under optimal conditions with the uniform core-shell structure (80–100 nm), high loading of amino functionality (~0.9 wt%), and relatively large specific surface area (126.3 m2/g). The result demonstrated that well-dispersed NZVI@SiO2-NH2 nanoparticle with nFe0-core and amino-functional silicon shell can effectively remove 2,4,6-trichlorophenol (2,4,6-TCP) in the neutral condition, much higher than that of NZVI. Besides, the surface-modified nanoparticles (NZVI@SiO2-NH2) in anaerobic granule sludge system also showed a positive effect to promote anaerobic biodechlorination system. More than 94.6% of 2,4,6-TCP was removed from the combined NZVI@SiO2-NH2-anaerobic granular sludge system during the anaerobic dechlorination processes. Moreover, adding the appropriate concentration of NZVI@SiO2-NH2 in anaerobic granular sludge treatment system can decrease the toxicity of 2,4,6-TCP to anaerobic microorganisms and improved the cumulative amount of methane production and electron transport system activity. The results from this study clearly demonstrated that the NZVI@SiO2-NH2/anaerobic granular sludge system could become an effective and promising technology for the removal of chlorophenols in industrial wastewater. PMID:26060427
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzman, M.I.; Gammie, L.A.; Gilbert, P.E.
1997-12-31
The Metropolitan District (MDC) Water Pollution Control Plant located in Hartford, Connecticut operates a state-of-the-art composting facility to process municipal sewage sludge. An air emissions test program was performed to determine emission rates of criteria and non-criteria pollutants and to evaluate the performance of two types of emissions/odor control systems (biofiltration and wet scrubbing). The purpose of this report is to further the limited available emissions and control performance data on a municipal sewage sludge composting facility operation. The MDC`s sludge composting facility consists of a Biocell train and a Cure Cell train, each of which can currently receive approximatelymore » 20 wet tons per hour of sludge at 60% of full capacity. The minimum retention time in each train is 10.5 days. Air emissions from the Biocell train are treated by both a biofiltration system and a three-stage wet scrubber system. The biofilter and wet scrubber system operate in parallel, so as to allow direct comparison of performance. Emissions from the Cure Cell train are treated by a single biofiltration system. The wet scrubber system consists of a first stage reducing absorber (ammonia solution), followed by a second stage oxidation absorber (sodium hypochlorite and sulfuric acid), and a final residual scrubber (sodium hydroxide solution). The two biofiltration systems are identically sized at 10,000 square feet surface area and three feet depth. The emissions testing program was designed to obtain simultaneous inlet and outlet data across each control device. The measured pollutants included organo-sulfides, alcohols, aldehydes, ketones, pinenes, terpenes, total reduced sulfur compounds, chlorinated hydrocarbons, sulfuric acid, sodium hydroxide, ammonia, carbon monoxide and volatile organic compounds.« less
Mosquera-Corral, A; Sánchez, M; Campos, J L; Méndez, R; Lema, J M
2001-02-01
A lab-scale hybrid upflow sludge bed-filter (USBF) reactor was employed to carry out methanogenesis and denitrification of the effluent from an anaerobic industrial reactor (EAIR) in a fish canning industry. The reactor was initially inoculated with methanogenic sludge and there were two different operational steps. During the first step (Step I: days 1-61), the methanogenic process was carried out at organic loading rates (OLR) of 1.0-1.25 g COD l-1 d-1 reaching COD removal percentages of 80%. During the second step (Step II: days 62-109) nitrate was added as KNO3 to the industrial effluent and the OLR was varied between 1.0 and 1.25 g COD l-1 d-1. Two different nitrogen loads of 0.10 and 0.22 g NO3(-)-N l-1 d-1 were applied and these led to nitrogen removal percentages of around 100% in both cases and COD removal percentages of around 80%. Carbon to nitrogen ratio (C:N) in the influent was maintained at 2.0 and eventually it was increased to 3.0, by means of glucose addition, to control the denitrification process. From these results it is possible to establish that wastewater produced in a fish canning industry can be used as a carbon source for denitrification and that denitrifying microorganisms were present in the initially methanogenic sludge. Biomass productions of 0.23 and 0.61 g VSS:g TOC fed for Steps I and II, respectively, were calculated from carbon global balances, showing an increase in biomass growth due to denitrification.
Suresh Kumar, M; Mudliar, S N; Reddy, K M K; Chakrabarti, T
2004-12-01
Most of the excess sludge from a wastewater treatment plant (60%) is disposed by landfill. As a resource utilization of excess sludge, the production of biodegradable plastics using the sludge has been proposed. Storage polymers in bacterial cells can be extracted and used as biodegradable plastics. However, widespread applications have been limited by high production cost. In the present study, activated sludge bacteria in a conventional wastewater treatment system were induced, by controlling the carbon: nitrogen ratio to accumulate storage polymers. Polymer yield increased to a maximum 33% of biomass (w/w) when the C/N ratio was increased from 24 to 144, where as specific growth yield decreased with increasing C/N ratio. The conditions which are required for the maximum polymer accumulation were optimized and are discussed.
Toxicity and biodegradability of selected N-substituted phenols under anaerobic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donlon, B.; Razo-Flores, E.; Hwu, C.S.
1995-12-31
The anaerobic toxicity and biodegradability of N-substituted aromatics were evaluated in order to obtain information on their ultimate biotreatment. The toxicity of selected N-substituted aromatic compounds toward acetoclastic methanogens in granular sludge was measured in batch assays. This toxicity was highly correlated with compound hydrophobicity, indicating that partitioning into the bacterial membranes was an important factor in the toxicity. However, other factors, such as chemical interactions with key cell components, were suggested to be playing an important role. Nitroaromatic compounds were, on the average, over 300-fold more toxic than their amino-substituted counterparts. This finding suggests that the facile reduction ofmore » nitro-groups known to occur in anaerobic environments would result in a high level of detoxification. To test this hypothesis, continuous lab-scale upward-flow anaerobic sludge bed reactors treating 2-nitrophenol and 4-nitrophenol were established. The 4-nitrophenol was readily converted to the corresponding 4-aminophenol, whereas complete mineralization of 2-nitrophenol via intermediate formation of 2-aminophenol was obtained. These conversions led to a dramatic detoxification of the nitrophenols, because it was feasible to treat the highly toxic nitrophenolics at high organic loading rates.« less
Wang, Xu; Li, Meiyan; Liu, Junxin; Qu, Jiuhui
2016-07-01
Millions of tons of waste activated sludge (WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants (WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples (up to 9478mg/L), followed by endogenous residues (6736mg/L), extracellular polymeric substances (2088mg/L), and intracellular storage products (464mg/L) among others. Moreover, significant differences (p<0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge. Copyright © 2016. Published by Elsevier B.V.
Eid, Ebrahem M; El-Bebany, Ahmed F; Alrumman, Sulaiman A; Hesham, Abd El-Latif; Taher, Mostafa A; Fawy, Khaled F
2017-04-03
In this study, we present the response of spinach to different amendment rates of sewage sludge (0, 10, 20, 30, 40 and 50 g kg -1 ) in a greenhouse pot experiment, where plant growth, biomass and heavy metal uptake were measured. The results showed that sewage sludge application increased soil electric conductivity (EC), organic matter, chromium and zinc concentrations and decreased soil pH. All heavy metal concentrations of the sewage sludge were below the permissible limits for land application of sewage sludge recommended by the Council of the European Communities. Biomass and all growth parameters (except the shoot/root ratio) of spinach showed a positive response to sewage sludge applications up to 40 g kg -1 compared to the control soil. Increasing the sewage sludge amendment rate caused an increase in all heavy metal concentrations (except lead) in spinach root and shoot. However, all heavy metal concentrations (except chromium and iron) were in the normal range and did not reach the phytotoxic levels. The spinach was characterized by a bioaccumulation factor <1.0 for all heavy metals. The translocation factor (TF) varied among the heavy metals as well as among the sewage sludge amendment rates. Spinach translocation mechanisms clearly restricted heavy metal transport to the edible parts (shoot) because the TFs for all heavy metals (except zinc) were <1.0. In conclusion, sewage sludge used in the present study can be considered for use as a fertilizer in spinach production systems in Saudi Arabia, and the results can serve as a management method for sewage sludge.
Mancuso, Giuseppe; Langone, Michela; Andreottola, Gianni
2017-03-01
In this work, a modified swirling jet induced hydrodynamic cavitation (HC) has been used for the pre-treatment of excess sludge. In order to both improve the HC treatment efficiencies and reduce the energy consumption, the effectiveness of the HC reactor on sludge disintegration and on aerobic biodegradability has been investigated at different operating conditions and parameters, such as temperature, inlet pressure, sludge total solid (TS) content and reactor geometry. The inlet pressure was related to the flow velocity and pressure drop. The best results in terms of sludge solubilisation were achieved after 2h of HC treatment, treating a 50.0gTSL -1 and using the three heads Ecowirl system, at 35.0°C and 4.0bar. Chemical and respirometric tests proved that sludge solubilisation and aerobic biodegradability can be efficiently enhanced through HC pre-treatment technique. At the optimum operating conditions, the specific supplied energy has been varied from 3276 to 12,780kJkgTS -1 in the HC treatment, by increasing the treatment time from 2 to 8 h, respectively. Low endogenous decay rates (b H ) were measured on the excess sludge at low specific supplied energy, revealing that only an alteration in floc structure was responsible for the sludge solubilisation. On the contrary, higher b H values were measured at higher specific supplied energy, indicating that the sludge solubilisation was related to a decreasing biomass viability, as consequence of dead cells and/or disrupted cells (cell lysis). Copyright © 2016 Elsevier B.V. All rights reserved.
Rodríguez-Rodríguez, Carlos E; Marco-Urrea, Ernest; Caminal, Gloria
2010-04-01
Growth and activity of the white-rot fungus Trametes versicolor on sewage sludge were assessed in bioslurry and solid-phase systems. Bioslurry cultures with different loads of sludge (10%, 25% and 38%, w/v) were performed. A lag phase of at least 2 d appeared in the 25 and 38%-cultures, however, the total fungal biomass was higher for the latter and lower for the 10%-culture after 30 d, as revealed by ergosterol determination. Detectable laccase activity levels were found in the 10 and 25%-cultures (up to 1308 and 2588 AUL(-1), respectively) while it was negligible in the 38%-culture. Important levels of ergosterol and laccase were obtained over a 60 d period in sludge solid-phase cultures amended with different concentrations of wheat straw pellets as lignocellulosic bulking material. Degradation experiments in 25%-bioslurry cultures spiked with naproxene (NAP, analgesic) and carbamazepine (CBZ, antiepileptic) showed depletion of around 47% and 57% within 24h, respectively. Complete depletion of NAP and around 48% for CBZ were achieved within 72 h in sludge solid cultures with 38% bulking material. CBZ degradation is especially remarkable due to its high persistence in wastewater treatment plants. Results showed that T. versicolor may be an interesting bioremediation agent for elimination of emerging pollutants in sewage sludge. Copyright 2009 Elsevier Ltd. All rights reserved.