Sample records for sludge surface disposal

  1. 40 CFR 503.20 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a surface disposal site, to sewage sludge placed on a surface disposal site, and to a surface disposal site... sludge remains is not an active sewage sludge unit. The demonstration shall include the following...

  2. 40 CFR 503.20 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a surface disposal site, to sewage sludge placed on a surface disposal site, and to a surface disposal site... sludge remains is not an active sewage sludge unit. The demonstration shall include the following...

  3. 40 CFR 503.20 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a surface disposal site, to sewage sludge placed on a surface disposal site, and to a surface disposal site... sludge remains is not an active sewage sludge unit. The demonstration shall include the following...

  4. 40 CFR 503.20 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a surface disposal site, to sewage sludge placed on a surface disposal site, and to a surface disposal site... sludge remains is not an active sewage sludge unit. The demonstration shall include the following...

  5. 40 CFR 503.20 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Surface Disposal § 503.20 Applicability. (a) This subpart applies to any person who prepares sewage sludge that is placed on a surface disposal site, to the owner/operator of a...

  6. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    USGS Publications Warehouse

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-01-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area.Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH.Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil.As a result of investigations at the research site, it has been determined that a potentially large source of contamination exists in the soils of the study area owing to increased concentrations of nitrogen, sodium, calcium, magnesium, sulfate, bicarbonate, and chloride because of sewage disposal. Continued monitoring of surface and ground water for nitrogen and the other ions previously mentioned is required to assess long-term effects of municipal sludge disposal on water quality.

  7. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    NASA Astrophysics Data System (ADS)

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-12-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area. Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH. Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil. As a result of investigations at the research site, it has been determined that a potentially large source of contamination exists in the soils of the study area owing to increased concentrations of nitrogen, sodium, calcium, magnesium, sulfate, bicarbonate, and chloride because of sewage disposal. Continued monitoring of surface and ground water for nitrogen and the other ions previously mentioned is required to assess long-term effects of municipal sludge disposal on water quality.

  8. 40 CFR 503.28 - Reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Reporting. 503.28 Section 503.28 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Surface Disposal § 503.28 Reporting. Class I sludge management facilities, POTWs...

  9. DEVELOPMENT OF RISK ASSESSMENT METHODOLOGY FOR SURFACE DISPOSAL OF MUNICIPAL SLUDGE

    EPA Science Inventory

    This is one of a series of reports that present methodologies for assessing the potential risks to humans or other organisms from the disposal or reuse of municipal sludge. he sludge management practices addressed by this series include distribution and marketing programs, landfi...

  10. Municipal Wastewater Treatment Plant Biosludge Applications and Perfluoroalkyl Acid Surface Water Contamination in North Carolina

    EPA Science Inventory

    Implications and Questions- Perfluorinated compounds at high concentrations in sludges, on fields, in surface water in areas receiving sludge applications-Urban and suburban sludges typically disposed of in rural locations, usually marketed as “free fertilizer” becaus...

  11. 40 CFR 503.8 - Sampling and analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Sampling and analysis. 503.8 Section... FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE General Provisions § 503.8 Sampling and analysis. (a) Sampling. Representative samples of sewage sludge that is applied to the land, placed on a surface disposal...

  12. 40 CFR 503.8 - Sampling and analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sampling and analysis. 503.8 Section... FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE General Provisions § 503.8 Sampling and analysis. (a) Sampling. Representative samples of sewage sludge that is applied to the land, placed on a surface disposal...

  13. 40 CFR 503.26 - Frequency of monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Frequency of monitoring. 503.26... STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Surface Disposal § 503.26 Frequency of monitoring. (a) Sewage sludge (other than domestic septage). (1) The frequency of monitoring for the pollutants in Tables...

  14. 40 CFR 503.26 - Frequency of monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Frequency of monitoring. 503.26... STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Surface Disposal § 503.26 Frequency of monitoring. (a) Sewage sludge (other than domestic septage). (1) The frequency of monitoring for the pollutants in Tables...

  15. 40 CFR 503.26 - Frequency of monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Frequency of monitoring. 503.26... STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Surface Disposal § 503.26 Frequency of monitoring. (a) Sewage sludge (other than domestic septage). (1) The frequency of monitoring for the pollutants in Tables...

  16. 40 CFR 503.26 - Frequency of monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Frequency of monitoring. 503.26... STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Surface Disposal § 503.26 Frequency of monitoring. (a) Sewage sludge (other than domestic septage). (1) The frequency of monitoring for the pollutants in Tables...

  17. 40 CFR 503.26 - Frequency of monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Frequency of monitoring. 503.26... STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Surface Disposal § 503.26 Frequency of monitoring. (a) Sewage sludge (other than domestic septage). (1) The frequency of monitoring for the pollutants in Tables...

  18. Sludge quantification at water treatment plant and its management scenario.

    PubMed

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  19. Accumulation and persistence of chlorobiphenyls, organochlorine pesticides and faecal sterols at the Garroch Head sewage sludge disposal site, Firth of Clyde.

    PubMed

    Kelly, A G

    1995-01-01

    The sediment concentrations of organic carbon, faecal sterols, individual chlorobiphenyl congeners and organochlorine pesticides have been measured in seabed cores from the sewage sludge disposal area at Garroch Head in the Firth of Clyde. The measurements confirm the accumulative nature of the site with high levels of sedimentary faecal sterols (152 mg kg(-1) coprostanol). Levels of chlorobiphenyls, DDT compounds and dieldrin in surface sediment were elevated by factors of 12, 40 and 120, respectively, over those observed at a site remote from the effects of dumping. Total chlorobiphenyl levels of 515 microg kg(-1) Arochlor 1254 in surface sediment were comparable to levels found in other areas heavily contaminated with sewage sludge. The 20-cm depth of heavily sludge-contaminated sediment overlays a mixed sludge/basal sediment layer some 10 cm in depth. Levels of organochlorine contaminants were elevated to depths of 90 cm in the sediment, suggesting that the surface layer is a source of contaminants to the deeper sediment. Within the upper 15-20 cm sediment in the disposal area, chlorobiphenyls are conservative, the variation in their concentration with respect to depth being related to historical input. Lindane and possibly dieldrin, and hexachlorobenzene are not conservative. Faecal sterols are removed in sub-surface sediment, in contrast to conservative behaviour previously found at other sewage polluted sites.

  20. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site.

    PubMed

    Takizawa, M; Straube, W L; Hill, R T; Colwell, R R

    1993-10-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. The results of hybridization experiments in which DNAs extracted directly from the water overlying sediment core samples were used indicate that the reference site epibenthic community, the disposal site epibenthic community, and the community in a surface sludge plume share many members. Decreased culturability of reference site mixed cultures in the presence of sewage sludge was observed. Thus, the culturable portions of both the autochthonous and allochthonous bacterial communities at the disposal site may be inhibited in situ, the former by sewage sludge and the latter by high pressure and low temperature.

  1. 78 FR 727 - Public Notice of Proposed Reissuance of the NPDES General Permits for Facilities/Operations That...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... Means of Land Application, Landfill, and Surface Disposal in the EPA Region 8 AGENCY: Environmental..., treat, and/or use/dispose of sewage sludge by means of land application, landfill, and surface disposal... landfill. The purpose is to require agronomic soil sampling for calculating the proper amount of sewage...

  2. 78 FR 25081 - Reissuance of Final NPDES General Permits for Facilities/Operations That Generate, Treat, and/or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ..., Landfill, and Surface Disposal in EPA Region 8 AGENCY: Environmental Protection Agency (EPA). ACTION... operations that generate, treat, and/or use/ dispose of sewage sludge by means of land application, landfill... application, landfill, and surface disposal in the States of CO, MT, ND, and WY and in Indian country in the...

  3. Sewage sludge pasteurization by gamma radiation: Financial viability case studies

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Kotler, Jiri

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1) Small volume sewage treatment plant experiencing high sludge disposal costs. 2) Large volume sewage treatment plant experiencing low sludge disposal costs. 3) Large volume sewage treatment plant experiencing high sludge disposal costs.

  4. Volumetric modeling of two sludge piles from water treatment plants in a Brazilian reservoir.

    PubMed

    Almeida, Aline Mansur; Wada, Eduardo Yukio Basílio; Wasserman, Julio Cesar

    2018-01-01

    Water treatment plants are designed to continuously produce drinkable water, meeting defined criteria of potability. However, besides potable water, these plants produce sludges that are disposed of in the environment. The present work aimed to evaluate the sludges generated in two water treatment plants and disposed of in the margin of the Juturnaíba dam. Since alum has been used as a flocculating agent in these two plants, the concentrations of aluminum were measured in the sludges and in surface sediments. The generated piles are extremely soft to walk on and difficult to measure, so indirect modeling procedures had to be applied. The calculated mass of the sludge piles at each plant are similar and respectively 60,370 and 61,479 tons. The aluminum content of the residues, calculated according to its dosage, was 33.2 and 32.6 g kg -1 in the piles from the two plants. The amount of alum dosed to the water corresponds almost to the excess of aluminum in the sludge, compared to the sediments. It was concluded that regardless of the fact that residues are disposed of in very restricted areas, they are directly in contact with the water and may constitute a threat for the environment and humans' health.

  5. 40 CFR 503.24 - Management practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Management practices. 503.24 Section... FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Surface Disposal § 503.24 Management practices. (a) Sewage... the permitting authority that through management practices public health and the environment are...

  6. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY: CONTROL OF PATHOGENS AND VECTOR ATTRACTION IN SEWAGE SLUDGE (INCLUDING DOMESTIC SEWAGE) UNDER 40 CFR PART 503

    EPA Science Inventory

    This document describes the federal requirements concerning pathogens in sewage sludge applied to land or placed on a surface disposal site, and it provides guidance concerning those requirements. The document is intended for: (1) Owners and operators of treatment works treati...

  7. Drying Beds. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    Provided in this lesson is introductory material on sand and surfaced sludge drying beds. Typical construction and operation, proper maintenance, and safety procedures are considered. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a description of the lesson, estimated presentation time,…

  8. Physical and chemical properties of pyrolyzed MWRDGC biosolids for utilization in sand-based turfgrass rootzones

    USDA-ARS?s Scientific Manuscript database

    Biosolids are several forms of treated sewage sludge that are intended for use as soil conditioners for horticultural and agricultural crops. In the U.S., biosolids may only refer to conditioned sludge that meets USEPA pollutant and pathogen requirements for land application and surface disposal. Th...

  9. Final Environmental Assessment Addressing Construction, Operation, and Maintenance of a Hot Cargo Pad at Kirtland Air Force Base, New Mexico

    DTIC Science & Technology

    2011-01-01

    ground surface of the pad. The surface sludge at WP-26 is currently being removed, which would alleviate any potential adverse effects on the...removing and disposing of the top 5 inches of the ground surface , which is potentially contaminated sewage sludge, within WP-26 in a manner consistent...Construction, Operation, and Maintenance of a Hot Cargo Pad at Kirtland Air Force Base, New Mexico, to identifY and evaluate potential environmental effects

  10. Treatability of Aqueous Film-Forming Foams Used for Fire Fighting.

    DTIC Science & Technology

    BIODETERIORATION, *FIRE EXTINGUISHING AGENTS, SURFACE ACTIVE SUBSTANCES, FLUORINATED HYDROCARBONS, FOAM , ACTIVATED SLUDGE PROCESS, ACTIVATED CARBON, TOXICITY, WASTE DISPOSAL, TABLES(DATA), ADSORPTION.

  11. PROCESS DESIGN MANUAL: LAND APPLICATION OF ...

    EPA Pesticide Factsheets

    Land application of sewage sludge generated by domestic sewage treatment is performed in an environmentally safe and cost–effective manner in many communities. Land application involves taking advantage of the fertilizing and soil conditioning properties of sewage sludge by spreading the sewage sludge on the soil surface, incorporating or injecting the sewage sludge into soil, or spraying the sewage sludge. Because sewage sludge disposal practices (e.g., landfilling) are becoming less available and more costly, and because of the increasing desire to beneficially reuse waste residuals whenever possible, land application is increasingly chosen as a sewage sludge use or disposal practice. Approximately 33 percent of the 5.4 million dry metric tons of sewage sludge generated annually in the United States at publicly owned treatment works (POTWs) is land applied. Of the sewage sludge that is land applied, approximately 67% is land applied on agricultural lands, 3% on forest lands, approximately 9% on reclamation sites, and 9% on public contact sites; 12% is sold or given away in a bag or other container for application to the land (Federal Register, Vol. 58, No. 32, February 19, 1993). In addition, approximately 8.6 billion gallons of domestic septage is generated annually. Land application of sewage sludge has been practiced in many countries for centuries so that the nutrients (e.g., nitrogen, phosphorus) and organic matter in sewage sludge can be beneficia

  12. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries.

    PubMed

    Kelessidis, Alexandros; Stasinakis, Athanasios S

    2012-06-01

    Municipal wastewater treatment results to the production of large quantities of sewage sludge, which requires proper and environmentally accepted management before final disposal. In European Union, sludge management remains an open and challenging issue for the Member States as the relative European legislation is fragmentary and quite old, while the published data concerning sludge treatment and disposal in different European countries are often incomplete and inhomogeneous. The main objective of the current study was to outline the current situation and discuss future perspectives for sludge treatment and disposal in EU countries. According to the results, specific sludge production is differentiated significantly between European countries, ranging from 0.1 kg per population equivalent (p.e.) and year (Malta) to 30.8 kg per p.e. and year (Austria). More stringent legislations comparing to European Directive 86/278/EC have been adopted for sludge disposal in soil by several European countries, setting lower limit values for heavy metals as well as limit values for pathogens and organic micropollutants. A great variety of sludge treatment technologies are used in EU countries, while differences are observed between Member States. Anaerobic and aerobic digestion seems to be the most popular stabilization methods, applying in 24 and 20 countries, respectively. Mechanical sludge dewatering is preferred comparing to the use of drying beds, while thermal drying is mainly applied in EU-15 countries (old Member States) and especially in Germany, Italy, France and UK. Regarding sludge final disposal, sludge reuse (including direct agricultural application and composting) seems to be the predominant choice for sludge management in EU-15 (53% of produced sludge), following by incineration (21% of produced sludge). On the other hand, the most common disposal method in EU-12 countries (new Member States that joined EU after 2004) is still landfilling. Due to the obligations set by Directive 91/271/EC, a temporary increase of sludge amounts that are disposed in landfills is expected during the following years in EU-12 countries. Beside the above, sludge reuse in land and sludge incineration seem to be the main practices further adopted in EU-27 (all Member States) up to 2020. The reinforcement of these disposal practices will probably result to adoption of advanced sludge treatment technologies in order to achieve higher pathogens removal, odors control and removal of toxic compounds and ensure human health and environmental protection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY: USE AND DISPOSAL OF MUNICIPAL WASTEWATER SLUDGE

    EPA Science Inventory

    The document describes the five major sludge use/disposal options currently available--land application, distribution and marketing of sludge products, land-filling, incineration, and ocean disposal--and factors influencing their selection and implementation. It also provides an ...

  14. Clay-sewage sludge co-pyrolysis. A TG-MS and Py-GC study on potential advantages afforded by the presence of clay in the pyrolysis of wastewater sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischia, Marco, E-mail: marco.ischia@ing.unitn.it; Maschio, Roberto Dal; Grigiante, Maurizio

    2011-01-15

    Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC). Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, atmore » temperatures of approx. 450-500 deg. C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis. Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.« less

  15. The Ruhrverband sewage sludge disposal concept in the conflict between European and German standards and regulations.

    PubMed

    Evers, P; Schmitt, F; Albrecht, D R; Jardin, N

    2005-01-01

    The Ruhrverband, acting as a water association responsible for integrated water resources management within the entire natural river basin of the Ruhr, operates a network of 83 wastewater treatment plants (WWTPs) and connected sludge disposal facilities. According to German regulations, the disposal of sewage sludge containing more than 5% of organic dry solids will be prohibited as of 1 June 2005. In Germany, the only future alternative to incineration will be the agricultural utilization of sludge. However, this way of sludge disposal is presently the subject of critical discussions in Germany because of the organic and inorganic toxic substances, which may be contained in sewage sludge, despite the fact that very stringent standards are to be met by agricultural uses. On the other hand, application of sewage sludge to agricultural land is explicitly supported by the European Sewage Sludge Directive 86/278/EEC. In the face of this controversial situation the Ruhrverband has initiated, in 2000, the development of a comprehensive and sustainable sludge and waste disposal concept for all wastewater facilities it operates in the entire Ruhr River Basin. The concept includes de-central sludge digestion and dewatering and subsequent transport to two central sludge incineration plants. It is expected that in future not more than 5% of all sludges produced in Ruhrverband's WWTPs will be used in agriculture. That means, the major part of 95% will have to be incinerated.

  16. Two-phase anaerobic digestion of partially acidified sewage sludge: a pilot plant study for safe sludge disposal in developing countries.

    PubMed

    Passio, Luca; Rizzoa, Luigi; Fuchs, Stephan

    2012-09-01

    The unsafe disposal of wastewater and sludge in different areas of developing countries results in significant environmental pollution, particularly for groundwater, thus increasing the risk of waterborne diseases spreading. In this work, a two-phase anaerobic digestion process for post-treatment of partially acidified sewage sludge was investigated to evaluate its feasibility as a safe sludge disposal system. Pilot tests showed that an effective sludge stabilization can be achieved (total volatile solids content <65%, organic acid concentration <200 mg/L at flow rate = 50 L/d and hydraulic residence time = 18 d) as well as a relative low faecal coliform density (<1000 most probable number per g total solids), showing that land application of the sludge without restrictions is possible according to US Environmental Protection Agency criteria for safe sludge disposal. A biogas production as high as 390 L/d with a 60% methane content by volume was achieved, showing that energy production from biogas may be achieved as well.

  17. Sludge Treatment, Utilization, and Disposal.

    ERIC Educational Resources Information Center

    Dick, Richard I.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers such areas: (1) industrial and hazardous sludges; (2) chemical sludges; (3) stabilization and combustion; (4) ocean disposal; and (5) land application. A list of 411 references is also presented. (HM)

  18. Sludge Lagoons. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Sharman, Ronald M.

    This lesson describes three different types of sludge lagoons: (1) drying lagoons; (2) facultative lagoons; and (3) anaerobic lagoons. Normal operating sequence and equipment are also described. The lesson is designed to be used in sequence with the complete Sludge Treatment and Disposal Course #166 or as an independent lesson. The instructor's…

  19. Mechanisms and kinetics of granulated sewage sludge combustion.

    PubMed

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. TRACE ORGANICS AND INORGANICS IN DISTRIBUTION AND MARKETING MUNICIPAL SLUDGES

    EPA Science Inventory

    The land application of municipal wastewater treatment sludges is widely practiced both as an economic treatment method for disposal and to provide an economic soil nutrient amendment for agricultural use. Concerns over the general disposal of sludge to land have focused on sever...

  1. 40 CFR 503.6 - Exclusions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment of domestic sewage in a treatment works. (i) Drinking water treatment sludge. This part does not... DISPOSAL OF SEWAGE SLUDGE General Provisions § 503.6 Exclusions. (a) Treatment processes. This part does... requirements for the use or disposal of sludge generated at an industrial facility during the treatment of...

  2. 40 CFR 503.5 - Additional or more stringent requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements. 503.5 Section 503.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE General Provisions § 503.5 Additional or more... the use or disposal of sewage sludge in addition to or more stringent than the requirements in this...

  3. Sanitary Landfill. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Sharman, Ronald M.

    This lesson is an introduction to disposal of sludge by landfill. A brief explanation of the complete process is provided, including discussions of sludge suitability, site selection, method selection and operation, site closure, and ultimate reuse. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a…

  4. Belt Filtration. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Broste, Dale

    This lesson, an introduction to belt management, was developed for a course in sludge treatment and disposal. Fundamental principles of belt filter operation are described. Chemical conditioning and the effect on sludge characteristics are discussed, and a detailed description of the different zones of dewatering is presented. Information on…

  5. Hazardous Waste Cleanup: BASF Corporation in Queensbury, New York

    EPA Pesticide Factsheets

    This approximately seven acre tract of land was used for disposal of hazardous waste sludge from Ciba-Geigy’s manufacturing processes located in nearby Glens Falls, New York. An adjacent surface impoundment was used to collect leachate from the landfill

  6. A review of the sustainable value and disposal techniques, wastewater stabilisation ponds sludge characteristics and accumulation.

    PubMed

    Keffala, Chéma; Harerimana, Casimir; Vasel, Jean-luc

    2013-01-01

    Based on worldwide works available in international literature, this paper describes the status of sewage sludge resulting from settleable solids in waste stabilisation ponds (WSP). This review presents, in detail, sludge characteristics, production and accumulation rates in order to provide background information to those who expect to advise or get involved with sewage disposal in situations where resources are limited. Knowing that several years are usually required for a sludge removal operation and that the long-term sustainability of WSP systems is dependent on the safe and effective management of their sludge, its cost must be estimated and taken into account in the annual maintenance costs of the processes. Thus, this paper intends to summarise desludging methods and their financial estimation. Even when ponds have been functioning for several years, most of the sediments are stabilised well, the final disposal is an issue in terms of risk due, for example, to their content in nematode eggs. More generally, the pathogen content in sludge from WSP ponds has to be known to define an appropriate management and to safeguard public health. Based on existing data, the rates and distribution of helminth eggs will be presented and practical treatment methods will be suggested. A number of sludge utilisation and disposal pathways will also be summarised. Sludge activity in terms of oxygen consumption is also discussed in order to gather more information to improve pond design and keep an economic and sustainable value of WSP. The objectives of the present review are to advance knowledge and gather scientific and technical information on all aspects of sludge management including production, characterisation, management, agricultural reuse and ultimate disposal.

  7. Interpretation of the characteristics of ocean-dumped sewage sludge related to remote sensing

    NASA Technical Reports Server (NTRS)

    Pagoria, P. S.; Kuo, C. Y.

    1979-01-01

    Wastewater sludge characteristics in general, and characteristics of wastewater sludges generated by the City of Philadelphia in particular, were addressed. The types and sources of wastewater sludges, a description of sludge treatment and disposal processes, examination of sludge generation and management for the City of Philadelphia, and definition of characteristics for typical east coast sludges undergoing ocean disposal were discussed. Specific differences exist between the characteristics of primary and secondary wastewater sludges, especially with the nature and size distribution of the solids particles. The sludges from the City of Philadelphia monitored during remote sensing experiments were mixtures of various sludge types and lacked distinguishing characteristics. In particular, the anaerobic digestion process exerted the most significant influence on sludge characteristics for the City of Philadelphia. The sludges generated by the City of Philadelphia were found to be typical and harbor no unique features.

  8. Heat Treatment. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Filer, Herb; Broste, Dale

    This lesson was developed for a course in sludge treatment and disposal. The lesson describes the Porteous heat treatment method of sludge conditioning and compares that system to the Zimpro wet air oxidation process. The theory of heat treatment, system of components and functions, and concepts of operation are addressed in the lesson. The…

  9. PROCESS DESIGN MANUAL: SURFACE DISPOSAL OF SEWAGE SLUDGE AND DOMESTIC SEPTAGE

    EPA Science Inventory

    Human domestic activities generate wastewater that is piped into municipal sewer systems, underground septic tanks, or portable sanitation devices. Wastewater in municipal systems is treated before being discharged into the environment, as required under the Clean Water Act. This...

  10. Alternative treatment for septic tank sludge: co-digestion with municipal solid waste in bioreactor landfill simulators.

    PubMed

    Valencia, R; den Hamer, D; Komboi, J; Lubberding, H J; Gijzen, H J

    2009-02-01

    Co-disposal of septic tank sludge had a positive effect on the municipal solid waste (MSW) stabilisation process in Bioreactor Landfill simulators. Co-disposal experiments were carried out using the Bioreactor Landfill approach aiming to solve the environmental problems caused by indiscriminate and inadequate disposal of MSW and especially of septic tank sludge. The simulator receiving septic tank sludge exhibited a 200 days shorter lag-phase as compared to the 350 days required by the control simulator to start the exponential biogas production. Additionally, the simulator with septic sludge apparently retained more moisture (>60% w/w), which enhanced the overall conversion of organic matter hence increasing the biogas production (0.60 m3 biogas kg(-1)VS(converted)) and removal efficiency of 60% for VS from the simulator. Alkaline pH values (pH>8.5) did not inhibit the biogas production; moreover it contributed to reduce partially the negative effects of NH(4)(+) (>2 g L(-1)) due to NH(3) volatilisation thus reducing the nitrogen content of the residues. Associated risks and hazards with septage disposal were practically eliminated as total coliform and faecal coliform contents were reduced by 99% and 100%, respectively at the end of the experiment. These results indicate that co-disposal has two direct benefits, including the safe and environmentally sound disposal of septic tank sludge and an improvement of the overall performance of the Bioreactor Landfill by increasing moisture retention and supplying a more acclimatised bacterial population.

  11. Ground-water quality near a sewage-sludge recycling site and a landfill near Denver, Colorado

    USGS Publications Warehouse

    Robson, Stanley G.

    1977-01-01

    The Metropolitan Denver Sewage Disposal District and the City and County of Denver operate a sewage-sludge recycling site and a landfill in an area about 15 miles (24 kilometers) east of Denver. The assessment of the effects of these facilities on the ground-water system included determining the direction of ground-water movement in the area, evaluating the impact of the wastedisposal activities on the chemical quality of local ground water, and evaluating the need for continued water-quality monitoring.Surficial geology of the area consists of two principal units: (1) Alluvium with a maximum thickness of about 25 feet (7.6 meters) deposited along stream channels, and (2) bedrock consisting of undifferentiated Denver and Dawson Formations. Ground water in formations less than 350 feet (110 meters) deep moves to the north, as does surface flow, while ground water in formations between 570 and 1,500 feet (170 and 460 meters) deep moves to the west. Estimates of ground-water velocity were made using assumed values for hydraulic conductivity and porosity, and the observed hydraulic gradient from the study area. Lateral velocities are estimated to be 380 feet (120 meters) per year in alluvium and 27 feet (8.2 meters) per year in the upper part of the bedrock formations. Vertical velocity is estimated to be 0.58 foot (0.18 meter) per year in the upper part of the bedrock formations.Potentiometric head decreases with depth in the bedrock formations indicating a potential for downward movement of ground water. However, waterquality analysis and the rate and direction of ground-water movement suggest that ground-water movement in the area is primarily in the lateral rather than the vertical direction. Five wells perforated in alluvium were found to have markedly degraded water quality. One well was located in the landfill and water that was analyzed was obtained from near the base of the buried refuse, two others were located downgradient and near sewage-sludge burial areas, and the remaining two are located near stagnant surface ponds. Concentrations of nitrate in wells downgradient from fields where sludge is plowed into the soil were higher than background concentrations due to the effects of the sludge disposal. No evidence of water-quality degradation was detected in deeper wells perforated in the bedrock formations. Continued water-quality monitoring is needed because of the continuing disposal of wastes. A suggested monitoring program would consist of monitoring wells near the landfill twice a year and monitoring wells near the sludge-disposal areas on an annual basis.

  12. Recent development in the treatment of oily sludge from petroleum industry: a review.

    PubMed

    Hu, Guangji; Li, Jianbing; Zeng, Guangming

    2013-10-15

    Oily sludge is one of the most significant solid wastes generated in the petroleum industry. It is a complex emulsion of various petroleum hydrocarbons (PHCs), water, heavy metals, and solid particles. Due to its hazardous nature and increased generation quantities around the world, the effective treatment of oily sludge has attracted widespread attention. In this review, the origin, characteristics, and environmental impacts of oily sludge were introduced. Many methods have been investigated for dealing with PHCs in oily sludge either through oil recovery or sludge disposal, but little attention has been paid to handle its various heavy metals. These methods were discussed by dividing them into oil recovery and sludge disposal approaches. It was recognized that no single specific process can be considered as a panacea since each method is associated with different advantages and limitations. Future efforts should focus on the improvement of current technologies and the combination of oil recovery with sludge disposal in order to comply with both resource reuse recommendations and environmental regulations. The comprehensive examination of oily sludge treatment methods will help researchers and practitioners to have a good understanding of both recent developments and future research directions. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.

    PubMed

    Kwon, Tae-Soon; Lee, Jae-Young

    2015-10-01

    Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge. © The Author(s) 2015.

  14. Delisting petition for 300-M saltstone (treated F006 sludge) from the 300-M liquid effluent treatment facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-04

    This petition seeks exclusion for stabilized and solidified sludge material generated by treatment of wastewater from the 300-M aluminum forming and metal finishing processes. The waste contains both hazardous and radioactive components and is classified as a mixed waste. The objective of this petition is to demonstrate that the stabilized sludge material (saltstone), when properly disposed, will not exceed the health-based standards for the hazardous constituents. This petition contains sampling and analytical data which justify the request for exclusion. The results show that when the data are applied to the EPA Vertical and Horizontal Spread (VHS) Model, health-based standards formore » all hazardous waste constituents will not be exceeded during worst case operating and environmental conditions. Disposal of the stabilized sludge material in concrete vaults will meet the requirements pertaining to Waste Management Activities for Groundwater Protection at the Savannah River Site in Aiken, S.C. Documents set forth performance objectives and disposal options for low-level radioactive waste disposal. Concrete vaults specified for disposal of 300-M saltstone (treated F006 sludge) assure that these performance objectives will be met.« less

  15. Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation

    USDA-ARS?s Scientific Manuscript database

    The lack of appropriate disposal strategies of tanning sludge (e.g., uncontrolled landfills and disposing sludge to open areas) has led to severe Cr pollution in waters and soils in many developing countries. Excessive Cr can be highly toxic to many living organisms and may damage the ecosystem. In ...

  16. Design of automated oil sludge treatment unit

    NASA Astrophysics Data System (ADS)

    Chukhareva, N.; Korotchenko, T.; Yurkin, A.

    2015-11-01

    The article provides the feasibility study of contemporary oil sludge treatment methods. The basic parameters of a new resource-efficient oil sludge treatment unit that allows extracting as much oil as possible and disposing other components in efficient way have been outlined. Based on the calculation results, it has been revealed that in order to reduce the cost of the treatment unit and the expenses related to sludge disposal, it is essential to apply various combinations of the existing treatment methods.

  17. Characteristics of water obtained by dewatering cyanobacteria-containing sludge formed during drinking water treatment, including C-, N-disinfection byproduct formation.

    PubMed

    Xu, Hangzhou; Pei, Haiyan; Jin, Yan; Xiao, Hongdi; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2017-03-15

    This is the first study to systematically investigate the characteristics of the water obtained by dewatering cyanobacteria-containing sludge generated in the drinking water treatment plant, including formation of C- and N-disinfection by-products (DBPs). Results showed that this 'dewatering water' (DW) had different properties when the sludge was stored at different times. The content of dissolved organic matter (DOM) and microcystins (MCs) in the DW were low when the sludge was treated or disposed of within 4 days; correspondingly, the C-, N-DBP production was also low. However, due to the damage of algal cells to some extent, the DOM and MC levels increased significantly for storage time longer than 4 days; the production of C-, N-DBPs also increased. There were also obvious differences in the characteristics of the DW from sludges generated with different coagulant species. Due to the better protective effect of FeCl 3 and polymeric aluminium ferric chloride (PAFC) flocs, the DOM and MC levels and the production of C-, N-DBPs in the DW with FeCl 3 and PAFC coagulation were lower than those with AlCl 3 coagulation, even though the sludges were stored for the same amount of time. Furthermore, because of the formation of Al and Fe hydroxides, precipitated onto the surface of flocs, the soluble Al and Fe in the DW decreased with increased storage time, especially in the first four days. Overall, this study revealed the trends in variation of DW quality for cyanobacteria-containing sludges formed with different coagulants, then FeCl 3 and PAFC coagulants are recommended and sludge should be treated or disposed of within 4 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Treatment and disposal of refinery sludges: Indian scenario.

    PubMed

    Bhattacharyya, J K; Shekdar, A V

    2003-06-01

    Crude oil is a major source of energy and feedstock for petrochemicals. Oily sludge, bio-sludge and chemical sludge are the major sludges generated from the processes and effluent treatment plants of the refineries engaged in crude oil refining operations. Refineries in India generate about 28,220 tons of sludge per annum. Various types of pollutants like phenols, heavy metals, etc. are present in the sludges and they are treated as hazardous waste. Oily sludge, which is generated in much higher amount compared to other sludges, contains phenol (90-100 mg/kg), nickel (17-25 mg/kg), chromium (27-80 mg/kg), zinc (7-80 mg/kg), manganese (19-24 mg/kg), cadmium (0.8-2 mg/kg), copper (32-120 mg/kg) and lead (0.001-0.12 mg/ kg). Uncontrolled disposal practices of sludges in India cause degradation of environmental and depreciation of aesthetic quality. Environmental impact due to improper sludge management has also been identified. Salient features of various treatment and disposal practices have been discussed. Findings of a case study undertaken by the authors for Numaligarh Refinery in India have been presented. Various system alternatives have been identified for waste management in Numaligarh Refinery. A ranking exercise has been carried out to evaluate the alternatives and select the appropriate one. A detailed design of the selected waste management system has been presented.

  19. Reduction of sludge production from WWTP using thermal pretreatment and enhanced anaerobic methanisation.

    PubMed

    Graja, S; Chauzy, J; Fernandes, P; Patria, L; Cretenot, D

    2005-01-01

    The objective of the study presented here was to investigate the performance of an enhanced two-step anaerobic process for the treatment of WWTP sludge. This process was developed to answer the urgent need currently faced by WWTP operators to reduce the production of biosolids, for which disposal pathways are facing increasing difficulties. A pilot plant was operated on a full-scale WWTP (2,500 p.e.) over a period of 4 months. It consisted of a thermal pre-treatment of excess sludge at 175 degrees C and 40 min, followed by dewatering and methanisation of the centrate in a fixed-film reactor. The thermal lysis had a two-fold enhancing effect on sludge reduction efficiency: firstly, it allowed a decrease of the HRT in the methaniser to 2.9 days and secondly, it yielded biosolids with a high dewaterability. This contributed to further reductions in the final volume of sludge to be disposed of. The two-step process achieved a sludge reduction efficiency of 65% as TSS, thus giving an interesting treatment option for WWTP facing sludge disposal problems.

  20. The use of time-series data in the assessment of macrobenthic community change after the cessation of sewage-sludge disposal in Liverpool Bay (UK).

    PubMed

    Whomersley, P; Schratzberger, M; Huxham, M; Bates, H; Rees, H

    2007-01-01

    Sewage sludge was disposed of in Liverpool Bay for over 100 years. Annual amounts increased from 0.5 million tonnes per annum in 1900 to approximately 2 million tonnes per annum by 1995. Macrofauna and a suite of environmental variables were collected at a station adjacent to, and a reference station distant from, the disposal site over 13 years, spanning a pre- (1990-1998) and post- (1999-2003) cessation period. Univariate and multivariate analyses of the time-series data showed significant community differences between reference and disposal site stations and multivariate analyses revealed station-specific community development post-disposal. Temporal variability of communities collected at the disposal station post-cessation was higher than during years of disposal, when temporally stable dominance patterns of disturbance-tolerant species had established. Alterations of community structure post-disturbance reflected successional changes possibly driven by facilitation. Subtle faunistic changes at the Liverpool Bay disposal site indicate that the near-field effects of the disposal of sewage sludge were small and therefore could be considered environmentally acceptable.

  1. Hydrology of the Little Androscoggin River Valley aquifer, Oxford County, Maine

    USGS Publications Warehouse

    Morrissey, D.J.

    1983-01-01

    The Little Androscoggin River valley aquifer, a 15-square-mile sand and gravel valley-fill aquifer in southwestern Maine, is the source of water for the towns of Norway, Oxford, and South Paris. Estimated inflows to the aquifer during the 1981 water year were 16.4 cubic feet per second from precipitation directly on the aquifer, 11.2 cubic feet per second from till covered uplands adjacent to the aquifer, and 1.4 cubic feet per second from surface-water leakage. Outflows from the aquifer were 26.7 cubic feet per second to surface water and 2.3 cubic feet per second to wells. A finite-difference ground-water flow model was used to simulate conditions observed in the aquifer during 1981. Model conditions observed in the aquifer during 1981. Model simulations indicate that a 50 percent reduction of average 1981 recharge to the aquifer would cause water level declines of up to 20 feet in some areas. Model simulations of increased pumping at a high yield well in the northern part of the aquifer indicate that resulting changes in the water table will not be sufficient to intercept groundwater contaminated by a sludge disposal site. Water in the aquifer is low in dissolved solids (average for 38 samples was 67 mg/L), slightly acidic and soft. Ground-water contamination has occurred near a sludge-disposal site and in the vicinity of a sanitary landfill. Dissolved solids in ground water near the sludge disposal site were as much as ten times greater than average background values for the aquifer. (USGS)

  2. Potential of activated sludge disintegration.

    PubMed

    Boehler, M; Siegrist, H

    2006-01-01

    The disposal of sewage sludge and the agricultural use of stabilised sludge are decreasing due to more stringent regulations in Europe. An increasing fraction of sewage sludge must therefore be dewatered, dried, incinerated and the ashes disposed of in landfills. These processes are cost-intensive and also lead to the loss of valuable phosphate resources incorporated in the sludge ash. The implementation of processes that could reduce excess sludge production and recycle phosphate is therefore recommended. Disintegration of biological sludge by mechanical, thermal and physical methods could significantly reduce excess sludge production, improve the settling properties of the sludge and reduce bulking and scumming. The solubilised COD could also improve denitrification if the treated sludge is recycled to the anoxic zone. However, disintegration partly inhibits and kills nitrifiers and could therefore shorten their effective solid retention time, thus reducing the safety of the nitrification. This paper discusses the potential of disintegration on sludge reduction, the operating stability of nitrification, the improvement of denitrification and also presents an energy and cost evaluation.

  3. Surface Disposal of Waste Water Treatment Plant Biosludge--an Important Source of Perfluorinated Compound Contamination in the Environment

    EPA Science Inventory

    What are “Biosolids”?- “Biosolids” are what remains after WWTP processing Sewage sludge probably a more accurate term - Could contain anything that comes down the pipe to the WWTP, varies greatly depending on community type, industry effluents, plant desig...

  4. Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.

    PubMed

    Delorit, Justin D; Racz, LeeAnn

    2014-04-01

    Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.

  5. COMPREHENSIVE SUMMARY OF SLUDGE DISPOSAL RECYCLING HISTORY

    EPA Science Inventory

    Since 1971 the only mode of sludge disposal used by Denver District No. 1 has been land application. A number of different application procedures have been tried over the intervening years. The development of methodology and problems associated with each procedure are discussed i...

  6. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    PubMed

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  7. Superfund Record of Decision (EPA Region 7): Doepke Disposal (Holliday), KS. (First remedial action), September 1989. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-09-21

    The Doepke Disposal (Holliday) site is an inactive industrial-waste landfill located east of Holliday, Johnson County, Kansas. During the 1950s and early 1960s the site was used as a landfill for residential refuse. In 1963 Doepke Disposal Service, Inc. leased the property and operated a commercial and industrial waste landfill until 1970, when the State shut down the operation. Materials such as fiberglass, fiberglass resins, paint sludges, spent solvents, metal sludges, soaps, and pesticides were reportedly disposed of at the landfill. In 1966 fire debris and up to 374 drums of solvents and organochlorine and organophosphate pesticides were disposed ofmore » at the site as a result of a fire at a Kansas City chemical plant. Initially wastes and residues brought to the site were burned, however, in the late 1960s burning operations ceased and solid wastes were buried onsite and liquids were disposed of in two surface impoundments. In 1977 rock material excavated during the construction of an interstate was dumped onsite and in some cases over the deposited waste. The current owner uses portions of the site for storage of clay, crushed shales, and crushed limestone. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, toluene, and xylene; other organics including PAHs, PCBs, and pesticides, and metals including chromium and lead.« less

  8. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  9. 40 CFR 503.7 - Requirement for a person who prepares sewage sludge.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sewage sludge. 503.7 Section 503.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE General Provisions § 503.7 Requirement for a person who prepares sewage sludge. Any person who prepares sewage sludge shall ensure that the...

  10. Properties of fired clay brick incorporating with sewage sludge waste

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    The production of sludge in wastewater treatment plant is about to increase every year and most of the sludge was directly disposed to landfill. In addition, the constraint to treat sludge is very high in cost and time- consuming could be disadvantages to the responsible parties. Therefore, this research was conducted to utilize sludge produced from the wastewater treatment plant into fired clay brick as one of the alternatives of disposal method. In this study, the research attempt to incorporate sewage sludge waste (SSW) into fired clay brick. The sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, and 20% of SSW. The manufactured bricks were fired at 1050°C with heating rate of 1°C/min. Physical and mechanical properties test were conducted such as shrinkage, density, water absorption and compressive strength. As the conclusion, brick with utilization 5% of SSW is acceptable to produce good quality of brick. This study shows by using SSW in fired clay brick could be an alternative method to dispose of the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  11. 40 CFR 124.56 - Fact sheets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS PROCEDURES FOR... specific effluent limitations and conditions or standards for sewage sludge use or disposal, including a... sludge use or disposal as required by § 122.44 and reasons why they are applicable or an explanation of...

  12. Reduction in greenhouse gas emissions from sludge biodrying instead of heat drying combined with mono-incineration in China.

    PubMed

    Liu, Hong-Tao; Wang, Yan-Wen; Liu, Xiao-Jie; Gao, Ding; Zheng, Guo-di; Lei, Mei; Guo, Guang-Hui; Zheng, Hai-Xia; Kong, Xiang-Juan

    2017-02-01

    Sludge is an important source of greenhouse gas (GHG) emissions, both in the form of direct process emissions and as a result of indirect carbon-derived energy consumption during processing. In this study, the carbon budgets of two sludge disposal processes at two well-known sludge disposal sites in China (for biodrying and heat-drying pretreatments, both followed by mono-incineration) were quantified and compared. Total GHG emissions from heat drying combined with mono-incineration was 0.1731 tCO 2 e t -1 , while 0.0882 tCO 2 e t -1 was emitted from biodrying combined with mono-incineration. Based on these findings, a significant reduction (approximately 50%) in total GHG emissions was obtained by biodrying instead of heat drying prior to sludge incineration. Sludge treatment results in direct and indirect greenhouse gas (GHG) emissions. Moisture reduction followed by incineration is commonly used to dispose of sludge in China; however, few studies have compared the effects of different drying pretreatment options on GHG emissions during such processes. Therefore, in this study, the carbon budgets of sludge incineration were analyzed and compared following different pretreatment drying technologies (biodrying and heat drying). The results indicate that biodrying combined with incineration generated approximately half of the GHG emissions compared to heat drying followed by incineration. Accordingly, biodrying may represent a more environment-friendly sludge pretreatment prior to incineration.

  13. A multi-criteria decision analysis of management alternatives for anaerobically digested kraft pulp mill sludge

    PubMed Central

    Eikelboom, Martijn; Lopes, Alice do Carmo Precci; Silva, Claudio Mudadu; Rodrigues, Fábio de Ávila; Zanuncio, José Cola

    2018-01-01

    The Multi-Criteria Decision Analysis (MCDA) procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery), economic (overall costs, value of products) and technical (maintenance and operation, feasibility of implementation). The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry). Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery. PMID:29298296

  14. Qualitative and Quantitative Assessment of Sewage Sludge by Gamma Irradiation with Pasteurization as a Tool for Hygienization

    NASA Astrophysics Data System (ADS)

    Priyadarshini, J.; Roy, P. K.; Mazumdar, A.

    2014-01-01

    In this research work, management of sewage sludge disposal on agricultural soils is addressed. The increasing amount of sewage sludge and more legislative regulation of its disposal have stimulated the need for developing new technologies to recycle sewage sludge efficiently. The research was structured along two main avenues, namely, the efficacy of the irradiation process for removing enteric pathogenic microorganisms and the potential of irradiated sludge as a soil amendment. This study investigated how application of irradiation with heat treatment reduced pathogens in sewage sludge. Raw and pasteurised Sewage sludge was treated at different dose treatment of 1.5, 3 and 5 kilogray (kGy) gamma irradiation individually and for 3 kGy sufficiency was achieved. Decrease in irradiation dose from 5 to 3 kGy was observed for pasteurised sludge resulting in saving of radiation energy. The presence of heavy metals in untreated sewage sludge has raised concerns, which decreases after irradiation.

  15. Disposable sludge dewatering container and method

    DOEpatents

    Cole, Clifford M.

    1993-01-01

    A device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

  16. 40 CFR 124.56 - Fact sheets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Limitations to control toxic pollutants under § 122.44(e) of this chapter; (ii) Limitations on internal waste... specific effluent limitations and conditions or standards for sewage sludge use or disposal, including a... sludge use or disposal as required by § 122.44 and reasons why they are applicable or an explanation of...

  17. 40 CFR 124.56 - Fact sheets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Limitations to control toxic pollutants under § 122.44(e) of this chapter; (ii) Limitations on internal waste... specific effluent limitations and conditions or standards for sewage sludge use or disposal, including a... sludge use or disposal as required by § 122.44 and reasons why they are applicable or an explanation of...

  18. Beneficial Utilization of Lime Sludge for Subgrade Stabilization : a Pilot Investigation

    DOT National Transportation Integrated Search

    2010-06-30

    Water plants annually produce thousands of tons of lime sludge from the water treatment procedures. The lime sludge : is then discharged into a retention pond. When the storage limit is reached, lime sludge is usually disposed into : landfills, where...

  19. Beneficial utilization of lime sludge for subgrade stabilization : a pilot investigation.

    DOT National Transportation Integrated Search

    2010-06-01

    Water plants annually produce thousands of tons of lime sludge from the water treatment procedures. The lime sludge : is then discharged into a retention pond. When the storage limit is reached, lime sludge is usually disposed into : landfills, where...

  20. 40 CFR 501.21 - Program reporting to EPA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 501.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STATE... its inventory of sewage sludge generators and sludge disposal facilities, and provide information on... mitigate the incident(s) of noncompliance. (b) Information to update the inventory of all sewage sludge...

  1. 40 CFR 503.42 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 503.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Incineration § 503.42 General requirements. No person shall fire sewage sludge in a sewage sludge incinerator except in compliance with the requirements in this...

  2. 40 CFR 501.32 - Procedures for revision of State programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SEWAGE SLUDGE STATE SLUDGE MANAGEMENT PROGRAM REGULATIONS Program Approval, Revision and Withdrawal § 501... requires revision to comply with amendments to federal regulations governing sewage sludge use or disposal...

  3. Linear alkylbenzenes as tracers of sewage-sludge-derived inputs of organic matter, PCBs, and PAHs to sediments at the 106-mile deep water disposal site

    USGS Publications Warehouse

    Lamoureux, E.M.; Brownawell, Bruce J.; Bothner, Michael H.

    1996-01-01

    Linear alkylbenzenes (LABs) are sensitive source-specific tracers of sewage inputs to the marine environment. Because they are highly particle reactive and nonspecifically sorbed to organic matter, LABs are potential tracers of the transport of both sludge-derived organic matter and other low solubility hydrophobic contaminants (e.g., PCBs and PAHs); sediment trap studies at the 106-Mile Site have shown LABs to be valuable in testing models of sludge deposition to the sea floor. In this study we report on the distributions of LABs, PCBs, PAHs, and Ag in surface sediments collected within a month of the complete cessation of dumping (July, 1992) in the vicinity of the dump site. Total LAB concentrations were lower than those measured by Takada and coworkers in samples from nearby sites collected in 1989. LABs from both studies appear to be significantly depleted (6 to 25-fold) in surface sediments relative to excess Ag (another sludge tracer) when compared to sewage sludge and sediment trap compositions. Comparison of LAB sediment inventories to model predictions of sludge particle fluxes supports the contention that LABs have been lost from the bed. The use of LABs to examine the short-or long-term fate of sludge derived materials in deep-sea sediments should be questioned. The causes of this LAB depletion are unclear at this point, and we discuss several hypotheses. The concentrations of total PCBs and PAHs are both correlated with sludge tracers, suggesting that there may be a measurable contribution of sludge-derived inputs on top of other nonpoint sources of these contaminant classes. This possibility is consistent with the composition of these contaminants determined in recent and historical analyses of sewage sludge.

  4. Reuse of wastewater sludge with marine clay as a new resource of construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Lee, D J; Hong, S Y

    2004-01-01

    The disposal of sludge from wastewater treatment presents highly complex problems to any municipality. Most of the sludge disposal methods have varying degrees of environmental impact. Hence, it is necessary to explore potential areas of reuse in order to alleviate sludge disposal problems and to conserve natural resources. Industrial sludge and marine clay are two forms of high-volume wastes. Using these wastes as a resource of raw materials to produce construction aggregates would enable large-scale sludge reuse. The aggregates were produced at various sludge-clay combinations containing 0, 20, 50, 80 and 100% clay contents, respectively. The pelletized aggregates displayed lower particle densities ranged between 1.48 and 2.25 g/cm3, compared to the density of granite at 2.56 g/cm3. Good 28-day concrete compressive strength of 38.5 N/mm2 achieved by the 100% sludge aggregate was comparable to the value of 38.0 N/mm2 achieved of the granite control specimens. The leachate contamination levels from the aggregates after 150 days were found acceptable when used in concrete, indicating insignificant environmental contamination. The heat flow study showed increases in heat flow at the temperatures of 480 degrees C and between 660 degrees C and 900 degrees C, indicating a need for the extension of heating time around these temperatures.

  5. Utilization of urban sewage sludge: Chinese perspectives.

    PubMed

    Chen, H; Yan, S-H; Ye, Z-L; Meng, H-J; Zhu, Y-G

    2012-06-01

    Urbanization and industrialization in China has resulted in a dramatic increase in the volume of wastewater and sewage sludge produced from wastewater treatment plants. Problems associated with sewage sludge have attracted increasing attention from the public and urban planners. How to manage sludge in an economically and environmentally acceptable manner is one of the critical issues that modern societies are facing. Sludge treatment systems consist of thickening, dewatering, and several different alternative main treatments (anaerobic digestion, aerobic digestion, drying, composting, and incineration). Agricultural application, landfill, and incineration are the principal disposal methods for sewage sludge in China. However, sewage sludge disposal in the future should focus on resource recovery, reducing environmental impacts and saving economic costs. The reuse of biosolids in all scenarios can be environmentally beneficial and cost-effective. Anaerobic digestion followed by land application is the preferable options due to low economic and energy costs and material reuse. It is necessary to formulate a standard suitable for the utilization of sewage sludge in China.

  6. Use of wastewater ER sludges for the immobilization of heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, S.; Murray, D.; Urasa, I.T.

    1996-10-01

    The distribution, mobility, and bioavailability of heavy metals in soils, surface water, and ground water have been of major interest and concern from both environmental and geochemical standpoints. Wastewater sludges represent an important anthropogenic factor whose impact on these processes is not fully understood. In the past, incineration and landfilling were common practices for discarding wastewater sludges. However, as local and state laws governing the disposal of these materials have become more stringent, land application has been used as an alternative. Reported studies have shown that the impact of land application of sludges can vary widely and is influenced bymore » a number of factors, including the source of the sludge; the organic matter content of the sludge; the form in which the sludge is applied; and the prevailing conditions of the receiving soils. It has also been shown that sewage sludge can have solubilizing effects on solid-phase heavy metals, thereby causing geochemical shifts of the insoluble fractions of metals to the more soluble forms. The work presented in this paper utilized synthetic minerals, standard solutions, sludges, and agricultural soils obtained from different sources to determine the mechanisms involved in the mineralization of heavy metals by sludge; the influence of soil conditions; interelemental effects; the influence of natural organic matter; and possible microbial activity that may come into play. Several types of sludge were evaluated for lead binding capacity.« less

  7. 40 CFR 122.28 - General permits (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operations; (B) Discharge the same types of wastes or engage in the same types of sludge use or disposal... AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE... or subcategories of discharges or sludge use or disposal practices or facilities described in the...

  8. REVISING/UPDATING EPA 625/1-79-011, PROCESS DESIGN MANUAL FOR SLUDGE TREATMENT AND DISPOSAL

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) wishes to revise/update its very large and comprehensive 1979 Process Design Manual for Sludge Treatment and Disposal, EPA 625/1-79-011. As you might imagine the task is not trivial, as already in 1979 the original manual cost more tha...

  9. Construction technique of disposable bin from sludge cake and its environmental risk.

    PubMed

    Kongmuang, Udomsak; Kiykaew, Duangta; Morioka, Ikuharu

    2015-01-01

    Now, a lot of researchers have tried to make recycled rigid materials from the sludge cake produced in paper mill industries for the purpose of decreasing its volume. In this study, the researchers tried to make economically a disposable bin and to examine whether it is toxic or not to the outside environment. To make a disposable bin, the researchers used the sludge cake, a plastic basket, as a fixed mold, white cloth or newspaper, as a removable supporter for wrapping around the mold, and latex or plaster, as a binder. The strength of the samples was measured by tensile-stress testing. The water absorption was evaluated by Cobb test. As toxicological tests, leaching test and seed germination test were selected. It was possible to form the disposal bin from the cleaned sludge cake. They seemed safe to carry garbage in the industry judging from the results of tensile-stress testing. Some of them showed less water absorptiveness (higher water resistance) in the results of Cobb test. The results of leaching test showed small values of three heavy metals, lead, nickel and copper, in the leachate. The seed germination test suggested no adverse effects of the bins in the clay and sand on the tomato growth. The results of these tests suggest that the bins have good strength, sufficient water resistance and no toxicological effect on the environment. This new recycled bin has the possibility to solve the environmental and health problems at disposing the sludge cake.

  10. Macrobenthic succession following the cessation of sewage sludge disposal

    NASA Astrophysics Data System (ADS)

    Birchenough, Silvana N. R.; Frid, Chris L. J.

    2009-11-01

    Half a million tonnes of sewage sludge was disposed annually over an 18-yr period at a licensed area off the Northumberland coast, UK. The disposal operation ceased in December 1998, providing the ecological opportunity to study macrobenthic changes in relation to theoretical succession models. A transect from the centre of the disposal site to a control station was monitored three times a year (i.e. March, August and December). This study provides a description of the changes in the macrobenthos and physical environment in the initial '3 years' (i.e. 1999 - 2001). During the period of sewage sludge disposal there were indications of an impact on the macrobenthic community with a high total abundance of individuals ( N) and high total number of species ( S) at the stations located in the centre of the disposal ground. During the immediate post-disposal phase the site continued to show a localised increased of individuals and species in the disposal area. Over time the communities showed signs of successional changes when the reduction of organic matter source was eliminated from the natural system. Multivariate analysis demonstrated a clear gradient of change in the community composition between impacted and control stations. While most benthic studies assess re-colonisation and succession stages of macrobenthos by using manipulative field experiments, this study provides an in situ long-term assessment in the offshore environment. This study contributes with information on: i) initial colonization and succession of macrobenthic communities over a large scale and real world data; ii) macrobenthic data into existing successional models and iii) resilience of benthic communities following the cessation of sewage sludge disposal. This information has the potential to contribute to an effective management of the marine communities in the North Sea.

  11. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.

    PubMed

    Park, Jeongmin; Lee, Sang-Sup

    2018-04-25

    Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.

  12. Washing and caustic leaching of Hanford tank sludges: results of FY 1996 studies. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, G.J.; Rapko, B.M.; Wagner, M.J.

    During the past few years, the primary mission at the US Department of Energy`s Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix and then disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implementedmore » to reduce the volume of borosilicate glass produced in disposing of the tank wastes. On this basis, a pretreatment plan is being developed. This report describes the sludge washing and caustic leaching test conducted to create a Hanford tank sludge pretreatment flowsheet.« less

  13. Technology Assessment Report: Aqueous Sludge Gasification Technologies

    EPA Science Inventory

    The study reveals that sludge gasification is a potentially suitable alternative to conventional sludge handling and disposal methods. However, very few commercial operations are in existence. The limited pilot, demonstration or commercial application of gasification technology t...

  14. FUEL-EFFICIENT SEWAGE SLUDGE INCINERATION

    EPA Science Inventory

    A study was performed to evaluate the status of incineration with low fuel use as a sludge disposal technology. The energy requirements, life-cycle costs, operation and maintenance requirements, and process capabilities of four sludge incineration facilities were evaluated. These...

  15. Planning Considerations. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    This lesson deals with special considerations that should be made when choosing a sludge solids management program, briefly describing the source of solids in wastewater and why they must be dealt with. The various solids handling processes and ultimate disposal methods are also briefly described, followed by a detailed discussion of the technical…

  16. Composting. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    Composting is a lesson developed for a sludge treatment and disposal course. The lesson discusses the basic theory of composting and the basic operation, in a step-by-step sequence, of the two typical composting procedures: windrow and forced air static pile. The lesson then covers basic monitoring and operational procedures. The instructor's…

  17. A novel method for harmless disposal and resource reutilization of steel wire rope sludges.

    PubMed

    Zhang, Li; Liu, Yang-Sheng

    2016-10-01

    Rapid development of steel wire rope industry has led to the generation of large quantities of pickling sludge, which causes significant ecological problems and considerable negative environmental effects. In this study, a novel method was proposed for harmless disposal and resource reutilization of the steel wire rope sludge. Based on the method, two steel wire rope sludges (the Pb sludge and the Zn sludge) were firstly extracted by hydrochloric or sulfuric acid and then mixed with the hydrochloride acid extracting solution of aluminum skimmings to produce composite polyaluminum ferric flocculants. The optimum conditions (acid concentration, w/v ratio, reaction time, and reaction temperature) for acid extraction of the sludges were studied. Results showed that 97.03 % of Pb sludge and 96.20 % of Zn sludge were extracted. Leaching potential of the residues after acid extraction was evaluated, and a proposed treatment for the residues had been instructed. The obtained flocculant products were used to purify the real domestic wastewater and showed an equivalent or better performance than the commercial ones. This method is environmental-friendly and cost-effective when compared with the conventional sludge treatments.

  18. Reuse of industrial sludge as construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Hong, S Y

    2001-01-01

    Industrial wastewater sludge and dredged marine clay are high volume wastes that needed enormous space at landfill disposal sites. Due to the limitation of land space, there is an urgent need for alternative disposal methods for these two wastes. This study investigates the possibility of using the industrial sludge in combination with marine clay as construction aggregates. Different proportions of sludge and clay were made into round and angular aggregates. It was found that certain mix proportions could provide aggregates of adequate strength, comparable to that of conventional aggregates. Concrete samples cast from the sludge-clay aggregates yield compressive strengths in the range of 31.0 to 39.0 N/mm2. The results showed that the round aggregates of 100% sludge and the crush aggregates of sludge with up to 20% clay produced concrete of compressive strengths which are superior to that of 38.0 N/mm2 for conventional aggregate. The study indicates that the conversion of high volume wastes into construction materials is a potential option for waste management.

  19. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China.

    PubMed

    Liu, Beibei; Wei, Qi; Zhang, Bing; Bi, Jun

    2013-03-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Pretreatment of microbial sludges

    DOEpatents

    Rivard, Christopher J.; Nagle, Nicholas J.

    1995-01-01

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  1. Sludge Characteristics. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    A description of the general characteristics of sludge is provided in this lesson. It is intended as introductory material to acquaint students with the physical, chemical and biological characteristics of sludge. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a description of the lesson, estimated…

  2. Pretreatment of microbial sludges

    DOEpatents

    Rivard, C.J.; Nagle, N.J.

    1995-01-10

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  3. Evaluation of sludge management alternatives in Istanbul metropolitan area.

    PubMed

    Cakmakci, M; Erdim, E; Kinaci, C; Akca, L

    2005-01-01

    The main concern of this paper was to predict the sludge quantities generated from 18 wastewater treatment plants, which were stated to be established in the "Istanbul Water Supply, Sewerage and Drainage, Sewage Treatment and Disposal Master Plan", 10 of which are in operation at present. Besides this, obtaining the required data to compare various treatment schemes was another goal of the study. Especially, the estimation of the sludge quantity in the case of enhanced primary sedimentation was of importance. Wastewater sludge management strategies were discussed in order to develop suggestions for Istanbul Metropolitan city. Within this context, the wastewater treatment facilities, mentioned in the Master Plan that had been completed by 2000, were evaluated in terms of sludge production rates, locations and technical and management aspects. Disposal alternatives of the wastewater treatment sludge were also evaluated in this study. Using of the dewatered sludge as a landfill cover material seems the best alternative usage. Up to the year of 2040, the requirement of cover material for landfills in Istanbul will be met by the dewatered sludge originated from wastewater treatment plants in the region.

  4. Development of quantitative methods for the detection of enteroviruses in sewage sludges during activation and following land disposal.

    PubMed Central

    Hurst, C J; Farrah, S R; Gerba, C P; Melnick, J L

    1978-01-01

    The development and evaluation of methods for the quantitative recovery of enteroviruses from sewage sludge are reported. Activated sewage sludge solids were collected by centrifugation, and elution of the solid-associated virus was accomplished by mechanical agitation in glycine buffer at pH 11.0. Eluted viruses were concentrated either onto an aluminum hydroxide floc or by association with a floc which formed de novo upon adjustment of the glycine eluate to pH 3.5. Viruses which remained in the liquid phase after lowering the pH of glycine eluate were concentrated by adsorption to and elution from membrane filters. The method of choice included high pH glycine elution and subsequent low pH concentration; it yielded an efficiency of recovery from activated sludge of 80% for poliovirus type 1, 68% for echovirus type 7, and 75% for coxsackievirus B3. This method was used to study the survival of naturally occurring virus in sludge at a sewage treatment plant and after subsequent land disposal of the solids after aerobic digestion. Reduction of enterovirus titers per gram (dry weight) of solids were modest during sludge activation but increased to a rate of 2 log 10/week after land disposal. PMID:29559

  5. Development of quantitative methods for the detection of enteroviruses in sewage sludges during activation and following land disposal.

    PubMed

    Hurst, C J; Farrah, S R; Gerba, C P; Melnick, J L

    1978-07-01

    The development and evaluation of methods for the quantitative recovery of enteroviruses from sewage sludge are reported. Activated sewage sludge solids were collected by centrifugation, and elution of the solid-associated virus was accomplished by mechanical agitation in glycine buffer at pH 11.0. Eluted viruses were concentrated either onto an aluminum hydroxide floc or by association with a floc which formed de novo upon adjustment of the glycine eluate to pH 3.5. Viruses which remained in the liquid phase after lowering the pH of glycine eluate were concentrated by adsorption to and elution from membrane filters. The method of choice included high pH glycine elution and subsequent low pH concentration; it yielded an efficiency of recovery from activated sludge of 80% for poliovirus type 1, 68% for echovirus type 7, and 75% for coxsackievirus B3. This method was used to study the survival of naturally occurring virus in sludge at a sewage treatment plant and after subsequent land disposal of the solids after aerobic digestion. Reduction of enterovirus titers per gram (dry weight) of solids were modest during sludge activation but increased to a rate of 2 log 10/week after land disposal.

  6. K Basins sludge removal temporary sludge storage tank system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issuesmore » related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.« less

  7. Treating Sludges

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Discussed are some of the ways to handle municipal and industrial wastewater treatment sludge presented at the 1978 American Chemical Society meeting. Suggestions include removing toxic materials, recovering metals, and disposing treated sewage sludge onto farm land. Arguments for and against land use are also given. (MA)

  8. MICROBIOLOGICAL RISK ASSESSMENT FOR LAND APPLICATION OF MUNICIPAL SLUDGE

    EPA Science Inventory

    Each major option for the disposal/reuse of municipal sludges poses potential risks to human health or the environment because of the microbial contaminants in sludge. Therefore, risk assessment methodology appropriate for pathogen risk evaluation for land application and distrib...

  9. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode.

    PubMed

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m 2  g -1 ) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g -1 at 1.0 A g -1 in 0.5 M Na 2 SO 4 ; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g -1 at 11 A g -1 ). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  10. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m2 g-1) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g-1 at 1.0 A g-1 in 0.5 M Na2SO4; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g-1 at 11 A g-1). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  11. Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater.

    PubMed

    Tao, Hu-Chun; Zhang, He-Ran; Li, Jin-Bo; Ding, Wen-Yi

    2015-09-01

    Sewage sludge and bagasse were used as raw materials to produce cheap and efficient adsorbent with great adsorption capacity of Pb(2+). By pyrolysis at 800 °C for 0.5 h, the largest surface area (806.57 m(2)/g) of the adsorbent was obtained, enriched with organic functional groups. The optimal conditions for production of the adsorbent and adsorption of Pb(2+) were investigated. The results of adsorb-ability fitted the Langmuir isotherm and pseudo-second-order model well. The highest Pb(2+) (at pH = 4.0) adsorption capacity was achieved by treating with 60% (v/v) HNO3. This is a promising approach for metal removal from wastewater, as well as recycling sewage sludge and bagasse to ease their disposal pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater.

    PubMed

    Ben, Weiwei; Qiang, Zhimin; Yin, Xiaowei; Qu, Jiuhui; Pan, Xun

    2014-08-01

    Swine wastewater is an important pollution source of antibiotics entering the aquatic environment. In this work, the adsorption behavior of sulfamethazine (SMN), a commonly-used sulfonamide antibiotic, on activated sludge from a sequencing batch reactor treating swine wastewater was investigated. The results show that the adsorption of SMN on activated sludge was an initially rapid process and reached equilibrium after 6hr. The removal efficiency of SMN from the water phase increased with an increasing concentration of mixed liquor suspended solids, while the adsorbed concentration of SMN decreased. Solution pH influenced both the speciation of SMN and the surface properties of activated sludge, thus significantly impacting the adsorption process. A linear partition model could give a good fit for the equilibrium concentrations of SMN at the test temperatures (i.e., 10, 20 and 30°C). The partition coefficient (Kd) was determined to be 100.5L/kg at 20°C, indicating a quite high adsorption capacity for SMN. Thermodynamic analysis revealed that SMN adsorption on activated sludge was an exothermic process. This study could help to clarify the fate and behavior of sulfonamide antibiotics in the activated sludge process and assess consequent environmental risks arising from sludge disposal as well. Copyright © 2014. Published by Elsevier B.V.

  13. The prospect of hazardous sludge reduction through gasification process

    NASA Astrophysics Data System (ADS)

    Hakiki, R.; Wikaningrum, T.; Kurniawan, T.

    2018-01-01

    Biological sludge generated from centralized industrial WWTP is classified as toxic and hazardous waste based on the Indonesian’s Government Regulation No. 101/2014. The amount of mass and volume of sludge produced have an impact in the cost to manage or to dispose. The main objective of this study is to identify the opportunity of gasification technology which can be applied to reduce hazardous sludge quantity before sending to the final disposal. This preliminary study covers the technical and economic assessment of the application of gasification process, which was a combination of lab-scale experimental results and assumptions based on prior research. The results showed that the process was quite effective in reducing the amount and volume of hazardous sludge which results in reducing the disposal costs without causing negative impact on the environment. The reduced mass are moisture and volatile carbon which are decomposed, while residues are fix carbon and other minerals which are not decomposed by thermal process. The economical simulation showed that the project will achieve payback period in 2.5 years, IRR value of 53 % and BC Ratio of 2.3. The further study in the pilot scale to obtain the more accurate design and calculations is recommended.

  14. Laboratory Reactor for Processing Carbon-Containing Sludge

    NASA Astrophysics Data System (ADS)

    Korovin, I. O.; Medvedev, A. V.

    2016-10-01

    The paper describes a reactor for high-temperature pyrolysis of carbon-containing sludge with the possibility of further development of environmentally safe technology of hydrocarbon waste disposal to produce secondary products. A solution of the urgent problem has been found: prevention of environmental pollution resulting from oil pollution of soils using the pyrolysis process as a method of disposal of hydrocarbon waste to produce secondary products.

  15. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a) The littering, disposing, or dumping in any manner of garbage, refuse sewage, sludge, earth, rocks, or...

  16. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a) The littering, disposing, or dumping in any manner of garbage, refuse sewage, sludge, earth, rocks, or...

  17. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a) The littering, disposing, or dumping in any manner of garbage, refuse sewage, sludge, earth, rocks, or...

  18. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a) The littering, disposing, or dumping in any manner of garbage, refuse sewage, sludge, earth, rocks, or...

  19. Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon.

    PubMed

    Mohamed, E F; Andriantsiferana, C; Wilhelm, A M; Delmas, H

    2011-01-01

    Preparation of activated carbon from sewage sludge is a promising approach to produce cheap and efficient adsorbent for pollutants removal as well as to dispose of sewage sludge. The first objective of this study was to investigate the physical and chemical properties (BET surface area, ash and elemental content, surface functional groups by Boehm titration and weight loss by thermogravimetric analysis) of the sludge-based activated carbon (SBAC) so as to give a basic understanding of its structure and to compare to those of two commercial activated carbons, PICA S23 and F22. The second and main objective was to evaluate the performance of SBAC for single and competitive adsorption of four substituted phenols (p-nitrophenol, p-chlorophenol, p-hydroxy benzoic acid and phenol) from their aqueous solutions. The results indicated that, despite moderate micropore and mesopore surface areas, SBAC had remarkable adsorption capacity for phenols, though less than PICA carbons. Uptake of the phenolic compound was found to be dependent on both the porosity and surface chemistry of the carbons. Furthermore, the electronegativity and the hydrophobicity of the adsorbate have significant influence on the adsorption capacity. The Langmuir and Freundlich models were used for the mathematical description of the adsorption equilibrium for single-solute isotherms. Moreover, the Langmuir-Freundlich model gave satisfactory results for describing multicomponent system isotherms. The capacity of the studied activated carbons to adsorb phenols from a multi-solute system was in the following order: p-nitrophenol > p-chlorophenol > PHBA > phenol.

  20. 40 CFR 503.48 - Reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Reporting. 503.48 Section 503.48 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Incineration § 503.48 Reporting. Class I sludge management facilities, POTWs (as...

  1. 40 CFR 503.18 - Reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Reporting. 503.18 Section 503.18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.18 Reporting. (a) Class I sludge management facilities...

  2. 40 CFR 503.2 - Compliance period.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE General Provisions § 503.2 Compliance period. (a) Compliance with the standards... part for total hydrocarbons in the exit gas from a sewage sludge incinerator are effective February 19...

  3. DEVELOPMENT OF RISK ASSESSMENT METHODOLOGY FOR MUNICIPAL SLUDGE INCINERATION

    EPA Science Inventory

    This is one of a series of reports that present methodologies for assessing the potential risks to humans or other organisms from the disposal or reuse of municipal sludge. he sludge management practices addressed by this series include land application practices, distribution an...

  4. DEVELOPMENT OF RISK ASSESSMENT METHODOLOGY FOR MUNICIPAL SLUDGE LANDFILLING

    EPA Science Inventory

    This is one of a series of reports that present methodologies for assessing the potential risks to humans or other organisms from the disposal or reuse of municipal sludge. he sludge management practices addressed by this series include land application practices, distribution an...

  5. SPREADING LAGOONED SEWAGE SLUDGE ON FARMLAND: A CASE HISTORY

    EPA Science Inventory

    This project demonstrated that land application is feasible and practical for a metropolitan treatment plant for disposal of a large volume (265,000 cu m) of stabilized, liquid sewage sludge stored in lagoons. The project involved transportation of sludge by semi-trailer tankers ...

  6. Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process.

    PubMed

    Yang, Xiaoyi; Wang, Xin; Wang, Lei

    2010-04-01

    For a better sewage sludge disposal and more efficient energy reclamation, transforming of components and energy in sludge by thermal and WAO pretreatment followed by two-phase anaerobic UASB process were studied in the pilot scale. Biogas outputs and the qualities and quantities of the effluent and solid residue were compared with a traditional anaerobic sludge digestion. Sludge components, including carbon, nitrogen, phosphorus, sulphur, were observed and mass balances were discussed throughout the process. The input and output energy balance was also studied. Results showed different trait to compare with biogas outputs in terms of COD added and raw sludge added. Pretreatment improved the transformation of carbon substances into biogas production with higher carbon removal and higher VSS removal. Comparing the energy obtained from biogas production with energy inputs required for pretreatment, energy output in the whole process decreased with higher pretreatment temperature. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Study of the pyrolysis of sludge and sludge/disposal filter cake mix for the production of value added products.

    PubMed

    Velghe, Inge; Carleer, Robert; Yperman, Jan; Schreurs, Sonja

    2013-04-01

    Slow and fast pyrolysis of sludge and sludge/disposal filter cake (FC) mix are performed to investigate the liquid and solid products for their use as value added products. The obtained slow pyrolysis liquid products separate in an oil, a water rich fraction and a valuable crystalline solid 5,5-dimethyl hydantoin. During fast pyrolysis, mainly an oil fraction is formed. Aliphatic acids and amides present in the water rich fractions can be considered as value added products and could be purified. The oil fractions have properties which make them promising as fuel (25-35 MJ/kg, 14-20 wt% water content, 0.2-0.6 O/C value), but upgrading is necessary. Sludge/FC oils have a lower calorific value, due to evaporation of alcohols present in FC. ICP-AES analyses reveal that almost none of the metals present in sludge or sludge/FC are transferred towards the liquid fractions. The metals are enriched in the solid fractions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Utilization and Conversion of Sewage Sludge as Metal Sorbent

    NASA Astrophysics Data System (ADS)

    Gong, Xu Dong; Li, Loretta Y.

    2013-04-01

    Most biosolids are disposed on land. With improvements in wastewater treatment processes and upgrading of treatment plants across Canada, biosolids generation will increase dramatically. These biosolids will need to be dealt with because they contain various contaminants, including heavy metals and several classes of emerging contaminants. A number of researchers have recently focused on preparation of sewage sludge-based adsorbents by carbonation, physical activation and chemical activation for decontamination of air and wastewater. These previous studies have indicated that sludge-based activated carbon can have good adsorption performance for organic substances in dye wastewater. The overall results suggest that activated carbon from sewage sludge can produce a useful adsorbent, while also reducing the amount of sewage sludge to be disposed. However, sludge-derived activated carbon has not been extensively studied, especially for adsorption of heavy metal ions in wastewater and for its capacity to remove emerging contaminants, such as poly-fluorinated compounds (PFCs). Previous research has indicated that commercial activated carbons adsorb organic compounds more efficiently than heavy metal ions. 45 Activated carbon can be modified to enhance its adsorption capacity for special heavy metal ions,46 e.g. by addition of inorganic and organic reagents. The modifications which are successful for commercial activated carbon should also be effective for sludge-derived activated carbon, but this needs to be confirmed. Our research focuses on (a) investigation of techniques for converting sewage sludge (SS) to activated carbon (AC) as sorbents; (b) exploration of possible modification of the activated carbon (MAC) to improve its sorption capacity; (c) examination of the chemical stability of the activated carbon and the leachability of contaminants from activated carbon,; (d) comparison of adsorptivity with that of other sorbents. Based on XRD and FT-IR, we successfully converted SS to AC and further modified it to improve absorption. SSMAC has large specific surface areas based on the BET technique. Batch adsorption results indicate that metal adsorption for SSMAC > SSAC, with adsorption occurring within the first 5 minutes of contact. Comparison of the adsorptivity of various sorbents such as commercial activated carbon (CAC), mineral sorbents such as perlite, clinoptilolite and illite indicates that SSMAC × CAC × clinoptilolite > kaolite.

  9. 40 CFR 503.12 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 503.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.12 General requirements. (a) No person shall apply sewage sludge to the land except in accordance with the requirements in this subpart. (b) No...

  10. Development of Risk Assessment Methodology for Land Application and Distribution and Marketing of Municipal Sludge

    EPA Science Inventory

    This is one of a series of reports that present methodologies for assessing the potential risks to humans or other organisms from the disposal or reuse of municipal sludge. The sludge management practices addressed by this series include land application practices, distribution a...

  11. 40 CFR 503.3 - Permits and direct enforceability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....3 Section 503.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE General Provisions § 503.3 Permits and direct... and 124 by EPA or by a State that has a State sludge management program approved by EPA in accordance...

  12. 40 CFR 503.24 - Management practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...

  13. 40 CFR 503.24 - Management practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...

  14. 40 CFR 503.24 - Management practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...

  15. 40 CFR 503.24 - Management practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...

  16. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example.

    PubMed

    Guo, Qia; Dai, Xiaohu

    2017-11-01

    With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content.

    PubMed

    Dewil, Raf; Baeyens, Jan; Appels, Lise

    2007-06-18

    Power plant or cement kiln co-incineration are important disposal routes for the large amounts of waste activated sludge (WAS) which are generated annually. The presence of significant amounts of heavy metals in the sludge however poses serious problems since they are partly emitted with the flue gases (and collected in the flue gas dedusting) and partly incorporated in the ashes of the incinerator: in both cases, the disposal or reuse of the fly ash and bottom ashes can be jeopardized since subsequent leaching in landfill disposal can occur, or their "pozzolanic" incorporation in cement cannot be applied. The present paper studies some physicochemical methods for reducing the heavy metal content of WAS. The used techniques include acid and alkaline thermal hydrolysis and Fenton's peroxidation. By degrading the extracellular polymeric substances, binding sites for a large amount of heavy metals, the latter are released into the sludge water. The behaviour of several heavy metals (Cd, Cr, Cu, Hg, Pb, Ni, Zn) was assessed in laboratory tests. Results of these show a significant reduction of most heavy metals.

  18. Surveillance of waste disposal activity at sea using satellite ocean color imagers: GOCI and MODIS

    NASA Astrophysics Data System (ADS)

    Hong, Gi Hoon; Yang, Dong Beom; Lee, Hyun-Mi; Yang, Sung Ryull; Chung, Hee Woon; Kim, Chang Joon; Kim, Young-Il; Chung, Chang Soo; Ahn, Yu-Hwan; Park, Young-Je; Moon, Jeong-Eon

    2012-09-01

    Korean Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua observations of the variation in ocean color at the sea surface were utilized to monitor the impact of nutrient-rich sewage sludge disposal in the oligotrophic area of the Yellow Sea. MODIS revealed that algal blooms persisted in the spring annually at the dump site in the Yellow Sea since year 2000 to the present. A number of implications of using products of the satellite ocean color imagers were exploited here based on the measurements in the Yellow Sea. GOCI observes almost every hour during the daylight period, every day since June 2011. Therefore, GOCI provides a powerful tool to monitor waste disposal at sea in real time. Tracking of disposal activity from a large tanker was possible hour by hour from the GOCI timeseries images compared to MODIS. Smaller changes in the color of the ocean surface can be easily observed, as GOCI resolves images at smaller scales in space and time in comparison to polar orbiting satellites, e.g., MODIS. GOCI may be widely used to monitor various marine activities in the sea, including waste disposal activity from ships.

  19. Human pathogenic viruses at sewage sludge disposal sites in the Middle Atlantic region.

    PubMed

    Goyal, S M; Adams, W N; O'Malley, M L; Lear, D W

    1984-10-01

    Human enteric viruses were detected in samples of water, crabs, and bottom sediments obtained from two sewage sludge disposal sites in the Atlantic Ocean. Viruses were isolated from sediments 17 months after the cessation of sludge dumping. These findings indicate that, under natural conditions, viruses can survive for a long period of time in the marine environment and that they may present potential public health problems to humans using these resources for food and recreation. The isolation of viruses in the absence of fecal indicator bacteria reinforces previous observations on the inadequacy of these bacteria for predicting the virological quality of water and shellfish.

  20. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aponte, C.I.

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Evenmore » after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.« less

  1. Anaerobic digestion as a waste disposal option for American Samoa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C

    1993-01-01

    Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

  2. Leaching of heavy metals and alkylphenolic compounds from fresh and dried sewage sludge.

    PubMed

    Milinovic, Jelena; Vidal, Miquel; Lacorte, Silvia; Rigol, Anna

    2014-02-01

    Reusing sewage sludge as a soil fertiliser has become a common alternative to disposal. Although this practice has a few benefits, it may contribute to the medium- and long-term contamination of the trophic chain because sewage sludge may contain heavy metals and organic contaminants. As the leaching of contaminants may depend on the sludge pre-treatment, the leaching of heavy metals (Cu, Ni, Pb, Zn and Cr) and alkylphenolic compounds (APCs) (octylphenol (OP), nonylphenol (NP), nonylphenol-mono-ethoxylate (NP1EO)) was investigated in five fresh and 40 °C dried sewage sludge samples from north-eastern Spain. FT-IR analyses and full-scan GC-MS chromatograms showed that sludge drying changed the nature of organic compounds leading to changes in their solubility. Moreover, sludge drying led to a higher relative contribution of dissolved organic carbon than the particulate organic carbon in the leachates. Leaching of Pb, Zn and Cr was below 5 % in both fresh and dried sludge samples, whereas Cu and Ni leached at rates up to 12 and 43 %, respectively, in some of the dried sludge samples. The leaching yields of OP, NP and NP1EO ranged from 1.3 to 35 % for fresh samples, but they decreased from 0.8 to 3.4 % in dried samples. The decrease in the leachability of APCs observed in dried sludge samples might be attributed to the fact that these compounds are associated with particulate organic matter, with significantly lower concentration or even absent in dried sludge than in fresh sludge samples. Therefore, it is recommended to dry the sludge before its disposal.

  3. Sludge Incineration. Multiple Hearth. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This lesson introduces the basics of sludge incineration and focuses on the multiple hearth furnace in accomplishing this task. Attention is given to component identification and function process control fundamentals, theory of incineration, safety, and other responsibilites of furnace operation. The material is rather technical and assumes an…

  4. Sludge Conditioning. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    This lesson is an introduction to sludge conditioning. Topics covered include a brief explanation of colloidal systems, theory of chemical and heat conditioning, and conditioning aids. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a description of the lesson, estimated presentation time,…

  5. Leachability of fired clay brick incorporating with sewage sludge waste

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Sewage sludge is sewerage from wastewater treatment plants that generates millions tons of sludge ever year. Regarding this activity, it causes lack management of waste which is harmful to the surrounding conditions. Therefore, this study is focuses on the incorporation of sewage sludge waste into fired clay brick to provide an option of disposal method, producing adequate quality of brick as well as limiting the heavy metal leachability to the environment. Sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, 20% and 30% of sewage sludge waste (SSW). Heavy metals of crushed SSB were determined by using Toxicity Characteristic Leaching Procedure (TCLP) according to Method 1311 of United State Environment Protection Agency (USEPA) standard. From the results obtained, up to 20% of SSW could be incorporated into fired clay brick and comply with the USEPA standard. Therefore, this study revealed that by incorporating SSW into fired clay brick it could be an alternative method to dispose the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  6. Fluid dynamics simulation for design on sludge drying equipment

    NASA Astrophysics Data System (ADS)

    Li, Shuiping; Liang, Wang; Kai, Zhang

    2017-10-01

    Sludge drying equipment is a key component in the sludge drying disposal, the structure of drying equipment directly affects the drying disposal of the sludge, so it is necessary to analyse the performance of the drying equipment with different structure. Fluent software can be very convenient to get the distribution of the flow field and temperature field inside the drying equipment which reflects the performance of the structure. In this paper, the outlet position of the sludge and the shape of the sludge inlet are designed. The geometrical model of the drying equipment is established by using pre-processing software Gambit, and the meshing of the model is carried out. The Eulerian model is used to simulate the flow of each phase and the interaction between them, and the realizable turbulence model is used to simulate the turbulence of each phase. Finally, the simulation results of the scheme are compared and the optimal structure scheme is obtained, the operational requirement is proposed. The CFD theory provides a reliable basis for the drying equipment research and reduces the time and costs of the research.

  7. Recovery of viruses from field samples of raw, digested, and lagoon-dried sludges*

    PubMed Central

    Sattar, Syed A.; Westwood, J. C. N.

    1979-01-01

    In a 22-month study, viruses were detected in 84% (62/74) of raw, 53% (19/36) of anaerobically digested, and 39% (11/28) of lagoon-dried sludge samples. Lagoon sludge contained detectable viruses (reovirus and enterovirus groups) even after 8 months of retention. Because of such prolonged virus survival in sludge, care must be taken in its disposal or utilization. PMID:311705

  8. Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment.

    PubMed

    Yang, Shan-Shan; Guo, Wan-Qian; Cao, Guang-Li; Zheng, He-Shan; Ren, Nan-Qi

    2012-11-01

    This paper offers an effective pretreatment method that can simultaneously achieve excess sludge reduction and bio-hydrogen production from sludge self-fermentation. Batch tests demonstrated that the combinative use of ozone/ultrasound pretreatment had an advantage over the individual ozone and ultrasound pretreatments. The optimal condition (ozone dose of 0.158 g O(3)/g DS and ultrasound energy density of 1.423 W/mL) was recommended by response surface methodology. The maximum hydrogen yield was achieved at 9.28 mL H(2)/g DS under the optimal condition. According to the kinetic analysis, the highest hydrogen production rate (1.84 mL/h) was also obtained using combined pretreatment, which well fitted the predicted equation (the squared regression statistic was 0.9969). The disintegration degrees (DD) were limited to 19.57% and 46.10% in individual ozone and ultrasound pretreatments, while it reached up to 60.88% in combined pretreatment. The combined ozone/ultrasound pretreatment provides an ideal and environmental friendly solution to the problem of sludge disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater.

    PubMed

    Verma, Shilpi; Prasad, Basheshwar; Mishra, I M

    2012-01-01

    The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation.

  10. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal.

    PubMed

    Martín, J; Camacho-Muñoz, D; Santos, J L; Aparicio, I; Alonso, E

    2012-11-15

    The occurrence of sixteen pharmaceutically active compounds in influent and effluent wastewater and in primary, secondary and digested sludge in one-year period has been evaluated. Solid-water partition coefficients (Kd) were calculated to evaluate the efficiency of removal of these compounds from wastewater by sorption onto sludge. The ecotoxicological risk to aquatic and terrestrial ecosystems, due to wastewater discharges to the receiving streams and to the application of digested sludge as fertilizer onto soils, was also evaluated. Twelve of the pharmaceuticals were detected in wastewater at mean concentrations from 0.1 to 32 μg/L. All the compounds found in wastewater were also found in sewage sludge, except diclofenac, at mean concentrations from 8.1 to 2206 μg/kg dm. Ibuprofen, salicylic acid, gemfibrozil and caffeine were the compounds at the highest concentrations. LogKd values were between 1.17 (naproxen) and 3.48 (carbamazepine). The highest ecotoxicological risk in effluent wastewater and digested sludge is due to ibuprofen (risk quotient (RQ): 3.2 and 4.4, respectively), 17α-ethinylestradiol (RQ: 12 and 22, respectively) and 17β-estradiol (RQ: 12 and 359, respectively). Ecotoxicological risk after wastewater discharge and sludge disposal is limited to the presence of 17β-estradiol in digested-sludge amended soil (RQ: 2.7). Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [Effect of agricultural application of municipal sewage sludge on plant-soil system: A review].

    PubMed

    Liu, Meng Jiao; Xia, Shao Pan; Wang, Jun; Ma, Qing Xu; Wang, Zhong Qiang; Wu, Liang Huan

    2017-12-01

    Currently, reasonable disposal of municipal sewage sludge is one of the important issues in the field of resources and environmental science. Sludge is rich in large amounts of organic matter and available nutrients, promoting soil fertility, soil physical structure and biological properties. However, sludge contains a variety of heavy metals, organic contaminants and other hazardous substance, especially heavy metals, which are the bottlenecks of agricultural application of sludge. To improve the sewage sludge utilization efficiency and decrease the effect on soil, this essay made a summary on domestic and foreign studies on plant-soil interaction ecosystem with sewage sludge to provide a theoretical basis and scientific guidance for advancing sewage sludge utilization efficiency.

  12. Water Treatment Plant Sludges--An Update of the State of the Art: Part 2.

    ERIC Educational Resources Information Center

    American Water Works Association Journal, 1978

    1978-01-01

    This report outlines the state of the art with respect to nonmechanical and mechanical methods of dewatering water treatment plant sludge, ultimate solids disposal, and research and development needs. (CS)

  13. EU landfill waste acceptance criteria and EU Hazardous Waste Directive compliance testing of incinerated sewage sludge ash.

    PubMed

    Donatello, S; Tyrer, M; Cheeseman, C R

    2010-01-01

    A hazardous waste assessment has been completed on ash samples obtained from seven sewage sludge incinerators operating in the UK, using the methods recommended in the EU Hazardous Waste Directive. Using these methods, the assumed speciation of zinc (Zn) ultimately determines if the samples are hazardous due to ecotoxicity hazard. Leaching test results showed that two of the seven sewage sludge ash samples would require disposal in a hazardous waste landfill because they exceed EU landfill waste acceptance criteria for stabilised non-reactive hazardous waste cells for soluble selenium (Se). Because Zn cannot be proven to exist predominantly as a phosphate or oxide in the ashes, it is recommended they be considered as non-hazardous waste. However leaching test results demonstrate that these ashes cannot be considered as inert waste, and this has significant implications for the management, disposal and re-use of sewage sludge ash.

  14. Study on improvement of sludge dewaterability with H2O2 cell lysis

    NASA Astrophysics Data System (ADS)

    Zhuo, Qiongfang; Yi, Hao; Zhang, Zhengke; Wang, Ji; Feng, Lishi; Xu, Zhencheng; Guo, Qingwei; Jin, Zhong; Lan, Yongzhe

    2017-12-01

    Excess sludge is the product of sewage treatment plants. With continuous perfection of municipal sewage treatment facilities in China, sludge output increases as a result of the growth of sewage treatment plants. Excess sludge has complicated compositions, including heavy metals, PPCPs, persistent organic pollutants. It owns high contents of organic matters and water. High-efficiency and low-cost dehydration of sludge is the key of sludge disposal. How to improve sludge dehydration efficiency is the research hotspot in the world. In this study, effects of hydrogen peroxide content and pH on sludge dehydration were discussed by chemical disintegration technique. The optimal hydrogen peroxide content and pH were discussed, aiming to search a high-efficiency sludge conditioner.

  15. Water-quality data from a sludge disposal test site, St. Petersburg, Florida, November 1973-July 1977

    USGS Publications Warehouse

    Fernandez, Mario

    1978-01-01

    From November 1973 to July 1977, water samples were collected from wells to identify background water-quality conditions and to determine the effects on ground-water quality by St. Petersburg 's sludge-disposal operation (sod farm). Specific conductance and pH were determined in the field. Samples were collected for laboratory determination of selected nitrogen and phosphorus species, sodium, potassium, calcium, magnesium, chloride, trace metals, chemical and biochemical oxygen demand, and coliforms. (Woodard-USGS)

  16. Estrogenic compounds in Tunisian urban sewage treatment plant: occurrence, removal and ecotoxicological impact of sewage discharge and sludge disposal.

    PubMed

    Belhaj, Dalel; Athmouni, Khaled; Jerbi, Bouthaina; Kallel, Monem; Ayadi, Habib; Zhou, John L

    2016-12-01

    The occurrence, fate and ecotoxicological assessment of selected estrogenic compounds were investigated at Tunisian urban sewage treatment plant. The influents, effluents, as well as primary, secondary and dehydrated sludge, were sampled and analyzed for the target estrogens to evaluate their fate. All target compounds were detected in both sewage and sludge with mean concentrations from 0.062 to 0.993 μg L -1 and from 11.8 to 792.9 μg kg -1 dry weight, respectively. A wide range of removal efficiencies during the treatment processes were observed, from 6.3 % for estrone to 76.8 % for estriol. Ecotoxicological risk assessment revealed that the highest ecotoxicological risk in sewage effluent and dehydrated sludge was due to 17β-estradiol with a risk quotient (RQ) of 4.6 and 181.9, respectively, and 17α-ethinylestradiol with RQ of 9.8 and 14.85, respectively. Ecotoxicological risk after sewage discharge and sludge disposal was limited to the presence of 17β-estradiol in dehydrated-sludge amended soil with RQ of 1.38. Further control of estrogenic hormones in sewage effluent and sludge is essential before their discharge and application in order to prevent their introduction into the natural environment.

  17. Performance indicators and indices of sludge management in urban wastewater treatment plants.

    PubMed

    Silva, C; Saldanha Matos, J; Rosa, M J

    2016-12-15

    Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: syngas production and sulfur dioxide fixation.

    PubMed

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-04-01

    The integrated CO2/sludge gasification using the waste heat in hot slags, was explored with the aim of syngas production, waste heat recovery and sewage sludge disposal. The results demonstrated that hot slags presented multiple roles on sludge gasification, i.e., not only a good heat carrier (500-950 °C) but also an effective desulfurizer (800-900 °C). The total gas yields increased from 0.022 kg/kgsludge at 500 °C to 0.422 kg/kgsludge at 900 °C; meanwhile, the SO2 concentration at 900 °C remarkably reduced from 164 ppm to 114 ppm by blast furnace slags (BFS) and 93 ppm by steel slags (SS), respectively. A three-stage reaction was clarified including volatile release, char transformation and fixed carbon using Gaussian fittings and the kinetic model was analyzed. Accordingly, a decline process using the integrated method was designed and the optimum slag/sludge ratio was deduced. These deciphered results appealed potential ways of reasonable disposal of sewage sludge and efficient recovery of waste heat from hot slags. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Full-scale effects of addition of sludge from water treatment stations into processes of sewage treatment by conventional activated sludge.

    PubMed

    Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque

    2018-06-01

    An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Membrane thickening aerobic digestion processes.

    PubMed

    Woo, Bryen

    2014-01-01

    Sludge management accounts for approximately 60% of the total wastewater treatment plant expenditure and laws for sludge disposal are becoming increasingly stringent, therefore much consideration is required when designing a solids handling process. A membrane thickening aerobic digestion process integrates a controlled aerobic digestion process with pre-thickening waste activated sludge using membrane technology. This process typically features an anoxic tank, an aerated membrane thickener operating in loop with a first-stage digester followed by second-stage digestion. Membrane thickening aerobic digestion processes can handle sludge from any liquid treatment process and is best for facilities obligated to meet low total phosphorus and nitrogen discharge limits. Membrane thickening aerobic digestion processes offer many advantages including: producing a reusable quality permeate with minimal levels of total phosphorus and nitrogen that can be recycled to the head works of a plant, protecting the performance of a biological nutrient removal liquid treatment process without requiring chemical addition, providing reliable thickening up to 4% solids concentration without the use of polymers or attention to decanting, increasing sludge storage capacities in existing tanks, minimizing the footprint of new tanks, reducing disposal costs, and providing Class B stabilization.

  1. The effect of lime-dried sewage sludge on the heat-resistance of eco-cement.

    PubMed

    Li, Wen-Quan; Liu, Wei; Cao, Hai-Hua; Xu, Jing-Cheng; Liu, Jia; Li, Guang-Ming; Huang, Juwen

    2016-01-01

    The treatment and disposal of sewage sludge is a growing problem for sewage treatment plants. One method of disposal is to use sewage sludge as partial replacement for raw material in cement manufacture. Although this process has been well researched, little attention has been given to the thermal properties of cement that has had sewage sludge incorporated in the manufacturing process. This study investigated the fire endurance of eco-cement to which lime-dried sludge (LDS) had been added. LDS was added in proportions of 0%, 3%, 6%, 9%, and 12% (by weight) to the raw material. The eco-cement was exposed to 200, 400, or 600 °C for 3 h. The residual strength and the microstructural properties of eco-cement were then studied. Results showed that the eco-cement samples suffered less damage than conventional cement at 600 °C. The microstructural studies showed that LDS incorporation could reduce Ca(OH)(2) content. It was concluded that LDS has the potential to improve the heat resistance of eco-cement products.

  2. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids.

    PubMed

    Zhou, Fengsa; Wang, Hong; Fang, Sheng'en; Zhang, Weihua; Qiu, Rongliang

    2015-10-01

    Pyrolyzing municipal wastewater treatment sludge into biochar can be a promising sludge disposal approach, especially as the produced sludge-derived biochar (SDBC) is found to be an excellent sorbent for heavy metals and atrazine. The aim of this study was to investigate how and why the coexisting humic acids influence the sorption capacity, kinetic, and binding of these contaminants on SDBC surface. Results showed humic acids enhanced Pb(II)/Cr(VI) sorption binding, and increased the corresponding Pb(II) Langmuir sorption capacity at pH 5.0 from 197 to 233 μmol g(-1), and from 688 to 738 μmol g(-1) for Cr(VI) at pH 2.0. It can be mainly attributed to the sorbed humic acids, whose active functional groups can offer the additional sites to form stronger inner-sphere complexes with Pb(2+), and supply more reducing agent to facilitate the transformation of Cr(VI) to Cr(III). However, humic acids reduced the atrazine adsorption Freundlich constant from 1.085 to 0.616 μmol g(-1). The pore blockage, confirmed by the decreased BET-specific surface area, as well as the more hydrophilic surface with more sorbed water molecules may be the main reasons for that suppression. Therefore, the coexisting humic acids may affect heavy metal stabilization or pesticide immobilization during SDBC application to contaminated water or soils, and its role thus should be considered especially when organic residues are also added significantly to increase the humic acid content there.

  3. Enhanced biodegradation of hydrocarbons in petroleum tank bottom oil sludge and characterization of biocatalysts and biosurfactants.

    PubMed

    Suganthi, S Hepziba; Murshid, Shabnam; Sriram, Sriswarna; Ramani, K

    2018-08-15

    Petroleum hydrocarbon removal from tank bottom oil sludge is a major issue due to its properties. Conventional physicochemical treatment techniques are less effective. Though the bioremediation is considered for the hydrocarbon removal from tank bottom oil sludge, the efficiency is low and time taking due to the low yield of biocatalysts and biosurfactants. The focal theme of the present investigation is to modify the process by introducing the intermittent inoculation for the enhanced biodegradation of hydrocarbons in the tank bottom oil sludge by maintaining a constant level of biocatalysts such as oxidoreductase, catalase, and lipase as well as biosurfactants. In addition, the heavy metal removal was also addressed. The microbial consortia comprising Shewanalla chilikensis, Bacillus firmus, and Halomonas hamiltonii was used for the biodegradation of oil sludge. One variable at a time approach was used for the optimum of culture conditions. The bacterial consortia degraded the oil sludge by producing biocatalysts such as lipase (80 U/ml), catalase (46 U/ml), oxidoreductase (68 U/ml) along with the production of lipoprotein biosurfactant (152 mg/g of oil sludge) constantly and achieved 96% reduction of total petroleum hydrocarbon. The crude enzymes were characterized by FT-IR and the biosurfactant was characterized by surface tension reduction, emulsification index, FT-IR, TLC, and SDS-PAGE. GC-MS and NMR also revealed that the hydrocarbons present in the oil sludge were effectively degraded by the microbial consortia. The ICP-OES result indicated that the microbial consortium is also effective in removing the heavy metals. Hence, bioremediation using the hydrocarbonoclastic microbial consortium can be considered as an environmentally friendly process for disposal of tank bottom oil sludge from petroleum oil refining industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. DESIGN CONSIDERATIONS FOR PULP AND PAPER-MILL SLUDGE LANDFILLS

    EPA Science Inventory

    This report presents procedures for the engineering design and control of pulp and paper-mill sludge disposal landfills. Engineering design will allow more efficient use, thereby contributing to economic and environmental benefits. To form the basis for engineering design of slud...

  5. Stack Gas Scrubber Makes the Grade

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1975

    1975-01-01

    Describes a year long test of successful sulfur dioxide removal from stack gas with a calcium oxide slurry. Sludge disposal problems are discussed. Cost is estimated at 0.6 mill per kwh not including sludge removal. A flow diagram and equations are included. (GH)

  6. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal.

    PubMed

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-05

    Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400-800°C and an impregnating concentration ≨0.5wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Comparison of three different wastewater sludge and their respective drying processes: Solar, thermal and reed beds - Impact on organic matter characteristics.

    PubMed

    Collard, Marie; Teychené, Benoit; Lemée, Laurent

    2017-12-01

    Drying process aims at minimising the volume of wastewater sludge (WWS) before disposal, however it can impact sludge characteristics. Due to its high content in organic matter (OM) and lipids, sludge are mainly valorised by land farming but can also be considered as a feedstock for biodiesel production. As sludge composition is a major parameter for the choice of disposal techniques, the objective of this study was to determine the influence of the drying process. To reach this goal, three sludges obtained from solar, reed beds and thermal drying processes were investigated at the global and molecular scales. Before the drying step the sludges presented similar physico-chemical (OM content, elemental analysis, pH, infrared spectra) characteristics and lipid contents. A strong influence of the drying process on lipids and humic-like substances contents was observed through OM fractionation. Thermochemolysis-GCMS of raw sludge and lipids revealed similar molecular content mainly constituted with steroids and fatty acids. Molecular changes were noticeable for thermal drying through differences in branched to linear fatty acids ratio. Finally the thermal drying induced a weakening of OM whereas the solar drying led to a complexification. These findings show that smooth drying processes such as solar or reed-beds are preferable for amendment production whereas thermal process leads to pellets with a high lipid content which could be considered for fuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Techno-economic evaluation of the application of ozone-oxidation in a full-scale aerobic digestion plant.

    PubMed

    Chiavola, Agostina; D'Amato, Emilio; Gori, Riccardo; Lubello, Claudio; Sirini, Piero

    2013-04-01

    This paper deals with the application of the ozone-oxidation in a full scale aerobic sludge digester. Ozonation was applied continuously to a fraction of the biological sludge extracted from the digestion unit; the ozonated sludge was then recirculated to the same digester. Three different ozone flow rates were tested (60,500 and 670g O3 h(-1)) and their effects evaluated in terms of variation of the total and soluble fractions of COD, nitrogen and phosphorous, of total and volatile suspended solids concentrations and Sludge Volume Index in the aerobic digestion unit. During the 7-month operation of the ozonation process, it was observed an appreciable improvement of the aerobic digestion efficiency (up to about 20% under the optimal conditions) and of the sludge settleability properties. These results determined an average reduction of about 60% in the biological sludge extracted from the plant and delivered to final disposal. A thorough economic analysis showed that this reduction allowed to achieve a significant cost saving for the plant with respect to the previous years operated without ozonation. Furthermore, it was determined the threshold disposal cost above which implementation of the ozone oxidation in the aerobic digestion units of similar WWTPs becomes economically convenient (about 60€t(-1) of sludge). Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Fluid placement of fixated scrubber sludge to reduce surface subsidence and to abate acid mine drainage in abandoned underground coal mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meiers, R.J.; Golden, D.; Gray, R.

    1995-12-31

    Indianapolis Power and Light Company (IPL) began researching the use of fluid placement techniques of the fixated scrubber sludge (FSS) to reduce surface subsidence from underground coal mines to develop an economic alternative to low strength concrete grout. Abandoned underground coal mines surround property adjacent to IPL`s coal combustion by-product (CCBP) landfill at the Petersburg Generating Station. Landfill expansion into these areas is in question because of the high potential for sinkhole subsidence to develop. Sinkholes manifesting at the surface would put the integrity of a liner or runoff pond containment structure for a CCBP disposal facility at risk. Themore » fluid placement techniques of the FSS as a subsidence abatement technology was demonstrated during an eight week period in September, October, and November 1994 at the Petersburg Generating Station. The success of this technology will be determined by the percentage of the mine void filled, strength of the FSS placed, and the overall effects on the hydrogeologic environment. The complete report for this project will be finalized in early 1996.« less

  10. Experimental research of sewage sludge with coal and biomass co-combustion, in pellet form.

    PubMed

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2016-07-01

    Increased sewage sludge production and disposal, as well as the properties of sewage sludge, are currently affecting the environment, which has resulted in legislation changes in Poland. Based on the Economy Minister Regulation of 16 July 2015 (Regulation of the Economy Minister, 2015) regarding the criteria and procedures for releasing wastes for landfilling, the thermal disposal of sewage sludge is important due to its gross calorific value, which is greater than 6MJ/kg, and the problems that result from its use and application. Consequently, increasingly restrictive legislation that began on 1 January 2016 was introduced for sewage sludge storage in Poland. Sewage sludge thermal utilisation is an attractive option because it minimizes odours, significantly reduces the volume of starting material and thermally destroys the organic and toxic components of the off pads. Additionally, it is possible that the ash produced could be used in different ways. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies of the mechanisms and kinetics of sewage sludge, coal and biomass combustion and their co-combustion in spherical-pellet form. Compared with biomass, a higher temperature is required to ignite sewage sludge by flame. The properties of biomass and sewage sludge result in the intensification of the combustion process (by fast ignition of volatile matter). In contrast to coal, a combustion of sewage sludge is determined not only burning the char, but also the combustion of volatiles. The addition of sewage sludge to hard coal and lignite shortens combustion times compared with coal, and the addition of sewage sludge to willow Salix viminalis produces an increase in combustion time compared with willow alone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 40 CFR 503.14 - Management practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Management practices. 503.14 Section 503.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.14 Management practices. (a) Bulk...

  12. 40 CFR 503.45 - Management practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Management practices. 503.45 Section 503.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Incineration § 503.45 Management practices. (a)(1) An...

  13. 40 CFR 503.14 - Management practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Management practices. 503.14 Section 503.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.14 Management practices. (a) Bulk...

  14. 40 CFR 503.14 - Management practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Management practices. 503.14 Section 503.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.14 Management practices. (a) Bulk...

  15. 40 CFR 503.45 - Management practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Management practices. 503.45 Section 503.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Incineration § 503.45 Management practices. (a)(1) An...

  16. 40 CFR 503.14 - Management practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Management practices. 503.14 Section 503.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.14 Management practices. (a) Bulk...

  17. 40 CFR 503.45 - Management practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Management practices. 503.45 Section 503.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Incineration § 503.45 Management practices. (a)(1) An...

  18. 40 CFR 503.45 - Management practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Management practices. 503.45 Section 503.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Incineration § 503.45 Management practices. (a)(1) An...

  19. 40 CFR 503.14 - Management practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Management practices. 503.14 Section 503.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.14 Management practices. (a) Bulk...

  20. 40 CFR 503.45 - Management practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Management practices. 503.45 Section 503.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Incineration § 503.45 Management practices. (a)(1) An...

  1. Recovery opportunities for metals and energy from sewage sludges.

    PubMed

    Mulchandani, Anjali; Westerhoff, Paul

    2016-09-01

    Limitations on current wastewater treatment plant (WWTP) biological processes and solids disposal options present opportunities to implement novel technologies that convert WWTPs into resource recovery facilities. This review considered replacing or augmenting extensive dewatering, anaerobic digestion, and off-site disposal with new thermo-chemical and liquid extraction processes. These technologies may better recover energy and metals while inactivating pathogens and destroying organic pollutants. Because limited direct comparisons between different sludge types exist in the literature for hydrothermal liquefaction, this study augments the findings with experimental data. These experiments demonstrated 50% reduction in sludge mass, with 30% of liquefaction products converted to bio-oil and most metals sequestered within a small mass of solid bio-char residue. Finally, each technology's contribution to the three sustainability pillars is investigated. Although limiting hazardous materials reintroduction to the environment may increase economic cost of sludge treatment, it is balanced by cleaner environment and valuable resource benefits for society. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Elemental transport and distribution in soils amended with incinerated sewage sludge.

    PubMed

    Paramasivam, S; Sajwan, K S; Alva, A K; VanClief, D; Hostler, K H

    2003-05-01

    Sewage sludge (SS) is the major solid waste of sewage and wastewater treatment plants in cities around the world. Even though treated effluent water from wastewater treatment plants are utilized for irrigation, disposal of sewage sludge is becoming a serious problem. This is due to its high content of certain heavy metals still posing threat of accumulation in plants and groundwater contamination when it is used as soil amendment or disposed in landfills. Water treatment plants incinerate the dewatered activated sewage sludge (ISS) and dissolve the ash in water to store in ash ponds for long-term storage (WISS). A study was undertaken to evaluate the transport and leaching potential of various elements and their distribution within soil columns amended with various rates of ISS. Results of this study indicates that ISS from wastewater treatment plants can be used as soil amendment on agricultural lands at low to medium rates (< or = 100 Mg ha(-1)) without causing potential loading of metals into groundwater.

  3. Petroleum sludge treatment and reuse for cement production as setting retarder

    NASA Astrophysics Data System (ADS)

    Aeslina, A. K.; Ali, B.

    2017-05-01

    Petroleum sludge is a dangerous waste that needs to be treated to avoid any contamination of soil and groundwater due to its disposal. As an attempt to treat this waste, it has been incorporated into cement production as substitution for gypsum. As results, 5% of petroleum sludge has shown effective results and could play the same role of gypsum in delaying the flash setting of cement clinker.

  4. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Disinfection of sewage wastewater and sludge by electron treatment

    NASA Astrophysics Data System (ADS)

    Trump, J. G.; Merrill, E. W.; Wright, K. A.

    The use of machine-accelerated electrons to disinfect sewage waterwaste and sludge is discussed. The method is shown to be practical and energy-efficient for the broad spectrum disinfection of pathogenic organisms in municipal wastewaters and sludge removed from them. Studies of biological, chemical and physical effects are reported. Electron treatment is suggested as an alternative to chlorination of municipal liquid wastes after electron treatment to provide disinfection. Disposal of sewage sludge is recommended as an agricultural resource by subsurface land injection, or as a nutrient for fish populations by widespread ocean dispersal.

  6. 40 CFR 503.4 - Relationship to other regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Relationship to other regulations. 503.4 Section 503.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE General Provisions § 503.4 Relationship to other...

  7. RECYCLING OF WATER TREATMENT PLANT SLUDGE VIA LAND APPLICATION: ASSESSMENT OF RISK

    EPA Science Inventory

    Water treatment sludges (WTS) offer potential benefits when applied to soil and recycling of the waste stream via land application has been proposed as a management option. Recycling of WTS to the land helps conserve landfill disposal capacity and natural resources, but potential...

  8. MANUAL FOR COMPOSTING SEWAGE SLUDGE BY THE BELTSVILLE AERATED-PILE METHOD

    EPA Science Inventory

    In producing clean water from sewage, wastewater treatment plants also produce sludge. Most of the commonly used methods to dispose of this material are now considered to be either environmentally unacceptable, wasteful of energy, or very expensive. To ease this situation, a rela...

  9. 40 CFR 503.4 - Relationship to other regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Relationship to other regulations. 503.4 Section 503.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE General Provisions § 503.4 Relationship to other...

  10. 40 CFR 255.30 - Responsibilities established.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accountable. (b) Where the State plan identifies municipal sewage sludge disposal, hazardous waste disposal or... Section 255.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Responsibilities of Identified Agencies and...

  11. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Rixiang; Zhang, Bei; Saad, Emily M.

    Thermal and hydrothermal treatments are promising techniques for sewage sludge management that can potentially facilitate safe waste disposal, energy recovery, and nutrient recovery/recycling. Content and speciation of heavy metals in the treatment products affect the potential environmental risks upon sludge disposal and/or application of the treatment products. Therefore, it is important to study the speciation transformation of heavy metals and the effects of treatment conditions. By combining synchrotron X-ray spectroscopy/microscopy analysis and sequential chemical extraction, this study systematically characterized the speciation of Zn and Cu in municipal sewage sludges and their chars derived from pyrolysis (a representative thermal treatment technique)more » and hydrothermal carbonization (HTC; a representative hydrothermal treatment technique). Spectroscopy analysis revealed enhanced sulfidation of Zn and Cu by anaerobic digestion and HTC treatments, as compared to desulfidation by pyrolysis. Overall, changes in the chemical speciation and matrix properties led to reduced mobility of Zn and Cu in the treatment products. These results provide insights into the reaction mechanisms during pyrolysis and HTC treatments of sludges and can help evaluate the environmental/health risks associated with the metals in the treatment products.« less

  12. Anaerobic storage as a pretreatment for enhanced biodegradability of dewatered sewage sludge.

    PubMed

    Xu, Huacheng; He, Pinjing; Wang, Guanzhao; Shao, Liming; Lee, Duujong

    2011-01-01

    Dewatered sewage sludge is often stored still before further processing and final disposal. This study showed that anaerobic storage of dewatered sewage sludge could hydrolyze organic matter from the sludge matrix, and increase soluble organic acid content from 90 to 2400 mg/L and soluble organic carbon content from 220 to 1650 mg/L. Correspondingly, the contents of proteins, celluloses and hemicelluloses were reduced by 2-9%. Applying anaerobic storage markedly enhanced the efficiency of the subsequent bio-drying process on stored sludge. Correspondingly, biogas and odor gas were produced immediately after commencing the sludge storage. Anaerobic storage with odor control can be applied as a pretreatment process for dewatered sewage sludge in wastewater treatment plants. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. 78 FR 77722 - Environmental Assessment and Finding of No Significant Impact Related to an Alternative Disposal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Fuel Cycle Facility in Festus, Missouri authorizing alternative disposal of soil and soil-like wastes... Code of Federal Regulations (10 CFR), of an additional 22,000 m\\3\\ (cubic meters) of soil and soil-like... for disposal of dewatered sanitary sludge as soil-like material. The licensee holds NRC License No...

  14. PRELIMINARY RISK ASSESSMENT FOR VIRUSES IN MUNICIPAL SEWAGE SLUDGE APPLIED TO LAND

    EPA Science Inventory

    Section 405 of the Clean Water Act requires the U.S. Environmental Protection Agency to develoP and issue regulations that identify; (1) uses for sludge including disposal; (2) specify factors (including costs) to be taken into account in determining the measures and practices ap...

  15. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    PubMed

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Transformation of heavy metal speciation during sludge drying: mechanistic insights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Huanxin; Ma, Xue-Wen; Fu, Feng-Xia

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized the Cr, Cu, Cd and Pb in sludge by transforming acid-soluble, reducible andmore » oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.« less

  17. Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion.

    PubMed

    Wei, Wei; Wang, Qilin; Zhang, Liguo; Laloo, Andrew; Duan, Haoran; Batstone, Damien J; Yuan, Zhiguo

    2018-03-01

    Previous work has demonstrated that pre-treatment of waste activated sludge (WAS) with free nitrous acid (FNA i.e. HNO 2 ) enhances the biodegradability of WAS, identified by a 20-50% increase in specific methane production in biochemical methane potential (BMP) tests. This suggests that FNA pre-treatment would enhance the destruction of volatile solids (VS) in an anaerobic sludge digester, and reduce overall sludge disposal costs, provided that the dewaterability of the digested sludge is not negatively affected. This study experimentally evaluates the impact of FNA pre-treatment on the VS destruction in anaerobic sludge digestion and on the dewaterability of digested sludge, using continuously operated bench-scale anaerobic digesters. Pre-treatment of full-scale WAS for 24 h at an FNA concentration of 1.8 mg NN/L enhanced VS destruction by 17 ± 1% (from 29.2 ± 0.9% to 34.2 ± 1.1%) and increased dewaterability (centrifuge test) from 12.4 ± 0.4% to 14.1 ± 0.4%. Supporting the VS destruction data, methane production increased by 16 ± 1%. Biochemical methane potential tests indicated that the final digestate stability was also improved with a lower potential from FNA treated digestate. Further, a 2.1 ± 0.2 log improvement in pathogen reduction was also achieved. With inorganic solids representing 15-22% of the full-scale WAS used, FNA pre-treatment resulted in a 16-17% reduction in the volume of dewatered sludge for final disposal. This results in significantly reduced costs as assessed by economic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Feedstock and process influence on biodiesel produced from waste sewage sludge.

    PubMed

    Capodaglio, Andrea G; Callegari, Arianna

    2018-06-15

    Disposal of sewage sludge is one of the most important issues in wastewater treatment throughout Europe, as EU sludge production, estimated at 9.5 million tons dry weight in 2005, is expected to approach 13 million tons in 2020. While sludge disposal costs may constitute 30-50% of the total operation costs of wastewater treatment processes, waste sewage sludge still contains resources that may be put to use, like nutrients and energy, that can be recovered through a variety of approaches. Research has shown that waste sewage sludge can be a valuable and very productive feedstock for biodiesel generation, containing lipids (the fats from which biofuels are extracted) in amounts that would require large areas cultivated with typical biodiesel feedstock, to produce, and at a much lower final cost. Several methods have been tested for the production of biodiesel from sewage sludge. To date, among the most efficient such process is pyrolysis, and in particular Microwave-Assisted Pyrolysis (MAP), under which process conditions are more favorable in energetic and economic terms. Sludge characteristics are very variable, depending on the characteristics of the wastewater-generating service area and on the wastewater treatment process itself. Each sludge can be considered a unique case, and as such experimental determination of the optimal biodiesel yields must be conducted on a case-by-case basis. In addition to biodiesel, other pyrolysis products can add to the energetic yield of the process (and not only). This paper discusses how feedstock properties and process characteristics may influence biodiesel (and other products) yield from pyrolytic (and in particular, MAP) processes, and discusses future possible technological developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Recycling of petroleum-contaminated sand.

    PubMed

    Taha, R; Ba-Omar, M; Pillay, A E; Roos, G; al-Hamdi, A

    2001-08-01

    The environmental impact of using petroleum-contaminated sand (PCS) as a substitute in asphalt paving mixtures was examined. An appreciable component of PCS is oily sludge, which is found as the dregs in oil storage tanks and is also produced as a result of oil spills on clean sand. The current method for the disposal of oily sludge is land farming. However, this method has not been successful as an oil content of < 1% w/w is required, and difficulty was encountered in reaching this target. The reuse of the sludge in asphalt paving mixtures was therefore considered as an alternative. Standard tests and environmental studies were conducted to establish the integrity of the materials containing the recycled sludge. These included physical and chemical characterization of the sludge itself, and an assessment of the mechanical properties of materials containing 0%, 5%, 22% and 50% oily sludge. The blended mixtures were subjected to special tests, such as Marshall testing and the determination of stability and flow properties. The experimental results indicated that mixtures containing up to 22% oily sludge could meet the necessary criteria for a specific asphalt concrete wearing course or bituminous base course. To maximize the assay from the recycled material, the environmental assessment was restricted to the 50% oily sludge mixture. Leachates associated with this particular mixture were assayed for total organic residue and certain hazardous metal contaminants. The results revealed that the organics were negligible, and the concentrations of the metals were not significant. Thus, no adverse environmental impact should be anticipated from the use of the recycled product. Our research showed that the disposal of oily sludge in asphalt paving mixtures could possibly yield considerable savings per tonne of asphalt concrete, and concurrently minimize any direct impact on the environment.

  20. Sludge utilisation in agriculture: possibilities and prospects in Greece.

    PubMed

    Andreadakis, A D; Mamals, D; Gavalaki, E; Kampylafka, S

    2002-01-01

    The paper presents the prospects for agricultural utilisation of the sludge produced from wastewater treatment plants in Greece and more specifically focuses on a critical review of the legislatory framework, determination of the quantitative and qualitative characteristics of the produced sludges, examination of possible sludge treatment methods and evaluation of the possibilities and prospects of sludge utilisation on the basis of the above considerations. Landfilling is practically the only route to sludge disposal in Greece. However, in view of the anticipated future restrictions for landfilling within the European Union, this method is clearly a short-term solution and alternative options, including agricultural reuse, must be implemented. The results of a recent survey are presented and discussed in relation to this need.

  1. A review on paint sludge from automotive industries: Generation, characteristics and management.

    PubMed

    Salihoglu, Guray; Salihoglu, Nezih Kamil

    2016-03-15

    The automotive manufacturing process results in the consumption of several natural sources and the generation of various types of wastes. The primary source of hazardous wastes at an automotive manufacturing plant is the painting process, and the major waste fraction is paint sludge, which is classified with EU waste code of 080113* implying hazardous characteristics. The amount of the paint sludge generated increases every year with the worldwide increase in the car production. The characteristics of the paint sludge, which mainly designate the management route, are mainly determined by the type of the paint used, application technique employed, and the chemicals applied such as flocculants, detackifiers, pH boosters, antifoam agents, and biocides as well as the dewatering techniques preferred. Major routes for the disposal of the paint sludges are incineration as hazardous waste or combustion at cement kilns. Because of high dissolved organic carbon content of the paint, the paint sludge cannot be accepted by landfills according to European Union Legislations. More investigations are needed in the field of paint sludge recycling such as recycling it as a new paint or as other formulations, or making use of the sludge for the production of construction materials. Research on the applicability of the paint sludge in composting and biogasification can also be useful. Ongoing research is currently being conducted on new application techniques to increase the effectiveness of paint transfer, which helps to prevent the generation of paint sludge. Advancements in paint and coating chemistry such as the reduction in the coating layers with its thickness also help to decrease the level of paint sludge generation. Investigations on the effects of the chemicals on the recycling potential of paint sludges and consideration of these effects by the chemical manufacturer companies would be extremely important. This review presents the formation of paint sludge, the factors affecting its characteristics, common disposal routes, the findings of the field trips to automotive manufacturing plants in Turkey, and a summary of the characterization findings of the paint sludge samples from a plant in Turkey. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Quantitative mapping of suspended solids in wastewater sludge plumes in the New York Bight apex

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Duedall, I. W.; Glasgow, R. M.; Proni, J. R.; Nelsen, T. A.

    1977-01-01

    The purpose of this investigation was to apply the previously reported methodology to remotely sensed data that were collected over wastewater sludge plumes in the New York Bight apex on September 22, 1975. Spectral signatures were also determined during this study. These signatures may be useful in the specific identification of sludge plumes, as opposed to other plumes such as those created by the disposal of industrial acid wastes.

  3. Vegetation of waste disposal areas at a coal-fired power plant in Kansas. [Agropyron elongatum, Festuca arundinacea, Melilotus officinalis, Echinochloa crusgalli, Populus deltoides, Juniperus virginiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulhern, D.W.; Robel, R.J.; Furness, J.C.

    Disposal of scrubber sludge and fly ash waste from coal-fired power plants is a costly problem for utilities. Current regulations call for the retired waste areas to be covered with topsoil, then seeded to produce a protective vegetative cap. We conducted field tests over a 3-yr period to determine if a vegetative cover could be established without first adding topsoil to waste sites. Seven herbaceous and six tree species were planted on scrubber sludge and bottom ash sites. These substrates were first amended with fertilizer, and then hay, woodchips, or cow (Bos taurus) manure. The bottom ash was not capablemore » of supporting vegetative growth, even with amendment. Tall wheatgrass (Agropyron elongatum, (Host) Beauv.), tall fescue (Festuca arundinacea Schreb.), yellow sweet clover (Melilotus officinalis Lam.), and Japanese millet (Echinochloa crusgalli (L.) Beauv.) grew well on scrubber sludge, as did eastern cottonwood (Populus deltoides Marsh.) and eastern red cedar trees (Juniperus virginiana L.). Generally, herbaceous plants grew best on scrubber sludge to which manure and fertilizer were added, the trees survived and grew best on scrubber sludge amended with woodchips and fertilizer. This study demonstrates that a good vegetative cover can be produced on scrubber sludge waste areas without first covering them with topsoil.« less

  4. Utilization of alum sludge as chromium removal

    NASA Astrophysics Data System (ADS)

    Zahari, Nazirul Mubin; Sidek, Lariyah Mohd; Zulkifli, Muhammad Azmeer Asyraf; Hua, Chua Kok; Jalil, Nurulhidayah Abdul

    2017-09-01

    The amount of alum sludge produced at water treatment plant has become a problem where it is highly costly in order to dispose them. Various research was conducted to find the most suitable and economic alternative to recycle and reused of alum sludge. In this study, alum sludge was retrieved from Waterworks where it was dewatered, dried, grounded and sieved to obtain smallest particle sizes of alum sludge. The synthetic water was prepared at the laboratory in as it was used to imitate the properties of real water contaminated with chromium. This study was conducted to determine the percentage reduction of chromium concentration in synthetic water by using alum sludge as absorbent. The percentage reduction of chromium was observed under the effect of initial concentration of chromium and the height of alum sludge. The result indicates that chromium concentration reduction was the highest at the lowest initial concentration and at the highest height of alum sludge and vice versa.

  5. Impact of RCRA (PL 94-580) on the use or disposal of solid wastes from Texas lignite-fired utility boilers: a literature survey. Final report. [Flue gas desulfurization sludges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.L.

    A literature survey was conducted in order to determine the amount of information available to the public concerning the impact of the Resource Conservation and Recovery Act of 1976 (RCRA) on the use or disposal of solid wastes from Texas lignite-fired utility boilers. The utility power plants of ALCOA, Big Brown, Martin Lake, Monticello and San Miguel are the only facilities currently using Texas lignite as fuel. RCRA is a comprehensive federal law which provides for the management of hazardous waste from generation to ultimate disposal. Utility solid wastes such as fly ash and flue gas desulfurization (FGD) sludge aremore » currently classified as excluded wastes (wastes exempt from hazardous classification) pending further information regarding these high-volume, low risk wastes. RCRA also provides for the increased need of recovered materials in Subtitle F - Federal Procurement. The lignite deposits of Texas occur in belts that stretch diagonally across the state from Laredo to Texarkana. The sulfur content and Btu value of Texas lignite combined requires that sulfur scrubbers be installed on new power plant units. The utility solid wastes occur in large quantities and leachate from some of these wastes contained detectable amounts of chromium and selenium. However, the concentration of these elements in the leachate was not sufficient to classify any of the utility wastes in this study as hazardous per current RCRA guidelines. In general, fly ash and FGD sludge are classified as Class II wastes and disposed of in an environmentally acceptable manner. Considerable amounts of bottom ash and fly ash are utilized but, thus far, FGD sludge has been landfilled, usually in combination with fly ash.« less

  6. Distribution of sewage indicated by Clostridium perfringens at a deep-water disposal site after cessation of sewage disposal.

    PubMed

    Hill, R T; Straube, W L; Palmisano, A C; Gibson, S L; Colwell, R R

    1996-05-01

    Clostridium perfringens, a marker of domestic sewage contamination, was enumerated in sediment samples obtained from the vicinity of the 106-Mile Site 1 month and 1 year after cessation of sewage disposal at this site. C. perfringens counts in sediments collected at the disposal site and from stations 26 nautical miles (ca. 48 km) and 50 nautical miles (ca. 92 km) to the southwest of the site were, in general, more than 10-fold higher than counts from an uncontaminated reference site. C. perfringens counts at the disposal site were not significantly different between 1992 and 1993, suggesting that sewage sludge had remained in the benthic environment at this site. At stations where C. perfringens counts were elevated (i.e., stations other than the reference station), counts were generally higher in the top 1 cm and decreased down to 5 cm. In some cases, C. perfringens counts in the bottom 4 or 5 cm showed a trend of higher counts in 1993 than in 1992, suggesting bioturbation. We conclude that widespread sludge contamination of the benthic environment has persisted for at least 1 year after cessation of ocean sewage disposal at the 106-Mile Site.

  7. Micropollutants in source separated wastewater streams and recovered resources of source separated sanitation.

    PubMed

    Butkovskyi, A; Leal, L Hernandez; Zeeman, G; Rijnaarts, H H M

    2017-07-01

    The quality of anaerobic sludge and struvite from black water treatment system, aerobic sludge from grey water treatment system and effluents of both systems was assessed for organic micropollutant content in order to ensure safety when reusing these products. Use of anaerobic black water sludge and struvite as soil amendments is recommended based on the low micropollutant content. Aerobic grey water sludge is recommended for disposal, because of the relatively high micropollutant concentrations, exceeding those in sewage sludge. Effluents of black and grey water treatment systems require post-treatment prior to reuse, because the measured micropollutant concentrations in the effluents are above ecotoxicological thresholds. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Vacuum Filtration. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Filer, Herb; Windram, Kendall

    Three types of vacuum filters and their operation are described in this lesson. Typical filter cycle, filter components and their functions, process control parameters, expected performance, and safety/historical aspects are considered. Conditioning methods are also described, although it is suggested that lessons on sludge characteristics, sludge…

  9. 40 CFR 503.16 - Frequency of monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Frequency of monitoring. 503.16... STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.16 Frequency of monitoring. (a) Sewage sludge. (1) The frequency of monitoring for the pollutants listed in Table 1, Table 2, Table 3 and...

  10. 40 CFR 503.16 - Frequency of monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Frequency of monitoring. 503.16... STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.16 Frequency of monitoring. (a) Sewage sludge. (1) The frequency of monitoring for the pollutants listed in Table 1, Table 2, Table 3 and...

  11. 40 CFR 503.16 - Frequency of monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Frequency of monitoring. 503.16... STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.16 Frequency of monitoring. (a) Sewage sludge. (1) The frequency of monitoring for the pollutants listed in Table 1, Table 2, Table 3 and...

  12. 40 CFR 503.16 - Frequency of monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Frequency of monitoring. 503.16... STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.16 Frequency of monitoring. (a) Sewage sludge. (1) The frequency of monitoring for the pollutants listed in Table 1, Table 2, Table 3 and...

  13. 40 CFR 503.16 - Frequency of monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Frequency of monitoring. 503.16... STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.16 Frequency of monitoring. (a) Sewage sludge. (1) The frequency of monitoring for the pollutants listed in Table 1, Table 2, Table 3 and...

  14. PATHOGEN RISK ASSESSMENT FOR LAND APPLICATION OF MUNICIPAL SLUDGE, VOLUME II: USER'S MANUAL

    EPA Science Inventory

    Section 405 of the Clean Water Act requires the U.S. EPA to develop and issue regulations that identify: 1) uses for sludge including disposal; 2) specific factors (including costs) to be taken into account in determining the measures and practices applicable for each use or disp...

  15. PATHOGEN RISK ASSESSMENT FOR LAND APPLICATION OF MUNICIPAL SLUDGE VOLUME I: METHODOLOGY AND COMPUTER MODEL

    EPA Science Inventory

    Section 405 of the Clean Water Act requires the U.S. EPA to develop and issue regulations that identify: 1) uses for sludge including disposal; 2) specific factors (including costs) to be taken into account in determining the measures and practices applicable for each use or disp...

  16. Sewage sludge disposal strategies for sustainable development.

    PubMed

    Kacprzak, Małgorzata; Neczaj, Ewa; Fijałkowski, Krzysztof; Grobelak, Anna; Grosser, Anna; Worwag, Małgorzata; Rorat, Agnieszka; Brattebo, Helge; Almås, Åsgeir; Singh, Bal Ram

    2017-07-01

    The main objective of the present review is to compare the existing sewage sludge management solutions in terms of their environmental sustainability. The most commonly used strategies, that include treatment and disposal has been favored within the present state-of-art, considering existing legislation (at European and national level), characterization, ecotoxicology, waste management and actual routs used currently in particular European countries. Selected decision making tools, namely End-of-waste criteria and Life Cycle Assessment has been proposed in order to appropriately assess the possible environmental, economic and technical evaluation of different systems. Therefore, some basic criteria for the best suitable option selection has been described, in the circular economy "from waste to resources" sense. The importance of sewage sludge as a valuable source of matter and energy has been appreciated, as well as a potential risk related to the application of those strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Membrane fouling in a submerged membrane bioreactor with focus on surface properties and interactions of cake sludge and bulk sludge.

    PubMed

    Yu, Haiying; Lin, Hongjun; Zhang, Meijia; Hong, Huachang; He, Yiming; Wang, Fangyuan; Zhao, Leihong

    2014-10-01

    In this study, the fouling behaviors and surface properties of cake sludge and bulk sludge in a submerged membrane bioreactor (MBR) were investigated and compared. It was found that the specific filtration resistance (SFR) of cake sludge was about 5 times higher than that of bulk sludge. Two types of sludge possessed similar extracellular polymeric substances (EPS) content, particle size distribution (PSD) and zeta potential. However, their surface properties in terms of surface tensions were significantly different. Further analysis showed that cake sludge was more hydrophilic and had worse aggregation ability. Moreover, cake sludge surface possessed more hydrocarbon, less oxygen and nitrogen moieties than bulk sludge surface. It was suggested that, rather than EPS and PSD differences, the differences in the surface composition were the main cause of the great differences in SFR and adhesion ability between cake sludge and bulk sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Characteristics and model of sludge adhesion during thermal drying.

    PubMed

    Li, Huan; Zou, Shuxin; Li, Yangyang; Jin, Yiying

    2013-01-01

    During sludge thermal drying, the sludge adhered on the heated surface of drying equipments may affect drying efficiency. Sludge thermal drying experiments were conducted to investigate the effect of different drying conditions on sludge adhesion. The mass of sludge adhered on the heated surface (dryer wall) reached the maximum when sludge water content was about 60%. A high drying temperature would result in more sludge adhered on the heated surface in the temperature range of 80-160 degrees C. The convection heating and rougher surface would also lead to more sludge adhered on the heated surface. The relation between the maximum mass of adherent sludge and drying temperatures could be described by an exponential equation.

  19. Effects of Different Ratios of Sewage Sludge and Cattle Manure on Growth and Propagation of Eisenia Fetida

    PubMed Central

    Liu, Fei; Zhu, Pengfei; Zhang, Lichao; Zhou, Xiujie; Sun, Chongyu; Cheng, Yunhuan

    2016-01-01

    Domestic sewage sludge and cattle manure are rich in nutrition elements, but without proper disposal, are harmful to the environment. Here with an indoor culture method, we used Eisenia fetida to dispose different ratios of sewage sludge and cattle manure, and thereby investigated the effects and acting rules of these sludge-manure mixtures on the growth and reproduction of E. fetida. We find these mixtures are food sources for E. fetida, and their physiochemical properties are significantly changed after disposal by earthworms. Paired samples t-test shows the average change after different treatments is -20.37% for total organic carbon, 85.71% for total Kjeldahl N, -6.67% for total P, 8.33% for pH, -24.78% for EC (ms·cm-1), and -57.10% for C/N ratio. The average growth rate after treatment CD-70 is 9.20 mg·worm-1·day-1; the average growth rates of E. fetida on day 0–28, day 29–56, and day 57–91 are 9.33, 11.90 and 6.95 mg·worm-1·day-1, respectively, indicating a trend of "rapid—rapidest—slow" growth. Other treatments all show this trend. Though all earthworms developed reproductive rings during the test periods, the appearing time and the cocoon production time both differed among these treatments. The cocoon production amount is maximized to 233 after treatment CD-70. The cocoon production rates are significantly different among these treatments, and the maximum and mean are 0.32 and 0.17–0.32, cocoons·worm-1· day-1, respectively. E. fetida can modestly enrich Cd, but is not very effective over Sb or other heavy metals. E. fetida can remove a part of heavy metals from sewage sludge and cattle manure. Generally, the mixtures of sewage sludge and cattle manure can largely affect the growth and propagation of E. fetida in a ratio-dependent way. PMID:27257977

  20. Effects of Different Ratios of Sewage Sludge and Cattle Manure on Growth and Propagation of Eisenia Fetida.

    PubMed

    Li, Yukui; Liu, Qingchuan; Liu, Fei; Zhu, Pengfei; Zhang, Lichao; Zhou, Xiujie; Sun, Chongyu; Cheng, Yunhuan

    2016-01-01

    Domestic sewage sludge and cattle manure are rich in nutrition elements, but without proper disposal, are harmful to the environment. Here with an indoor culture method, we used Eisenia fetida to dispose different ratios of sewage sludge and cattle manure, and thereby investigated the effects and acting rules of these sludge-manure mixtures on the growth and reproduction of E. fetida. We find these mixtures are food sources for E. fetida, and their physiochemical properties are significantly changed after disposal by earthworms. Paired samples t-test shows the average change after different treatments is -20.37% for total organic carbon, 85.71% for total Kjeldahl N, -6.67% for total P, 8.33% for pH, -24.78% for EC (ms·cm-1), and -57.10% for C/N ratio. The average growth rate after treatment CD-70 is 9.20 mg·worm-1·day-1; the average growth rates of E. fetida on day 0-28, day 29-56, and day 57-91 are 9.33, 11.90 and 6.95 mg·worm-1·day-1, respectively, indicating a trend of "rapid-rapidest-slow" growth. Other treatments all show this trend. Though all earthworms developed reproductive rings during the test periods, the appearing time and the cocoon production time both differed among these treatments. The cocoon production amount is maximized to 233 after treatment CD-70. The cocoon production rates are significantly different among these treatments, and the maximum and mean are 0.32 and 0.17-0.32, cocoons·worm-1· day-1, respectively. E. fetida can modestly enrich Cd, but is not very effective over Sb or other heavy metals. E. fetida can remove a part of heavy metals from sewage sludge and cattle manure. Generally, the mixtures of sewage sludge and cattle manure can largely affect the growth and propagation of E. fetida in a ratio-dependent way.

  1. Protein Recovery from Secondary Paper Sludge and Its Potential Use as Wood Adhesive

    NASA Astrophysics Data System (ADS)

    Pervaiz, Muhammad

    Secondary sludge is an essential part of biosolids produced through the waste treatment plant of paper mills. Globally paper mills generate around 3.0 million ton of biosolids and in the absence of beneficial applications, the handling and disposal of this residual biomass poses a serious environmental and economic proposition. Secondary paper sludges were investigated in this work for recovery of proteins and their use as wood adhesive. After identifying extracellular polymeric substances as adhesion pre-cursors through analytical techniques, studies were carried out to optimize protein recovery from SS and its comprehensive characterization. A modified physicochemical protocol was developed to recover protein from secondary sludge in substantial quantities. The combined effect of French press and sonication techniques followed by alkali treatment resulted in significant improvement of 44% in the yield of solubilized protein compared to chemical methods. The characterization studies confirmed the presence of common amino acids in recovered sludge protein in significant quantities and heavy metal concentration was reduced after recovery process. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed the presence of both low and high molecular weight protein fractions in recovered sludge protein. After establishing the proof-of-concept in the use of recovered sludge protein as wood adhesive, the bonding mechanism of protein adhesives with cellulose substrate was further elucidated in a complementary protein-modification study involving soy protein isolate and its glycinin fractions. The results of this study validated the prevailing bonding theories by proving that surface wetting, protein structure, and type of wood play important role in determining final adhesive strength. Recovered sludge protein was also investigated for its compatibility to formulate hybrid adhesive blends with formaldehyde and bio-based polymers. Apart from chemical cross-linking, the synergy of adhesive blends was evaluated through classical rule-of-mixture. The findings of this study warrants further investigation concerning other potential uses of recovered sludge protein, especially as food supplements and economic implications.

  2. Mechanism and Parameter Optimization of Fenton’s Reagent Integrated with Surfactant Pretreatment to Improve Sludge Dewaterability

    PubMed Central

    Hong, Chen; Yang, Qiang; Feng, Lihui; Jia, Mengmeng; Li, Yifei

    2017-01-01

    Sludge dewatering can effectively reduce the volume and mass of sludge for subsequent treatment and disposal. The work validated the potential of Fenton’s reagent combined with dodecyl dimethyl benzyl ammonium chloride (DDBAC) in improving sludge dewaterability and proposed the mechanism of joint conditioning. The composite conditioner dosage was optimized using response surface methodology. Results indicated the good conditioning capability of the composite conditioners. The optimum dosages for H2O2, Fe2+, and DDBAC were 44.6, 39.6, and 71.0 mg/g, respectively, at which a sludge cake water content of 59.67% could be achieved. Moreover, a second-order polynomial equation was developed to describe the behavior of joint conditioning. Analysis of the reaction mechanism showed that Fenton oxidation effectively decomposed extracellular polymeric substance (EPS), including loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS), into dissolved organics, such as proteins and polysaccharides. The process facilitated the conversion of the bound water into free water. Furthermore, DDBAC further released the bound water through solubilization of TB-EPS and LB-EPS after the Fenton reaction. The bound water content of the sludge conditioned with Fenton’s reagent decreased from 3.15 to 1.36 g/g and further decreased to 1.08 g/g with the addition of DDBAC. High-performance liquid chromatography analysis verified that the composite conditioning could oxidize and hydrolyze EPS into low-molecular-mass organics (e.g., formic and acetic acid), thereby facilitating the release of bound water. PMID:28081203

  3. Characterization of the fine fraction of the argon oxygen decarburization with lance (AOD-L) sludge generated by the stainless steelmaking industry.

    PubMed

    Majuste, Daniel; Mansur, Marcelo Borges

    2008-05-01

    The argon oxygen decarburization with lance (AOD-L) sludge generated by the stainless steelmaking industry is a hazardous waste due to the presence of chromium. While its coarse fraction is usually recycled into the own industrial process, the fine fraction is normally disposed in landfills. Techniques such as briquetting or magnetic separation were found to be inadequate to treat it for reuse purposes. So, in this work, the fine fraction of the AOD-L sludge was characterized aiming to find alternative methods to treat it. This sludge consists of a fine powder (mean diameter of 1 microm) containing 34 +/- 2% (w/w) of iron, 10.2 +/- 0.9% (w/w) of chromium and 1.4 +/- 0.1% (w/w) of nickel. The main crystalline phases identified in this study were chromite (FeCr(2)O(4)), magnetite (Fe(3)O(4)), hematite (Fe(2)O(3)) and calcite (CaCO(3)). In the digestion tests, the addition of HClO(4) has favored the dissolution of chromite which is a very stable oxide in aqueous media. Nickel was found in very fine particles, probably in the metallic form or associated with iron and oxygen. The sludge was classified as hazardous waste, so its disposal in landfills should be avoided.

  4. Behaviors of 323Th, 238U, 228Ra and 226Ra on combustion of crude oil terminal sludge.

    PubMed

    Puad, H A Mohamad; Noor, M Y Muhd

    2004-01-01

    Crude oil terminal sludge contains technologically enhanced naturally occurring radionuclides such as (232)Th, (238)U, (228)Ra and (226)Ra, thus cannot be disposed of freely without proper control. The current method of disposal, such as land farming and storing in plastic drums is not recommended because it will have a long-term impact on the environment. Due to its organic nature, there is a move to treat this sludge by thermal methods such as incineration. This study has been carried out to determine the behaviors of (232)Th, (238)U, (228)Ra and (226)Ra present in the sludge during combustion at a certain temperature and time. The percentage of volatilization was found to vary between 2% and 70%, (238)U was the most volatile in comparison with (232)Th, (228)Ra and (226)Ra. (238)U is found to be significantly volatilized above 500 degrees C, and might reach maximum volatilization at above 700 degrees C. A mathematical model was developed to predict the percentage of volatilization of (232)Th, (238)U, (228)Ra and (226)Ra contained in the sludge. With this known percentage of volatilization, the concentration of (232)Th, (238)U, (228)Ra and (226)Ra present in the bottom and filter ashes can be calculated.

  5. Identifying energy and carbon footprint optimization potentials of a sludge treatment line with Life Cycle Assessment.

    PubMed

    Remy, C; Lesjean, B; Waschnewski, J

    2013-01-01

    This study exemplifies the use of Life Cycle Assessment (LCA) as a tool to quantify the environmental impacts of processes for wastewater treatment. In a case study, the sludge treatment line of a large wastewater treatment plant (WWTP) is analysed in terms of cumulative energy demand and the emission of greenhouse gases (carbon footprint). Sludge treatment consists of anaerobic digestion, dewatering, drying, and disposal of stabilized sludge in mono- or co-incineration in power plants or cement kilns. All relevant forms of energy demand (electricity, heat, chemicals, fossil fuels, transport) and greenhouse gas emissions (fossil CO(2), CH(4), N(2)O) are accounted in the assessment, including the treatment of return liquor from dewatering in the WWTP. Results show that the existing process is positive in energy balance (-162 MJ/PE(COD) * a) and carbon footprint (-11.6 kg CO(2)-eq/PE(COD) * a) by supplying secondary products such as electricity from biogas production or mono-incineration and substituting fossil fuels in co-incineration. However, disposal routes for stabilized sludge differ considerably in their energy and greenhouse gas profiles. In total, LCA proves to be a suitable tool to support future investment decisions with information of environmental relevance on the impact of wastewater treatment, but also urban water systems in general.

  6. Heavy metal speciation and toxicity characteristics of tannery sludge

    NASA Astrophysics Data System (ADS)

    Juel, Md. Ariful Islam; Chowdhury, Zia Uddin Md.; Ahmed, Tanvir

    2016-07-01

    Heavy metals present in tannery sludge can get mobilized in the environment in various forms and can be a cause for concern for the natural ecosystem and human health. The speciation of metals in sludge provides valuable information regarding their toxicity in the environment and determines their suitability for land application or disposal in landfills. Concentrations of seven heavy metals (Cr, Pb, Cd, Ni, Zn, As and Cu) in tannery sludge were determined to evaluate their toxicity levels. Metal contents ranged over the following intervals: As: 1.52-2.07 mg/kg; Pb: 57.5-67 mg/kg; Cr: 15339-26501 mg/kg; Cu: 261.3-579.5 mg/kg; Zn: 210.2-329.1 mg/kg and Ni: 137.5-141.3 mg/kg (dry weight basis). The concentrations of all heavy metals in the sludge samples were lower compared to EPA guidelines except chromium which was found to be several orders of magnitude higher than the guideline value. Toxicity Characteristics Leaching Procedure (TCLP) test indicated that the leaching potential of chromium was higher compared to the other heavy metals and exceeded the EPA land disposal restriction limits. To quantitatively assess the environmental burden of the chromium associated with tannery sludge, the IMPACT 2002+ methodology was adopted under the SimaPro software environment. Considering the USEPA limit for chromium as the baseline scenario, it was found that chromium in the tannery sludge had 6.41 times higher impact than the baseline in the categories of aquatic ecotoxicity, terrestrial ecotoxicity and non-carcinogens. Chromium has the highest contribution to toxicity in the category of aquatic ecotoxicity while copper is the major contributor to the category of terrestrial ecotoxicity in the tannery sludge.

  7. Resource recovery of organic sludge as refuse derived fuel by fry-drying process.

    PubMed

    Chang, Fang-Chih; Ko, Chun-Han; Wu, Jun-Yi; Wang, H Paul; Chen, Wei-Sheng

    2013-08-01

    The organic sludge and waste oil were collected from the industries of thin film transistor liquid crystal display and the recycled cooking oil. The mixing ratio of waste cooking oil and organic sludge, fry-drying temperatures, fry-drying time, and the characteristics of the organic sludge pellet grain were investigated. After the fry-drying process, the moisture content of the organic sludge pellet grain was lower than 5% within 25 min and waste cooking oil was absorbed on the dry solid. The fry-drying organic sludge pellet grain was easy to handle and odor free. Additionally, it had a higher calorific value than the derived fuel standards and could be processed into organic sludge derived fuels. Thus, the granulation and fry-drying processes of organic sludge with waste cooking oil not only improves the calorific value of organic sludge and becomes more valuable for energy recovery, but also achieves waste material disposal and cost reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Transformation of heavy metal speciation during sludge drying: mechanistic insights.

    PubMed

    Weng, Huan-Xin; Ma, Xue-Wen; Fu, Feng-Xia; Zhang, Jin-Jun; Liu, Zan; Tian, Li-Xun; Liu, Chongxuan

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized Cr, Cu, Cd, and Pb in sludge by transforming acid-soluble, reducible, and oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. ECONOMICS OF DISPOSAL OF LIME/LIMESTONE SCRUBBING WASTES: UNTREATED AND CHEMICALLY TREATED WASTES

    EPA Science Inventory

    The report gives results of a detailed, comparative economic evaluation of four alternatives available to the utility industry for the disposal of wastes from flue gas desulfurization using limestone or lime slurry scrubbing. The alternatives are untreated sludge (pond or landfil...

  10. PEER REVIEW SUPPORTING THE STANDARDS FOR THE ...

    EPA Pesticide Factsheets

    EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and beneficial uses. The U.S. Environmental Protection Agency (EPA) is evaluating management options for solid wastes from coal combustion (e.g., fly ash, bottom ash, slag). As part of this effort, EPA has prepared the Draft Human and Ecological Risk Assessment of Coal Combustion Wastes. The purpose of this draft risk assessment is to identify and quantify human health and ecological risks that may be associated with current disposal practices for high-volume coal combustion waste (CCW), including fly ash, bottom ash, boiler slag, flue gas desulfurization (FGD) sludge, coal refuse waste, and wastes from fluidized-bed combustion (FBC) units. These risk estimates will help inform EPA’s decisions about how to treat CCW under Subtitle D of the Resource Conservation and Recovery Act.

  11. An Evaluation of the Efficiency of Different Hygienisation Methods

    NASA Astrophysics Data System (ADS)

    Zrubková, M.

    2017-10-01

    The aim of this study is to evaluate the efficiency of hygienisation by pasteurisation, temperature-phased anaerobic digestion and sludge liming. A summary of the legislation concerning sludge treatment, disposal and recycling is included. The hygienisation methods are compared not only in terms of hygienisation efficiency but a comparison of other criteria is also included.

  12. Lab Procedures. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    Laboratory tests used to determine status and to evaluate and/or maintain process control of the various sludge treatment processes are introduced in this lesson. Neither detailed test procedures nor explanations of how the tests should be applied to every unit are explained; this information is provided in other modules. The instructor's manual…

  13. Application of Sludges and Wastewaters on Agricultural Land: A Planning and Educational Guide, MCD-35. Research Bulletin 1090.

    ERIC Educational Resources Information Center

    Knezek, Bernard D., Ed.; Miller, Robert H., Ed.

    This report addresses the application of agricultural processing wastes, industrial and municipal wastes on agricultural land as both a waste management and resource recovery and reuse practice. The document emphasizes the treatment and beneficial utilization of sludge and wastewater as opposed to waste disposal. These objectives are achieved…

  14. Rheological characterisation of municipal sludge: a review.

    PubMed

    Eshtiaghi, Nicky; Markis, Flora; Yap, Shao Dong; Baudez, Jean-Christophe; Slatter, Paul

    2013-10-01

    Sustainable sludge management is becoming a major issue for wastewater treatment plants due to increasing urban populations and tightening environmental regulations for conventional sludge disposal methods. To address this problem, a good understanding of sludge behaviour is vital to improve and optimize the current state of wastewater treatment operations. This paper provides a review of the recent experimental works in order for researchers to be able to develop a reliable characterization technique for measuring the important properties of sludge such as viscosity, yield stress, thixotropy, and viscoelasticity and to better understand the impact of solids concentrations, temperature, and water content on these properties. In this context, choosing the appropriate rheological model and rheometer is also important. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Performance intensification of Prague wastewater treatment plant.

    PubMed

    Novák, L; Havrlíková, D

    2004-01-01

    Prague wastewater treatment plant was intensified during 1994--1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.

  16. Determining organic pollutants in automotive industry sludge.

    PubMed

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue.

  17. Role of indigenous iron in improving sludge dewaterability through peroxidation

    PubMed Central

    Zhou, Xu; Jiang, Guangming; Wang, Qilin; Yuan, Zhiguo

    2015-01-01

    Improvement of sludge dewaterability is important for reducing the total costs for the treatment and disposal of sludge in wastewater treatment plants. In this study, we investigate the use of hydrogen peroxide as an oxidizing reagent for the conditioning of waste activated sludge. Significant improvement to sludge dewaterability was attained after the addition of hydrogen peroxide at 30 mg/g TS and 28 mg/g TS under acidic conditions (pH = 3.0), with the highest reduction of capillary suction time being 68% and 56%, respectively, for sludge containing an iron concentration of 56 mg Fe/g TS and 25 mg Fe/g TS, respectively. The observations were due to Fenton reactions between the iron contained in sludge (indigenous iron) and hydrogen peroxide. For the sludge with an insufficient level of indigenous iron, the addition of ferrous chloride was found to be able to improve the sludge dewaterability. The results firstly indicated that indigenous iron can be utilized similarly as the externally supplied iron salt to improve sludge dewaterability through catalyzing the Fenton reactions. PMID:25559367

  18. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.

    PubMed

    Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang

    2009-06-15

    This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.

  19. Disintegration of excess activated sludge--evaluation and experience of full-scale applications.

    PubMed

    Zábranská, J; Dohányos, M; Jenícek, P; Kutil, J

    2006-01-01

    Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.

  20. Twenty two years of sewage sludge marine disposal monitoring in the Eastern Mediterranean Sea: Impact on sediment quality and infauna and the response to load reduction.

    PubMed

    Kress, N; Shoham-Frider, E; Galil, B S

    2016-09-15

    Effects of sewage sludge disposal on sediments and infauna are presented in a unique long-term (22years) data set from the Eastern Mediterranean. While organic carbon (Corg) and metals affected sediment quality in an area which size varied seasonally, the infauna exhibited seasonal "boom and bust" cycle. Metal concentrations declined following load reduction. However, Corg did not decrease and infaunal abundance, closely related to Corg, varied with changes in environmental forcing. Mild winters affected the infaunal populations at the heavily impacted stations, due to anoxic conditions. Planned cessation of disposal is estimated to reduce Corg and metal concentrations to pre-discharge levels. Yet the resettling biota is expected to differ significantly from the pre-discharge one and consist in large part of Erythraean non indigenous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Influence of non-ionic surfactants on sludge dewaterability].

    PubMed

    Hou, Hai-Pan; Pu, Wen-Hong; Shi, Ya-Fei; Yu, Wen-Hua; Fan, Ming-Ming; Liu, Huan; Yang, Chang-Zhu; Li, Ye; Yang, Jia-Kuan

    2012-06-01

    The water content of dewatered sludge cake decreases to about 80% by current sludge dewatering technologies, which hardly satisfies the stricter standards of sludge disposal. In order to evaluate the effects of non-ionic surfactants on sludge dewaterability, two kinds of non-ionic surfactants (OPEO and APG) were studied by using two evaluation indexes, i. e. , specific resistance to filtration (SRF) and dewatering efficiency. Moreover, morphologies of conditioned sewage sludge and raw sludge were comparatively investigated. Results showed that non-ionic surfactants can decrease the particle size of sewage sludge floc and generate more homogenous and regular shape, and then improve the dewatering efficiency. APG has better effect on sewage sludge dewatering than OPEO. SRF of conditioned sludge with APG dosage of 0.05% DS decreased to 42% of SRF of raw sludge, and its dewatering efficiency was as high as 93%. Plate-frame pressure filter experiment demonstrated that, the water content of dewatered cake conditioned with APG dosage of 0.05% DS was lower by about 10% than that of dewatered cake without APG, and its dewatering efficiency reached 97%. Therefore, this research provides some reference for the application of APG in sludge dewatering.

  2. Enhancing dewaterability of waste activated sludge by combined oxidative conditioning process with zero-valent iron and peroxymonosulfate.

    PubMed

    Zhou, Xu; Jin, Wenbiao; Chen, Hongyi; Chen, Chuan; Han, Songfang; Tu, Renjie; Wei, Wei; Gao, Shu-Hong; Xie, Guo-Jun; Wang, Qilin

    2017-11-01

    The enhancement of sludge dewaterability is of great importance for facilitating the sludge disposal during the operation of wastewater treatment plants. In this study, a novel oxidative conditioning approach was applied to enhance the dewaterability of waste activated sludge by the combination of zero-valent iron (ZVI) and peroxymonosulfate (PMS). It was found that the dewaterability of sludge was significantly improved after the addition of ZVI (0-4 g/g TSS) (TSS: total suspended solids) and PMS (0-1 g/g TSS). The optimal addition amount of ZVI and PMS was 0.25 g/g TSS and 0.1 g/g TSS, respectively, under which the capillary suction time of the sludge was reduced by approximately 50%. The decomposition of sludge flocs could contribute to the improved sludge dewaterability. Economic analysis demonstrated that the proposed conditioning process with ZVI and PMS was more economical than the ZVI + peroxydisulfate and the traditional Fenton conditioning processes.

  3. Leaching of Heavy Metals Using SPLP Method from Fired Clay Brick Incorporating with Sewage Sludge

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Amira Sarani, Noor; Aqma Izurin Rahmat, Nur

    2017-05-01

    Sewage sludge is a by-product generate from wastewater treatment process. The sewage sludge contains significant trace metal such as Cr, Mn, Ni, Cu, Zn, As, Cd and Pb which are toxic to the environment. Sewage sludge is disposed of by landfilling method. However, this option not suitable because of land restriction and environmental control regulations imposed. Therefore, sewage sludge from wastewater treatment plant was incorporated into fired clay brick to produce good quality of brick as well as reducing heavy metals from sludge itself. Sewage sludge with 0%, 1%, 5%, 10% and 20% of were incorporated into fired clay bricks and fired at 1050°C temperature with heating rates of 1°C/min. The brick sample then crushed and sieved through 9.5 mm sieve for Synthetic Precipitation Leaching Procedure (SPLP). From the results, incorporation up to 20% of sewage sludge has leached less heavy metals and compliance with USEPA standard.

  4. Comparing alkaline and thermal disintegration characteristics for mechanically dewatered sludge.

    PubMed

    Tunçal, Tolga

    2011-10-01

    Thermal drying is one of the advanced technologies ultimately providing an alternative method of sludge disposal. In this study, the drying kinetics of mechanically dewatered sludge (MDS) after alkaline and thermal disintegration have been studied. In addition, the effect of total organic carbon (TOC) on specific resistance to filtration and sludge bound water content were also investigated on freshly collected sludge samples. The combined effect of pH and TOC on the thermal sludge drying rate for MDS was modelled using the two-factorial experimental design method. Statistical assessment of the obtained results proposed that sludge drying potential has increased exponentially for both increasing temperature and lime dosage. Execution of curve fitting algorithms also implied that drying profiles for raw and alkaline-disintegrated sludge were well fitted to the Henderson and Pabis model. The activation energy of MDS decreased from 28.716 to 11.390 kJ mol(-1) after disintegration. Consequently, the unit power requirement for thermal drying decreased remarkably from 706 to 281 W g(-1) H2O.

  5. Analysis of Combustion Process of Sewage Sludge in Reference to Coals and Biomass

    NASA Astrophysics Data System (ADS)

    Środa, Katarzyna; Kijo-Kleczkowska, Agnieszka

    2016-06-01

    Production of sewage sludge is an inseparable part of the treatment process. The chemical and sanitary composition of sewage sludge flowing into the treatment plant is a very important factor determining the further use of the final product obtained in these plants. The sewage sludge is characterized by heterogeneity and multi-components properties, because they have characteristics of the classical and fertilizer wastes and energetic fuels. The thermal utilization of sewage sludge is necessary due to the unfavorable sanitary characteristics and the addition of the industrial sewage. This method ensures use of sewage sludge energy and return of expenditure incurred for the treatment of these wastes and their disposal. Sewage sludge should be analyzed in relation to conventional fuels (coals and biomass). They must comply with the applicable requirements, for example by an appropriate degree of dehydration, which guarantee the stable and efficient combustion. This paper takes the issue of the combustion process of the different sewage sludge and their comparison of the coal and biomass fuels.

  6. Institutional factors in resource recovery co-disposal demonstration project, Middlesex County, New Jersey, Spring 1980 - Summer 1981

    NASA Astrophysics Data System (ADS)

    McCarthy, R. M.

    1982-02-01

    A proposal to provide 1200 tons per day of solid waste disposal combined with 200 tons per day of sludge disposal was presented. The prospects for codisposal in Middlesex County were analyzed. Technically, codisposal was possible, however, it lacked a proven track record. Proposal for a resource recovery plant to be designed, built, and operated was acknowledged as consistent with County planning.

  7. Analysis of sludge management parameters resulting from the use of domestic garbage disposers.

    PubMed

    Galil, N I; Yaacov, L

    2001-01-01

    The use of domestic garbage disposers may reduce the amounts and improve the solid waste composition, by lowering putrid matter and water content and by raising the caloric potential. However, additional loading on the sewerage systems might require increased investments and operation costs of the wastewater treatment facilities. This project analyses additional amounts of solids, biosolids and process requirements connected with wastewater treatment facilities resulting from the domestic use of garbage disposers, as well as the additional production of biogas. It was found that the use of the domestic garbage disposers in 60% of the households in a given urban area, is expected to reduce the weight, volume and water content of the solid waste by 7.0%, 3.3% and 4.4% for garbage characterized by low organic content, and by 18.7%, 11.0% and 13.3% for high organic content, respectively. The additional amounts of sludge are expected to be the lowest in case of biological treatment only, 24 to 38 g/capita/day, and the highest in case of primary chemical sedimentation followed by biotreatment, 67 to 100 g/capita/day. In these conditions the energy potential from biogas obtained in anaerobic digestion of sludge from wastewater collected from the same area, will increase by 50% to 70%, depending on the wastewater treatment sequence. The investment in wastewater treatment is estimated to increase by 23% to 27% and the annual costs for operation and maintenance are expected to increase by 26% to 30%.

  8. Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge.

    PubMed

    Udom, B E; Mbagwu, J S C; Adesodun, J K; Agbim, N N

    2004-06-01

    Heavy metals present in soils constitute serious environmental hazards from the point of view of polluting the soils and adjoining streams and rivers. The distribution of heavy metals in a sandy Ultisol (Arenic Kandiustult) in south eastern Nigeria subjected to 40 years disposal of sewage wastes (sludge and effluents) was studied using two profile pits (S/NSK/1 and S/NSK/2) sited in the sewage disposal area and one profile pit (NS/NSK) sited in the non-sewage disposal area. Soil samples were collected in duplicate from these soil horizons and analyzed for their heavy metal contents. The mean concentrations of Zn, Cu, Cd and Pb in the top- and sub-soil horizons of sewage soil were 79.3, 32, 0.29 and 1.15 mg/kg, respectively. These levels were high enough to constitute health and phytotoxic risks. All the metal levels were much higher in the AB horizon in the sewage than in the non-sewage soil profile, but Pb and Cu contents were also high down to the Bt1 horizon, indicating their apparent relatively high mobility in this soil. There was a significant correlation between organic matter (OM) and Zn (r=0.818**), and between OM and Cd (0.864**) in the sewage soil. The high OM status of the sewage sludge, together with its corresponding low pH, might have favoured metal-OM complexation that could reduce heavy metal mobility and phytotoxicity in this soil.

  9. Fermentative production of butyric acid from paper mill sludge hydrolysates using Clostridium tyrobutyricum NRRL B-67062/RPT 4213.

    USDA-ARS?s Scientific Manuscript database

    The pulp and paper industry produces about 300-350 million tons of paper mill sludge (PMS) annually and the majority of this waste is disposed of by landfill. PMS contains up to 75% carbohydrates, which potentially serve as a fermentable carbon source. In this study, we adapted an efficient method o...

  10. [ECOLOGICAL AND TOXICOLOGICAL ASSESSMENT OF DISPOSAL OF SEWAGE SLUDGE AS FERTILIZER].

    PubMed

    Vasbieva, M T

    2015-01-01

    In the article there is considered the question of the accumulation of heavy metals in soil and their uptake by plants as a result of prolonged use of sewage sludge as fertilizer. There have been calculated coefficients of concentrations of elements and the total pollution index. There was performed the comparison of the data obtained with accepted sanitary-hygienic standards.

  11. Anaerobic stabilization and conversion of transformed intermediates of antibiotic pharmaceutical effluent in a fluidized bed reactor.

    PubMed

    Tamijevendane, S; Saravanane, R; Rajesh, R; Sivacoumar, R

    2011-07-01

    The formulation and implementation of regulatory standards for the ultimate disposal and reuse of transformed products of antibiotic drugs and solvents have been a pending issue in the waste management of pharmaceutical industries especially in the developing countries like India. A case study has been identified and the current issues in one of the major pharmaceutical industry (manufacturing cephalosporin drugs) located in Chennai, India, has been discussed for the possible implementation of anaerobically transformed intermediates of antibiotic pharmaceutical waste sludge. The objective of the study was to determine the effect of bioaugmentation on the convertibility of anaerobically transformed intermediates of antibiotic pharmaceutical waste sludge into residuals and biocompost. Cephalosporin is a common name refers to cephradine (C16H19N3O4S) and cephalexin (C16H17N3O4S.H2O). Based on the critical examination of results, the industry is looking for the alternatives of either direct disposal of 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) and phenyl acetic acid or for further degradation and disposal, which will essentially require additional cost and maintenance. The present regulatory standard implemented in India does not envisage such disposal alternatives and hence this would invite suggestions and recommendations of the expertise for the possible implementation on the pending issue in the antibiotic based pharmaceutical industries. The presence of cephalosporin increases total strength (Chemical Oxygen Demand) of the effluent and indirectly increases the cost of the treatment. Hence the biotransformation of cephalosporin either alone or in combination with other energetic compounds, offers the potential for an economical and environment friendly disposal alternative for the anaerobically transformed intermediates of antibiotic pharmaceutical waste sludge.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.

    Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge wastemore » for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard three source tubes seen in debris PDP drums. Available line sources (Eu-152) were placed in the spiral tubes to further accomplish the desired uniform distribution of radionuclides. The standard PDP drum (PDP matrix drum 005) and PDP sources were used to determine the lower limits of detection (LLD) and TMU. Analysis results for the sludge drum matrix case for two HPGe detectors were tabulated and evaluated. NNSS has accepted the methodology and results of the measurements towards demonstrating equivalence to CBFO certified systems. In conclusion, the WES-WGS and CMR-OPS gamma spectroscopy teams at LANL have defined and performed measurements that serve to establish and demonstrate equivalency with the processes used by CBFO certified NDA systems. The supplemental measurements address four key areas in Appendix A of DOE/WIPP-02-3122: Annual Calibration Confirmation and Performance Check measurements; LLD determination; and TMU definition. For these measurements the containers, matrices and activity loadings are selected to represent items being assayed in real LLW cases. The LLD and the TMU bounding measurements are to be performed one time and will not be required to be repeated in future campaigns. The annual calibration and performance check measurements were performed initially and planned to repeat in annual campaigns in order to maintain NNSS certification. PDP sources and a PDP sludge drum as well as Eu-152 line sources and a spiral sludge drum were used for the measurements. In all cases, the results for accuracy and precision (%R and %RSD, respectively) were within allowable ranges as defined by the WIPP PDP program. LLD (or MDC) results were established for all the ten WIPP reportable radionuclides and U-235, and the MDC for Pu-239 was established in all cases to be well under 100 nCi/g. Useful results for reducing estimated uncertainties were established and an interesting unexpected case of high bias was observed and will be applied toward this end. (authors)« less

  13. Enhancement of anaerobic digestibility of waste activated sludge using photo-Fenton pretreatment.

    PubMed

    Heng, Gan Chin; Isa, Mohamed Hasnain; Lim, Jun-Wei; Ho, Yeek-Chia; Zinatizadeh, Ali Akbar Lorestani

    2017-12-01

    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H 2 O 2 dosage, H 2 O 2 /Fe 2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H 2 O 2 /kg TS, H 2 O 2 /Fe 2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m 3 /kg VS fed ·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m 3 /kg VS fed ·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.

  14. Preparation of biochar from sewage sludge

    NASA Astrophysics Data System (ADS)

    Nieto, Aurora; María Méndez, Ana; Gascó, Gabriel

    2013-04-01

    Biomass waste materials appropriate for biochar production include crop residues (both field residues and processing residues such as nut shells, fruit pits, bagasse, etc), as well as yard, food and forestry wastes, and animal manures. Biochar can and should be made from biomass waste materials and must not contain unacceptable levels of toxins such as heavy metals which can be found in sewage sludge and industrial or landfill waste. Making biochar from biomass waste materials should create no competition for land with any other land use option—such as food production or leaving the land in its pristine state. Large amounts of agricultural, municipal and forestry biomass are currently burned or left to decompose and release CO2 and methane back into the atmosphere. They also can pollute local ground and surface waters—a large issue for livestock wastes. Using these materials to make biochar not only removes them from a pollution cycle, but biochar can be obtained as a by-product of producing energy from this biomass. Sewage sludge is a by-product from wastewater treatment plants, and contains significant amounts of heavy metals, organic toxins and pathogenic microorganisms, which are considered to be harmful to the environment and all living organisms. Agricultural use, land filling and incineration are commonly used as disposal methods. It was, however, reported that sewage sludge applications in agriculture gives rise to an accumulation of harmful components (heavy metals and organic compounds) in soil. For this reason, pyrolysis can be considered as a promising technique to treat the sewage sludge including the production of fuels. The objective of this work is to study the advantages of the biochar prepared from sewage sludge.

  15. Characterization and biodegradability of sludge from a high rate A-stage contact tank and B-stage membrane bioreactor of a pilot-scale AB system treating municipal wastewaters.

    PubMed

    Trzcinski, Antoine Prandota; Ganda, Lily; Kunacheva, Chinagarn; Zhang, Dong Qing; Lin, Li Leonard; Tao, Guihe; Lee, Yingjie; Ng, Wun Jern

    2016-10-01

    In light of global warming mitigation efforts, increasing sludge disposal costs, and need for reduction in the carbon footprint of wastewater treatment plants, innovation in treatment technology has been tailored towards energy self-sufficiency. The AB process is a promising technology for achieving maximal energy recovery from wastewaters with minimum energy expenditure and therefore inherently reducing excess sludge production. Characterization of this novel sludge and its comparison with the more conventional B-stage sludge are necessary for a deeper understanding of AB treatment process design. This paper presents a case study of a pilot-scale AB system treating municipal wastewaters as well as a bio- (biochemical methane potential and adenosine tri-phosphate analysis) and physico-chemical properties (chemical oxygen demand, sludge volume index, dewaterability, calorific value, zeta potential and particle size distribution) comparison of the organic-rich A-stage against the B-stage activated sludge. Compared to the B-sludge, the A-sludge yielded 1.4 to 4.9 times more methane throughout the 62-week operation.

  16. Particle size effects on uptake of heavy metals from sewage sludge compost using natural zeolite clinoptilolite.

    PubMed

    Zorpas, Antonis A; Vassilis, Inglezakis; Loizidou, Maria; Grigoropoulou, Helen

    2002-06-01

    Land application of sewage sludge may be the least energy consuming and the most cost-effective means of sludge disposal or utilization. However, the major technical problem with land application of sludge concerns the high concentrations of heavy metals. These metals may be leached and enter the ecosystem, the food chain, and eventually the human population. This paper deals with the removal of heavy metals from sewage sludge compost using natural zeolite clinoptilolite, in respect to the particle size. The final results indicate that heavy metals can be sufficiently removed by using 25% w/w of zeolite with particle size of 3.3-4.0 mm. Pore clogging and structural damage in smaller particle sizes is probably the reason for lower uptake of metals by the latter.

  17. Chesapeake Bay nutrient pollution: contribution from the land application of sewage sludge in Virginia.

    PubMed

    Land, Lynton S

    2012-11-01

    Human health concerns and the dissemination of anthropogenic substances with unknown consequences are the reasons most often given why disposal of municipal sewage sludge in landfills or using the organic waste as biofuel is preferable to land application. But no "fertilizer" causes more nitrogen pollution than sludge when applied according to Virginia law. Poultry litter is the only other "fertilizer" that causes more phosphorus pollution than sludge. Cost savings by the few farmers in Virginia who use sludge are far less than the costs of the nitrogen pollution they cause. A ban on the land application of all forms of animal waste is very cost-effective and would reduce Chesapeake Bay nutrient pollution by 25%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: walk-through survey report of Olin Chemicals Group, Charleston, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, M.S.

    1983-08-01

    A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at Olin Chemicals Group (SIC-2800, SIC-2812, SIC-2819), Charleston, Tennessee in May 1982. Hazardous wastes generated at the facility included brine sludge, thick mercury (7439954) (Hg) butter, and calcium-hypochlorite (7778543). An estimated 8500 tons of waste were disposed of annually. The Hg waste underwent a retorting process that recycled the Hg. The final detoxified waste was land filled. Brine sludge and calcium-hypochlorite were also land filled. No controls beyond those normally used at such sites were found at the landfills. Periodic monitoring of Hg vapor concentrationsmore » was conducted by the company. Medical monitoring of urine for Hg exposure was conducted. Specific limits were set for urinary Hg concentrations. When these limits were exceeded the workers were removed from exposure. Personal protective equipment consisted of hard hats, safety glasses, and spirators specially designed for Hg exposure. The author concludes that the hazardous waste disposal and treatment operations at the facility are well controlled.« less

  19. Treatment of Petroleum Sludge By Using Solidification/Stabilization (S/S) Method : Effect of Hydration Days to Heavy Metals Leaching and Strength

    NASA Astrophysics Data System (ADS)

    Murshid, N.; Kamil, N. A. F. M.; Kadir, A. A.

    2018-04-01

    Petroleum sludge is one of the major solid wastes generated in the petroleum industry. Generally, there are numbers of heavy metals in petroleum sludge and one treatment that is gaining prominence to treat a variety of mixed organic and inorganic waste is solidification/stabilization (S/S) method. The treatment protects human health and the environment by immobilizing contaminants within the treated material and prevents migration of the contaminants. In this study, solidification/stabilization (S/S) method has been used to treat the petroleum sludge. The comparison of hydration days, namely, 7th and 28th days in these cement-based waste materials were studied by using Synthetic Precipitate Leaching Procedure (SPLP). The results were compared to the United States Environmental Protection Agency (USEPA) standards. The results for leaching test concluded that less percentage OPC gave maximum concentration of heavy metals leaching due to deficient in Calcium Oxide (CaO), which is can caused weak solidification in the mixture. Physical and mechanical properties conducted such as compressive strength and density test. From the results, it shows addition up to of 30percentage PS give results which comply with minimum landfill dispose limit. The results shows correlation between strength and density are strong regression coefficient of 82.7%. In conclusion, S/S method can be alternative disposal method for PS in the same time complies with standard for minimum landfill disposal limit. The results for leaching test concluded the less OPC percentage gave maximum concentration of heavy metals leaching.

  20. Sludge incineration in single stage combustor with gas scrubbing followed by afterburning and heat recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albertson, O.E.; Baturay, A.

    1990-04-17

    This patent describes the method for disposal of waste organic sludge of the type which contains at least one certain waste material that is either a low melting eutectic that softens or heavy metal that fumes at the highest temperature required to effect incineration of the sludge and cleansing by burning of the resultant gases. It comprises: the steps of combusting the sludge in a single combustion mass overlain by a gas-filled freeboard thereby to effect burning of substantially the entire content of combustible solids while yielding wet gases which contain entrained particulates as well as combustible and non-combustible constituents,more » volatiles and condensible matter.« less

  1. Evaluation of Settler Tank Thermal Stability during Solidification and Disposition to ERDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, David E.; Delegard, Calvin H.; Schmidt, Andrew J.

    2015-03-30

    Ten 16-foot-long and 20-inch diameter horizontal tanks currently reside in a stacked 2×5 (high) array in the ~20,000-gallon water-filled Weasel Pit of the 105-KW Fuel Storage Basin on the US-DOE Hanford Site. These ten tanks are part of the Integrated Water Treatment System used to manage water quality in the KW Basin and are called “settler” tanks because of their application in removing particles from the KW Basin waters. Based on process knowledge, the settler tanks are estimated to contain about 124 kilograms of finely divided uranium metal, 22 kg of uranium dioxide, and another 55 kg of other radioactivemore » sludge. The Sludge Treatment Project (STP), managed by CH2MHill Plateau Remediation Company (CHPRC) is charged with managing the settler tanks and arranging for their ultimate disposal by burial in ERDF. The presence of finely divided uranium metal in the sludge is of concern because of the potential for thermal runaway reaction of the uranium metal with water and the formation of flammable hydrogen gas as a product of the uranium-water reaction. Thermal runaway can be instigated by external heating. The STP commissioned a formal Decision Support Board (DSB) to consider options and provide recommendations to manage and dispose of the settler tanks and their contents. Decision criteria included consideration of the project schedule and longer-term deactivation, decontamination, decommissioning, and demolition (D4) of the KW Basin. The DSB compared the alternatives and recommended in-situ grouting, size-reduction, and ERDF disposal as the best of six candidate options for settler tank treatment and disposal. It is important to note that most grouts contain a complement of Portland cement as the binding agent and that Portland cement curing reactions generate heat. Therefore, concern is raised that the grouting of the settler tank contents may produce heating sufficient to instigate thermal runaway reactions in the contained uranium metal sludge.« less

  2. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant.

    PubMed

    Rosa, A P; Conesa, J A; Fullana, A; Melo, G C B; Borges, J M; Chernicharo, C A L

    2016-01-01

    This work assessed the energy potential and alternative usages of biogas and sludge generated in upflow anaerobic sludge blanket reactors at the Laboreaux sewage treatment plant (STP), Brazil. Two scenarios were considered: (i) priority use of biogas for the thermal drying of dehydrated sludge and the use of the excess biogas for electricity generation in an ICE (internal combustion engine); and (ii) priority use of biogas for electricity generation and the use of the heat of the engine exhaust gases for the thermal drying of the sludge. Scenario 1 showed that the electricity generated is able to supply 22.2% of the STP power demand, but the thermal drying process enables a greater reduction or even elimination of the final volume of sludge to be disposed. In Scenario 2, the electricity generated is able to supply 57.6% of the STP power demand; however, the heat in the exhaust gases is not enough to dry the total amount of dehydrated sludge.

  3. Vermistabilization of sewage sludge (biosolids) by earthworms: converting a potential biohazard destined for landfill disposal into a pathogen-free, nutritive and safe biofertilizer for farms.

    PubMed

    Sinha, Rajiv K; Herat, Sunil; Bharambe, Gokul; Brahambhatt, Ashish

    2010-10-01

    Earthworms feed readily upon sludge components, rapidly converting them into vermicompost, reduce the pathogens to safe levels and ingest the heavy metals. Volume is significantly reduced from 1 m³ of wet sludge (80% moisture) to 0.5 m³ of vermicompost (30% moisture). Earthworms have real potential both to increase the rate of aerobic decomposition and composting of organic matter and also to stabilize the organic residues in the sludge--removing the harmful pathogens (by devouring them and also by discharge of antibacterial coelomic fluid) and heavy metals (by bio-accumulation). They also mineralize the essential nutrients nitrogen, phosphorus and potassium from the sludge. It may not be possible to remove toxic substances completely, but at least change the 'chemical make-up' of the sludge to make it harmless to the soil and enable its use as a nutritive organic fertilizer. This method has been found to comply with grade A standards for sludge stabilization.

  4. Ex-situ catalytic pyrolysis of wastewater sewage sludge - A micro-pyrolysis study.

    PubMed

    Wang, Kaige; Zheng, Yan; Zhu, Xifeng; Brewer, Catherine E; Brown, Robert C

    2017-05-01

    Concerns over increasing amounts of sewage sludge and unsustainability of current disposal methods have led to development of alternative routes for sludge management. The large amount of organics in sewage sludge makes it potential feedstock for energy or fuel production via thermochemical pathways. In this study, ex-situ catalytic pyrolysis using HZSM-5 catalyst was explored for the production of olefinic and aromatic hydrocarbons and nutrient-rich char from sewage sludge. The optimal pyrolysis and catalysis temperatures were found to be 500°C and 600°C, respectively. Carbon yields of hydrocarbons from sewage sludge were higher than for lignocellulose; yield differences were attributed to the high extractives content in the sludge. Full recovery of most inorganic elements were found in the char, which suggests that catalyst deactivation maybe alleviated through ex-situ catalytic pyrolysis. Most of the nitrogen was retained in the char while 31.80% was released as ammonia, which suggests a potential for nitrogen recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Freshwater sediments and sludges: two important terrestrial sinks for emissions from damaged NPPs

    NASA Astrophysics Data System (ADS)

    Fischer, Helmut W.; Evangelia Souti, Maria; Ulbrich, Susanne; Hormann, Volker

    2013-04-01

    Surface deposition of radionuclides released from the damaged Fukushima NPPs is well documented and emissions to the Pacific Ocean and their distribution with time and space are also subject to monitoring and research. In both cases, solid matter (soil and sea sediment, respectively) acts as a sink for radioisotopes after their transport through air and water. The possible hazards from direct irradiation of workers and public and from entry of radionuclides into food chains are well recognized. Apart from direct deposition onto soil, plants, building roofs etc., aerosols and contaminated rainwater will reach surface waters, leading to long-term deposition in freshwater sediments (and possibly to interim contamination of drinking water). In populated and industrial areas, drained rainwater will enter the wastewater collection and treatment chain if a combined rain and wastewater sewer is used. Depending on the processes in the wastewater treatment plant and chemical element and speciation, the isotopes will either concentrate in treatment sludge or be released with the effluent to rivers and lakes and their sediments. The mentioned media may act as long-term storage for radioisotopes when disposed of properly, but can also contribute to direct irradiation of workers or public, lead to continuous releases to the environment and possibly enter the food chain in the same way as soil and sea sediments. It appears therefore essential to monitor these environmental compartments as well. However, very few data on Fukushima-related radioisotope concentration in sludges and freshwater sediments have been published to date. We will therefore compare data for regional surface deposition and related concentrations in surface water, river sediments and sewage sludge obtained in Europe during 1986 to published data from Japan in 2011 for the most important common short-lived (I-131, half-life = 8.02 d) and long-lived (Cs-137, half-life = 30.17 yr) isotopes. As in central Europe the Chernobyl fallout was not accompanied by other catastrophic events, well documented time series of data exist. It might become possible to estimate sludge and sediment isotope concentrations in Japan by proportionality considerations and by application of transport models when no or insufficient current data exist. Additional insight into transport processes can be obtained from ongoing investigations of medically used I-131 in wastewater and rivers. The results might help in identification and remediation of possibly emerging hazards.

  6. Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.

    PubMed

    Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato

    2015-01-01

    Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.

  7. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.

    PubMed

    Lin, Hai; Ma, Xiaoqian

    2012-03-01

    Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Effect of lime addition during sewage sludge treatment on characteristics of resulting SSA when it is used in cementitious materials.

    PubMed

    Vouk, D; Nakic, D; Štirmer, N; Baricevic, A

    2017-02-01

    Final disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater treatment technology, including the sludge treatment. In most EU countries, significant amounts of stabilized and dewatered sludge are incinerated, and sewage sludge ash (SSA) is generated as a by product. At the same time, lime is one of the commonly used additives in the sewage sludge treatment primarily to stabilize the sludge. In doing so, the question arose how desirable is such addition of lime if the sludge is subsequently incinerated, and the generated ash is further used in the production of cementitious materials. A series of mortars were prepared where 10-20% of the cement fraction was replaced by SSA. Since all three types of analyzed SSA (without lime, with lime added during sludge stabilization and with extra lime added during sludge incineration) yielded nearly same results, it can be concluded that if sludge incineration is accepted solution, lime addition during sludge treatment is unnecessary even from the standpoint of preserving the pozzolanic properties of the resulting SSA. Results of the research carried out on cement mortars point to the great possibilities of using SSA in concrete industry.

  9. Hazardous Waste Minimization Initiation Decision Report. Volume 1

    DTIC Science & Technology

    1988-06-01

    different treatment and disposal practices for spent caustic materials. In some cases, the material is placed in drums and sent to DRMO for disposal or to a...often available. As at some Navy facilities, waste caustic may be neutralized with spent acid at the process line with the effluent sent to the IWTP...3-111 PART II - Spent Battery Electrolyte .... 3-112 PART III- Battery Acid Sludges ........ 3-113 3.13.3 Disposal of Wastes from Battery Repair and

  10. Effects of leachate recirculation on biogas production from landfill co-disposal of municipal solid waste, sewage sludge and marine sediment.

    PubMed

    Chan, G Y S; Chu, L M; Wong, M H

    2002-01-01

    Leachate recirculation is an emerging technology associated with the management of landfill. The impact of leachate recirculation on the co-disposal of three major wastes (municipal solid waste, sewage sludge and sediment dredgings) was investigated using a laboratory column study. Chemical parameters (pH, COD, ammoniacal-N, total-P) and gas production (total gas volume, production rates and concentrations of CH4 and CO2) were monitored for 11 weeks. Leachate recirculation reduced waste-stabilization time and was effective in enhancing gas production and improving leachate quality, especially in terms of COD. The results also indicated that leachate recirculation could maximize the efficiency and waste volume reduction rate of landfill sites.

  11. 77 FR 43002 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Subjects in 40 CFR Part 261 Environmental protection, Hazardous waste, Recycling, and Reporting and... a maximum annual rate of 200 cubic yards per year must be disposed in a lined Subtitle D landfill... forth in paragraph 1, Phillips 66 can dispose of the processed sludge in a lined Subtitle D landfill...

  12. Environmental application for GIS: Assessing Iskandar Malaysia's (IM) sewage sludge for potential biomass resource

    NASA Astrophysics Data System (ADS)

    Salim, M. R.; Shaharuddin, N.; Abdullah Halim, K.

    2014-02-01

    The low carbon scenario could be achieved through the identification of major sectors contributing to the emission of high greenhouse gases (GHG) into the atmosphere. Sewage treatment plant (STP) was ranked as one of the major sectors that emits methane gas (CH4) during treatment processes, including sludge treatment. Sludge treatment is also capital extensive with high operational cost. Thus, sewage sludge has been accepted as a nuisance in STP. However, many has claimed that, sludge produced contain organic matter that has the potential for biomass resource. Thus, it would be such a Žwaste? if sludge are directly disposed of into the landfill without utilizing them at its full potential. In order to do so, it is vital to be able to determine the amount of sludge production. This research was implemented in Iskandar Malaysia regions in the state of Johor. By using GIS tool, the regions that produced the most sewage sludge can be determined, and can be group as critical area. Result shows that Nusajaya produces the most, compared to other regions, which indicated Nusajaya as a densely populated region.

  13. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo

    2015-06-01

    Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge.

    PubMed

    Zhu, Yi; Zeng, Guangming; Zhang, Panyue; Zhang, Chang; Ren, Miaomiao; Zhang, Jiachao; Chen, Ming

    2013-08-01

    Feasibility of bioleaching combining with Fenton-like reaction to remove heavy metals from sewage sludge was investigated. After 5-day bioleaching, the sludge pH decreased from 6.95 to 2.50, which satisfied the acidic conditions for Fenton-like reaction. Meanwhile, more than 50% of sludge-borne heavy metals were dissolved except for Pb. The bioleached sludge was further oxidized with Fenton-like reaction, with an optimal H2O2 dosage of 5 g/L, the Cu, Zn, Pb and Cd removal reached up to 75.3%, 72.6%, 34.5% and 65.4%, respectively, and the residual content of heavy metals in treated sludge meets the requirement of Disposal of Sludge from Municipal Wastewater Treatment Plant - Control Standards for Agricultural Use (CJ/T 309-2009) of China for A grade sludge. Bioleaching combined with Fenton-like reaction was the most effective method for heavy metal removal, compared with 15-day bioleaching and inorganic acid leaching with 10% H2SO4, 10% HCl and 10% HNO3. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant.

    PubMed

    Suresh Kumar, M; Mudliar, S N; Reddy, K M K; Chakrabarti, T

    2004-12-01

    Most of the excess sludge from a wastewater treatment plant (60%) is disposed by landfill. As a resource utilization of excess sludge, the production of biodegradable plastics using the sludge has been proposed. Storage polymers in bacterial cells can be extracted and used as biodegradable plastics. However, widespread applications have been limited by high production cost. In the present study, activated sludge bacteria in a conventional wastewater treatment system were induced, by controlling the carbon: nitrogen ratio to accumulate storage polymers. Polymer yield increased to a maximum 33% of biomass (w/w) when the C/N ratio was increased from 24 to 144, where as specific growth yield decreased with increasing C/N ratio. The conditions which are required for the maximum polymer accumulation were optimized and are discussed.

  16. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge.

    PubMed

    Xu, Ying; Zhang, Chaosheng; Zhao, Meihua; Rong, Hongwei; Zhang, Kefang; Chen, Qiuli

    2017-02-01

    Heavy metals prevent the growing amount of sewage sludge from being disposed as fertilizeron land. The electrokinetic remediation and bioleaching technology are the promising methods to remove heavy metals. In recent years, some innovation has been made to achieve better efficiency, including the innovation of processes and agents. This paper reviews the development of the electrokinetic remediation and bioleaching technology and analyses their advantages and limitation, pointing out the need of the future research for the heavy metals-contaminated sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ground-water quality in the Davie Landfill, Broward County, Florida

    USGS Publications Warehouse

    Mattraw, H.C.

    1976-01-01

    Ground-water adjacent to a disposal pond for septic tank sludge, oil, and grease at the Davie landfill, Broward County, Florida was tested for a variety of ground-water contaminants. Three wells adjacent to the disposal pond yielded water rich in nutrients, organic carbon and many other chemical constituents. Total coliform bacteria ranged from less than 100 to 660 colonies per 100 milliliters in samples collected from the shallowest well (depth 20 feet). At well depths of 35 and 45 feet bacterial counts were less than 20 colonies per 100 milliliters or zero. Concentrations of several constituents in water samples collected from the wells downgradient from the landfill, disposal pond, and an incinerator wash pond were greater than in samples collected from wells immediately upgradient of the landfill. A comparison of sodium-chloride ion ratios indicated that downgradient ground-water contamination was related to the incinerator wash water pond rather than the septic tank sludge pond. (Woodard-USGS)

  18. Environmental application of gamma technology: Update on the Canadian sludge irradiator

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Fraser, Frank M.

    1993-10-01

    Waste treatment and disposal technologies have recently been subjected to increasing public and regulatory scrutiny. Concern for the environment and a heightened awareness of potential health hazards that could result from insufficient or inappropriate waste handling methods have combined to push waste generators in their search for new treatment alternatives. Gamma technology can offer a new option for the treatment of potentially infectious wastes, including municipal sewage sludge. Sewage sludge contains beneficial plant nutrients and a high organic component that make it ideal as a soil conditioning agent or fertilizer bulking material. It also carries potentially infectious microorganisms which limit opportunities for beneficial recycling of sludges. Gamma irradiation-disinfection of these sludges offers a reliable, fast and efficient method for safe sludge recycling. Nordion International's Market Development Division was created in 1987 as part of a broad corporate reorganization. It was given an exclusive mandate to develop new applications of gamma irradiation technology and markets for these new applications. Nordion has since explored and developed opportunities in food irradiation, pharmaceutical/cosmetic products irradiation, biomedical waste sterilization, airline waste disinfection, and sludge disinfection for recycling. This paper focuses on the last of these -a proposed sludge recycling facility that incorporates a cobalt 60 sludge irradiator.

  19. PPCPs IN THE ENVIRONMENT: AN OVERVIEW OF THE ...

    EPA Pesticide Factsheets

    Pharmaceuticals and personal care products (PPCPs) comprise a large,diverse array of contaminants that can enter the environment from the combined activities, actions, and behaviors of multitudes of individualsas well as from veterinary and agricultural use (http://epa.gov/nerlesd1/chemistry/pharma/).Excretion, bathing, and disposal of leftover medications are the three primary routes of release from human activities (http://epa.gov/nerlesd1/chemistry/pharma/images/drawing.pdf). As trace environmentalc ontaminants in waters, sediments, and sewage sludge,they are largely unregulated in the U.S. The concentrations of individual active ingredients in environmental samples such as surface waters often range from parts-per-billion to parts-per-trillion - micrograms to nanograms per liter. Multiple active ingredients and their degradates, however, frequently occur together.The total, combined levels of these substances in a given environmental sample can be 1-2 orders of magnitude higher than their individual levels in waters, or upto the mg/kg level in treated sewage sludge (

  20. PPCPS AS ENVIRONMENTAL CONTAMINANTS: AN ...

    EPA Pesticide Factsheets

    Pharmaceuticals and personal care products (PPCPs) comprise a large, diverse array of contaminants thatcan enter the environment from the combined activities, actions, and behaviors of multitudes of individualsas well as from veterinary and agricultural use (http://epa.gov/nerlesd1/chemistry/pharma/). Excretion, bathing, and disposal of leftover medications are the three primary routes of release from human activities(http://epa.gov/nerlesd1/chemistry/pharma/images/drawing.pdf). As trace environmental contaminants in waters,sediments, and sewage sludge, they are largely unregulated in the U.S. The concentrations of individual active ingredients in environmental samples such as surface waters often range from parts-per-billion to parts-per-trillion ¿ micrograms to nanograms per liter. Multiple active ingredients and their degradates, however, frequently occur together. The total, combined levels of these substances in a given environmental sample can be 1-2 orders of magnitude higher than their individual levels in waters, or up to the mg/kg level in treated sewage sludge (

  1. 40 CFR 503.30 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DISPOSAL OF SEWAGE SLUDGE Pathogens and Vector Attraction Reduction § 503.30 Scope. (a) This subpart... land, forest, or a reclamation site. (d) This subpart contains alternative vector attraction reduction...

  2. 40 CFR 503.30 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DISPOSAL OF SEWAGE SLUDGE Pathogens and Vector Attraction Reduction § 503.30 Scope. (a) This subpart... land, forest, or a reclamation site. (d) This subpart contains alternative vector attraction reduction...

  3. Application of ATAD technology for digesting sewage sludge in small towns: Operation and costs.

    PubMed

    Martín, M A; Gutiérrez, M C; Dios, M; Siles, J A; Chica, A F

    2018-06-01

    In an economic context marked by increasing energy costs and stricter legislation regarding the landfill disposal of wastewater treatment plant (WWTP) sewage sludge, and where biomethanization is difficult to implement in small WWTPs, an efficient alternative is required to manage this polluting waste. This study shows that autothermal thermophilic aerobic digestion (ATAD) is a feasible technique for treating sewage sludge in small- and medium-sized towns. The experiments were carried out at pilot scale on a cyclical basis and in continuous mode for nine months. The main results showed an optimal hydraulic retention time of 7 days, which led to an organic matter removal of 34%. The sanitized sludge meets the microbial quality standards for agronomic application set out in the proposed European sewage sludge directive. An economic assessment for the operation of ATAD technology was carried out, showing a treatment cost of €6.5/ton for dewatered sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Utilization of Drinking Water Treatment Slurry to Produce Aluminum Sulfate Coagulant.

    PubMed

    Fouad, Mahmoud M; Razek, Taha M A; Elgendy, Ahmed S

    2017-02-01

      In Egypt, water treatment consumes about 365 000 tons of aluminum sulfate and produces more than 100 million tons of sludge per year. The common disposal system of sludge in Egypt is to discharge it into natural waterways. Toxicity of aluminum, environmental regulations and costs of chemicals used in water treatment and sludge treatment processes led to an evaluation of coagulant recovery and subsequent reuse. The present work aimed at aluminum recovery from sludge of El-Shiekh Zayd water treatment plant (WTP) to produce aluminum sulfate coagulant. Sludge was characterized and the effect of five variables was tested and the process efficiency was evaluated at different operating conditions. Maximum recovery is 94.2% at acid concentration 1.5 N, sludge weight 5 g, mixing speed 60 rpm, temperature 60 °C and leaching time 40 min. Then optimum conditions were applied to get maximum recovery for aluminum sulfate and compared to commercial coagulant on raw water of El-Shiekh Zayd (WTP).

  5. Characterization study on secondary sewage sludge for replacement in building materials

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Sarani, Noor Amira; Aziz, Nurul Sazwana A.; Hamdan, Rafidah; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Recently, environmental issues continually increased since expanded in industrial development and grown in population. Regarding to this activity, it will cause lack management of waste such as solid waste from wastewater treatment plant called sewage sludge. This research presents the characteristic study of sewage sludge, regardless of whether it is appropriate or not to be applied as building materials. The sewage sludge samples were collected from secondary treatment at Senggarang and Perwira under Indah Water Konsortium (IWK) treatment plant. Raw materials were tested with X-ray Fluorescence (XRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) in order to determine the composition of sewage sludge and heavy metal concentration contains in sewage sludge. From the study, it was found that sewage sludge contained high amount of Silica Oxide (SiO2) with 13.6%, Sulphur Trioxide (SO3) with 12.64% and Iron Oxide (Fe2O3) with 8.7% which is similar in clay. In addition, sewage sludge also high in Iron (Fe) with 276.2 mg/L followed by Zinc (Zn) with concentration 45.41 mg/L which sewage sludge cannot be directly disposed to landfill. Results from this study demonstrated that sewage sludge has high possibility to be reused as alternative building materials such as bricks and have compatible chemical composition with clay.

  6. Coagulation efficiency and flocs characteristics of recycling sludge during treatment of low temperature and micro-polluted water.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Gao, Wei; Liang, Heng; Li, Guibai

    2012-01-01

    Drinking water treatment sludge, characterized as accumulated suspended solids and organic and inorganic matter, is produced in large quantities during the coagulation process. The proper disposal, regeneration or reuse of sludge is, therefore, a significant environmental issue. Reused sludge at low temperatures is an alternative method to enhance traditional coagulation efficiency. In the present study, the recycling mass of mixed sludge and properties of raw water (such as pH and turbidity) were systematically investigated to optimize coagulation efficiency. We determined that the appropriate dosage of mixed sludge was 60 mL/L, effective initial turbidity ranges were below 45.0 NTU, and optimal pH for DOMs and turbidity removal was 6.5-7.0 and 8.0, respectively. Furthermore, by comparing the flocs characteristics with and without recycling sludge, we found that floc structures with sludge were more irregular with average size growth to 64.7 microm from 48.1 microm. Recycling sludge was a feasible and successful method for enhancing pollutants removal, and the more irregular flocs structure after recycling might be caused by breakage of reused flocs and incorporation of powdered activated carbon into larger flocs structure. Applied during the coagulation process, recycling sludge could be significant for the treatment of low temperature and micro-polluted source water.

  7. Beneficial reuse of precast concrete industry sludge to produce alkaline stabilized biosolids.

    PubMed

    Gowda, C; Seth, R; Biswas, N

    2008-01-01

    The precast concrete industry generates waste called concrete sludge during routine mixer tank washing. It is highly alkaline and hazardous, and typically disposed of by landfilling. This study examined the stabilization of municipal sewage sludge using concrete sludge as an alkaline agent. Sewage sludge was amended with 10 to 40% of concrete sludge by wet weight, and 10 and 20% of lime by dry weight of the sludge mix. Mixes containing 30 and 40% of concrete sludge with 20% lime fulfilled the primary requirements of Category 1 and 2 (Canada) biosolids of maintaining a pH of 12 for at least 72 hours. The heavy metals were below Category 1 regulatory limits. The 40% concrete sludge mix was incubated at 52 degrees C for 12 of the 72 hours to achieve the Category 1 and 2 regulations of less than 1000 fecal coliform/g solids. The nutrient content of the biosolids was 8.2, 10 and 0.6 g/kg of nitrogen, phosphorus and potassium respectively. It can be used as a top soil or augmented with potassium for use as fertilizer. The study demonstrates that concrete sludge waste can be beneficially reused to produce biosolids, providing a long-term sustainable waste management solution for the concrete industry.

  8. Health and environmental impacts of increased generation of coal ash and FGD sludges. Report to the Committee on Health and Ecological Effects of Increased Coal Utilization.

    PubMed Central

    Santhanam, C J; Lunt, R R; Johnson, S L; Cooper, C B; Thayer, P S; Jones, J W

    1979-01-01

    This paper focuses on the incremental impacts of coal ash and flue gas desulfurization (FGD) wastes associated with increased coal usage by utilities and industry under the National Energy Plan (NEP). In the paper, 1985 and 2000 are the assessment points using the baseline data taken from the Annual Environmental Analysis Report (AEAR, September 1977). In each EPA region, the potential mix of disposal options has been broadly estimated and impacts assessed therefrom. In addition, future use of advanced combustion techniques has been taken into account. The quantities of coal ash and FGD wastes depend on ash and sulfur content of the coal, emission regulations, the types of ash collection and FGD systems, and operating conditions of the systems and boiler. The disposal of these wastes is (or will be) subject to Federal and State regulations. The one key legal framework concerning environmental impact on land is the Resource Conservation and Recovery Act (RCRA). RCRA and related Federal and State laws provide a sufficient statutory basis for preventing significant adverse health and environmental impacts from coal ash and FGD waste disposal. However, much of the development and implementation of specific regulations lie ahead. FGD wastes and coal ash and FGD wastes are currently disposed of exclusively on land. The most common land disposal methods are inpoundments (ponds) and landfills, although some mine disposal is also practiced. The potential environmental impacts of this disposal are dependent on the characteristics of the disposal site, characteristics of the coal ash and FGD wastes, control method and the degree of control employed. In general, the major potential impacts are ground and surface water contamination and the "degradation" of large quantities of land. However, assuming land is available for disposal of these wastes, control technology exists for environmentally sound disposal. Because of existing increases in coal use, the possibility of significant environmental impacts, both regionally and nationally, exists regardless of whether the NEP scenario develops or not. Existing baseline data indicate that with sound control technology and successful development and implementation of existing regulatory framework, regional scale impacts are likely to be small; however, site-specific impacts could be significant and need to be evaluated on a case-by-case basis. Both Federal and privately-funded programs are developing additional data and information on disposal of FGD sludges and coal ash. Continuation of these programs will provide additional vital information in the future. However, further information in several areas if desirable: further data on levels of radionuclides and trace metals in these wastes: studies on biological impacts of trace metals; and completion of current and planned studies on disposal problems associated with advanced combustion techniques like fluid bed combustion. PMID:540614

  9. Minimisation of costs by using disintegration at a full-scale anaerobic digestion plant.

    PubMed

    Winter, A

    2002-01-01

    Various half-scale and lab-scale investigations have already shown that the disintegration of excess sludge is a possible pre-treatment to optimise anaerobic digestion. To control these results different methods of disintegration were investigated at a full-scale plant. Two stirred ball mills and a plant for oxidation with ozone were applied. A positive influence of disintegration on the anaerobic biodegradability can be established with application of a stirred ball mill. Biogas production as well as the degree of degradation were increased by about 20%. Laboratory investigations also validate that disintegration increases the polymer demand and leads to a lower solid content after dewatering. A higher pollution level of process water after dewatering even with ammonia and COD corroborates the results of the anaerobic degradation. Capital costs for the stirred ball mill, costs for energy, manpower and maintenance can be covered if the specific costs for disposal are high. If the development of costs in future and the current discussion about sludge disposal are taken into account sewage sludge disintegration can be a suitable technique to minimise costs at waste water treatment plants.

  10. Ecological and Economic Aspects of the Application of Sewage Sludge in Energetic Plant Plantations - A Swot Analysis

    NASA Astrophysics Data System (ADS)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2017-12-01

    Sewage sludge management in Poland is a relatively new field of waste management called "in statu nascendi", the standards of which have not been recognized yet. It also requires the implementation of new solutions in the field of sewage sludge. So far, the most popular method of sewage sludge utilization has been landfill disposal. In line with the restriction placed on landfill waste with a calorific value above 6 MJ/kg introduced on 1 January 2016, agricultural use and thermal methods are particularly applied. Municipal sewage sludge may be successfully used in the cultivation of energetic plant plantations. The aforementioned waste could be treated as an alternative to traditional mineral fertilizers, which in turn might successfully provide valuable nutrients for plants. This paper illustrates the SWOT analysis (Strengths, Weaknesses, Opportunities, and Threats) associated with the use of sewage sludge from Świlcza-Kamyszyn WTTP (Podkarpackie Province, Poland) for agricultural purposes. This analysis could be useful in evaluating the utility of sewage sludge in perennial plant plantations in order to determine the appropriate waste management strategies.

  11. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    PubMed Central

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-01-01

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H) were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications. PMID:25170681

  12. Soil microbial functional and fungal diversity as influenced by municipal sewage sludge accumulation.

    PubMed

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-08-28

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H) were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications.

  13. An improved procedure for shipboard enumeration of faecal indicator bacteria in marine sediments from sewage sludge disposal areas.

    PubMed

    West, P A

    1988-04-01

    An improved membrane filtration procedure for use on board ship to enumerate Escherichia coli and Group D faecal streptococci in marine sediments is described. Ultrasonication extraction combined with resuscitation of sublethally-injured cells yielded significantly higher counts of E. coli than sediments shaken by hand. Counts of E. coli were also higher on mFC agar (without rosalic acid) after a period of resuscitation on tryptone-soy agar supplemented with 0.1% yeast extract than on a 4% Teepol-lactose medium. Ultrasonication of sediments made no significant difference to counts of Group D faecal streptococci on KF-streptococcus agar. These improved isolation procedures allowed better discrimination of the area affected by sewage sludge at a disposal site off the northeast coast of England.

  14. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transportmore » and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.« less

  15. Hazardous Waste Reduction Naval Air Station Oceana

    DTIC Science & Technology

    1991-06-01

    their inherent nature and/or quantities, require special handling during disposal. Hazardous waste under this definition includes paints, acids, caustics ...including naphthenes ), 2% aromatics with less than 0.1% benzene. The boiling range is fror 3130 to 4040 F. It has a petroleum odor and the threshold limit in...7ulfide sludge is generated in the battery during its lifetime. .- second sludge is generated by pretreatment of the spent battery acids. Both of these

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummer, J.S.

    A mobile, automated tank-cleaning system, used in the past 3 years at more than 50 sites in Scandinavia and northern Europe, requires no tank entry or contact with hydrocarbons by personnel, and it has proven faster than manual systems. Developed and marketed by Toftejorg Technology AS, Denmark, and called the Blabo system, it also simultaneously separates the resulting sludge. This allows nearly 100% recovery of oil and the least sludge for disposal. The paper describes the new system, its costs, and applications.

  17. Superfund Record of Decision (EPA Region 7): Mid-America Tanning site, Sergeant bBluff, IA. (First remedial action), September 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-24

    The 98.7-acre Mid-America Tanning site is a former leather tannery in Sergeant Bluff, Woodbury County, Iowa. Surrounding land use is mixed industrial and agricultural. A portion of the site is bordered by Oxbow Lake and lies within the 100-year floodplain. The Missouri River is approximately 1.5 miles to the southwest of the site and receives discharges from Oxbow Lake. The facility began onsite processing of animal hides in 1970. In 1980, the State confirmed the onsite burial of chromium-containing sludge in trenches, and the company was cited for permit violations. A 1985 EPA investigation identified excessive chromium contamination in onsitemore » soil, sediment, and ground water. In 1990, EPA conducted a removal action that included excavating and consolidating onsite 1,290 cubic yards of sludge from the trench disposal area. The Record of Decision (ROD) addresses the contaminated soil, impoundment sediment and water, and the excavated trench material. A future ROD will address onsite ground water contamination. The primary contaminant of concern affecting the soil, sediment, debris, sludge, and surface water are metals including chromium and lead. The selected remedial action for the site is included.« less

  18. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells.

    PubMed

    Liu, Qian; Ren, Zhiyong Jason; Huang, Cong; Liu, Bingfeng; Ren, Nanqi; Xing, Defeng

    2016-01-01

    Biohythane is a new and high-value transportation fuel present as a mixture of biomethane and biohydrogen. It has been produced from different organic matters using anaerobic digestion. Bioenergy can be recovered from waste activated sludge through methane production during anaerobic digestion, but energy yield is often insufficient to sludge disposal. Microbial electrolysis cell (MEC) is also a promising approach for bioenergy recovery and waste sludge disposal as higher energy efficiency and biogas production. The systematic understanding of microbial interactions and biohythane production in MEC is still limited. Here, we report biohythane production from waste sludge in biocathode microbial electrolysis cells and reveal syntrophic interactions in microbial communities based on high-throughput sequencing and quantitative PCR targeting 16S rRNA gene. The alkali-pretreated sludge fed MECs (AS-MEC) showed the highest biohythane production rate of 0.148 L·L(-1)-reactor·day(-1), which is 40 and 80 % higher than raw sludge fed MECs (RS-MEC) and anaerobic digestion (open circuit MEC, RS-OCMEC). Current density, metabolite profiles, and hydrogen-methane ratio results all confirm that alkali-pretreatment and microbial electrolysis greatly enhanced sludge hydrolysis and biohythane production. Illumina Miseq sequencing of 16S rRNA gene amplicons indicates that anode biofilm was dominated by exoelectrogenic Geobacter, fermentative bacteria and hydrogen-producing bacteria in the AS-MEC. The cathode biofilm was dominated by fermentative Clostridium. The dominant archaeal populations on the cathodes of AS-MEC and RS-MEC were affiliated with hydrogenotrophic Methanobacterium (98 %, relative abundance) and Methanocorpusculum (77 %), respectively. Multiple pathways of gas production were observed in the same MEC reactor, including fermentative and electrolytic H2 production, as well as hydrogenotrophic methanogenesis and electromethanogenesis. Real-time quantitative PCR analyses showed that higher amount of methanogens were enriched in AS-MEC than that in RS-MEC and RS-OCMEC, suggesting that alkali-pretreated sludge and MEC facilitated hydrogenotrophic methanogen enrichment. This study proves for the first time that biohythane could be produced directly in biocathode MECs using waste sludge. MEC and alkali-pretreatment accelerated enrichment of hydrogenotrophic methanogen and hydrolysis of waste sludge. The results indicate syntrophic interactions among fermentative bacteria, exoelectrogenic bacteria and methanogenic archaea in MECs are critical for highly efficient conversion of complex organics into biohythane, demonstrating that MECs can be more competitive than conventional anaerobic digestion for biohythane production using carbohydrate-deficient substrates. Biohythane production from waste sludge by MEC provides a promising new way for practical application of microbial electrochemical technology.

  19. Transformation of arsenic in the presence of cow dung and arsenic sludge disposal and management strategy in Bangladesh

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Azizur; Jalil, Md. Abdul; Ali, M. Ashraf

    2014-10-01

    With increasing use of arsenic (As) removal units for treatment of As-contaminated groundwater in rural Bangladesh, concerns have been raised regarding safe disposal of the As-rich wastes from such units and possible contamination of the environment. In the absence of any clear guideline for safe disposal of wastes generated from As removal units, the wastes are usually disposed of in the open environment, often on cow dung beds in the backyard. Short term (up to 6 weeks) batch experiments performed in this study suggest that bio-chemical (e.g., bio-methylation) processes in the presence of only fresh cow dung may lead to a significant removal of As, both from aqueous solution and As-rich treatment wastes. Arsenic removal appears to increase with decreasing As to cow dung weight ratio. This study also suggests that arsenate transforms to arsenite before removal from aqueous As solution in the presence of cow dung. In most cases majority of As removal takes place during first few days. Removal of As under cap-open (to facilitate aerobic condition) and cap-closed conditions (to facilitate aerobic condition) were found to be similar. No significant variation was observed in the removal As from aqueous solution and from treatment wastes (As bound to iron solids). This study concludes that disposal of As-rich treatment wastes to cow dung pits could be an effective option of As sludge disposal and management in rural areas of Bangladesh.

  20. Anaerobic digestion of thermal pre-treated sludge at different solids concentrations--Computation of mass-energy balance and greenhouse gas emissions.

    PubMed

    Pilli, Sridhar; More, Tanaji; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2015-07-01

    The effect of thermal pre-treatment on sludge anaerobic digestion (AD) efficiency was studied at different total solids (TS) concentrations (20.0, 30.0 and 40.0 g TS/L) and digestion times (0, 5, 10, 15, 20 and 30 days) for primary, secondary and mixed wastewater sludge. Moreover, sludge pre-treatment, AD and disposal processes were evaluated based on a mass-energy balance and corresponding greenhouse gas (GHG) emissions. Mass balance revealed that the least quantity of digestate was generated by thermal pre-treated secondary sludge at 30.0 g TS/L. The net energy (energy output-energy input) and energy ratio (energy output/energy input) for thermal pre-treated sludge was greater than control in all cases. The reduced GHG emissions of 73.8 × 10(-3) g CO2/g of total dry solids were observed for the thermal pre-treated secondary sludge at 30.0 g TS/L. Thermal pre-treatment of sludge is energetically beneficial and required less retention time compared to control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial community from propylene oxide saponification wastewater residual sludge.

    PubMed

    Wang, Yiwei; Zhu, Ying; Gu, Pengfei; Li, Yumei; Fan, Xiangyu; Song, Dongxue; Ji, Yan; Li, Qiang

    2017-05-01

    The saponification wastewater from the process of propylene oxide (PO) production is contaminated with high chemical oxygen demand (COD) and chlorine contents. Although the activated sludge process could treat the PO saponification wastewater effectively, the residual sludge was difficult to be disposed properly. In this research, microbes in PO saponification wastewater residual sludge were acclimated to produce poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from volatile fatty acids. Through Miseq Illumina highthroughput sequencing, the bacterial community discrepancy between the original and the acclimated sludge samples were analyzed. The proportions of Bacillus, Acinetobacter, Brevundimonas and Pseudomonas, the potential PHBV-producers in the residual sludge, were all obviously increased. In the batch fermentation, the production of PHBV could achieve 4.262g/L at 300min, with the content increased from 0.04% to 23.67% of mixed liquor suspended solid (MLSS) in the acclimated sludge, and the COD of the PO saponification wastewater was also decreased in the fermentation. This work would provide an effective solution for the utilization of PO saponification wastewater residual sludge. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Characteristics of odors and VOCs from sludge direct drying process].

    PubMed

    Chen, Wen-He; Deng, Ming-Jia; Luo, Hui; Zhang, Jing-Ying; Ding, Wen-Jie; Liu, Jun-Xin; Liu, Jun-Xin

    2014-08-01

    Co-processing sewage sludge by using the high-temperature feature of cement kiln can realize harmless disposal and energy recycling. In this paper, investigation on characteristics of the flue gas from sludge drying process was carried out in Guangzhou Heidelberg Yuexiu Cement Co., LTD. The composition and the main source of odors and volatile organic compounds (VOCs) emitted during the drying process were analyzed, aimed to provide scientific basis for the treatment of sewage sludge. Results showed that there were a large number of malodorous substances and VOCs in the flue gas. Sulfur dioxide and other sulfur-containing compounds were the main components in the malodorous substances, while benzene derivatives were predominant in VOCs. The compositions of odors and VOCs were influenced by the characteristics of the sludge and the heat medium (kiln tail gas). Total organic compounds in the sludge were significantly decreased after drying. Other organic substances such as volatile fatty acid, protein, and polysaccharide were also obviously reduced. The organic matter in sludge was the main source of VOCs in the flue gas. Part of sulfurous substances, such as sulfur dioxide, carbon disulfide, were from sulfur-containing substances in the sludge, and the rest were from the kiln tail gas itself.

  3. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.

    PubMed

    Liang, Xin; Ning, Xun-an; Chen, Guoxin; Lin, Meiqing; Liu, Jingyong; Wang, Yujie

    2013-12-01

    The safe disposal of sludge from textile dyeing industry requires research on bioavailability and concentration of heavy metals. In this study, concentrations and chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Zn, Pb) in sludge from nine different textile dyeing plants were examined. Some physiochemical features of sludge from textile dyeing industry were determined, and a sequential extraction procedure recommended by the Community Bureau of Reference (BCR) was used to study the metal speciation. Cluster analysis (CA) and principal component analysis (PCA) were applied to provide additional information regarding differences in sludge composition. The results showed that Zn and Cu contents were the highest, followed by Ni, Cr, Cd and Pb. The concentration of Cd and Ni in some sludge samples exceeded the standard suggested for acidic soils in China (GB18918-2002). In sludge from textile dyeing plants, Pb, Cd and Cr were principally distributed in the oxidizable and residual fraction, Cu in the oxidizable fraction, Ni in all four fractions and Zn in the acid soluble/exchangeable and reducible fractions. The pH and heat-drying method affected the fractionation of heavy metals in sludge. © 2013 Elsevier Inc. All rights reserved.

  4. Anionic surfactants in treated sewage and sludges: risk assessment to aquatic and terrestrial environments.

    PubMed

    Mungray, Arvind Kumar; Kumar, Pradeep

    2008-05-01

    Compared to low concentrations of anionic surfactants (AS) in activated sludge process effluents (ASP) (<0.2 mg/L), upflow anaerobic sludge blanket-polishing pond (UASB-PP) effluents were found to contain very high concentrations of AS (>3.5 mg/L). AS (or linear alkylbenzen sulfonate, LAS) removals >99% have been found for ASP while in case of UASB-PP it was found to be < or = 30%. AS concentrations averaged 7347 and 1452 mg/kg dry wt. in wet UASB and dried sludges, respectively. Treated sewage from UASB based sewage treatment plants (STPs) when discharged to aquatic ecosystems are likely to generate substantial risk. Post-treatment using 1-1.6d detention, anaerobic, non-algal polishing ponds was found ineffective. Need of utilizing an aerobic method of post-treatment of UASB effluent in place of an anaerobic one has been emphasized. Natural drying of UASB sludges on sludge drying beds (SDBs) under aerobic conditions results in reduction of adsorbed AS by around 80%. Application of UASB sludges on SDBs was found simple, economical and effective. While disposal of treated UASB effluent may cause risk to aquatic ecosystems, use of dried UASB sludges is not likely to cause risk to terrestrial ecosystems.

  5. Improving the compression dewatering of sewage sludge through bioacidification conditioning driven by Acidithiobacillus ferrooxidans: dewatering rate vs. dewatering extent.

    PubMed

    Lu, Yi; Zhang, Chunmei; Zheng, Guanyu; Zhou, Lixiang

    2018-04-22

    Prior to mechanical dewatering, sludge conditioning is indispensable to reduce the difficulty of sludge treatment and disposal. The effect of bioacidification conditioning driven by Acidithiobacillus ferrooxidans LX5 on the dewatering rate and extent of sewage sludge during compression dewatering process was investigated in this study. The results showed that the bioacidification of sludge driven by A. ferrooxidans LX5 simultaneously improved both the sludge dewatering rate and extent, which was not attained by physical/chemical conditioning approaches, including ultrasonication, microwave, freezing/thawing, or by adding the chemical conditioner cationic polyacrylamide (CPAM). During the bioacidification of sludge, the decrease in sludge pH induced the damage of sludge microbial cell structures, which enhanced the dewatering extent of sludge, and the added Fe 2+ and the subsequent bio-oxidized Fe 3+ effectively flocculated the damaged sludge flocs to improve the sludge dewatering rate. In the compression dewatering process consisting of filtration and expression stages, high removal of moisture and a short dewatering time were achieved during the filtration stage and the expression kinetics were also improved because of the high elasticity of sludge cake and the rapid creeping of the aggregates within the sludge cake. In addition, the usefulness of bioacidification driven by A. ferrooxidans LX5 in improving the compression dewatering of sewage sludge could not be attained by the chemical treatment of sludge through pH modification and Fe 3+ addition. Therefore, the bioacidification of sludge driven by A. ferrooxidans LX5 is an effective conditioning method to simultaneously improve the rate and extent of compression dewatering of sewage sludge.

  6. Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area.

    PubMed

    Singh, Kunwar P; Mohan, Dinesh; Sinha, Sarita; Dalwani, R

    2004-04-01

    Studies were undertaken to assess the impact of wastewater/sludge disposal (metals and pesticides) from sewage treatment plants (STPs) in Jajmau, Kanpur (5 MLD) and Dinapur, Varanasi (80 MLD), on health, agriculture and environmental quality in the receiving/application areas around Kanpur and Varanasi in Uttar Pradesh, India. The raw, treated and mixed treated urban wastewater samples were collected from the inlet and outlet points of the plants during peak (morning and evening) and non-peak (noon) hours. The impact of the treated wastewater toxicants (metals and pesticides) on the environmental quality of the disposal area was assessed in terms of their levels in different media samples viz., water, soil, crops, vegetation, and food grains. The data generated show elevated levels of metals and pesticides in all the environmental media, suggesting a definite adverse impact on the environmental quality of the disposal area. The critical levels of the heavy metals in the soil for agricultural crops are found to be much higher than those observed in the study areas receiving no effluents. The sludge from the STPs has both positive and negative impacts on agriculture as it is loaded with high levels of toxic heavy metals and pesticides, but also enriched with several useful ingredients such as N, P, and K providing fertilizer values. The sludge studied had cadmium, chromium and nickel levels above tolerable levels as prescribed for agricultural and lands application. Bio-monitoring of the metals and pesticides levels in the human blood and urine of the different population groups under study areas was undertaken. All the different approaches indicated a considerable risk and impact of heavy metals and pesticides on human health in the exposed areas receiving the wastewater from the STPs.

  7. Investigation of the effects of temperature and sludge characteristics on odors and VOC emissions during the drying process of sewage sludge.

    PubMed

    Ding, Wenjie; Li, Lin; Liu, Junxin

    2015-01-01

    Sludge drying is a necessary step for sludge disposal. In this study, sludge was collected from two wastewater treatment plants, and dried at different temperatures in the laboratory. The emission of odor and total volatile organic compounds (TVOCs) during the sludge drying process were determined by an online odor monitoring system. The volatile organic compounds (VOCs) in off-gas were analyzed by gas chromatography-mass spectrometry. Results showed that sludge with 30% moisture content could be obtained in 51 minutes under drying temperature 100 °C but only within 27 minutes under 150 °C. Concentration of odor, TVOCs, sulfur-containing compounds (SCCs), and amines were changed with drying temperature and sludge sources. The maximum concentration of odor, TVOCs, SCCs, and amines were 503.13 ppm, 3.01 ppm, 8.15 ppm, and 11.27 ppm, respectively, at drying temperature 100 °C. These values reached 1,250.79, 8.10, 53.51, and 37.80 ppm when sludge dried at 150 °C. Odor concentration had a close relationship with emission of SCCs, amines, and TVOCs. The main VOCs released were benzene series and organic acid. Potential migration of substances in sludge was examined via analysis of off-gas and condensate, aiming to provide scientific data for effective sludge treatment and off-gas control.

  8. 40 CFR 35.940-2 - Unallowable costs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approved project; (f) Interest on bonds or any other form of indebtedness required to finance the project... example, sewer rights-of-way, sewage treatment plantsite, sanitary landfills and sludge disposal areas...

  9. Laser removal of sludge from steam generators

    DOEpatents

    Nachbar, Henry D.

    1990-01-01

    A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

  10. Use of life cycle assessment to evaluate environmental impacts associated with the management of sludge and biogas.

    PubMed

    do Amaral, Karina Cubas; Aisse, Miguel Mansur; Possetti, Gustavo Rafael Collere; Prado, Marcelo Real

    2018-05-01

    Upflow anaerobic sludge blanket (UASB) reactors used in sewage treatment generate two by-products that can be reused: sludge and biogas. At the present time in Brazil, most of this resulting sludge is disposed of in sanitary landfills, while biogas is commonly burned off in low-efficiency flares. The aim of the present study was to use life cycle assessment to evaluate the environmental impacts from four different treatment and final destination scenarios for the main by-products of wastewater treatment plants. The baseline scenario, in which the sludge was sanitized using prolonged alkaline stabilization and, subsequently, directed toward agricultural applications and the biogas destroyed in open burners, had the most impact in the categories of global warming, terrestrial ecotoxicity, and human non-carcinogenic toxicity. The scenario in which heat resulting from biogas combustion is used to dry the sludge showed significant improvements over the baseline scenario in all the evaluated impact categories. The recovery of heat from biogas combustion decreased significantly the environmental impact associated with global warming. The combustion of dried sludge is another alternative to improve the sludge management. Despite the reduction of sludge volume to ash, there are environmental impacts inherent to ozone formation and terrestrial acidification.

  11. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes.

    PubMed

    Liu, Huan; Luo, Guang-Qian; Hu, Hong-Yun; Zhang, Qiang; Yang, Jia-Kuan; Yao, Hong

    2012-10-15

    Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH(3)), sulfur dioxide (SO(2)), hydrogen sulfide (H(2)S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO(2) and H(2)S emissions in the H(2)SO(4) conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant release of NH(3). Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Destruction of the recreational, asthetic, agricultural, wildlife conservation and preservation, and residential uses of the land as a result of the abuses of the manufacturing, commercial, extractive, construction, and transportation industries

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Explicit concern over land use and abuse stems from the recognition of the negative impacts of unrestrained and unregulated economic, industrial, and population growth upon finite land resources. Only one quarter of the total surface area of the earth is land, and of that a large portion is uninhabitable. The present stresses upon the land include urbanization, urban sprawl and urban congestion; electrical, nuclear industrial park siting requirements; land degradation through stripping surface minerals; land degradation through disposal of radioactive wastes, sewage sludge, solid waste and other industrial wastes; rising demand for agricultural land; and the erosion and destruction of land through elimination of protective coverings such as forests, grasslands, and wetlands.

  14. The Sewerless Society

    ERIC Educational Resources Information Center

    Leich, Harold H.

    1975-01-01

    Our present sewage disposal systems are ecologically unsound because they risk transmitting diseases, waste water, cost too much, increase lake eutrophication, and build up sludge. Sewerless toilets are being developed which can solve these problems. (MR)

  15. An Analysis of Army Hazardous Waste Disposal Cost Data

    DTIC Science & Technology

    1991-04-01

    be contaminated with gl EP Toxic (but not limited to) chromium 2133 Sludge, may be contaminated with (but not lb EP Toxic limited to) trivalent ...limited to) trivalent chrome, cadmium, heavy metals and metals continued - ’kg = kilograms 18 Table 6 (Cont’d) CLIN Supplies/Services CLIN (kg) % of...2.0 0600 Compressed gas cylinders, misc. 81,566 1.8 2133 Sludge, may be contaminated with (but not 78,000 1.7 limited to) trivalent chrome, cadmium

  16. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    PubMed

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  17. Changes of chromium speciation and organic matter during low-temperature pyrolysis of tannery sludge.

    PubMed

    Zhou, Jianjun; Ma, Hongrui; Gao, Mao; Sun, Wenyue; Zhu, Chao; Chen, Xiangping

    2018-01-01

    The application or disposal of char derived from tannery sludge is directly influenced by the mobility and bioavailability of Cr during pyrolysis process. This study focused on the changes of Cr speciation and organic matter in tannery sludge during low-temperature pyrolysis (100-400 °C) to evaluate the toxicity of char in terms of the leaching possibility of Cr. The results showed that (1) lower char yield and more porous structure were observed after pyrolysis. (2) Higher pyrolysis temperature increased Cr content in the char; however, Cr in this case was converted into the residual fraction which minimized its bioavailability therefore lowers its potential risk to the environment. (3) Organic matters in the acid and alkali leachates were mainly humic acid-like substance, and condensed organic matter might appear at 200 °C and then destruct. (4) Despite the comparatively high content of Cr in the char, the leaching toxicity of char was within the security range according to the national standard of China. The Cr content in the acid and alkali leachates decreased to the range of 16.5-35.3 and 0.2-6.8 mg/L, respectively. It was suggested that the potential toxicity of tannery sludge from Cr could be reduced before utilization or disposal by pyrolysis, especially under 400 °C.

  18. Probabilistic determination of the ecological risk from OTNE in aquatic and terrestrial compartments based on US-wide monitoring data.

    PubMed

    McDonough, Kathleen; Casteel, Kenneth; Zoller, Ann; Wehmeyer, Kenneth; Hulzebos, Etje; Rila, Jean-Paul; Salvito, Daniel; Federle, Thomas

    2017-01-01

    OTNE [1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthyl)ethan-1-one; trade name Iso E Super] is a fragrance ingredient commonly used in consumer products which are disposed down the drain. This research measured effluent and sludge concentrations of OTNE at 44 US wastewater treatment plants (WWTP). The mean effluent and sludge concentrations were 0.69 ± 0.65 μg/L and 20.6 ± 33.8 mg/kg dw respectively. Distribution of OTNE effluent concentrations and dilution factors were used to predict surface water and sediment concentrations and distributions of OTNE sludge concentrations and loading rates were used to predict terrestrial concentrations. The 90th percentile concentration of OTNE in US WWTP mixing zones was predicted to be 0.04 and 0.85 μg/L under mean and 7Q10 low flow (lowest river flow occurring over a 7 day period every 10 years) conditions respectively. The 90th percentile sediment concentrations under mean and 7Q10 low flow conditions were predicted to be 0.081 and 1.6 mg/kg dw respectively. Based on current US sludge application practices, the 90th percentile OTNE terrestrial concentration was 1.38 mg/kg dw. The probability of OTNE concentrations being below the predicted no effect concentration (PNEC) for the aquatic and sediment compartments was greater than 99%. For the terrestrial compartment, the probability of OTNE concentrations being lower than the PNEC was 97% for current US sludge application practices. Based on the results of this study, OTNE concentrations in US WWTP effluent and sludge do not pose an ecological risk to aquatic, sediment and terrestrial organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Predicting the apparent viscosity and yield stress of digested and secondary sludge mixtures.

    PubMed

    Eshtiaghi, Nicky; Markis, Flora; Zain, Dwen; Mai, Kiet Hung

    2016-05-15

    The legal banning of conventional sludge disposal methods such as landfill has led to a global movement towards achieving a sustainable sludge management strategy. Reusing sludge for energy production (biogas production) through the anaerobic digestion of sludge can provide a sustainable solution. However, for the optimum performance of digesters with minimal use of energy input, operating conditions must be regulated in accordance with the rheological characteristics of the sludge. If it is assumed that only secondary sludge enters the anaerobic digesters, an impact of variations to the solids concentration and volume fraction of each sludge type must be investigated to understand how the apparent viscosity and yield stress of the secondary and digested sludge mixture inside the digesters changes. In this study, five different total solids concentration of secondary and digested sludge were mixed at different digested sludge volume fractions ranging from 0 to 1. It was found that if secondary sludge was mixed with digested sludge at the same total solids concentration, the apparent viscosity and the yield stress of the mixture increased exponentially by increasing the volume fraction of digested sludge. However, if secondary sludge was added to digested sludge with a different solids concentration, the apparent viscosity and yield stress of the resulting mixed sludge was controlled by the concentrated sludge regardless of its type. Semi - empirical correlations were proposed to predict the apparent viscosity and yield stress of the mixed digested and secondary sludge. A master curve was also developed to predict the flow behaviour of sludge mixtures regardless of the total solid concentration and volume fraction of each sludge type within the studied solids concentration range of 1.4 and 7%TS. This model can be used for digesters optimization and design by predicting the rheology of sludge mixture inside digester. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlisle, Derek; Adamson, Kate

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took overmore » fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to allow the fuel to be reprocessed or conditioned for long term storage. - Sludge Retrieval: In excess of 300 m{sup 3} of sludge has accumulated in the pond over many years and is made up of debris arising from fuel and metallic corrosion, wind blown debris and bio-organic materials. The Sludge Retrieval Project has provided the equipment necessary to retrieve the sludge, including skip washer and tipper machines for clearing sludge from the pond skips, equipment for clearing sludge from the pond floor and bays, along with an 'in pond' corral for interim storage of retrieved sludge. Two further projects are providing new plant processing routes, which will initially store and eventually passivate the sludge. - Metal Fuel Retrieval: Metal Fuel from early Windscale Pile operations and various other sources is stored within the pond; the fuel varies considerably in both form and condition. A retrieval project is planned which will provide fuel handling, conditioning, sentencing and export equipment required to remove the metal fuel from the pond for export to on site facilities for interim storage and disposal. - Solid Waste Retrieval: A final retrieval project will provide methods for handling, retrieval, packaging and export of the remaining solid Intermediate Level Waste within the pond. This includes residual metal fuel pieces, fuel cladding (Magnox, aluminium and zircaloy), isotope cartridges, reactor furniture, and miscellaneous activated and contaminated items. Each of the waste streams requires conditioning to allow it to be and disposed of via one of the site treatment plants. - Pond Dewatering and Dismantling: Delivery of the above projects will allow operations to progressively remove the radiological inventory, thereby reducing the hazard/risk posed by the plant. This will then allow subsequent dewatering of the pond and dismantling of the structure. (authors)« less

  1. Solidification as low cost technology prior to land filling of industrial hazardous waste sludge.

    PubMed

    El-Sebaie, O; Ahmed, M; Ramadan, M

    2000-01-01

    The aim of this study is to stabilize and solidify two different treated industrial hazardous waste sludges, which were selected from factories situated close to Alexandria. They were selected to ensure their safe transportation and landfill disposal by reducing their potential leaching of hazardous elements, which represent significant threat to the environment, especially the quality of underground water. The selected waste sludges have been characterized. Ordinary Portland Cement (OPC), Cement Kiln Dust (CKD) from Alexandria Portland Cement Company, and Calcium Sulphate as a by-product from the dye industry were used as potential solidification additives to treat the selected treated waste sludges from tanning and dyes industry. Waste sludges as well as the solidified wastes have been leach-tested, using the General Acid Neutralization Capacity (GANC) procedure. Concentration of concerning metals in the leachates was determined to assess changes in the mobility of major contaminants. The treated tannery waste sludge has an acid neutralization capacity much higher than that of the treated dyes waste sludge. Experiment results demonstrated the industrial waste sludge solidification mix designs, and presented the reduction of contaminant leaching from two types of waste sludges. The main advantages of solidification are that it is simple and low cost processing which includes readily available low cost solidification additives that will convert industrial hazardous waste sludges into inert materials.

  2. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus).

    PubMed

    Belhaj, Dalel; Elloumi, Nada; Jerbi, Bouthaina; Zouari, Mohamed; Abdallah, Ferjani Ben; Ayadi, Habib; Kallel, Monem

    2016-10-01

    Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture, is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for Helianthus annuus, a pot experiment was conducted by mixing sewage sludge at 2.5, 5, and 7.5 % (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductivity, organic matter, total N, available P, and exchangeable Na, K, and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Ni, Cu, Cr, and Zn concentrations of soil. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in shoot and root concentrations of Cr, Cu, Ni, and Zn in plant as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Moreover, high metal removal for the harvestable parts of the crops was recorded. Sewage sludge amendment increased root and shoot length, leaves number, biomass, and antioxidant activities of sunflower. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, and soluble sugar content in response to amendment with sewage sludge may be defense mechanisms induced in response to heavy metal stress. Graphical abstract Origin, fate and behavior of sewage sludge fertilizer.

  3. Remedial site evaluation report for the waste area grouping 10 wells associated with the new hydrofracture facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    The Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is operated for the U.S. Department of Energy (DOE) by Lockheed Martin Energy System (Energy Systems). ORNL has pioneered waste disposal technologies since World War II as part of its DOE mission. In the late 1950s, at the request of the National Academy of Sciences, efforts were made to develop a permanent disposal alternative to the surface and tanks at ORNL. One such technology, the hydrofracture process, involved inducing fractures in a geologic host formation (a low-permeability shale) at depths of up to 1100 ft and injecting a radioactive groutmore » slurry containing low-level liquid or tank sludge waste, cement, and other additives at an injection pressure of 2000 to 8500 psi. The objective of the effort was to develop a grout dig could be injected as a slurry and would solidify after injection, thereby entombing the radioisotopes contained in the low-level liquid or tank sludge waste. Four sites at ORNL were used: two experimental (HF-1 and HF-2); one developmental, later converted to batch process [Old Hydrofracture Facility (BF-3)]; and one production facility [New Hydrofracture Facility (BF-4)]. This document provides the environmental, restoration program with information about the the results of an evaluation of WAG 10 wells associated with the New Hydrofracture Facility at ORNL.« less

  4. 9 CFR 94.5 - Regulation of certain garbage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... dispose of regulated garbage in landfills at Alaskan ports only, if and only if the cruise ship does not... solid waste. (i) Industrial process wastes, mining wastes, sewage sludge, incinerator ash, or other...

  5. Disinfection and Stabilization Processes

    EPA Science Inventory

    Municipal wastewater sludges are composed of organic and inorganic contaminants from domestic, commercial and industrial wastewaters entering collection systems. Many options are available for ultimate disposal of residual solids, however few of these options provide for benefic...

  6. Toxicity of ferric chloride sludge to aquatic organisms.

    PubMed

    Sotero-Santos, Rosana B; Rocha, Odete; Povinelli, Jurandyr

    2007-06-01

    Iron-rich sludge from a drinking water treatment plant (DWTP) was investigated regarding its toxicity to aquatic organisms and physical and chemical composition. In addition, the water quality of the receiving stream near the DWTP was evaluated. Experiments were carried out in August 1998, February 1999 and May 1999. Acute toxicity tests were carried out on a cladoceran (Daphnia similis), a midge (Chironomus xanthus) and a fish (Hyphessobrycon eques). Chronic tests were conducted only on D. similis. Acute sludge toxicity was not detected using any of the aquatic organisms, but chronic effects were observed upon the fecundity of D. similis. Although there were relatively few sample dates, the results suggested that the DWTP sludge had a negative effect on the receiving body as here was increased suspended matter, turbidity, conductivity, chemical oxygen demand (COD) and hardness in the water downstream of the DWTP effluent discharge. The ferric chloride sludge also exhibited high heavy metal concentrations revealing a further potential for pollution and harmful chronic effects on the aquatic biota when the sludge is disposed of without previous treatment.

  7. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals.

    PubMed

    Jin, Junwei; Wang, Minyan; Cao, Yucheng; Wu, Shengchun; Liang, Peng; Li, Yanan; Zhang, Jianyun; Zhang, Jin; Wong, Ming Hung; Shan, Shengdao; Christie, Peter

    2017-03-01

    A novel type of biochar was produced by mixing bamboo sawdust with sewage sludge (1:1, w/w) via a co-pyrolysis process at 400-600°C. Changes in physico-chemical properties and the intrinsic speciation of metals were investigated before and after pyrolysis. Co-pyrolysis resulted in a lower biochar yield but a higher C content in the end product compared with use of sludge alone as the raw material. FT-IR analysis indicates that phosphine derivatives containing PH bonds were formed in the co-pyrolyzed biochars. In addition, co-pyrolysis of sludge with bamboo sawdust transformed the potentially toxic metals in the sludge into more stable fractions, leading to a considerable decrease in their direct toxicity and bioavailability in the co-pyrolyzed biochar. In conclusion, the co-pyrolysis technology provides a feasible method for the safe disposal of metal-contaminated sewage sludge in an attempt to minimize the environmental risk from potentially toxic metals after land application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Municipal sludge metal contamination of old-field ecosystems: Do liming and tilling affect remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benninger-Truax, M.; Taylor, D.H.

    1993-10-01

    Mechanisms of ecosystem recovery following 11 years of sewage sludge disposal were addressed by examining the effects of tilling and/or liming on soil chemistry and the heavy metal (Cd, Cu, Pb, and Zn) concentrations in soil, earthworms, vegetation, spiders, and crickets. In 1989 and 1990, subplots in each of three former 0.1-ha, long-term treatments (sludge, fertilizer, and control) were either unmanipulated or manipulated via tilling and/or liming. Liming significantly increased the pH of soil from the long-term sludge and fertilizer plots, and the combination of tilling and liming affected the heavy metal concentrations in earthworms, as lower concentrations of Cd,more » Cu, Pb, and Zn were found in earthworms collected from subplots that had been both tilled and limed. However, most observed significant differences in heavy metal concentrations reflected the long-term treatments, as heavy metal concentrations tended to be greater in the soil and biota collected from sludge-treated plots. Thus, heavy metals remained in the soil in forms available to the biota, regardless of the cessation of sludge application or subplot manipulations (liming and/or tilling) for two years following cessation of sludge application.« less

  9. Procedures of determining organic trace compounds in municipal sewage sludge-a review.

    PubMed

    Lindholm-Lehto, Petra C; Ahkola, Heidi S J; Knuutinen, Juha S

    2017-02-01

    Sewage sludge is the largest by-product generated during the wastewater treatment process. Since large amounts of sludge are being produced, different ways of disposal have been introduced. One tempting option is to use it as fertilizer in agricultural fields due to its high contents of inorganic nutrients. This, however, can be limited by the amount of trace contaminants in the sewage sludge, containing a variety of microbiological pollutants and pathogens but also inorganic and organic contaminants. The bioavailability and the effects of trace contaminants on the microorganisms of soil are still largely unknown as well as their mixture effects. Therefore, there is a need to analyze the sludge to test its suitability before further use. In this article, a variety of sampling, pretreatment, extraction, and analysis methods have been reviewed. Additionally, different organic trace compounds often found in the sewage sludge and their methods of analysis have been compiled. In addition to traditional Soxhlet extraction, the most common extraction methods of organic contaminants in sludge include ultrasonic extraction (USE), supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), and pressurized liquid extraction (PLE) followed by instrumental analysis based on gas or liquid chromatography and mass spectrometry.

  10. K-Basins Sludge Treatment and Packaging at the Hanford Site - 13585

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogwell, Thomas W.; Honeyman, James O.; Stegen, Gary

    Highly radioactive sludge resulting from the storage of degraded spent nuclear fuel has been consolidated in Engineered Containers (ECs) in the 105-K West Storage Basin located on the Hanford site near the Columbia River in Washington State. CH2M Hill Plateau Remediation Company (CHPRC) is proceeding with a project to retrieve the sludge, place it in Sludge Transport and Storage Containers (STSCs) and store those filled containers within the T Plant Canyon facility on the Hanford Site Central Plateau (Phase 1). Retrieval and transfer of the sludge material will enable removal of the 105-K West Basin and allow remediation of themore » subsurface contamination plumes under the basin. The U.S. Department of Energy (DOE) plans to treat and dispose of this K Basins sludge (Phase 2) as Remote Handled Transuranic Waste (RH TRU) at the Waste Isolation Pilot Plant (WIPP) located in New Mexico. The K Basin sludge currently contains uranium metal which reacts with water present in the stored slurry, generating hydrogen and other byproducts. The established transportation and disposal requirements require the transformation of the K Basins sludge to a chemically stable, liquid-free, packaged waste form. The Treatment and Packaging Project includes removal of the containerised sludge from T Plant, the treatment of the sludge as required, and packaging of all the sludge into a form that is certifiable for transportation to and disposal at WIPP. Completion of this scope will require construction and operation of a Sludge Treatment and Packaging Facility (STPF), which could be either a completely new facility or a modification of an existing Hanford Site facility. A Technology Evaluation and Alternatives Analysis (TEAA) for the STP Phase 2 was completed in 2011. A Request for Technology Information (RFI) had been issued in October 2009 to solicit candidate technologies for use in Phase 2. The RFI also included a preliminary definition of Phase 2 functions and requirements. Potentially applicable technologies were identified through a commercial procurement process, technical workshops, and review of the numerous previous sludge treatment technology studies. The identified technology approaches were screened using the criteria established in the Decision Plan, and focused bench top feasibility testing was conducted. Engineering evaluations of the costs, schedules, and technical maturity were developed and evaluated. Recommendations were developed based on technical evaluations. The criteria used in the evaluation process were as follows: (1) Safety, (2) Regulatory/stakeholder acceptance, (3) Technical maturity, (4) Operability and maintainability, (5) Life cycle cost and schedule, (6) Potential for beneficial integration with ongoing STP-Phase 1 activities, and (7) Integration with Site-wide RH-TRU processing/packaging, planning, schedule, and approach. The TEAA recommended Warm Water Oxidation (WWO) as the baseline treatment technology and two risk reduction enhancement options for further consideration during development of the process - size reduction and chemical oxidation (Fenton's reagent). The enhancement options would potentially allow a useful reduction in the total operating time required to process the K Basins sludge. The U.S. Department of Energy's Richland Field Office (DOE-RL) has approved this recommended technical approach. The baseline process can be broken down into the following main process steps: (1) STSC transfer from T Plant to the Sludge Treatment and Packaging Facility (STPF). (2) Retrieval of sludge from the STSCs and transfer to the Receipt and Reaction Tank (RRT). (3) Preparation for immobilization by oxidation using heated water (i.e., WWO) for those batches that require it and concentration by evaporating water at about atmospheric pressure in the RRT. (4) Immobilization by using additives to eliminate free liquids and packaging of the treated sludge into drums. (5) Inspection and handling of the filled drums prior to transfer to a separate storage and shipping facility. (6) Handling of vapor, condensate, and other waste streams generated by the process. Each of these steps is discussed in the paper, together with the current state of progress in developing the technology and requirements for continued development. A schematic of the recommended baseline WWO treatment process is given below. (authors)« less

  11. Land application technique for the treatment and disposal of sewage sludge.

    PubMed

    Zain, S M; Basri, H; Suja, F; Jaafar, O

    2002-01-01

    Some of the major concerns when applying sewage sludge to land include the potential effect on pH and cation exchange capacity; the mobility and the accumulation of heavy metals in sludge treated soil; the potential of applying too much nutrients and the problems associated with odors and insects. The main objective of this study is to identify the effects of sewage sludge application on the physical and chemical properties of sludge treated soil. Sewage sludge was applied to soil at various rates ranging from 0 L/m2 to 341 L/m2. In order to simulate the natural environment, the study was carried out at a pilot treatment site (5.2 m x 6.7 m) in an open area, covered with transparent roofing material to allow natural sunlight to pass through. Simulated rain was applied by means of a sprinkler system. Data obtained from sludge treated soil showed that the pH values decreased when the application rates were increased and the application period prolonged. The effect of sewage sludge on cation exchange capacity was not so clear; the values obtained for every application rate of sewage sludge did not indicate any consistent behaviour. The mobility of heavy metals in soils treated with sludge were described by observing the changes in the concentration of the heavy metals. The study showed that Cd has the highest mobility in sludge treated soil followed by Cu, Cr, Zn, Ni and Pb.

  12. Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge.

    PubMed

    Gottumukkala, Lalitha Devi; Haigh, Kate; Collard, François-Xavier; van Rensburg, Eugéne; Görgens, Johann

    2016-09-01

    The paper and pulp industry is one of the major industries that generate large amount of solid waste with high moisture content. Numerous opportunities exist for valorisation of waste paper sludge, although this review focuses on primary sludge with high cellulose content. The most mature options for paper sludge valorisation are fermentation, anaerobic digestion and pyrolysis. In this review, biochemical and thermal processes are considered individually and also as integrated biorefinery. The objective of integrated biorefinery is to reduce or avoid paper sludge disposal by landfilling, water reclamation and value addition. Assessment of selected processes for biorefinery varies from a detailed analysis of a single process to high level optimisation and integration of the processes, which allow the initial assessment and comparison of technologies. This data can be used to provide key stakeholders with a roadmap of technologies that can generate economic benefits, and reduce carbon wastage and pollution load. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Improving dewaterability of waste activated sludge by combined conditioning with zero-valent iron and hydrogen peroxide.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming; Zhang, Xiwang; Yuan, Zhiguo

    2014-12-01

    Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel method based on combined conditioning with zero-valent iron (ZVI) and hydrogen peroxide (HP) at pH 2.0 to improve dewaterability of a full-scale waste activated sludge (WAS). The combination of ZVI (0-750mg/L) and HP (0-750mg/L) at pH 2.0 substantially improved the WAS dewaterability due to Fenton-like reactions. The highest improvement in WAS dewaterability was attained at 500mg ZVI/L and 250mg HP/L, when the capillary suction time of the WAS was reduced by approximately 50%. Particle size distribution indicated that the sludge flocs were decomposed after conditioning. Economic analysis showed that combined conditioning with ZVI and HP was a more economically favorable method for improving WAS dewaterability than the classical Fenton reaction based method initiated by ferrous salts and HP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Briquette fuel production from wastewater sludge of beer industry and biodiesel production wastes

    NASA Astrophysics Data System (ADS)

    Nusong, P.; Puajindanetr, S.

    2018-04-01

    The production of industrial wastes is increasing each year. Current methods of waste disposal are severely impacting the environment. Utilization of industrial wastes as an alternative material for fuel is gaining interest due to its environmental friendliness. Thus, the objective of this research was to study the optimum condition for fuel briquettes produced from wastewater sludge of the beer industry and biodiesel production wastes. This research is divided into two parts. Part I will study the effects of carbonization of brewery wastewater sludge for high fixed carbon. Part II will study the ratio between brewery wastewater sludge and bleaching earth for its high heating value. The results show that the maximum fixed carbon of 10.01% by weight was obtained at a temperature of 350 °C for 30 minutes. The appropriate ratio of brewery wastewater sludge and bleaching earth by weight was 95:5. This condition provided the highest heating value of approximately 3548.10 kcal/kg.

  15. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    PubMed

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.

  16. Vermicomposting of Paper Mill Sludge with Eisenia fetida for its Conversion to Nutrient Using Different Seed Materials

    NASA Astrophysics Data System (ADS)

    Mohan, S. Mariraj

    2017-12-01

    In this study, it was aimed for effective utilization of paper mill sludge through vermicomposting by varying seed proportion with sp. Eisenia fetida. Nine plastic trays were used for the experimental work including control. Different seed proportions of cow dung and cattle dung were tested. The multiplication of earthworms in terms of number was counted at the end of vermicomposting. The N, K, Ca, Na values of the manure in each vermibin were estimated before and after vermicomposting. In this study, it was concluded that tray A2 which has combination of 75% Cow dung (CD) and 25% Paper Mill Sludge (PMS) provided better nitrogen synthesis and lowering C/N ratio, whereas tray A4 (25%CD + 75% PMS) yielded better Calcium recovery. Both the seed materials were found to be suitable for Potassium recovery. From this study, it was inferred that vermicomposting of paper mill sludge with sp. Eisenia fetida along with seed materials can also solve the problem of disposal of this sludge.

  17. Treatment of nanowaste via fast crystal growth: with recycling of nano-SnO2 from electroplating sludge as a study case.

    PubMed

    Zhuang, Zanyong; Xu, Xinjiang; Wang, Yongjing; Wang, Yandi; Huang, Feng; Lin, Zhang

    2012-04-15

    The treatment of industrial sludge containing amorphous/nanophase metal oxides or hydroxides is one of the vital issues in hazardous waste disposal. In this work, we developed a strategy to recycle nano-SnO(2) from tinplate electroplating sludge. It revealed that the major components of this sludge were acid soluble Sn and Fe amorphous phases. By introducing NaOH as a mineralizer, a fast growth of amorphous Sn compound into acid-insoluble SnO(2) nanowires was achieved selectively. Thus, the as-formed nano-SnO(2) could be recycled via dissolving other solid compositions in the sludge by using acid. The role of NaOH on accelerating both the Oriented Attachment (OA) and Ostwald Ripening (OR) growth of SnO(2) was discussed, which was regarded as a critical factor for treating the sludge. A pilot-scale experiment was conducted to treat 2.3 kg original sludge and the recycling of about 90 g nano-SnO(2) was achieved. We anticipate this work can provide a good example for the recycling of valuable metals from industrial sludge containing fine metal oxides or hydroxides. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Thermal processing of paper sludge and characterisation of its pyrolysis products.

    PubMed

    Strezov, Vladimir; Evans, Tim J

    2009-05-01

    Paper sludge is a waste product from the paper and pulp manufacturing industry that is generally disposed of in landfills. Pyrolysis of paper sludge can potentially provide an option for managing this waste by thermal conversion to higher calorific value fuels, bio-gas, bio-oils and charcoal. This work investigates the properties of paper sludge during pyrolysis and energy required to perform thermal conversion. The products of paper sludge pyrolysis were also investigated to determine their properties and potential energy value. The dominant volatile species of paper sludge pyrolysis at 10 degrees C/min were found to be CO and CO(2), contributing to almost 25% of the paper sludge dry weight loss at 500 degrees C. The hydrocarbons (CH(4), C(2)H(4), C(2)H(6)) and hydrogen contributed to only 1% of the total weight loss. The bio-oils collected at 500 degrees C were primarily comprised of organic acids with the major contribution being linoleic acid, 2,4-decadienal acid and oleic acid. The high acidic content indicates that in order to convert the paper sludge bio-oil to bio-diesel or petrochemicals, further upgrading would be necessary. The charcoal produced at 500 degrees C had a calorific value of 13.3MJ/kg.

  19. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  20. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, J.L.

    1990-07-10

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

  1. Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review.

    PubMed

    Rakotonimaro, Tsiverihasina V; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Zagury, Gérald J

    2017-01-01

    The treatment of mine drainage-impacted waters generates considerable amounts of sludge, which raises several concerns, such as storage and disposal, stability, and potential social and environmental impacts. To alleviate the storage and management costs, as well as to give the mine sludge a second life, recovery and reuse have recently become interesting options. In this review, different recovery and reuse options of sludge originating from active and passive treatment of mine drainage are identified and thoroughly discussed, based on available laboratory and field studies. The most valuable products presently recovered from the mine sludge are the iron oxy-hydroxides (ochre). Other by-products include metals, elemental sulfur, and calcium carbonate. Mine sludge reuse includes the removal of contaminants, such as As, P, dye, and rare earth elements. Mine sludge can also be reused as stabilizer for contaminated soil, as fertilizer in agriculture/horticulture, as substitute material in construction, as cover over tailings for acid mine drainage prevention and control, as material to sequester carbon dioxide, and in cement and pigment industries. The review also stresses out some of the current challenges and research needs. Finally, in order to move forward, studies are needed to better estimate the contribution of sludge recovery/reuse to the overall costs of mine water treatment.

  2. Behavior of radioactive materials and safety stock of contaminated sludge.

    PubMed

    Tsushima, Ikuo

    2017-01-28

    The radioactive fallout from the Fukushima Dai-ichi nuclear power plant disaster in 2011 has flowed into and accumulated in many wastewater treatment plants (WWTPs) via sewer systems; this has had a negative impact on WWTPs in eastern Japan. The behavior of radioactive materials was analyzed at four WWTPs in the Tohoku and Kanto regions to elucidate the mechanism by which radioactive materials are concentrated during the sludge treatment process from July 2011 to March 2013. Furthermore, numerical simulations were conducted to study the safe handling of contaminated sewage sludge stocked temporally in WWTPs. Finally, a dissolution test was conducted by using contaminated incinerated ash and melted slag derived from sewage sludge to better understand the disposal of contaminated sewage sludge in landfills. Measurements indicate that a large amount of radioactive material accumulates in aeration tanks and is becoming trapped in the concentrated sludge during the sludge condensation process. The numerical simulation indicates that a worker's exposure around contaminated sludge is less than 1 µSv/h when maintaining an isolation distance of more than 10 m, or when shielding with more than 20-cm-thick concrete. The radioactivity level of the eluate was undetectable in 9 out of 12 samples; in the remaining three samples, the dissolution rates were 0.5-2.7%.

  3. Review on innovative techniques in oil sludge bioremediation

    NASA Astrophysics Data System (ADS)

    Mahdi, Abdullah M. El; Aziz, Hamidi Abdul; Eqab, Eqab Sanoosi

    2017-10-01

    Petroleum hydrocarbon waste is produced in worldwide refineries in significant amount. In Libya, approximately 10,000 tons of oil sludge is generated in oil refineries (hydrocarbon waste mixtures) annually. Insufficient treatment of those wastes can threaten the human health and safety as well as our environment. One of the major challenges faced by petroleum refineries is the safe disposal of oil sludge generated during the cleaning and refining process stages of crude storage facilities. This paper reviews the hydrocarbon sludge characteristics and conventional methods for remediation of oil hydrocarbon from sludge. This study intensively focuses on earlier literature to describe the recently selected innovation technology in oily hydrocarbon sludge bioremediation process. Conventional characterization parameters or measurable factors can be gathered in chemical, physical, and biological parameters: (1) Chemical parameters are consequently necessary in the case of utilization of topsoil environment when they become relevant to the presence of nutrients and toxic compounds; (2) Physical parameters provide general data on sludge process and hand ability; (3) Biological parameters provide data on microbial activity and organic matter presence, which will be used to evaluate the safety of the facilities. The objective of this research is to promote the bioremediating oil sludge feasibility from Marsa El Hariga Terminal and Refinery (Tobruk).

  4. Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction.

    PubMed

    Gorazda, K; Tarko, B; Werle, S; Wzorek, Z

    2018-03-01

    Increasing problems associated with sewage sludge disposal are observed nowadays. As the thermal conversion of sewage sludge (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for its management, the solid residues left after gasification were examined. The present study evaluates the potential of this waste as an alternative phosphorus source in the context of phosphorus recovery. The obtained solid gasification residues were characterised (chemical and phase composition, thermal properties, surface properties and technological parameters used for phosphorus raw materials) and compared to commercial phosphate raw materials. It was revealed that gasification residue is a valuable source of phosphorus and microelements, comparable to sewage sludge ash (SSA) considered nowadays as secondary phosphorus raw materials. Chemical properties as well as technological parameters characteristic for natural phosphate ores are different. Solid gasification residue was leached with mineral acids (phosphoric and nitric) according to the patented method of phosphorus recovery - PolFerAsh, developed by Cracow University of Technology. It was revealed that phosphorus can be selectively leached from solid gasification residue with high efficiency (73-82%); moreover, most of the iron and heavy metals stay in the solid phase due to the low concentration of acids and proper solid to liquid phase ratio. The obtained leachates are valuable products that can be considered for the production of fertilisers. Combining the gasification process with nutrient recovery provides the opportunity for more environmentally efficient technologies driven by sustainable development rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Toxicity of nonylphenol diethoxylate in lab-scale anaerobic digesters.

    PubMed

    Bozkurt, Hande; Sanin, F Dilek

    2014-06-01

    Nonylphenol compounds have high commercial, industrial and domestic uses owing to their surface active properties. In addition to their toxic, carcinogenic and persistent characteristics; they have drawn the attention of scientists lately due to their endocrine disrupting properties. Their widespread use and disposal cause them to enter wastewater treatment systems at high concentrations. Since they are highly persistent and hydrophobic, they accumulate mostly on sludge. In this study using Anaerobic Toxicity Assay (ATA) tests, the toxicity of a model nonylphenol compound, nonylphenol diethoxylate (NP2EO), for anaerobic digestion of sludge was determined. The test bottles were dosed with NP2EO in acetone, with concentrations ranging from 1 mg L(-1) to 30 mg L(-1). During the tests, gas productions and compositions in terms of methane and carbon dioxide were monitored. To be able to judge about the fate, the target compounds were extracted from water and sludge and analyzed using GC/MS. The sludge samples used for assembling the reactors were found to contain NP and NP1EO but no NP2EO. After the assay was completed, all the NP2EO spiked into the live reactors was found to disappear. The increase seen in NP1EO and NP and further accumulation of NP in the system, indicated the conversion of NP2EO to these metabolites. On the other hand, no conversion was observed in abiotic reactors. Inhibition of NP2EO for anaerobic microorganisms was not observed throughout the tests considering the biogas production of the test reactors in comparison to the control reactors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effect of a food waste disposer policy on solid waste and wastewater management with economic implications of environmental externalities.

    PubMed

    Maalouf, Amani; El-Fadel, Mutasem

    2017-11-01

    In this study, the carbon footprint of introducing a food waste disposer (FWD) policy was examined in the context of its implications on solid waste and wastewater management with economic assessment of environmental externalities emphasizing potential carbon credit and increased sludge generation. For this purpose, a model adopting a life cycle inventory approach was developed to integrate solid waste and wastewater management processes under a single framework and test scenarios for a waste with high organic food content typical of developing economies. For such a waste composition, the results show that a FWD policy can reduce emissions by nearly ∼42% depending on market penetration, fraction of food waste ground, as well as solid waste and wastewater management schemes, including potential energy recovery. In comparison to baseline, equivalent economic gains can reach ∼28% when environmental externalities including sludge management and emissions variations are considered. The sensitivity analyses on processes with a wide range in costs showed an equivalent economic impact thus emphasizing the viability of a FWD policy although the variation in the cost of sludge management exhibited a significant impact on savings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The 26-acre Shaw Avenue Dump site is a chemical waste site in Charles City, Floyd County, Iowa. Land use in the area is predominantly residential. From 1899 to 1964, Charles City used the site as a municipal landfill for waste incineration, and disposal of liming sludge from the city's publicly owned treatment works (POTW) and asphaltic materials continue to be disposed of in the landfill. Between 1977 and 1981, the State issued reports based on studies of the site and surface water that documented elevated levels of metals in an abandoned gravel pit near the site. The Record of Decisionmore » (ROD) addresses the chemical fill and surrounding contaminated soil, and the underground gasoline tank as Operable Unit 1 (OU1). A future ROD will address contaminated ground water as OU2. The primary contaminants of concern affecting the soil and debris are VOCs including benzene, toluene, and xylenes; other organics including PAHs; metals including arsenic and lead; and other inorganics. The selected remedial action for the site is included.« less

  8. Occurrence of hexabromocyclododecane (HBCD) in sewage sludge from Shanghai: implications for source and environmental burden.

    PubMed

    Xiang, Nan; Chen, Ling; Meng, Xiang-Zhou; Dai, Xiaohu

    2015-01-01

    Sewage sludge is regarded as one important sink for hydrophobic pollutants, including hexabromocyclododecane (HBCD), but the current pollution situation of HBCD in sludge from China is unknown, despite that many studies have reported its occurrence in other environmental compartments across China. In this study, we collected 27 sludge samples from Shanghai to investigate the occurrence and distribution, to examine the diastereoisomer profile and sources, and to provide advice for future pollution control. HBCD is ubiquitous in sludge with a mean concentration of 4.7ngg(-1) dry weight (dw) (range: 0.10-37.2ngg(-1) dw), lower than data from European countries and the United States. Sludge from wastewater treatment plants (WWTPs) treating industrial wastewater contained high levels of HBCD. However, no significant relationships were found between HBCD and four parameters (total organic carbon, the percentage of industrial wastewater, capacity and sludge production of WWTPs). α- and γ-HBCD were two main components with the corresponding contributions of 47.9% and 48.0%. Comparing with the annual production of HBCD in China, its storage in sewage sludge is extremely low (less than 0.002%), indicating future release of HBCD from waste polystyrene foam will be significant, and careful considerations should be taken during waste disposal. To our knowledge, this is the first report on HBCD in sewage sludge from China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Relationships between waste physicochemical properties, microbial activity and vegetation at coal ash and sludge disposal sites.

    PubMed

    Woch, Marcin W; Radwańska, Magdalena; Stanek, Małgorzata; Łopata, Barbara; Stefanowicz, Anna M

    2018-06-11

    The aim of the study was to assess the relationships between vegetation, physicochemical and microbial properties of substrate at coal ash and sludge disposal sites. The study was performed on 32 plots classified into 7 categories: dried ash sedimentation ponds, dominated by a grass Calamagrostis epigejos (AH-Ce), with the admixture of Pinus sylvestris (AH-CePs) or Robinia pseudoacacia (AH-CeRp), dry ash landfill dominated by Betula pendula and Pinus sylvestris (AD-BpPs) or Salix viminalis (AD-Sv) and coal sludge pond with drier parts dominated by Tussilago farfara (CS-Tf) and the wetter ones by Cyperus flavescens (CS-Cf). Ash sites were covered with soil layer imported as a part of technical reclamation. Ash had relatively high concentrations of some alkali and alkaline earth metals, Mn and pH, while coal sludge had high water and C, S, P and K contents. Concentrations of heavy metals were lower than allowable limits in all substrate types. Microbial biomass and, particularly, enzymatic activity in ash and sludge were generally low. The only exception were CS-Tf plots characterized by the highest microbial biomass, presumably due to large deposits of organic matter that became available for aerobic microbial biomass when water level fell. The properties of ash and sludge adversely affected microbial biomass and enzymatic activity as indicated by significant negative correlations between the content of alkali/alkaline earth metals, heavy metals, and macronutrients with enzymatic activity and/or microbial biomass, as well as positive correlations of these parameters with metabolic quotient (qCO 2 ). Plant species richness and cover were relatively high, which may be partly associated with alleviating influence of soil covering the ash. The effect of the admixture of R. pseudoacacia or P. sylvestris to stands dominated by C. epigejos was smaller than expected. The former species increased NNH 4 , NNO 3 and arylsulfatase activity, while the latter reduced activity of the enzyme. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Clean-up and disposal process of polluted sediments from urban rivers.

    PubMed

    He, P J; Shao, L M; Gu, G W; Bian, C L; Xu, C

    2001-10-01

    In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.

  11. Investigation into the artificial ageing effects on the microstructure of an industrial solid waste treated with cement.

    PubMed

    Choura, M; Keskes, M; Tayibi, H; Rouis, J

    2011-04-01

    Metal hydroxide sludges are classified as hazardous wastes in the European Hazardous Waste Catalogue (EHWC) because of their high heavy metal contents (Zn, Cr, Fe, Cu, etc.) and the release of these pollutants to the environment. Thereby, the disposal of this waste without any treatment is a substantial environmental problem. Stabilization/solidification technologies are widely used for the treatment of wastes and residues in order to obtain inert materials. This work aims to assess the effectiveness of the chemical fixation and solidification of a metal hydroxide sludge generated by the electrotyping surface treatment industry, using Portland Artificial Cement. In order to predict the medium- and long-term behaviour of the solidified waste, an artificial ageing by means of thermal shocks and humidity variation cycles was applied. Scanning Electron Microscopy (SEM) and X-ray Diffraction studies revealed a considerable increase in calcite within the solid matrix after the artificial ageing, which can be attributed to the phenomenon of carbonation. It was also found that the mechanical properties of the solidified material, after ageing, were improved by up to 30%.

  12. 40 CFR 255.32 - Coordination with other programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... criteria (§ 255.11) specify review of solid waste activities being conducted by water quality management... the National Pollutant Discharge Elimination System of the Federal Water Pollution Control Act will be consulted concerning disposal of residual sludges. ...

  13. Solidification and stabilization of the incinerated wastewater sludge from textile industry

    NASA Astrophysics Data System (ADS)

    Aziz, Hamidi Abdul; Ghazali, Miskiah Fadzilah; Omran, Abdelnaser; Umar, Muhammad

    2017-10-01

    This paper describes the investigation of solidification and stabilization (S/S) process for the safe disposal of incinerated wastewater sludge produced from a textile industry in Penang, Malaysia. Physical and chemical properties of the samples were first characterized. Various ratios of ordinary Portland cement (OPC) as a binder were used to immobilize the metals. The leachability of metals in these cement-based waste materials was studied by standard toxicity characteristic leaching procedure (TCLP) and the mechanical strength was tested by a compressive strength test. TCLP results showed the ability of OPC to immobilize various metals such as Zn, Cu, Fe, Al, Ti, and K within the limits set by USEPA and Malaysia Environment Quality Act, 1974. However, the strength of the solidified matrixes was generally lower than the control specimens, ranging from 1-23 Mpa, which was well above the specified limit of 414 kPa for such matrices for their disposal in landfills.

  14. Sewage sludge as conditioner for improving soils affected by sulfur dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, M.K.

    1979-12-01

    Continuous emission of SO/sub 2/ from the acid manufacturing plant at Ching Lung Tau, New Territorise of Honk Kong, damaged most of the surrounding vegetation, leaving only a few comparatively more resistant species, e.g. Eragrostis sp., Ischaemum aristatum, Smilax glabra, etc. Erosion occurred after heavy rainfall. Fine particles were washed away, leaving the non-fertile subsoil which lack nutrients. The utilization of sludge as a soil conditioner has been regarded as a method of sludge disposal which not only solves some of the pollution problems but receives benefit from the waste product. A considerable amount of literature has been concerned withmore » improving infertile soil including the reclamation of spoiled land, e.g. coal mine spoils, iron-ore tailing. The present investigation attempts to study the effect of applying digested sewage sludge to eroded soil using laboratory soil columns and a green house trial.« less

  15. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    PubMed

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Bioleaching of heavy metals from sewage sludge: a review.

    PubMed

    Pathak, Ashish; Dastidar, M G; Sreekrishnan, T R

    2009-06-01

    During the treatment of sewage, a huge volume of sludge is generated, which is disposed of on land as soil fertilizer/conditioner due to the presence of nitrogen, phosphorus, potassium and other nutrients. However, the presence of toxic heavy metals and other toxic compounds in the sludge restricts its use as a fertilizer. Over the years, bioleaching has been developed as an environmentally friendly and cost-effective technology for the removal of heavy metals from the sludge. The present paper gives an overview of the various bioleaching studies carried out in different modes of operation. The various important aspects such as pathogen destruction, odor reduction and metal recovery from acidic leachate also have been discussed. Further, a detailed discussion was made on the various technical problems associated with the bioleaching process, which need to be addressed while developing the process on a larger scale.

  17. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes.

    PubMed

    You, Siming; Wang, Wei; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2016-10-01

    The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge.

    PubMed

    Huang, Hua-Jun; Yuan, Xing-Zhong

    2016-01-01

    Various hydrothermal treatment methods, including hydrothermal carbonization, liquefaction and sub/super-critical water gasification, have been applied to the disposal of sewage sludge for producing bio-materials or bio-fuels. It has become a research hotspot whether the heavy metals contained in sewage sludge can be well treated/stabilized after the hydrothermal treatments. This review firstly summarized the methods of assessing heavy metals' contamination level/risk and then discussed the migration and transformation behaviors of heavy metals from the following aspects: the effect of reaction temperature, the effect of additives (catalysts and other biomass), the effect of the type of solvent and the effect of reaction time. This review can provide an important reference for the further study of the migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Electron beam inactivation of selected microbial pathogens and indicator organisms in aerobically and anaerobically digested sewage sludge.

    PubMed

    Praveen, Chandni; Jesudhasan, Palmy R; Reimers, Robert S; Pillai, Suresh D

    2013-09-01

    Microbial pathogens in municipal sewage sludges need to be inactivated prior to environmental disposal. The efficacy of high energy (10 MeV) e-beam irradiation to inactivate a variety of selected microbial pathogens and indicator organisms in aerobically and anaerobically digested sewage sludge was evaluated. Both bacterial and viral pathogens and indicator organisms are susceptible to e-beam irradiation. However, as expected there was a significant difference in their respective e-beam irradiation sensitivity. Somatic coliphages, bacterial endospores and enteric viruses were more resistant compared to bacterial pathogens. The current US EPA mandated 10 kGy minimum dose was capable of achieving significant reduction of both bacterial and viral pathogens. Somatic coliphages can be used as a microbial indicator for monitoring e-beam processes in terms of pathogen inactivation in sewage sludges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 5, A laboratory greenhouse study conducted in fulfillment of Phase 2, Objective 2 titled. Use of FGD by-product gypsum enriched with magnesium hydroxide as a soil amendment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yibirin, H.; Stehouwer, R. C.; Bigham, J. M.

    The Clean Air Act, as revised in 1992, has spurred the development of flue gas desulfurization (FGD) technologies that have resulted in large volumes of wet scrubber sludges. In general, these sludges must be dewatered, chemically treated, and disposed of in landfills. Disposal is an expensive and environmentally questionable process for which suitable alternatives must be found. Wet scrubbing with magnesium (Mg)-enhanced lime has emerged as an efficient, cost effective technology for SO 2 removal. When combined with an appropriate oxidation system, the wet scrubber sludge can be used to produce gypsum (CaSO 4-2H 2O) and magnesium hydroxide [Mg(OH) 2]more » of sufficient purity for beneficial re-use. Product value generally increases with purity of the by-product(s). The pilot plant at the CINERGY Zimmer Station near Cincinnati produces gypsum by products that can be formulated to contain varying amounts of Mg(OH) 2. Such materials may have agricultural value as soil conditioners, liming agents and sources of plant nutrients (Ca, Mg, S). This report describes a greenhouse study designed to evaluate by-product gypsum and Mg gypsum from the Zimmer Station pilot plant as amendments for improving the quality of agricultural soils and mine spoils that are currently unproductive because of phytotoxic conditions related to acidity and high levels of toxic dissolved aluminum (Al). In particular, the technical literature contains evidence to suggest that gypsum may be more effective than agricultural limestone in modifying soil chemical conditions below the immediate zone of application. Representative samples of by-product gypsum and Mg(OH) 2 from the Zimmer Station were initially characterized. The gypsum was of high chemical purity and consisted of well crystalline, lath-shaped particles of low specific surface area. By contrast, the by-product Mg(OH) 2 was a high surface area material (50 m 2 g -1) that contained 20% CaSO 4 with variable hydration state. Artificial blends of these materials containing 4% and 8% Mg(OH) 2 were prepared for comparison with other liming agents in the form of agricultural limestone and gypsum amended with laboratory Ca(OH) 2.« less

  1. Sludge Retention Time as a Suitable Operational Parameter to Remove Both Estrogen and Nutrients in an Anaerobic–Anoxic–Aerobic Activated Sludge System

    PubMed Central

    Zeng, Qingling; Li, Yongmei; Yang, Shijia

    2013-01-01

    Abstract Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic–anoxic–oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10–25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%–81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (Kd) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%–80.1% was biodegraded; 18.9%–34.7% was released in effluent; and 0.88%–3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants. PMID:23633892

  2. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers.

    PubMed

    López-Valdez, F; Fernández-Luqueño, F; Luna-Suárez, S; Dendooven, L

    2011-12-15

    Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO(2) and N(2)O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO(2) and N(2)O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N(2)O emissions but not CO(2) emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Migration and transformation of sulfur in the municipal sewage sludge during disposal in cement kiln.

    PubMed

    Huang, Yuyan; Li, Haoxin; Jiang, Zhengwu; Yang, Xiaojie; Chen, Qing

    2018-05-07

    The aim of this work was to investigate the migration and transformation of sulfur in the municipal sewage sludge during disposal in cement kiln, and better understand the emission of the sulfur related pollutants in this process. In consideration of the temperature conditions in the practical operation, municipal sewage sludge was pre-dried at 105 °C, and then dried at 210, 260 and 310 °C, co-combusted with cement raw mill at 800, 900 and 1000 °C, and 1350, 1400 and 1450 °C respectively in the laboratory. X-ray photoelectron spectroscopy (XPS) was used to determine the S2p spectral lines of the municipal sewage sludge treated in the different process. Besides, The Thermal Analysis-Thermogravimetry (DTA-TG), Back Scattered Electron (BSE) and Energy Dispersive Spectrometer (EDS) were also employed to explore the mechanism of sulfur subsistence at 1450 °C. The results indicate that sulfide, thiophene, sulfone and sulfate are mainly sulfur compound in the municipal sewage sludge dried at 105 °C. Sulfoxide, a new sulfur compound, appears after it is further dried at 210 °C. The relative contents of sulfide and thiophene are continuously declined as the drying temperature increases due to their evaporation, decomposition and transformation in this process. The transformation of sulfide and thiophene makes the relative contents of sulfoxide and sulfate accordingly increased. However, the relative content of sulfone experiences an elevating-lowering process while the dry temperature elevated from 210 to 310 °C. This case is related to its evaporation and decomposition, as well as its production for the transformation of sulfide and thiophene. In the co-combustion process, sulfide, thiophene and sulfone are entirely vanished for their evaporation, decomposition and transformation. Sulfone is still contained at 800 °C, but when the temperature unceasingly rises, it is completely decomposed or evaporated and sulfate is the only sulfur compound. The microstructures left by the gas release are also observed in the mixtures sintered at 1450 °C, however sulfate still exists even at 1450 °C. The BSE and EDS results show that the melt phase is the important contribution to the appearance of sulfate at the high temperature. These results will sever as a theoretically reference for the pollution control of the sulfur related pollutants in the disposal process of the municipal sewage sludge in cement kiln. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    EPA Pesticide Factsheets

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  5. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

    PubMed Central

    Wei, Na

    2015-01-01

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800

  6. Leachability of heavy metals from lightweight aggregates made with sewage sludge and municipal solid waste incineration fly ash.

    PubMed

    Wei, Na

    2015-05-07

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China's regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution.

  7. Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste.

    PubMed

    Mahto, Ashesh; Gupta, Rajeev; Ghara, Krishna Kanta; Srivastava, Divesh N; Maiti, Pratyush; D, Kalpana; Rivera, Paul-Zavala; Meena, R; Nataraj, S K

    2017-10-15

    This study aims at developing supercapacitor materials from sugar and distillery industry wastes, thereby mediating waste disposal problem through reuse. In a two-step process, biomethanated spent wash (BMSW) was acid treated to produce solid waste sludge and waste water with significantly reduced total organic carbon (TOC) and biological oxygen demand (BOD) content. Further, waste sludge was directly calcined in presence of activating agent ZnCl 2 in inert atmosphere resulting in high surface area (730-900m 2 g -1 ) carbon of unique hexagonal morphology. Present technique resulted in achieving two-faceted target of liquid-solid waste remediation and production of high-performance carbon material. The resulted high surface area carbon was tested in both three and two electrode systems. Electrochemical tests viz. cyclic voltammetry, galvanostatic charge-discharge and impedance measurement were carried out in aqueous KOH electrolyte yielding specific capacitance as high as 120Fg -1 , whereas all solid supercapacitor devised using PVA/H 3 PO 4 polyelectrolyte showed stable capacitance of 105Fg -1 at 0.2Ag -1 . The presence of transition metal particles and hetero-atoms on carbon surface were confirmed by XPS, EDX and TEM analysis which enhanced the conductivity and imparted pseudocapacitance to some extent into the working electrode. The present study successfully demonstrated production of high-performance electrode material from dirtiest wastewater making process green, sustainable and economically viable. Copyright © 2017. Published by Elsevier B.V.

  8. Distribution and persistence of fecal bacterial populations in liquid and dewatered sludge from a biological treatment plant.

    PubMed

    Vilanova, Xavier; Blanch, Anicet R

    2005-12-01

    The changes in composition and structure of fecal coliforms (FC) and enterococci (ENT) populations, as well as the elimination of spores of sulphite-reducing bacteria (SRB), were compared between municipal sewage and their derived sludge in a biological treatment plant in order to determine any selective reduction or adsorption to sludge during the treatment process. Additionally, the persistence of antibiotic-resistant enterococcal populations in two kinds of sludge was also considered to evaluate their potential elimination in the treatment process. Microbial indicators, vancomycin-resistant and erythromycin-resistant enterococci were enumerated. The structure and composition of FC and ENT populations were determined by biochemical fingerprinting and clustering analyses. Raw and treated sewage showed a concentration of FC 1 log unit higher than ENT and nearly 2 log units higher than spores of SRB. However, the three studied indicators showed similar concentrations in both types of sludge. Consequently, FC were eliminated in higher proportion than ENT and spores of SRB in sludge. FC and ENT populations showed high diversity and similarity population indexes for all kinds of samples. Antibiotic-resistant enterococci persisted in a similar proportion in respect to total enterococci not only in treated sewage but also in sludge. The persistence of antibiotic-resistant strains in sludge as well as in treated sewage should be considered if they are used for land disposal or for water reutilization, respectively.

  9. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals.

    PubMed

    Li, Yuan-Cheng; Min, Xiao-Bo; Chai, Li-Yuan; Shi, Mei-Qing; Tang, Chong-Jian; Wang, Qing-Wei; Liang, Yan-Jie; Lei, Jie; Liyang, Wen-Jun

    2016-10-01

    Wastewater treatment sludge from a primary lead-zinc smelter is characterized as hazardous waste and requires treatment prior to disposal due to its significant arsenic and heavy metals contents. This study presents a method for the stabilization of arsenic sludge that uses a slag based curing agent composed of smelting slag, cement clinker and limestone. The Unconfined Compressive Strength (UCS) test, the China Standard Leaching Test (CSLT), and the Toxicity Characteristic Leaching Procedures (TCLP) were used to physically and chemically characterize the solidified sludge. The binder ratio was determined according to the UCS and optimal experiments, and the optimal mass ratio of m (smelting slag): m (cement clinker): m (gypsum sludge): m (limestone) was 70:13:12:5. When the binder was mixed with arsenic sludge using a mass ratio of 1:1 and then maintained at 25 °C for 28 d, the UCS reached 9.30 MPa. The results indicated that the leached arsenic content was always less than 5 mg/L, which is a safe level, and does not contribute to recontamination of the environment. The arsenic sludge from the Zn/Pb metallurgy plant can be blended with cement clinker and smelting slag materials for manufacturing bricks and can be recycled as construction materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Removal of heavy metal species from industrial sludge with the aid of biodegradable iminodisuccinic acid as the chelating ligand.

    PubMed

    Wu, Qing; Duan, Gaoqi; Cui, Yanrui; Sun, Jianhui

    2015-01-01

    High level of heavy metals in industrial sludge was the obstacle of sludge disposal and resource recycling. In this study, iminodisuccinic acid (IDS), a biodegradable chelating ligand, was used to remove heavy metals from industrial sludge generated from battery industry. The extraction of cadmium, copper, nickel, and zinc from battery sludge with aqueous solution of IDS was studied under various conditions. It was found that removal efficiency greatly depends on pH, chelating agent's concentration, as well as species distribution of metals. The results showed that mildly acidic and neutral systems were not beneficial to remove cadmium. About 68 % of cadmium in the sample was extracted at the molar ratio of IDS to heavy metals 7:1 without pH adjustment (pH 11.5). Copper of 91.3 % and nickel of 90.7 % could be removed by IDS (molar ratio, IDS: metals = 1:1) with 1.2 % phosphoric acid effectively. Removal efficiency of zinc was very low throughout the experiment. Based on the experimental results, IDS could be a potentially useful chelant for heavy metal removal from battery industry sludge.

  11. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non-effect concentration, were lower than 1 for all the pharmaceutically active compounds so no significant risks are expected to occur due to the application of sewage sludge onto soils, except for 17α-ethinylestradiol when chronic toxicity was considered. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Utilization of AMD sludges from the anthracite region of Pennsylvania for removal of phosphorus from wastewater

    USGS Publications Warehouse

    Sibrell, P.L.; Cravotta, C.A.; Lehman, W.G.; Reichert, W.

    2010-01-01

    Excess phosphorus (P) inputs from human sewage, animal feeding operations, and nonpoint source discharges to the environment have resulted in the eutrophication of sensitive receiving bodies of water such as the Great Lakes and Chesapeake Bay. Phosphorus loads in wastewater discharged from such sources can be decreased by conventional treatment with iron and aluminum salts but these chemical reagents are expensive or impractical for many applications. Acid mine drainage (AMD) sludges are an inexpensive source of iron and aluminum hydrous oxides that could offer an attractive alternative to chemical reagent dosing for the removal of P from local wastewater. Previous investigations have focused on AMD sludges generated in the bituminous coal region of western Pennsylvania, and confirmed that some of those sludges are good sorbents for P over a wide range of operating conditions. In this study, we sampled sludges produced by AMD treatment at six different sites in the anthracite region of Pennsylvania for potential use as P sequestration sorbents. Sludge samples were dried, characterized, and then tested for P removal from water. In addition, the concentrations of acid-extractable metals and other impurities were investigated. Test results revealed that sludges from four of the sites showed good P sorption and were unlikely to add contaminants to treated water. These results indicate that AMD sludges could be beneficially used to sequester P from the environment, while at the same time decreasing the expense of sludge disposal.

  13. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.

    PubMed

    Liu, Fenwu; Zhou, Jun; Wang, Dianzhan; Zhou, Lixiang

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge filtrate and resulting dewatered sludge cakes, bioleaching has potential as an approach for improving sludge dewaterability and reducing the cost of subsequent reutilization or disposal of dewatered sludge.

  14. Heavy metals and its chemical speciation in sewage sludge at different stages of processing.

    PubMed

    Tytła, Malwina; Widziewicz, Kamila; Zielewicz, Ewa

    2016-01-01

    The analysis of heavy metal concentrations and forms in sewage sludge constitutes an important issue in terms of both health and environmental hazards the metals pose. The total heavy metals concentration enables only the assessment of its contamination. Hence the knowledge of chemical forms is required to determine their environmental mobility and sludge final disposal. Heavy metals speciation was studied by using four-stage sequential extraction BCR (Community Bureau of Reference). This study was aimed at determining the total concentration of selected heavy metals (Zn, Cu, Ni, Pb, Cd, Cr and Hg) and their chemical forms (except for Hg) in sludge collected at different stages of its processing at two municipal Wastewater Treatment Plants in southern Poland. Metals contents in sludge samples were determined by using flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). This study shows that Zn and Cu appeared to be the most abundant in sludge, while Cd and Hg were in the lowest concentrations. The sewage sludge revealed the domination of immobile fractions over the mobile ones. The oxidizable and residual forms were dominant for all the heavy metals. There was also a significant difference in metals speciation between sludges of different origin which was probably due to differences in wastewater composition and processes occurring in biological stage of wastewater treatment. The results indicate a negligible capability of metals to migrate from sludge into the environment. Our research revealed a significant impact of thickening, stabilization and hygienization on the distribution of heavy metals in sludge and their mobility.

  15. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    PubMed Central

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-01-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS. PMID:27725704

  16. Biomass characteristics and simultaneous nitrification-denitrification under long sludge retention time in an integrated reactor treating rural domestic sewage.

    PubMed

    Gong, Lingxiao; Jun, Li; Yang, Qing; Wang, Shuying; Ma, Bin; Peng, Yongzhen

    2012-09-01

    In this work, a novel integrated reactor incorporating anoxic fixed bed biofilm reactor (FBBR), oxic moving bed biofilm reactor (MBBR) and settler sequentially was proposed for nitrogen removal from rural domestic sewage. For purposes of achieving high efficiency, low costs and easy maintenance, biomass characteristics and simultaneous nitrification-denitrification (SND) were investigated under long sludge retention time during a 149-day period. The results showed that enhanced SND with proportions of 37.7-42.2% tapped the reactor potentials of efficiency and economy both, despite of C/N ratio of 2.5-4.0 in influent. TN was removed averagely by 69.3% at least, even under internal recycling ratio of 200% and less proportions of biomass assimilation (<3%). Consequently, lower internal recycle and intermittent wasted sludge discharge were feasible to save costs, together with cancellations of sludge return and anoxic stir. Furthermore, biomass with low observed heterotrophic yields (0.053 ± 0.035 g VSS/g COD) and VSS/TSS ratio (<0.55) in MBBR, simplified wasted sludge disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Concentrations and environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks and accumulation in sludge, New Jersey Coastal Plain, USA.

    PubMed

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman

    2008-06-01

    Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra ((226)Ra plus (228)Ra) concentrations commonly exceed 0.185 Bq L(-1)) were determined. Softeners, when maintained, reduced combined Ra about 10-fold (<0.024 Bq L(-1)). Combined Ra exceeded 0.185 Bq L(-1) at 1 non-maintained system. Combined Ra was enriched in regeneration brine waste (maximum, 81.2 Bq L(-1)), but concentrations in septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg(-1) dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg(-1)), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region.

  18. Enhancing post aerobic digestion of full-scale anaerobically digested sludge using free nitrous acid pretreatment.

    PubMed

    Wang, Qilin; Zhou, Xu; Peng, Lai; Wang, Dongbo; Xie, Guo-Jun; Yuan, Zhiguo

    2016-05-01

    Post aerobic digestion of anaerobically digested sludge (ADS) has been extensively applied to the wastewater treatment plants to enhance sludge reduction. However, the degradation of ADS in the post aerobic digester itself is still limited. In this work, an innovative free nitrous acid (HNO2 or FNA)-based pretreatment approach is proposed to improve full-scale ADS degradation in post aerobic digester. The post aerobic digestion was conducted by using an activated sludge to aerobically digest ADS for 4 days. Degradations of the FNA-treated (treated at 1.0 and 2.0 mg N/L for 24 h) and untreated ADSs were then determined and compared. The ADS was degraded by 26% and 32%, respectively, in the 4-day post aerobic digestion period while being pretreated at 1.0 and 2.0 mg HNO2-N/L. In comparison, only 20% of the untreated ADS was degraded. Economic analysis demonstrated that the implementation of FNA pretreatment can be economically favourable or not depending on the sludge transport and disposal cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Microbial release of 226Ra2+ from (Ba,Ra)SO4 sludges from uranium mine wastes.

    PubMed Central

    Fedorak, P M; Westlake, D W; Anders, C; Kratochvil, B; Motkosky, N; Anderson, W B; Huck, P M

    1986-01-01

    226Ra2+ is removed from uranium mine effluents by coprecipitation with BaSO4. (Ba,Ra)SO4 sludge samples from two Canadian mine sites were found to contain active heterotrophic populations of aerobic, anaerobic, denitrifying, and sulfate-reducing bacteria. Under laboratory conditions, sulfate reduction occurred in batch cultures when carbon sources such as acetate, glucose, glycollate, lactate, or pyruvate were added to samples of (Ba,Ra)SO4 sludge. No external sources of nitrogen or phosphate were required for this activity. Further studies with lactate supplementation showed that once the soluble SO4(2-) in the overlying water was depleted, Ba2+ and 226Ra2+ were dissolved from the (Ba,Ra)SO4 sludge, with the concurrent production of S2-. Levels of dissolved 226Ra2+ reached approximately 400 Bq/liter after 10 weeks of incubation. Results suggest that the ultimate disposal of these sludges must maintain conditions to minimize the activity of the indigenous sulfate-reducing bacteria to ensure that unacceptably high levels of 226Ra2+ are not released to the environment. PMID:3752993

  20. Concentrations and environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks and accumulation in sludge, New Jersey Coastal Plain, USA

    USGS Publications Warehouse

    Szabo, Z.; Jacobsen, E.; Kraemer, T.F.; Parsa, B.

    2008-01-01

    Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra (226Ra plus 228Ra) concentrations commonly exceed 0.185 Bq L-1) were determined. Softeners, when maintained, reduced combined Ra about 10-fold (<0.024 Bq L-1). Combined Ra exceeded 0.185 Bq L-1 at 1 non-maintained system. Combined Ra was enriched in regeneration brine waste (maximum, 81.2 Bq L-1), but concentrations in septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg-1 dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg-1), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region.

  1. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    NASA Astrophysics Data System (ADS)

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  2. The yield and decay coefficients of exoelectrogenic bacteria in bioelectrochemical systems.

    PubMed

    Wilson, Erica L; Kim, Younggy

    2016-05-01

    In conventional wastewater treatment, waste sludge management and disposal contribute the major cost for wastewater treatment. Bioelectrochemical systems, as a potential alternative for future wastewater treatment and resources recovery, are expected to produce small amounts of waste sludge because exoelectrogenic bacteria grow on anaerobic respiration and form highly populated biofilms on bioanode surfaces. While waste sludge production is governed by the yield and decay coefficient, none of previous studies have quantified these kinetic constants for exoelectrogenic bacteria. For yield coefficient estimation, we modified McCarty's free energy-based model by using the bioanode potential for the free energy of the electron acceptor reaction. The estimated true yield coefficient ranged 0.1 to 0.3 g-VSS (volatile suspended solids) g-COD(-1) (chemical oxygen demand), which is similar to that of most anaerobic microorganisms. The yield coefficient was sensitively affected by the bioanode potential and pH while the substrate and bicarbonate concentrations had relatively minor effects on the yield coefficient. In lab-scale experiments using microbial electrolysis cells, the observed yield coefficient (including the effect of cell decay) was found to be 0.020 ± 0.008 g-VSS g-COD(-1), which is an order of magnitude smaller than the theoretical estimation. Based on the difference between the theoretical and experimental results, the decay coefficient was approximated to be 0.013 ± 0.002 d(-1). These findings indicate that bioelectrochemical systems have potential for future wastewater treatment with reduced waste sludge as well as for resources recovery. Also, the found kinetic information will allow accurate estimation of wastewater treatment performance in bioelectrochemical systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Integrated copper-containing wastewater treatment using xanthate process.

    PubMed

    Chang, Yi-Kuo; Chang, Juu-En; Lin, Tzong-Tzeng; Hsu, Yu-Ming

    2002-09-02

    Although, the xanthate process has been shown to be an effective method for heavy metal removal from contaminated water, a heavy metal contaminated residual sludge is produced by the treatment process and the metal-xanthate sludge must be handled in accordance with the Taiwan EPA's waste disposal requirements. This work employed potassium ethyl xanthate (KEX) to remove copper ions from wastewater. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) were used to determine the leaching potential and stability characteristics of the residual copper xanthate (Cu-EX) complexes. Results from metal removal experiments showed that KEX was suitable for the treatment of copper-containing wastewater over a wide copper concentration range (50, 100, 500, and 1000 mg/l) to the level that meets the Taiwan EPA's effluent regulations (3mg/l). The TCLP results of the residual Cu-EX complexes could meet the current regulations and thus the Cu-EX complexes could be treated as a non-hazardous material. Besides, the results of SDLT indicated that the complexes exhibited an excellent performance for stabilizing metals under acidic conditions, even slight chemical changes of the complexes occurred during extraction. The xanthate process, mixing KEX with copper-bearing solution to form Cu-EX precipitates, offered a comprehensive strategy for solving both copper-containing wastewater problems and subsequent sludge disposal requirements.

  4. Utilization of lime-dried sludge for eco-cement clinker production: effects of different feeding points.

    PubMed

    Cao, Haihua; Liu, Wei; Xu, Jingcheng; Liu, Jia; Huang, Juwen; Huang, Xiangfeng; Li, Guangming

    2018-02-01

    Co-processing lime-dried sludge (LDS) in cement kilns is an appropriate technique to solve the problem of LDS disposal and promote the sustainable development for cement industry. However, there were limited studies that investigated the effects of feeding points on product quality and cement kiln emissions. In this study, simulated experiments were conducted by dividing the feeding points into high-temperature zones (HTZs) and raw mill (RM). Cement quality and major cement kiln emission characteristics were comprehensively investigated. The results showed that in terms of burnability, compressive strength and microstructure, the optimum co-processing amount of LDS were 9 wt% when feeding at RM, while 6% when feeding at HTZs. Meanwhile, the organic emissions of RM samples were mainly low environmental risk compounds of amides and nitrogenous heterocyclic compounds. Inorganic gaseous pollutions of NO X and SO 2 , respectively, were 8.11 mg/g DS and 12.89 mg/g DS, compared with 7.61 mg/g DS and 4.44 mg/g DS for HTZs. However, all the cement kiln emissions concentration were still much lower than standard requirements. Overall, RM had a bigger LDS co-processing capacity and higher, but acceptable, cement kiln emissions. Feeding LDS via RM could dispose larger amounts of sludge and provide more alternative materials for cement manufacturing.

  5. Sludge Biochar Amendment and Alfalfa Revegetation Improve Soil Physicochemical Properties and Increase Diversity of Soil Microbes in Soils from a Rare Earth Element Mining Wasteland

    PubMed Central

    Inubushi, Kazuyuki; Liang, Jian; Zhu, Sipin; Wei, Zhenya; Guo, Xiaobin; Luo, Xianping

    2018-01-01

    Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon–nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable. PMID:29751652

  6. Preliminary results of lab-scale investigations of products of incomplete combustion during incineration of primary and mixed digested sludge.

    PubMed

    Braguglia, C M; Bagnuolo, G; Gianico, A; Mininni, G; Pastore, C; Mascolo, G

    2016-03-01

    Separation between primary and secondary sludge treatment could be a valuable solution for sludge management. According to this approach, secondary sludge can be conveniently used in agriculture while primary sludge could be easily dried and incinerated. It follows that some concern may arise from incinerating primary sludge with respect to the current practice to incinerate mixed digested sludge. Incineration of primary and mixed digested municipal sludge was investigated with a lab-scale equipment in terms of emissions of products of incomplete combustion (PICs) during incineration failure modes. PICs can be grouped in three sub-categories, namely aliphatic hydrocarbons (alkanes and alkenes), compounds with a single aromatic ring, and polycyclic aromatic hydrocarbons (PAHs). After-burning temperature was the most important parameter to be controlled in order to minimize emissions of alkanes and alkenes. As for mono-aromatic compounds, benzene and toluene are the most thermally resistant compounds, and in some cases, an after-burning temperature of 1100 °C was not enough to get the complete destruction of benzene leading to a residual emission of 18 mg/kgsludge. PAHs showed an opposite trend with respect to aliphatic and mono-aromatic hydrocarbons being the thermal failure mode the main responsible of PIC emissions. A proper oxygen concentration is more important than elevated temperature thus reflecting the high thermal stability of PAHs. Overall, obtained results, even though obtained under flameless conditions that are different from those of the industrial plants, demonstrated that separation of primary and secondary sludge does not pose any drawbacks or concern regarding primary sludge being disposed of by incineration even though it is more contaminated than mixed digested sludge in terms of organic pollutants.

  7. Sludge Biochar Amendment and Alfalfa Revegetation Improve Soil Physicochemical Properties and Increase Diversity of Soil Microbes in Soils from a Rare Earth Element Mining Wasteland.

    PubMed

    Luo, Caigui; Deng, Yangwu; Inubushi, Kazuyuki; Liang, Jian; Zhu, Sipin; Wei, Zhenya; Guo, Xiaobin; Luo, Xianping

    2018-05-11

    Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon⁻nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable.

  8. Bioassay directed identification of toxicants in sludge and related reused materials from industrial wastewater treatment plants in the Yangtze River Delta.

    PubMed

    Fang, Binbin; Guo, Jing; Li, Fuxing; Giesy, John P; Wang, Lianjun; Shi, Wei

    2017-02-01

    Industrialized development of the Yangtze River Delta, China, has resulted in larger amounts of wastes, including sludges from treatment of these wastes. Methods to manage and dispose, including reuse were urgently needed. Sludge and reused products were collected from two largest factories, KEYUAN and HENGJIA where treated sludges were turned into bricks or sludge cake to be placed in landfills, respectively. Metals and organic compounds were quantified in sludges and leachates assessed by use of toxicity characterized leaching procedure (TCLP) while acute toxicity was determined by Daphnia magna. Nine metals were detected in all raw sludges with concentrations of Cr and Ni exceeding Chinese standards. For sludge leachate, concentrations of metals were all less than Chinese standards, which changed little after being made into cake by HENGJIA, but were significantly less after being made into brick by KEYUAN. Toxicity units (TU) for all samples are greater than 1.0 indicating that they are potentially toxic to aquatic organisms. TUs changed little after being made into filter cake, but were 10-fold less after being made into bricks. Cr and Ni contributed most to the total toxicity followed by Zn and Cu. Making of sludges into K-brick 1 resulted in better inactivation of contaminants, which resulted in less toxic potencies. So that is the recommended method for handling of industrial sludges. To further assure their safe reuse, additional research on identification of key toxicants and potential hazards, based on additional endpoints, by combining bio-tests and chemical analysis should be done for reused sludges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    PubMed Central

    Gebreeyessus, Getachew D.; Jenicek, Pavel

    2016-01-01

    During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs) is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD) of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH). In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so as to optimize the connection between the two systems. In addition, many other relevant AD process parameters, including sludge rheology, which need to be addressed, are also reviewed and presented. PMID:28952577

  10. Health assessment for Shaw Avenue Dump, Charles City, Iowa, Region 7. CERCLIS No. IAD980630560. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-07

    The Shaw Avenue Dump Site is listed on the National Priorities List. The 8-acre city dump site, consisting of three waste-disposal areas, is located in southeast Charles City approximately 500 feet east of the Cedar River. Sludge from the Charles City waste water treatment plant, which received liquid waste discharge from Salisbury, was placed from 1949 to 1969 in the northern waste cells and in the undefined area on the southern portion of the site. Arsenic is the contaminant of concern at the Shaw Avenue Dump Site. The site is considered to be of public health concern because of themore » potential risk to human health caused by possible exposure to hazardous substances via ingestion of ground water, soil, and surface water; inhalation of fugitive dust; and dermal contact with soil, surface water, and ground water.« less

  11. Regeneration of paint sludge and reuse in cement concrete

    NASA Astrophysics Data System (ADS)

    Feng, Enqi; Sun, Jitao; Feng, Liming

    2018-06-01

    Paint Sludge (PS) is a hazardous waste. Inappropriate disposal of PS might be harmful to public health and the environment. Various size of Paint Sludge Solid Powder (PSSP) particles have been produced by automatic processing equipment via dewatering, crushing, screening removing Volatile Organic Compounds (VOCs), and etc. Meanwhile, the test results show that PSSP is not a hazardous waste. Both flexural and compressive strength are increased by adding PSSP of polyurethane to cement concrete at a level of below 10% of cement weight. However, the strength has a significant reduction at a level of above 15% of cement weight. The reason for the increase of strength is probably due to a slow coagulation and copolymerization of PSSP and cement. The reduction is likely due to the self-reunion of PSSP.

  12. PROCESS DESIGN MANUAL FOR SLUDGE TREATMENT AND DISPOSAL

    EPA Science Inventory

    The purpose of this manual is to provide the engineering community and related industry with a new source of information to be used in the planning, design, and operation of present and future wastewater pollution control facilities. This manual supplements this existing knowledg...

  13. Detoxifying Industrial Wastewaters

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1976

    1976-01-01

    Regional and supraregional treatment centers have been developed in Switzerland to cope with the problem of systematic toxic waste disposal. The process employed at the Fairtec Turgi plant is described beginning with delivery and storage and proceeding through treatment, reprecipitation, decontaminating cyanide, filtering sludge and ion-exchanger…

  14. Modeling Trihalomethane Formation Potential from Wastewater Chlorination

    DTIC Science & Technology

    1994-09-01

    Aerated Lagoon Chlor/Dechlor - - - King Salmon River Luke, AZ Tertiary Ultraviolet 1.2 MGD Agua Fria River / Irrigation MacDD, FL Activated Sludge...November 1988). Tchobanoglous, George and Burton, Franklin L. Wastewater engineering: treatment, disposal, and reuse / Metcalf & Eddy, Inc. -3rd ed

  15. Farmers' attitude toward treated sludge use in the villages of West Bank, Palestine.

    PubMed

    Rashid, Md M; Kattou'a, Mary G; Al-Khatib, Issam A; Sato, Chikashi

    2017-07-01

    An application of treated sewage sludge on agricultural land has been widely accepted, as this method is simple and economical for disposal of wastewater residues. When applied properly on an agricultural land, sludge can replenish organic matter and nutrients in soil. Although sewage sludge has been used in agriculture in many parts of the world, its acceptability varies with different cultures and beliefs among farmers. Farmers' concerns on sludge use are primarily due to its anthropogenic origin, pollutants that it carries, a general perception of sewage being dirty, and its offensive odor. This paper aims to investigate farmers' perceptions on land application of treated sewage sludge on their farm. This study targeted two farming communities, namely, Anza and Beit Dajan villages, located in Jenin and Nablus districts in the West Bank, Palestine. In this study, a sample of 106 farmers were randomly selected and surveyed through a mixture of structured and open-ended questions. Results indicated that, overall, farmers have positive perceptions on land application of sludge. A majority of the farmers are in favor of the concept of sludge use when a planned wastewater treatment plant is constructed and it becomes operational. Results also indicate that a majority of the farmers are in favor of using sludge for fertilizing fruit trees, rather than growing vegetables and other plants in a greenhouse, and that many of them have knowledge of sludge properties and advantages and disadvantages of sludge use in agriculture. Despite the positive perceptions by the majority of farmers, a small fraction of the farmers are in disfavor of the use of sludge for the following reasons: psychological and social concerns, potential health risks, and their religious beliefs. Results further suggest that the land application of treated sewage sludge can be accepted by more farmers if the consumers are willing to buy agricultural products fertilized by sludge, sludge meets the public health requirements, and sludge is available at low costs. To improve farmers' perceptions on the land application of sludge, several measures are recommended.

  16. Fenton-like degradation of Methylene Blue using paper mill sludge-derived magnetically separable heterogeneous catalyst: Characterization and mechanism.

    PubMed

    Zhou, Guoqiang; Chen, Ziwen; Fang, Fei; He, Yuefeng; Sun, Haili; Shi, Huixiang

    2015-09-01

    For the paper industry, the disposal and management of the yielded sludge are a considerable challenge. In our work, the paper mill sludge-derived magnetically separable heterogeneous catalyst (PMS-Fe-380) was prepared easily through a facile synthesis method. The morphology and structure of PMS-Fe-380 were fully characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer-Emmet-Teller analysis. The catalytic activity of PMS-Fe-380 was evaluated by degradation of Methylene Blue (MB). The reusability and stability of PMS-Fe-380 were evaluated in five repeated runs, which suggested that PMS-Fe-380 manifested excellent stability of catalytic activity. Moreover, leaching tests indicated that the leached iron is negligible (<0.5mg/L). This study provides an alternative environmentally friendly reuse method for paper mill sludge and a novel catalyst PMS-Fe-380 that can be considered as a promising heterogeneous Fenton-like catalyst. Copyright © 2015. Published by Elsevier B.V.

  17. Solidification of Dredged Sludge by Hydraulic Ash-Slag Cementitious Materials

    NASA Astrophysics Data System (ADS)

    Zhu, Shu-Jing; Qin, Ying; Hwang, Jiann-Yang

    Solidification treatment is used to treat hazardous wastes for disposal and to remediate the contaminated land. It is an increasingly popular technology for redevelopment of brown fields since treated wastes can often be left on-site, which can improve the site's soil for subsequent construction. In order to find home for the dredged sludge from the Pearl River Estuary Channel in China, the potential uses of treated dredged sludge by solidification treatment as valuable structural fill was investigated. Structure fills were prepared under various formula and curing conditions. Modulus of elasticity was detemined at 7 days, 14 days and 28 days with different types of load application. Atterberg limit, compactibility and CBR values are reported. The relationship between the microstructure and engineering properties of treated sludge are examined. The results clearly show the technical benefits by stabilizing soft soils with Hydraulic ash-slag cementitious materials. XRD and DTA-TG tests were carried out on certain samples to characterize the hydraulic compounds formed.

  18. A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails.

    PubMed

    Scheifler, R; Ben Brahim, M; Gomot-de Vaufleury, A; Carnus, J-M; Badot, P-M

    2003-01-01

    Juvenile Helix aspersa snails exposed in field microcosms were used to assess the transfer of Cd, Cu, Ni, Pb and Zn from forest soils amended with liquid and composted sewage sludge. Zn concentrations and contents were significantly higher in snails exposed to liquid and composted sludge after 5 and 7 weeks of exposure, when compared with control. Trends were less clear for the other metals. Present results show that Zn, among the cocktail of metallic trace elements (MTE) coming from sewage sludge disposal, represents the principal concern for food chain transfer and secondary poisoning risks. The microcosm design used in this experiment was well suited for relatively long-term (about 2 months) active biomonitoring with H. aspersa snails. The snails quickly indicated the variations of MTE concentrations in their immediate environment. Therefore, the present study provides a simple but efficient field tool to evaluate MTE bioavailability and transfer.

  19. Plant available nitrogen from anaerobically digested sludge and septic tank sludge applied to crops grown in the tropics.

    PubMed

    Sripanomtanakorn, S; Polprasert, C

    2002-04-01

    Agricultural land is an attractive alternative for the disposal of biosolids since it utilises the recyclable nutrients in the production of crops. In Thailand and other tropical regions, limited field-study information exists on the effect of biosolids management strategies on crop N utilisation and plant available N (PAN) of biosolids. A field study was conducted to quantify the PAN of the applied biosolids, and to evaluate the N uptake rates of some tropical crops. Sunflower (Helianthus annuus) and tomato (Lycopersicon esculentum) were chosen in this study. Two types of biosolids used were: anaerobically digested sludge and septic tank sludge. The soil is acid sulfate and is classified as Sulfic Tropaquepts with heavy clay in texture. The anaerobically digested sludge applied rates were: 0, 156 and 312 kg N ha(-1) for the sunflower plots, and 0, 586, and 1172 kg N ha(-1) for the tomato plots. The septic tank sludge applied rates were: 0, 95 and 190 kg N ha(-1) for the sunflower plots, and 0, 354 and 708 kg N ha(-1) for the tomato plots, respectively. The results indicated the feasibility of applying biosolids to grow tropical crops. The applications of the anaerobically digested sludge and the septic tank sludge resulted in the yields of sunflower seeds and tomato fruits and the plant N uptakes comparable or better than that applied with only the chemical fertiliser. The estimated PAN of the anaerobically digested sludge was about 27-42% of the sludge organic N during the growing season. For the septic tank sludge, the PAN was about 15-58% of the sludge organic N. It is interesting to observe that an increase of the rate of septic tank sludge incorporated into this heavy clay soil under the cropping system resulted in the decrease of N mineralisation rate. This situation could cause the reduction of yield and N uptake of crops.

  20. Removal of metals in leachate from sewage sludge using electrochemical technology.

    PubMed

    Meunier, N; Drogui, P; Gourvenec, C; Mercier, G; Hausler, R; Blais, J F

    2004-02-01

    Heavy metals in acidic leachates from sewage sludge are usually removed by chemical precipitation, which often requires high concentration of chemicals and induces high metallic sludge production. Electrochemical technique has been explored as an alternative method in a laboratory pilot scale reactor for heavy metals (Cu and Zn) removal from sludge leachate. Three electrolytic cell arrangements using different electrodes materials were tested: mild steel or aluminium bipolar electrode (EC cell), Graphite/stainless steel monopolar electrodes (ER cell) and iron-monopolar electrodes (EC-ER cell). Results showed that the best performances of metal removal were obtained with EC and EC-ER cells using mild steel electrodes operated respectively at current intensities of 0.8 and 2.0 A through 30 and 60 min of treatment. The yields of Cu and Zn removal from leachate varied respectively from 92.4 to 98.9% and from 69.8 to 76.6%. The amounts of 55 and 44 kg tds(-1) of metallic sludge were respectively produced using EC and EC-ER cells. EC and EC-ER systems involved respectively a total cost of 21.2 and 13.1 CAN dollars per ton of dry sludge treated including only energy consumption and metallic sludge disposal. The treatment using EC-ER system was found to be effective and more economical than the traditional metal precipitation using either Ca(OH)2 and/or NaOH.

  1. Production of sludge-incorporated paver blocks for efficient waste management.

    PubMed

    Velumani, P; Senthilkumar, S

    2018-06-01

    Waste management plays a vital role in the reuse of industry wastes in to useful conversions. The treatment of effluents from the combined textile effluent treatment plant and hypo sludge from the paper industry results in sludge generation, which poses a huge challenge for its disposal. Therefore, an eco-friendly attempt is made to utilize them in the production of paver blocks. Paver blocks are construction units that have vast applications in street roads, walking paths, fuel stations, and so on. In this study, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge, to utilize them in suitable proportions. The effect of adding silica fume and polypropylene fibre in paver blocks has also been studied. Paver blocks containing sludge with different proportions were cast based on the recommendations in Indian Standards (IS) 15658, and the test results were compared with the nominal M20 grade and M30 grade paver blocks. The outcomes of the paver block combinations were studied and found to be an effective utilization of sludge with substantial cement replacement of up to 35%, resulting in effective waste management for specific industries. Presently, paver blocks are construction units that have vast application in street roads and other constructions like walking paths, fuel stations, and so on. Also, paver blocks possess easy maintenance during breakages. Based on this application, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge to utilize them in suitable proportions.

  2. Health hazards associated with solid waste disposal.

    PubMed

    Gaby, W L

    1981-01-01

    The landfilling and disposal of domestic solid waste should be considered as great or greater a public health hazard as raw sewage. Solid waste is toxic and contains a greater variety of pathogenic microorganisms than does sewage sludge. Of all the procedures for solid waste disposal, landfills have and will continue to give rise to serious public health problems of land and water pollution. Although the general public is opposed to landfilling our inept health officials have offered small communities and cities no choice. Small communities do not have the technical knowledge or the funds to initiate alternative procedures. As the volume of solid waste increases each year the magnitude of the health hazards will eventually force public health agencies to implement correct disposal procedures ultimately resulting in recycling.

  3. Agronomic value of sewage sludge and corn cob biochar in an infertile Oxisol

    NASA Astrophysics Data System (ADS)

    Deenik, J. L.; Cooney, M. J.; Antal, M. J., Jr.

    2013-12-01

    Disposal of sewage sludge and other agricultural waste materials has become increasingly difficult in urban environments with limited land space. Carbonization of the hazardous waste produces biochar as a soil amendment with potential to improve soil quality and productivity. A series of greenhouse pot experiments were conducted to assess the agrnomic value of two biochars made from domestic wastewater sludge and corn cob waste. The ash component of the sewage sludge biochar was very high (65.5%) and high for the corn cob (11.4%) biochars. Both biochars contained low concentrations of heavy metals and met EPA land application criteria. The sewage sludge biochar was a better liming material and source of mineral nutrients than the corn cob biochar, but the corn cob biochar showed the greatest increase in soil carbon and total nitrogen. Both biochar materials increased soil pH compared with soils not receiving biochar, but the sewage sludge biochar was a more effective liming material maintaining elevated soil pH throughout the 3 planting cycles. The sewage sludge biochar also showed the greatest increase in extractable soil P and base cations. In the first planting cycle, both biochars in combination with conventional fertilizers produced significantly higher corn seedling growth than the fertilized control. However, the sewage sludge biochar maintained beneficial effects corn seedling growth through the third planting cycle showing 3-fold increases in biomass production compared with the control in the third planting. The high ash content and associated liming properties and mineral nutrient contributions in the sewage sludge biochar explain benefits to plant growth. Conversion of sewage sludge waste into biochar has the potential to effectively address several environmental issues: 1) convert a hazardous waste into a valuable soil amendment, 2) reduce land and water contamination, and 3) improve soil quality and productivity.

  4. Direct oxygen uptake from air by novel glycogen accumulating organism dominated biofilm minimizes excess sludge production.

    PubMed

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2018-05-29

    The cost associated with treatment and disposal of excess sludge produced is one of the greatest operational expenses in wastewater treatment plants. In this study, we quantify and explain greatly reduced excess sludge production in the novel glycogen accumulating organism (GAO) dominated drained biofilm system previously shown to be capable of extremely energy efficient removal of organic carbon (biological oxygen demand or BOD) from wastewater. The average excess sludge production rate was 0.05 g VSS g -1 BOD (acetate) removed, which is about 9-times lower than that of comparative studies using the same acetate based synthetic wastewater. The substantially lower sludge yield was attributed to a number of features such as the high oxygen consumption facilitated by direct oxygen uptake from air, high biomass content (21.41 g VSS L -1 of reactor), the predominance of the GAO (Candidatus competibacter) with a low growth yield and the overwhelming presence of the predatory protozoa (Tetramitus) in the biofilm. Overall, the combination of low-energy requirement for air supply (no compressed air supply) and the low excess sludge production rate, could make this novel "GAO drained biofilm" process one of the most economical ways of biological organic carbon removal from wastewater. Copyright © 2018. Published by Elsevier B.V.

  5. Levels, composition profiles and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sludge from ten textile dyeing plants.

    PubMed

    Ning, Xun-An; Lin, Mei-Qing; Shen, Ling-Zhi; Zhang, Jian-Hao; Wang, Jing-Yu; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong

    2014-07-01

    As components of synthetic dyes, polycyclic aromatic hydrocarbons (PAHs) are present as contaminants in textile dyeing sludge due to the recalcitrance in wastewater treatment process, which may pose a threat to environment in the process of sludge disposal. In order to evaluate PAHs in textile dyeing sludge, comprehensive investigation comprising 10 textile dyeing plants was undertaken. Levels, composition profiles and risk assessment of 16 EPA-priority PAHs were analyzed in this study. The total concentrations of 16 PAHs (∑16 PAHs) varied from 1463 ± 177 ng g(-1) to 16,714 ± 1,507 ng g(-1) with a mean value of 6386 ng g(-1). The composition profiles of PAHs were characterized by 3- and 4-ring PAHs, among which phenanthrene, anthracene and fluoranthene were the most dominant components. The mean benzo[a]pyrene equivalent (BaPeq) concentration of ∑16 PAHs in textile dyeing sludge was 423 ng g(-1), which was 2-3 times higher than concentrations reported for urban soil. According to ecological risk assessment, the levels of PAHs in the textile dyeing sludge may cause a significant risk to soil ecosystem after landfill or dumping on soil. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Development of a qualitative pathogen risk-assessment methodology for municipal-sludge landfilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-04-01

    This report addresses potential risks from microbiological pathogens present in municipal sludge disposal in landfills. Municipal sludges contain a wide variety of bacteria, viruses, protozoa, helminths, and fungi. Survival characteristics of pathogens are critical factors in assessing the risks associated with potential transport of microorganisms from the sludge-soil matrix to the ground-water environment of landfills. Various models are discussed for predicting microbial die-off. The order of persistence in the environment from longest to shortest survival time appears to be helminth eggs > viruses > bacteria > protozoan cysts. Whether or not a pathogen reaches ground-water and is transported to drinking-watermore » wells depends on a number of factors, including initial concentration of the pathogen, survival of the pathogen, number of pathogens that reach the sludge-soil interface, degree of removal through the unsaturated and saturated-soil zones, and the hydraulic gradient. The degree to which each of these factors will influence the probability of pathogens entering ground-water cannot be determined precisely. Information on the fate of pathogens at existing landfills is sorely lacking. Additional laboratory and field studies are needed to determine the degree of pathogen leaching, survival and transport in ground-water in order to estimate potential risks from pathogens at sludge landfills with reasonable validity.« less

  7. United States National Sewage Sludge Repository at Arizona State University--a new resource and research tool for environmental scientists, engineers, and epidemiologists.

    PubMed

    Venkatesan, Arjun K; Done, Hansa Y; Halden, Rolf U

    2015-02-01

    Processed municipal sewage sludges (MSS) are an abundant, unwanted by-product of wastewater treatment, increasingly applied to agriculture and forestry for inexpensive disposal and soil conditioning. Due to their high organic carbon and lipid contents, MSS not only is rich in carbon and nutrients but also represents a "sink" for recalcitrant, hydrophobic, and potentially bioaccumulative compounds. Indeed, many organics sequestered and concentrated in MSS meet the US Environmental Protection Agency's definition of being persistent, bioaccumulative, and toxic (PBT). In a strategic effort, our research team at the Biodesign Institute has created the National Sewage Sludge Repository (NSSR), a large repository of digested MSSs from 164 wastewater treatment plants from across the USA, as part of the Human Health Observatory (H2O) at Arizona State University (ASU). The NSSR likely represents the largest archive of digested MSS specimens in the USA. The present study summarizes key findings gleaned thus far from analysis of NSSR samples. For example, we evaluated the content of toxicants in MSS and computed estimates of nationwide inventories of mass produced chemicals that become sequestrated in sludge and later are released into the environment during sludge disposal on land. Ongoing efforts document co-occurrence of a variety of PBT compounds in both MSS and human samples, while also identifying a large number of potentially harmful MSS constituents for which human exposure data are still lacking. Finally, we summarize future opportunities and invite collaborative use of the NSSR by the research community. The H2O at ASU represents a new resource and research tool for environmental scientists and the larger research community. As illustrated in this work, this repository can serve to (i) identify and prioritize emerging contaminants, (ii) provide spatial and temporal trends of contaminants, (iii) inform and evaluate the effectiveness of environmental policy-making and regulations, and (iv) approximate, ongoing exposures and body burdens of mass-produced chemicals in human society.

  8. United States National Sewage Sludge Repository at Arizona State University – A New Resource and Research Tool for Environmental Scientists, Engineers, and Epidemiologists

    PubMed Central

    Venkatesan, Arjun K.; Done, Hansa Y.; Halden, Rolf U.

    2014-01-01

    Processed municipal sewage sludges (MSS) are an abundant, unwanted by-product of wastewater treatment, increasingly applied to agriculture and forestry for inexpensive disposal and soil conditioning. Due to their high organic-carbon and lipid contents, MSS not only is rich in carbon and nutrients but also represents a ‘sink’ for recalcitrant, hydrophobic and potentially bioaccumulative compounds. Indeed, many organics sequestered and concentrated in MSS meet the U.S. Environmental Protection Agency's definition of being persistent, bioaccumulative, and toxic (PBT). In a strategic effort, our research team at the Biodesign Institute has created the National Sewage Sludge Repository (NSSR), a large repository of digested MSSs from 164 wastewater treatment plants from across the USA, as part of the Human Health Observatory (H2O) at Arizona State University (ASU). The NSSR likely represents the largest archive of digested MSS specimens in the USA. The present study summarizes key findings gleaned thus far from analysis of NSSR samples. For example, we evaluated the content of toxicants in MSS and computed estimates of nationwide inventories of mass produced chemicals that become sequestrated in sludge and later are released into the environment during sludge disposal on land. Ongoing efforts document co-occurrence of a variety of PBT compounds in both MSS and human samples, while also identifying a large number of potentially harmful MSS constituents for which human exposure data are still lacking. Finally, we summarize new future opportunities and invite collaborative use the NSSR by the research community. The H2O at ASU represents a resource and research tool for environmental scientists and the larger research community. As illustrated in this work, this repository can serve to (i) identify and prioritize emerging contaminants; (ii) provide spatial and temporal trends of contaminants; (iii) inform and evaluate the effectiveness of environmental policy-making and regulations; and (iv) approximate, ongoing exposures and body burdens of mass-produced chemicals in human society. PMID:24824503

  9. Change in the fouling propensity of sludge in membrane bioreactors (MBR) in relation to the accumulation of biopolymer clusters.

    PubMed

    Sun, Fei-yun; Wang, Xiao-mao; Li, Xiao-yan

    2011-04-01

    A membrane bioreactor (MBR) and an activated sludge process (ASP) were operated side by side to evaluate the change of sludge supernatant characteristics and the evolution of the sludge fouling propensity. The MBR sludge had a higher organic concentration and more biopolymer clusters (BPC) in the supernatant compared with ASP. BPC increased in both concentration and size in the MBR. The results show that the change in the liquid-phase property had a profound effect on the sludge fouling propensity. MBR operation transformed typical activated sludge to MBR sludge with a higher fouling propensity. Distinct from the ASP, membrane filtration retained soluble microbial products (SMP) within the MBR, and the vast membrane surface provided a unique environment for the transformation of SMP to large size BPC, leading to further sludge deposition on the membrane surface. Thus, membrane filtration is the crucial cause of the inevitable fouling problem in submerged MBRs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Aroclor misidentification in environmental samples: how do we communicate more effectively between the laboratory and the data user?

    PubMed

    Erickson, Mitchell D

    2018-06-01

    Disposal of carbonless copy paper (CCP) paper sludge during the 1960s contaminated a site in the USA with PCBs. Despite historic records of CCP sludge disposal and absence of evidence of any other disposal, a dispute arose among the parties over the source of the PCBs. Aroclor 1242 is well documented as the PCB mixture used in CCP, yet Aroclors 1242, 1248, 1254, and 1260 were reported by the analytical laboratory. How could the PCBs at a single, small site be reported as four different Aroclors? Some claimed that there had to be at least four Aroclors source inputs to the site. Disposal of four different Aroclors at this site would simply defy logic and the historic record. Weathering of the mixtures is part of the story. A larger issue is the conflict between the intent of the USEPA 8082 method to determine the total PCB content in environmental samples to facilitate environmental cleanup and disposal decisions within a regulatory context versus the data users' intent to identify the PCB sources. This inappropriate extension of the data leads to erroneous conclusions. To mitigate problems like this, laboratory analysis requests need to be matched to the intended data usage; conversely, the data must not be over-interpreted beyond the limits of the method. The PCB analysis community needs to develop a better articulation of the limits of Aroclor identification for the broader community that may naïvely assume that if the laboratory reports "Aroclor 1248," then someone must have placed Aroclor 1248 at the site. After all, when a laboratory reports "lead" or "chloroform," those identifications are never in question.

  11. STATE OF THE ART IN TREATMENT AND SURVIVAL OF PATHOGENS IN BIOSOLIDS

    EPA Science Inventory

    This paper discusses the pathogen/stability concerns for municipal residuals and the applicability of current sludge treatment processes to control health risks potentially associated with the use or disposal of these residuals. In recent years, there has been a rise in public co...

  12. EFFECT OF LAND DISPOSAL APPLICATIONS OF MUNICIPAL ENVIRONMENTAL WASTES ON CROP YIELDS AND HEAVY METAL UPTAKE

    EPA Science Inventory

    This report provides the cumulative data acquired from 1969 through 1975 from field and greenhouse investigations pertaining to the effects on selected soils and plants from municipal compost and sewage sludge applications. Multiple applications of composted municipal refuse resu...

  13. A COMPLETE DISPOSAL-RECYCLE SCHEME FOR AGRICULTURAL SOLID WASTES

    EPA Science Inventory

    This investigation applied the anaerobic process to the production of methane gas and a stabilized sludge from cow manure and farm clippings in laboratory pilot plants as well as a full-scale (2,000 gal.) digester system. The quantity and quality of gas produced, the biochemical ...

  14. Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil - A critical review.

    PubMed

    Verlicchi, P; Zambello, E

    2015-12-15

    This review is based on 59 papers published between 2002 and 2015, referring to about 450 treatment trains providing data regarding sludge concentrations for 169 compounds, specifically 152 pharmaceuticals and 17 personal care products, grouped into 28 different classes. The rationale of the study is to provide data to evaluate the environmental risk posed by the spreading of treated sludge in agriculture. Following discussion of the legislative scenario governing the final disposal of treated sludge in European countries and the USA, the study provides a snapshot of the occurrence of selected compounds in primary, secondary, mixed, digested, conditioned, composted and dried sludge originating in municipal wastewater treatment plants fed mainly with urban wastewater as well as in sludge-amended soil. Not only are measured values reported, but also predicted concentrations based on Kd values are reported. It emerges that in secondary sludge, the highest concentrations were found for fragrances, antiseptics and antibiotics and an attenuation in their concentrations occurs during treatment, in particular anaerobic digestion and composting. An in-depth literature survey of the (measured and predicted) Kd values for the different compounds and treated sludge are reported and an analysis of the influence of pH, redox conditions, sludge type was carried out. The data regarding measured and predicted concentrations of selected compounds in sludge-amended soil is then analyzed. Finally an environmental risk assessment posed by their occurrence in soil in the case of land application of sludge is examined, and the results obtained by different authors are compared. The most critical compounds found in the sludge-amended soil are estradiol, ciprofloxacin, ofloxacin, tetracycline, caffeine, triclosan and triclocarban. The study concludes with a focus on the main issues that should be further investigated in order to refine the environmental risk assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Direct Encapsulation of Spent Ion-exchange Resins at the Dukovany Nuclear Power Plant, Czech Republic - 12367

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, Paul; Rima, Steve

    2012-07-01

    At the Dukovany Nuclear Power Plant there are large amounts of spent ion exchange resins contained within storage tanks. These resins are a product of the operation of an Active Water Purification System within the Power Plant. Activity levels of the resins are in the range of 105 to 10{sup 6} Bq/l and the main isotopes present are Co-60, Cs-137, Mn-54 and Ag-110m. In order to maintain storage tank availability throughout the planned lifetime of the Power Plant these resins must be removed and disposed of safely. The storage tanks do not have an effective retrieval route for the resinsmore » and the installed agitation system is inoperable. A proven system for retrieving and directly encapsulating these resins to a standard required for the Czech repository is described, together with an overview of operational performance. Experience gained from this and other projects has highlighted some common challenges relating to the treatment of ion-exchange resins and sludges. There are common approaches that can assist in overcoming these challenges. 1. Transport resin / sludge type waste over as short a distance as possible to avoid issues with line plugging. 2. Transport these wastes once and once only wherever possible. 3. Try to keep the treatment process as simple as possible. With sludge or resin handling equipment consider the physical properties foremost - radiological issues can be addressed within any subsequent design. 4. Consider the use of dry-mix technologies. This avoids the requirement for expensive and complicated grouting plant. 5. Avoid the use of make up water for transport purposes if at all possible - it introduces secondary waste that needs to be treated at additional cost. 6. Consider alternative disposal techniques. SIAL{sup R} is AMEC's preferred technology as we developed it and understand it well - additionally the waste loading factors are much higher than for cement. 7. Consider final waste volumes when selecting the disposal technique. Disposal costs will probably make up the bulk of the total life-time cost for any retrieval / encapsulation project. 8. Have a selection of ion-exchange resin/sludge retrieval techniques available - it is difficult and time consuming to develop a technique that will cope with all eventualities, particularly when there are unknown conditions. It is much more productive to switch retrieval techniques as appropriate to deal with evolving conditions. (authors)« less

  16. Techno-economic evaluation of simultaneous production of extra-cellular polymeric substance (EPS) and lipids by Cloacibacterium normanense NK6 using crude glycerol and sludge as substrate.

    PubMed

    Ram, S K; Kumar, L R; Tyagi, R D; Drogui, P

    2018-05-01

    This study used the technical, economic analysis tool, SuperPro designer in evaluating a novel technology for simultaneous production of extracellular polymeric substance (EPS) and biodiesel using crude glycerol and secondary sludge. As renewable energy sources are depleting, the process utilizes municipal sewage sludge for production of EPS and biodiesel along with crude glycerol, which is a waste byproduct of biodiesel industry providing an alternate way for disposal of municipal sludge and crude glycerol. Newly isolated Cloacibacterium normanense NK6 is used as micro-organism in the study as it is capable of producing high EPS concentration, using activated sludge and crude glycerol as the sole carbon source. The technology has many environmental and economic advantages like the simultaneous production of two major products: EPS and lipids. Sensitivity analysis of the process revealed that biomass lipid content is a most significant factor where unit cost production of biodiesel was highly sensitive to lipid content during bioreaction. B7 biodiesel unit production cost can be lowered from $1 to $0.6 if the lipid content of the biomass is improved by various process parameter modifications.

  17. Decreasing effect and mechanism of moisture content of sludge biomass by granulation process.

    PubMed

    Zhao, Xia; Xu, Hao; Shen, Jimin; Yu, Bo; Wang, Xiaochun

    2016-01-01

    Disposal of a high volume of sludge significantly raises water treatment costs. A method for cultivating aerobic granules in a sequencing batch airlift bioreactor to significantly produce lower moisture content is described. Results indicate that optimization of settling time and control of the shear stresses acted on the granules. The diameter of the granule was within the range of 1.0-4.0 mm, and its sludge volume index was stabilized at 40-50 mL g(-1). Its specific gravity was increased by a factor of 0.0392, and specific oxygen uptake rate reached 60.126 mg h(-1) g(-1). Moreover, the percentage of its moisture content in the reactor ranged from 96.73% to 97.67%, and sludge volume was reduced to approximately 60%, greatly due to the presence of extracellular polymeric substances in the granules, as well as changes in their hydrophobic protein content. The removal rate of chemical oxygen demand and [Formula: see text] reaches up to 92.6% and 98%, respectively. The removal rates of total phosphorus is over 85%. Therefore, aerobic granular sludge process illustrates a good biological activity.

  18. Reduction of pollutants in painting operation and suggestion of an optimal technique for extracting titanium dioxide from paint sludge in car manufacturing industries--case study (SAIPA).

    PubMed

    Khezri, Seyed Mostafa; Shariat, Seyed Mahmood; Tabibian, Sahar

    2012-06-01

    Paint sludge of car manufacturing industries are not disposed in landfills, since they contain hazardous materials with a high concentration of chromium, aluminum, titanium, barium, copper, Iron, magnesium, strontium, and so on. Thus, it is essential to find solutions in order to neutralize them or suggest cost-effective techniques, which are also environmentally acceptable. Because, this sludge contains considerable amounts of Ti pigments and unbaked resins, recycling these pigments--which could be used in a variety of industries such as paint factories--is an appropriate subject for further research. In this article, with the aim of identification of main pollutants in order to eliminate them and suggest a cost-effective solution to recover the sludge, a large number of tests including X-ray fluorescence spectroscopy, X ray diffraction spectroscopy, and diffusion thermal analysis are conducted to determine types and concentration of elements, and combinations of paint sludge in car manufacturing industries. As titanium dioxide (TiO₂) is widely used as the main pigment of automobile paints, an optimal technique is suggested for extracting TiO₂ with high purity percentage through adopting scientific methods such as membrane and electrolysis.

  19. A novel approach for improving the drying behavior of sludge by the appropriate foaming pretreatment.

    PubMed

    Huang, Jing; Yang, Zhao-Hui; Zeng, Guang-Ming; Wang, Hui-Ling; Yan, Jing-Wu; Xu, Hai-Yin; Gou, Cheng-Liu

    2015-01-01

    Foaming pretreatment has long been recognized to promote drying materials with sticky and viscous behaviors. A novel approach, CaO addition followed by appropriate mechanical whipping, was employed for the foaming of dewatered sludge at a moisture content of 80-85%. In the convective drying, the foamed sludge at 0.70 g/mL had the best drying performance at any given temperature, which saved 35-41% drying time for reaching 20% moisture content compared with the non-foamed sludge. Considering the maximum foaming efficiency, the optimal CaO addition was found at 2.0 wt%. For a better understanding of the foaming mechanisms, the foamability of sludge processed with other pretreatment methods, including NaOH addition (0-3.0 wt%) and heating application (60-120 °C), were investigated while continuously whipping. Their recovered supernatant phases were characterized by pH, surface tension, soluble chemical oxygen demand (sCOD), protein concentration, polysaccharide concentration and spectra of excitation-emission matrices (EEM). These comparative studies indicated that the sludge foaming was mainly derived from the decreased surface tension by the surfactants and the promoted foam persistence by the protein derived compounds. Further, a comprehensive analysis of the sludge drying characteristics was performed including the surface moisture evaporation, the effective moisture diffusivity and the micromorphology of dried sludge. The results indicated that the drying advantages of foamed sludge were mainly attributed to the larger evaporation surface in a limited drying area and the more active moisture capillary movement through the liquid films, which resulted in longer constant evaporation rate periods and better effective moisture diffusivity, respectively.

  20. Tank-connected food waste disposer systems--current status and potential improvements.

    PubMed

    Bernstad, A; Davidsson, A; Tsai, J; Persson, E; Bissmont, M; la Cour Jansen, J

    2013-01-01

    An unconventional system for separate collection of food waste was investigated through evaluation of three full-scale systems in the city of Malmö, Sweden. Ground food waste is led to a separate settling tank where food waste sludge is collected regularly with a tank-vehicle. These tank-connected systems can be seen as a promising method for separate collection of food waste from both households and restaurants. Ground food waste collected from these systems is rich in fat and has a high methane potential when compared to food waste collected in conventional bag systems. The content of heavy metals is low. The concentrations of N-tot and P-tot in sludge collected from sedimentation tanks were on average 46.2 and 3.9 g/kg TS, equalling an estimated 0.48 and 0.05 kg N-tot and P-tot respectively per year and household connected to the food waste disposer system. Detergents in low concentrations can result in increased degradation rates and biogas production, while higher concentrations can result in temporary inhibition of methane production. Concentrations of COD and fat in effluent from full-scale tanks reached an average of 1068 mg/l and 149 mg/l respectively over the five month long evaluation period. Hydrolysis of the ground material is initiated between sludge collection occasions (30 days). Older food waste sludge increases the degradation rate and the risks of fugitive emissions of methane from tanks between collection occasions. Increased particle size decreases hydrolysis rate and could thus decrease losses of carbon and nutrients in the sewerage system, but further studies in full-scale systems are needed to confirm this. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Remediation of Mercury-Contaminated Storm Sewer Sediments from the West End Mercury Area at the Y-12 National Security Complex in Oak Ridge, Tennessee - 12061

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremaine, Diana; Douglas, Steven G.

    2012-07-01

    The Y-12 National Security Complex in Oak Ridge, TN has faced an ongoing challenge from mercury entrapped in soils beneath and adjacent to buildings, storm sewers, and process pipelines. Previous actions to reduce the quantity and/or mobilization of mercury-contaminated media have included plugging of building floor drains, cleaning of sediment and sludge from sumps, manholes, drain lines, and storm sewers, lining/relining of storm sewers and replacement of a portion of the storm sewer trunk line, re-routing and removal of process piping, and installation of the Central Mercury Treatment System to capture and treat contaminated sump water. Despite the success ofmore » these actions, mercury flux in the storm sewer out-falls that discharge to Upper East Fork Poplar Creek (UEFPC) continues to pose a threat to long-term water quality. A video camera survey of the storm sewer network revealed several sections of storm sewer that had large cracks, separations, swells, and accumulations of sediment/sludge and debris. The selected remedy was to clean and line the sections of storm sewer pipe that were determined to be primary contributors to the mercury flux in the storm sewer out-falls. The project, referred to as the West End Mercury Area (WEMA) Storm Sewer Remediation Project, included cleaning sediment and debris from over 2,460 meters of storm sewer pipe followed by the installation of nearly 366 meters of cure-in-place pipe (CIPP) liner. One of the greatest challenges to the success of this project was the high cost of disposal associated with the mercury-contaminated sludge and wastewater generated from the storm sewer cleaning process. A contractor designed and operated an on-site wastewater pre-treatment system that successfully reduced mercury levels in 191 cubic meters of sludge to levels that allowed it to be disposed at Nevada Nuclear Security Site (NNSS) disposal cell as a non-hazardous, low-level waste. The system was also effective at pre-treating over 1,514,000 liters of wastewater to levels that met the waste acceptance criteria for the on-site West End [wastewater] Treatment Facility (WETF). This paper describes the storm sewer cleaning and lining process and the methods used to process the mercury-contaminated sludge and wastewater, as well as several 'lessons learned' that would be relevant to any future projects involving storm sewer cleaning and debris remediation. (authors)« less

  2. Development and Design of Sludge Freezing Beds

    DTIC Science & Technology

    1988-12-01

    Wastewater Treatment/Disposal/Reuse. New York: McGraw Hill, 2nd ed. Morin, W., R. Lewandowski and R. Zaloum (1986) Le traitement des boues a l’aide du gel...degel naturel et epandage des boues en foret. Draft report for Environment Canada, Mon- treal. National Oceanic and Atmospheric Administration (1984

  3. Automated Postattack Damage Assessment System (APUDAS) for Sewage and Mission-Critical HVAC Systems

    DTIC Science & Technology

    1990-10-01

    immediately thickened and processed for disposal. Common methods of sludge processing include: digestion, vacuum filtration, and centrifugation . The most...Paddle TYDe Switches for ’Flow-No Flow’ DAetection f r PEiino Systems " and Up catalog. 20. Newark (Potter and Brumfield) Relays, Buzzers, Contactors

  4. A REVIEW OF ACID COPPER PLATING BATH LIFE EXTENSION AND COPPER RECOVERY FROM ACID COPPER BATHS

    EPA Science Inventory

    Large quantities of hazardous waste, most in aqueous solution or sludges, are being produced at numerous metal plating and processing facilities in the U.S. Regulatory pressures, future liability, and limited landfill space have driven the cost of metal waste disposal to level...

  5. Aerobic Digestion. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This lesson is a basic description of aerobic digestion. Topics presented include a general process overview discussion of a typical digester's components, factors influencing performance, operational controls, and biological considerations for successful operation. The lesson includes an instructor's guide and student workbook. The instructor's…

  6. Study on the combined sewage sludge pyrolysis and gasification process: mass and energy balance.

    PubMed

    Wang, Zhonghui; Chen, Dezhen; Song, Xueding; Zhao, Lei

    2012-12-01

    A combined pyrolysis and gasification process for sewage sludge was studied in this paper for the purpose of its safe disposal with energy self-balance. Three sewage sludge samples with different dry basis lower heat values (LHV(db)) were used to evaluate the constraints on this combined process. Those samples were pre-dried and then pyrolysed within the temperature range of 400-550 degrees C. Afterwards, the char obtained from pyrolysis was gasified to produce fuel gas. The experimental results showed that the char yield ranged between 37.28 and 53.75 wt% of the dry sludge and it changed with ash content, pyrolysis temperature and LHV(db) of the sewage sludge. The gas from char gasification had a LHV around 5.31-5.65 MJ/Nm3, suggesting it can be utilized to supply energy in the sewage sludge drying and pyrolysis process. It was also found that energy balance in the combined process was affected by the LHV(db) of sewage sludge, moisture content and pyrolysis temperature. Higher LHV(db), lower moisture content and higher pyrolysis temperature benefit energy self-balance. For sewage sludge with a moisture content of 80 wt%, LHV(db) of sewage sludge should be higher than 18 MJ/kg and the pyrolysis temperature should be higher than 450 degrees C to maintain energy self-sufficiency when volatile from the pyrolysis process is the only energy supplier; when the LHV(db) was in the range of 14.65-18 MJ/kg, energy self-balance could be maintained in this combined process with fuel gas from char gasification as a supplementary fuel; auxiliary fuel was always needed if the LHV(db) was lower than 14.65 MJ/kg.

  7. Evaluation of Autothermal Thermophilic Aerobic Digester Performance for the Stabilization of Municipal Wastewater Sludge.

    PubMed

    Shokoohi, Reza; Rahmani, Alireza; Asgari, Ghorban; Dargahi, Abdollah; Vaziri, Yaser; Abbasi, Mohammad Attar

    2017-01-01

    Sludge stabilization process in terms of operational, environmental and economic indexes is the most important stage of treatment and its disposal. This study was aimed to determine the performance of Autothermal Thermophilic Aerobic Digestion (ATAD) system as one of the low-cost and biocompatible methods of sludge treatment. This study has been done using a laboratory scale Autothermal Thermophilic Aerobic Digestion (ATAD). The reactor was consisted of two polyethylene tanks with a final capacity of 100 L for each tank. Both tanks with all fittings were installed on a metal frame. The variables of study were temperature, dissolved oxygen, pH, volatile organic compounds, total solids, COD and the number of Ascaris eggs and fecal coliforms per gram of dry matter of the sludge. The temperature was measured hourly and the pH and dissolved oxygen were measured and controlled twice per day. One-way ANNOVA was applied to analyze reasults. According to the results, the temperature of sludge increased from 11.7-61.2°C by biological reactions. Pathogen organisms were reduced from 80×106 to 503 in number during 72 h. After 6 days pathogen organisms and Ascaris eggs were removed completely. Volatile organic compounds and COD were reduced 42 and 38.3% respectively during the 6 days. It is concluded that the performance of ATAD in removing organic compounds from wastewater sludge were desirable. Resulted sludge from stabilization process were appropriate for use in agriculture as a soil supplement and met the indexes of class A sludge according to EPA's standards (CFR 40 Part 503).

  8. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge?

    PubMed

    Gonzalez-Gil, L; Papa, M; Feretti, D; Ceretti, E; Mazzoleni, G; Steimberg, N; Pedrazzani, R; Bertanza, G; Lema, J M; Carballa, M

    2016-10-01

    The occurrence of emerging organic micropollutants (OMPs) in sewage sludge has been widely reported; nevertheless, their fate during sludge treatment remains unclear. The objective of this work was to study the fate of OMPs during mesophilic and thermophilic anaerobic digestion (AD), the most common processes used for sludge stabilization, by using raw sewage sludge without spiking OMPs. Moreover, the results of analytical chemistry were complemented with biological assays in order to verify the possible adverse effects (estrogenic and genotoxic) on the environment and human health in view of an agricultural (re)use of digested sludge. Musk fragrances (AHTN, HHCB), ibuprofen (IBP) and triclosan (TCS) were the most abundant compounds detected in sewage sludge. In general, the efficiency of the AD process was not dependent on operational parameters but compound-specific: some OMPs were highly biotransformed (e.g. sulfamethoxazole and naproxen), while others were only slightly affected (e.g. IBP and TCS) or even unaltered (e.g. AHTN and HHCB). The MCF-7 assay evidenced that estrogenicity removal was driven by temperature. The Ames test did not show point mutation in Salmonella typhimurium while the Comet test exhibited a genotoxic effect on human leukocytes attenuated by AD. This study highlights the importance of combining chemical analysis and biological activities in order to establish appropriate operational strategies for a safer disposal of sewage sludge. Actually, it was demonstrated that temperature has an insignificant effect on the disappearance of the parent compounds while it is crucial to decrease estrogenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Environmental assessment of anaerobically digested sludge reuse in agriculture: potential impacts of emerging micropollutants.

    PubMed

    Hospido, Almudena; Carballa, Marta; Moreira, Maite; Omil, Francisco; Lema, Juan M; Feijoo, Gumersindo

    2010-05-01

    Agricultural application of sewage sludge has been emotionally discussed in the last decades, because the latter contains organic micropollutants with unknown fate and risk potential. In this work, the reuse of anaerobically digested sludge in agriculture is evaluated from an environmental point of view by using Life Cycle Assessment methodology. More specifically, the potential impacts of emerging micropollutants, such as pharmaceuticals and personal care products, present in the sludge have been quantified. Four scenarios were considered according to the temperature of the anaerobic digestion (mesophilic or thermophilic) and the sludge retention time (20 or 10d), and they have been compared with the non-treated sludge. From an environmental point of view, the disposal of undigested sludge is not the most suitable alternative, except for global warming due to the dominance (65-85%) of the indirect emissions associated to the electricity use. Nutrient-related direct emissions dominate the eutrophication category impact in all the scenarios (>71.4%), although a beneficial impact related to the avoidance of industrial fertilisers production is also quantified (up to 6.7%). In terms of human and terrestrial toxicity, the direct emissions of heavy metals to soil dominate these two impact categories (>70%), and the contribution of other micropollutants is minimal. Moreover, only six (Galaxolide, Tonalide, Diazepam, Ibuprofen, Sulfamethoxazole and 17alpha-ethinyloestradiol) out of the 13 substances considered are really significant since they account for more than 95% of the overall micropollutants impact.

  10. Bioaccumulation of metals in ryegrass (Lolium perenne L.) following the application of lime stabilised, thermally dried and anaerobically digested sewage sludge.

    PubMed

    Healy, M G; Ryan, P C; Fenton, O; Peyton, D P; Wall, D P; Morrison, L

    2016-08-01

    The uptake and accumulation of metals in plants is a potential pathway for the transfer of environmental contaminants in the food chain, and poses potential health and environmental risks. In light of increased population growth and urbanisation, the safe disposal of sewage sludge, which can contain significant levels of toxic contaminants, remains an environmental challenge globally. The aims of this experiment were to apply municipal sludge, having undergone treatment by thermal drying, anaerobic digestion, and lime stabilisation, to permanent grassland in order to assess the bioaccumulation of metals (B, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Nb, Mo, Sb, Ba, W, Pb, Fe, Cd) by perennial ryegrass over a period of up to 18 weeks after application. The legislation currently prohibits use of grassland for fodder or grazing for at least three weeks after application of treated sewage sludge (biosolids). Five treatments were used: thermally dried (TD), anaerobically digested (AD) and lime stabilised (LS) sludge all from one wastewater treatment plant (WWTP), AD sludge from another WWTP, and a study control (grassland only, without application of biosolids). In general, there was no significant difference in metal content of the ryegrass between micro-plots that received treated municipal sludge and the control over the study duration. The metal content of the ryegrass was below the levels at which phytotoxicity occurs and below the maximum levels specified for animal feeds. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Comparison and Analysis of Membrane Fouling between Flocculent Sludge Membrane Bioreactor and Granular Sludge Membrane Bioreactor

    PubMed Central

    Zhi-Qiang, Chen; Jun-Wen, Li; Yi-Hong, Zhang; Xuan, Wang; Bin, Zhang

    2012-01-01

    The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs), two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates. PMID:22859954

  12. Modelling the structure of sludge aggregates

    PubMed Central

    Smoczyński, Lech; Ratnaweera, Harsha; Kosobucka, Marta; Smoczyński, Michał; Kalinowski, Sławomir; Kvaal, Knut

    2016-01-01

    ABSTRACT The structure of sludge is closely associated with the process of wastewater treatment. Synthetic dyestuff wastewater and sewage were coagulated using the PAX and PIX methods, and electro-coagulated on aluminium electrodes. The processes of wastewater treatment were supported with an organic polymer. The images of surface structures of the investigated sludge were obtained using scanning electron microscopy (SEM). The software image analysis permitted obtaining plots log A vs. log P, wherein A is the surface area and P is the perimeter of the object, for individual objects comprised in the structure of the sludge. The resulting database confirmed the ‘self-similarity’ of the structural objects in the studied groups of sludge, which enabled calculating their fractal dimension and proposing models for these objects. A quantitative description of the sludge aggregates permitted proposing a mechanism of the processes responsible for their formation. In the paper, also, the impact of the structure of the investigated sludge on the process of sedimentation, and dehydration of the thickened sludge after sedimentation, was discussed. PMID:26549812

  13. Fate of Radium in Marcellus Shale Flowback Water Impoundments and Assessment of Associated Health Risks.

    PubMed

    Zhang, Tieyuan; Hammack, Richard W; Vidic, Radisav D

    2015-08-04

    Natural gas extraction from Marcellus Shale generates large quantities of flowback water that contain high levels of salinity, heavy metals, and naturally occurring radioactive material (NORM). This water is typically stored in centralized storage impoundments or tanks prior to reuse, treatment or disposal. The fate of Ra-226, which is the dominant NORM component in flowback water, in three centralized storage impoundments in southwestern Pennsylvania was investigated during a 2.5-year period. Field sampling revealed that Ra-226 concentration in these storage facilities depends on the management strategy but is generally increasing during the reuse of flowback water for hydraulic fracturing. In addition, Ra-226 is enriched in the bottom solids (e.g., impoundment sludge), where it increased from less than 10 pCi/g for fresh sludge to several hundred pCi/g for aged sludge. A combination of sequential extraction procedure (SEP) and chemical composition analysis of impoundment sludge revealed that Barite is the main carrier of Ra-226 in the sludge. Toxicity characteristic leaching procedure (TCLP) (EPA Method 1311) was used to assess the leaching behavior of Ra-226 in the impoundment sludge and its implications for waste management strategies for this low-level radioactive solid waste. Radiation exposure for on-site workers calculated using the RESRAD model showed that the radiation dose equivalent for the baseline conditions was well below the NRC limit for the general public.

  14. Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide.

    PubMed

    Lyu, Honghong; Gong, Yanyan; Tang, Jingcshun; Huang, Yao; Wang, Qilin

    2016-07-01

    Electroplating sludge (ES) containing large quantities of heavy metals is regarded as a hazardous waste in China. This paper introduced a simple method of treating ES using environmentally friendly fixatives biochar (BC) and iron sulfide (FeS), respectively. After 3 days of treatment with FeS at a FeS-to-ES mass ratio of 1:5, the toxicity characteristic leaching procedure (TCLP)-based leachability of total Cr (TCr), Cu(II), Ni(II), Pb(II), and Zn(II) was decreased by 59.6, 100, 63.8, 73.5, and 90.5 %, respectively. After 5 days of treatment with BC at a BC-to-ES mass ratio of 1:2, the TCLP-based leachability was declined by 35.1, 30.6, 22.3, 23.1, and 22.4 %, respectively. Pseudo first-order kinetic model adequately simulated the sorption kinetic data. Structure and morphology analysis showed that adsorption, electrostatic attraction, surface complexation, and chemical precipitation were dominant mechanisms for heavy metals immobilization by BC, and that chemical precipitation (formation of metal sulfide and hydroxide precipitates), iron exchange (formation of CuFeS2), and surface complexation were mainly responsible for heavy metals removal by FeS. Economic costs of BC and FeS were 500 and 768 CNY/t, lower than that of Na2S (940 CNY/t). The results suggest that BC and FeS are effective, economic, and environmentally friendly fixatives for immobilization of heavy metals in ES before landfill disposal.

  15. Inertization of heavy metals present in galvanic sludge by DC thermal plasma.

    PubMed

    Leal Vieira Cubas, Anelise; de Medeiros Machado, Marília; de Medeiros Machado, Marina; Gross, Frederico; Magnago, Rachel Faverzani; Moecke, Elisa Helena Siegel; Gonçalvez de Souza, Ivan

    2014-01-01

    Galvanic sludge results from the treatment of effluents generated by the industrial metal surface treatment of industrial material, which consists in the deposition of a metal on a surface or a metal surface attack, for example, electrodeposition of conductors (metals) and non conductive, phosphate, anodizing, oxidation and/or printed circuit. The treatment proposed here is exposure of the galvanic sludge to the high temperatures provided by thermal plasma, a process which aims to vitrify the galvanic sludge and render metals (iron, zinc, and chromium) inert. Two different plasma reactors were assembled: with a DC transferred arc plasma torch and with a DC nontransferred arc plasma torch. In this way it was possible to verify which reactor was more efficient in the inertization of the metals and also to investigate whether the addition of quartzite sand to the sludge influences the vitrification of the material. Quantification of water content and density of the galvanic raw sludge were performed, as well as analyzes of total organic carbon (TOC) and identify the elements that make up the raw sludge through spectroscopy X-ray fluorescence (XRF). The chemical composition and the form of the pyrolyzed and vitrified sludge were analyzed by scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDS) analysis, which it is a analysis that shows the chemical of the sample surface. The inertization of the sludge was verified in leaching tests, where the leachate was analyzed by flame atomic absorption spectroscopy (FAAS). The results of water content and density were 64.35% and 2.994 g.cm(-3), respectively. The TOC analysis determined 1.73% of C in the sample of galvanic raw sludge, and XRF analysis determined the most stable elements in the sample, and showed the highest peaks (higher stability) were Fe, Zn, and Cr. The efficiency of the sludge inertization was 100% for chromium, 99% for zinc, and 100% for iron. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the galvanic sludge.

  16. Improving anaerobic and aerobic degradation by ultrasonic disintegration of biomass.

    PubMed

    Neis, Uwe; Nickel, Klaus; Lundén, Anna

    2008-11-01

    Biological cell lysis is known to be the rate-limiting step of anaerobic biosolids degradation. Due to the slow pace by which this reaction occurs, it is necessary to equip treatment plants with large digesters or alternatively incorporate technological aids. High-power ultrasound used to disintegrate bacterial cells has been utilized as a pre-treatment process prior to anaerobic digestion. Through this application, as seen on pilot- and full-scales, it is possible to attain up to 30% more biogas, an increase in VS-destruction of up to 30% and a reduced sludge mass for disposal. Utilizing ultrasound technology in aerobic applications is a new and innovative approach. Improved denitrification through a more readily available internal carbon source, and less excess sludge mass can be traced to the positive effects that sonication of sludge has on the overall biological wastewater treatment process. Reference full-scale installations suggest that the technology is both technically feasible and economically sound.

  17. Use of sequential extraction to assess the influence of sewage sludge amendment on metal mobility in Chilean soils.

    PubMed

    Ahumada, Inés; Escudero, Paula; Carrasco, M Adriana; Castillo, Gabriela; Ascar, Loreto; Fuentes, Edwar

    2004-04-01

    In Chile, the increasing number of plants for the treatment of wastewater has brought about an increase in the generation of sludge. One way of sludge disposal is its application on land; this, however involves some problems, some of them being heavy metal accumulation and the increase in organic matter and other components from sewage sludge which may change the distribution and mobility of heavy metals. The purpose of the present study was to determine the effect of sewage sludge application on the distribution of Cr, Ni, Cu, Zn and Pb in agricultural soils in Chile. Three different soils, two Mollisols and one Alfisol, were sampled from an agricultural area in Central Chile. The soils were treated with sewage sludge at the rates of 0 and 30 ton ha(-1), and were incubated at 25 degrees C for 45 days. Before and after incubation, the soils were sequentially extracted to obtain labile (exchangeable and sodium acetate-soluble), potentially labile (soluble in moderately reducing conditions, K4P2O7-soluble and soluble in reducing conditions) and inert (soluble in strong acid oxidizing conditions) fractions. A two-level factored design was used to assess the effect of sludge application rate, incubation time and their interaction on the mobility of the elements under study. Among the metals determined in the sludge, zinc has the highest concentration. However, with the exception of Ni, the total content of metals was lower than the recommended limit values in sewage sludge as stated by Chilean regulations. Although 23% of zinc in sludge was in more mobile forms, the residual fraction of all metals was the predominant form in soils and sludge. The content of zinc only was significantly increased in two of the soils by sewage sludge application. On the other hand, with the exception of copper, the metals were redistributed in the first four fractions of amended soils. The effect of sludge application rate, incubation time and their interaction depended on the metal or soil type. In most cases an increase in more mobile forms of metals in soils was observed as the final effect.

  18. Superfund Record of Decision (EPA Region 7): Vogel Paint and Wax, Maurice, IA. (First remedial action), September 1989. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-09-20

    The Vogel Paint and Wax (VPW) site is an approximately two-acre disposal area two miles southwest of the town of Maurice, in Sioux County, Iowa. Adjacent land uses are primarily agricultural; however, several private residences are within one-quarter mile of the site. A surficial sand and gravel aquifer underlies the site and supplies nearby private wells and the Southern Sioux County Rural Water System, located a mile and one half southeast of the site. Paint sludge, resins, solvents, and other paint-manufacturing wastes were disposed of at the site between 1971 and 1979. VPW records indicate that approximately 43,000 gallons ofmore » aliphatic and aromatic hydrocarbons and 6,000 pounds of metals waste were buried at the site. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, toluene, and xylenes; and metals including chromium and lead. The selected remedial action for this site includes excavation of contaminated soil and separation of solid and liquid wastes; onsite bioremediation of 3,000 cubic yards of the contaminated soil in a fully contained surface impoundment unit, or onsite thermal treatment if soil contains high metal content; and stabilization of treated soil, if necessary to prevent leaching of metals, followed by disposal in the excavated area.« less

  19. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China.

    PubMed

    Sun, Qian; Li, Mingyue; Ma, Cong; Chen, Xiangqiang; Xie, Xiaoqing; Yu, Chang-Ping

    2016-01-01

    The occurrence and fate of 48 pharmaceuticals and personal care products (PPCPs) in three wastewater treatment plants (WWTPs) located in different urbanization areas in Xiamen, China was investigated over one year. Results showed that PPCPs were widely detected, but the major PPCPs in the influent, effluent, and sludge were different. Spatial and seasonal variations of PPCP levels in the influent and sludge were observed. The removal efficiencies for most PPCPs were similar among the three WWTPs, although they employed different biological treatment processes. Furthermore, the mass loadings per inhabitant of most pharmaceuticals had a positive correlation with the urbanization levels, indicating that most pharmaceutical usage was higher in the urban core compared to the suburban zones. The total mass loadings of all the 48 PPCPs in the effluent and waste sludge showed close proportions, which suggested the importance of proper waste sludge disposal to prevent a large quantity of PPCPs from entering the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Biochar Production from Domestic Sludge: A Cost-effective, Recycled Product for Removal of Amoxicillin in Wastewater

    NASA Astrophysics Data System (ADS)

    Arun, Sija; Kothari, Kaushal; Mazumdar, Debayan; Mukhopadhyay, Moitraiyee; Chakraborty, Paromita

    2017-08-01

    Due to the broad spectrum, antimicrobial activity, Amoxicillin is one of the extensively used antibiotics. Amoxicillin ends up in the wastewater stream by direct or indirect disposal pathways which ultimately affect the aquatic ecosystem. Conventional wastewater treatment plant cannot remove it completely. Hence our objective was to produce sludge derived biochar and use it as an adsorbent for removal of amoxicillin. Effective biochar was obtained at 300°C produced from the sludge of the domestic wastewater treatment plant. 100 ppm amoxicillin solution spiked in biochar was kept for 180 mins in an orbital shaker and every 30 minutes the filtrate was checked in UV spectrophotometer. A steady decreasing gradient was obtained for absorbance of amoxicillin after 30 minutes. Further scanning electron microscopy showed significant morphological change in biochar obtained before and after spiking amoxicillin. Our preliminary assessment suggests that biochar can be exploited as an effective treatment technique to remove amoxicillin from wastewater. Moreover, we suggest that utilization of domestic sludge for commercial application in treatment plants can reduce the load of domestic waste in the open dumpsites.

  1. Two-stage high temperature sludge gasification using the waste heat from hot blast furnace slags.

    PubMed

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-12-01

    Nowadays, disposal of sewage sludge from wastewater treatment plants and recovery of waste heat from steel industry, become two important environmental issues and to integrate these two problems, a two-stage high temperature sludge gasification approach was investigated using the waste heat in hot slags herein. The whole process was divided into two stages, i.e., the low temperature sludge pyrolysis at ⩽ 900°C in argon agent and the high temperature char gasification at ⩾ 900°C in CO2 agent, during which the heat required was supplied by hot slags in different temperature ranges. Both the thermodynamic and kinetic mechanisms were identified and it was indicated that an Avrami-Erofeev model could best interpret the stage of char gasification. Furthermore, a schematic concept of this strategy was portrayed, based on which the potential CO yield and CO2 emission reduction achieved in China could be ∼1.92∗10(9)m(3) and 1.93∗10(6)t, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of humic acid & bacterial exudates on sorption-desorption interactions of 90Sr with brucite.

    PubMed

    Ashworth, Hollie; Abrahamsen-Mills, Liam; Bryan, Nick; Foster, Lynn; Lloyd, Jonathan R; Kellet, Simon; Heath, Sarah

    2018-05-18

    One of the nuclear fuel storage ponds at Sellafield (United Kingdom) is open to the air, and has contained a significant inventory of corroded magnox fuel and sludge for several decades. As a result, some fission products have also been released into solution. 90Sr is known to constitute a small mass of the radionuclides present in the pond, but due to its solubility and activity, it is at risk of challenging effluent discharge limits. The sludge is predominantly composed of brucite (Mg(OH)2), and organic molecules are known to be present in the pond liquor with occasional algal blooms restricting visibility. Understanding the chemical interactions of these components is important to inform ongoing sludge retrievals and effluent management. Additionally, interactions of radionuclides with organics at high pH will be an important consideration for the evolution of cementitious backfilled disposal sites in the UK. Batch sorption-desorption experiments were performed with brucite, 90Sr and natural organic matter (NOM) (humic acid (HA) and Pseudanabaena catenata cyanobacterial growth supernatant) in both binary and ternary systems at high pH. Ionic strength, pH and order of addition of components were varied. 90Sr was shown not to interact strongly with the bulk brucite surface in binary systems under pH conditions relevant to the pond. HA in both binary and ternary systems demonstrated a strong affinity for the brucite surface. Ternary systems containing HA demonstrated enhanced sorption of 90Sr at pH 11.5 and vice versa, likely via formation of strontium-humate complexes regardless of the order of addition of components. The distribution coefficients show HA sorption to be reversible at all pH values studied, and it appeared to control 90Sr behaviour at pH 11.5. Ternary systems containing cyanobacterial supernatant demonstrated a difference in 90Sr behaviour when the culture had been subjected to irradiation in the first stages of its growth.

  3. Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.

    PubMed

    Yu, Yong-Ho; Chung, Jinwook

    2015-01-01

    This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.

  4. Centrifugation. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Best, Richard A.

    An introductory description of the use of centrifuges in the process of volume reduction is provided in this lesson. Three basic centrifuges, their theory of operation, quality of cake and centrate, and operational control testing are discussed. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a…

  5. Methods, Metrics, and Indicators Available for Identifying and Quantifying Economic and Social Impacts Associated with Beneficial Reuse Decisions: A Review of the Literature

    EPA Science Inventory

    Industries in the United States generate large volumes of non-hazardous wastes, sludges, by-products, and spent materials that require disposal or other end-of-life management. Solid-waste management stakeholders are increasingly employing or researching methods for beneficial r...

  6. Filter Presses. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Alloway, Rawle A.

    This lesson is an introduction to the operation of filter presses. Two basic types of presses, their components, the sequence of operation, operational controls, sampling, and testing are discussed. The instructor's manual contains a description of the lesson, estimated presentation time, instructional materials list, suggested sequence of…

  7. MONITORING MICROBES, ALKYL PHENOLS, AND SOIL TOXICITY AFTER LAND APPLICATION OF ANAEROBICALLY DIGESTED BIOSOLIDS

    EPA Science Inventory

    A common disposal practice for municipal biosolids is to spread this material on agricultural fields as a soil amendment. For example, over 3 million dry tons of treated sewage sludge (or biosolids) are applied on agricultural lands in the US. The regulations which govern the lan...

  8. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  9. Anaerobic Digestion II. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the second of a two-part series on anaerobic digestion. Topics discussed include classification of digester by function, roof design, and temperature range, mixing systems, gas system components, operational control basics, and general safety considerations. The lesson includes an instructor's guide and student workbook. The…

  10. 40 CFR Appendix I to Part 265 - Recordkeeping Instructions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... physical form, i.e., liquid, sludge, solid, or contained gas. If the waste is not listed in part 261..., solid filter cake from production of ___, EPA Hazardous Waste Number W051). Each hazardous waste listed... technique(s) used at the facility to treat, store or dispose of each quantity of hazardous waste received. 1...

  11. Study on anaerobic treatment of hazardous steel-mill waste rolling oil (SmWRO) for multi-benefit disposal route.

    PubMed

    Ma, Huanhuan; Li, Zifu; Yin, Fubin; Kao, William; Yin, Yi; Bai, Xiaofeng

    2014-01-01

    Steel-mill waste rolling oil (SmWRO) is considered as hazardous substance with high treatment and disposal fees. Anaerobic process could not only transform the hazardous substance into activated sludge, but also generate valuable biogas. This study aimed at studying the biochemical methane potential of SmWRO under inoculum to substrate VS ratios (ISRs) of 0.25, 0.5, 1, 1.5, 2 and 3 using septic tank sludge as inoculum in mesophilic and thermophilic conditions, with blank tests for control. Specific biogas yield (mL/g VS(added)), net biogas yield (mL/g VS(removed)) and VS removal were analyzed. The ANOVA results indicated great influence of ISR and temperature on studied parameters. ISR of 1.5 at 55°C and ISR of 1.5 and 2 at 35°C were suggested with the highest specific biogas yield (262-265 and 303mL/g VS(added)). Kinetic analysis showed that Gompertz model fit the experimental data best with the least RMSE and largest R(2). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Disposal Situation of Sewage Sludge from Municipal Wastewater Treatment Plants (WWTPs) and Assessment of the Ecological Risk of Heavy Metals for Its Land Use in Shanxi, China

    PubMed Central

    Duan, Baoling; Zhang, Wuping; Zheng, Haixia; Wu, Chunyan; Zhang, Qiang; Bu, Yushan

    2017-01-01

    Land use of sewage sludge is the primary disposal method in Shanxi, accounting for 42.66% of all. To determine the ecological risk of heavy metals in sewage sludge, contents of seven heavy metals in sewage sludge from 9 municipal waste water treatment plants (WWTPs) that had the highest application for land use were determined. The order of the measured concentrations was: Zn > Cr > Cu > Ni > Pb > As > Cd, and all heavy metals contents were within the threshold limit values of the Chinese Control Standards for Pollutants in Sludge from Agriculture Use (GB4284-84). Four indices were used to assess the pollution and the ecological risk of heavy metals. By the mean values of the geoaccumulation index (Igeo), heavy metals were ranked in the following order: Cd > Zn > Cu > As > Cr > Ni > Pb. The values showed that the pollution of Zn in station 3 and Cd in station 1, 2, 3, 4, 8 and 9 were heavily; Cu in station 8 and 9, Zn in station 1, 2, 4, 8 and 9 and Cd in station 5 and 7 were moderately to heavily, and the accumulation of other heavy metals were not significant. The single-factor pollution index (PI) suggested that none of the stations had heavy metals contamination, except for Cu in station 9, Zn in station 3 and 8, and Cd in station 1 and 9, which were at a moderate level. According to the results of the Nemerow’s synthetic pollution index (PN), sewage sludge from all stations was safe for land use with respect to heavy metals contamination, except for stations 3, 8 and 9, which were at the warning line. The monomial potential ecological risk coefficient (Eri) revealed that heavy metals ecological risks in most stations were low. However, station 9 had a moderate risk for Cu; station 6 had a moderate risk, stations 5 and 7 had high risk, other stations had very high risk for Cd. According to the results of the potential ecological risk index (RI), station 1, 8 and 9 had high risk; station 2, 3, 4, 5 and 7 had a moderate risk, and station 6 had a low risk. The preliminary results indicated that the potential risk of land exposure to heavy metals in sewage sludge was relatively low, with Zn and Cd as the main contributor to the ecological risk for the applying of sewage sludge on land. Additionally, stations 3, 8 and 9 require more attention regarding the land applications related to heavy metals pollution. PMID:28753993

  13. Disposal Situation of Sewage Sludge from Municipal Wastewater Treatment Plants (WWTPs) and Assessment of the Ecological Risk of Heavy Metals for Its Land Use in Shanxi, China.

    PubMed

    Duan, Baoling; Zhang, Wuping; Zheng, Haixia; Wu, Chunyan; Zhang, Qiang; Bu, Yushan

    2017-07-21

    Land use of sewage sludge is the primary disposal method in Shanxi, accounting for 42.66% of all. To determine the ecological risk of heavy metals in sewage sludge, contents of seven heavy metals in sewage sludge from 9 municipal waste water treatment plants (WWTPs) that had the highest application for land use were determined. The order of the measured concentrations was: Zn > Cr > Cu > Ni > Pb > As > Cd, and all heavy metals contents were within the threshold limit values of the Chinese Control Standards for Pollutants in Sludge from Agriculture Use (GB4284-84). Four indices were used to assess the pollution and the ecological risk of heavy metals. By the mean values of the geoaccumulation index (I geo ), heavy metals were ranked in the following order: Cd > Zn > Cu > As > Cr > Ni > Pb. The values showed that the pollution of Zn in station 3 and Cd in station 1, 2, 3, 4, 8 and 9 were heavily; Cu in station 8 and 9, Zn in station 1, 2, 4, 8 and 9 and Cd in station 5 and 7 were moderately to heavily, and the accumulation of other heavy metals were not significant. The single-factor pollution index (PI) suggested that none of the stations had heavy metals contamination, except for Cu in station 9, Zn in station 3 and 8, and Cd in station 1 and 9, which were at a moderate level. According to the results of the Nemerow's synthetic pollution index (PN), sewage sludge from all stations was safe for land use with respect to heavy metals contamination, except for stations 3, 8 and 9, which were at the warning line. The monomial potential ecological risk coefficient (Eri) revealed that heavy metals ecological risks in most stations were low. However, station 9 had a moderate risk for Cu; station 6 had a moderate risk, stations 5 and 7 had high risk, other stations had very high risk for Cd. According to the results of the potential ecological risk index (RI), station 1, 8 and 9 had high risk; station 2, 3, 4, 5 and 7 had a moderate risk, and station 6 had a low risk. The preliminary results indicated that the potential risk of land exposure to heavy metals in sewage sludge was relatively low, with Zn and Cd as the main contributor to the ecological risk for the applying of sewage sludge on land. Additionally, stations 3, 8 and 9 require more attention regarding the land applications related to heavy metals pollution.

  14. Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment.

    PubMed

    Serrano, A; Siles, J A; Martín, M A; Chica, A F; Estévez-Pastor, F S; Toro-Baptista, E

    2016-07-15

    Sewage sludge generated in the activated sludge process is a polluting waste that must be treated adequately to avoid important environmental impacts. Traditional management methods, such as landfill disposal or incineration, are being ruled out due to the high content in heavy metal, pathogens, micropolluting compounds of the sewage sludge and the lack of use of resources. Anaerobic digestion could be an interesting treatment, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A microwave pre-treatment at pilot scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. The operational variables of microwave pre-treatment (power and specific energy applied) were optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) under different pre-treatment conditions. According to the variation in the sCOD and TN concentration, the optimal operation variables of the pre-treatment were fixed at 20,000 J/g TS and 700 W. A subsequent anaerobic digestion test was carried out with raw and pre-treated sewage sludge under different conditions (20,000 J/g TS and 700 W; 20,000 J/g TS and 400 W; and 30,000 J/g TS and 400 W). Although stability was maintained throughout the process, the enhancement in the total methane yield was not high (up to 17%). Nevertheless, very promising improvements were determined for the kinetics of the process, where the rG and the OLR increased by 43% and 39%, respectively, after carrying out a pre-treatment at 20,000 J/g TS and 700 W. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate.

    PubMed

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-21

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  16. Presence of radionuclides in sludge from conventional drinking water treatment plants. A review.

    PubMed

    Fonollosa, E; Nieto, A; Peñalver, A; Aguilar, C; Borrull, F

    2015-03-01

    The analysis of sludge samples generated during water treatment processes show that different radioisotopes of uranium, thorium and radium, among others can accumulate in that kind of samples, even the good removal rates obtained in the aqueous phase (by comparison of influent and effluent water concentrations). Inconsequence, drinking water treatment plants are included in the group of Naturally Occurring Radioactive Material (NORM) industries. The accumulation of radionuclides can be a serious problem especially when this sludge is going to be reused, so more exhaustive information is required to prevent the possible radiological impact of these samples in the environment and also on the people. The main aim of this review is to outline the current situation regarding the different studies reported in the literature up to date focused on the analysis of the radiological content of these sludge samples from drinking water treatment plants. In this sense, special attention is given to the recent approaches for their determination. Another important aim is to discuss about the final disposal of these samples and in this regard, sludge reuse (including for example direct agricultural application or also as building materials) are together with landfilling the main reported strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    PubMed Central

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d−1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952

  18. Occurrence and removal of Giardia spp. cysts and Cryptosporidium spp. oocysts from a municipal wastewater treatment plant in Brazil.

    PubMed

    Santos, Priscila Ribeiro Dos; Daniel, Luiz Antonio

    2017-05-01

    Sewage and sewage sludge have been recognized as potential sources of two important waterborne pathogenic protozoa: Giardia spp. and Cryptosporidium spp. Due to the lack of studies about the occurrence of these pathogens in sewage and sludge in Brazil, an investigation was conducted at various stages of a municipal wastewater treatment plant (WWTP) aiming to assess the occurrence of Giardia spp. cysts and Cryptosporidium spp. oocysts, their removal by the treatment processes, which are upflow anaerobic sludge blanket (UASB) reactor and dissolved air flotation process, and also the correlations between protozoa and indicator microorganisms. Significant quantities of cysts were detected in 100% of the analyzed wastewater samples, while oocysts were detected only in 39.0% of all wastewater samples. The overall removal of Giardia spp. cysts from the WWTP was on average 2.03 log, and the UASB reactor was more efficient than flotation. The sludge samples presented high quantities of (oo)cysts, implying the risks of contamination in the case of sludge reuse or inadequate disposal. Giardiasis prevalence was estimated between 2.21% and 6.7% for the population served by the WWTP, while cryptosporidiosis prevalence was much lower. Significant positive correlation was obtained only between cysts and Clostridium spores in anaerobic effluent.

  19. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    NASA Astrophysics Data System (ADS)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  20. Concentrations, Distribution and Persistence of Fluorotelomer Alcohols in Sludge-Applied Soils near Decatur, Alabama, USA

    EPA Science Inventory

    Soil samples were collected for fluorotelomer alcohol (FTOH) analyses from six fields to which sludge had been applied and one “background” field that had not received sludge. Ten analytes in soil extracts were quantified using GC/MS. Sludge-applied fields had surface soil FTOH c...

  1. Differences on nitrogen availability in a soil amended with fresh, composted and thermally-dried sewage sludge.

    PubMed

    Tarrasón, D; Ojeda, G; Ortiz, O; Alcañiz, J M

    2008-01-01

    Anaerobically-digested sludge called fresh sludge (F), composted sludge (C) and thermally-drying sludge (T), all from the same batch, were applied to the surface of a calcareous Udic Calciustept with loamy texture. Dosage equivalent was 10 t ha(-1) of dry matter. The concentration of mineral nitrogen (ammonium and nitrate) in the soil was measured in order to estimate the effects of the post-treatments to which the different kinds of sewage sludge are subjected in relation to the availability of N in the surface layer of the soil. The most significant differences in NH(4)-N and NO(3)-N concentrations due to the transformation of the organic matter were observed during the first three weeks following soil amendment. Thermally-dried and composted sludge initially displayed higher concentrations of ammonium and nitrate in soil. Five months after the amendment, soil applied with fresh sludge showed the highest concentrations of NH(4)-N and NO(3)-N (6.1 and 36.6 mg kg(-1), respectively). It is clear that the processes of composting and thermal-drying influence the bioavailability of nitrogen from the different types of sewage sludge.

  2. Geohydrologic evaluation of a landfill in a coastal area, St Petersburg, Florida

    USGS Publications Warehouse

    Hutchinson, C.B.; Stewart, Joseph W.

    1978-01-01

    The 250-acre Toytown landfill site is in a poorly-drained area in coastal Pinellas County, Florida. Average altitude of land surface at the landfill is less than 10 feet. About 1000 tons of solid waste and about 200,000 gallons of digested sewage sludge are disposed of daily at the landfill. The velocity of ground-water flow through the 23-foot thick surficial aquifer northeast from the landfill toward Old Tampa Bay probably ranges from 1 to 10 feet per year, and downward velocity through the confining bed is about 0.00074 foot per day. The horizontal and vertical flow velocities indicate that leachate moves slowly downgradient, and that leachate has not yet seeped through the confining bed after 12 years of landfill operation. Untreated surface run-off from the site averages about 15 inches per year, and ground-water outflow averages about 3.3 inches per year. The Floridan aquifer is used as a limited source of water for domestic supply in this area. (Woodard-USGS)

  3. Evaluation of biochemical and redox parameters in rats fed with corn grown in soil amended with urban sewage sludge.

    PubMed

    Grotto, Denise; Carneiro, Maria Fernanda Hornos; Sauer, Elisa; Garcia, Solange Cristina; de Melo, Wanderley José; Barbosa, Fernando

    2013-09-01

    The increased production of urban sewage sludge requires alternative methods for final disposal. A very promising choice is the use of sewage sludge as a fertilizer in agriculture, since it is rich in organic matter, macro and micronutrients. However, urban sewage sludge may contain toxic substances that may cause deleterious effects on the biota, water and soil, and consequently on humans. There is a lack of studies evaluating how safe the consumption of food cultivated in soils containing urban sewage sludge is. Thus, the aim of this paper was to evaluate biochemical and redox parameters in rats fed with corn produced in a soil treated with urban sewage sludge for a long term. For these experiments, maize plants were grown in soil amended with sewage sludge (rates of 5, 10 and 20 t/ha) or not (control). Four different diets were prepared with the corn grains produced in the field experiment, and rats were fed with these diets for 1, 2, 4, 8 and 12 weeks. Biochemical parameters (glucose, total cholesterol and fractions, triglycerides, aspartate aminotransferase and alanine aminotransferase) as well the redox state biomarkers such as reduced glutathione (GSH), malondialdehyde (MDA), catalase, glutathione peroxidase and butyrylcholinesterase (BuChE) were assessed. Our results show no differences in the biomarkers over 1 or 2 weeks. However, at 4 weeks BuChE activity was inhibited in rats fed with corn grown in soil amended with sewage sludge (5, 10 and 20 t/ha), while MDA levels increased. Furthermore, prolonged exposure to corn cultivated in the highest amount per hectare of sewage sludge (8 and 12 weeks) was associated with an increase in MDA levels and a decrease in GSH levels, respectively. Our findings add new evidence of the risks of consuming food grown with urban sewage sludge. However, considering that the amount and type of toxic substances present in urban sewage sludge varies considerably among different sampling areas, further studies are needed to evaluate sludge samples collected from different sources and/or undergoing different types of treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. WW LCI v2: A second-generation life cycle inventory model for chemicals discharged to wastewater systems.

    PubMed

    Kalbar, Pradip P; Muñoz, Ivan; Birkved, Morten

    2018-05-01

    We present a second-generation wastewater treatment inventory model, WW LCI 2.0, which on many fronts represents considerable advances compared to its previous version WW LCI 1.0. WW LCI 2.0 is a novel and complete wastewater inventory model integrating WW LCI 1.0, i.e. a complete life cycle inventory, including infrastructure requirement, energy consumption and auxiliary materials applied for the treatment of wastewater and disposal of sludge and SewageLCI, i.e. fate modelling of chemicals released to the sewer. The model is expanded to account for different wastewater treatment levels, i.e. primary, secondary and tertiary treatment, independent treatment by septic tanks and also direct discharge to natural waters. Sludge disposal by means of composting is added as a new option. The model also includes a database containing statistics on wastewater treatment levels and sludge disposal patterns in 56 countries. The application of the new model is demonstrated using five chemicals assumed discharged to wastewater systems in four different countries. WW LCI 2.0 model results shows that chemicals such as diethylenetriamine penta (methylene phosphonic acid) (DTPMP) and Diclofenac, exhibit lower climate change (CC) and freshwater ecotoxicity (FET) burdens upon wastewater treatment compared to direct discharge in all country scenarios. Results for Ibuprofen and Acetaminophen (more readily degradable) show that the CC burden depends on the country-specific levels of wastewater treatment. Higher treatment levels lead to lower CC and FET burden compared to direct discharge. WW LCI 2.0 makes it possible to generate complete detailed life cycle inventories and fate analyses for chemicals released to wastewater systems. Our test of the WW LCI 2.0 model with five chemicals illustrates how the model can provide substantially different outcomes, compared to conventional wastewater inventory models, making the inventory dependent upon the atomic composition of the molecules undergoing treatment as well as the country specific wastewater treatment levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Environmentally safe sewage sludge disposal: the impact of liming on the behaviour of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn.

    PubMed

    Scancar, J; Milacic, R; Strazar, M; Burica, O; Bukovec, P

    2001-02-01

    Dewatered sewage sludge containing relatively high total concentrations of Cr (945 micrograms ml-1), Cu (523 micrograms ml-1), Ni (1186 micrograms ml-1) and Zn (2950 micrograms ml-1) was treated with quicklime and sawdust for sludge disinfection and post-stabilisation. The mobility of the heavy metals in the sludge samples was assessed by applying a modified five-step Tessier sequential extraction procedure. Water was added as a first step for estimation of the proportion of the easily soluble metal fractions. To check the precision of the analytical work the concentrations of heavy metals in steps 1-6 of the extraction procedure were summed and compared to the total metal concentrations. The mass balance agreed within +/- 3% for Cd, Cu, Cr, and Zn and within +/- 5% for Ni, Pb, Fe and Mn. Data from the partitioning study indicate that in the lime-treated sludge at a pH of 12 the mobility of Cu and Ni notably increased with the solubilisation of these metals from their organic and/or carbonate and Fe and Mn oxide and hydroxide fractions, respectively. Liming slightly decreased the proportion of other heavy metals in the easily soluble fractions while its impact on the partitioning between other sludge phases was almost insignificant. Due to the increased solubility of Ni and Cu as well as potential Cr oxidation at high pH, liming cannot be recommended for sludge disinfection. Addition of sawdust did not change the heavy metal partitioning.

  6. Carbon nanotubes/carbon fiber hybrid material: a super support material for sludge biofilms.

    PubMed

    Liu, Qijie; Dai, Guangze; Bao, Yanling

    2017-07-16

    Carbon fiber (CF) is widely used as a sludge biofilm support material for wastewater treatment. Carbon nanotubes/carbon fiber (CNTs/CF) hybrid material was prepared by ultrasonically assisted electrophoretic deposition (EPD). CF supports (CF without handling, CF oxidized by nitric acid, CNTs/CF hybrid material) were evaluated by sludge immobilization tests, bacterial cell adsorption tests and Derjaguin -Landau -Verwey -Overbeek (DLVO) theory. We found that the CNTs/CF hybrid material has a high capacity for adsorbing activated sludge, nitrifying bacterial sludge and pure strains (Escherichia coli and Staphylococcus aureus). CNTs deposited on CF surface easily wound around the curved surface of bacterial cell which resulted in capturing more bacterial cells. DLVO theory indicated the lowest total interaction energy of CNTs/CF hybrid material, which resulted in the highest bacteria cell adsorption velocity. Experiments and DLVO theory results proved that CNTs/CF hybrid material is a super support material for sludge biofilms.

  7. Biodegradation of sulfamethoxazole by individual and mixed bacteria.

    PubMed

    Larcher, Simone; Yargeau, Viviane

    2011-07-01

    Antibiotic compounds, like sulfamethoxazole (SMX), have become a concern in the aquatic environment due to the potential development of antibacterial resistances. Due to excretion and disposal, SMX has been frequently detected in wastewaters and surface waters. SMX removal in conventional wastewater treatment plants (WWTPs) ranges from 0% to 90%, and there are opposing results regarding its biodegradability at lab scale. The objective of this research was to determine the ability of pure cultures of individual and mixed consortia of bacteria (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas putida, Rhodococcus equi, Rhodococcus erythropolis, Rhodococcus rhodocrous, and Rhodococcus zopfii) known to exist in WWTP activated sludge to remove SMX. Results showed that R. equi alone had the greatest ability to remove SMX leading to 29% removal (with glucose) and the formation of a metabolite. Degradation pathways and metabolite structures have been proposed based on the potential enzymes produced by R. equi. When R. equi was mixed with other microorganisms, a positive synergistic effect was not observed and the maximum SMX removal achieved was 5%. This indicates that pure culture results cannot be extrapolated to mixed culture conditions, and the methodology developed here to study the biodegradability of compounds under controlled mixed culture conditions offers an alternative to conventional studies using pure bacterial cultures or inocula from activated sludge sources consisting of unknown and variable microbial populations.

  8. Case study II: application of the divalent cation bridging theory to improve biofloc properties and industrial activated sludge system performance-using alternatives to sodium-based chemicals.

    PubMed

    Higgins, Matthew J; Sobeck, David C; Owens, Steven J; Szabo, Lynn M

    2004-01-01

    The objective of this study was to investigate the application of the divalent cation bridging theory (DCBT) as a tool in the chemical selection process at an activated sludge plant to improve settling, dewatering, and effluent quality. According to the DCBT, to achieve improvements, the goal of chemical selection should be to reduce the ratio of monovalent-to-divalent (M/D) cations. A study was conducted to determine the effect of using magnesium hydroxide [Mg(OH)2] as an alternative to sodium hydroxide (NaOH) at a full-scale industrial wastewater treatment plant. Floc properties and treatment plant performance were measured for approximately one year during two periods of NaOH addition and Mg(OH)2 addition. A cost analysis of plant operation during NaOH and Mg(OH)2 use was also performed. During NaOH addition, the M/D ratio was 48, while, during Mg(OH)2 addition, this ratio was reduced to an average of approximately 0.1. During the Mg(OH)2 addition period, the sludge volume index, effluent total suspended solids, and effluent chemical oxygen demand were reduced by approximately 63, 31, and 50%, respectively, compared to the NaOH addition period. The alum and polymer dose used for clarification was reduced by approximately 50 and 60%, respectively, during Mg(OH)2 addition. The dewatering properties of the activated sludge improved dewatering as measured by decreased capillary suction time and specific resistance to filtration (SRF), along with an increase in cake solids from the SRF test. This corresponded to a reduction in the volume of solids thickened by centrifuges at the treatment plant, which reduced the disposal costs of solids. Considering the costs for chemicals and solids disposal, the annual cost of using Mg(OH)2 was approximately 30,000 dollars to 115,000 dollars less than using NaOH, depending on the pricing of NaOH. The results of this study confirm that the DCBT is a useful tool for assessing chemical-addition strategies and their potential effect on activated sludge performance.

  9. Glass Waste Forms for Oak Ridge Tank Wastes: Fiscal Year 1998 Report for Task Plan SR-16WT-31, Task B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.K.

    1999-05-10

    Using ORNL information on the characterization of the tank waste sludges, SRTC performed extensive bench-scale vitrification studies using simulants. Several glass systems were tested to ensure the optimum glass composition (based on the glass liquidus temperature, viscosity and durability) is determined. This optimum composition will balance waste loading, melt temperature, waste form performance and disposal requirements. By optimizing the glass composition, a cost savings can be realized during vitrification of the waste. The preferred glass formulation was selected from the bench-scale studies and recommended to ORNL for further testing with samples of actual OR waste tank sludges.

  10. Assessment of mobility and bioavailability of mercury compounds in sewage sludge and composts.

    PubMed

    Janowska, Beata; Szymański, Kazimierz; Sidełko, Robert; Siebielska, Izabela; Walendzik, Bartosz

    2017-07-01

    Content of heavy metals, including mercury, determines the method of management and disposal of sewage sludge. Excessive concentration of mercury in composts used as organic fertilizer may lead to accumulation of this element in soil and plant material. Fractionation of mercury in sewage sludge and composts provides a better understanding of the extent of mobility and bioavailability of the different mercury species and helps in more informed decision making on the application of sludge for agricultural purposes. The experimental setup comprises the composing process of the sewage sludge containing 13.1mgkg -1 of the total mercury, performed in static reactors with forced aeration. In order to evaluate the bioavailability of mercury, its fractionation was performed in sewage sludge and composts during the process. An analytical procedure based on four-stage sequential extraction was applied to determine the mercury content in the ion exchange (water soluble and exchangeable Hg), base soluble (Hg bound to humic and fulvic acid), acid soluble (Hg bound to Fe/Mn oxides and carbonates) and oxidizable (Hg bound to organic matter and sulphide) fractions. The results showed that from 50.09% to 64.55% of the total mercury was strongly bound to organo-sulphur and inorganic sulphide; that during composting, increase of concentrations of mercury compounds strongly bound with organic matter and sulphides; and that mercury content in the base soluble and oxidizable fractions was strongly correlated with concentration of dissolved organic carbon in those fractions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: Analysis of process performance and hygienization potential.

    PubMed

    Tomei, M Concetta; Mosca Angelucci, Domenica; Levantesi, Caterina

    2016-03-01

    Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Land application of treated sewage sludge: community health and environmental justice.

    PubMed

    Lowman, Amy; McDonald, Mary Anne; Wing, Steve; Muhammad, Naeema

    2013-05-01

    In the United States, most of the treated sewage sludge (biosolids) is applied to farmland as a soil amendment. Critics suggest that rules regulating sewage sludge treatment and land application may be insufficient to protect public health and the environment. Neighbors of land application sites report illness following land application events. We used qualitative research methods to evaluate health and quality of life near land application sites. We conducted in-depth interviews with neighbors of land application sites and used qualitative analytic software and team-based methods to analyze interview transcripts and identify themes. Thirty-four people in North Carolina, South Carolina, and Virginia responded to interviews. Key themes were health impacts, environmental impacts, and environmental justice. Over half of the respondents attributed physical symptoms to application events. Most noted offensive sludge odors that interfere with daily activities and opportunities to socialize with family and friends. Several questioned the fairness of disposing of urban waste in rural neighborhoods. Although a few respondents were satisfied with the responsiveness of public officials regarding sludge, many reported a lack of public notification about land application in their neighborhoods, as well as difficulty reporting concerns to public officials and influencing decisions about how the practice is conducted where they live. Community members are key witnesses of land application events and their potential impacts on health, quality of life, and the environment. Meaningful involvement of community members in decision making about land application of sewage sludge will strengthen environmental health protections.

  13. Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

  14. Operation of Wastewater Treatment Plants: A Field Study Training Program. Volume III. Second Edition.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    This manual was prepared by experienced wastewater collection system workers to provide a home study course to develop new qualified workers and expand the abilities of existing workers. This volume contains information on operational strategies for the activated sludge process and the use of pure oxygen, the handling and disposal of solids,…

  15. Gravity Thickening. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    The basic operation of the gravity thickener is described in this lesson, focusing on the theory of operation, components found in a typical thickener, and the parameters which must be understood in optimizing the opeation of the thickener. Attention is given to mathematics concepts which are used in controlling hydraulic loading, detention time,…

  16. Superfund Record of Decision (EPA Region 3): Harvey-Knott Drum site, New Castle County, Delaware, September 1985. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Harvey-Knott Drum Site is located in New Castle County, Delaware, approximately one-half mile east of the Maryland-Delaware border. The Harvey and Knotts Trucking, Inc., operated an open dump and burning ground on the site between 1963 and 1969. The facility accepted sanitary, municipal, and industrial wastes believed to be sludges, paint pigments, and solvents. Wastes were emptied onto the ground, into excavated trenches, or left in drums (some of which were buried). Some of these wastes were either burned as a means of reducing waste volume, or allowed to seep into the soil. Contamination of soil, surface water, andmore » ground water has occurred as a result of disposal of these industrial wastes. The selected remedial action for this site is included.« less

  17. Changes on sewage sludge stability after greenhouse drying

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gómez, I.; Navarro-Pedreño, J.

    2009-04-01

    The progressive implementation of the Urban Waste Water Treatment Directive 91/271/EEC in all the European member states is increasing the quantities of sewage sludge requiring disposal. Sludge application onto cultivated soils as organic fertilizers allows the recycling of nutrients. The application of only dehydrated sludges has generated many problems including unpleasant odours and difficult management (regarding transport and application) related to their high water content. One way to overcome these problems, in a cheap and clean way, is the drying of sludges using the energy of the sun under greenhouse conditions. This drying may affect sludge chemical characteristics including organic matter stability and nitrogen availability, parameters which have to be controlled for the proper management of dry sludge application onto soils. For this reason, the main aim of this work was to study the impact of greenhouse drying of different sewage sludges on their organic matter stability and nitrogen availability, assessed by biochemical fractionation and mineralization assays. Three sewage sludges were sampled before (dehydrated sludges) and after greenhouse drying (dried sludges). The analyses consisted of: humidity, organic matter, mineral and organic N contents, N and C mineralization during 91-day laboratory incubations in controlled conditions, and biochemical fractionation using the Van Soest procedure. Greenhouse drying decreased the water content from 70-80% to 10% and also the odours, both of which will improve the management of the final product from the perspective of application and transport. We also found that drying reduced the organic matter content of the sludges but not the biodegradability of the remaining carbon. Organic N mineralization occurred during greenhouse drying, explaining why mineral N content tended to increase and the potential mineralization of organic nitrogen decreased after greenhouse drying. The biochemical stability did not change so much except for the one of the sludges, which experienced an important reduction. According to the results, and from a point of view of future soil applications, the balance of the drying process could be considered as positive. It is using a free, renewable and clean energy, which reduces the water content and odours of sludge, thereby improving their management. Except for the water content, there was little modification of the behaviour in soil of greenhouse dried sludges compared to the dehydrated sludges, maintaining its large amount of available nitrogen after drying. Acknowledgements: Jose. M. Soriano-Disla gratefully acknowledges the Spanish Ministry of Innovation and Culture for a research fellowship (AP2005-0320).

  18. Cost-benefit analysis of copper recovery in remediation projects: A case study from Sweden.

    PubMed

    Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Karlfeldt Fedje, Karin

    2017-12-15

    Contamination resulting from past industrial activity is a problem throughout the world and many sites are severely contaminated by metals. Advances in research in recent years have resulted in the development of technologies for recovering metal from metal-rich materials within the framework of remediation projects. Using cost-benefit analysis (CBA), and explicitly taking uncertainties into account, this paper evaluates the potential social profitability of copper recovery as part of four remediation alternatives at a Swedish site. One alternative involves delivery of copper-rich ash to a metal production company for refining. The other three alternatives involve metal leaching from materials and sale of the resulting metal sludge for its further processing at a metal production company using metallurgical methods. All the alternatives are evaluated relative to the conventional excavation and disposal method. Metal recovery from the ash, metal sludge sale, and disposal of the contaminated soil and the ash residue at the local landfill site, was found to be the best remediation alternative. However, given the present conditions, its economic potential is low relative to the conventional excavation and disposal method but higher than direct disposal of the copper-rich ash for refining. Volatile copper prices, the high cost of processing equipment, the highly uncertain cost of the metal leaching and washing process, coupled with the substantial project risks, contribute most to the uncertainties in the CBA results for the alternatives involving metal leaching prior to refining. However, investment in processing equipment within the framework of a long-term investment project, production of safe, reusable soil residue, and higher copper prices on the metal market, can make metal recovery technology socially profitable. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sustainable use of tannery sludge in brick manufacturing in Bangladesh.

    PubMed

    Juel, Md Ariful Islam; Mizan, Al; Ahmed, Tanvir

    2017-02-01

    Chromium-rich tannery sludge generated from tanneries has the potential to become a serious environmental burden in Bangladesh and a promising avenue for disposal of this sludge is by stabilizing it in clay brick products. But for sustainable industrial application of such technique it needs to be ensured first that the engineering properties of bricks as a building material are not diminished by addition of sludge, the process becomes energy efficient compared to alternatives and the use of such bricks do not pose any harmful environmental effects in the long run. In this study, clay bricks were prepared with different proportions of sludge (10%, 20%, 30% and 40% by dry weight) in both laboratory-controlled and field conditions and their suitability as a construction material was assessed based on their strength, water absorption, shrinkage, weight-loss on ignition and bulk density. For the sludge incorporated bricks, the compressive strength ranged from 10.98MPa to 29.61MPa and water absorption ranged from 7.2% to 20.9%, which in most cases met both the Bangladesh and ASTM criteria for bricks as a construction material. Volumetric shrinkage, weight loss and efflorescence properties of sludge-amended bricks were found to be favorable and it was estimated that an energy saving of 15-47% could potentially be achieved during firing with 10-40% tannery sludge-amended bricks. The quality of sludge-amended bricks made in the brick kiln was relatively inferior compared to bricks produced in the laboratory due to operating in a less-controlled environment with respect to maintaining adequate compaction and optimum moisture content. The leaching behavior of several heavy metals (Cr, As, Cu, Ni, Cd, Pb and Zn) from sludge-amended bricks has been found to be insignificant and far below the Dutch regulations and USEPA regulatory limits. Results from this study indicate that tannery sludge can be sustainably stabilized in clay bricks and large-scale application of this technique can be envisaged in the context of Bangladesh where brick remains a dominant building material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Alkaline thermal sludge hydrolysis.

    PubMed

    Neyens, E; Baeyens, J; Creemers, C

    2003-02-28

    The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46%.Finally, the mass and energy balances of a wastewater treatment plant with/without advanced sludge treatment (AST) are compared. The data clearly illustrate the benefits of using an alkaline AST-step in the system.

  1. Effects of temperature and dissolved oxygen on sludge properties and their role in bioflocculation and settling.

    PubMed

    Liao, B Q; Lin, H J; Langevin, S P; Gao, W J; Leppard, G G

    2011-01-01

    Effects of temperature (mesophilic (35 °C) vs. thermophilic (55 °C)) and dissolved oxygen (DO) concentration (under thermophilic conditions) on sludge properties and their role in bioflocculation and settling were studied using well-controlled sequencing batch reactors fed with a synthetic wastewater comprised of glucose and inorganic nutrients. Under a similar DO level, thermophilic sludge had a poorer bioflocculating ability and settleability than that of mesophilic sludge. Under a thermophilic condition, an increase in DO level led to a poorer settleability and a slightly improved bioflocculating ability. A poorer settleability was related to a higher level of filaments. Analysis of bound extracellular polymeric substances (EPS) indicates that thermophilic sludge had a higher level of total bound EPS content than that of mesophilic sludge under a similar DO level, and an increase in DO resulted in an increase in total bound EPS content in thermophilic sludge. Surface analysis of sludge by X-ray photoelectron spectroscopy (XPS) suggests that significant differences in the surface concentrations of elements N, C, O were observed between thermophilic and mesophilic sludge, implying significant differences in bound EPS composition. The results of gel permeation chromatography indicate that the weight-averaged molecular weight (M(w)) of bound EPS covered a range of 1159 Da to 13220 Da. The distribution of EPS "species" at floc surfaces was shown by transmission electron microscopy (TEM) to be uneven; different kinds of nanoscale materials were distributed in a patchy manner at the floc-water interface. The results suggest that it is the role of specific EPS molecules rather than the quantity of bound EPS that determine the difference in bioflocculation behavior between thermophilic and mesophilic sludge. The strategy of increasing the DO level could not solve the biomass separation problems associated with thermophilic sludge. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Bench-Scale Evaluation of the Genifuel Hydrothermal Processing Technology for Wastewater Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbonmore » balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. Subsequent hydrotreating (i.e., upgrading) of the biocrude produced from primary sludge and digested solids resulted in a product with comparable physical and chemical properties to petroleum crude oil. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the output of HTL tests with primary sludge, secondary sludge, and digested solids, respectively. Siloxane concentrations in the CHG product gas were below the detection limit and well below fuel input composition limits set by several engine manufacturers. Relative to that of the sludge feeds, the HTL-CHG process resulted in a reduction in chemical oxygen demand (COD) of greater than 99.9% and a reduction in residual solids for disposal of 94-99%. The test results, as a whole, support further long term testing in a larger scale integrated system that is representative of what would be installed at a water resource recovery facility (WRRF) in order to fully assess the technical and economic viability of this technology for wastewater sludge treatment.« less

  3. Treatment options for low-level radiologically contaminated ORNL filtercake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hom-Ti; Bostick, W.D.

    1996-04-01

    Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithicmore » waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.« less

  4. Sludge settling processes in SBR-related sewage treatment plants according to the Biocos method.

    PubMed

    Meusel, S; Englert, R

    2004-01-01

    This paper describes the investigations in a sedimentation and circulation reactor (SU-reactor) of a three-phase Biocos plant. The aim of these investigations was the determination of the temporal and depth-dependent distribution of suspended solid contents, as well as describing the sludge sedimentation curves. The calculated results reveal peculiarities of the Biocos method with regard to sedimentation processes. In the hydraulically uninterrupted (pre-)settling phase, a sludge level depth was observed, which remained constant over the reactor surface and increased linearly according to the sludge volume. The settling and the thickening processes of this phase corresponded to a large extent to the well-known settling test in a one-litre measuring cylinder. During the discharge phase, the investigated settling rate was overlaid by the surface loading rate and the sludge level changed depending on the difference between those two parameters. The solid distribution of the A-phase indicated a formation of functional zones, which were influenced by the surface loading. The formation was comparable to the formation of layers in secondary settling tanks with vertical flow. The concentration equalisation between the biological reactor and the SU-reactor proved to be problematic during the circulation phase, because a type of internal sludge circulation occurred in the SU-reactor. A permanent sludge recirculation seems to be highly recommendable.

  5. Influence of mechanical disintegration on the microbial growth of aerobic sludge biomass: A comparative study of ultrasonic and shear gap homogenizers by oxygen uptake measurements.

    PubMed

    Divyalakshmi, P; Murugan, D; Sivarajan, M; Saravanan, P; Lajapathi Rai, C

    2015-11-01

    Wastewater treatment plant incorporates physical, chemical and biological processes to treat and remove the contaminants. The main drawback of conventional activated sludge process is the huge production of excess sludge, which is an unavoidable byproduct. The treatment and disposal of excess sludge costs about 60% of the total operating cost. The ideal way to reduce excess sludge production during wastewater treatment is by preventing biomass formation within the aerobic treatment train rather than post treatment of the generated sludge. In the present investigation two different mechanical devices namely, Ultrasonic and Shear Gap homogenizers have been employed to disintegrate the aerobic biomass. This study is intended to restrict the multiplication of microbial biomass and at the same time degrade the organics present in wastewater by increasing the oxidative capacity of microorganisms. The disintegrability on biomass was determined by biochemical methods. Degree of inactivation provides the information on inability of microorganisms to consume oxygen upon disruption. The soluble COD quantifies the extent of release of intra cellular compounds. The participation of disintegrated microorganism in wastewater treatment process was carried out in two identical respirometeric reactors. The results show that Ultrasonic homogenizer is very effective in the disruption of microorganisms leading to a maximum microbial growth reduction of 27%. On the other hand, Shear gap homogenizer does not favor the sludge growth reduction rather it facilitates the growth. This study also shows that for better microbial growth reduction, floc size reduction alone is not sufficient but also microbial disruption is essential. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Waste Resources Utilization Program. Progress report, period ending September 30, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1975-12-01

    The purpose of the Waste Resources Utilization Program is to develop a technology to constructively couple two major environmental problems, disposition of human and nuclear waste, in an attempt to provide a framework in which both will become useful resources. Sludge treated with thermoradiation offers considerable potential for use as a fertilizer in agriculture or a soil conditioner for land reclamation free of the serious potential health hazards associated with conventional methods of land disposal. In addition, the very real possibility exists that treated sludge may provide a low-cost substitute for high-nutritional components in ruminant diets. The liter size flow-throughmore » system is put into operation for the first time and provides sufficient quantities of treated sludge for good biological analysis and to start the animal feeding program at New Mexico State University. Approximately 3800 gal of sewage sludge were thermoradiation-treated with the system. The sludge was exposed to approximately 150 krads of gamma radiation at a temperature of 65$sup 0$C. The treated sludge was monitored for elimination of total coliforms and fecal strep. No fecal strep bacteria were found in 400 sample plates; three contained coliform growth. An intensive study of poliovirus inactivation in sewage sludge was completed this quarter. Source efficiencies were calculated for possible modification to the WESF capsule which would consist of inserting a hollow tube in the center of the capsule. This was proposed as a simple modification to the standard WESF capsule to reduce the self-shielding characteristic of the cesium. The calculations showed little or no advantage of adding the center tube. (TFD)« less

  7. Stabilization of tannery sludge by co-treatment with aluminum anodizing sludge and phytotoxicity of end-products.

    PubMed

    Pantazopoulou, E; Zebiliadou, O; Mitrakas, M; Zouboulis, A

    2017-03-01

    A global demand for efficient re-utilization of produced solid wastes, which is based on the principles of re-use and recycling, results to a circular economy, where one industry's waste becomes another's raw material and it can be used in a more efficient and sustainable way. In this study, the influence of a by-product addition, such as aluminum anodizing sludge, on tannery waste (air-dried sludge) stabilization was examined. The chemical characterization of tannery waste leachate, using the EN 12457-2 standard leaching test, reveals that tannery waste cannot be accepted even in landfills for hazardous wastes, according to the EU Decision 2003/33/EC. The stabilization of tannery waste was studied applying different ratios of tannery waste and aluminum anodizing sludge, i.e. 50:50, 60:40, 70:30 and 80:20 ratios respectively. Subsequently, the stabilization rate of the qualified as optimum homogenized mixture of 50:50 ratio was also tested during time (7, 15 and 30days). Moreover, this stabilized product was subjected to phytotoxicity tests using the Lepidium sativum, Sinapis alba and Sorghum saccharatum seeds. The experimental results showed that aluminum anodizing sludge managed to stabilize effectively chromium and organic content of tannery waste, which are the most problematic parameters influencing its subsequent disposal. As a result, tannery waste stabilized with the addition of aluminum anodizing sludge at 50:50 ratio can be accepted in non-hazardous waste landfills, as chromium and dissolved organic carbon concentrations in the respective leachate are below the relevant regulation limits, while the stabilized waste shows decreased phytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Wood ash to treat sewage sludge for agricultural use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.K.

    About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for landmore » application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.« less

  9. Monitoring and optimizing the co-composting of dewatered sludge: a mixture experimental design approach.

    PubMed

    Komilis, Dimitrios; Evangelou, Alexandros; Voudrias, Evangelos

    2011-09-01

    The management of dewatered wastewater sludge is a major issue worldwide. Sludge disposal to landfills is not sustainable and thus alternative treatment techniques are being sought. The objective of this work was to determine optimal mixing ratios of dewatered sludge with other organic amendments in order to maximize the degradability of the mixtures during composting. This objective was achieved using mixture experimental design principles. An additional objective was to study the impact of the initial C/N ratio and moisture contents on the co-composting process of dewatered sludge. The composting process was monitored through measurements of O(2) uptake rates, CO(2) evolution, temperature profile and solids reduction. Eight (8) runs were performed in 100 L insulated air-tight bioreactors under a dynamic air flow regime. The initial mixtures were prepared using dewatered wastewater sludge, mixed paper wastes, food wastes, tree branches and sawdust at various initial C/N ratios and moisture contents. According to empirical modeling, mixtures of sludge and food waste mixtures at 1:1 ratio (ww, wet weight) maximize degradability. Structural amendments should be maintained below 30% to reach thermophilic temperatures. The initial C/N ratio and initial moisture content of the mixture were not found to influence the decomposition process. The bio C/bio N ratio started from around 10, for all runs, decreased during the middle of the process and increased to up to 20 at the end of the process. The solid carbon reduction of the mixtures without the branches ranged from 28% to 62%, whilst solid N reductions ranged from 30% to 63%. Respiratory quotients had a decreasing trend throughout the composting process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Optimization of process parameters for pilot-scale liquid-state bioconversion of sewage sludge by mixed fungal inoculation.

    PubMed

    Rahman, Roshanida A; Molla, Abul Hossain; Barghash, Hind F A; Fakhru'l-Razi, Ahmadun

    2016-01-01

    Liquid-state bioconversion (LSB) technique has great potential for application in bioremediation of sewage sludge. The purpose of this study is to determine the optimum level of LSB process of sewage sludge treatment by mixed fungal (Aspergillus niger and Penicillium corylophilum) inoculation in a pilot-scale bioreactor. The optimization of process factors was investigated using response surface methodology based on Box-Behnken design considering hydraulic retention time (HRT) and substrate influent concentration (S0) on nine responses for optimizing and fitted to the regression model. The optimum region was successfully depicted by optimized conditions, which was identified as the best fit for convenient multiple responses. The results from process verification were in close agreement with those obtained through predictions. Considering five runs of different conditions of HRT (low, medium and high 3.62, 6.13 and 8.27 days, respectively) with the range of S0 value (the highest 12.56 and the lowest 7.85 g L(-1)), it was monitored as the lower HRT was considered as the best option because it required minimum days of treatment than the others with influent concentration around 10 g L(-1). Therefore, optimum process factors of 3.62 days for HRT and 10.12 g L(-1) for S0 were identified as the best fit for LSB process and its performance was deviated by less than 5% in most of the cases compared to the predicted values. The recorded optimized results address a dynamic development in commercial-scale biological treatment of wastewater for safe and environment-friendly disposal in near future.

  11. Merging nitrogen management and renewable energy needs.

    PubMed

    Wilson, E; Chapman, P J; McDonald, A

    2001-11-22

    The ARBRE (ARable Biomass Renewable Energy) project, the first large-scale wood-fueled electricity generating plant in the U.K., represents a significant development in realising British and European policy objectives on renewable energy. The plant is fueled by a mix of wood from short rotation coppice (SRC) and forest residues. Where feasible, composted/conditioned sewage sludge is applied to coppice sites to increase yields and improve soil structure. In the Yorkshire Water region, typical total N:P:K composition of composted/conditioned sludge is 2.9:3.8:0.3, respectively. Sludge application is calculated on the basis of total nitrogen (N) content to achieve 750 kg N ha(-1), for 3 years" requirement. Willow coppice forms a dense, widely spaced, root network, which, with its long growing season, makes it an effective user of nutrients. This, in combination with willow"s use as a nonfood, nonfodder crop, makes it an attractive route for the recycling of sewage sludge in the absence of sea disposal, banned under the EC Urban Waste Water Treatment Directive (UWWTD). Further work is required on the nutritional requirements of SRC in order to understand better the quantities of sludge that can be applied to SRC without having a detrimental impact on the environment. This paper suggests the source of N rerouting under the UWWTD and suggests the likely expansion of SRC as an alternative recycling pathway.

  12. Polybrominated diphenyl ethers in U.S. sewage sludges and biosolids: temporal and geographical trends and uptake by corn following land application.

    PubMed

    Hale, Robert C; La Guardia, Mark J; Harvey, Ellen; Chen, Da; Mainor, Thomas M; Luellen, Drew R; Hundal, Lakhwinder S

    2012-02-21

    Polybrominated diphenyl ethers (PBDEs) have been used extensively to flame-retard polymers and textiles. These persistent chemicals enter wastewater streams following manufacture, use, and disposal, concentrating in the settled solids during treatment. Land application of stabilized sewage sludge (known as biosolids) can contribute PBDEs to terrestrial systems. Monitoring sludge/biosolids contaminant burdens may be valuable in revealing trends in societal chemical usage and environmental release. In archived Chicago area sludges/biosolids from 1975 to 2008, penta-BDE concentrations increased and then plateaued after about 2000. Penta-BDE manufacture in the United States ended in December 2004. Deca-BDE concentrations in biosolids rose from 1995 to 2008, doubling on a 5-year interval. Evaluation of U.S. Environmental Protection Agency Targeted National Sewage Sludge Survey data from 2006 to 2007 revealed highest penta-BDE biosolids levels from western and lowest from northeastern wastewater treatment plants (2120 and 1530 μg/kg, respectively), consistent with patterns reported in some recent indoor dust and human blood studies. No significant regional trends were observed for deca-BDE concentrations. Congener patterns in contemporary Chicago biosolids support the contention that BDE-209 can be dehalogenated to less brominated congeners. Biosolids application on agricultural fields increased PBDE soil concentrations. However, corn grown thereon did not exhibit measurable PBDE uptake; perhaps due to low bioavailability of the biosolids-associated flame retardants.

  13. Regeneration and reuse of iron catalyst for Fenton-like reactions.

    PubMed

    Cao, Guo-min; Sheng, Mei; Niu, Wen-feng; Fei, Yu-lei; Li, Dong

    2009-12-30

    Fenton and Fenton-like reactions employed for oxidative treatment of a typical industrial wastewater generate a large amount of ferric hydroxide sludge which has to be properly disposed at a high cost. This paper presents a simple and cost-effective method for recovering the iron catalyst from the iron hydroxide sludge for oxidative treatment of industrial wastewaters. The sludge was dewatered, dried and baked at 350-400 degrees C for 20-30 min; the residual solids were dissolved in sulfuric acid to form the reusable catalyst for Fenton and Fenton-like reactions. The recovered catalyst was highly effective for the oxidative pretreatment of a fine chemical wastewater to improve its biodegradability; the resulting COD removal and BOD(5)/COD ratio of the treated stream remained nearly unchanged during the time period when the regenerated catalyst was reused six times. The simple and effective catalyst regeneration method will make Fenton and Fenton-like oxidation a more cost-effective wastewater treatment alternative.

  14. Bench-Scale Evaluation of Hydrothermal Processing Technology for Conversion of Wastewater Solids to Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of hydrothermal treatment for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge, secondary sludge, and digested solids. Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. Biocrude yields ranged from 25-37%. Biocrude composition and quality were comparable to biocrudes generated from algae feeds. Subsequent hydrotreating of biocrude resulted in a product with comparable physical and chemical properties to crude oil.more » CHG product gas methane yields on a carbon basis ranged from 47-64%. Siloxane concentrations in the CHG product gas were below engine limits. The HTL-CHG process resulted in a chemical oxygen demand (COD) reduction of > 99.9% and a reduction in residual solids for disposal of 94-99%.« less

  15. A safer disposal of hazardous phosphate coating sludge by formation of an amorphous calcium phosphate matrix.

    PubMed

    Navarro-Blasco, I; Duran, A; Pérez-Nicolás, M; Fernández, J M; Sirera, R; Alvarez, J I

    2015-08-15

    Phosphate coating hazardous wastes originated from the automotive industry were efficiently encapsulated by an acid-base reaction between phosphates present in the sludge and calcium aluminate cement, yielding very inert and stable monolithic blocks of amorphous calcium phosphate (ACP). Two different compositions of industrial sludge were characterized and loaded in ratios ranging from 10 to 50 wt.%. Setting times and compressive strengths were recorded to establish the feasibility of this method to achieve a good handling and a safe landfilling of these samples. Short solidification periods were found and leaching tests showed an excellent retention for toxic metals (Zn, Ni, Cu, Cr and Mn) and for organic matter. Retentions over 99.9% for Zn and Mn were observed even for loadings as high as 50 wt.% of the wastes. The formation of ACP phase of low porosity and high stability accounted for the effective immobilization of the hazardous components of the wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Science, policy and the management of sewage materials. The New York City experience.

    PubMed

    Swanson, R Lawrence; Bortman, Marci L; O'Connor, Thomas P; Stanford, Harold M

    2004-11-01

    Development of national policy on sewage sludge management is a classic example of incremental policy formulation [Fiorino, D.J. 1995. Making Environmental Policy. University of California Press. Berkeley, CA. p. 269]. Consequently, policy has developed piecemeal, and results are, in some ways, different than intended. Land application of sewage sludge has not been a panacea. Many of the same types of policy are now being raised about it. We demonstrate this by examining the management of sewage materials by New York City from near the turn of the 20th century, when ocean dumping was viewed as a means to alleviate some of the gross pollution in New York Harbor, to when ocean dumping was banned, and thence to the present when sludge is applied to land as "biosolids." Lessons learned during this long, sometimes contentious history can be applied to present situations--specifically not understanding the long-term consequences of land-based reuse and disposal technologies.

  17. Recovery and safer disposal of phosphate coating sludge by solidification/stabilization.

    PubMed

    Ucaroglu, Selnur; Talinli, Ilhan

    2012-08-30

    Solidification/stabilization (S/S) of automotive phosphate coating sludge (PS) containing potentially toxic heavy metals was studied. The hazardous characteristics of this waste were assessed according to both Turkish and U.S. Environmental Protection Agency (EPA) regulations for hazardous solid waste. Unconfined compressive strength (UCS) and leaching behavior tests of the solidified/stabilized product were performed. Solidification studies were conducted using Portland cement (PC) as the binder. UCS was found to decrease with increasing waste content. It was found that recovery of the waste for construction applications was possible when the waste content of the mortar was 20% and below, but solidification for safe disposal was achieved only when higher waste concentrations were added. Cu, Cr, Ni, Pb and Zn were found to be significantly immobilized by the solidification/stabilization process. Ni and Zn, which were present at particularly high concentrations (2.281 and 135.318 g/kg respectively) in the PS, had highest the retention levels (94.87% and 98.74%, respectively) in the PC mortars. The organic contaminants and heavy metals present in PS were determined to be immobilized by the S/S process in accordance with the BS 6920 standard. Thus, the potential for hazardous PS waste to adversely impact human health and the environment was effectively eliminated by the S/S procedure. We conclude that S/S-treated PS is safe for disposal in landfills, while recovery of S/S-treated PS constituents remains possible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Cone Penetrometer Shear Strength Measurements of Sludge Waste in Tanks 241-AN-101 and 241-AN-106

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, Jordan R.

    2014-03-06

    This document presents the resulting shear strength profiles for sludge waste in Tanks 241-AN-101 and 241-AN-106, as determined with a full-flow cone penetrometer. Full-flow penetrometer measurements indicate shear strength profiles that increase roughly uniformly with depth. For Tank 241-AN-101, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 3,300 Pa at 15 inches above the tank bottom. For 241-AN-106, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 5,000 Pa at 15 inches above the tank bottom.

  19. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea.

    PubMed

    Kim, Mi-Hyung; Song, Yul-Eum; Song, Han-Byul; Kim, Jung-Wk; Hwang, Sun-Jin

    2011-01-01

    The costs associated with eight food waste disposal options, dry feeding, wet feeding, composting, anaerobic digestion, co-digestion with sewage sludge, food waste disposer, incineration, and landfilling, were evaluated in the perspective of global warming and energy and/or resource recovery. An expanded system boundary was employed to compare by-products. Life cycle cost was analyzed through the entire disposal process, which included discharge, separate collection, transportation, treatment, and final disposal stages, all of which were included in the system boundary. Costs and benefits were estimated by an avoided impact. Environmental benefits of each system per 1 tonne of food waste management were estimated using carbon prices resulting from CO(2) reduction by avoided impact, as well as the prices of by-products such as animal feed, compost, and electricity. We found that the cost of landfilling was the lowest, followed by co-digestion. The benefits of wet feeding systems were the highest and landfilling the lowest. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A novel approach for quantitative evaluation of the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor.

    PubMed

    Lin, Hongjun; Zhang, Meijia; Mei, Rongwu; Chen, Jianrong; Hong, Huachang

    2014-11-01

    This study proposed a novel approach for quantitative evaluation of the physicochemical interactions between a particle and rough surface. The approach adopts the composite Simpson's rule to numerically calculate the double integrals in the surface element integration of these physicochemical interactions. The calculation could be achieved by a MATLAB program based on this approach. This approach was then applied to assess the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor (MBR). The results showed that, as compared with smooth membrane surface, rough membrane surface had a much lower strength of interactions with sludge foulants. Meanwhile, membrane surface morphology significantly affected the strength and properties of the interactions. This study showed that the newly developed approach was feasible, and could serve as a primary tool for investigating membrane fouling in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

Top