Sample records for smad3 coordinately regulate

  1. SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner

    PubMed Central

    Bollinger, Lance M.; Witczak, Carol A.; Houmard, Joseph A.

    2014-01-01

    Muscle-specific RING finger-1 (MuRF-1), a ubiquitin ligase and key regulator of proteasome-dependent protein degradation, is highly expressed during skeletal muscle atrophy. The transcription factor forkhead box O3 (FoxO3) induces MuRF-1 expression, but the direct role of other major atrophy-related transcription factors, such as SMAD3, is largely unknown. The goal of this study was to determine whether SMAD3 individually regulates, or with FoxO3 coordinately regulates, MuRF-1 expression. In cultured myotubes or human embryonic kidney cells, MuRF-1 mRNA content and promoter activity were increased by FoxO3 but not by SMAD3 overexpression. However, FoxO3 and SMAD3 coexpression synergistically increased MuRF-1 mRNA and promoter activity. Mutation of the SMAD-binding element (SBE) in the proximal MuRF-1 promoter or overexpression of a SMAD3 DNA-binding mutant attenuated FoxO3-dependent MuRF-1 promoter activation, showing that SMAD binding to DNA is required for optimal activation of FoxO3-induced transcription of MuRF-1. Using chromatin immunoprecipitation, SMAD3 DNA binding increased FoxO3 abundance and SBE mutation reduced FoxO3 abundance on the MuRF-1 promoter. Furthermore, SMAD3 overexpression dose-dependently increased FoxO3 protein content, and coexpression of FoxO3 and SMAD3 synergistically increased FoxO-dependent gene transcription [assessed with a FoxO response element (FRE)-driven reporter]. Collectively, these results show that SMAD3 regulates transcription of MuRF-1 by increasing FoxO3 binding at a conserved FRE-SBE motif within the proximal promoter region, and by increasing FoxO3 protein content and transcriptional activity. These data are the first to indicate that two major transcription factors regulating protein degradation, FoxO3 and SMAD3, converge to coordinately and directly regulate transcription of MuRF-1. PMID:24920680

  2. SnoN Stabilizes the SMAD3/SMAD4 Protein Complex

    PubMed Central

    Walldén, Karin; Nyman, Tomas; Hällberg, B. Martin

    2017-01-01

    TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling. PMID:28397834

  3. SnoN Stabilizes the SMAD3/SMAD4 Protein Complex.

    PubMed

    Walldén, Karin; Nyman, Tomas; Hällberg, B Martin

    2017-04-11

    TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling.

  4. TGF-β induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways.

    PubMed

    Strand, Douglas W; Liang, Yao-Yun; Yang, Feng; Barron, David A; Ressler, Steven J; Schauer, Isaiah G; Feng, Xin-Hua; Rowley, David R

    2014-01-01

    Transforming Growth Factor-β (TGF-β) regulates the reactive stroma microenvironment associated with most carcinomas and mediates expression of many stromal derived factors important for tumor progression, including FGF-2 and CTGF. TGF-β is over-expressed in most carcinomas, and FGF-2 action is important in tumor-induced angiogenesis. The signaling mechanisms of how TGF-β regulates FGF-2 expression in the reactive stroma microenvironment are not understood. Accordingly, we have assessed key signaling pathways that mediate TGF-β1-induced FGF-2 expression in prostate stromal fibroblasts and mouse embryo fibroblasts (MEFs) null for Smad2 and Smad3. TGF-β1 induced phosphorylation of Smad2, Smad3, p38 and ERK1/2 proteins in both control MEFs and prostate fibroblasts. Of these, Smad3, but not Smad2 was found to be required for TGF-β1 induction of FGF-2 expression in stromal cells. ChIP analysis revealed a Smad3/Smad4 complex was associated with the -1.9 to -2.3 kb upstream proximal promoter of the FGF-2 gene, further suggesting a Smad3-specific regulation. In addition, chemical inhibition of p38 or ERK1/2 MAPK activity also blocked TGF-β1-induced FGF-2 expression in a Smad3-independent manner. Conversely, inhibition of JNK signaling enhanced FGF-2 expression. Together, these data indicate that expression of FGF-2 in fibroblasts in the tumor stromal cell microenvironment is coordinately dependent on both intact Smad3 and MAP kinase signaling pathways. These pathways and key downstream mediators of TGF-β action in the tumor reactive stroma microenvironment, may evolve as putative targets for therapeutic intervention.

  5. USP4 inhibits SMAD4 monoubiquitination and promotes activin and BMP signaling.

    PubMed

    Zhou, Fangfang; Xie, Feng; Jin, Ke; Zhang, Zhengkui; Clerici, Marcello; Gao, Rui; van Dinther, Maarten; Sixma, Titia K; Huang, Huizhe; Zhang, Long; Ten Dijke, Peter

    2017-06-01

    SMAD4 is a common intracellular effector for TGF-β family cytokines, but the mechanism by which its activity is dynamically regulated is unclear. We demonstrated that ubiquitin-specific protease (USP) 4 strongly induces activin/BMP signaling by removing the inhibitory monoubiquitination from SMAD4. This modification was triggered by the recruitment of the E3 ligase, SMURF2, to SMAD4 following ligand-induced regulatory (R)-SMAD-SMAD4 complex formation. Whereas the interaction of the negative regulator c-SKI inhibits SMAD4 monoubiquitination, the ligand stimulates the recruitment of SMURF2 to the c-SKI-SMAD2 complex and triggers c-SKI ubiquitination and degradation. Thus, SMURF2 has a role in termination and initiation of TGF-β family signaling. An increase in monoubiquitinated SMAD4 in USP4-depleted mouse embryonic stem cells (mESCs) decreased both the BMP- and activin-induced changes in the embryonic stem cell fate. USP4 sustained SMAD4 activity during activin- and BMP-mediated morphogenic events in early zebrafish embryos. Moreover, zebrafish depleted of USP4 exhibited defective cell migration and slower coordinated cell movement known as epiboly, both of which could be rescued by SMAD4. Therefore, USP4 is a critical determinant of SMAD4 activity. © 2017 The Authors.

  6. Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6

    PubMed Central

    Mouillesseaux, Kevin P.; Wiley, David S.; Saunders, Lauren M.; Wylie, Lyndsay A.; Kushner, Erich J.; Chong, Diana C.; Citrin, Kathryn M.; Barber, Andrew T.; Park, Youngsook; Kim, Jun-Dae; Samsa, Leigh Ann; Kim, Jongmin; Liu, Jiandong; Jin, Suk-Won; Bautch, Victoria L.

    2016-01-01

    Functional blood vessel growth depends on generation of distinct but coordinated responses from endothelial cells. Bone morphogenetic proteins (BMP), part of the TGFβ superfamily, bind receptors to induce phosphorylation and nuclear translocation of SMAD transcription factors (R-SMAD1/5/8) and regulate vessel growth. However, SMAD1/5/8 signalling results in both pro- and anti-angiogenic outputs, highlighting a poor understanding of the complexities of BMP signalling in the vasculature. Here we show that BMP6 and BMP2 ligands are pro-angiogenic in vitro and in vivo, and that lateral vessel branching requires threshold levels of R-SMAD phosphorylation. Endothelial cell responsiveness to these pro-angiogenic BMP ligands is regulated by Notch status and Notch sets responsiveness by regulating a cell-intrinsic BMP inhibitor, SMAD6, which affects BMP responses upstream of target gene expression. Thus, we reveal a paradigm for Notch-dependent regulation of angiogenesis: Notch regulates SMAD6 expression to affect BMP responsiveness of endothelial cells and new vessel branch formation. PMID:27834400

  7. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletalmore » myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.« less

  8. Activation of Bmp2-Smad1 Signal and Its Regulation by Coordinated Alteration of H3K27 Trimethylation in Ras-Induced Senescence

    PubMed Central

    Kaneda, Atsushi; Fujita, Takanori; Anai, Motonobu; Yamamoto, Shogo; Nagae, Genta; Morikawa, Masato; Tsuji, Shingo; Oshima, Masanobu; Miyazono, Kohei; Aburatani, Hiroyuki

    2011-01-01

    Cellular senescence involves epigenetic alteration, e.g. loss of H3K27me3 in Ink4a-Arf locus. Using mouse embryonic fibroblast (MEF), we here analyzed transcription and epigenetic alteration during Ras-induced senescence on genome-wide scale by chromatin immunoprecipitation (ChIP)-sequencing and microarray. Bmp2 was the most activated secreted factor with H3K4me3 gain and H3K27me3 loss, whereas H3K4me3 loss and de novo formation of H3K27me3 occurred inversely in repression of nine genes, including two BMP-SMAD inhibitors Smad6 and Noggin. DNA methylation alteration unlikely occurred. Ras-activated cells senesced with nuclear accumulation of phosphorylated SMAD1/5/8. Senescence was bypassed in Ras-activated cells when Bmp2/Smad1 signal was blocked by Bmp2 knockdown, Smad6 induction, or Noggin induction. Senescence was induced when recombinant BMP2 protein was added to Bmp2-knocked-down Ras-activated cells. Downstream Bmp2-Smad1 target genes were then analyzed genome-wide by ChIP-sequencing using anti-Smad1 antibody in MEF that was exposed to BMP2. Smad1 target sites were enriched nearby transcription start sites of genes, which significantly correlated to upregulation by BMP2 stimulation. While Smad6 was one of Smad1 target genes to be upregulated by BMP2 exposure, Smad6 repression in Ras-activated cells with increased enrichment of Ezh2 and gain of H3K27me3 suggested epigenetic disruption of negative feedback by Polycomb. Among Smad1 target genes that were upregulated in Ras-activated cells without increased repressive mark, Parvb was found to contribute to growth inhibition as Parvb knockdown lead to escape from senescence. It was revealed through genome-wide analyses in this study that Bmp2-Smad1 signal and its regulation by harmonized epigenomic alteration play an important role in Ras-induced senescence. PMID:22072987

  9. SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts

    PubMed Central

    Xu, Zhan; Greenblatt, Matthew B.; Yan, Guang; Feng, Heng; Sun, Jun; Lotinun, Sutada; Brady, Nicholas; Baron, Roland; Glimcher, Laurie H.; Zou, Weiguo

    2017-01-01

    Coordination between osteoblasts and osteoclasts is required for bone health and homeostasis. Here we show that mice deficient in SMURF2 have severe osteoporosis in vivo. This low bone mass phenotype is accompanied by a pronounced increase in osteoclast numbers, although Smurf2-deficient osteoclasts have no intrinsic alterations in activity. Smurf2-deficient osteoblasts display increased expression of RANKL, the central osteoclastogenic cytokine. Mechanistically, SMURF2 regulates RANKL expression by disrupting the interaction between SMAD3 and vitamin D receptor by altering SMAD3 ubiquitination. Selective deletion of Smurf2 in the osteoblast lineage recapitulates the phenotype of germline Smurf2-deficient mice, indicating that SMURF2 regulates osteoblast-dependent osteoclast activity rather than directly affecting the osteoclast. Our results reveal SMURF2 as an important regulator of the critical communication between osteoblasts and osteoclasts. Furthermore, the bone mass phenotype in Smurf2- and Smurf1-deficient mice is opposite, indicating that SMURF2 has a non-overlapping and, in some respects, opposite function to SMURF1. PMID:28216630

  10. SMAD1 and SMAD5 Expression Is Coordinately Regulated by FLI1 and GATA2 during Endothelial Development.

    PubMed

    Marks-Bluth, Jonathon; Khanna, Anchit; Chandrakanthan, Vashe; Thoms, Julie; Bee, Thomas; Eich, Christina; Kang, Young Chan; Knezevic, Kathy; Qiao, Qiao; Fitch, Simon; Oxburgh, Leif; Ottersbach, Katrin; Dzierzak, Elaine; de Bruijn, Marella F T R; Pimanda, John E

    2015-06-01

    The bone morphogenetic protein (BMP)/SMAD signaling pathway is a critical regulator of angiogenic sprouting and is involved in vascular development in the embryo. SMAD1 and SMAD5, the core mediators of BMP signaling, are vital for this activity, yet little is known about their transcriptional regulation in endothelial cells. Here, we have integrated multispecies sequence conservation, tissue-specific chromatin, in vitro reporter assay, and in vivo transgenic data to identify and validate Smad1+63 and the Smad5 promoter as tissue-specific cis-regulatory elements that are active in the developing endothelium. The activity of these elements in the endothelium was dependent on highly conserved ETS, GATA, and E-box motifs, and chromatin immunoprecipitation showed high levels of enrichment of FLI1, GATA2, and SCL at these sites in endothelial cell lines and E11 dorsal aortas in vivo. Knockdown of FLI1 and GATA2 but not SCL reduced the expression of SMAD1 and SMAD5 in endothelial cells in vitro. In contrast, CD31(+) cKit(-) endothelial cells harvested from embryonic day 9 (E9) aorta-gonad-mesonephros (AGM) regions of GATA2 null embryos showed reduced Smad1 but not Smad5 transcript levels. This is suggestive of a degree of in vivo selection where, in the case of reduced SMAD1 levels, endothelial cells with more robust SMAD5 expression have a selective advantage. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification

    PubMed Central

    Liu, Ling; Liu, Xu; Ren, Xudong; Tian, Yue; Chen, Zhenyu; Xu, Xiangjie; Du, Yanhua; Jiang, Cizhong; Fang, Yujiang; Liu, Zhongliang; Fan, Beibei; Zhang, Quanbin; Jin, Guohua; Yang, Xiao; Zhang, Xiaoqing

    2016-01-01

    The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events. PMID:26905010

  12. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification.

    PubMed

    Liu, Ling; Liu, Xu; Ren, Xudong; Tian, Yue; Chen, Zhenyu; Xu, Xiangjie; Du, Yanhua; Jiang, Cizhong; Fang, Yujiang; Liu, Zhongliang; Fan, Beibei; Zhang, Quanbin; Jin, Guohua; Yang, Xiao; Zhang, Xiaoqing

    2016-02-24

    The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events.

  13. Coordinate Activation of Redox-Dependent ASK1/TGF-β Signaling by a Multiprotein Complex (MPK38, ASK1, SMADs, ZPR9, and TRX) Improves Glucose and Lipid Metabolism in Mice.

    PubMed

    Seong, Hyun-A; Manoharan, Ravi; Ha, Hyunjung

    2016-03-10

    To explore the molecular connections between redox-dependent apoptosis signal-regulating kinase 1 (ASK1) and transforming growth factor-β (TGF-β) signaling pathways and to examine the physiological processes in which coordinated regulation of these two signaling pathways plays a critical role. We provide evidence that the ASK1 and TGF-β signaling pathways are interconnected by a multiprotein complex harboring murine protein serine-threonine kinase 38 (MPK38), ASK1, Sma- and Mad-related proteins (SMADs), zinc-finger-like protein 9 (ZPR9), and thioredoxin (TRX) and demonstrate that the activation of either ASK1 or TGF-β activity is sufficient to activate both the redox-dependent ASK1 and TGF-β signaling pathways. Physiologically, the restoration of the downregulated activation levels of ASK1 and TGF-β signaling in genetically and diet-induced obese mice by adenoviral delivery of SMAD3 or ZPR9 results in the amelioration of adiposity, hyperglycemia, hyperlipidemia, and impaired ketogenesis. Our data suggest that the multiprotein complex linking ASK1 and TGF-β signaling pathways may be a potential target for redox-mediated metabolic complications.

  14. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-06

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.

  15. Linking Smads and transcriptional activation.

    PubMed

    Inman, Gareth J

    2005-02-15

    TGF-beta1 (transforming growth factor-beta1) is the prototypical member of a large family of pleiotropic cytokines that regulate diverse biological processes during development and adult tissue homoeostasis. TGF-beta signals via membrane bound serine/threonine kinase receptors which transmit their signals via the intracellular signalling molecules Smad2, Smad3 and Smad4. These Smads contain conserved MH1 and MH2 domains separated by a flexible linker domain. Smad2 and Smad3 act as kinase substrates for the receptors, and, following phosphorylation, they form complexes with Smad4 and translocate to the nucleus. These Smad complexes regulate gene expression and ultimately determine the biological response to TGF-beta. In this issue of the Biochemical Journal, Wang et al. have shown that, like Smad4, the linker domain of Smad3 contains a Smad transcriptional activation domain. This is capable of recruiting the p300 transcriptional co-activator and is required for Smad3-dependent transcriptional activation. This study raises interesting questions about the nature and regulation of Smad-regulated gene activation and elevates the status of the linker domain to rival that of the much-lauded MH1 and MH2 domains.

  16. Regulation of renal fibrosis by Smad3 Thr388 phosphorylation.

    PubMed

    Qu, Xinli; Li, Xueling; Zheng, Yaowu; Ren, Yi; Puelles, Victor G; Caruana, Georgina; Nikolic-Paterson, David J; Li, Jinhua

    2014-04-01

    Transforming growth factor-β (TGF-β) promotes tissue fibrosis via receptor-mediated phosphorylation of the receptor-activated Smad2/3, together with Smad4. Of these, Smad3 plays a major profibrotic role in mouse models of tissue fibrosis. Transcriptional activity of the Smad3 protein is regulated by phosphorylation of residues in the C-terminal domain and the linker region. Herein, we examined the role of a novel phosphorylation site within the MH2 domain (T388) in the regulation of Smad3 activity. Confocal microscopy using an Smad3 phosphorylated T388-specific antibody identified phosphorylation of Smad3 T388 in myofibroblasts and tubular epithelial cells in human focal and segmental glomerulosclerosis and mouse models of unilateral ureteric obstruction and diabetic nephropathy, whereas phosphorylated T388 was largely absent in normal kidney. In vitro, TGF-β1 induced phosphorylation of Smad3 T388 in a biphasic pattern. A point mutation of T388/V in an Smad3 construct demonstrated that phosphorylation of T388 promotes Smad3 binding to Smad4 and CDK8, but was not necessary for nuclear translocation. Furthermore, T388 phosphorylation was required for TGF-β-induced collagen I gene promoter activity and extracellular matrix production in cultured fibroblasts. In conclusion, our study identifies phosphorylation of T388 in the Smad3 MH2 domain as an important mechanism that regulates the profibrotic TGF-β/Smad3 signaling pathway, which has direct relevance to human and experimental fibrotic kidney disease. Copyright © 2014. Published by Elsevier Inc.

  17. Mechanisms of action of acetaldehyde in the up-regulation of the human α2(I) collagen gene in hepatic stellate cells: key roles of Ski, SMAD3, SMAD4, and SMAD7.

    PubMed

    Reyes-Gordillo, Karina; Shah, Ruchi; Arellanes-Robledo, Jaime; Hernández-Nazara, Zamira; Rincón-Sánchez, Ana Rosa; Inagaki, Yutaka; Rojkind, Marcos; Lakshman, M Raj

    2014-05-01

    Alcohol-induced liver fibrosis and eventually cirrhosis is a leading cause of death. Acetaldehyde, the first metabolite of ethanol, up-regulates expression of the human α2(I) collagen gene (COL1A2). Early acetaldehyde-mediated effects involve phosphorylation and nuclear translocation of SMAD3/4-containing complexes that bind to COL1A2 promoter to induce fibrogenesis. We used human and mouse hepatic stellate cells to elucidate the mechanisms whereby acetaldehyde up-regulates COL1A2 by modulating the role of Ski and the expression of SMADs 3, 4, and 7. Acetaldehyde induced up-regulation of COL1A2 by 3.5-fold, with concomitant increases in the mRNA (threefold) and protein (4.2- and 3.5-fold) levels of SMAD3 and SMAD4, respectively. It also caused a 60% decrease in SMAD7 expression. Ski, a member of the Ski/Sno oncogene family, is colocalized in the nucleus with SMAD4. Acetaldehyde induces translocation of Ski and SMAD4 to the cytoplasm, where Ski undergoes proteasomal degradation, as confirmed by the ability of the proteasomal inhibitor lactacystin to blunt up-regulation of acetaldehyde-dependent COL1A2, but not of the nonspecific fibronectin gene (FN1). We conclude that acetaldehyde up-regulates COL1A2 by enhancing expression of the transactivators SMAD3 and SMAD4 while inhibiting the repressor SMAD7, along with promoting Ski translocation from the nucleus to cytoplasm. We speculate that drugs that prevent proteasomal degradation of repressors targeting COL1A2 may have antifibrogenic properties. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Structural basis for the versatile interactions of Smad7 with regulator WW domains in TGF-β pathways

    PubMed Central

    Aragón, Eric; Goerner, Nina; Xi, Qiaoran; Gomes, Tiago; Gao, Sheng; Massagué, Joan; Macias, Maria J.

    2012-01-01

    Summary TGF-β and BMP signaling is mediated by Smads 1–5 (R-Smads and Co-Smads) and inhibited by Smad7, a major hub of regulation of TGF-β and BMP receptors by negative feedback and antagonistic signals. The transcription coactivator YAP and the E3 ubiquitin ligases Smurf1/2 and Nedd4L target R-Smads for activation or degradation, respectively. Pairs of WW domain in these regulators bind PY motifs and adjacent CDK/MAPK and GSK3 phosphorylation sites in R-Smads in a selective and regulated manner. In contrast, here we show that Smad7 binds YAP, Smurf1, Smurf2 and Nedd4L constitutively, the binding involving a PY motif in Smad7 and no phosphorylation. We also provide a structural basis for how regulators that use WW domain pairs for selective interactions with R-Smads, resort to one single versatile WW domain for binding Smad7 to centralize regulation in the TGF-β and BMP pathways. PMID:22921829

  19. Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in high glucose treated human mesangial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Department of Geriatrics, Zhu Jiang Hospital, Southern Medical University, Guangzhou, Guangdong; Hu, Fang

    Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide and is associated with glomerular mesangial cell (MC) proliferation and excessive extracellular matrix (ECM) production. Klotho can attenuate renal fibrosis in part by inhibiting TGF-β1/Smad3 signaling in DKD. Early growth response factor 1 (Egr-1) has been shown to play a key role in renal fibrosis in part by facilitating the formation of a positive feedback loop involving TGF-β1. However, whether Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in DKD is unclear. In the present study, we assessed human MCs that were incubated under high-glucose conditions tomore » mimic diabetes. Then, we transfected the cells with Klotho plasmid or siRNA to overexpress or knock down Klotho gene and protein expression. Klotho, Egr-1, fibronectin (FN), collagen type I (Col I), Smad3 and phosphorylated Smad3 (p-Smad3) gene and protein expression levels were determined by RT-qPCR and western blotting respectively. High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. pcDNA3.1-Klotho transfection-mediated Klotho overexpression down-regulated Egr-1, FN and Col I expression and the p-Smad3/Smad3 ratio in human MCs. Conversely, siRNA-mediated Klotho silencing up-regulated Egr-1, FN, and Col I expression and the p-Smad3/Smad3 ratio. Moreover, the effects of si-Klotho on Egr-1 expression were abolished by the TGF-β1 inhibitor SB-431542. Klotho overexpression can prevent mesangial ECM production in high-glucose-treated human MCs, an effect that has been partially attributed to Egr-1 down-regulation facilitated by TGF-β1/Smad3 signaling inhibition. - Highlights: • High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. • Klotho overexpression down-regulated Egr-1 and prevented mesangial ECM production in high-glucose-treated human MCs. • Klotho down-regulated Egr-1 by inhibiting TGF-β1/Smad3 signaling in high-glucose-treated human MCs.« less

  20. Ablation of Smurf2 reveals an inhibition in TGF-β signalling through multiple mono-ubiquitination of Smad3

    PubMed Central

    Tang, Liu-Ya; Yamashita, Motozo; Coussens, Nathan P; Tang, Yi; Wang, Xiangchun; Li, Cuiling; Deng, Chu-Xia; Cheng, Steven Y; Zhang, Ying E

    2011-01-01

    TGF-β signalling is regulated by post-translational modifications of Smad proteins to translate quantitative difference in ligand concentration into proportional transcriptional output. Previous studies in cell culture systems suggested that Smad ubiquitination regulatory factors (Smurfs) act in this regulation by targeting Smads for proteasomal degradation, but whether this mechanism operates under physiological conditions is not clear. Here, we generated mice harbouring a target-disrupted Smurf2 allele. Using primary mouse embryonic fibroblasts and dermal fibroblasts, we show that TGF-β-mediated, Smad-dependent transcriptional responses are elevated in the absence of Smurf2. Instead of promoting poly-ubiquitination and degradation, we show that Smurf2 actually induces multiple mono-ubiquitination of Smad3 in vivo. Phosphorylation of T179, immediately upstream of the Smad3 PY motif, enhances Smurf2 and Smad3 interaction and Smad3 ubiquitination. We have mapped Smurf2-induced Smad3 ubiquitination sites to lysine residues at the MH2 domain, and demonstrate that Smad3 ubiquitination inhibits the formation of Smad3 complexes. Thus, our data support a model in which Smurf2 negatively regulates TGF-β signalling by attenuating the activity of Smad3 rather than promoting its degradation. PMID:22045334

  1. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes.

    PubMed

    Qureshi, Hamid Yaqoob; Ricci, Gemma; Zafarullah, Muhammad

    2008-09-01

    Transforming growth factor beta (TGF-beta1) promotes cartilage matrix synthesis and induces tissue inhibitor of metalloproteinases-3 (TIMP-3), which inhibits matrix metalloproteinases, aggrecanases and TNF-alpha-converting enzyme implicated in articular cartilage degradation and joint inflammation. TGF-beta1 activates Akt, ERK and Smad2 pathways in chondrocytes. Here we investigated previously unexplored roles of specific Smads in TGF-beta1 induction of TIMP-3 gene by pharmacological and genetic knockdown approaches. TGF-beta1-induced Smad2 phosphorylation and TIMP-3 protein expression could be inhibited by the Smad2/3 phosphorylation inhibitors, PD169316 and SB203580 and by Smad2-specific siRNA. Specific inhibitor of Smad3 (SIS3) and Smad3 siRNA abolished TGF-beta induction of TIMP-3. Smad2/3 siRNAs also down regulated TIMP-3 promoter-driven luciferase activities, suggesting transcriptional regulation. SiRNA-driven co-Smad4 knockdown abrogated TIMP-3 augmentation by TGF-beta. TIMP-3 promoter deletion analysis revealed that -828 deletion retains the original promoter activity while -333 and -167 deletions display somewhat reduced activity suggesting that most of the TGF-beta-responsive, cis-acting elements are found in the -333 fragment. Chromatin Immunoprecipitation (ChIP) analysis confirmed binding of Smad2 and Smad4 with the -940 and -333 promoter sequences. These results suggest that receptor-activated Smad2 and Smad3 and co-Smad4 critically mediate TGF-beta-stimulated TIMP-3 expression in human chondrocytes and TIMP-3 gene is a target of Smad signaling pathway.

  2. A Poised Chromatin Platform for TGF-[beta] Access to Master Regulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Qiaoran; Wang, Zhanxin; Zaromytidou, Alexia-Ileana

    2012-02-07

    Specific chromatin marks keep master regulators of differentiation silent yet poised for activation by extracellular signals. We report that nodal TGF-{beta} signals use the poised histone mark H3K9me3 to trigger differentiation of mammalian embryonic stem cells. Nodal receptors induce the formation of companion Smad4-Smad2/3 and TRIM33-Smad2/3 complexes. The PHD-Bromo cassette of TRIM33 facilitates binding of TRIM33-Smad2/3 to H3K9me3 and H3K18ac on the promoters of mesendoderm regulators Gsc and Mixl1. The crystal structure of this cassette, bound to histone H3 peptides, illustrates that PHD recognizes K9me3, and Bromo binds an adjacent K18ac. The interaction between TRIM33-Smad2/3 and H3K9me3 displaces the chromatin-compactingmore » factor HP1, making nodal response elements accessible to Smad4-Smad2/3 for Pol II recruitment. In turn, Smad4 increases K18 acetylation to augment TRIM33-Smad2/3 binding. Thus, nodal effectors use the H3K9me3 mark as a platform to switch master regulators of stem cell differentiation from the poised to the active state.« less

  3. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer.

    PubMed

    Matsuzaki, Koichi; Kitano, Chiaki; Murata, Miki; Sekimoto, Go; Yoshida, Katsunori; Uemura, Yoshiko; Seki, Toshihito; Taketani, Shigeru; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2009-07-01

    Transforming growth factor (TGF)-beta initially inhibits growth of mature epithelial cells. Later, however, autocrine TGF-beta signaling acts in concert with the Ras pathway to induce a proliferative and invasive phenotype. TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also Ras-associated kinases, which differentially phosphorylate the mediators Smad2 and Smad3 to create distinct phosphorylated forms: COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C) and both linker and COOH-terminally phosphorylated Smad2/3 (pSmad2L/C and pSmad3L/C). In this study, we investigated actions of pSmad2L/C and pSmad3L/C in cancer progression. TGF-beta inhibited cell growth by down-regulating c-Myc oncoprotein through the pSmad2C and pSmad3C pathway; TGF-beta signaling, in turn, enhanced cell growth by up-regulating c-Myc through the cyclin-dependent kinase (CDK) 4-dependent pSmad2L/C and pSmad3L/C pathways in cell nuclei. Alternatively, TbetaRI and c-Jun NH2-terminal kinase (JNK) together created cytoplasmic pSmad2L/C, which entered the nucleus and stimulated cell invasion, partly by up-regulating matrix metalloproteinase-9. In 20 clinical samples, pSmad2L/C and pSmad3L/C showed nuclear localization at invasion fronts of all TGF-beta-producing human metastatic colorectal cancers. In vitro kinase assay confirmed that nuclear CDK4 and cytoplasmic JNK obtained from the tumor tissue could phosphorylate Smad2 or Smad3 at their linker regions. We suggest that CDK4, together with JNK, alters tumor-suppressive TGF-beta signaling to malignant characteristics in later stages of human colorectal cancer. The linker phosphorylation of Smad2 and Smad3 may represent a target for intervention in human metastatic cancer.

  4. A truncated, activin-induced Smad3 isoform acts as a transcriptional repressor of FSHβ expression in mouse pituitary

    PubMed Central

    Kim, So-Youn; Zhu, Jie; Woodruff, Teresa K.

    2011-01-01

    The receptor-regulated protein Smad3 is key player in the signaling cascade stimulated by the binding of activin to its cell surface receptor. Upon phosphorylation, Smad3 forms a heterocomplex with Smad2 and Smad4, translocates to the nucleus and acts as a transcriptional co-activator. We have identified a unique isoform of Smad3 that is expressed in mature pituitary gonadotropes. 5' RACE revealed that this truncated Smad3 isoform is transcribed from an ATG site within exon 4 and consists of 7 exons encoding half of the linker region and the MH2 region. In pituitary cells, the truncated Smad3 isoform was phosphorylated upon activin treatment, in a manner that was temporally distinct from the phosphorylation of full-length Smad3. Activin-induced phosphorylation of Smad3 and the truncated Smad3 isoform was blocked by both follistatin and siRNA-mediated knockdown of Smad3. The truncated Smad3 isoform antagonized Smad3-mediated, activin-responsive promoter activity. We propose that the pituitary gonadotrope contains an ultra-short, activin-responsive feedback loop utilizing two different isoforms of Smad3, one which acts as an agonist (Smad3) and another that acts as an intracrine antagonist (truncated Smad3 isoform) to regulate FSHβ production. PMID:21664424

  5. Smad Acetylation: A New Level of Regulation in TGF-Beta Signaling

    DTIC Science & Technology

    2007-07-01

    of Smad2 and Smad3 , resulting in their oligomerization with the common mediator Smad4 (10-11). This Smad2/ Smad3 /Smad4 complex can then translocate...Smad2 and Smad3 , enabling oligomerization with Smad4 and translocation of the entire Smad complex into the nucleus. Once in the nucleus, the...performed prior to DOD funding determined that Smad2 but not Smad3 is efficiently acetylated in a p300 depend manner both in in vivo and in vitro models

  6. Identification of the Downstream Promoter Targets of Smad Tumor Suppressors in Human Breast Cancer Cells

    DTIC Science & Technology

    2004-10-01

    signaling mediator Smad2, Smad3 and Smad4 which form oligomeric complexes and migrate into nucleus to function as transcription factors to modulate... Smad3 and Smad4. 2. Identification of the downstream promoter targets of Smad3 or Smad4 in breast cancer cells. 3. Identify Smad4 regulated downstream...Development of a novel chromatin immunoprecipitation assay (CHIPS) using a TAP-TAG system to isolate in vivo binding targets of Smad3 and Smad4

  7. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins.

    PubMed

    Seong, Hyun-A; Jung, Haiyoung; Kim, Kyong-Tai; Ha, Hyunjung

    2007-04-20

    We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.

  8. Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor-β (TGF-β)/Smad Signaling.

    PubMed

    Yan, Xiaohua; Liao, Hongwei; Cheng, Minzhang; Shi, Xiaojing; Lin, Xia; Feng, Xin-Hua; Chen, Ye-Guang

    2016-01-01

    TGF-β is a pleiotropic cytokine that regulates a wide range of cellular actions and pathophysiological processes. TGF-β signaling is spatiotemporally fine-tuned. As a key negative regulator of TGF-β signaling, Smad7 exerts its inhibitory effects by blocking receptor activity, inducing receptor degradation or interfering with Smad-DNA binding. However, the functions and the molecular mechanisms underlying the actions of Smad7 in TGF-β signaling are still not fully understood. In this study we report a novel mechanism whereby Smad7 antagonizes TGF-β signaling at the Smad level. Smad7 oligomerized with R-Smad proteins upon TGF-β signaling and directly inhibited R-Smad activity, as assessed by Gal4-luciferase reporter assays. Mechanistically, Smad7 competes with Smad4 to associate with R-Smads and recruits the E3 ubiquitin ligase NEDD4L to activated R-Smads, leading to their polyubiquitination and proteasomal degradation. Similar to the R-Smad-Smad4 oligomerization, the interaction between R-Smads and Smad7 is mediated by their mad homology 2 (MH2) domains. A positive-charged basic region including the L3/β8 loop-strand module and adjacent amino acids in the MH2 domain of Smad7 is essential for the interaction. These results shed new light on the regulation of TGF-β signaling by Smad7. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling.

    PubMed

    Hough, Chris; Radu, Maria; Doré, Jules J E

    2012-01-01

    The Transforming Growth Factor-Beta (TGF-β) family is involved in regulating a variety of cellular processes such as apoptosis, differentiation, and proliferation. TGF-β binding to a Serine/Threonine kinase receptor complex causes the recruitment and subsequent activation of transcription factors known as smad2 and smad3. These proteins subsequently translocate into the nucleus to negatively or positively regulate gene expression. In this study, we define a second signaling pathway leading to TGF-β receptor activation of Extracellular Signal Regulated Kinase (Erk) in a cell-type dependent manner. TGF-β induced Erk activation was found in phenotypically normal mesenchymal cells, but not normal epithelial cells. By activating phosphotidylinositol 3-kinase (PI3K), TGF-β stimulates p21-activated kinase2 (Pak2) to phosphorylate c-Raf, ultimately resulting in Erk activation. Activation of Erk was necessary for TGF-β induced fibroblast replication. In addition, Erk phosphorylated the linker region of nuclear localized smads, resulting in increased half-life of C-terminal phospho-smad 2 and 3 and increased duration of smad target gene transcription. Together, these data show that in mesenchymal cell types the TGF-β/PI3K/Pak2/Raf/MEK/Erk pathway regulates smad signaling, is critical for TGF-β-induced growth and is part of an integrated signaling web containing multiple interacting pathways rather than discrete smad/non-smad pathways.

  10. A truncated, activin-induced Smad3 isoform acts as a transcriptional repressor of FSHβ expression in mouse pituitary.

    PubMed

    Kim, So-Youn; Zhu, Jie; Woodruff, Teresa K

    2011-08-06

    The receptor-regulated protein Smad3 is key player in the signaling cascade stimulated by the binding of activin to its cell surface receptor. Upon phosphorylation, Smad3 forms a heterocomplex with Smad2 and Smad4, translocates to the nucleus and acts as a transcriptional co-activator. We have identified a unique isoform of Smad3 that is expressed in mature pituitary gonadotropes. 5' RACE revealed that this truncated Smad3 isoform is transcribed from an ATG site within exon 4 and consists of 7 exons encoding half of the linker region and the MH2 region. In pituitary cells, the truncated Smad3 isoform was phosphorylated upon activin treatment, in a manner that was temporally distinct from the phosphorylation of full-length Smad3. Activin-induced phosphorylation of Smad3 and the truncated Smad3 isoform was blocked by both follistatin and siRNA-mediated knockdown of Smad3. The truncated Smad3 isoform antagonized Smad3-mediated, activin-responsive promoter activity. We propose that the pituitary gonadotrope contains an ultra-short, activin-responsive feedback loop utilizing two different isoforms of Smad3, one which acts as an agonist (Smad3) and another that acts as an intracrine antagonist (truncated Smad3 isoform) to regulate FSHβ production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Follicle-stimulating hormone synthesis and fertility are intact in mice lacking SMAD3 DNA binding activity and SMAD2 in gonadotrope cells

    PubMed Central

    Fortin, Jérôme; Boehm, Ulrich; Weinstein, Michael B.; Graff, Jonathan M.; Bernard, Daniel J.

    2014-01-01

    The activin/inhibin system regulates follicle-stimulating hormone (FSH) synthesis and release by pituitary gonadotrope cells in mammals. In vitro cell line data suggest that activins stimulate FSH β-subunit (Fshb) transcription via complexes containing the receptor-regulated SMAD proteins SMAD2 and SMAD3. Here, we used a Cre-loxP approach to determine the necessity for SMAD2 and/or SMAD3 in FSH synthesis in vivo. Surprisingly, mice with conditional mutations in both Smad2 and Smad3 specifically in gonadotrope cells are fertile and produce FSH at quantitatively normal levels. Notably, however, we discovered that the recombined Smad3 allele produces a transcript that encodes the entirety of the SMAD3 C-terminal Mad homology 2 (MH2) domain. This protein behaves similarly to full-length SMAD3 in Fshb transcriptional assays. As the truncated protein lacks the N-terminal Mad homology 1 (MH1) domain, these results show that SMAD3 DNA-binding activity as well as SMAD2 are dispensable for normal FSH synthesis in vivo. Furthermore, the observation that deletion of proximal exons does not remove all SMAD3 function may facilitate interpretation of divergent phenotypes previously described in different Smad3 knockout mouse lines.—Fortin, J., Boehm, U., Weinstein, M. B., Graff, J. M., Bernard, D. J. Follicle-stimulating hormone synthesis and fertility are intact in mice lacking SMAD3 DNA binding activity and SMAD2 in gonadotrope cells. PMID:24308975

  12. SUMO-Specific Cysteine Protease 1 Promotes Epithelial Mesenchymal Transition of Prostate Cancer Cells via Regulating SMAD4 deSUMOylation.

    PubMed

    Zhang, Xiaoyan; Wang, Hao; Wang, Hua; Xiao, Fengjun; Seth, Prem; Xu, Weidong; Jia, Qinghua; Wu, Chutse; Yang, Yuefeng; Wang, Lisheng

    2017-04-12

    In advanced prostate cancer, small ubiquitin-like modifier (SUMO)-specific cysteine protease 1 (SENP1) is up-regulated. However, the role of SENP1 in regulating deSUMOylation of TGF-β/SMADs signaling is unknown. In this study, we developed a lentiviral vector, PLKO.1-shSENP1, to silence SENP1 in prostate cancer cells with high metastatic characteristics (PC3M). Likewise, we also created an adenovirus vector, Ad5/F11p-SENP1 to over-express SENP1 in prostate cancer cells with low metastatic potential (LNCaP). We showed that silencing of SENP1 promoted cellular apoptosis, and inhibited proliferation and migration of PC3M cells. Moreover, SENP1 silencing increased the SMAD4 expression at protein level, up-regulated E-cadherin and down-regulated Vimentin expression, indicating the inhibition of epithelial mesenchymal transition (EMT). Furthermore, SMAD4 interference abolished SENP1-mediated up-regulation of E-cadherin, suggesting that SENP1 regulated E-cadherin expression via SMAD4. SENP1 over-expression in LNCaP cells reduced SMAD4 protein, and promoted EMT via decreasing E-cadherin and increasing Vimentin. Moreover, down-regulation of SMAD4 and E-cadherin were blocked, after transfection with two SUMOylation sites mutated SMAD4, suggesting that SENP1 might reduce SMAD4 levels to regulate E-cadherin expression via deSUMOylation of SMAD4. In conclusion, SENP1 deSUMOylated SMAD4 to promote EMT via up-regulating E-cadherin in prostate cancer cells. Therefore, SENP1 is a potential target for treatment of advanced prostate cancer.

  13. Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation.

    PubMed

    Yoon, Jeong-Hwan; Sudo, Katsuko; Kuroda, Masahiko; Kato, Mitsuyasu; Lee, In-Kyu; Han, Jin Soo; Nakae, Susumu; Imamura, Takeshi; Kim, Juryun; Ju, Ji Hyeon; Kim, Dae-Kee; Matsuzaki, Koichi; Weinstein, Michael; Matsumoto, Isao; Sumida, Takayuki; Mamura, Mizuko

    2015-07-21

    Transforming growth factor-β (TGF-β) and interleukin-6 (IL-6) are the pivotal cytokines to induce IL-17-producing CD4(+) T helper cells (TH17); yet their signalling network remains largely unknown. Here we show that the highly homologous TGF-β receptor-regulated Smads (R-Smads): Smad2 and Smad3 oppositely modify STAT3-induced transcription of IL-17A and retinoic acid receptor-related orphan nuclear receptor, RORγt encoded by Rorc, by acting as a co-activator and co-repressor of STAT3, respectively. Smad2 linker phosphorylated by extracellular signal-regulated kinase (ERK) at the serine 255 residue interacts with STAT3 and p300 to transactivate, whereas carboxy-terminal unphosphorylated Smad3 interacts with STAT3 and protein inhibitor of activated STAT3 (PIAS3) to repress the Rorc and Il17a genes. Our work uncovers carboxy-terminal phosphorylation-independent noncanonical R-Smad-STAT3 signalling network in TH17 differentiation.

  14. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling.

  15. Mechanisms of Action of Acetaldehyde in the Up-Regulation of the Human α2(I) Collagen Gene in Hepatic Stellate Cells

    PubMed Central

    Reyes-Gordillo, Karina; Shah, Ruchi; Arellanes-Robledo, Jaime; Hernández-Nazara, Zamira; Rincón-Sánchez, Ana Rosa; Inagaki, Yutaka; Rojkind, Marcos; Lakshman, M. Raj

    2015-01-01

    Alcohol-induced liver fibrosis and eventually cirrhosis is a leading cause of death. Acetaldehyde, the first metabolite of ethanol, up-regulates expression of the human α2(I) collagen gene (COL1A2). Early acetaldehyde-mediated effects involve phosphorylation and nuclear translocation of SMAD3/4–containing complexes that bind to COL1A2 promoter to induce fibrogenesis. We used human and mouse hepatic stellate cells to elucidate the mechanisms whereby acetaldehyde up-regulates COL1A2 by modulating the role of Ski and the expression of SMADs 3, 4, and 7. Acetaldehyde induced up-regulation of COL1A2 by 3.5-fold, with concomitant increases in the mRNA (threefold) and protein (4.2- and 3.5-fold) levels of SMAD3 and SMAD4, respectively. It also caused a 60% decrease in SMAD7 expression. Ski, a member of the Ski/Sno oncogene family, is colocalized in the nucleus with SMAD4. Acetaldehyde induces translocation of Ski and SMAD4 to the cytoplasm, where Ski undergoes proteasomal degradation, as confirmed by the ability of the proteasomal inhibitor lactacystin to blunt up-regulation of acetaldehyde-dependent COL1A2, but not of the nonspecific fibronectin gene (FN1). We conclude that acetaldehyde up-regulates COL1A2 by enhancing expression of the transactivators SMAD3 and SMAD4 while inhibiting the repressor SMAD7, along with promoting Ski translocation from the nucleus to cytoplasm. We speculate that drugs that prevent proteasomal degradation of repressors targeting COL1A2 may have antifibrogenic properties. PMID:24641900

  16. Reversible Smad-dependent signaling between tumor suppression and oncogenesis.

    PubMed

    Sekimoto, Go; Matsuzaki, Koichi; Yoshida, Katsunori; Mori, Shigeo; Murata, Miki; Seki, Toshihito; Matsui, Hirofumi; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2007-06-01

    Cancer cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor-beta (TGF-beta) together with stimulation of its oncogenic activity as in Ras-transformed cells; however, molecular mechanisms remain largely unknown. TGF-beta activates both its type I receptor (TbetaRI) and c-Jun NH2-terminal kinase (JNK), which phosphorylate Smad2 and Smad3 at the COOH-terminal (pSmad2/3C) and linker regions (pSmad2/3L). Here, we report that Ras transformation suppresses TbetaRI-mediated pSmad3C signaling, which involves growth inhibition by down-regulating c-Myc. Instead, hyperactive Ras constitutively stimulates JNK-mediated pSmad2/3L signaling, which fosters tumor invasion by up-regulating plasminogen activator inhibitor-1 and matrix metalloproteinase-1 (MMP-1), MMP-2, and MMP-9. Conversely, selective blockade of linker phosphorylation by a mutant Smad3 lacking JNK-dependent phosphorylation sites results in preserved tumor-suppressive function via pSmad3C in Ras-transformed cells while eliminating pSmad2/3L-mediated invasive capacity. Thus, specific inhibition of the JNK/pSmad2/3L pathway should suppress cancer progression by shifting Smad-dependent signaling from oncogenesis to tumor suppression.

  17. Smad Acetylation: A New Level of Regulation in TGF-Beta Signaling

    DTIC Science & Technology

    2005-07-01

    Our lab has determined that Smad2, but not Smad3 , can be acetylated by the acetyltransferase protein p300 in vivo and in vitro. The residues...terminal of Smad2 and Smad3 , allowing oligomerization with the common mediator Smad4 [9-10]. The Smad2/3/4 complex then translocates to the nucleus where...Smad2, but not Smad3 , could be acetylated in a p300 dependent manner. Both in vivo and in vitro data support the conclusion that only Smad2 could be

  18. Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling.

    PubMed

    Guo, Xing; Ramirez, Alejandro; Waddell, David S; Li, Zhizhong; Liu, Xuedong; Wang, Xiao-Fan

    2008-01-01

    The broad range of biological responses elicited by transforming growth factor-beta (TGF-beta) in various types of tissues and cells is mainly determined by the expression level and activity of the effector proteins Smad2 and Smad3. It is not fully understood how the baseline properties of Smad3 are regulated, although this molecule is in complex with many other proteins at the steady state. Here we show that nonactivated Smad3, but not Smad2, undergoes proteasome-dependent degradation due to the concerted action of the scaffolding protein Axin and its associated kinase, glycogen synthase kinase 3-beta (GSK3-beta). Smad3 physically interacts with Axin and GSK3-beta only in the absence of TGF-beta. Reduction in the expression or activity of Axin/GSK3-beta leads to increased Smad3 stability and transcriptional activity without affecting TGF-beta receptors or Smad2, whereas overexpression of these proteins promotes Smad3 basal degradation and desensitizes cells to TGF-beta. Mechanistically, Axin facilitates GSK3-beta-mediated phosphorylation of Smad3 at Thr66, which triggers Smad3 ubiquitination and degradation. Thr66 mutants of Smad3 show altered protein stability and hence transcriptional activity. These results indicate that the steady-state stability of Smad3 is an important determinant of cellular sensitivity to TGF-beta, and suggest a new function of the Axin/GSK3-beta complex in modulating critical TGF-beta/Smad3-regulated processes during development and tumor progression.

  19. SUMO-Specific Cysteine Protease 1 Promotes Epithelial Mesenchymal Transition of Prostate Cancer Cells via Regulating SMAD4 deSUMOylation

    PubMed Central

    Zhang, Xiaoyan; Wang, Hao; Wang, Hua; Xiao, Fengjun; Seth, Prem; Xu, Weidong; Jia, Qinghua; Wu, Chutse; Yang, Yuefeng; Wang, Lisheng

    2017-01-01

    In advanced prostate cancer, small ubiquitin-like modifier (SUMO)-specific cysteine protease 1 (SENP1) is up-regulated. However, the role of SENP1 in regulating deSUMOylation of TGF-β/SMADs signaling is unknown. In this study, we developed a lentiviral vector, PLKO.1-shSENP1, to silence SENP1 in prostate cancer cells with high metastatic characteristics (PC3M). Likewise, we also created an adenovirus vector, Ad5/F11p-SENP1 to over-express SENP1 in prostate cancer cells with low metastatic potential (LNCaP). We showed that silencing of SENP1 promoted cellular apoptosis, and inhibited proliferation and migration of PC3M cells. Moreover, SENP1 silencing increased the SMAD4 expression at protein level, up-regulated E-cadherin and down-regulated Vimentin expression, indicating the inhibition of epithelial mesenchymal transition (EMT). Furthermore, SMAD4 interference abolished SENP1-mediated up-regulation of E-cadherin, suggesting that SENP1 regulated E-cadherin expression via SMAD4. SENP1 over-expression in LNCaP cells reduced SMAD4 protein, and promoted EMT via decreasing E-cadherin and increasing Vimentin. Moreover, down-regulation of SMAD4 and E-cadherin were blocked, after transfection with two SUMOylation sites mutated SMAD4, suggesting that SENP1 might reduce SMAD4 levels to regulate E-cadherin expression via deSUMOylation of SMAD4. In conclusion, SENP1 deSUMOylated SMAD4 to promote EMT via up-regulating E-cadherin in prostate cancer cells. Therefore, SENP1 is a potential target for treatment of advanced prostate cancer. PMID:28417919

  20. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.

    PubMed

    Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin

    2004-04-01

    Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.

  1. Regulation of CCN2/CTGF Expression in the Nucleus Pulposus of the Intervertebral Disc: Role of Smad and AP1 Signaling

    PubMed Central

    Tran, Cassie M.; Markova, Dessislava; Smith, Harvey E.; Susarla, Bala; Ponnappan, Ravi Kumar; Anderson, D Greg; Symes, Aviva; Shapiro, Irving M.; Risbud, Makarand V.

    2011-01-01

    Objective To investigate TGFβ regulation of CTGF expression in cells of the nucleus pulposus. Methods Real Time RT-PCR and Western blot analysis was used to measure CTGF expression in the nucleus pulposus. Transfections were used to measure the effect of Smad2/3/7 and AP1on TGFβ mediated CTGF promoter activity. Results CTGF expression was lower in the neonatal disc compared with the skeletally mature rat disc. An increase in CTGF expression and promoter activity was observed in nucleus pulposus cells after TGFβ treatment. Deletion analysis indicated that promoter constructs lacking smad and AP1 motifs were unresponsive to treatment. Analysis showed that full-length Smad3 and the Smad3-MH2 domain alone increased CTGF activity. Further evidence of Smad3 and AP1 involvement was seen when DN-Smad3, SiRNA-Smad3, smad7 and DN-AP1 suppressed TGFβ mediated activation of the CTGF promoter. When either Smad3 or AP1 sites were mutated, CTGF promoter induction by TGFβ was suppressed. We also observed a decrease in expression of CTGF in discs of Smad3 null mice compared to the wild type. Analysis of human nucleus pulposus indicated a trend of increasing CTGF and TGFβ expression in the degenerate state. Conclusion TGFβ, through Smad3 and AP1, serves as a positive regulator of CTGF expression in the nucleus pulposus. We propose that CTGF is a part of the limited reparative response of the degenerate disc. PMID:20222112

  2. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist inhibits collagen synthesis in human hypertrophic scar fibroblasts by targeting Smad3 via miR-145

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hua-Yu; Li, Chao; Zheng, Zhao

    The transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ) functions to regulate cell differentiation and lipid metabolism. Recently, its agonist has been documented to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanisms and gene interactions in hypertrophic scar fibroblasts (HSFBs) in vitro. HSFBs were cultured and treated with or without PPAR-γ agonist or antagonist for gene expression. Bioinformatical analysis predicted that miR-145 could target Smad3 expression. Luciferase assay was used to confirm such an interaction. The data showed that PPAR-γ agonist troglitazone suppressed expression of Smad3 and Col1 in HSFBs. PPAR-γ agonist induced miR-145 at themore » gene transcriptional level, which in turn inhibited Smad3 expression and Col1 level in HSFBs. Furthermore, ELISA data showed that Col1 level in HSFBs was controlled by a feedback regulation mechanism involved in PPAR-γ agonist and antagonist-regulated expression of miR-145 and Smad3 in HSFBs. These findings indicate that PPAR-γ-miR-145-Smad3 axis plays a role in regulation of collagen synthesis in HSFBs. - Highlights: • PPAR-γ agonist inhibits collagen synthesis in HSFBs. • Smad3 and type I collagen expression are decreased by PPAR-γ agonist. • miR-145 expression is increased by PPAR-γ agonist in HSFBs. • Increased miR-145 inhibits collagen synthesis by targeting Smad3. • miR-145 regulates collagen synthesis.« less

  3. Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation

    PubMed Central

    Yoon, Jeong-Hwan; Sudo, Katsuko; Kuroda, Masahiko; Kato, Mitsuyasu; Lee, In-Kyu; Han, Jin Soo; Nakae, Susumu; Imamura, Takeshi; Kim, Juryun; Ju, Ji Hyeon; Kim, Dae-Kee; Matsuzaki, Koichi; Weinstein, Michael; Matsumoto, Isao; Sumida, Takayuki; Mamura, Mizuko

    2015-01-01

    Transforming growth factor-β (TGF-β) and interleukin-6 (IL-6) are the pivotal cytokines to induce IL-17-producing CD4+ T helper cells (TH17); yet their signalling network remains largely unknown. Here we show that the highly homologous TGF-β receptor-regulated Smads (R-Smads): Smad2 and Smad3 oppositely modify STAT3-induced transcription of IL-17A and retinoic acid receptor-related orphan nuclear receptor, RORγt encoded by Rorc, by acting as a co-activator and co-repressor of STAT3, respectively. Smad2 linker phosphorylated by extracellular signal-regulated kinase (ERK) at the serine 255 residue interacts with STAT3 and p300 to transactivate, whereas carboxy-terminal unphosphorylated Smad3 interacts with STAT3 and protein inhibitor of activated STAT3 (PIAS3) to repress the Rorc and Il17a genes. Our work uncovers carboxy-terminal phosphorylation-independent noncanonical R-Smad–STAT3 signalling network in TH17 differentiation. PMID:26194464

  4. Mucin1 shifts Smad3 signaling from the tumor-suppressive pSmad3C/p21(WAF1) pathway to the oncogenic pSmad3L/c-Myc pathway by activating JNK in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Yuan, Hongyan; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Zhai, Ruiping; Shao, Dan; Ni, Weihua; Tai, Guixiang

    2015-02-28

    Mucin1 (MUC1) is a transmembrane glycoprotein that acts as an oncogene in human hepatic tumorigenesis. Hepatocellular carcinoma (HCC) cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor beta (TGF-β) together with stimulation of its oncogenic activity as in MUC1 expressing HCC cells; however, molecular mechanisms remain largely unknown. Type I TGF-β receptor (TβRI) and c-Jun NH2-terminal kinase (JNK) differentially phosphorylate Smad3 mediator to create 2 phosphorylated forms: COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Here, we report that MUC1 overexpression in HCC cell lines suppresses TβRI-mediated pSmad3C signaling which involves growth inhibition by up-regulating p21(WAF1). Instead, MUC1 directly activates JNK to stimulate oncogenic pSmad3L signaling, which fosters cell proliferation by up-regulating c-Myc. Conversely, MUC1 gene silencing in MUC1 expressing HCC cells results in preserved tumor-suppressive function via pSmad3C, while eliminating pSmad3L-mediated oncogenic activity both in vitro and in vivo. In addition, high correlation between MUC1 and pSmad3L/c-Myc but not pSmad3C/p21(WAF1) expression was observed in HCC tissues from patients. Collectively, these results indicate that MUC1 shifts Smad3 signaling from a tumor-suppressive pSmad3C/p21(WAF1) to an oncogenic pSmad3L/c-Myc pathway by directly activating JNK in HCC cells, suggesting that MUC1 is an important target for HCC therapy.

  5. TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis

    PubMed Central

    Xu, Fengyun; Liu, Changwei; Zhou, Dandan; Zhang, Lei

    2016-01-01

    Transforming growth factor-beta1 (TGF-β1), a key member in the TGF-β superfamily, plays a critical role in the development of hepatic fibrosis. Its expression is consistently elevated in affected organs, which correlates with increased extracellular matrix deposition. SMAD proteins have been studied extensively as pivotal intracellular effectors of TGF-β1, acting as transcription factors. In the context of hepatic fibrosis, SMAD3 and SMAD4 are pro-fibrotic, whereas SMAD2 and SMAD7 are protective. Deletion of SMAD3 inhibits type I collagen expression and blocks epithelial-myofibroblast transition. In contrast, disruption of SMAD2 upregulates type I collagen expression. SMAD4 plays an essential role in fibrosis disease by enhancing SMAD3 responsive promoter activity, whereas SMAD7 negatively mediates SMAD3-induced fibrogenesis. Accumulating evidence suggests that divergent miRNAs participate in the liver fibrotic process, which partially regulates members of the TGF-β/SMAD signaling pathway. In this review, we focus on the TGF-β/SMAD and other relative signaling pathways, and discussed the role and molecular mechanisms of TGF-β/SMAD in the pathogenesis of hepatic fibrosis. Moreover, we address the possibility of novel therapeutic approaches to hepatic fibrosis by targeting to TGF-β/SMAD signaling. PMID:26747705

  6. Microglial SMAD4 regulated by microRNA-146a promotes migration of microglia which support tumor progression in a glioma environment

    PubMed Central

    Karthikeyan, Aparna; Gupta, Neelima; Tang, Carol; Mallilankaraman, Karthik; Silambarasan, Maskomani; Shi, Meng; Lu, Lei; Ang, Beng Ti; Ling, Eng-Ang; Dheen, S. Thameem

    2018-01-01

    Glioma tumors constitute a significant portion of microglial cells, which are known to support tumor progression. The present study demonstrates that transforming growth factor-β (TGFβ) signaling pathway in microglia in a glioma environment is involved in tumor progression and pathogenesis. It has been shown that the TGFβ level is elevated in higher grades of gliomas and its signaling pathway regulates tumor progression through phosphorylation of SMAD2 and SMAD3, which form a complex with SMAD4 to regulate target gene transcription. In an in vitro cell line-based model increased protein levels of pSMAD2/3, total SMAD2/3 and SMAD4 were observed in murine BV2 microglia cultured in glioma conditioned medium (GCM), indicative of the activated TGFβ signaling pathway in microglia associated with glioma environment. Immunofluorescence labeling further revealed the expression of SMAD4 in microglial and non-microglial cells of human glioblastomas tissue in vivo. Functional analysis through shRNA-mediated stable knockdown of SMAD4 in microglia revealed the downregulation of the expression of matrix metalloproteinase 9 (MMP9), which has been shown to be involved in tumor progression and cell migration. Further, knockdown of SMAD4 in microglia decreased the migration of microglial cells towards GCM, indicating that SMAD4 promotes microglial migration in glioma environment. In addition, SMAD4 has been shown to be post-transcriptionally regulated by microRNA-146a, which was downregulated in microglia treated with GCM. Overexpression of miR-146a resulted in decreased expression of SMAD4 together with tumor supportive gene MMP9 in microglia, and subsequently suppressed microglial migration towards GCM, possibly through regulation of SMAD4. On the other hand, the cell viability assay revealed decreased viability of glioma cells when they were treated with conditioned medium derived from SMAD4 knockdown microglia or miR-146a overexpressed microglia as compared to glioma cells treated with the medium from control microglial cells. Taken together, the present study suggests that microglial SMAD4 which is epigenetically regulated by miR-146a promotes microglial migration in gliomas and glioma cell viability.

  7. SMAD3 Negatively Regulates Serum Irisin and Skeletal Muscle FNDC5 and Peroxisome Proliferator-activated Receptor γ Coactivator 1-α (PGC-1α) during Exercise*

    PubMed Central

    Tiano, Joseph P.; Springer, Danielle A.; Rane, Sushil G.

    2015-01-01

    Beige adipose cells are a distinct and inducible type of thermogenic fat cell that express the mitochondrial uncoupling protein-1 and thus represent a powerful target for treating obesity. Mice lacking the TGF-β effector protein SMAD3 are protected against diet-induced obesity because of browning of their white adipose tissue (WAT), leading to increased whole body energy expenditure. However, the role SMAD3 plays in WAT browning is not clearly understood. Irisin is an exercise-induced skeletal muscle hormone that induces WAT browning similar to that observed in SMAD3-deficient mice. Together, these observations suggested that SMAD3 may negatively regulate irisin production and/or secretion from skeletal muscle. To address this question, we used wild-type and SMAD3 knock-out (Smad3−/−) mice subjected to an exercise regime and C2C12 myotubes treated with TGF-β, a TGF-β receptor 1 pharmacological inhibitor, adenovirus expressing constitutively active SMAD3, or siRNA against SMAD3. We find that in Smad3−/− mice, exercise increases serum irisin and skeletal muscle FNDC5 (irisin precursor) and its upstream activator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) to a greater extent than in wild-type mice. In C2C12 myotubes, TGF-β suppresses FNDC5 and PGC-1α mRNA and protein levels via SMAD3 and promotes SMAD3 binding to the FNDC5 and PGC-1α promoters. These data establish that SMAD3 suppresses FNDC5 and PGC-1α in skeletal muscle cells. These findings shed light on the poorly understood regulation of irisin/FNDC5 by demonstrating a novel association between irisin and SMAD3 signaling in skeletal muscle. PMID:25648888

  8. Novel regulation of Smad3 oligomerization and DNA binding by its linker domain.

    PubMed

    Vasilaki, Eleftheria; Siderakis, Manos; Papakosta, Paraskevi; Skourti-Stathaki, Konstantina; Mavridou, Sofia; Kardassis, Dimitris

    2009-09-08

    Smad proteins are key effectors of the transforming growth factor beta (TGFbeta) signaling pathway in mammalian cells. Smads are composed of two highly structured and conserved domains called Mad homology 1 (MH1) and 2 (MH2), which are linked together by a nonconserved linker region. The recent identification of phosphorylation sites and binding sites for ubiquitin ligases in the linker regions of TGFbeta and bone morphogenetic protein (BMP) receptor-regulated Smads suggested that the linker may contribute to the regulation of Smad function by facilitating cross-talks with other signaling pathways. In the present study, we have generated and characterized novel Smad3 mutants bearing individual substitutions of conserved and nonconserved amino acid residues within a previously described transcriptionally active linker fragment. Our analysis showed that the conserved linker amino acids glutamine 222 and proline 229 play important roles in Smad functions such as homo- and hetero-oligomerization, nuclear accumulation in response to TGFbeta stimulation, and DNA binding. Furthermore, a Smad3 mutant bearing a substitution of the nonconserved amino acid asparagine 218 to alanine displayed enhanced transactivation potential relative to wild type Smad3. Finally, Smad3 P229A inhibited TGFbeta signaling when overexpressed in mammalian cells. In conclusion, our data are in line with previous studies supporting an important regulatory role of the linker region of Smads in their function as key transducers of TGFbeta signaling.

  9. Differential regulation of Smad3 and of the type II transforming growth factor-β receptor in mitosis: implications for signaling.

    PubMed

    Hirschhorn, Tal; Barizilay, Lior; Smorodinsky, Nechama I; Ehrlich, Marcelo

    2012-01-01

    The response to transforming growth factor-β (TGF-β) depends on cellular context. This context is changed in mitosis through selective inhibition of vesicle trafficking, reduction in cell volume and the activation of mitotic kinases. We hypothesized that these alterations in cell context may induce a differential regulation of Smads and TGF-β receptors. We tested this hypothesis in mesenchymal-like ovarian cancer cells, arrested (or not) in mitosis with 2-methoxyestradiol (2ME2). In mitosis, without TGF-β stimulation, Smad3 was phosphorylated at the C-terminus and linker regions and localized to the mitotic spindle. Phosphorylated Smad3 interacted with the negative regulators of Smad signaling, Smurf2 and Ski, and failed to induce a transcriptional response. Moreover, in cells arrested in mitosis, Smad3 levels were progressively reduced. These phosphorylations and reduction in the levels of Smad3 depended on ERK activation and Mps1 kinase activity, and were abrogated by increasing the volume of cells arrested in mitosis with hypotonic medium. Furthermore, an Mps1-dependent phosphorylation of GFP-Smad3 was also observed upon its over-expression in interphase cells, suggesting a mechanism of negative regulation which counters increases in Smad3 concentration. Arrest in mitosis also induced a block in the clathrin-mediated endocytosis of the type II TGF-β receptor (TβRII). Moreover, following the stimulation of mitotic cells with TGF-β, the proteasome-mediated attenuation of TGF-β receptor activity, the degradation and clearance of TβRII from the plasma membrane, and the clearance of the TGF-β ligand from the medium were compromised, and the C-terminus phosphorylation of Smad3 was prolonged. We propose that the reduction in Smad3 levels, its linker phosphorylation, and its association with negative regulators (observed in mitosis prior to ligand stimulation) represent a signal attenuating mechanism. This mechanism is balanced by the retention of active TGF-β receptors at the plasma membrane. Together, both mechanisms allow for a regulated cellular response to TGF-β stimuli in mitosis.

  10. Differential Regulation of Smad3 and of the Type II Transforming Growth Factor-β Receptor in Mitosis: Implications for Signaling

    PubMed Central

    Hirschhorn, Tal; Barizilay, Lior; Smorodinsky, Nechama I.; Ehrlich, Marcelo

    2012-01-01

    The response to transforming growth factor-β (TGF-β) depends on cellular context. This context is changed in mitosis through selective inhibition of vesicle trafficking, reduction in cell volume and the activation of mitotic kinases. We hypothesized that these alterations in cell context may induce a differential regulation of Smads and TGF-β receptors. We tested this hypothesis in mesenchymal-like ovarian cancer cells, arrested (or not) in mitosis with 2-methoxyestradiol (2ME2). In mitosis, without TGF-β stimulation, Smad3 was phosphorylated at the C-terminus and linker regions and localized to the mitotic spindle. Phosphorylated Smad3 interacted with the negative regulators of Smad signaling, Smurf2 and Ski, and failed to induce a transcriptional response. Moreover, in cells arrested in mitosis, Smad3 levels were progressively reduced. These phosphorylations and reduction in the levels of Smad3 depended on ERK activation and Mps1 kinase activity, and were abrogated by increasing the volume of cells arrested in mitosis with hypotonic medium. Furthermore, an Mps1-dependent phosphorylation of GFP-Smad3 was also observed upon its over-expression in interphase cells, suggesting a mechanism of negative regulation which counters increases in Smad3 concentration. Arrest in mitosis also induced a block in the clathrin-mediated endocytosis of the type II TGF-β receptor (TβRII). Moreover, following the stimulation of mitotic cells with TGF-β, the proteasome-mediated attenuation of TGF-β receptor activity, the degradation and clearance of TβRII from the plasma membrane, and the clearance of the TGF-β ligand from the medium were compromised, and the C-terminus phosphorylation of Smad3 was prolonged. We propose that the reduction in Smad3 levels, its linker phosphorylation, and its association with negative regulators (observed in mitosis prior to ligand stimulation) represent a signal attenuating mechanism. This mechanism is balanced by the retention of active TGF-β receptors at the plasma membrane. Together, both mechanisms allow for a regulated cellular response to TGF-β stimuli in mitosis. PMID:22927969

  11. Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation.

    PubMed

    Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira; Kim, Seong-Jin

    2018-03-01

    Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2 , SNAI1 , and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B , CTGF , and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B , CTGF , and JUNB genes in various cancers.

  12. Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells.

    PubMed

    Bae, Eunjin; Kim, Seong-Jin; Hong, Suntaek; Liu, Fang; Ooshima, Akira

    2012-10-26

    Transforming growth factor-β1 (TGF-β1) has a distinct role in renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. Smad3 plays an essential role in fibrosis initiated by EMT. Phosphorylation of Smad3 in the C-terminal SSXS motif by type I TGF-β receptor kinase is essential for mediating TGF-β response. Smad3 activity is also regulated by phosphorylation in the linker region. However, the functional role of Smad3 linker phosphorylation is not well characterized. We now show that Smad3 EPSM mutant, which mutated the four phosphorylation sites in the linker region, markedly enhanced TGF-β1-induced EMT of Smad3-deficient primary renal tubular epithelial cells, whereas Smad3 3S-A mutant, which mutated the C-terminal phosphorylation sites, was unable to induce EMT in response to TGF-β1. Furthermore, immunoblotting and RT-PCR analysis showed a marked induction of fibrogenic gene expression with a significant reduction in E-cadherin in HK2 human renal epithelial cells expressing Smad3 EPSM. TGF-β1 could not induce the expression of α-SMA, vimentin, fibronectin and PAI-1 or reduce the expression of E-cadherin in HK2 cells expressing Smad3 3S-A in response to TGF-β1. Our results suggest that Smad3 linker phosphorylation has a negative regulatory role on Smad3 transcriptional activity and TGF-β1/Smad3-induced renal EMT. Elucidation of mechanism regulating the Smad3 linker phosphorylation can provide a new strategy to control renal fibrosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Smad4 controls bone homeostasis through regulation of osteoblast/osteocyte viability.

    PubMed

    Moon, Young Jae; Yun, Chi-Young; Choi, Hwajung; Ka, Sun-O; Kim, Jung Ryul; Park, Byung-Hyun; Cho, Eui-Sic

    2016-09-02

    Regulation of osteoblast and osteocyte viability is essential for bone homeostasis. Smad4, a major transducer of bone morphogenetic protein and transforming growth factor-β signaling pathways, regulates apoptosis in various cell types through a mitochondrial pathway. However, it remains poorly understood whether Smad4 is necessary for the regulation of osteoblast and osteocyte viability. In this study, we analyzed Smad4Δ(Os) mice, in which Smad4 was subjected to tissue-specific disruption under the control of the 2.3-kb Col1a1 promoter, to understand the functional significance of Smad4 in regulating osteoblast/osteocyte viability during bone formation and remodeling. Smad4Δ(Os) mice showed a significant increase in osteoblast number and osteocyte density in the trabecular and cortical regions of the femur, whereas osteoclast activity was significantly decreased. The proliferation of osteoblasts/osteocytes did not alter, as shown by measuring 5'-bromo-2'deoxyuridine incorporation. By contrast, the percentage of TUNEL-positive cells decreased, together with a decrease in the Bax/Bcl-2 ratio and in the proteolytic cleavage of caspase 3, in Smad4Δ(Os) mice. Apoptosis in isolated calvaria cells from Smad4Δ(Os) mice decreased after differentiation, which was consistent with the results of the TUNEL assay and western blotting in Smad4Δ(Os) mice. Conversely, osteoblast cells overexpressing Smad4 showed increased apoptosis. In an apoptosis induction model of Smad4Δ(Os) mice, osteoblasts/osteocytes were more resistant to apoptosis than were control cells, and, consequently, bone remodeling was attenuated. These findings indicate that Smad4 has a significant role in regulating osteoblast/osteocyte viability and therefore controls bone homeostasis.

  14. Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling.

    PubMed

    Chen, Weijun; Lam, Suvana S; Srinath, Hema; Schiffer, Celia A; Royer, William E; Lin, Kai

    2007-04-13

    The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational studies. Here, we show that Ski-(16-192) interacted directly with a homotrimer of receptor-regulated Smad protein (R-Smad), e.g. Smad2 or Smad3, to form a hexamer; Ski-(16-192) interacted with an R-Smad.Smad4 heterotrimer to form a pentamer. CBP-(1941-1992) was also found to interact directly with an R-Smad homotrimer to form a hexamer and with an R-Smad.Smad4 heterotrimer to form a pentamer. Moreover, these domains of Ski and CBP competed with each other for binding to Smad3. Our mutational studies revealed that domains of Ski and CBP interacted with Smad3 at a portion of the binding surface of the Smad anchor for receptor activation. Our results suggest that Ski negatively regulates TGF-beta signaling by replacing CBP in R-Smad complexes. Our working model suggests that Smad protein activity is delicately balanced by Ski and CBP in the TGF-beta pathway.

  15. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroschein, Shannon L.; Bonni, Shirin; Wrana, Jeffrey L.

    2001-09-11

    Smad proteins mediate transforming growth factor-b signaling to regulate cell growth and differentiation. SnoN is an important negative regulator of TGFb signaling that functions to maintain the repressed state of TGFb target genes in the absence of ligand. Upon TGFb stimulation, Smad3 and Smad2 translocate into the nucleus and induce a rapid degradation of SnoN, allowing activation of TGFb target genes. Here we show that Smad2- or Smad3-induced degradation of SnoN requires the ubiquitin-dependent proteasome and can be mediated by the anaphase promoting complex (APC) and the UbcH5 family of ubiquitin conjugating enzymes. Smad3 and to a lesser extent, Smad2,more » interact with both the APC and SnoN, resulting in the recruitment of the APC to SnoN and subsequent ubiquitination of SnoN in a destruction box-dependent manner. In addition to the destruction box, efficient degradation of SnoN also requires the Smad3 binding site in SnoN as well as key lysine residues necessary for ubiquitin attachment. Mutation of either the Smad3 binding site or lysine residues results in stabilization of SnoN and in enhanced antagonism of TGFb signaling. Our studies elucidate an important pathway for the degradation of SnoN and reveal a novel role of the APC in regulation of TGFb signaling.« less

  16. Focal adhesion molecule Kindlin-1 mediates activation of TGF-β signaling by interacting with TGF-βRI, SARA and Smad3 in colorectal cancer cells

    PubMed Central

    Wang, Yunling; Yang, Mingzi; Gao, Jianchao; Wei, Xiaofan; Fang, Weigang; Zhan, Jun; Zhang, Hongquan

    2016-01-01

    Kindlin-1, an integrin-interacting protein, has been implicated in TGF-β/Smad3 signaling. However, the molecular mechanism underlying Kindlin-1 regulation of TGF-β/Smad3 signaling remains elusive. Here, we reported that Kindlin-1 is an important mediator of TGF-β/Smad3 signaling by showing that Kindlin-1 physically interacts with TGF-β receptor I (TβRI), Smad anchor for receptor activation (SARA) and Smad3. Kindlin-1 is required for the interaction of Smad3 with TβRI, Smad3 phosphorylation, nuclear translocation, and finally the activation of TGF-β/Smad3 signaling pathway. Functionally, Kindlin-1 promoted colorectal cancer (CRC) cell proliferation in vitro and tumor growth in vivo, and was also required for CRC cell migration and invasion via an epithelial to mesenchymal transition. Kindlin-1 was found to be increased with the CRC progression from stages I to IV. Importantly, raised expression level of Kindlin-1 correlates with poor outcome in CRC patients. Taken together, we demonstrated that Kindlin-1 promotes CRC progression by recruiting SARA and Smad3 to TβRI and thereby activates TGF-β/Smad3 signaling. Thus, Kindlin-1 is a novel regulator of TGF-β/Smad3 signaling and may also be a potential target for CRC therapeutics. PMID:27776350

  17. Interaction of microRNA-21/145 and Smad3 domain-specific phosphorylation in hepatocellular carcinoma

    PubMed Central

    Wang, Ji Yu; Fang, Meng; Boye, Alex; Wu, Chao; Wu, Jia Jun; Ma, Ying; Hou, Shu; Kan, Yue; Yang, Yan

    2017-01-01

    MicroRNAs 21 and 145 exhibit inverse expression in Hepatocellular carcinoma (HCC), but how they relate to Smad3 C-terminal and Link region phosphorylation (pSmad3C and pSmad3L) downstream of TGF-β/MAPK signaling, remains inconclusive. Our results suggest microRNA-145 targets Smad3 in HepG2 cells. Decreased tumor volume and increased apoptosis were produced in both microRNA-21 antagomir and microRNA-145 agomir groups compared to controls. Inhibition of TβRI and MAPK (ERK, JNK, and p38) activation respectively produced decreased microRNA-21 but increased microRNA-145 expression. Correspondingly, the expression level of pSmad3C obviously increased while pSmad3L decreased in microRNA-145 agomir-group and the expression of pSmad3C/3L were not markedly changed but pERK, pJNK, pp38 decreased in microRNA-21 antagomir-group compared to controls. On the other hand, microRNA-145 and 21 increased respectively in xenografts of HepG2 cells transfected with Smad3 EPSM and 3S-A plasmid, and this correlated with the overexpression of pSmad3C and pSmad3L respectively compared to control. To conclude, microRNA-21 promotes tumor progression in a MAPK-dependent manner while microRNA-145 suppresses it via domain-specific phosphorylation of Smad3 in HCC. Meanwhile, increased pSmad3C/3L lead to the up-regulation of microRNA-145/21 respectively. The interaction between pSmad3C/3L and microRNA-145/21 regulates HCC progression and the switch of pSmad3C/3L may serve as an important target for HCC therapy. PMID:29156696

  18. Structural basis for genome wide recognition of 5-bp GC motifs by SMAD transcription factors.

    PubMed

    Martin-Malpartida, Pau; Batet, Marta; Kaczmarska, Zuzanna; Freier, Regina; Gomes, Tiago; Aragón, Eric; Zou, Yilong; Wang, Qiong; Xi, Qiaoran; Ruiz, Lidia; Vea, Angela; Márquez, José A; Massagué, Joan; Macias, Maria J

    2017-12-12

    Smad transcription factors activated by TGF-β or by BMP receptors form trimeric complexes with Smad4 to target specific genes for cell fate regulation. The CAGAC motif has been considered as the main binding element for Smad2/3/4, whereas Smad1/5/8 have been thought to preferentially bind GC-rich elements. However, chromatin immunoprecipitation analysis in embryonic stem cells showed extensive binding of Smad2/3/4 to GC-rich cis-regulatory elements. Here, we present the structural basis for specific binding of Smad3 and Smad4 to GC-rich motifs in the goosecoid promoter, a nodal-regulated differentiation gene. The structures revealed a 5-bp consensus sequence GGC(GC)|(CG) as the binding site for both TGF-β and BMP-activated Smads and for Smad4. These 5GC motifs are highly represented as clusters in Smad-bound regions genome-wide. Our results provide a basis for understanding the functional adaptability of Smads in different cellular contexts, and their dependence on lineage-determining transcription factors to target specific genes in TGF-β and BMP pathways.

  19. Hindlimb unloading-induced muscle atrophy and phenotype transition is attenuated in Smad3+/- mice

    NASA Astrophysics Data System (ADS)

    Chen, X. P.; Zhang, P.; Liu, S. H.; Wang, F.; Ge, X.; Wu, Y.; Fan, M.

    Currently it has been well defined that the microgravity-induced muscle disuse characterized by atrophy and slow-to-fast phenotype transition of the postural muscles such as soleus muscle but the basic mechanism underlying the atrophy and phenotype transition of soleus muscle is still unclear To investigate the developmental mechanisms of muscle atrophy and its phenotype transition under microgravity the soleus muscle of Smad3 and Smad3 - mice after 14 days hindlimb unloading was examined Using histology and immunohistochemistry assay we found that the soleus muscle volume and fiber number appeared a remarkable increases in Smad3 - mice compared to those in Smad3 control In addition Western blot analysis showed that the expression level of myosin heavy chain MHC -slow myofiber specific protein in soleus muscle was visibly higher in Smad3 - mice than in Smad3 mice In contrast the expression level of MHC-fast myofiber specific protein in soleus muscle was visibly lower in Smad3 - mice than in Smad3 mice Furthermore RT-PCR revealed that the expression of Smad3 and myogenic regulatory factor MRF mRNA was inversely regulated Finally we determined that either Smad3 mRNA or Smad3 protein were selectively distributed in quiescent satellite cells in vivo and in reserve cells in vitro Therefore our findings suggested that Smad3 might be a key transcriptional factor for soleus muscle atrophy and slow-to-fast phenotype transition of the slow muscle under microgravity In the future an agent that regulates Smad3 expression may be used to prevent

  20. Smad3 allostery links TGF-β receptor kinase activation to transcriptional control

    PubMed Central

    Qin, Bin Y.; Lam, Suvana S.; Correia, John J.; Lin, Kai

    2002-01-01

    Smad3 transduces the signals of TGF-βs, coupling transmembrane receptor kinase activation to transcriptional control. The membrane-associated molecule SARA (Smad Anchor for Receptor Activation) recruits Smad3 for phosphorylation by the receptor kinase. Upon phosphorylation, Smad3 dissociates from SARA and enters the nucleus, in which its transcriptional activity can be repressed by Ski. Here, we show that SARA and Ski recognize specifically the monomeric and trimeric forms of Smad3, respectively. Thus, trimerization of Smad3, induced by phosphorylation, simultaneously activates the TGF-β signal by driving Smad3 dissociation from SARA and sets up the negative feedback mechanism by Ski. Structural models of the Smad3/SARA/receptor kinase complex and Smad3/Ski complex provide insights into the molecular basis of regulation. PMID:12154125

  1. PDAC-derived exosomes enrich the microenvironment in MDSCs in a SMAD4-dependent manner through a new calcium related axis.

    PubMed

    Basso, Daniela; Gnatta, Elisa; Padoan, Andrea; Fogar, Paola; Furlanello, Sara; Aita, Ada; Bozzato, Dania; Zambon, Carlo-Federico; Arrigoni, Giorgio; Frasson, Chiara; Franchin, Cinzia; Moz, Stefania; Brefort, Thomas; Laufer, Thomas; Navaglia, Filippo; Pedrazzoli, Sergio; Basso, Giuseppe; Plebani, Mario

    2017-10-17

    Tumor genetics and escape from immune surveillance concur in the poor prognosis of PDAC. In this study an experimental model was set up to verify whether SMAD4 , deleted in about 55% PDAC and associated with poor prognosis, is involved in determining immunosuppression through Exosomes (Exo). Potential mechanisms and mediators underlying SMAD4 -dependent immunosuppression were evaluated by studying intracellular calcium (Fluo-4), Exo-miRNAs (microarray) and Exo-proteins (SILAC). Two PDAC cell lines expressing (BxPC3- SMAD4 +) or not-expressing (BxPC3) SMAD4 were used to prepare Exo-enriched conditioned media, employed in experiments with blood donors PBMCs. Exo expanded myeloid derived suppressor cells (gMDSC and mMDSC, flow cytometry) and altered intracellular calcium fluxes in an SMAD4 dependent manner. BxPC3- SMAD4 +, but mainly BxPC3 Exo, increased calcium fluxes of PBMCs ( p = 0.007) and this increased intracellular calcium trafficking characterized mMDSCs. The analysis of de-regulated Exo-miRNAs and transfection experiments revealed hsa-miR-494-3p and has-miR-1260a as potential mediators of SMAD4- associated de-regulated calcium fluxes. Eleven main biological processes were identified by the analysis of SMAD4 -associated de-regulated Exo-proteins, including translation, cell adhesion, cell signaling and glycolysis. A reverse Warburg effect was observed by treating PBMCs with PDAC-derived Exo: BxPC3 Exo induced a higher glucose consumption and lactate production than BxPC3- SMAD4 + Exo. PDAC-derived Exo from cells with , but mainly from those without SMAD4 expression, create an immunosuppressive myeloid cell background by increasing calcium fluxes and glycolysis through the transfer of SMAD4 -related differentially expressed miRNAs and proteins.

  2. PDAC-derived exosomes enrich the microenvironment in MDSCs in a SMAD4-dependent manner through a new calcium related axis

    PubMed Central

    Basso, Daniela; Gnatta, Elisa; Padoan, Andrea; Fogar, Paola; Furlanello, Sara; Aita, Ada; Bozzato, Dania; Zambon, Carlo-Federico; Arrigoni, Giorgio; Frasson, Chiara; Franchin, Cinzia; Moz, Stefania; Brefort, Thomas; Laufer, Thomas; Navaglia, Filippo; Pedrazzoli, Sergio; Basso, Giuseppe; Plebani, Mario

    2017-01-01

    Tumor genetics and escape from immune surveillance concur in the poor prognosis of PDAC. In this study an experimental model was set up to verify whether SMAD4, deleted in about 55% PDAC and associated with poor prognosis, is involved in determining immunosuppression through Exosomes (Exo). Potential mechanisms and mediators underlying SMAD4-dependent immunosuppression were evaluated by studying intracellular calcium (Fluo-4), Exo-miRNAs (microarray) and Exo-proteins (SILAC). Two PDAC cell lines expressing (BxPC3-SMAD4+) or not-expressing (BxPC3) SMAD4 were used to prepare Exo-enriched conditioned media, employed in experiments with blood donors PBMCs. Exo expanded myeloid derived suppressor cells (gMDSC and mMDSC, flow cytometry) and altered intracellular calcium fluxes in an SMAD4 dependent manner. BxPC3-SMAD4+, but mainly BxPC3 Exo, increased calcium fluxes of PBMCs (p = 0.007) and this increased intracellular calcium trafficking characterized mMDSCs. The analysis of de-regulated Exo-miRNAs and transfection experiments revealed hsa-miR-494-3p and has-miR-1260a as potential mediators of SMAD4-associated de-regulated calcium fluxes. Eleven main biological processes were identified by the analysis of SMAD4-associated de-regulated Exo-proteins, including translation, cell adhesion, cell signaling and glycolysis. A reverse Warburg effect was observed by treating PBMCs with PDAC-derived Exo: BxPC3 Exo induced a higher glucose consumption and lactate production than BxPC3-SMAD4+ Exo. Conclusion: PDAC-derived Exo from cells with, but mainly from those without SMAD4 expression, create an immunosuppressive myeloid cell background by increasing calcium fluxes and glycolysis through the transfer of SMAD4-related differentially expressed miRNAs and proteins. PMID:29156694

  3. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal.

    PubMed

    Fuentealba, Luis C; Eivers, Edward; Ikeda, Atsushi; Hurtado, Cecilia; Kuroda, Hiroki; Pera, Edgar M; De Robertis, Edward M

    2007-11-30

    BMP receptors determine the intensity of BMP signals via Smad1 C-terminal phosphorylations. Here we show that a finely controlled cell biological pathway terminates this activity. The duration of the activated pSmad1(Cter) signal was regulated by sequential Smad1 linker region phosphorylations at conserved MAPK and GSK3 sites required for its polyubiquitinylation and transport to the centrosome. Proteasomal degradation of activated Smad1 and total polyubiquitinated proteins took place in the centrosome. Inhibitors of the Erk, p38, and JNK MAPKs, as well as GSK3 inhibitors, prolonged the duration of a pulse of BMP7. Wnt signaling decreased pSmad1(GSK3) antigen levels and redistributed it from the centrosome to cytoplasmic LRP6 signalosomes. In Xenopus embryos, it was found that Wnts induce epidermis and that this required an active BMP-Smad pathway. Epistatic experiments suggested that the dorsoventral (BMP) and anteroposterior (Wnt/GSK3) patterning gradients are integrated at the level of Smad1 phosphorylations during embryonic pattern formation.

  4. [The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation].

    PubMed

    Xu, Xiao-liang; Dai, Ke-rong; Tang, Ting-ting

    2003-09-01

    To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone formation.

  5. Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation

    PubMed Central

    Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira

    2018-01-01

    Background Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. Methods We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. Results In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. Conclusions These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers. PMID:29629343

  6. Evolution history of duplicated smad3 genes in teleost: insights from Japanese flounder, Paralichthys olivaceus

    PubMed Central

    Du, Xinxin; Liu, Yuezhong; Liu, Jinxiang; Zhang, Quanqi

    2016-01-01

    Following the two rounds of whole-genome duplication (WGD) during deuterosome evolution, a third genome duplication occurred in the ray-fined fish lineage and is considered to be responsible for the teleost-specific lineage diversification and regulation mechanisms. As a receptor-regulated SMAD (R-SMAD), the function of SMAD3 was widely studied in mammals. However, limited information of its role or putative paralogs is available in ray-finned fishes. In this study, two SMAD3 paralogs were first identified in the transcriptome and genome of Japanese flounder (Paralichthys olivaceus). We also explored SMAD3 duplication in other selected species. Following identification, genomic structure, phylogenetic reconstruction, and synteny analyses performed by MrBayes and online bioinformatic tools confirmed that smad3a/3b most likely originated from the teleost-specific WGD. Additionally, selection pressure analysis and expression pattern of the two genes performed by PAML and quantitative real-time PCR (qRT-PCR) revealed evidence of subfunctionalization of the two SMAD3 paralogs in teleost. Our results indicate that two SMAD3 genes originate from teleost-specific WGD, remain transcriptionally active, and may have likely undergone subfunctionalization. This study provides novel insights to the evolution fates of smad3a/3b and draws attentions to future function analysis of SMAD3 gene family. PMID:27703851

  7. TGF-β1/Smad3 Signaling Pathway Suppresses Cell Apoptosis in Cerebral Ischemic Stroke Rats

    PubMed Central

    Zhu, Haiping; Gui, Qunfeng; Hui, Xiaobo; Wang, Xiaodong; Jiang, Jian; Ding, Lianshu; Sun, Xiaoyang; Wang, Yanping; Chen, Huaqun

    2017-01-01

    Background We desired to observe the changes of transforming growth factor-β1/drosophila mothers against decapentaplegic protein (TGF-β1/Smad3) signaling pathway in the hippocampus region of cerebral ischemic stroke rats so that the effects of this pathway on nerve cells can be investigated. Material/Methods The ischemic stroke models were built by middle cerebral artery occlusion (MCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro. TGF-β1 and TGF-β1 inhibitors were injected into rat models while TGF-β1, TGF-β1 siRNA, Smad3, and Smad3 siRNA were transfected into cells. Infarct sizes were measured using triphenyltetrazolium chloride (TTC) staining, while the apoptosis rate of cells were calculated by Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining. Levels of TGF-β1, Smad3, and Bcl-2 were examined by real-time polymerase chain reaction (RT-PCR), immunohistochemical, and Western blot analysis. Results The expressions of TGF-β1/Smad3 signal pathway were significantly increased in both model rats and BV2 cells, whereas the expression of Bcl-2 was down-regulated (P<0.05). The TGF-β1/Smad3 signal pathway exhibited protective effects, including the down-regulation of infarction size in cerebral tissues and the down-regulation of apoptosis rate of BV2 cells by increasing the expression of Bcl-2 (P<0.05). In addition, these effects could be antagonized by the corresponding inhibitors and siRNA (P<0.05). Conclusions The TGF-β1/Smad3 signaling pathway was up-regulated once cerebral ischemic stroke was simulated. TGF-β1 may activate the expression of Bcl-2 via Smad3 to suppress the apoptosis of neurons. PMID:28110342

  8. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-09-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.

  9. Activin receptor inhibition by Smad2 regulates Drosophila wing disc patterning through BMP-response elements

    PubMed Central

    Peterson, Aidan J.; O'Connor, Michael B.

    2013-01-01

    Imaginal disc development in Drosophila requires coordinated cellular proliferation and tissue patterning. In our studies of TGFβ superfamily signaling components, we found that a protein null mutation of Smad2, the only Activin subfamily R-Smad in the fruit fly, produces overgrown wing discs that resemble gain of function for BMP subfamily signaling. The wing discs are expanded specifically along the anterior-posterior axis, with increased proliferation in lateral regions. The morphological defect is not observed in mutants for the TGFβ receptor baboon, and epistasis tests showed that baboon is epistatic to Smad2 for disc overgrowth. Rescue experiments indicate that Baboon binding, but not canonical transcription factor activity, of Smad2 is required for normal disc growth. Smad2 mutant discs generate a P-Mad stripe that is narrower and sharper than the normal gradient, and activation targets are correspondingly expressed in narrowed domains. Repression targets of P-Mad are profoundly mis-regulated, with brinker and pentagone reporter expression eliminated in Smad2 mutants. Loss of expression requires a silencer element previously shown to be controlled by BMP signaling. Epistasis experiments show that Baboon, Mad and Schnurri are required to mediate the ectopic silencer output in the absence of Smad2. Taken together, our results show that loss of Smad2 permits promiscuous Baboon activity, which represses genes subject to control by Mad-dependent silencer elements. The absence of Brinker and Pentagone in Smad2 mutants explains the compound wing disc phenotype. Our results highlight the physiological relevance of substrate inhibition of a kinase, and reveal a novel interplay between the Activin and BMP pathways. PMID:23293296

  10. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling.

    PubMed

    Gao, Sheng; Alarcón, Claudio; Sapkota, Gopal; Rahman, Sadia; Chen, Pan-Yu; Goerner, Nina; Macias, Maria J; Erdjument-Bromage, Hediye; Tempst, Paul; Massagué, Joan

    2009-11-13

    TGF-beta induces phosphorylation of the transcription factors Smad2 and Smad3 at the C terminus as well as at an interdomain linker region. TGF-beta-induced linker phosphorylation marks the activated Smad proteins for proteasome-mediated destruction. Here, we identify Nedd4L as the ubiquitin ligase responsible for this step. Through its WW domain, Nedd4L specifically recognizes a TGF-beta-induced phosphoThr-ProTyr motif in the linker region, resulting in Smad2/3 polyubiquitination and degradation. Nedd4L is not interchangeable with Smurf1, a ubiquitin ligase that targets BMP-activated, linker-phosphorylated Smad1. Nedd4L limits the half-life of TGF-beta-activated Smads and restricts the amplitude and duration of TGF-beta gene responses, and in mouse embryonic stem cells, it limits the induction of mesoendodermal fates by Smad2/3-activating factors. Hierarchical regulation is provided by SGK1, which phosphorylates Nedd4L to prevent binding of Smad2/3. Previously identified as a regulator of renal sodium channels, Nedd4L is shown here to play a broader role as a general modulator of Smad turnover during TGF-beta signal transduction.

  11. SMAD4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis.

    PubMed

    Du, Xing; Pan, Zengxiang; Li, Qiqi; Liu, Honglin; Li, Qifa

    2018-02-02

    Canonical TGF-β signals are transduced from the cell surface to the cytoplasm, and then translocated into the nucleus, a process that involves ligands (TGF-β1), receptors (TGFBR2/1), receptor-activated SMADs (SMAD2/3), and the common SMAD (SMAD4). Here we provide evidence that SMAD4, a core component of the canonical TGF-β signaling pathway, regulates the canonical TGF-β signaling pathway in porcine granulosa cells (GCs) through a feedback mechanism. Genome-wide analysis and qRT-PCR revealed that SMAD4 affected miRNA biogenesis in GCs. Interestingly, TGFBR2, the type II receptor of the canonical TGF-β signaling pathway, was downregulated in SMAD4-silenced GCs and found to be a common target of SMAD4-inhibited miRNAs. miR-425, the most significantly elevated miRNA in SMAD4-silenced GCs, mediated the SMAD4 feedback regulation of the TGF-β signaling pathway. This was accomplished through a direct interaction between the transcription factor SMAD4 and the miR-425 promoter, and a direct interaction between miR-425 and the TGFBR2 3'-UTR. Furthermore, miR-425 enhanced GC apoptosis by targeting TGFBR2 and the canonical TGF-β signaling pathway, which was rescued by SMAD4 and TGF-β1. Overall, our findings demonstrate that a positive feedback mechanism exists within the canonical TGF-β signaling pathway. This study also provides new insights into mechanism underlying the canonical TGF-β signaling pathway, which regulates GC function and follicular development.

  12. Smad ubiquitination regulatory factor-2 in the fibrotic kidney: regulation, target specificity, and functional implication.

    PubMed

    Tan, Ruoyun; He, Weichun; Lin, Xia; Kiss, Lawrence P; Liu, Youhua

    2008-05-01

    Smad ubiquitination regulatory factor-2 (Smurf2) is an E3 ubiqutin ligase that plays a pivotal role in regulating TGF-beta signaling via selectively targeting key components of the Smad pathway for degradation. In this study, we have investigated the regulation of Smurf2 expression, its target specificity, and the functional implication of its induction in the fibrotic kidney. Immunohistochemical staining revealed that Smurf2 was upregulated specifically in renal tubules of kidney biopsies from patients with various nephropathies. In vitro, Smurf2 mRNA and protein were induced in human proximal tubular epithelial cells (HKC-8) upon TGF-beta1 stimulation. Ectopic expression of Smurf2 was sufficient to reduce the steady-state levels of Smad2, but not Smad1, Smad3, Smad4, and Smad7, in HKC-8 cells. Interestingly, Smurf2 was also able to downregulate the Smad transcriptional corepressors Ski, SnoN, and TG-interacting factor. Inhibition of the proteasomal pathway prevented Smurf2-mediated downregulation of Smad2 and Smad corepressors. Functionally, overexpression of Smurf2 enhanced the transcription of the TGF-beta-responsive promoter and augmented TGF-beta1-mediated E-cadherin suppression, as well as fibronectin and type I collagen induction in HKC-8 cells. These results indicate that Smurf2 specifically targets both positive and negative Smad regulators for destruction in tubular epithelial cells, thereby providing a complex fine-tuning of TGF-beta signaling. It appears that dysregulation of Smurf2 could contribute to an aberrant TGF-beta/Smad signaling in the pathogenesis of kidney fibrosis.

  13. The Smad3 linker region contains a transcriptional activation domain

    PubMed Central

    2004-01-01

    Transforming growth factor-β (TGF-β)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-β/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-β transcriptional activation responses, although it can be phosphorylated by the TGF-β receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-β. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control. PMID:15588252

  14. The Smad3 linker region contains a transcriptional activation domain.

    PubMed

    Wang, Guannan; Long, Jianyin; Matsuura, Isao; He, Dongming; Liu, Fang

    2005-02-15

    Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-beta transcriptional activation responses, although it can be phosphorylated by the TGF-beta receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-beta. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control.

  15. miR-26b-5p regulates hypoxia-induced phenotypic switching of vascular smooth muscle cells via the TGF-β/Smad4 signaling pathway.

    PubMed

    Ruan, Changwu; Lu, Jide; Wang, Hairong; Ge, Zhiru; Zhang, Chenjun; Xu, Maochun

    2017-06-01

    Hypoxia contributes to the phenotypic switch of vascular smooth muscle cells (VSMCs). Various microRNAs (miRNAs) participate in this process as post‑transcriptional regulators, however the mechanism remains unclear. In the present study, mouse VSMCs (mVSMCs) harvested from aortas were cultured in normoxic and hypoxic conditions, and the mRNA levels of miR-26b-5p, desmin, H‑caldesmon and smoothelin were quantified using reverse transcription‑quantitative polymerase chain reaction. Following treatment with a miR‑26b‑5p antagonist (agomir) or non‑targeting control (scramble), the cell areas of normoxic and hypoxic mVSMCs were analyzed by immunofluorescence staining. In addition, the protein expression levels of collagen Iα, Smad2/phosphorylated (p)‑Smad2, Smad3/p‑Smad3 and Smad4 were determined by western blotting. Potential miRNA26b‑5p binding sequences in the 3'‑untranslated region (UTR) of Smad4 were investigated, and the distribution of Smad4 in mVSMCs was visualized using immunofluorescence methods. Hypoxic mVSMCs exhibited a significant downregulation miR‑26b‑5p, upregulation of hypoxia inducible factor‑1α mRNA and suppression of desmin, H‑caldesmon and smoothelin mRNA levels. Additionally, miR‑26b‑5p agomir reduced the cell area and decreased collagen Iα expression levels in hypoxic mVSMCs compared with normoxic mVSMCs transfected with agomir, and the area was comparable with those of normoxic mVSMCs transfected with agomir or scramble. Furthermore, miR‑26b‑5p suppressed Smad4 expression in hypoxic mVSMCs, but did not change the expression levels of Smad2 and Smad3, p‑Smad2 and p‑Smad3, however p‑Smad2 and p‑Smad3 levels were upregulated in response to hypoxic stimuli. Additionally, the miR‑26b‑5p agomir caused weak immunoreactivity with Smad4 in hypoxic mVSMCs. The binding motif of miR‑26b‑5p in the Smad4 3'‑UTR was identified as UACUUGA at position 978-984. These findings suggest that miR‑26b‑5p regulates hypoxia‑induced phenotypic switching of VSMCs via the transforming growth factor β/Smad4 signaling pathway.

  16. Ski Inhibits TGF-β/phospho-Smad3 Signaling and Accelerates Hypertrophic Differentiation in Chondrocytes

    PubMed Central

    Kim, Kyung-Ok; Sampson, Erik R.; Maynard, Robert D; O'Keefe, Regis J.; Chen, Di; Drissi, Hicham; Rosier, Randy N.; Hilton, Matthew J.; Zuscik, Michael J.

    2012-01-01

    Since TGF-β/Smad signaling inhibits chondrocyte maturation, endogenous negative regulators of TGF-β signaling are likely also important regulators of the chondrocyte differentiation process. One such negative regulator, Ski, is an oncoprotein that is known to inhibit TGF-β/Smad3 signaling via its interaction with phospho-Smad3 and recruitment of histone deacetylases (HDACs) to the DNA binding complex. Based on this, we hypothesized that Ski inhibits TGF-β signaling and accelerates maturation in chondrocytes via recruitment of HDACs to transcriptional complexes containing Smads. We tested this hypothesis in chick upper sternal chondrocytes (USCs), where gain and loss of Ski expression experiments were performed. Over-expression of Ski not only reversed the inhibitory effect of TGF-β on the expression of hypertrophic marker genes such as type × collagen (colX) and osteocalcin, it induced these genes basally as well. Conversely, knockdown of Ski by RNA interference led to a reduction of colX and osteocalcin expression under basal conditions. Furthermore, Ski blocked TGF-β induction of cyclinD1 and caused a basal up-regulation of Runx2, consistent with the observed acceleration of hypertrophy. Regarding mechanism, not only does Ski associate with phospho-Smad2 and 3, but its association with phospho-Smad3 is required for recruitment of HDAC4 and 5. Implicating this recruitment of HDACs in the phenotypic effects of Ski in chondrocytes, the HDAC inhibitor SAHA reversed the up-regulation of colX and osteocalcin in Ski over-expressing cells. These results suggest that inhibition of TGF-β signaling by Ski, which involves its association with phospho-Smad3 and recruitment of HDAC4 and 5, leads to accelerated chondrocyte differentiation. PMID:22461172

  17. Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor.

    PubMed

    Funaba, Masayuki; Ikeda, Teruo; Murakami, Masaru; Ogawa, Kenji; Tsuchida, Kunihiro; Sugino, Hiromu; Abe, Matanobu

    2003-12-26

    Previous studies have revealed that activin A and transforming growth factor-beta1 (TGF-beta1) induced migration and morphological changes toward differentiation in bone marrow-derived cultured mast cell progenitors (BMCMCs). Here we show up-regulation of mouse mast cell protease-7 (mMCP-7), which is expressed in differentiated mast cells, by activin A and TGF-beta1 in BMCMCs, and the molecular mechanism of the gene induction of mmcp-7. Smad3, a signal mediator of the activin/TGF-beta pathway, transcriptionally activated mmcp-7. Microphthalmia-associated transcription factor (MITF), a tissue-specific transcription factor predominantly expressed in mast cells, melanocytes, and heart and skeletal muscle, inhibited Smad3-mediated mmcp-7 transcription. MITF associated with Smad3, and the C terminus of MITF and the MH1 and linker region of Smad3 were required for this association. Complex formation between Smad3 and MITF was neither necessary nor sufficient for the inhibition of Smad3 signaling by MITF. MITF inhibited the transcriptional activation induced by the MH2 domain of Smad3. In addition, MITF-truncated N-terminal amino acids could associate with Smad3 but did not inhibit Smad3-mediated transcription. The level of Smad3 was decreased by co-expression of MITF but not of dominant-negative MITF, which resulted from proteasomal protein degradation. The changes in the level of Smad3 protein were paralleled by those in Smad3-mediated signaling activity. These findings suggest that MITF negatively regulates Smad-dependent activin/TGF-beta signaling in a tissue-specific manner.

  18. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle.

    PubMed

    Rezaei, Hossein B; Kamato, Danielle; Ansari, Ghazaleh; Osman, Narin; Little, Peter J

    2012-08-01

    The transforming growth factor (TGF)-β superfamily of ligands regulates a diverse set of cellular functions. Transforming growth factor-β induces its biological effects through Type I and Type II transmembrane receptors that have serine/threonine kinase activities and weak tyrosine kinase activity. In vascular smooth muscle, TGF-β binds to the TGF-β Type II receptor (TβRII) at the cell surface, recruiting the Type I receptor (TβRI) to form a heterocomplex. Consequently, after phosphorylation and activation of TβRI, the transcription factors receptor activated (R-) Smad2 and Smad3 are recruited and activated through phosphorylation of C terminal residues. Overall, Smad2/3 and co-Smad4 have similar structures consisting of three regions an N-terminal MH1 domain, a C-terminal MH2 domain and a central linker region. Phosphorylation of the Smad linker region appears to have an important role in the regulation of Smad activity and function. The mitogen-activated protein kinase (MAPK) family, CDK2, CDK4 and calcium-calmodulin dependent kinase are the main kinases that phosphorylate sites in the linker region. The role of the linker region includes enabling the formation of Smad homo-oligomers and provision of phosphorylation sites for MAPK and other kinases. In some instances, linker region phosphorylation regulates the inhibition of the nuclear translocation of Smads. In the present review, we describe TGF-β signalling through Smad2/3 and the importance of the linker region in the regulation and expression of genes induced by TGF-β superfamily ligands in the context of vascular smooth muscle. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  19. Chlorogenic Acid Inhibits Liver Fibrosis by Blocking the miR-21-Regulated TGF-β1/Smad7 Signaling Pathway in Vitro and in Vivo.

    PubMed

    Yang, Fan; Luo, Lei; Zhu, Zhi-De; Zhou, Xuan; Wang, Yao; Xue, Juan; Zhang, Juan; Cai, Xin; Chen, Zhi-Lin; Ma, Qian; Chen, Yun-Fei; Wang, Yu-Jie; Luo, Ying-Ying; Liu, Pan; Zhao, Lei

    2017-01-01

    Aims: Chlorogenic acid (CGA) is a phenolic acid that has a wide range of pharmacological effects. However, the protective effects and mechanisms of CGA on liver fibrosis are not clear. This study explored the effects of CGA on miR-21-regulated TGF-β1/Smad7 liver fibrosis in the hepatic stellate LX2 cell line and in CCl4-induced liver fibrosis in Sprague-Dawley rats. Methods: The mRNA expression of miR-21, Smad7, connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase 1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), and transforming growth factor-β1 (TGF-β1) and the protein levels of Smad2, p-Smad2, Smad3, p-Smad3, Smad2/3, p-Smad2/3, Smad7, CTGF, α-SMA, TIMP-1, MMP-9 and TGF-β1 were assayed in LX2 cells and liver tissue. The effects of CGA after miR-21 knockdown or overexpression were analyzed in LX2 cells. The liver tissue and serum were collected for histopathological examination, immunohistochemistry (IHC) and ELISA. Results: The mRNA expression of miR-21, CTGF, α-SMA, TIMP-1, and TGF-β1 and the protein expression of p-Smad2, p-Smad3, p-Smad2/3, CTGF, α-SMA, TIMP-1, and TGF-β1 were inhibited by CGA both in vitro and in vivo . Meanwhile, CGA elevated the mRNA and protein expression of Smad7 and MMP-9. After miR-21 knockdown and overexpression, the downstream molecules also changed accordingly. CGA also lessened the degree of liver fibrosis in the pathological manifestation and reduced α-SMA and collagen I expression in liver tissue and TGF-β1 in serum. Conclusion: CGA might relieve liver fibrosis through the miR-21-regulated TGF-β1/Smad7 signaling pathway, which suggests that CGA might be a new anti-fibrosis agent that improves liver fibrosis.

  20. SMAD3 and SMAD4 have a more dominant role than SMAD2 in TGFβ-induced chondrogenic differentiation of bone marrow-derived mesenchymal stem cells

    PubMed Central

    de Kroon, Laurie M. G.; Narcisi, Roberto; van den Akker, Guus G. H.; Vitters, Elly L.; Blaney Davidson, Esmeralda N.; van Osch, Gerjo J. V. M.; van der Kraan, Peter M.

    2017-01-01

    To improve cartilage formation by bone marrow-derived mesenchymal stem cells (BMSCs), the signaling mechanism governing chondrogenic differentiation requires better understanding. We previously showed that the transforming growth factor-β (TGFβ) receptor ALK5 is crucial for chondrogenesis induced by TGFβ. ALK5 phosphorylates SMAD2 and SMAD3 proteins, which then form complexes with SMAD4 to regulate gene transcription. By modulating the expression of SMAD2, SMAD3 and SMAD4 in human BMSCs, we investigated their role in TGFβ-induced chondrogenesis. Activation of TGFβ signaling, represented by SMAD2 phosphorylation, was decreased by SMAD2 knockdown and highly increased by SMAD2 overexpression. Moreover, TGFβ signaling via the alternative SMAD1/5/9 pathway was strongly decreased by SMAD4 knockdown. TGFβ-induced chondrogenesis of human BMSCs was strongly inhibited by SMAD4 knockdown and only mildly inhibited by SMAD2 knockdown. Remarkably, both knockdown and overexpression of SMAD3 blocked chondrogenic differentiation. Chondrogenesis appears to rely on a delicate balance in the amount of SMAD3 and SMAD4 as it was not enhanced by SMAD4 overexpression and was inhibited by SMAD3 overexpression. Furthermore, this study reveals that TGFβ-activated phosphorylation of SMAD2 and SMAD1/5/9 depends on the abundance of SMAD4. Overall, our findings suggest a more dominant role for SMAD3 and SMAD4 than SMAD2 in TGFβ-induced chondrogenesis of human BMSCs. PMID:28240243

  1. SMAD3 and SMAD4 have a more dominant role than SMAD2 in TGFβ-induced chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    de Kroon, Laurie M G; Narcisi, Roberto; van den Akker, Guus G H; Vitters, Elly L; Blaney Davidson, Esmeralda N; van Osch, Gerjo J V M; van der Kraan, Peter M

    2017-02-27

    To improve cartilage formation by bone marrow-derived mesenchymal stem cells (BMSCs), the signaling mechanism governing chondrogenic differentiation requires better understanding. We previously showed that the transforming growth factor-β (TGFβ) receptor ALK5 is crucial for chondrogenesis induced by TGFβ. ALK5 phosphorylates SMAD2 and SMAD3 proteins, which then form complexes with SMAD4 to regulate gene transcription. By modulating the expression of SMAD2, SMAD3 and SMAD4 in human BMSCs, we investigated their role in TGFβ-induced chondrogenesis. Activation of TGFβ signaling, represented by SMAD2 phosphorylation, was decreased by SMAD2 knockdown and highly increased by SMAD2 overexpression. Moreover, TGFβ signaling via the alternative SMAD1/5/9 pathway was strongly decreased by SMAD4 knockdown. TGFβ-induced chondrogenesis of human BMSCs was strongly inhibited by SMAD4 knockdown and only mildly inhibited by SMAD2 knockdown. Remarkably, both knockdown and overexpression of SMAD3 blocked chondrogenic differentiation. Chondrogenesis appears to rely on a delicate balance in the amount of SMAD3 and SMAD4 as it was not enhanced by SMAD4 overexpression and was inhibited by SMAD3 overexpression. Furthermore, this study reveals that TGFβ-activated phosphorylation of SMAD2 and SMAD1/5/9 depends on the abundance of SMAD4. Overall, our findings suggest a more dominant role for SMAD3 and SMAD4 than SMAD2 in TGFβ-induced chondrogenesis of human BMSCs.

  2. Pathway Model of the Kinetics of the TGFbeta Antagonist Smad7 and Cross-Talk with the ATM and WNT Pathways

    NASA Technical Reports Server (NTRS)

    Carra, Claudio; Wang, Minli; Huff, Janice L.; Hada, Megumi; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    Signal transduction controls cellular and tissue responses to radiation. Transforming growth factor beta (TGFbeta) is an important regulator of cell growth and differentiation and tissue homeostasis, and is often dis-regulated in tumor formation. Mathematical models of signal transduction pathways can be used to elucidate how signal transduction varies with radiation quality, and dose and dose-rate. Furthermore, modeling of tissue specific responses can be considered through mechanistic based modeling. We developed a mathematical model of the negative feedback regulation by Smad7 in TGFbeta-Smad signaling and are exploring possible connections to the WNT/beta -catenin, and ATM/ATF2 signaling pathways. A pathway model of TGFbeta-Smad signaling that includes Smad7 kinetics based on data in the scientific literature is described. Kinetic terms included are TGFbeta/Smad transcriptional regulation of Smad7 through the Smad3-Smad4 complex, Smad7-Smurf1 translocation from nucleus to cytoplasm, and Smad7 negative feedback regulation of the TGFO receptor through direct binding to the TGFO receptor complex. The negative feedback controls operating in this pathway suggests non-linear responses in signal transduction, which are described mathematically. We then explored possibilities for cross-talk mediated by Smad7 between DNA damage responses mediated by ATM, and with the WNT pathway and consider the design of experiments to test model driven hypothesis. Numerical comparisons of the mathematical model to experiments and representative predictions are described.

  3. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin

    PubMed Central

    Winbanks, Catherine E.; Weeks, Kate L.; Thomson, Rachel E.; Sepulveda, Patricio V.; Beyer, Claudia; Qian, Hongwei; Chen, Justin L.; Allen, James M.; Lancaster, Graeme I.; Febbraio, Mark A.; Harrison, Craig A.; McMullen, Julie R.; Chamberlain, Jeffrey S.

    2012-01-01

    Follistatin is essential for skeletal muscle development and growth, but the intracellular signaling networks that regulate follistatin-mediated effects are not well defined. We show here that the administration of an adeno-associated viral vector expressing follistatin-288aa (rAAV6:Fst-288) markedly increased muscle mass and force-producing capacity concomitant with increased protein synthesis and mammalian target of rapamycin (mTOR) activation. These effects were attenuated by inhibition of mTOR or deletion of S6K1/2. Furthermore, we identify Smad3 as the critical intracellular link that mediates the effects of follistatin on mTOR signaling. Expression of constitutively active Smad3 not only markedly prevented skeletal muscle growth induced by follistatin but also potently suppressed follistatin-induced Akt/mTOR/S6K signaling. Importantly, the regulation of Smad3- and mTOR-dependent events by follistatin occurred independently of overexpression or knockout of myostatin, a key repressor of muscle development that can regulate Smad3 and mTOR signaling and that is itself inhibited by follistatin. These findings identify a critical role of Smad3/Akt/mTOR/S6K/S6RP signaling in follistatin-mediated muscle growth that operates independently of myostatin-driven mechanisms. PMID:22711699

  4. SOCS3 promotes TLR4 response in macrophages by feedback inhibiting TGF-beta1/Smad3 signaling.

    PubMed

    Liu, Xia; Zhang, Yongliang; Yu, Yizhi; Yang, Xiao; Cao, Xuetao

    2008-03-01

    Endogenous transforming growth factor-beta1 (TGF-beta1) plays an important role in the negative regulation of toll-like receptor (TLR) signaling in a feedback manner. Suppressors of cytokine signaling 3 (SOCS3) has been shown to be induced by TGF-beta1 in osteoclast/macrophage, while the reports on the role of SOCS3 in regulating TLR4 signaling were controversial. The functional relationship between SOCS3 and TGF-beta1/Smad3 pathway in TLR4 response also remains unclear. In this study, we demonstrate that LPS-induced endogenous TGF-beta1 contributes to the inducible SOCS3 expression in macrophages. SOCS3 silencing could markedly decrease the LPS-induced production of TNF-alpha and IL-6 in macrophages. Interestingly, less decrease of LPS-induced TNF-alpha, IL-6 by SOCS3 silencing was observed in Smad3 null macrophages. Furthermore, we found SOCS3 could interact with Smad3, and inhibit Smad3 nuclear translocation and transcriptional activity. Therefore, our data demonstrate that SOCS3 is a positive regulator of TLR4 response by feedback inhibiting endogenous TGF-beta1/Smad3 signaling, thus outlining a new feedback regulatory manner for TLR4 response in macrophages.

  5. Activated type I TGFbeta receptor (Alk5) kinase confers enhancedsurvival to mammary epithelial cells and accelerates mammary tumorprogression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muraoka-Cook, Rebecca S.; Shin, Incheol; Yi, Jae Youn

    2005-01-02

    The transforming growth factor-betas (TGF{beta}s) are members of a large superfamily of pleiotropic cytokines that also includes the activins and the bone morphogenetic proteins (BMPs). Members of the TGF{beta} family regulate complex physiological processes such cell proliferation, differentiation, adhesion, cell-cell and cell-matrix interactions, motility, and cell death, among others (Massague, 1998). Dysregulation of TGF{beta} signaling contributes to several pathological processes including cancer, fibrosis, and auto-immune disorders (Massague et al., 2000). The TGF{beta}s elicit their biological effects by binding to type II and type I transmembrane receptor serine-threonine kinases (T{beta}RII and T{beta}RI) which, in turn, phosphorylated Smad 2 and Smad 3.more » Phosphorylated Smad 2/3 associate with Smad 4 and, as a heteromeric complex, translocate to the nucleus where they regulate gene transcription. The inhibitory Smad7 down regulates TGF{beta} signaling by binding to activated T{beta}RI and interfering with its ability to phosphorylate Smad 2/3 (Derynck and Zhang, 2003; Shi and Massague, 2003). Signaling is also regulated by Smad proteolysis. TGF{beta} receptor-mediated activation results in multi-ubiquitination of Smad 2 in the nucleus and subsequent degradation of Smad 2 by the proteasome (Lo and Massague, 1999). Activation of TGF{beta} receptors also induces mobilization of a Smad 7-Smurf complex from the nucleus to the cytoplasm; this complex recognizes the activated receptors and mediates their ubiquitination and internalization via caveolin-rich vesicles, leading to termination of TGF{beta} signaling (Di Guglielmo et al., 2003). Other signal transducers/pathways have been implicated in TGF{beta} actions. These include the extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (Jnk), p38 mitogen-activated protein kinase (MAPK), protein phosphatase PP2A, phosphatidylinositol-3 kinase (PI3K), and the family of Rho GTPases [reviewed in (Derynck and Zhang, 2003)]. Although signaling by Smads has been shown to be causally associated with the anti-proliferative effect of TGF{beta} (Datto et al., 1999; Liu et al., 1997), the role of non-Smad effectors on mediating the cellular effects of TGF{beta} is less well characterized.« less

  6. Hydrophobic patches on SMAD2 and SMAD3 determine selective binding to cofactors.

    PubMed

    Miyazono, Ken-Ichi; Moriwaki, Saho; Ito, Tomoko; Kurisaki, Akira; Asashima, Makoto; Tanokura, Masaru

    2018-03-27

    The transforming growth factor-β (TGF-β) superfamily of cytokines regulates various biological processes, including cell proliferation, immune responses, autophagy, and senescence. Dysregulation of TGF-β signaling causes various diseases, such as cancer and fibrosis. SMAD2 and SMAD3 are core transcription factors involved in TGF-β signaling, and they form heterotrimeric complexes with SMAD4 (SMAD2-SMAD2-SMAD4, SMAD3-SMAD3-SMAD4, and SMAD2-SMAD3-SMAD4) in response to TGF-β signaling. These heterotrimeric complexes interact with cofactors to control the expression of TGF-β-dependent genes. SMAD2 and SMAD3 may promote or repress target genes depending on whether they form complexes with other transcription factors, coactivators, or corepressors; therefore, the selection of specific cofactors is critical for the appropriate activity of these transcription factors. To reveal the structural basis by which SMAD2 and SMAD3 select cofactors, we determined the crystal structures of SMAD3 in complex with the transcription factor FOXH1 and SMAD2 in complex with the transcriptional corepressor SKI. The structures of the complexes show that the MAD homology 2 (MH2) domains of SMAD2 and SMAD3 have multiple hydrophobic patches on their surfaces. The cofactors tether to various subsets of these patches to interact with SMAD2 and SMAD3 in a cooperative or competitive manner to control the output of TGF-β signaling. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Spatio-Temporal Distribution of Smads and Role of Smads/TGF-β/BMP-4 in the Regulation of Mouse Bladder Organogenesis

    PubMed Central

    Islam, Syed S.; Mokhtari, Reza Bayat; Kumar, Sushil; Maalouf, Joe; Arab, Sara; Yeger, Herman; Farhat, Walid A.

    2013-01-01

    Although Shh, TGF-β and BMP-4 regulate radial patterning of the bladder mesenchyme and smooth muscle differentiation, it is not known what transcription factors, local environmental cues or signaling cascades mediate bladder smooth muscle differentiation. We investigated the expression patterns of signaling mediated by Smad2 and Smad3 in the mouse embryonic bladder from E12.5 to E16.5 by using qRT-PCR, in situ hybridization and antibodies specifically recognizing individual Smad proteins. The role of Smad2 and Smad3 during smooth muscle formation was examined by disrupting the Smad2/3 signaling pathway using TβR1 inhibitor SB-431542 in organ culture system. qRT-PCR results showed that R-Smads, Co-Smad and I-Smads were all expressed during bladder development. RNA ISH for BMP-4 and immunostaining of TGF-β1 showed that BMP-4 and TGF-β1 were expressed in the transitional epithelium, lamina propia and muscularis mucosa. Smad1, Smad5 and Smad8 were first expressed in the bladder epithelium and continued to be expressed in the transitional epithelium, muscularis mesenchyme and lamina propia as the bladder developed. Smad2, Smad3 and Smad4 were first detected in the bladder epithelium and subsequently were expressed in the muscularis mesenchyme and lamina propia. Smad6 and Smad7 showed overlapping expression with R-Smads, which are critical for bladder development. In bladder explants (E12.5 to E16.5) culture, Smad2 and Smad3 were found localized within the nuclei, suggesting critical transcriptional regulatory effects during bladder development. E12.5 to E16.5 bladders were cultured with and without TβR1 inhibitor SB-431542 and assessed by qRT-PCR and immunofluorescence. After three days in culture in SB-431542, α-SMA, Smad2 and Smad3 expressions were significantly decreased compared with controls, however, with no significant changes in the expression of smooth muscle myosin heavy chain (SM-Myh. Based on the Smad expression patterns, we suggest that individual or combinations of Smads may be necessary during mouse bladder organogenesis and may be critical mediators for bladder smooth muscle differentiation. PMID:23620745

  8. Role of Smad signaling in kidney disease.

    PubMed

    Zhang, Yanhua; Wang, Songyan; Liu, Shengmao; Li, Chunguang; Wang, Ji

    2015-12-01

    Smads are the key intermediates of canonical transforming growth factor-beta (TGF-β) signaling. These intermediates are divided into three distinct subgroups based on their role in TGF-β family signal transduction: Receptor-regulated Smads (R-Smads) 1, 2, 3, 5 and 8, common Smad4, and inhibitory Smads6 and 7. TGF-β signaling through Smad pathway involves phosphorylation, ubiquitination, sumoylation, acetylation, and protein-protein interactions with mitogen-activated protein kinases, PI3K-Akt/PKB, and Wnt/GSK-3. Several studies have suggested that upregulation or downregulation of TGF-β/Smad signaling pathways may be a pathogenic mechanism in the progression of chronic kidney disease. Smad2 and 3 are the two major downstream R-Smads in TGF-β-mediated renal fibrosis, while Smad7 also controls renal inflammation. In this review, we characterize the role of Smads in kidney disease, describe the molecular mechanisms, and discuss the potential of Smads as a therapeutic target in chronic kidney disease.

  9. The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins.

    PubMed

    He, Jun; Tegen, Sarah B; Krawitz, Ariel R; Martin, G Steven; Luo, Kunxin

    2003-08-15

    The regulation of cell growth and differentiation by transforming growth factor-beta (TGF-beta) is mediated by the Smad proteins. In the nucleus, the Smad proteins are negatively regulated by two closely related nuclear proto-oncoproteins, Ski and SnoN. When overexpressed, Ski and SnoN induce oncogenic transformation of chicken embryo fibroblasts. However, the mechanism of transformation by Ski and SnoN has not been defined. We have previously reported that Ski and SnoN interact directly with Smad2, Smad3, and Smad4 and repress their ability to activate TGF-beta target genes through multiple mechanisms. Because Smad proteins are tumor suppressors, we hypothesized that the ability of Ski and SnoN to inactivate Smad function may be responsible for their transforming activity. Here, we show that the receptor regulated Smad proteins (Smad2 and Smad3) and common mediator Smad (Smad4) bind to different regions in Ski and SnoN. Mutation of both regions, but not each region alone, markedly impaired the ability of Ski and SnoN to repress TGF-beta-induced transcriptional activation and cell cycle arrest. Moreover, when expressed in chicken embryo fibroblasts, mutant Ski or SnoN defective in binding to the Smad proteins failed to induce oncogenic transformation. These results suggest that the ability of Ski and SnoN to repress the growth inhibitory function of the Smad proteins is required for their transforming activity. This may account for the resistance to TGF-beta-induced growth arrest in some human cancer cell lines that express high levels of Ski or SnoN.

  10. Traf2 interacts with Smad4 and regulates BMP signaling pathway in MC3T3-E1 osteoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Koichi, E-mail: shimada-ki@dent.nihon-u.ac.jp; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo; Ikeda, Kyoko

    2009-12-18

    Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and maturation. In mammals, the BMP-induced receptor-regulated Smads form complexes with Smad4. These complexes translocate and accumulate in the nucleus, where they regulate the transcription of various target genes. However, the function of Smad4 remains unclear. We performed a yeast two-hybrid screen using Smad4 as bait and a cDNA library derived from bone marrow, to indentify the proteins interacting with Smad4. cDNA clones for Tumor necrosis factor (TNF) receptor-associated factor 2 (Traf2) were identified, and the interaction between the endogenous proteins was confirmed in the mouse osteoblast cell line MC3T3-E1.more » To investigate the function of Traf2, we silenced it with siRNA. The level of BMP-2 protein in the medium, the expression levels of the Bmp2 gene and BMP-induced transcription factor genes, including Runx2, Dlx5, Msx2, and Sp7, and the phosphorylated-Smad1 protein level were increased in cells transfected with Traf2 siRNA. The nuclear accumulation of Smad1 increased with TNF-{alpha} stimulation for 30 min at Traf2 silencing. These results suggest that the TNF-{alpha}-stimulated nuclear accumulation of Smad1 may be dependent on Traf2. Thus, the interaction between Traf2 and Smad4 may play a role in the cross-talk between TNF-{alpha} and BMP signaling pathways.« less

  11. Sumoylation of Smad3 stimulates its nuclear export during PIASy-mediated suppression of TGF-{beta} signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imoto, Seiyu; Ohbayashi, Norihiko; Ikeda, Osamu

    2008-05-30

    Sma- and MAD-related protein 3 (Smad3) plays crucial roles in the transforming growth factor-{beta} (TGF-{beta})-mediated signaling pathway, which produce a variety of cellular responses, including cell proliferation and differentiation. In our previous study, we demonstrated that protein inhibitor of activated STATy (PIASy) suppresses TGF-{beta} signaling by interacting with and sumoylating Smad3. In the present study, we examined the molecular mechanisms of Smad3 sumoylation during PIASy-mediated suppression of TGF-{beta} signaling. We found that small-interfering RNA-mediated reduction of endogenous PIASy expression enhanced TGF-{beta}-induced gene expression. Importantly, coexpression of Smad3 with PIASy and SUMO1 affected the DNA-binding activity of Smad3. Furthermore, coexpression ofmore » Smad3 with PIASy and SUMO1 stimulated the nuclear export of Smad3. Finally, fluorescence resonance energy transfer analyses revealed that Smad3 interacted with SUMO1 in the cytoplasm. These results suggest that PIASy regulates TGF-{beta}/Smad3-mediated signaling by stimulating sumoylation and nuclear export of Smad3.« less

  12. Brain cytoplasmic RNA 1 suppresses smooth muscle differentiation and vascular development in mice.

    PubMed

    Wang, Yung-Chun; Chuang, Ya-Hui; Shao, Qiang; Chen, Jian-Fu; Chen, Shi-You

    2018-04-13

    The cardiovascular system develops during the early stages of embryogenesis, and differentiation of smooth muscle cells (SMCs) is essential for that process. SMC differentiation is critically regulated by transforming growth factor (TGF)-β/SMAD family member 3 (SMAD3) signaling, but other regulators may also play a role. For example, long noncoding RNAs (lncRNAs) regulate various cellular activities and events, such as proliferation, differentiation, and apoptosis. However, whether long noncoding RNAs also regulate SMC differentiation remains largely unknown. Here, using the murine cell line C3H10T1/2, we found that brain cytoplasmic RNA 1 (BC1) is an important regulator of SMC differentiation. BC1 overexpression suppressed, whereas BC1 knockdown promoted, TGF-β-induced SMC differentiation, as indicated by altered cell morphology and expression of multiple SMC markers, including smooth muscle α-actin (αSMA), calponin, and smooth muscle 22α (SM22α). BC1 appeared to block SMAD3 activity and inhibit SMC marker gene transcription. Mechanistically, BC1 bound to SMAD3 via RNA SMAD-binding elements (rSBEs) and thus impeded TGF-β-induced SMAD3 translocation to the nucleus. This prevented SMAD3 from binding to SBEs in SMC marker gene promoters, an essential event in SMC marker transcription. In vivo , BC1 overexpression in mouse embryos impaired vascular SMC differentiation, leading to structural defects in the artery wall, such as random breaks in the elastic lamina, abnormal collagen deposition on SM fibers, and disorganized extracellular matrix proteins in the media of the neonatal aorta. Our results suggest that BC1 is a suppressor of SMC differentiation during vascular development. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The prognostic significance of Smad3, Smad4, Smad3 phosphoisoform expression in esophageal squamous cell carcinoma.

    PubMed

    Cho, Soo Youn; Ha, Sang Yun; Huang, Song-Mei; Kim, Jeong Hoon; Kang, Myung Soo; Yoo, Hae-Yong; Kim, Hyeon-ho; Park, Cheol-Keun; Um, Sung-Hee; Kim, Kyung-Hee; Kim, Seok-Hyung

    2014-11-01

    Smad3 functions as an integrator of diverse signaling, including transforming growth factor β signaling and the function of Smad3 is complexly regulated by differential phosphorylation at various sites of Smad3. Despite the importance of Smad3 and its various phosphoisoforms, their prognostic significance has rarely been studied. In this study, we demonstrated the prognostic significance of Smad3, its phosphoisoforms, and Smad4 expression by immunohistochemistry in 126 esophageal squamous cell carcinomas. The phosphoisoforms of Smad3 studied in this article included phosphorylation at C-terminal (pSmad3C)(Ser(423/425)) and phosphorylation at the linker region (pSmad3L)(Ser(213)). High expression of Smad3 was associated with shorter overall survival. Co-existence of high expression of pSmad3L(S213) and low expression of pSmad3C(S423/425) were associated with advanced N stage and an independent prognostic factor for overall [hazard ratio (HR) 2.03, 95 % confidence interval (CI) (1.10-3.75), p = 0.023] and disease-free survival [HR 2.41, 95 % CI (1.32-4.39), p = 0.004]. In conclusion, co-existence of high pSmad3L(Ser(213)) expression and low pSmad3C(Ser(423/425)) expression can be considered as immunohistochemical biomarkers for predicting prognosis as well as future therapeutic targets. In addition, our results of combinatory effect of differential phosphorylation of Smad3 on prognosis suggest the mode of action of Smad3 might be logically determined by its phosphorylation pattern.

  14. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling.

    PubMed

    Wrighton, Katharine H; Willis, Danielle; Long, Jianyin; Liu, Fang; Lin, Xia; Feng, Xin-Hua

    2006-12-15

    Transforming growth factor-beta (TGF-beta) controls a diverse set of cellular processes, and its canonical signaling is mediated via TGF-beta-induced phosphorylation of receptor-activated Smads (2 and 3) at the C-terminal SXS motif. We recently discovered that PPM1A can dephosphorylate Smad2/3 at the C-terminal SXS motif, implicating a critical role for phosphatases in regulating TGF-beta signaling. Smad2/3 activity is also regulated by phosphorylation in the linker region (and N terminus) by a variety of intracellular kinases, making it a critical platform for cross-talk between TGF-beta and other signaling pathways. Using a functional genomic approach, we identified the small C-terminal domain phosphatase 1 (SCP1) as a specific phosphatase for Smad2/3 dephosphorylation in the linker and N terminus. A catalytically inactive SCP1 mutant (dnSCP1) had no effect on Smad2/3 phosphorylation in vitro or in vivo. Of the other FCP/SCP family members SCP2 and SCP3, but not FCP1, could also dephosphorylate Smad2/3 in the linker/N terminus. Depletion of SCP1/2/3 enhanced Smad2/3 linker phosphorylation. SCP1 increased TGF-beta-induced transcriptional activity in agreement with the idea that phosphorylation in the Smad2/3 linker must be removed for a full transcriptional response. SCP1 overexpression also counteracts the inhibitory effect of epidermal growth factor on TGF-beta-induced p15 expression. Taken together, this work identifies the first example of a Smad2/3 linker phosphatase(s) and reveals an important new substrate for SCPs.

  15. Smad3 Deficiency in Mice Protects Against Insulin Resistance and Obesity Induced by a High-Fat Diet

    PubMed Central

    Tan, Chek Kun; Leuenberger, Nicolas; Tan, Ming Jie; Yan, Yew Wai; Chen, Yinghui; Kambadur, Ravi; Wahli, Walter; Tan, Nguan Soon

    2011-01-01

    OBJECTIVE Obesity and associated pathologies are major global health problems. Transforming growth factor-β/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic β-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance. RESULTS Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein β-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor β/δ and proliferator-activated receptor γ expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid β-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet. CONCLUSIONS Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders. PMID:21270259

  16. PTEN Regulates Beta-Catenin in Androgen Signaling: Implication in Prostate Cancer Progression

    DTIC Science & Technology

    2007-03-01

    Smad3 and Smad4 proteins contain a number of functional domains, including MH1, MH2, and the linker region (2). It appears that theMH2 domain is involved...domains or Smad4 linker region. These data demonstrate that the MH2 domains of Smad3 and Smad4 are involved in the interaction with hZimp10. hZimp10...length (FL), MH1 domain (MH1, 1–146 amino acids), linker domain (L, 147–308 amino acids), and MH2 domain (MH2, 309 –553 amino acids) and GST- Smad3 full

  17. Endothelial Dysfunction Exacerbates Renal Interstitial Fibrosis through Enhancing Fibroblast Smad3 Linker Phosphorylation in the Mouse Obstructed Kidney

    PubMed Central

    Sun, Yu Bo Yang; Qu, Xinli; Li, Xueling; Nikolic-Paterson, David J.; Li, Jinhua

    2013-01-01

    Endothelial dysfunction and enhanced transforming growth factor-β (TGF-β)/Smad3 signalling are common features of progressive renal fibrosis. This study investigated a potential link between these mechanisms. In unilateral ureteric obstruction (UUO) we observed an acute (6 hr) down-regulation of nitric oxide synthase 3 (NOS3/eNOS) levels and increased phosphorylation of the linker region of Smad3 at T179 and S208 in Smad3/JNK complexes. These events preceded Smad3 C-terminal domain phosphorylation and the induction of myofibroblast proliferation at 48 hrs. Mice deficient in NOS3 showed enhanced myofibroblast proliferation and collagen accumulation compared to wild type mice in a 7 day UUO model. This was associated with enhanced phosphorylation of Smad3 T179 and S208 by 92% and 88%, respectively, whereas Smad3-C-terminal phosphorylation was not affected. Resolvin D1 (RvD1) can suppress renal fibrosis in the UUO model, and further analysis herein showed that RvD1 protected against endothelial dysfunction and suppressed Smad3/JNK complex formation with a consequent reduction in phosphorylation of Smad3 T179 and S208 by 78% and 65%, respectively, while Smad3 C-terminal phosphorylation was unaltered. In vitro, conditioned media from mouse microvascular endothelial cells (MMEC) treated with a general inhibitor of nitric oxide synthase (L-NAME) augmented the proliferation and collagen production of renal fibroblasts (NRK49F cells) compared to control MMEC media and this was associated with increased phosphorylation of JNK and Smad3 T179 and S208, whereas Smad3-C-terminal domain phosphorylation was unaffected. The addition of RvD1 to L-NAME treated MMEC abrogated these effects of the conditioned media on renal fibroblasts. Finally, Smad3 T179/V and S208/A mutations significantly inhibit TGF-β1 induced up-regulation collagen I promoter. In conclusion, these data suggest that endothelial dysfunction can exacerbate renal interstitial fibrosis through increased fibroblast proliferation and collagen production via enhanced Smad3 linker phosphorylation. PMID:24391884

  18. Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast Smad3 linker phosphorylation in the mouse obstructed kidney.

    PubMed

    Sun, Yu Bo Yang; Qu, Xinli; Li, Xueling; Nikolic-Paterson, David J; Li, Jinhua

    2013-01-01

    Endothelial dysfunction and enhanced transforming growth factor-β (TGF-β)/Smad3 signalling are common features of progressive renal fibrosis. This study investigated a potential link between these mechanisms. In unilateral ureteric obstruction (UUO) we observed an acute (6 hr) down-regulation of nitric oxide synthase 3 (NOS3/eNOS) levels and increased phosphorylation of the linker region of Smad3 at T179 and S208 in Smad3/JNK complexes. These events preceded Smad3 C-terminal domain phosphorylation and the induction of myofibroblast proliferation at 48 hrs. Mice deficient in NOS3 showed enhanced myofibroblast proliferation and collagen accumulation compared to wild type mice in a 7 day UUO model. This was associated with enhanced phosphorylation of Smad3 T179 and S208 by 92% and 88%, respectively, whereas Smad3-C-terminal phosphorylation was not affected. Resolvin D1 (RvD1) can suppress renal fibrosis in the UUO model, and further analysis herein showed that RvD1 protected against endothelial dysfunction and suppressed Smad3/JNK complex formation with a consequent reduction in phosphorylation of Smad3 T179 and S208 by 78% and 65%, respectively, while Smad3 C-terminal phosphorylation was unaltered. In vitro, conditioned media from mouse microvascular endothelial cells (MMEC) treated with a general inhibitor of nitric oxide synthase (L-NAME) augmented the proliferation and collagen production of renal fibroblasts (NRK49F cells) compared to control MMEC media and this was associated with increased phosphorylation of JNK and Smad3 T179 and S208, whereas Smad3-C-terminal domain phosphorylation was unaffected. The addition of RvD1 to L-NAME treated MMEC abrogated these effects of the conditioned media on renal fibroblasts. Finally, Smad3 T179/V and S208/A mutations significantly inhibit TGF-β1 induced up-regulation collagen I promoter. In conclusion, these data suggest that endothelial dysfunction can exacerbate renal interstitial fibrosis through increased fibroblast proliferation and collagen production via enhanced Smad3 linker phosphorylation.

  19. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis.

    PubMed

    Dufton, Neil P; Peghaire, Claire R; Osuna-Almagro, Lourdes; Raimondi, Claudio; Kalna, Viktoria; Chuahan, Abhishek; Webb, Gwilym; Yang, Youwen; Birdsey, Graeme M; Lalor, Patricia; Mason, Justin C; Adams, David H; Randi, Anna M

    2017-10-12

    The role of the endothelium in protecting from chronic liver disease and TGFβ-mediated fibrosis remains unclear. Here we describe how the endothelial transcription factor ETS-related gene (ERG) promotes liver homoeostasis by controlling canonical TGFβ-SMAD signalling, driving the SMAD1 pathway while repressing SMAD3 activity. Molecular analysis shows that ERG binds to SMAD3, restricting its access to DNA. Ablation of ERG expression results in endothelial-to-mesenchymal transition (EndMT) and spontaneous liver fibrogenesis in EC-specific constitutive hemi-deficient (Erg cEC-Het ) and inducible homozygous deficient mice (Erg iEC-KO ), in a SMAD3-dependent manner. Acute administration of the TNF-α inhibitor etanercept inhibits carbon tetrachloride (CCL 4 )-induced fibrogenesis in an ERG-dependent manner in mice. Decreased ERG expression also correlates with EndMT in tissues from patients with end-stage liver fibrosis. These studies identify a pathogenic mechanism where loss of ERG causes endothelial-dependent liver fibrogenesis via regulation of SMAD2/3. Moreover, ERG represents a promising candidate biomarker for assessing EndMT in liver disease.The transcription factor ERG is key to endothelial lineage specification and vascular homeostasis. Here the authors show that ERG balances TGFβ signalling through the SMAD1 and SMAD3 pathways, protecting the endothelium from endothelial-to-mesenchymal transition and consequent liver fibrosis in mice via a SMAD3-dependent mechanism.

  20. Molecular mechanism of the negative regulation of Smad1/5 protein by carboxyl terminus of Hsc70-interacting protein (CHIP).

    PubMed

    Wang, Le; Liu, Yi-Tong; Hao, Rui; Chen, Lei; Chang, Zhijie; Wang, Hong-Rui; Wang, Zhi-Xin; Wu, Jia-Wei

    2011-05-06

    The transforming growth factor-β (TGF-β) superfamily of ligands signals along two intracellular pathways, Smad2/3-mediated TGF-β/activin pathway and Smad1/5/8-mediated bone morphogenetic protein pathway. The C terminus of Hsc70-interacting protein (CHIP) serves as an E3 ubiquitin ligase to mediate the degradation of Smad proteins and many other signaling proteins. However, the molecular mechanism for CHIP-mediated down-regulation of TGF-β signaling remains unclear. Here we show that the extreme C-terminal sequence of Smad1 plays an indispensable role in its direct association with the tetratricopeptide repeat (TPR) domain of CHIP. Interestingly, Smad1 undergoes CHIP-mediated polyubiquitination in the absence of molecular chaperones, and phosphorylation of the C-terminal SXS motif of Smad1 enhances the interaction and ubiquitination. We also found that CHIP preferentially binds to Smad1/5 and specifically disrupts the core signaling complex of Smad1/5 and Smad4. We determined the crystal structures of CHIP-TPR in complex with the phosphorylated/pseudophosphorylated Smad1 peptides and with an Hsp70/Hsc70 C-terminal peptide. Structural analyses and subsequent biochemical studies revealed that the distinct CHIP binding affinities of Smad1/5 or Smad2/3 result from the nonconservative hydrophobic residues at R-Smad C termini. Unexpectedly, the C-terminal peptides from Smad1 and Hsp70/Hsc70 bind in the same groove of CHIP-TPR, and heat shock proteins compete with Smad1/5 for CHIP interaction and concomitantly suppress, rather than facilitate, CHIP-mediated Smad ubiquitination. Thus, we conclude that CHIP inhibits the signaling activities of Smad1/5 by recruiting Smad1/5 from the functional R-/Co-Smad complex and further promoting the ubiquitination/degradation of Smad1/5 in a chaperone-independent manner.

  1. TGF-β/Smad signaling pathway regulates Th17/Treg balance during Echinococcus multilocularis infection.

    PubMed

    Pang, Nannan; Zhang, Fengbo; Ma, Xiumin; Zhu, Yuejie; Zhao, Hui; Xin, Yan; Wang, Song; Chen, Zhaolun; Wen, Hao; Ding, Jianbing

    2014-05-01

    Alveolar echinococcosis (AE) is a severe parasitic disease caused by the infection of Echinococcus multilocularis (Em). Very little is known on the relationship between TGF-β/Smad signaling pathway and Treg/Th17 balance in the infected liver at different periods after Em infection. Using qRT-PCR, immunohistochemistry, flow cytometry and CBA assay, we measured the expression levels of TGF-β, Smad2/3/7, ROR-γt, Foxp3, IL-17, IL-10 and percentages of Th17 cells and Treg cells in mouse AE model, from day 2 to day 270 after infection. In the early stage of infection (day 2 to day 30), Smad7 was up-regulated and the TGF-β pathway was inactivated. In the middle stage of infection (day 30 to day 90), TGF-β and Smad2/3 were up-regulated. And levels of Treg cells, Foxp3, Th17 cells, RORγt, IL-17, IL-10 and IL-6 were significantly increased. In the late stage of infection (day 90 to day 270), Treg cells, Foxp3, TGF-β and IL-10 maintained at high levels whereas Th17 cells and IL-17 decreased significantly. TGF-β/Smad signaling pathway was activated during the chronic infection. Our data suggest that there were Treg/Th17 imbalance in the middle and especially in the late stage of Em infection and that Treg/Th17 imbalance may be regulated by TGF-β/Smad signaling pathway. Treg and Th17 subsets may be involved in regulating immune tolerance and tissue inflammation, and facilitating the long-term survival of Em in the host. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Activin A, B and AB decrease progesterone production by down-regulating StAR in human granulosa cells.

    PubMed

    Chang, Hsun-Ming; Cheng, Jung-Chien; Huang, He-Feng; Shi, Feng-Tao; Leung, Peter C K

    2015-09-05

    Activins are homo- or heterodimers of inhibin β subunits that play important roles in the reproductive system. Our previous work has shown that activins A (βAβA), B (βBβB) and AB (βAβB) induce aromatase/estradiol, but suppress StAR/progesterone production in human granulosa-lutein cells. However, the underlying molecular determinants of these effects have not been examined. In this continuing study, we used immortalized human granulosa cells (SVOG) to investigate the effects of activins in regulating StAR/progesterone and the potential mechanisms of action. In SVOG cells, activins A, B and AB produced comparable down-regulation of StAR expression and progesterone production. In addition, all three activin isoforms induced equivalent phosphorylation of both SMAD2 and SMAD3. Importantly, the activin-induced down-regulation of StAR, increase in SMAD2/3 phosphorylation, and decrease in progesterone were abolished by the TGF-β type I receptor inhibitor SB431542. Interestingly, the small interfering RNA-mediated knockdown of ALK4 but not ALK5 reversed the activin-induced suppression of StAR. Furthermore, the knockdown of SMAD4 or SMAD2 but not SMAD3 abolished the inhibitory effects of all three activin isoforms on StAR expression. These results provide evidence that activins A, B and AB down-regulate StAR expression and decrease progesterone production in human granulosa cells, likely via an ALK4-mediated SMAD2/SMAD4-dependent pathway. Our findings provide important insights into the molecular mechanisms underlying the regulatory effects of activins on human granulosa cell steroidogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Bcl-3 regulates TGFβ signaling by stabilizing Smad3 during breast cancer pulmonary metastasis

    PubMed Central

    Chen, Xi; Cao, Xinwei; Sun, Xiaohua; Lei, Rong; Chen, Pengfei; Zhao, Yongxu; Jiang, Yuhang; Yin, Jie; Chen, Ran; Ye, Deji; Wang, Qi; Liu, Zhanjie; Liu, Sanhong; Cheng, Chunyan; Mao, Jie; Hou, Yingyong; Wang, Mingliang; Siebenlist, Ulrich; Eugene Chin, Y; Wang, Ying; Cao, Liu; Hu, Guohong; Zhang, Xiaoren

    2016-01-01

    Transforming growth factor beta (TGFβ) signaling in breast cancer is selectively associated with pulmonary metastasis. However, the underlying mechanisms remain unclear. Here we show that Bcl-3, a member of the IκB family, serves as a critical regulator in TGFβ signaling to modulate breast cancer pulmonary metastasis. Bcl-3 expression was significantly associated with metastasis-free survival in breast cancer patients. Bcl-3 deletion inhibited the migration and invasion of breast cancer cells in vitro, as well as breast cancer lung metastasis in vivo. Bcl-3 was required for the expression of downstream TGFβ signaling genes that are involved in breast cancer lung metastasis. Bcl-3 knockdown enhanced the degradation of Smad3 but not Smad2 following TGFβ treatment. Bcl-3 could bind to Smad3 and prevent the ubiquitination and degradation of Smad3 protein. These results indicate that Bcl-3 serves as a promising target to prevent breast tumor lung metastasis. PMID:27906182

  4. MiR-144-3p regulates osteogenic differentiation and proliferation of murine mesenchymal stem cells by specifically targeting Smad4.

    PubMed

    Huang, Cong; Geng, Junnan; Wei, Xiajie; Zhang, Ruirui; Jiang, Siwen

    2016-03-01

    Despite extensive research on osteoblast differentiation and proliferation in mesenchymal stem cells (MSCs), the accurate mechanism remains to be further elucidated. MicroRNAs have been reported to be key regulators of osteoblast differentiation and proliferation. Here, we found that miR-144-3p is down-regulated during osteoblast differentiation of C3H10T1/2 cells. Overexpression of miR-144-3p inhibited osteogenic differentiation, whereas inhibition of miR-144-3p reversed this process. Furthermore, miR-144-3p inhibited the proliferation of C3H10T1/2 cells by arresting cells at the G0/G1 phase. Results from bioinformatics analysis, luciferase assay and western blotting demonstrated that miR-144-3p directly targeted Smad4. Additionally, Smad4 knockdown blocks the effects of miR-144-3p inhibitor. Therefore, we conclude that miR-144-3p negatively regulates osteogenic differentiation and proliferation of C3H10T1/2 cells by targeting Smad4. © 2016 Federation of European Biochemical Societies.

  5. Expression pattern and phosphorylation status of Smad2/3 in different subtypes of human first trimester trophoblast.

    PubMed

    Haider, S; Kunihs, V; Fiala, C; Pollheimer, J; Knöfler, M

    2017-09-01

    TGF-β superfamily members are thought to play a pivotal role in placental development and differentiation. However, their downstream effectors, the Smad transcription factors, have been poorly investigated in human trophoblasts. Expression and localisation of the canonical TGF-β targets Smad2/3 and their regulators (Smad4 and Smad7) were investigated in first trimester placenta and purified cytotrophoblast (CTB) subtypes using immunofluorescence, western blotting and qPCR. Canonical and non-canonical activation was analysed in nuclear/cytoplasmic extracts of trophoblast subtypes as well as in tissue sections using antibodies against Smad2/3, phosphorylated either at the C-terminus (pSmad2C/3C) or in their linker regions (pSmad2L/3L). Smad phosphorylation was also examined in differentiating extravillous trophoblasts (EVTs) in the absence or presence of decidual stromal cell (DSC)-conditioned medium. Smad2, Smad4 and Smad7 protein were uniformly expressed between 6th and 12th week placentae and the different isolated CTB subtypes. Activated pSmad2L was mainly detected in nuclei and cytoplasm of villous CTBs, whereas pSmad2C was absent from these cells. In contrast, pSmad2C could be detected in the cytoplasm of cell column trophoblasts and in the cytoplasm/nuclei of EVTs. Smad3 and its phosphorylated forms pSmad3C and pSmad3L specifically localised to EVT nuclei. During EVT differentiation autocrine activation of pSmad2C/3C and pSmad3L was observed. DSC-conditioned medium further increased Smad2/3 phosphorylation in EVTs. The lack of pSmad2C in villous CTBs suggests that other mitogens than TGF-β could promote Smad2 linker phosphorylation under homeostatic conditions. Whereas autocrine signalling activates Smad2/3 in differentiating EVTs, paracrine factors contribute to Smad phosphorylation in these cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein.

    PubMed

    Stroschein, S L; Wang, W; Zhou, S; Zhou, Q; Luo, K

    1999-10-22

    Smad proteins mediate transforming growth factor-beta (TGF-beta) signaling to regulate cell growth and differentiation. The SnoN oncoprotein was found to interact with Smad2 and Smad4 and to repress their abilities to activate transcription through recruitment of the transcriptional corepressor N-CoR. Immediately after TGF-beta stimulation, SnoN is rapidly degraded by the nuclear accumulation of Smad3, allowing the activation of TGF-beta target genes. By 2 hours, TGF-beta induces a marked increase in SnoN expression, resulting in termination of Smad-mediated transactivation. Thus, SnoN maintains the repressed state of TGF-beta-responsive genes in the absence of ligand and participates in negative feedback regulation of TGF-beta signaling.

  7. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling

    PubMed Central

    Yadav, Hariom; Quijano, Celia; Kamaraju, Anil K.; Gavrilova, Oksana; Malek, Rana; Chen, Weiping; Zerfas, Patricia; Zhigang, Duan; Wright, Elizabeth C.; Stuelten, Christina; Sun, Peter; Lonning, Scott; Skarulis, Monica; Sumner, Anne E.; Finkel, Toren; Rane, Sushil G.

    2011-01-01

    SUMMARY Imbalances in glucose and energy homeostasis are at the core of the worldwide epidemic of obesity and diabetes. Here, we illustrate an important role of the TGF-β/Smad3 signaling pathway in regulating glucose and energy homeostasis. Smad3 deficient mice are protected from diet-induced obesity and diabetes. Interestingly, the metabolic protection is accompanied by Smad3−/− white adipose tissue acquiring the bioenergetic and gene expression profile of brown fat/skeletal muscle. Smad3−/− adipocytes demonstrate a marked increase in mitochondrial biogenesis, with a corresponding increase in basal respiration, and Smad3 acts as a repressor of PGC-1α expression. We observe significant correlation between TGF-β1 levels and adiposity in rodents and humans. Further, systemic blockade of TGF-β1 signaling protects mice from obesity, diabetes and hepatic steatosis. Together, these results demonstrate that TGF-β signaling regulates glucose tolerance and energy homeostasis and suggest that modulation of TGF-β1 activity might be an effective treatment strategy for obesity and diabetes. PMID:21723505

  8. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo.

    PubMed

    Kamaraju, Anil K; Roberts, Anita B

    2005-01-14

    TGF-beta is a multifunctional cytokine known to exert its biological effects through a variety of signaling pathways of which Smad signaling is considered to be the main mediator. At present, the Smad-independent pathways, their interactions with each other, and their roles in TGF-beta-mediated growth inhibitory effects are not well understood. To address these questions, we have utilized a human breast cancer cell line MCF10CA1h and demonstrate that p38 MAP kinase and Rho/ROCK pathways together with Smad2 and Smad3 are necessary for TGF-beta-mediated growth inhibition of this cell line. We show that Smad2/3 are indispensable for TGF-beta-mediated growth inhibition, and that both p38 and Rho/ROCK pathways affect the linker region phosphorylation of Smad2/3. Further, by using Smad3 mutated at the putative phosphorylation sites in the linker region, we demonstrate that phosphorylation at Ser203 and Ser207 residues is required for the full transactivation potential of Smad3, and that these residues are targets of the p38 and Rho/ROCK pathways. We demonstrate that activation of the p38 MAP kinase pathway is necessary for the full transcriptional activation potential of Smad2/Smad3 by TGF-beta, whereas activity of Rho/ROCK is necessary for both down-regulation of c-Myc protein and up-regulation of p21waf1 protein, directly interfering with p21waf1 transcription. Our results not only implicate Rho/ROCK and p38 MAPK pathways as necessary for TGF-beta-mediated growth inhibition, but also demonstrate their individual contributions and the basis for their cooperation with each other.

  9. Cooperative Assembly of Co-Smad4 MH1 with R-Smad1/3 MH1 on DNA: A Molecular Dynamics Simulation Study

    PubMed Central

    Wang, Guihong; Li, Chaoqun; Wang, Yan; Chen, Guangju

    2013-01-01

    Background Smads, the homologs of Sma and MAD proteins, play a key role in gene expression regulation in the transforming growth factor-β (TGF-β) signaling pathway. Recent experimental studies have revealed that Smad4/R-Smad heterodimers bound on DNA are energetically more favorable than homodimeric R-Smad/R-Smad complexes bound on DNA, which indicates that Smad4 might act as binding vehicle to cooperatively assemble with activated R-Smads on DNA in the nucleus. However, the details of interaction mechanism for cooperative recruitment of Smad4 protein to R-Smad proteins on DNA, and allosteric communication between the Smad4-DNA and R-Smad-DNA interfaces via DNA mediating are not yet clear so far. Methodology In the present work, we have constructed a series of Smadn+DNA+Smadn (n = 1, 3, 4) models and carried out molecular dynamics simulations, free energy calculations and DNA dynamics analysis for them to study the interaction properties of Smadn (n = 1, 3, 4) with DNA molecule. Results The results revealed that the binding of Smad4 protein to DNA molecule facilitates energetically the formation of the heteromeric Smad4+DNA+Smad1/3 complex by increasing the affinity of Smad1/3 with DNA molecule. Further investigations through the residue/base motion correlation and DNA dynamics analyses predicted that the binding of Smad4 protein to DNA molecule in the heteromeric Smad4+DNA+Smad1/3 model induces an allosteric communication from the Smad4-DNA interface to Smad1/Smad3-DNA interface via DNA base-pair helical motions, surface conformation changes and new hydrogen bond formations. The present work theoretically explains the mechanism of cooperative recruitment of Smad4 protein to Smad1/3 protein via DNA-mediated indirect readout mode in the nucleus. PMID:23326519

  10. Two short segments of Smad3 are important for specific interaction of Smad3 with c-Ski and SnoN.

    PubMed

    Mizuide, Masafumi; Hara, Takane; Furuya, Toshio; Takeda, Masafumi; Kusanagi, Kiyoshi; Inada, Yuri; Mori, Masatomo; Imamura, Takeshi; Miyazawa, Keiji; Miyazono, Kohei

    2003-01-03

    c-Ski and SnoN are transcriptional co-repressors that inhibit transforming growth factor-beta signaling through interaction with Smad proteins. Among receptor-regulated Smads, c-Ski and SnoN bind more strongly to Smad2 and Smad3 than to Smad1. Here, we show that c-Ski and SnoN bind to the "SE" sequence in the C-terminal MH2 domain of Smad3, which is exposed on the N-terminal upper side of the toroidal structure of the MH2 oligomer. The "QPSMT" sequence, located in the vicinity of SE, supports the interaction with c-Ski and SnoN. Sequences similar to SE and QPSMT are found in Smad2, but not in Smad1. The N-terminal MH1 domain and linker region of Smad3 protrude from the N-terminal upper side of the MH2 oligomer toroid. Smurf2 induces ubiquitin-dependent degradation of SnoN, since it appears to be located close to SnoN through binding to the linker region of Smad2. In contrast, transcription factors Mixer and FoxH3 (FAST1) bind to the bottom side of the Smad3 MH2 toroid; therefore, c-Ski does not affect the interaction of Smads with these transcription factors. Our findings thus demonstrate the stoichiometry of how multiple molecules can associate with the Smad oligomers and how the Smad-interacting proteins functionally interact with each other.

  11. Expression Pattern of Smad4/GATA3 as a Predictor of Survival in Invasive Ductal Carcinoma of the Breast.

    PubMed

    Min, Kyueng-Whan; Kim, Dong-Hoon; Do, Sung-Im; Chae, Seoung Wan; Kim, Kyungeun; Sohn, Jin Hee; Lee, Hyun Joo; Do, In-Gu; Pyo, Jung-Soo; Kim, Yuil; Kim, Dong Hyun; Yang, Jung-Ho; Lee, Sang-Jo; Oh, Young Ha; Oh, Sukjoong; Choi, Seon Hyeong; Park, Yong Lai; Park, Chan Heun; Kim, Eun-Kyung; Kwon, Mi Jung; Seo, Jinwon

    2017-01-01

    Smad4 and GATA3 proteins are known prognostic markers in various cancers. Smad4 is a mediator linked to both tumour suppression and progression. GATA3 is a regulator of development and morphogenesis of the mammary gland. We assessed and compared the predictive performance of Smad4 and GATA3 for clinical outcomes in patients with breast cancer. The combined expression pattern based on Smad4+/- and GATA3+/- was evaluated by immunostaining using breast cancer tissue microarray, and the relationships between protein expression and clinicopathological variables were analysed. Smad4 expression was only associated with an ill-defined tumour border, whereas GATA3 was associated with several good prognostic factors. On analysis of combined markers, there was a significant difference in the expression of fascin (an important factor for cancer invasiveness) between the Smad4+/GATA3- and Smad4-/GATA3+ groups. Smad4+/GATA3- was correlated with worse clinicopathological parameters, relapse-free survival (RFS), and overall survival (OS), compared to Smad4-/GATA3+. Combined markers of Smad4/GATA3 showed a superior performance compared to single markers for predicting RFS and OS in patients with breast cancer. © 2017 S. Karger AG, Basel.

  12. CDK4 inhibition and doxorubicin mediate breast cancer cell apoptosis through Smad3 and survivin

    PubMed Central

    Tarasewicz, Elizabeth; Hamdan, Randala; Straehla, Joelle; Hardy, Ashley; Nunez, Omar; Zelivianski, Stanislav; Dokic, Danijela; Jeruss, Jacqueline S

    2014-01-01

    Cyclin D1/CDK4 activity is upregulated in up to 50% of breast cancers and CDK4-mediated phosphorylation negatively regulates the TGFβ superfamily member Smad3. We sought to determine if CDK4 inhibition and doxorubicin chemotherapy could impact Smad3-mediated cell/colony growth and apoptosis in breast cancer cells. Parental and cyclin D1-overexpressing MCF7 cells were treated with CDK4 inhibitor, doxorubicin, or combination therapy and cell proliferation, apoptosis, colony formation, and expression of apoptotic proteins were evaluated using an MTS assay, TUNEL staining, 3D Matrigel assay, and apoptosis array/immunoblotting. Study cells were also transduced with WT Smad3 or a Smad3 construct resistant to CDK4 phosphorylation (5M) and colony formation and expression of apoptotic proteins were assessed. Treatment with CDK4 inhibitor/doxorubicin combination therapy, or transduction with 5M Smad3, resulted in a similar decrease in colony formation. Treating cyclin D overexpressing breast cancer cells with combination therapy also resulted in the greatest increase in apoptosis, resulted in decreased expression of anti-apoptotic proteins survivin and XIAP, and impacted subcellular localization of pro-apoptotic Smac/DIABLO. Additionally, transduction of 5M Smad3 and doxorubicin treatment resulted in the greatest change in apoptotic protein expression. Collectively, this work showed the impact of CDK4 inhibitor-mediated, Smad3-regulated tumor suppression, which was augmented in doxorubicin-treated cyclin D-overexpressing study cells. PMID:25006666

  13. Hsc70 facilitates TGF-β-induced activation of Smad2/3 in fibroblastic NRK-49F cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikezaki, Midori; Higashimoto, Natsuki; Matsumura, Ko

    Heat-shock cognate protein 70 (Hsc70), a molecular chaperone constitutively expressed in the cell, is involved in the regulation of several cellular signaling pathways. In this study, we found that TGF-β-induced phosphorylation and nuclear translocation of Smad2/3 were suppressed in fibroblastic NRK-49F cells treated with small interfering RNA (siRNA) for Hsc70. In the cells underexpressing Hsc70, transcriptional induction of connective tissue growth factor (CTGF), a target gene of the TGF-β signaling, was also suppressed in the early phase of TGF-β stimulation. Upon stimulation with TGF-β, Hsc70 interacted with Smad2/3, suggesting functional interactions of Hsc70 and Smad2/3 for the activation of TGF-β-inducedmore » Smad signaling. Although the expression of heat-shock protein 70 (Hsp70) was upregulated in the cells treated with Hsc70 siRNA, TGF-β-induced Smad activation was not affected in the cells overexpressing Hsp70. Collectively, these results indicate that Hsc70, but not Hsp70, supportively regulates TGF-β-induced Smad signaling in NRK-49F cells. - Highlights: • Hsc70 siRNA treatment suppressed the expression of Hsc70 but induced the expression of Hsp70 in NRK-49F cells. • Hsc70 siRNA treatment suppressed the activation of Smad2/3 in the cells treated with TGF-β. • Hsc70 interacted with Smad2/3 on stimulation with TGF-β in the cells. • Hsp70 did not influence the TGF-β-induced activation of Smad2/3 in the cells overexpressing Hsp70.« less

  14. MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jun; Zhang, Shuyu; Zhou, Yingqi

    2011-03-25

    Research highlights: {yields} We identify miR-421 as a novel potential regulator of DPC4/Smad4. {yields} The expression levels of miR-421 and DPC4/Smad4 are inversely correlated in human clinical specimens of pancreatic cancer. {yields} Overexpression of miR-421 represses the reporter activities driven by the 3'-UTR of DPC4/Smad4 and DPC4/Smad4 protein level in pancreatic cancer cell. {yields} Ectopic expression of miR-421 promotes the proliferation and colony formation of pancreatic cancer cell. -- Abstract: MicroRNAs (miRNAs) have emerged as important regulators in the development of pancreatic cancer and may be a valuable therapeutic application. DPC4/Smad4 is a critical tumor suppressor involved in the progressionmore » of pancreatic cancer, but few studies have been conducted to determine its relationship with miRNAs. In this study, we identify miR-421 as a potential regulator of DPC4/Smad4. We find that in human clinical specimens of pancreatic cancer miR-421 is aberrantly upregulated while DPC4/Smad4 is strongly repressed, and their levels of expression are inversely correlated. Moreover, ectopic expression of miR-421 significantly decreases DPC4/Smad4 protein level in pancreatic cancer cell lines and simultaneously promotes cell proliferation and colony formation in vitro. Our findings identify miR-421 as a potent regulator of DPC4/Smad4, which may provide a novel therapeutic strategy for treatment of DPC4/Smad4-driven pancreatic cancer.« less

  15. Carnosic acid prevents COL1A2 transcription through the reduction of Smad3 acetylation via the AMPKα1/SIRT1 pathway.

    PubMed

    Zhao, Yan; Shi, Xue; Ding, Chunchun; Feng, Dongcheng; Li, Yang; Hu, Yan; Wang, Li; Gao, Dongyan; Tian, Xiaofeng; Yao, Jihong

    2018-01-15

    Carnosic acid (CA), a major bioactive component in rosemary extract, has many biological and pharmaceutical activities. Smad3 acetylation can regulate the transcription of type I α2 collagen (COL1A2), which is the major component of the extracellular matrix (ECM). The aim of the current study was to evaluate whether CA inhibits COL1A2 transcription via the reduction of Smad3 acetylation against liver fibrosis. The results showed that CA treatment significantly suppressed COL1A2 transcription and markedly decreased the deposition of ECM induced by dimethylamine (DMN) in rats. Importantly, the suppression of COL1A2 transcription following CA treatment depended on the reduction of Smad3 acetylation via the activation of Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide + (NAD + )-dependent deacetylase. SIRT1 siRNA increased the acetylation of Smad3 and blocked CA-down-regulated Smad3 deacetylation. Notably, CA-mediated AMP-activated protein kinase-α1 (AMPKα1) activation not only increased AMPKα1 phosphorylation but also increased SIRT1 expression, thus leading to a significant reduction in Smad3 acetylation. Furthermore, CA-mediated SIRT1 activation was inhibited by AMPKα1 siRNA. Collectively, CA can inhibit the transcription of COL1A2 through SIRT1-mediated Smad3 deacetylation, and the activation of SIRT1 by CA involves the AMPKα1/SIRT1 pathway in liver fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Nuclear Factor YY1 Inhibits Transforming Growth Factor β- and Bone Morphogenetic Protein-Induced Cell Differentiation

    PubMed Central

    Kurisaki, Keiko; Kurisaki, Akira; Valcourt, Ulrich; Terentiev, Alexei A.; Pardali, Katerina; ten Dijke, Peter; Heldin, Carl-Henrik; Ericsson, Johan; Moustakas, Aristidis

    2003-01-01

    Smad proteins transduce transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-β and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1). YY1 inhibits binding of Smads to their cognate DNA elements in vitro and blocks Smad recruitment to the Smad-binding element-rich region of the PAI-1 promoter in vivo. YY1 interacts with the conserved N-terminal Mad homology 1 domain of Smad4 and to a lesser extent with Smad1, Smad2, and Smad3. The YY1 zinc finger domain mediates the association with Smads and is necessary for the repressive effect of YY1 on Smad transcriptional activity. Moreover, downregulation of endogenous YY1 by antisense and small interfering RNA strategies results in enhanced transcriptional responses to TGF-β or BMP. Ectopic expression of YY1 inhibits, while knockdown of endogenous YY1 enhances, TGF-β- and BMP-induced cell differentiation. In contrast, overexpression or knockdown of YY1 does not affect growth inhibition induced by TGF-β or BMP. Accordingly, YY1 does not interfere with the regulation of immediate-early genes involved in the TGF-β growth-inhibitory response, the cell cycle inhibitors p15 and p21, and the proto-oncogene c-myc. In conclusion, YY1 represses Smad transcriptional activities in a gene-specific manner and thus regulates cell differentiation induced by TGF-β superfamily pathways. PMID:12808092

  17. Valproic acid (VPA) inhibits the epithelial-mesenchymal transition in prostate carcinoma via the dual suppression of SMAD4.

    PubMed

    Lan, Xiaopeng; Lu, Guoliang; Yuan, Chuanwei; Mao, Shaowei; Jiang, Wei; Chen, Yougen; Jin, Xunbo; Xia, Qinghua

    2016-01-01

    The epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. Previous studies have reported that valproic acid (VPA) suppresses prostate carcinoma (PCa) cell metastasis and down-regulates SMAD4 protein levels, which is the key molecule in TGF-β-induced EMT. However, the correlation between VPA and the EMT in PCa remains uncertain. Markers of the EMT in PCa cells and xenografts were molecularly assessed after VPA treatment. The expression and mono-ubiquitination of SMAD4 were also analyzed. After transfection with plasmids that express SMAD4 or short hairpin RNA for SMAD4 down-regulation, markers of EMT were examined to confirm whether VPA inhibits the EMT of PCa cells through the suppression of SMAD4. VPA induced the increase in E-cadherin (p < 0.05), and the decrease in N-cadherin (p < 0.05) and Vimentin (p < 0.05), in PCa cells and xenografts. SMAD4 mRNA and protein levels were repressed by VPA (p < 0.05), whereas the level of mono-ubiquitinated SMAD4 was increased (p < 0.05). SMAD4 knockdown significantly increased E-cadherin expression in PC3 cells, but SMAD4 over-expression abolished the VPA-mediated EMT-inhibitory effect. VPA inhibits the EMT in PCa cells via the inhibition of SMAD4 expression and the mono-ubiquitination of SMAD4. VPA could serve as a promising agent in PCa treatment, with new strategies based on its diverse effects on posttranscriptional regulation.

  18. Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA.

    PubMed

    Zhao, Bryan M; Hoffmann, F Michael

    2006-09-01

    Overexpression of the inhibitory Smad, Smad7, is used frequently to implicate the Smad pathway in cellular responses to transforming growth factor beta (TGF-beta) signaling; however, Smad7 regulates several other proteins, including Cdc42, p38MAPK, and beta-catenin. We report an alternative approach for more specifically disrupting Smad-dependent signaling using a peptide aptamer, Trx-SARA, which comprises a rigid scaffold, the Escherichia coli thioredoxin A protein (Trx), displaying a constrained 56-amino acid Smad-binding motif from the Smad anchor for receptor activation (SARA) protein. Trx-SARA bound specifically to Smad2 and Smad3 and inhibited both TGF-beta-induced reporter gene expression and epithelial-to-mesenchymal transition in NMuMG murine mammary epithelial cells. In contrast to Smad7, Trx-SARA had no effect on the Smad2 or 3 phosphorylation levels induced by TGF-beta1. Trx-SARA was primarily localized to the nucleus and perturbed the normal cytoplasmic localization of Smad2 and 3 to a nuclear localization in the absence of TGF-beta1, consistent with reduced Smad nuclear export. The key mode of action of Trx-SARA was to reduce the level of Smad2 and Smad3 in complex with Smad4 after TGF-beta1 stimulation, a mechanism of action consistent with the preferential binding of SARA to monomeric Smad protein and Trx-SARA-mediated disruption of active Smad complexes.

  19. Non-Smad signaling pathways.

    PubMed

    Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne

    2012-01-01

    Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

  20. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    PubMed Central

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  1. Characterization of a novel transcriptionally active domain in the transforming growth factor beta-regulated Smad3 protein.

    PubMed

    Prokova, Vassiliki; Mavridou, Sofia; Papakosta, Paraskevi; Kardassis, Dimitris

    2005-01-01

    Transforming growth factor beta (TGFbeta) regulates transcriptional responses via activation of cytoplasmic effector proteins termed Smads. Following their phosphorylation by the type I TGFbeta receptor, Smads form oligomers and translocate to the nucleus where they activate the transcription of TGFbeta target genes in cooperation with nuclear cofactors and coactivators. In the present study, we have undertaken a deletion analysis of human Smad3 protein in order to characterize domains that are essential for transcriptional activation in mammalian cells. With this analysis, we showed that Smad3 contains two domains with transcriptional activation function: the MH2 domain and a second middle domain that includes the linker region and the first two beta strands of the MH2 domain. Using a protein-protein interaction assay based on biotinylation in vivo, we were able to show that a Smad3 protein bearing an internal deletion in the middle transactivation domain is characterized by normal oligomerization and receptor activation properties. However, this mutant has reduced transactivation capacity on synthetic or natural promoters and is unable to interact physically and functionally with the histone acetyltransferase p/CAF. The loss of interaction with p/CAF or other coactivators could account, at least in part, for the reduced transactivation capacity of this Smad3 mutant. Our data support an essential role of the previously uncharacterized middle region of Smad3 for nuclear functions, such as transcriptional activation and interaction with coactivators.

  2. Definition of smad3 phosphorylation events that affect malignant and metastatic behaviors in breast cancer cells.

    PubMed

    Bae, Eunjin; Sato, Misako; Kim, Ran-Ju; Kwak, Mi-Kyung; Naka, Kazuhito; Gim, Jungsoo; Kadota, Mitsutaka; Tang, Binwu; Flanders, Kathleen C; Kim, Tae-Aug; Leem, Sun-Hee; Park, Taesung; Liu, Fang; Wakefield, Lalage M; Kim, Seong-Jin; Ooshima, Akira

    2014-11-01

    Smad3, a major intracellular mediator of TGFβ signaling, functions as both a positive and negative regulator in carcinogenesis. In response to TGFβ, the TGFβ receptor phosphorylates serine residues at the Smad3 C-tail. Cancer cells often contain high levels of the MAPK and CDK activities, which can lead to the Smad3 linker region becoming highly phosphorylated. Here, we report, for the first time, that mutation of the Smad3 linker phosphorylation sites markedly inhibited primary tumor growth, but significantly increased lung metastasis of breast cancer cell lines. In contrast, mutation of the Smad3 C-tail phosphorylation sites had the opposite effect. We show that mutation of the Smad3 linker phosphorylation sites greatly intensifies all TGFβ-induced responses, including growth arrest, apoptosis, reduction in the size of putative cancer stem cell population, epithelial-mesenchymal transition, and invasive activity. Moreover, all TGFβ responses were completely lost on mutation of the Smad3 C-tail phosphorylation sites. Our results demonstrate a critical role of the counterbalance between the Smad3 C-tail and linker phosphorylation in tumorigenesis and metastasis. Our findings have important implications for therapeutic intervention of breast cancer. ©2014 American Association for Cancer Research.

  3. Megakaryocytic Smad4 Regulates Platelet Function through Syk and ROCK2 Expression.

    PubMed

    Wang, Yanhua; Jiang, Lirong; Mo, Xi; Lan, Yu; Yang, Xiao; Liu, Xinyi; Zhang, Jian; Zhu, Li; Liu, Junling; Wu, Xiaolin

    2017-09-01

    Smad4, a key transcription factor in the transforming growth factor- β signaling pathway, is involved in a variety of cell physiologic and pathologic processes. Here, we characterized megakaryocyte/platelet-specific Smad4 deficiency in mice to elucidate its effect on platelet function. We found that megakaryocyte/platelet-specific loss of Smad4 caused mild thrombocytopenia and significantly extended first occlusion time and tail bleeding time in mice. Smad4-deficient platelets showed reduced agonist-induced platelet aggregation. Further studies showed that a severe defect was seen in integrin α IIb β 3 -mediated bidirectional (inside-out and outside-in) signaling in Smad4-deficient platelets, as evidenced by reduced fibrinogen binding and α -granule secretion, suppressed platelet spreading and clot retraction. Microarray analysis showed that the expression levels of multiple genes were altered in Smad4-deficient platelets. Among these genes, spleen tyrosine kinase (Syk) and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) were downregulated several times as confirmed by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Further research showed that Smad4 directly regulates ROCK2 transcription but indirectly regulates Syk. Megakaryocyte/platelet-specific Smad4 deficiency caused decreased expression levels of Syk and ROCK2 in platelets. These results suggest potential links among Smad4 deficiency, attenuated Syk, and ROCK2 expression and defective platelet activation. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Smad4 sensitizes colorectal cancer to 5-fluorouracil through cell cycle arrest by inhibiting the PI3K/Akt/CDC2/survivin cascade.

    PubMed

    Zhang, Binhao; Leng, Chao; Wu, Chao; Zhang, Zhanguo; Dou, Lei; Luo, Xin; Zhang, Bixiang; Chen, Xiaoping

    2016-03-01

    5-Fluorouracil (5-FU), a cell cycle-specific antimetabolite, is one of the most commonly used chemotherapeutic agents for colorectal cancer (CRC). Yet, resistance to 5-FU-based chemotherapy is still an obstacle to the treatment of this malignancy. Mutation or loss of Smad4 in CRC is pivotal for chemoresistance. However, the mechanism by which Smad4 regulates the chemosensitivity of CRC remains unclear. In the present study, we investigated the role of Smad4 in the chemosensitivity of CRC to 5-FU, and whether Smad4-regulated cell cycle arrest is involved in 5-FU chemoresistance. We used Smad4-expressing CT26 and Smad4-null SW620 cell lines as experimental models, by knockdown or transgenic overexpression. Cells or tumors were treated with 5-FU to determine chemosensitivity by cell growth, tumorigenicity assay and a mouse model. Cell cycle distribution was examined with flow cytometric analysis, and cell cycle-related proteins were examined by western blotting. Smad4 deficiency in CT26 and SW620 cells induced chemoresistance to 5-FU both in vitro and in vivo. Smad4 deficiency attenuated G1 or G2 cell cycle arrest by activating the PI3K/Akt/CDC2/survivin pathway. The PI3K inhibitor, LY294002, reversed the activation of the Akt/CDC2/survivin cascade in the Smad4-deficient cells, while it had little effect on cells with high Smad4 expression. In conclusion, we discovered a novel mechanism mediated by Smad4 to trigger 5-FU chemosensitivity through cell cycle arrest by inhibiting the PI3K/Akt/CDC2/survivin cascade. The present study also implies that LY294002 has potential therapeutic value to reverse the chemosensitivity of CRC with low Smad4 expression.

  5. Protein Kinase A Modulates Transforming Growth Factor-β Signaling through a Direct Interaction with Smad4 Protein*

    PubMed Central

    Yang, Huibin; Li, Gangyong; Wu, Jing-Jiang; Wang, Lidong; Uhler, Michael; Simeone, Diane M.

    2013-01-01

    Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290–300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281–285 and 320–329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo. PMID:23362281

  6. Poricoic acid ZA, a novel RAS inhibitor, attenuates tubulo-interstitial fibrosis and podocyte injury by inhibiting TGF-β/Smad signaling pathway.

    PubMed

    Wang, Ming; Chen, Dan-Qian; Wang, Min-Chang; Chen, Hua; Chen, Lin; Liu, Dan; Zhao, Hui; Zhao, Ying-Yong

    2017-12-01

    The pathogenesis of tubulo-interstitial fibrosis and glomerulosclerosisis was characterized by cellular hypertrophy, extracellular matrix accumulation and podocyte detachment. Poricoic acid ZA (PZA) is a tetracyclic triterpenoid compound extracted from the surface layer of Poria cocos (LPC), which have been used extensively for diuretic and renoprotective effects. The anti-fibrotic effect of PZA is investigated in HK-2 cells and podocytes induced by TGF-β1 and angiotensin II (ANGII). qRT-PCR, siRNA, immunofluorescence staining, co-immunoprecipitation and Western blot analyses are used to evaluate the expression of RAS signaling, TGF-β/Smad pathway, epithelial-to-mesenchymal transition (EMT) and podocyte markers. PZA restores the mRNA and protein expression of EMT in HK-2 cells. Specific TGF-β1-siRNA efficiently blocks ANGII-induced protein expression of TGF-β1 and further inhibits activated Smad signaling. PZA significantly attenuates up-regulation of angiotensinogen, renin, ACE and AT1. Further, PZA reverses up-regulation of TGFβRII and suppresses Smad proteins. Simultaneously, PZA inhibits the protein interaction of TGF-β receptor and Smads and PZA also inhibits activated RAS and TGF-β/Smad signaling cascade and up-regulates protein expression of podocyte markers and mitigates podocyte injury. This study demonstrated the beneficial role of PZA in renal fibrosis and podocyte injury. Our study highlighted that PZA inhibits RAS and further suppresses TGF-β/Smad pathway through inhibiting Smad2/3 phosphorylation via blocking Smad2/3-TGFβRI protein interaction. PZA is implicated in activation of RAS/TGF-β/Smad axis in HK-2 cells and podocytes. PZA could be considered as a novel RAS inhibitor for treating CKD. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. APC and Smad7 link TGFβ type I receptors to the microtubule system to promote cell migration

    PubMed Central

    Ekman, Maria; Mu, Yabing; Lee, So Young; Edlund, Sofia; Kozakai, Takaharu; Thakur, Noopur; Tran, Hoanh; Qian, Jiang; Groeden, Joanna; Heldin, Carl-Henrik; Landström, Maréne

    2012-01-01

    Cell migration occurs by activation of complex regulatory pathways that are spatially and temporally integrated in response to extracellular cues. Binding of adenomatous polyposis coli (APC) to the microtubule plus ends in polarized cells is regulated by glycogen synthase kinase 3β (GSK-3β). This event is crucial for establishment of cell polarity during directional migration. However, the role of APC for cellular extension in response to extracellular signals is less clear. Smad7 is a direct target gene for transforming growth factor-β (TGFβ) and is known to inhibit various TGFβ-induced responses. Here we report a new function for Smad7. We show that Smad7 and p38 mitogen–activated protein kinase together regulate the expression of APC and cell migration in prostate cancer cells in response to TGFβ stimulation. In addition, Smad7 forms a complex with APC and acts as an adaptor protein for p38 and GSK-3β kinases to facilitate local TGFβ/p38–dependent inactivation of GSK-3β, accumulation of β-catenin, and recruitment of APC to the microtubule plus end in the leading edge of migrating prostate cancer cells. Moreover, the Smad7–APC complex links the TGFβ type I receptor to the microtubule system to regulate directed cellular extension and migratory responses evoked by TGFβ. PMID:22496417

  8. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.

    PubMed

    Zhang, B; Zhang, B; Chen, X; Bae, S; Singh, K; Washington, M K; Datta, P K

    2014-02-18

    Higher frequency of Smad4 inactivation or loss of expression is observed in metastasis of colorectal cancer (CRC) leading to unfavourable survival and contributes to chemoresistance. However, the molecular mechanism of how Smad4 regulates chemosensitivity of CRC is unknown. We evaluated how the loss of Smad4 in CRC enhanced chemoresistance to 5-fluorouracil (5-FU) using two CRC cell lines in vitro and in vivo. Immunoblotting with cell and tumour lysates and immunohistochemical analyses with tissue microarray were performed. Knockdown or loss of Smad4 induced tumorigenicity, migration, invasion, angiogenesis, metastasis, and 5-FU resistance. Smad4 expression in mouse tumours regulated cell-cycle regulatory proteins leading to Rb phosphorylation. Loss of Smad4 activated Akt pathway that resulted in upregulation of anti-apoptotic proteins, Bcl-2 and Bcl-w, and Survivin. Suppression of phosphatidylinositol-3-kinase (PI3K)/Akt pathway by LY294002 restored chemosensitivity of Smad4-deficient cells to 5-FU. Vascular endothelial growth factor-induced angiogenesis in Smad4-deficient cells might also lead to chemoresistance. Low levels of Smad4 expression in CRC tissues correlated with higher levels of Bcl-2 and Bcl-w and with poor overall survival as observed in immunohistochemical staining of tissue microarrays. Loss of Smad4 in CRC patients induces resistance to 5-FU-based therapy through activation of Akt pathway and inhibitors of this pathway may sensitise these patients to 5-FU.

  9. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway

    PubMed Central

    Zhang, B; Zhang, B; Chen, X; Bae, S; Singh, K; Washington, M K; Datta, P K

    2014-01-01

    Background: Higher frequency of Smad4 inactivation or loss of expression is observed in metastasis of colorectal cancer (CRC) leading to unfavourable survival and contributes to chemoresistance. However, the molecular mechanism of how Smad4 regulates chemosensitivity of CRC is unknown. Methods: We evaluated how the loss of Smad4 in CRC enhanced chemoresistance to 5-fluorouracil (5-FU) using two CRC cell lines in vitro and in vivo. Immunoblotting with cell and tumour lysates and immunohistochemical analyses with tissue microarray were performed. Results: Knockdown or loss of Smad4 induced tumorigenicity, migration, invasion, angiogenesis, metastasis, and 5-FU resistance. Smad4 expression in mouse tumours regulated cell-cycle regulatory proteins leading to Rb phosphorylation. Loss of Smad4 activated Akt pathway that resulted in upregulation of anti-apoptotic proteins, Bcl-2 and Bcl-w, and Survivin. Suppression of phosphatidylinositol-3-kinase (PI3K)/Akt pathway by LY294002 restored chemosensitivity of Smad4-deficient cells to 5-FU. Vascular endothelial growth factor-induced angiogenesis in Smad4-deficient cells might also lead to chemoresistance. Low levels of Smad4 expression in CRC tissues correlated with higher levels of Bcl-2 and Bcl-w and with poor overall survival as observed in immunohistochemical staining of tissue microarrays. Conclusion: Loss of Smad4 in CRC patients induces resistance to 5-FU-based therapy through activation of Akt pathway and inhibitors of this pathway may sensitise these patients to 5-FU. PMID:24384683

  10. The role of TGFβ receptor 1-smad3 signaling in regulating the osteoclastic mode affected by fluoride.

    PubMed

    Yu, Haolan; Jiang, Ningning; Yu, XiuHua; Zhao, Zhitao; Zhang, Xiuyun; Xu, Hui

    2018-01-15

    Studies that have focused on the role TGFβ signaling plays in osteoclast activity are gradually increasing; however, literature is rare in terms of fluorosis. The aim of this study is to observe the role the TβR1/Smad3 pathway plays in fluoride regulating cellsosteoclast-like cells that are under the treatment of TGFβ receptor 1 kinase. The RANKL-mediated osteoclast-like cells from RAW264.7 cells were used as osteoclast precursor model. The profile of miRNA expression in fluoride-treated osteoclast-like cells exhibited 303 upregulated miRNAs, 61 downregulated miRNAs, and further drew 37 signaling pathway maps by KEGG and Biocarta pathway enrichment analysis. TGFβ and its downstream effectors were included among them. Osteoclast viability, formation and function were detected via MTT method, bone resorption pit and tartrate-resistant acid phosphatase (TRACP) staining, respectively. Results demonstrated that different doses of fluoride exhibited a biphasic effect on osteoclast cell viability, differentiation, formation and function. It indicated that a low dose of fluoride treatment stimulated them, but high dose inhibited them. SB431542 acted as TβR1 kinase inhibitor and blocked viability, formation and function of osteoclast-like cells regulated by fluoride. The expression of the osteoclast marker, RANK, and TβR1/Smad3 at gene and protein level was analyzed under fluoride with and without SB431542 treatment. Fluoride treatment indicated little effect on the RANK protein expression; however it significantly influenced TRACP expression in osteoclast-like cells. The stimulation of fluoride on the expression of Smad3 gene and phosphorylated Smad3 protein exhibited dose-dependent manner. SB431542 significantly impeded phosphorylation of Smad3 protein and TRACP expression in osteoclast-like cells that were exposed to fluoride. Our work demonstrated that TGFβ signaling played a key role in fluoride regulating osteoclast differentiation, formation and function. It elucidated that TβR1/Smad3 pathway participated in the mechanism of biphasic modulation of osteoclast mode regulated by fluoride. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Serine-204 in the Linker Region of Smad3 Mediates the Collagen-I Response to TGF-β in a Cell Phenotype-Specific Manner

    PubMed Central

    Browne, James A.; Liu, Xiaoying; Schnaper, H. William; Hayashida, Tomoko

    2013-01-01

    Regulation of TGF-β1/Smad3 signaling in fibrogenesis is complex. Previous work by our lab suggests that ERK MAP kinase phosphorylates the linker region (LR) of Smad3 to enhance TGF-β-induced collagen-I accumulation. However the roles of the individual Smad3LR phosphorylation sites (T179, S204, S208 and S213) in the collagen-I response to TGF-β are not clear. To address this issue, we tested the ability of Smad3 constructs expressing wild-type Smad3 or Smad3 with mutated LR phosphorylation sites to reconstitute TGF-β-stimulated COL1A2 promoter activity in Smad3-null or -knockdown cells. Blocking ERK in fibroblasts and renal mesangial cells inhibited both S204 phosphorylation and Smad3-mediated COL1A2 promoter activity. Mutations replacing serine at S204 or S208 in the linker region decreased Smad3-mediated COL1A2 promoter activity, whereas mutating T179 enhanced basal COL1A2 promoter activity and did not prevent TGF-β stimulation. Interestingly, mutation of all four Smad3LR sites (T179, S204, S208 and S213) was not inhibitory, suggesting primacy of the two inhibitory sites. These results suggest that in these mesenchymal cells, phosphorylation of the T179 and possibly S213 sites may act as a brake on the signal, whereas S204 phosphorylation by ERK in some manner releases that brake. Renal epithelial cells (HKC) respond differently from MEF or mesangial cells; blocking ERK neither changed TGF-β-stimulated S204 phosphorylation nor prevented Smad3-mediated COL1A2 promoter activity in HKC. Furthermore, re-expression of wild type-Smad3 or the S204A-Smad3 mutant in Smad3-knockdown HKC reconstituted Smad3-mediated COL1A2 promoter activity. Collectively, these data suggest that Serine-204 phosphorylation in the Smad3LR is a critical event by which ERK enhances Smad3-mediated COL1A2 promoter activity in mesenchymal cells. PMID:24080014

  12. Serine-204 in the linker region of Smad3 mediates the collagen-I response to TGF-β in a cell phenotype-specific manner.

    PubMed

    Browne, J A; Liu, X; Schnaper, H W; Hayashida, T

    2013-11-15

    Regulation of TGF-β1/Smad3 signaling in fibrogenesis is complex. Previous work by our lab suggests that ERK MAP kinase phosphorylates the linker region (LR) of Smad3 to enhance TGF-β-induced collagen-I accumulation. However the roles of the individual Smad3LR phosphorylation sites (T179, S204, S208 and S213) in the collagen-I response to TGF-β are not clear. To address this issue, we tested the ability of Smad3 constructs expressing wild-type Smad3 or Smad3 with mutated LR phosphorylation sites to reconstitute TGF-β-stimulated COL1A2 promoter activity in Smad3-null or -knockdown cells. Blocking ERK in fibroblasts and renal mesangial cells inhibited both S204 phosphorylation and Smad3-mediated COL1A2 promoter activity. Mutations replacing serine at S204 or S208 in the linker region decreased Smad3-mediated COL1A2 promoter activity, whereas mutating T179 enhanced basal COL1A2 promoter activity and did not prevent TGF-β stimulation. Interestingly, mutation of all four Smad3LR sites (T179, S204, S208 and S213) was not inhibitory, suggesting primacy of the two inhibitory sites. These results suggest that in these mesenchymal cells, phosphorylation of the T179 and possibly S213 sites may act as a brake on the signal, whereas S204 phosphorylation by ERK in some manner releases that brake. Renal epithelial cells (HKC) respond differently from MEF or mesangial cells; blocking ERK neither changed TGF-β-stimulated S204 phosphorylation nor prevented Smad3-mediated COL1A2 promoter activity in HKC. Furthermore, re-expression of wild type-Smad3 or the S204A-Smad3 mutant in Smad3-knockdown HKC reconstituted Smad3-mediated COL1A2 promoter activity. Collectively, these data suggest that Serine-204 phosphorylation in the Smad3LR is a critical event by which ERK enhances Smad3-mediated COL1A2 promoter activity in mesenchymal cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. [Effect of multi-glycoside of Tripterygium wilfordii Hook. f. in intervening TGF-beta1/Smad signaling pathway of adriamycin-induced nephropathy model rat].

    PubMed

    Wan, Yi-gang; Sun, Wei; Dou, Chen-hui

    2011-04-01

    To explore the potential molecular mechanisms of multi-glycoside of Tripterygium wilfordii Hook. f. (GTW) for ameliorating glomerulosclerosis (GS) by observing its intervention effect on transforming growth factor (TGF)-beta1/Smad signaling pathway in adriamycin-induced nephropathy (ADRN) model rat. Fifteen female Sprague-Dawley (SD) rats were randomly divided into three groups, the sham-operation group (A), the untreated model group (B), and the GTW treated model group (C). Rats in Group B and C were made into ADRN model by right nephrectomy and intravenous injection of adriamycin (ADR, 0. 4 mL and 0. 2 mL respectively in 4 weeks). After the model was successfully established, rats in Group C were orally given GTW (50 mg/kg per day), while rats in Group B were intervened with distilled water. The intervention for two groups was 6 weeks. Rats' body weight were weighed and 24 h urinary protein excretion (Upro) detected by the end of the 2nd, 4th, 8th and 10th week. All rats were sacrificed at the end of 10th week after operation to withdraw blood and kidney tissue to examine serum biochemical parameters, glomerular morphological changes, alpha-smooth muscle actin (alpha-SMA), and collagen type I expression. Besides, the mRNA expressions of TGF-beta1, Smad3 and Smad7, as well as protein expressions of TGF-beta1, and phosphorylated Smad2/3 (p-Smad2/3) in glomeruli were detected by RT-PCR or Western blotting. As compared with Group B, in Group C, Upro and serum albumin were improved significantly, but no difference between groups was found in levels of blood urea nitrogen(BUN), serum creatinine(SCr), or hepatic cell injury. Mesangial cell proliferation, extracellular matrix (ECM) and collagen deposition were suppressed by GTW. Expressions of alpha-SMA and collagen type I decreased, and the characteristic changes of GS were attenuated. The mRNA expressions of TGF-P,31, Smad3 and protein expression of TGF-beta1, p-Smad2/3 in renal tissues were down-regulated, while the protein expression of Smad7 mRNA was up-regulated. GTW showed effect in ameliorating GS in vivo. It could reduce the ECM deposition and improve GS by way of intervening TGF-beta1/Smad signaling pathway in the kidney through regulating the mRNA or protein expressions of key signal molecules, such as Smad3 and p-Smad2/3.

  14. Melatonin Inhibits the Proliferation of Gastric Cancer Cells Through Regulating the miR-16-5p-Smad3 Pathway.

    PubMed

    Zhu, Chenyu; Huang, Qun; Zhu, Hongyu

    2018-03-01

    The incidence and mortality of gastric cancer is steadily increasing annually around the world, which required further investigation about alternative therapy strategies. Melatonin, an indoleamine synthesized in the pineal gland, has shown dramatic anticancer effect in several cancers, however, the function of melatonin in gastric cancer needs to be characterized. In this study, we found that melatonin inhibited the growth and induced apoptosis of gastric cancer cells. microRNAs (miRNAs) have been attractive targets for many anticancer drugs. To explore the underlying molecular mechanism by which melatonin attenuated the growth of cancer cells, miRNA microarray analysis was performed to screen the miRNAs, which significantly altered after melatonin treatment. The result showed that melatonin administration enhanced the expression of miR-16-5p. Further molecular mechanism research revealed that miR-16-5p targeted Smad3 and consequently negatively regulated the abundance of Smad3. Consistently, melatonin exposure decreased the level of Smad3 and overexpression of Smad3 attenuated the inhibitory effect of melatonin in gastric cancer cells. These results uncovered the anticancer effect of melatonin and highlighted the critical roles of miR-16-5p-Smad3 pathway in melatonin-induced growth defects of gastric cancers.

  15. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways.

    PubMed

    Sapkota, Gopal; Knockaert, Marie; Alarcón, Claudio; Montalvo, Ermelinda; Brivanlou, Ali H; Massagué, Joan

    2006-12-29

    Smad proteins transduce bone morphogenetic protein (BMP) and transforming growth factor-beta (TGFbeta) signals upon phosphorylation of their C-terminal SXS motif by receptor kinases. The activity of Smad1 in the BMP pathway and Smad2/3 in the TGFbeta pathway is restricted by pathway cross-talk and feedback through protein kinases, including MAPK, CDK2/4, p38MAPK, JNK, and others. These kinases phosphorylate Smads 1-3 at the region that links the N-terminal DNA-binding domain and the C-terminal transcriptional domain. Phosphatases that dephosphorylate the linker region are therefore likely to play an integral part in the regulation of Smad activity. We reported previously that small C-terminal domain phosphatases 1, 2, and 3 (SCP1-3) dephosphorylate Smad1 C-terminal tail, thereby attenuating BMP signaling. Here we provide evidence that SCP1-3 also dephosphorylate the linker regions of Smad1 and Smad2/3 in vitro, in mammalian cells and in Xenopus embryos. Overexpression of SCP 1, 2, or 3 decreased linker phosphorylation of Smads 1, 2 and 3. Moreover, RNA interference-mediated knockdown of SCP1/2 increased the BMP-dependent phosphorylation of the Smad1 linker region as well as the C terminus. In contrast, SCP1/2 knockdown increased the TGFbeta-dependent linker phosphorylation of Smad2/3 but not the C-terminal phosphorylation. Consequently, SCP1/2 knockdown inhibited TGFbeta transcriptional responses, but it enhanced BMP transcriptional responses. Thus, by dephosphorylating Smad2/3 at the linker (inhibitory) but not the C-terminal (activating) site, the SCPs enhance TGFbeta signaling, and by dephosphorylating Smad1 at both sites, the SCPs reset Smad1 to the basal unphosphorylated state.

  16. Mutations in Protein-Binding Hot-Spots on the Hub Protein Smad3 Differentially Affect Its Protein Interactions and Smad3-Regulated Gene Expression

    PubMed Central

    Schiro, Michelle M.; Stauber, Sara E.; Peterson, Tami L.; Krueger, Chateen; Darnell, Steven J.; Satyshur, Kenneth A.; Drinkwater, Norman R.; Newton, Michael A.; Hoffmann, F. Michael

    2011-01-01

    Background Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses. Methodology/Principal Findings We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression. Conclusions/Significance Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful for unraveling which Smad3 protein complexes are critical for specific biological responses. PMID:21949838

  17. Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression.

    PubMed

    Schiro, Michelle M; Stauber, Sara E; Peterson, Tami L; Krueger, Chateen; Darnell, Steven J; Satyshur, Kenneth A; Drinkwater, Norman R; Newton, Michael A; Hoffmann, F Michael

    2011-01-01

    Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses. We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression. Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful for unraveling which Smad3 protein complexes are critical for specific biological responses.

  18. Embryonic ablation of osteoblast Smad4 interrupts matrix synthesis in response to canonical Wnt signaling and causes an osteogenesis-imperfecta-like phenotype

    PubMed Central

    Salazar, Valerie S.; Zarkadis, Nicholas; Huang, Lisa; Norris, Jin; Grimston, Susan K.; Mbalaviele, Gabriel; Civitelli, Roberto

    2013-01-01

    Summary To examine interactions between bone morphogenic protein (BMP) and canonical Wnt signaling during skeletal growth, we ablated Smad4, a key component of the TGF-β–BMP pathway, in Osx1+ cells in mice. We show that loss of Smad4 causes stunted growth, spontaneous fractures and a combination of features seen in osteogenesis imperfecta, cleidocranial dysplasia and Wnt-deficiency syndromes. Bones of Smad4 mutant mice exhibited markers of fully differentiated osteoblasts but lacked multiple collagen-processing enzymes, including lysyl oxidase (Lox), a BMP2-responsive gene regulated by Smad4 and Runx2. Accordingly, the collagen matrix in Smad4 mutants was disorganized, but also hypomineralized. Primary osteoblasts from these mutants did not mineralize in vitro in the presence of BMP2 or Wnt3a, and Smad4 mutant mice failed to accrue new bone following systemic inhibition of the Dickkopf homolog Dkk1. Consistent with impaired biological responses to canonical Wnt, ablation of Smad4 causes cleavage of β-catenin and depletion of the low density lipoprotein receptor Lrp5, subsequent to increased caspase-3 activity and apoptosis. In summary, Smad4 regulates maturation of skeletal collagen and osteoblast survival, and is required for matrix-forming responses to both BMP2 and canonical Wnt. PMID:24006258

  19. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolidemore » significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.« less

  20. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type β transforming growth factor

    PubMed Central

    Xu, Weidong; Angelis, Konstantina; Danielpour, David; Haddad, Maher M.; Bischof, Oliver; Campisi, Judith; Stavnezer, Ed; Medrano, Estela E.

    2000-01-01

    The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type β transforming growth factor (TGF-β) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-β. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-β-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-β-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-β-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-β-mediated growth inhibition in a prostate-derived epithelial cell line. PMID:10811875

  1. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor.

    PubMed

    Xu, W; Angelis, K; Danielpour, D; Haddad, M M; Bischof, O; Campisi, J; Stavnezer, E; Medrano, E E

    2000-05-23

    The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type beta transforming growth factor (TGF-beta) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-beta. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-beta-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-beta-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-beta-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-beta-mediated growth inhibition in a prostate-derived epithelial cell line.

  2. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204.

    PubMed

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D; Zhang, Ying E

    2009-07-24

    Through the action of its membrane-bound type I receptor, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo ptosis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-beta and its related factors. Here, we show that TGF-beta induces phosphorylation at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phosphorylation at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phosphorylation may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-beta.

  3. Differential ubiquitination of Smad1 mediated by CHIP: implications in the regulation of the bone morphogenetic protein signaling pathway.

    PubMed

    Li, Ren-Feng; Shang, Yu; Liu, Di; Ren, Ze-Song; Chang, Zhijie; Sui, Sen-Fang

    2007-11-30

    Smad1, a downstream regulator of the bone morphogenetic protein (BMP) receptors, is tightly regulated by the ubiquitin-proteasomal degradation system. To dissect the mechanisms that underlie the regulation of Smad1, it is important to investigate the specific ubiquitination site(s) in Smad1. Here we report that the alpha-NH(2) group of the N terminus and the epsilon-NH(2) groups of internal lysine residues 116, 118 and 269 (K116, K118 and K269) of Smad1 are ubiquitin acceptor sites mediated by the carboxyl terminus of Hsc70-interacting protein (CHIP). The in vitro degradation assay indicates that ubiquitination at the N terminus partially contributes to the degradation of Smad1. Furthermore, we demonstrate that the ubiquitination level of pseudo-phosphorylated Smad1 by CHIP is stronger than that of wild-type Smad1 and can be strongly inhibited by a phosphorylated tail of Smad1, PIS(pS)V(pS). Third, our results indicate that Hsp70 facilitates CHIP-mediated poly-ubiquitination of Smad1 whereas it attenuates CHIP-meditated mono-ubiquitination of Smad1. Finally, consistent with the in vitro observation, we show that CHIP preferentially mediates the degradation of phospho-Smad1/5 in vivo. Taken together, these results provide us a hint that CHIP might preferentially regulate phosphorylated Smad1 and thus the BMP signaling.

  4. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, Lina; Shi, Jin; Gao, Wenqun

    2014-07-18

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part bymore » increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of GATA4 and Nkx2.5, suggesting that Smad4 mediated BMP2 signaling pathway was essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells.« less

  5. Essential role of Smad3 in the inhibition of inflammation-induced PPARβ/δ expression

    PubMed Central

    Tan, Nguan Soon; Michalik, Liliane; Di-Poï, Nicolas; Ng, Chuan Young; Mermod, Nicolas; Roberts, Anita B; Desvergne, Béatrice; Wahli, Walter

    2004-01-01

    Wound healing proceeds by the concerted action of a variety of signals that have been well identified. However, the mechanisms integrating them and coordinating their effects are poorly known. Herein, we reveal how PPARβ/δ (PPAR: peroxisome proliferator-activated receptor) follows a balanced pattern of expression controlled by a crosstalk between inflammatory cytokines and TGF-β1. Whereas conditions that mimic the initial inflammatory events stimulate PPARβ/δ expression, TGF-β1/Smad3 suppresses this inflammation-induced PPARβ/δ transcription, as seen in the late re-epithelialization/remodeling events. This TGF-β1/Smad3 action involves an inhibitory effect on AP-1 activity and DNA binding that results in an inhibition of the AP-1-driven induction of the PPARβ/δ promoter. As expected from these observations, wound biopsies from Smad3-null mice showed sustained PPARβ expression as compared to those of their wild-type littermates. Together, these findings suggest a mechanism for setting the necessary balance between inflammatory signals, which trigger PPARβ/δ expression, and TGF-β1/Smad3 that governs the timely decrease of this expression as wound healing proceeds to completion. PMID:15470497

  6. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells.

    PubMed

    Hayashida, Tomoko; Decaestecker, Mark; Schnaper, H William

    2003-08-01

    Transforming growth factor beta (TGF-beta) stimulates renal cell fibrogenesis by a poorly understood mechanism. Previously, we suggested a synergy between TGF-beta1 activated extracellular signal-regulated kinase (ERK) and Smad signaling in collagen production by human glomerular mesangial cells. In a heterologous DNA binding transcription assay, biochemical or dominant-negative ERK blockade reduced TGF-beta1 induced Smad3 activity. Total serine phosphorylation of Smad2/3, but not phosphorylation of the C-terminal SS(P)XS(P) motif, was decreased by pretreatment with the MEK/ERK inhibitors, PD98059 (10 microM) or U0126 (25 microM). This effect was not seen in the mouse mammary epithelial NMuMG cell line, indicating that ERK-dependent activation of Smad2/3 occurs only in certain cell types. TGF-beta stimulated phosphorylation of an expressed Smad3A construct, with a mutated C-terminal SS(P)XS(P) motif, was reduced by a MEK/ERK inhibitor. In contrast, MEK/ERK inhibition did not affect phosphorylation of a Smad3 construct mutated at consensus phosphorylation sites in the linker region (Smad3EPSM). Constitutively active MEK (caMEK) induced alpha2(I) collagen promoter activity, an effect blocked by co-transfected Smad3EPSM, but not Smad3A. The effects of caMEK and TGF-beta1 on collagen promoter activity were additive. These results indicate that ERK-dependent R-Smad linker region phosphorylation enhances collagen I synthesis and imply positive cross talk between the ERK and Smad pathways in human mesangial cells.

  7. MicroRNA-15b silencing inhibits IL-1β-induced extracellular matrix degradation by targeting SMAD3 in human nucleus pulposus cells.

    PubMed

    Kang, Liang; Yang, Cao; Yin, Huipeng; Zhao, Kangcheng; Liu, Wei; Hua, Wenbin; Wang, Kun; Song, Yu; Tu, Ji; Li, Shuai; Luo, Rongjin; Zhang, Yukun

    2017-04-01

    To determine the role of microRNA-15b (miR-15b) in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation in the nucleus pulposus (NP). MiR-15b was up-regulated in degenerative NP tissues and in IL-1β-stimulated NP cells, as compared to the levels in normal controls (normal tissue specimens from patients with idiopathic scoliosis). Bioinformatics and luciferase activity analyses showed that mothers against decapentaplegic homolog 3 (SMAD3), a key mediator of the transforming growth factor-β signaling pathway, was directly targeted by miR-15b. Functional analysis demonstrated that miR-15b overexpression aggravated IL-1β-induced ECM degradation in NP cells, while miR-15b inhibition had the opposite effects. Prevention of IL-1β-induced NP ECM degeneration by the miR-15b inhibitor was attenuated by small-interfering-RNA-mediated knockdown of SMAD3. In addition, activation of MAP kinase and nuclear factor-κB up-regulated miR-15b expression and down-regulated SMAD3 expression in IL-1β-stimulated NP cells. MiR-15b contributes to ECM degradation in intervertebral disc degeneration (IDD) via targeting of SMAD3, thus providing a novel therapeutic target for IDD treatment.

  8. Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts.

    PubMed

    Jablonska, Ewa; Markart, Philipp; Zakrzewicz, Dariusz; Preissner, Klaus T; Wygrecka, Malgorzata

    2010-04-09

    Coagulation factor XII (FXII) is a liver-derived serine protease involved in fibrinolysis, coagulation, and inflammation. The regulation of FXII expression is largely unknown. Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that has been linked to several pathological processes, including tissue fibrosis by modulating procoagulant and fibrinolytic activities. This study investigated whether TGF-beta1 may regulate FXII expression in human lung fibroblasts. Treatment of human lung fibroblasts with TGF-beta1 resulted in a time-dependent increase in FXII production, activation of p44/42, p38, JNK, and Akt, and phosphorylation and translocation into the nucleus of Smad3. However, TGF-beta1-induced FXII expression was repressed only by the JNK inhibitor and JNK and Smad3 antisense oligonucleotides but not by MEK, p38, or phosphoinositide 3-kinase blockers. JNK inhibition had no effect on TGF-beta1-induced Smad3 phosphorylation, association with Smad4, and its translocation into the nucleus but strongly suppressed Smad3-DNA complex formation. FXII promoter analysis revealed that the -299/+1 region was sufficient for TGF-beta1 to induce FXII expression. Sequence analysis of this region detected a potential Smad-binding element at position -272/-269 (SBE-(-272/-269)). Chromatin immunoprecipitation and streptavidin pulldown assays demonstrated TGF-beta1-dependent Smad3 binding to SBE-(-272/-269). Mutation or deletion of SBE-(-272/-269) substantially reduced TGF-beta1-mediated activation of the FXII promoter. Clinical relevance was demonstrated by elevated FXII levels and its co-localization with fibroblasts in the lungs of patients with acute respiratory distress syndrome. Our results show that JNK/Smad3 pathway plays a critical role in TGF-beta1-induced FXII expression in human lung fibroblasts and implicate its possible involvement in pathological conditions characterized by elevated TGF-beta1 levels.

  9. BMP6 down-regulates GDNF expression through SMAD1/5 and ERK1/2 signaling pathways in human granulosa-lutein cells.

    PubMed

    Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi

    2018-05-09

    Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.

  10. Smad7 enables STAT3 activation and promotes pluripotency independent of TGF-β signaling

    PubMed Central

    Yu, Yi; Gu, Shuchen; Li, Wenjian; Sun, Chuang; Chen, Fenfang; Xiao, Mu; Wang, Lei; Xu, Dewei; Li, Ye; Ding, Chen; Xia, Zongping; Li, Yi; Ye, Sheng; Xu, Pinglong; Zhao, Bin; Qin, Jun; Chen, Ye-Guang; Lin, Xia; Feng, Xin-Hua

    2017-01-01

    Smad7 is a negative feedback product of TGF-β superfamily signaling and fine tunes a plethora of pleiotropic responses induced by TGF-β ligands. However, its noncanonical functions independent of TGF-β signaling remain to be elucidated. Here, we show that Smad7 activates signal transducers and activators of transcription 3 (STAT3) signaling in maintaining mouse embryonic stem cell pluripotency in a manner independent of the TGF-β receptors, yet dependent on the leukemia inhibitory factor (LIF) coreceptor glycoprotein 130 (gp130). Smad7 directly binds to the intracellular domain of gp130 and disrupts the SHP2–gp130 or SOCS3–gp130 complex, thereby amplifying STAT3 activation. Consequently, Smad7 facilitates LIF-mediated self-renewal of mouse ESCs and is also critical for induced pluripotent stem cell reprogramming. This finding illustrates an uncovered role of the Smad7–STAT3 interplay in maintaining cell pluripotency and also implicates a mechanism involving Smad7 underlying cytokine-dependent regulation of cancer and inflammation. PMID:28874583

  11. Insights Into SMAD4 Loss in Pancreatic Cancer From Inducible Restoration of TGF-β Signaling

    PubMed Central

    Fullerton, Paul T.; Creighton, Chad J.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth-leading cause of cancer death in the United States. The TGF-β signaling protein SMAD family member 4 is lost in 60% of PDAC, and this has been associated with poorer prognosis. However, the mechanisms by which SMAD4 loss promotes PDAC development are not fully understood. We expressed SMAD4 in human PDAC cell lines BxPC3 and CFPAC1 by selection of stable clones containing an inducible SMAD4 tetracycline inducible expression system construct. After 24 hours of SMAD4 expression, TGF-β signaling-dependent G1 arrest was observed in BxPC3 cells with an increase in the G1 phase fraction from 48.9% to 71.5%. Inhibition of cyclin-dependent kinase inhibitor 1A by small interfering RNA eliminated the antiproliferative effect, indicating that up-regulation of cyclin-dependent kinase inhibitor 1A/p21 by TGF-β signaling is necessary for the phenotype. SMAD4 expression had no impact on invasion in BxPC3 cells, but reduced migration. Microarray analysis of gene expression at 8, 24, and 48 hours after SMAD4 expression characterized the regulatory impact of SMAD4 expression in a SMAD4-null PDAC cell line and identified novel targets of TGF-β signaling. Among the novel TGF-β targets identified are anthrax toxin receptor 2 (3.58× at 8 h), tubulin, β-3 class III (7.35× at 8 h), cell migration inducing protein, hyaluronan binding (8.07× at 8 h), IL-1 receptor-like 1 (0.403× at 8 h), regulator of G protein signaling 4 (0.293× at 8 h), and THAP domain containing 11 (0.262× at 8 h). The gene expression changes we observed upon restoration of TGF-β signaling provide numerous new targets for future investigations into PDAC biology and progression. PMID:26284758

  12. TGF-beta1 modulates focal adhesion kinase expression in rat intestinal epithelial IEC-6 cells via stimulatory and inhibitory Smad binding elements.

    PubMed

    Walsh, Mary F; Ampasala, Dinakar R; Rishi, Arun K; Basson, Marc D

    2009-02-01

    TGF-beta and FAK modulate cell migration, differentiation, proliferation and apoptosis, and TGF-beta promotes FAK transcription in intestinal epithelial cells via Smad-dependent and independent pathways. We utilized a 1320 bp FAK promoter-luciferase construct to characterize basal and TGF-beta-mediated FAK gene transcription in IEC-6 cells. Inhibiting JNK or Akt negated TGF-beta-stimulated promoter activity; ERK inhibition did not block the TGF-beta effect but increased basal activity. Co-transfection with Co-Smad4 enhanced the TGF-beta response while the inhibitory Smad7 abolished it. Serial deletions sequentially removing the four Smad binding elements (SBE) in the 5' untranslated region of the promoter revealed that the two most distal SBE's are positive regulators while SBE3 exerts a negative influence. Mutational deletion of two upstream p53 sites enhanced basal but did not affect TGF-beta-stimulated increases in promoter activity. TGF-beta increased DNA binding of Smad4, phospho-Smad2/3 and Runx1/AML1a to the most distal 435 bp containing 3 SBE and 2 AML1a sites by ChIP assay. However, although point mutation of SBE1 ablated the TGF-beta-mediated rise in SV40-promoter activity, mutation of AML1a sites did not. TGF-beta regulation of FAK transcription reflects a complex interplay between positive and negative non-Smad signals and SBE's, the last independent of p53 or AML1a.

  13. Down-Regulation of MicroRNA-210 Confers Sensitivity towards 1’S-1’-Acetoxychavicol Acetate (ACA) in Cervical Cancer Cells by Targeting SMAD4

    PubMed Central

    Phuah, Neoh Hun; Azmi, Mohamad Nurul; Awang, Khalijah; Nagoor, Noor Hasima

    2017-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate genes posttranscriptionally. Past studies have reported that miR-210 is up-regulated in many cancers including cervical cancer, and plays a pleiotropic role in carcinogenesis. However, its role in regulating response towards anti-cancer agents has not been fully elucidated. We have previously reported that the natural compound 1’S-1’-acetoxychavicol acetate (ACA) is able to induce cytotoxicity in various cancer cells including cervical cancer cells. Hence, this study aims to investigate the mechanistic role of miR-210 in regulating response towards ACA in cervical cancer cells. In the present study, we found that ACA down-regulated miR-210 expression in cervical cancer cells, and suppression of miR-210 expression enhanced sensitivity towards ACA by inhibiting cell proliferation and promoting apoptosis. Western blot analysis showed increased expression of mothers against decapentaplegic homolog 4 (SMAD4), which was predicted as a target of miR-210 by target prediction programs, following treatment with ACA. Luciferase reporter assay confirmed that miR-210 binds to sequences in 3′UTR of SMAD4. Furthermore, decreased in SMAD4 protein expression was observed when miR-210 was overexpressed. Conversely, SMAD4 protein expression increased when miR-210 expression was suppressed. Lastly, we demonstrated that overexpression of SMAD4 augmented the anti-proliferative and apoptosis-inducing effects of ACA. Taken together, our results demonstrated that down-regulation of miR-210 conferred sensitivity towards ACA in cervical cancer cells by targeting SMAD4. These findings suggest that combination of miRNAs and natural compounds could provide new strategies in treating cervical cancer. PMID:28401751

  14. Down-Regulation of MicroRNA-210 Confers Sensitivity towards 1'S-1'-Acetoxychavicol Acetate (ACA) in Cervical Cancer Cells by Targeting SMAD4.

    PubMed

    Phuah, Neoh Hun; Azmi, Mohamad Nurul; Awang, Khalijah; Nagoor, Noor Hasima

    2017-04-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate genes posttranscriptionally. Past studies have reported that miR-210 is up-regulated in many cancers including cervical cancer, and plays a pleiotropic role in carcinogenesis. However, its role in regulating response towards anti-cancer agents has not been fully elucidated. We have previously reported that the natural compound 1'S-1'-acetoxychavicol acetate (ACA) is able to induce cytotoxicity in various cancer cells including cervical cancer cells. Hence, this study aims to investigate the mechanistic role of miR-210 in regulating response towards ACA in cervical cancer cells. In the present study, we found that ACA down-regulated miR-210 expression in cervical cancer cells, and suppression of miR-210 expression enhanced sensitivity towards ACA by inhibiting cell proliferation and promoting apoptosis. Western blot analysis showed increased expression of mothers against decapentaplegic homolog 4 (SMAD4), which was predicted as a target of miR-210 by target prediction programs, following treatment with ACA. Luciferase reporter assay confirmed that miR-210 binds to sequences in 3'UTR of SMAD4. Furthermore, decreased in SMAD4 protein expression was observed when miR-210 was overexpressed. Conversely, SMAD4 protein expression increased when miR-210 expression was suppressed. Lastly, we demonstrated that overexpression of SMAD4 augmented the anti-proliferative and apoptosis-inducing effects of ACA. Taken together, our results demonstrated that down-regulation of miR-210 conferred sensitivity towards ACA in cervical cancer cells by targeting SMAD4. These findings suggest that combination of miRNAs and natural compounds could provide new strategies in treating cervical cancer.

  15. Negative regulation of BMP signaling by the ski oncoprotein.

    PubMed

    Luo, Kunxin

    2003-01-01

    The bone morphogenetic proteins (BMPs) play important roles in the regulation of multiple aspects of vertebrate development. BMPs signal through the cell surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. The activity of this signal pathway can be modulated both by extracellular factors that regulate the binding of BMPs to the receptor and by intracellular proteins that interact with the Smad proteins. We have shown that Ski is an important negative regulator of the Smad proteins. Ski can bind to the BMP-Smad protein complexes in response to BMP and repress their ability to activate BMP target genes through disruption of a functional Smad complex and through recruitment of transcriptional co-repressors. The antagonism of BMP signaling by Ski results in neural specification in Xenopus embryos and inhibition of osteoblast differentiation in mouse bone-marrow stromal progenitor cells. This ability to modulate BMP signaling by Ski may play an important role in the regulation of craniofacial, neuronal, and skeletal muscle development.

  16. The type I BMP receptors, Bmpr1a and Acvr1, activate multiple signaling pathways to regulate lens formation

    PubMed Central

    Rajagopal, Ramya; Huang, Jie; Dattilo, Lisa K.; Kaartinen, Vesa; Mishina, Yuji; Deng, Chu-Xia; Umans, Lieve; Zwijsen, An; Roberts, Anita B.; Beebe, David C.

    2009-01-01

    BMPs play multiple roles in development and BMP signaling is essential for lens formation. However, the mechanisms by which BMP receptors function in vertebrate development are incompletely understood. To determine the downstream effectors of BMP signaling and their functions in the ectoderm that will form the lens, we deleted the genes encoding the type I BMP receptors, Bmpr1a and Acvr1, and the canonical transducers of BMP signaling, Smad4, Smad1 and Smad5. Bmpr1a and Acvr1 regulated cell survival and proliferation, respectively. Absence of both receptors interfered with the expression of proteins involved in normal lens development and prevented lens formation, demonstrating that BMPs induce lens formation by acting directly on the prospective lens ectoderm. Remarkably, the canonical Smad signaling pathway was not needed for most of these processes. Lens formation, placode cell proliferation, the expression of FoxE3, a lens-specific transcription factor, and the lens protein, αA-crystallin were regulated by BMP receptors in a Smad-independent manner. Placode cell survival was promoted by R-Smad signaling, but in a manner that did not involve Smad4. Of the responses tested, only maintaining a high level of Sox2 protein, a transcription factor expressed early in placode formation, required the canonical Smad pathway. A key function of Smad-independent BMP receptor signaling may be reorganization of actin cytoskeleton to drive lens invagination. PMID:19733164

  17. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury.

    PubMed

    Yoshida, Katsunori; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yamagata, Hideo; Furukawa, Fukiko; Seki, Toshihito; Nishizawa, Mikio; Fujisawa, Junichi; Okazaki, Kazuichi

    2005-04-01

    After liver injury, transforming growth factor-beta (TGF-beta) and platelet-derived growth factor (PDGF) regulate the activation of hepatic stellate cells (HSCs) and tissue remodeling. Mechanisms of PDGF signaling in the TGF-beta-triggered cascade are not completely understood. TGF-beta signaling involves phosphorylation of Smad2 and Smad3 at linker and C-terminal regions. Using antibodies to distinguish Smad2/3 phosphorylated at linker regions from those phosphorylated at C-terminal regions, we investigated Smad2/3-mediated signaling in rat liver injured by CCl(4) administration and in cultured HSCs. In acute liver injury, Smad2/3 were transiently phosphorylated at both regions. Although linker-phosphorylated Smad2 remained in the cytoplasm of alpha-smooth muscle actin-immunoreactive mesenchymal cells adjacent to necrotic hepatocytes in centrilobular areas, linker-phosphorylated Smad3 accumulated in the nuclei. c-Jun N-terminal kinase (JNK) in the activated HSCs directly phosphorylated Smad2/3 at linker regions. Co-treatment of primary cultured HSCs with TGF-beta and PDGF activated the JNK pathway, subsequently inducing endogenous linker phosphorylation of Smad2/3. The JNK pathway may be involved in migration of resident HSCs within the space of Disse to the sites of tissue damage because the JNK inhibitor SP600125 inhibited HSC migration induced by TGF-beta and PDGF signals. Moreover, treatment of HSCs with both TGF-beta and PDGF increased transcriptional activity of plasminogen activator inhibitor-1 through linker phosphorylation of Smad3. In conclusion, TGF-beta and PDGF activate HSCs by transmitting their signals through JNK-mediated Smad2/3 phosphorylation at linker regions, both in vivo and in vitro.

  18. SnoN co-repressor binds and represses smad7 gene promoter.

    PubMed

    Briones-Orta, Marco A; Sosa-Garrocho, Marcela; Moreno-Alvarez, Paola; Fonseca-Sánchez, Miguel A; Macías-Silva, Marina

    2006-03-17

    SnoN and Ski oncoproteins are co-repressors for Smad proteins and repress TGF-beta-responsive gene expression. The smad7 gene is a TGF-beta target induced by Smad signaling, and its promoter contains the Smad-binding element (SBE) required for a positive regulation by the TGF-beta/Smad pathway. SnoN and Ski co-repressors also bind SBE but regulate negatively smad7 gene. Ski along with Smad4 binds and represses the smad7 promoter, whereas the repression mechanism by SnoN is not clear. Ski and SnoN overexpression inhibits smad7 reporter expression induced through TGF-beta signaling. Using chromatin immunoprecipitation assays, we found that SnoN binds smad7 promoter at the basal condition, whereas after a short TGF-beta treatment for 15-30 min SnoN is downregulated and no longer bound smad7 promoter. Interestingly, after a prolonged TGF-beta treatment SnoN is upregulated and returns to its position on the smad7 promoter, functioning probably as a negative feedback control. Thus, SnoN also seems to regulate negatively the TGF-beta-responsive smad7 gene by binding and repressing its promoter in a similar way to Ski.

  19. Lipopolysaccharide inhibits transforming growth factor-beta1-stimulated Smad6 expression by inducing phosphorylation of the linker region of Smad3 through a TLR4-IRAK1-ERK1/2 pathway.

    PubMed

    Kim, Eun-Ye; Kim, Byung-Chul

    2011-03-09

    Smad6, one of the inhibitory Smads, plays an important role in transforming growth factor-beta1 (TGF-β1)-mediated negative regulation of pro-inflammatory signaling. In this study, we found that bacterial endotoxin lipopolysaccharide (LPS) inhibits TGF-β1-induced expression of Smad6 in RAW264.7 cells. This repression was accompanied by increased Smad3 linker phosphorylation at Thr-179 and Ser-208 and was dependent on ERK1/2 activity via the TLR4-IRAK1-linked signaling cascade. The expression of a mutant Smad3, that lacks the phosphorylation sites in the linker regions, significantly reversed the inhibitory effect of LPS on TGF-β1-induced Smad6 expression and its anti-inflammatory capacity. Collectively, our findings show how LPS pro-inflammatory signal antagonizes the anti-inflammatory activity of TGF-β1. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Galangin enhances TGF-β1-mediated growth inhibition by suppressing phosphorylation of threonine 179 residue in Smad3 linker region.

    PubMed

    Kwak, Mi-Kyung; Yang, Kyung-Min; Park, Jinah; Lee, Siyoung; Park, Yuna; Hong, Eunji; Sun, Eun Jin; An, Haein; Park, Sujin; Pang, Kyoungwha; Lee, Jihee; Kang, Jin Muk; Kim, Pyunggang; Ooshima, Akira; Kim, Seong-Jin

    2017-12-16

    Smad3 linker phosphorylation is a candidate target for several kinases that play important roles in cancer cell initiation, proliferation and progression. Also, Smad3 is an essential intracellular mediator of TGF-β1-induced transcriptional responses during carcinogenesis. Therefore, it is highly advantageous to identify and develop inhibitors targeting Smad3 linker phosphorylation for the treatment of cancers. Galangin (3,5,7-trihydroxyflavone) has been known to be an active flavonoid showing a cytotoxic effect on several cancer cells. However, the mechanism of action of galangin in various cancers remains unclear, and there has been no report concerning regulation of Smad3 phosphorylation by galangin. In the present study, we show that galangin significantly induced apoptosis and inhibited cell proliferation in the presence of TGF-β1 in both human prostate and pancreatic cancer cell lines. Particularly, galangin effectively inhibits phosphorylation of the Thr-179 site at Smad3 linker region through suppression of CDK4 phosphorylation. Thus, galangin can be a promising candidate as a selective inhibitor to suppress phosphorylation of Smad3 linker region. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Reversible phospho-Smad3 signalling between tumour suppression and fibrocarcinogenesis in chronic hepatitis B infection.

    PubMed

    Deng, Y-R; Yoshida, K; Jin, Q L; Murata, M; Yamaguchi, T; Tsuneyama, K; Moritoki, Y; Niu, J Q; Matsuzaki, K; Lian, Z-X

    2014-04-01

    Transforming growth factor (TGF)-β, type I receptor (TβRI) and c-Jun N-terminal kinases (JNK) phosphorylate Smad3 differentially to create 2 isoforms phosphorylated (p) at the COOH-terminus (C) or at the linker region (L) and regulate hepatocytic fibrocarcinogenesis. This study aimed to compare the differences between how hepatitis B virus (HBV) infection affected hepatocytic Smad3 phosphorylated isoforms before and after anti-viral therapy. To clarify the relationship between Smad3 phosphorylation and liver disease progression, we studied 10 random patients in each stage of HBV-related fibrotic liver disease (F1-4) and also 10 patients with HBV-associated HCC. To examine changes in phosphorylated Smad3 signalling before and after anti-HBV therapies, we chose 27 patients with chronic hepatitis B who underwent baseline and follow-up biopsies at 52 weeks from the start of nucleoside analogue treatments (Lamivudine 100 mg daily or Telbivudine 600 mg daily). Fibrosis stage, inflammatory activity and phosphorylated Smad3 positivity in the paired biopsy samples were compared. Hepatocytic pSmad3C signalling shifted to fibrocarcinogenic pSmad3L signalling as the livers progressed from chronic hepatitis B infection to HCC. After nucleoside analogue treatment, serum alanine aminotransferase (ALT) and HBV-DNA levels in 27 patients with HBV-related chronic liver diseases were decreased dramatically. Decrease in HBV-DNA restored pSmad3C signalling in hepatocytes, while eliminating prior fibrocarcinogenic pSmad3L signalling. Oral nucleoside analogue therapies can suppress fibrosis and reduce HCC incidence by successfully reversing phosphorylated Smad3 signalling; even liver disease progressed to cirrhosis in chronic hepatitis B patients. © 2013 British Society for Immunology.

  2. A role for human MUC4 mucin gene, the ErbB2 ligand, as a target of TGF-beta in pancreatic carcinogenesis.

    PubMed

    Jonckheere, Nicolas; Perrais, Michaël; Mariette, Christophe; Batra, Surinder K; Aubert, Jean-Pierre; Pigny, Pascal; Van Seuningen, Isabelle

    2004-07-29

    MUC4: encodes a large transmembrane mucin that is overexpressed in pancreatic adenocarcinomas. The molecular mechanisms responsible for that altered pattern of expression are unknown. TGF-beta, a pleiotropic cytokine, regulates numerous genes involved in pancreatic carcinogenesis via activation of the Smads proteins and MUC4 promoter is rich in Smad-binding elements. Our aim was to study whether the regulation of MUC4 expression by TGF-beta in pancreatic cancer cells was strictly dependent on Smad4 activity. Three pancreatic cancer cell lines, CAPAN-1 (MUC4+/Smad4-), CAPAN-2 (MUC4+/Smad4+) and PANC-1 (MUC4-/Smad4+), were used. By RT-PCR, transfection assays and immunohistochemistry, we show that (i) both MUC4 mRNA and apomucin expression are upregulated by TGF-beta, (ii) Smad2 positively cooperates with Smad4 to activate the promoter, (iii) activation of Smad4 by exogenous TGF-beta induces Smad4 binding to the promoter, (iv) Smad7 and c-ski both inhibit activation by Smad4. When Smad4 is mutated and inactive, TGF-beta activates MUC4 expression via MAPK, PI3K and PKA signaling pathways. Absence of expression in PANC-1 cells is due to histone deacetylation. Altogether, these results indicate that upregulation of MUC4 by TGF-beta is restricted to well-differentiated pancreatic cancer cells, and point out a novel mechanism for TGF-beta as a key molecule in targeting MUC4 overexpression in pancreatic adenocarcinomas.

  3. Low-Dose Paclitaxel Ameliorates Pulmonary Fibrosis by Suppressing TGF-β1/Smad3 Pathway via miR-140 Upregulation

    PubMed Central

    Wang, Congjie; Song, Xiaodong; Li, Youjie; Han, Fang; Gao, Shuyan; Wang, Xiaozhi; Xie, Shuyang; Lv, Changjun

    2013-01-01

    Abnormal TGF-β1/Smad3 activation plays an important role in the pathogenesis of pulmonary fibrosis, which can be prevented by paclitaxel (PTX). This study aimed to investigate an antifibrotic effect of the low-dose PTX (10 to 50 nM in vitro, and 0.6 mg/kg in vivo). PTX treatment resulted in phenotype reversion of epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) with increase of miR-140. PTX resulted in an amelioration of bleomycin (BLM)-induced pulmonary fibrosis in rats with reduction of the wet lung weight to body weight ratios and the collagen deposition. Our results further demonstrated that PTX inhibited the effect of TGF-β1 on regulating the expression of Smad3 and phosphorylated Smad3 (p-Smad3), and restored the levels of E-cadherin, vimentin and α-SMA. Moreover, lower miR-140 levels were found in idiopathic pulmonary fibrosis (IPF) patients, TGF-β1-treated AECs and BLM-instilled rat lungs. Through decreasing Smad3/p-Smad3 expression and upregulating miR-140, PTX treatment could significantly reverse the EMT of AECs and prevent pulmonary fibrosis of rats. The action of PTX to ameliorate TGF-β1-induced EMT was promoted by miR-140, which increased E-cadherin levels and reduced the expression of vimentin, Smad3 and p-Smad3. Collectively, our results demonstrate that low-dose PTX prevents pulmonary fibrosis by suppressing the TGF-β1/Smad3 pathway via upregulating miR-140. PMID:23967091

  4. Nuclear Function of Smad7 Promotes Myogenesis▿

    PubMed Central

    Miyake, Tetsuaki; Alli, Nezeka S.; McDermott, John C.

    2010-01-01

    In the “canonical” view of transforming growth factor β (TGF-β) signaling, Smad7 plays an inhibitory role. While Smad7 represses Smad3 activation by TGF-β, it does not reverse the inhibitory effect of TGF-β on myogenesis, suggesting a different function in myogenic cells. We previously reported a promyogenic role of Smad7 mediated by an interaction with MyoD. Based on this association, we hypothesized a possible nuclear function of Smad7 independent of its role at the level of the receptor. We therefore engineered a chimera of Smad7 with a nuclear localization signal (NLS), which serves to prevent and therefore bypass binding to the TGF-β receptor while concomitantly constitutively localizing Smad7 to the nucleus. This Smad7-NLS did not repress Smad3 activation by TGF-β but did retain its ability to enhance myogenic gene activation and phenotypic myogenesis, indicating that the nuclear, receptor-independent function of Smad7 is sufficient to promote myogenesis. Furthermore, Smad7 physically interacts with MyoD and antagonizes the repressive effects of active MEK on MyoD. Reporter and myogenic conversion assays indicate a pivotal regulation of MyoD transcriptional properties by the balance between Smad7 and active MEK. Thus, Smad7 has a nuclear coactivator function that is independent of TGF-β signaling and necessary to promote myogenic differentiation. PMID:19995910

  5. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling.

    PubMed

    Luo, K; Stroschein, S L; Wang, W; Chen, D; Martens, E; Zhou, S; Zhou, Q

    1999-09-01

    Smad proteins are critical signal transducers downstream of the receptors of the transforming growth factor-beta (TGFbeta) superfamily. On phosphorylation and activation by the active TGFbeta receptor complex, Smad2 and Smad3 form hetero-oligomers with Smad4 and translocate into the nucleus, where they interact with different cellular partners, bind to DNA, regulate transcription of various downstream response genes, and cross-talk with other signaling pathways. Here we show that a nuclear oncoprotein, Ski, can interact directly with Smad2, Smad3, and Smad4 on a TGFbeta-responsive promoter element and repress their abilities to activate transcription through recruitment of the nuclear transcriptional corepressor N-CoR and possibly its associated histone deacetylase complex. Overexpression of Ski in a TGFbeta-responsive cell line renders it resistant to TGFbeta-induced growth inhibition and defective in activation of JunB expression. This ability to overcome TGFbeta-induced growth arrest may be responsible for the transforming activity of Ski in human and avian cancer cells. Our studies suggest a new paradigm for inactivation of the Smad proteins by an oncoprotein through transcriptional repression.

  6. The Ski oncoprotein interacts with the Smad proteins to repress TGFβ signaling

    PubMed Central

    Luo, Kunxin; Stroschein, Shannon L.; Wang, Wei; Chen, Dan; Martens, Eric; Zhou, Sharleen; Zhou, Qiang

    1999-01-01

    Smad proteins are critical signal transducers downstream of the receptors of the transforming growth factor-β (TGFβ) superfamily. On phosphorylation and activation by the active TGFβ receptor complex, Smad2 and Smad3 form hetero-oligomers with Smad4 and translocate into the nucleus, where they interact with different cellular partners, bind to DNA, regulate transcription of various downstream response genes, and cross-talk with other signaling pathways. Here we show that a nuclear oncoprotein, Ski, can interact directly with Smad2, Smad3, and Smad4 on a TGFβ-responsive promoter element and repress their abilities to activate transcription through recruitment of the nuclear transcriptional corepressor N-CoR and possibly its associated histone deacetylase complex. Overexpression of Ski in a TGFβ-responsive cell line renders it resistant to TGFβ-induced growth inhibition and defective in activation of JunB expression. This ability to overcome TGFβ-induced growth arrest may be responsible for the transforming activity of Ski in human and avian cancer cells. Our studies suggest a new paradigm for inactivation of the Smad proteins by an oncoprotein through transcriptional repression. PMID:10485843

  7. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells

    PubMed Central

    Chen, Yu-Ching; Chang, Hsun-Ming; Cheng, Jung-Chien; Tsai, Horng-Der; Wu, Cheng-Hsuan; Leung, Peter C.K.

    2015-01-01

    STUDY QUESTION Does transforming growth factor-β1 (TGF-β1) up-regulate connexin43 (Cx43) to promote cell–cell communication in human granulosa cells? SUMMARY ANSWER TGF-β1 up-regulates Cx43 and increases gap junction intercellular communication activities (GJIC) in human granulosa cells, and this effect occurs via the activin receptor-like kinase (ALK)5-mediated Sma- and Mad-related protein (SMAD)2/3-SMAD4-dependent pathway. WHAT IS KNOWN ALREADY TGF-β1 and its receptors are expressed in human granulosa cells, and follicular fluid contains TGF-β1 protein. In human granulosa cells, Cx43 gap junctions play an important role in the development of follicles and oocytes. STUDY DESIGN, SIZE, DURATION This is an experimental study which was performed over a 1-year period. PARTICIPANTS/MATERIALS, SETTING, METHODS Immortalized human granulosa cells (SVOG cells) and primary human granulosa-lutein cells obtained from women undergoing IVF in an academic research center were used as the study models. Cx43 mRNA and protein expression levels were examined after exposure of SVOG cells to recombinant human TGF-β1. An activin/TGF-β type I receptor inhibitor, SB431542, and small interfering RNAs targeting ALK4, ALK5, SMAD2, SMAD3 and SMAD4 were used to verify the specificity of the effects and to investigate the molecular mechanisms. Real-time-quantitative PCR and western blot analysis were used to detect the specific mRNA and protein levels, respectively. GJIC between SVOG cells were evaluated using a scrape loading and dye transfer assay. Results were analyzed by one-way analysis of variance. MAIN RESULTS AND THE ROLE OF CHANCE TGF-β1 treatment increased phosphorylation of SMAD2/3 (P < 0.0001) and up-regulated Cx43 mRNA and protein levels (P < 0.001) in SVOG cells and these stimulatory effects were abolished by the TGF-β type I receptor inhibitor SB431542. In addition, the up-regulatory effect of TGF-β1 on Cx43 expression (mRNA and protein) was confirmed in primary cultures of human granulosa-lutein cells (P < 0.05). The small interfering RNA-mediated knockdown of ALK5, but not ALK4, abolished the TGF-β1-induced phosphorylation of SMAD2/3 and the up-regulation of Cx43. Furthermore, knockdown of SMAD2/3 or the common SMAD, SMAD4, abolished the stimulatory effects of TGF-β1 on Cx43 expression in SVOG cells. The TGF-β1-induced up-regulation of Cx43 contributed to the increase of GJIC between SVOG cells (P < 0.001). LIMITATIONS, REASONS FOR CAUTION The results of this study were generated from in vitro system and may not reflect the intra-ovarian microenvironment in vivo. WIDER IMPLICATIONS OF THE FINDINGS Our studies represent the first comprehensive research of molecular mechanisms of TGF-β1 in the regulation of Cx43 expression and GJIC in human granulosa cells and demonstrate that TGF-β1 may play a crucial role in the local modulation of cell–cell communication. Deepening our understanding of the molecular determinants will offer important insights into ovarian physiology and lead to the development of potential therapeutic methods for fertility regulation. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by an operating grant from the Canadian Institutes of Health Research to P.C.K.L. There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER NA. PMID:26202915

  8. Galectin-1 suppresses alpha2(I) collagen through Smad3 in renal epithelial cells.

    PubMed

    Okano, K; Uchida, K; Nitta, K; Hayashida, T

    2008-10-01

    Transforming growth factor (TGF-beta1) promotes renal fibrogenesis through activation of Smads. Galectin-1 is reported to prevent experimental glomerulonephritis. Here we investigated the fact that transfected galectin-1 significantly suppressed the transcription of alpha2(I) collagen (COL1A2) in TGF-beta1- activated human renal epithelial cells. Conversely, galectin-1 silencing RNA reduced secretion of type I collagen by HKC cells. Galectin-1 significantly decreased activation of a TGF-beta1-responsive reporter construct and of a minimal reporter construct that contains four repeats of the Smad binding element (SBE). Galectin-1 had no effect on phosphorylation of Smad3 at the linker region and C-terminus, whereas it decreased affinity of Smad3 to the SBE. Additionally, the inhibitory effect of galectin-1 disappeared using a mutated reporter construct, 376 m-LUC, in which a potential Smad recognition site within the promoter is mutated. Taken together, the results suggest that galectin-1 decreases Smad3-complex from binding to the SBE, down-regulating transcription of COL1A2 in TGF-beta1-stimulated renal epithelial cells.

  9. Involvement of Smad3 pathway in atrial fibrosis induced by elevated hydrostatic pressure.

    PubMed

    Wei, Wei; Rao, Fang; Liu, Fangzhou; Xue, Yumei; Deng, Chunyu; Wang, Zhaoyu; Zhu, Jiening; Yang, Hui; Li, Xin; Zhang, Mengzhen; Fu, Yongheng; Zhu, Wensi; Shan, Zhixin; Wu, Shulin

    2018-06-01

    Hypertension is a main risk factor for atrial fibrillation, but the direct effects of hydrostatic pressure on the atrial fibrosis are still unknown. The present study investigated whether hydrostatic pressure is responsible for atrial fibrosis, and addressed a potential role of the Smad pathway in this pathology. Biochemical assays were used to study regulation and expression of fibrotic factors in spontaneously hypertensive rats (SHRs) and Wistar rats, and in cardiac fibroblasts (CFs) cultured under standard (0 mmHg) and elevated (20, 40 mmHg) hydrostatic pressure. Levels of atrial fibrosis and protein expression of fibrotic factors Col-1A1/-3A1, TGF-β1, and MMP-2 in SHRs' left atrial tissues were higher than those in Wistar rats. Exposure to elevated pressure was associated with the proliferation of CFs. The protein expression of Col-1A1/-3A1, TGF-β1, and MMP-2 in CFs was also up-regulated in a pressure-dependent manner. The proliferation of CFs and increased expressions of fibrotic markers induced by elevated hydrostatic pressure could be reversed by the Smad3 inhibitor naringenin. The activation of Smad3 pathway was also stimulated by elevated hydrostatic pressure. These results demonstrate that CF secretory function and proliferation can be up-regulated by exposure to elevated pressure, and that Smad3 may modulate CF activation induced by high hydrostatic pressure. © 2017 Wiley Periodicals, Inc.

  10. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway

    PubMed Central

    Zhang, Yan; Fan, Kai-Ji; Sun, Qiang; Chen, Ai-Zhong; Shen, Wen-Long; Zhao, Zhi-Hu; Zheng, Xiao-Fei; Yang, Xiao

    2012-01-01

    The transforming growth factor-β (TGF-β) signalling pathway participates in various biological processes. Dysregulation of Smad4, a central cellular transducer of TGF-β signalling, is implicated in a wide range of human diseases and developmental disorders. However, the mechanisms underlying Smad4 dysregulation are not fully understood. Using a functional screening approach based on luciferase reporter assays, we identified 39 microRNAs (miRNAs) as potential regulators of Smad4 from an expression library of 388 human miRNAs. The screening was supported by bioinformatic analysis, as 24 of 39 identified miRNAs were also predicted to target Smad4. MiR-199a, one of the identified miRNAs, was inversely correlated with Smad4 expression in various human cancer cell lines and gastric cancer tissues, and repressed Smad4 expression and blocked canonical TGF-β transcriptional responses in cell lines. These effects were dependent on the presence of a conserved, but not perfect seed paired, miR-199a-binding site in the Smad4 3′-untranslated region (UTR). Overexpression of miR-199a significantly inhibited the ability of TGF-β to induce gastric cancer cell growth arrest and apoptosis in vitro, and promoted anchorage-independent growth in soft agar, suggesting that miR-199a plays an oncogenic role in human gastric tumourigenesis. In conclusion, our functional screening uncovers multiple miRNAs that regulate the cellular responsiveness to TGF-β signalling and reveals important roles of miR-199a in gastric cancer by directly targeting Smad4. PMID:22821565

  11. Smad7 Protein Induces Interferon Regulatory Factor 1-dependent Transcriptional Activation of Caspase 8 to Restore Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Apoptosis

    PubMed Central

    Hong, Suntaek; Kim, Hye-Youn; Kim, Jooyoung; Ha, Huyen Trang; Kim, Young-Mi; Bae, Eunjin; Kim, Tae Hyung; Lee, Kang Choon; Kim, Seong-Jin

    2013-01-01

    Smad7 has been known as a negative regulator for the transforming growth factor-β (TGF-β) signaling pathway through feedback regulation. However, Smad7 has been suspected to have other biological roles through the regulation of gene transcription. By screening differentially regulated genes, we found that the caspase 8 gene was highly up-regulated in Smad7-expressing cells. Smad7 was able to activate the caspase 8 promoter through recruitment of the interferon regulatory factor 1 (IRF1) transcription factor to the interferon-stimulated response element (ISRE) site. Interaction of Smad7 on the caspase 8 promoter was confirmed with electrophoretic mobility shift assay and chromatin immunoprecipitation experiment. Interestingly, Smad7 did not directly interact with the ISRE site, but it increased the binding activity of IRF1 with ISRE. These results support that Smad7 recruits IRF1 protein on the caspase 8 promoter and functions as a transcriptional coactivator. To confirm the biological significance of caspase 8 up-regulation, we tested tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated cell death assay in breast cancer cells. Smad7 in apoptosis-resistant MCF7 cells markedly sensitized the cells to TRAIL-induced cell death by restoring the caspase cascade. Furthermore, restoration of caspase 8-mediated apoptosis pathway repressed the tumor growth in the xenograft model. In conclusion, we suggest a novel role for Smad7 as a transcriptional coactivator for caspase 8 through the interaction with IRF1 in regulation of the cell death pathway. PMID:23255602

  12. [Effect of Combined Intervention of Electroacupuncture and Astragaloside IV on Myocardial Hypertrophy and TGF-β 1/Smad Signaling in Rats with Myocardial Fibrosis].

    PubMed

    Li, Jia-Shen; Zhu, Xiao-Yu; Lu, Mei-Li; Gao, Jun-Hong; Wang, Hong-Xin; Yu, Xiao-Chun

    2017-12-25

    To observe the effect of combined intervention of electroacupuncture (EA) and astragaloside IV(ASIV) on cardiac hypertrophy and transforming growth factor β 1 (TGF-β 1)/Smad signaling in isoproterenol (ISO) induced cardiac hypertrophy rats, so as to investigate its underlying mechanisms in improving myocardial fibrosis. A total of 50 SD rats were randomly divided into 5 groups: normal control, model (ISO), Propranolol (PRO),ASIV and EA+ASIV groups ( n =10 in each group). The myocardial fibrosis model was established by intraperitoneal injection (i.p.) of ISO (10 mg·kg -1 ·d -1 ), once daily for 30 days. Rats of the control group were given normal saline (i.p.), those of the PRO group given with PRO (40 mg·kg -1 ·d -1 , gavage), and those of the ASIV and EA+ASIV groups were treated by gavage of ASIV (40 mg·kg -1 ·d -1 ), once daily for 30 days. EA (20 Hz, 6 V) was applied to bilateral "Neiguan" (PC 6) for 10 min, once every day for 30 d. The heart mass index (HMI, whole heart weight/body weight) and left ventricular (LV) mass index (LVMI, weight of the LV/body weight) were calculated to assess the state of cardiac hypertrophy. The enzyme linked immunosorbent assay (ELISA) was used to determine the levels of procollagen I carboxy-terminal propeptide (PICP,a marker of extracellular matrix remodeling) and carboxyterminal telopeptide of type I collagen (ICTP, a metabolite of type I collagen) in serum, and Western blot was used to test protein contents of TGF- β 1, Smad 2 / 3, Smad 4, Smad 7 in the left ventricle tissue of the heart. After modeling, the HMI and LVMI, serum PICP and ICTP contents and the expression levels of myocardial TGF-β 1, Smad 2/3 and Smad 4 proteins were significantly increased in the model (ISO) group ( P <0.05), suggesting a deposition of collagen and cardiac hypertrophy, and were considerably decreased in PRO, ASIV and EA+ASIV groups after the intervention ( P <0.05). The expression level of myocardial Smad 7 protein was significantly lower in the model group than in the normal control group ( P <0.05), and significantly up-regulated in PRO, ASIV and EA+ASIV groups ( P <0.05). Sirius Red staining of the left ventricular myocardium showed a dense deposition of collagen and a severer myocardial fibrosis in the model group, and a relatively lighter fibrosis in the PRO, ASIV and EA+ASIV groups. The therapeutic effects of EA+ASIV were comparable to those of PRO, and were significantly superior to those of ASIV in down-regulating HMI, serum ICTP, and myocardial Smad 2/3 and Smad 4 expression and up-regulating Smad 7 protein ( P <0.05). There were no significant differences among the PRO, ASIV and EA+ASIV groups in LVMI, PICP and TGF-β 1 levels, and between the PRO and EA+ ASIV groups in HMI, ICTP, Smad 2/3, Smad 4 and Smad 7 levels ( P > 0.05). EA stimulation of PC 6 combined with ASIV can relieve cardiac hypertrophy and myocardial fibrosis in rats, which may be associated with its effects in regulating myocardial TGF-β 1/Smad signaling pathway.

  13. Molecular Mechanism of MicroRNA-200c Regulating Transforming Growth Factor-β (TGF-β)/SMAD Family Member 3 (SMAD3) Pathway by Targeting Zinc Finger E-Box Binding Homeobox 1 (ZEB1) in Hypospadias in Rats.

    PubMed

    Qian, Chong; Dang, Xiangyang; Wang, Xianglin; Xu, Wei; Pang, Guijian; Chen, Yifeng; Liu, Chengbei

    2016-10-29

    BACKGROUND The aim of this study was to explore effects of microRNA-200c regulating TGF-β/Smad3 pathway by targeting Zeb1 on the occurrence and development of hypospadias and to evaluate the relationship between microRNA-200c and occurrence of hypospadias. MATERIAL AND METHODS Pregnant rats with a gestational age of 12 days were allocated into 2 groups; one received gavage of DEHP-contained soybean oil (1 ml/day, 8 days; Group A) and the other had gavage of normal soybean oil (1 ml/day, 8 days; Group B). Baby rats with hypospadias from Group A were assigned to the model group (n=20) and healthy baby rats from Group B were assigned to the control group (n=20). Real-time quantitative polymerase chain reaction (qRT-PCR), immunohistochemistry and Western blot analysis were performed to detect microRNA-200c, Zeb1, TGF-β, and Smad3 mRNA and protein expressions in the model group (n=20) and the control group (n=20). The relationship between microRNA-200c and Zeb1 was detected using a dual-luciferase reporter gene experiment. After the in vitro intervention experiment in fetal rat penises, Western blot was used to detect the expression of Zeb1, TGF-β, and Smad3. RESULTS In the model group, microRNA-200c was expressed at a low level, and microRNA-200c expression in control group was 2.1 times higher than in the model group (P<0.05). When compared with the control group, mRNA expressions, protein expressions, and positive rates of Zeb1, TGF-β, and Smad3 were higher in the model group (all P<0.01). Luciferase gene report determined that Zeb1 is a target gene of microRNA-200c. The in vitro intervention experiment in fetal rat penises found that a high concentration of microRNA-200c inhibited hypospadias occurrence by suppressing the expression of Zeb1, TGF-β, and Smad3. CONCLUSIONS MicroRNA-200c was expressed in hypospadias penis tissues at low levels and was negatively correlated with Zeb1 expression. MicroRNA-200c up-regulated Zeb1 expression to regulate the TGF-β/Smad3 pathway, which led to the occurrence of hypospadias.

  14. Molecular Mechanism of MicroRNA-200c Regulating Transforming Growth Factor-β (TGF-β)/SMAD Family Member 3 (SMAD3) Pathway by Targeting Zinc Finger E-Box Binding Homeobox 1 (ZEB1) in Hypospadias in Rats

    PubMed Central

    Qian, Chong; Dang, Xiangyang; Wang, Xianglin; Xu, Wei; Pang, Guijian; Chen, Yifeng; Liu, Chengbei

    2016-01-01

    Background The aim of this study was to explore effects of microRNA-200c regulating TGF-β/Smad3 pathway by targeting Zeb1 on the occurrence and development of hypospadias and to evaluate the relationship between microRNA-200c and occurrence of hypospadias. Material/Methods Pregnant rats with a gestational age of 12 days were allocated into 2 groups; one received gavage of DEHP-contained soybean oil (1 ml/day, 8 days; Group A) and the other had gavage of normal soybean oil (1 ml/day, 8 days; Group B). Baby rats with hypospadias from Group A were assigned to the model group (n=20) and healthy baby rats from Group B were assigned to the control group (n=20). Real-time quantitative polymerase chain reaction (qRT-PCR), immunohistochemistry and Western blot analysis were performed to detect microRNA-200c, Zeb1, TGF-β, and Smad3 mRNA and protein expressions in the model group (n=20) and the control group (n=20). The relationship between microRNA-200c and Zeb1 was detected using a dual-luciferase reporter gene experiment. After the in vitro intervention experiment in fetal rat penises, Western blot was used to detect the expression of Zeb1, TGF-β, and Smad3. Results In the model group, microRNA-200c was expressed at a low level, and microRNA-200c expression in control group was 2.1 times higher than in the model group (P<0.05). When compared with the control group, mRNA expressions, protein expressions, and positive rates of Zeb1, TGF-β, and Smad3 were higher in the model group (all P<0.01). Luciferase gene report determined that Zeb1 is a target gene of microRNA-200c. The in vitro intervention experiment in fetal rat penises found that a high concentration of microRNA-200c inhibited hypospadias occurrence by suppressing the expression of Zeb1, TGF-β, and Smad3. Conclusions MicroRNA-200c was expressed in hypospadias penis tissues at low levels and was negatively correlated with Zeb1 expression. MicroRNA-200c up-regulated Zeb1 expression to regulate the TGF-β/Smad3 pathway, which led to the occurrence of hypospadias. PMID:27794206

  15. c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements.

    PubMed

    Suzuki, Hiroyuki; Yagi, Ken; Kondo, Miki; Kato, Mitsuyasu; Miyazono, Kohei; Miyazawa, Keiji

    2004-06-24

    c-Ski inhibits transforming growth factor-beta (TGF-beta) signaling through interaction with Smad proteins. c-Ski represses Smad-mediated transcriptional activation, probably through its action as a transcriptional co-repressor. c-Ski also inhibits TGF-beta-induced downregulation of genes such as c-myc. However, mechanisms for transcriptional regulation of target genes by c-Ski have not been fully determined. In this study, we examined how c-Ski inhibits both TGF-beta-induced transcriptional activation and repression. DNA-affinity precipitation analysis revealed that c-Ski enhances the binding of Smad2 and 4, and to a lesser extent Smad3, to both CAGA and TGF-beta1 inhibitory element probes. A c-Ski mutant, which is unable to interact with Smad4, failed to enhance the binding of Smad complex on these probes and to inhibit the Smad-responsive promoter. These results suggest that stabilization of inactive Smad complexes on DNA is a critical event in c-Ski-mediated inhibition of TGF-beta signaling.

  16. The Phosphatidylinositol 3-Kinase/Akt Pathway Regulates Transforming Growth Factor-β Signaling by Destabilizing Ski and Inducing Smad7*

    PubMed Central

    Band, Arja M.; Björklund, Mia; Laiho, Marikki

    2009-01-01

    Ski is an oncoprotein that negatively regulates transforming growth factor (TGF)-β signaling. It acts as a transcriptional co-repressor by binding to TGF-β signaling molecules, Smads. Efficient TGF-β signaling is facilitated by rapid proteasome-mediated degradation of Ski by TGF-β. Here we report that Ski is phosphorylated by Akt/PKB kinase. Akt phosphorylates Ski on a highly conserved Akt motif at threonine 458 both in vitro and in vivo. The phosphorylation of Ski at threonine 458 is induced by Akt pathway activators including insulin, insulin-like growth factor-1, and hepatocyte growth factor. The phosphorylation of Ski causes its destabilization and reduces Ski-mediated inhibition of expression of another negative regulator of TGF-β, Smad7. Induction of Smad7 levels leads to inactivation of TGF-β receptors and TGF-β signaling cascade, as indicated by reduced induction of TGF-β target p15. Therefore, Akt modulates TGF-β signaling by temporarily adjusting the levels of two TGF-β pathway negative regulators, Ski and Smad7. These novel findings demonstrate that Akt pathway activation directly impacts TGF-β pathway. PMID:19875456

  17. Interleukin 1 β-induced SMAD2/3 linker modifications are TAK1 dependent and delay TGFβ signaling in primary human mesenchymal stem cells.

    PubMed

    van den Akker, Guus G; van Beuningen, Henk M; Vitters, Elly L; Koenders, Marije I; van de Loo, Fons A; van Lent, Peter L; Blaney Davidson, Esmeralda N; van der Kraan, Peter M

    2017-12-01

    Chondrogenic differentiation of mesenchymal stem cells (MSC) requires transforming growth factor beta (TGFβ) signaling. TGFβ binds to the type I receptor activin-like kinase (ALK)5 and results in C-terminal SMAD2/3 phosphorylation (pSMAD2/3C). In turn pSMAD2/3C translocates to the nucleus and regulates target gene expression. Inflammatory mediators are known to exert an inhibitory effect on MSC differentiation. In this study we investigated the effect of interleukin 1 β (IL1β) on SMAD2/3 signaling dynamics and post-translational modifications. Co-stimulation of MSC with TGFβ and IL1β did not affect peak pSMAD2C levels at 1h post-stimulation. Surprisingly, SMAD3 transcriptional activity, as determined by the CAGA 12 -luciferase reporter construct, was enhanced by co-stimulation of TGFβ and IL1β compared to TGFβ alone. Furthermore, IL1β stimulation induced CAGA 12 -luciferase activity in a SMAD dependent way. As SMAD function can be modulated independent of canonical TGFβ signaling through the SMAD linker domain, we studied SMAD2 linker phosphorylation at specific threonine and serine residues. SMAD2 linker threonine and serine modifications were observed within 1h following TGFβ, IL1β or TGFβ and IL1β stimulation. Upon co-stimulation linker modified SMAD2 accumulated in the cytoplasm and SMAD2/3 target gene transcription (ID1, JUNB) at 2-4h was inhibited. A detailed time course analysis of IL1β-induced SMAD2 linker modifications revealed a distinct temperospatial pattern compared to TGFβ. Co-stimulation with both factors resulted in a similar kinetic profile as TGFβ alone. Nevertheless, IL1β did subtly alter TGFβ-induced pSMAD2C levels between 8 and 24h post-stimulation, which was reflected by TGFβ target gene expression (PAI1, JUNB). Direct evidence for the importance of SMAD3 linker modifications for the effect of IL1β on TGFβ signaling was obtained by over-expression of SMAD3 or a SMAD3 linker phospho-mutant. Finally, an inhibitor screening was performed to identify kinases involved in SMAD2/3 linker modifications. We identified TAK1 kinase activity as crucial for IL1β-induced SMAD2 linker modifications and CAGA 12 -luciferase activity. TGFβ and IL1β signaling interact at the SMAD2/3 level in human primary MSC. Down-stream TGFβ target genes were repressed by IL1β independent of C-terminal SMAD2 phosphorylation. We demonstrate that SMAD2/3 linker modifications are required for this interplay and identified TAK1 as a crucial mediator of IL1β-induced TGFβ signal modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Angiotensin II Receptor Antagonism Reduces Transforming Growth Factor Beta and Smad Signaling in Thoracic Aortic Aneurysm

    PubMed Central

    Nataatmadja, Maria; West, Jennifer; Prabowo, Sulistiana; West, Malcolm

    2013-01-01

    ABSTRACT Background The expression of transforming growth factor beta (TGF-β) and Smad3 regulates extracellular matrix homeostasis and inflammation in aortic aneurysms. The expression of Smad3 depends on signaling by angiotensin II (AngII) receptor pathways through TGF-β receptor–dependent and –independent pathways. Methods To determine the expression of AngII type 1 (AT1R) and type 2 receptors (AT2R), TGF-β, and Smad3 in thoracic aortic aneurysms, we performed immunohistochemistry testing on tissue and cultured cells derived from subjects with Marfan syndrome (MFS) and bicuspid aortic valve (BAV) malformation and from normal aortas of subjects who were organ donors. Results MFS and BAV aneurysm tissue showed enhanced accumulation of TGF-β and Smad3 in vascular smooth muscle cells (VSMCs) and in inflammatory cells in the subintimal layer and tunica media. The normal aortic wall exhibited minimal TGF-β and Smad3 staining. Cultured VSMCs from MFS and BAV samples showed nuclear Smad3 and strong cytoplasmic TGF-β expression in the cytoplasmic vesicles. In control cells, Smad3 was located mainly in the cytoplasm, and weak cytoplasmic TGF-β was distributed with a pattern similar to that of the aneurysm-derived cells. Compared to normal aorta cells, AT1R and AT2R expression was increased in both aneurysm types. Treatment of cultured VSMCs with the AT1R antagonist losartan caused both reduced TGF-β vesicle localization and nuclear expression of Smad3. Conclusions Increased TGF-β and Smad3 expression in aneurysm tissue and cultured VSMCs is consistent with aberrant TGF-β expression and the activation of Smad3 signaling. Losartan-mediated reduction in TGF-β expression and the cytoplasmic localization of Smad3 support a role for AT1R antagonism in the inhibition of aneurysm progression. PMID:23532685

  19. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Asish K; Wei, Jun; Wu, Minghua

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI),more » and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.« less

  20. β-2 spectrin is involved in hepatocyte proliferation through the interaction of TGFβ/Smad and PI3K/AKT signalling.

    PubMed

    Wang, Zhijun; Song, Yuhu; Tu, Wei; He, Xingxing; Lin, Jusheng; Liu, Fang

    2012-08-01

    Transforming growth factor (TGF) β signalling pathway plays a crucial role in liver regeneration following partial hepatectomy in mice. Evidence demonstrated that β-2 Spectrin is involved in TGFβ/Smad signalling pathway as a Smad3/4 adaptor protein. The aim of this study was to explore the role of β-2 Spectrin in hepatocyte proliferation. β-2 Spectrin expression was evaluated in mice receiving partial hepatectomy. The effect of siRNA against β-2 Spectrin on hepatocyte proliferation was determined. The interaction between TGFβ/Smad and PI3K/Akt signalling was investigated. Hepatic β-2 Spectrin decreased dramatically 2 days after 70% hepatectomy in mice. In AML-12 cells, hepatocyte proliferation was inhibited after the stimulation of TGF β1 and a reduction in β-2 Spectrin mediated by siRNA resulted in increase in proliferative response. Confocal results revealed that β-2 Spectrin represented a key regulator in TGFβ/Smad signalling through controlling Smad3/4 subcellular localization. Moreover, Alternation of Akt phosphorylation led to the change in subcellular localization of Smad2, 3, 4 and β-2 Spectrin, A reduction in Smad2, 3 and 4 mediated by siRNA resulted in the induction of pAkt expression. These findings reveal that β-2 Spectrin plays a crucial role in hepatocyte proliferation, which contributes to liver regeneration following hepatectomy in mice. In addition, PI3K/Akt is involved in TGFβ/Smad signalling pathway through the interaction with Smad proteins and β-2 Spectrin. © 2012 John Wiley & Sons A/S.

  1. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylationmore » of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.« less

  2. Heat shock protein 22 (HSPB8) limits TGF-β-stimulated migration of osteoblasts.

    PubMed

    Yamamoto, Naohiro; Tokuda, Haruhiko; Kuroyanagi, Gen; Kainuma, Shingo; Matsushima-Nishiwaki, Rie; Fujita, Kazuhiko; Kozawa, Osamu; Otsuka, Takanobu

    2016-11-15

    Heat shock proteins (HSPs) are induced in response to various physiological and environmental conditions such as chemical and heat stress, and recognized to function as molecular chaperones. HSP22 (HSPB8), a low-molecular weight HSP, is ubiquitously expressed in many cell types. However, the precise role of HSP22 in bone metabolism remains to be clarified. In the present study, we investigated whether HSP22 is implicated in the transforming growth factor-β (TGF-β)-stimulated migration of osteoblast-like MC3T3-E1 cells. Although protein levels of HSP22 were clearly detected in unstimulated MC3T3-E1 cells, TGF-β failed to induce the protein levels. The TGF-β-stimulated migration was significantly up-regulated by knockdown of HSP22 expression. The cell migration stimulated by platelet-derived growth factor-BB was also enhanced by HSP22 knockdown. SB203580, an inhibitor of p38 mitogen-activated protein kinase, PD98059, an inhibitor of MEK1/2, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase had no effects on the TGF-β-induced migration. SIS3, a specific inhibitor of TGF-β-dependent Smad3 phosphorylation, significantly reduced the migration with or without TGF-β stimulation. Smad2, Smad3, Smad4 or Smad7 was not coimmunoprecipitated with HSP22. On the other hand, the TGF-β-induced Smad2 phosphorylation was enhanced by HSP22 down-regulation. The protein levels of TGF-β type II receptor (TGF-β RII) but not TGF-β type I receptor (TGF-β RI) was significantly up-regulated in HSP22 knockdown cells compared with those in the control cells. However, the levels of TGF-β RII mRNA in HSP22 knockdown cells were little different from those of the control cells. Neither TGF-β RI nor TGF-β RII was coimmunoprecipitated with HSP22. SIS3 reduced the amplification by HSP22 knockdown of the TGF-β-stimulated cell migration almost to the basal level. Our results strongly suggest that HSP22 functions as a negative regulator in the TGF-β-stimulated migration of osteoblasts via suppression of the Smad-dependent pathway, resulting from modulating the protein levels of TGF-β RII. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Point mutations in the tumor suppressor Smad4/DPC4 enhance its phosphorylation by GSK3 and reversibly inactivate TGF-β signaling

    PubMed Central

    Demagny, Hadrien; De Robertis, Edward M

    2016-01-01

    The tumor suppressor Smad4/DPC4 is an essential transcription factor in the TGF-β pathway and is frequently mutated or deleted in prostate, colorectal, and pancreatic carcinomas. We recently discovered that Smad4 activity and stability are regulated by the FGF/EGF and Wnt signaling pathways through a series of MAPK and GSK3 phosphorylation sites located in its linker region. In the present study, we report that loss-of-function associated with 2 point mutations commonly found in colorectal and pancreatic cancers results from enhanced Smad4 phosphorylation by GSK3, generating a phosphodegron that leads to subsequent β-TrCP–mediated polyubiquitination and proteasomal degradation. Using chemical GSK3 inhibitors, we show that Smad4 point mutant proteins can be stabilized and TGF-β signaling restored in cancer cells harboring such mutations. PMID:27308538

  4. Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium.

    PubMed

    Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W; Song, Wenchao; Dunaief, Joshua L

    2015-05-08

    Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium*

    PubMed Central

    Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W.; Song, Wenchao; Dunaief, Joshua L.

    2015-01-01

    Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. PMID:25802332

  6. Zinc Finger Protein 451 Is a Novel Smad Corepressor in Transforming Growth Factor-β Signaling*

    PubMed Central

    Feng, Yili; Wu, Hongxing; Xu, Yongxian; Zhang, Zhengmao; Liu, Ting; Lin, Xia; Feng, Xin-Hua

    2014-01-01

    ZNF451 is a transcriptional cofactor localized to promyelocytic leukemia bodies. Here, we present evidence demonstrating that ZNF451 physically interacts with Smad3/4 and functionally inhibits TGF-β signaling. Increased expression of ZNF451 attenuates TGF-β-induced growth inhibitory and gene transcriptional responses, whereas depletion of ZNF451 enhances TGF-β responses. Mechanistically, ZNF451 blocks the ability of Smad3/4 to recruit p300 in response to TGF-β, which causes reduction of histone H3K9 acetylation on the promoters of TGF-β target genes. Taken together, ZNF451 acts as a transcriptional corepressor for Smad3/4 and negatively regulates TGF-β signaling. PMID:24324267

  7. The methyltransferase SET9 regulates TGFB1 activation of renal fibroblasts via interaction with SMAD3.

    PubMed

    Shuttleworth, Victoria G; Gaughan, Luke; Nawafa, Lotfia; Mooney, Caitlin A; Cobb, Steven L; Sheerin, Neil S; Logan, Ian R

    2018-01-08

    Chronic kidney disease (CKD) is a global socioeconomic problem. It is characterised by the presence of differentiated myofibroblasts, which cause tissue fibrosis in response to TGFB1, leading to renal failure. Here, we define a novel interaction between the SET9 lysine methyltransferase (also known as SETD7) and SMAD3, the principal mediator of TGFB1 signalling in myofibroblasts. We show that SET9-deficient fibroblasts exhibit globally altered gene expression profiles in response to TGFB1, whilst overexpression of SET9 enhances SMAD3 transcriptional activity. We also show that SET9 facilitates nuclear import of SMAD3 and controls SMAD3 protein degradation via ubiquitylation. On a cellular level, we demonstrate that SET9 is broadly required for the effects of TGFB1 in diseased primary renal fibroblasts; SET9 promotes fibroblast migration into wounds, expression of extracellular matrix proteins, collagen contractility and myofibroblast differentiation. Finally, we demonstrate that SET9 is recruited to the α-smooth muscle actin gene in response to TGFB1, providing a mechanism by which SET9 regulates myofibroblast contractility and differentiation. Together with previous studies, we make the case for SET9 inhibition in the treatment of progressive CKD. © 2018. Published by The Company of Biologists Ltd.

  8. Transcription Factor FoxO1 Is Essential for Enamel Biomineralization

    PubMed Central

    Poché, Ross A.; Sharma, Ramaswamy; Garcia, Monica D.; Wada, Aya M.; Nolte, Mark J.; Udan, Ryan S.; Paik, Ji-Hye; DePinho, Ronald A.; Bartlett, John D.; Dickinson, Mary E.

    2012-01-01

    The Transforming growth factor β (Tgf-β) pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice. Furthermore, we determined that both the FoxO1 and Smad3 mutant teeth exhibit changes in the expression of similar cohort of genes encoding enamel matrix proteins required for proper enamel development. These data raise the possibility that FoxO1 and Smad3 act in concert to regulate a common repertoire of genes necessary for complete enamel maturation. This study is the first to define an essential role for the FoxO family of transcription factors in tooth development and provides a new molecular entry point which will allow researchers to delineate novel genetic pathways regulating the process of biomineralization which may also have significance for studies of human tooth diseases such as amelogenesis imperfecta. PMID:22291941

  9. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor {beta} signal transduction in human glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra

    2007-03-23

    Transforming growth factor-beta (TGF-{beta}) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-{beta} by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-{beta}1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-{beta} receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2more » and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-{beta}1-induced signalling.« less

  10. Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5.

    PubMed

    Tabata, Takanori; Kokura, Kenji; Ten Dijke, Peter; Ishii, Shunsuke

    2009-01-01

    The products encoded by ski and its related gene, sno, (Ski and Sno) act as transcriptional co-repressors and interact with other co-repressors such as N-CoR/SMRT and mSin3A. Ski and Sno mediate transcriptional repression by various repressors, including Mad, Rb and Gli3. Ski/Sno also suppress transcription induced by multiple activators, such as Smads and c-Myb. In particular, the inhibition of TGF-beta-induced transcription by binding to Smads is correlated with the oncogenic activity of Ski and Sno. However, the molecular mechanism by which Ski and Sno mediate transcriptional repression remains unknown. In this study, we report the purification and characterization of Ski complexes. The Ski complexes purified from HeLa cells contained histone deacetylase 3 (HDAC3) and protein arginine methyltransferase 5 (PRMT5), in addition to multiple Smad proteins (Smad2, Smad3 and Smad4). Chromatin immunoprecipitation assays indicated that these components of the Ski complexes were localized on the SMAD7 gene promoter, which is the TGF-beta target gene, in TGF-beta-untreated HepG2 cells. Knockdown of these components using siRNA led to up-regulation of SMAD7 mRNA. These results indicate that Ski complexes serve to maintain a TGF-beta-responsive promoter at a repressed basal level via the activities of histone deacetylase and histone arginine methyltransferase.

  11. Transforming Growth Factor-β/SMAD Target Gene SKIL Is Negatively Regulated by the Transcriptional Cofactor Complex SNON-SMAD4*

    PubMed Central

    Tecalco-Cruz, Angeles C.; Sosa-Garrocho, Marcela; Vázquez-Victorio, Genaro; Ortiz-García, Layla; Domínguez-Hüttinger, Elisa; Macías-Silva, Marina

    2012-01-01

    The human SKI-like (SKIL) gene encodes the SMAD transcriptional corepressor SNON that antagonizes TGF-β signaling. SNON protein levels are tightly regulated by the TGF-β pathway: whereas a short stimulation with TGF-β decreases SNON levels by its degradation via the proteasome, longer TGF-β treatment increases SNON levels by inducing SKIL gene expression. Here, we investigated the molecular mechanisms involved in the self-regulation of SKIL gene expression by SNON. Bioinformatics analysis showed that the human SKIL gene proximal promoter contains a TGF-β response element (TRE) bearing four groups of SMAD-binding elements that are also conserved in mouse. Two regions of 408 and 648 bp of the human SKIL gene (∼2.4 kb upstream of the ATG initiation codon) containing the core promoter, transcription start site, and the TRE were cloned for functional analysis. Binding of SMAD and SNON proteins to the TRE region of the SKIL gene promoter after TGF-β treatment was demonstrated by ChIP and sequential ChIP assays. Interestingly, the SNON-SMAD4 complex negatively regulated basal SKIL gene expression through binding the promoter and recruiting histone deacetylases. In response to TGF-β signal, SNON is removed from the SKIL gene promoter, and then the activated SMAD complexes bind the promoter to induce SKIL gene expression. Subsequently, the up-regulated SNON protein in complex with SMAD4 represses its own expression as part of the negative feedback loop regulating the TGF-β pathway. Accordingly, when the SNON-SMAD4 complex is absent as in some cancer cells lacking SMAD4 the regulation of some TGF-β target genes is modified. PMID:22674574

  12. Transforming growth factor-β/SMAD Target gene SKIL is negatively regulated by the transcriptional cofactor complex SNON-SMAD4.

    PubMed

    Tecalco-Cruz, Angeles C; Sosa-Garrocho, Marcela; Vázquez-Victorio, Genaro; Ortiz-García, Layla; Domínguez-Hüttinger, Elisa; Macías-Silva, Marina

    2012-08-03

    The human SKI-like (SKIL) gene encodes the SMAD transcriptional corepressor SNON that antagonizes TGF-β signaling. SNON protein levels are tightly regulated by the TGF-β pathway: whereas a short stimulation with TGF-β decreases SNON levels by its degradation via the proteasome, longer TGF-β treatment increases SNON levels by inducing SKIL gene expression. Here, we investigated the molecular mechanisms involved in the self-regulation of SKIL gene expression by SNON. Bioinformatics analysis showed that the human SKIL gene proximal promoter contains a TGF-β response element (TRE) bearing four groups of SMAD-binding elements that are also conserved in mouse. Two regions of 408 and 648 bp of the human SKIL gene (∼2.4 kb upstream of the ATG initiation codon) containing the core promoter, transcription start site, and the TRE were cloned for functional analysis. Binding of SMAD and SNON proteins to the TRE region of the SKIL gene promoter after TGF-β treatment was demonstrated by ChIP and sequential ChIP assays. Interestingly, the SNON-SMAD4 complex negatively regulated basal SKIL gene expression through binding the promoter and recruiting histone deacetylases. In response to TGF-β signal, SNON is removed from the SKIL gene promoter, and then the activated SMAD complexes bind the promoter to induce SKIL gene expression. Subsequently, the up-regulated SNON protein in complex with SMAD4 represses its own expression as part of the negative feedback loop regulating the TGF-β pathway. Accordingly, when the SNON-SMAD4 complex is absent as in some cancer cells lacking SMAD4 the regulation of some TGF-β target genes is modified.

  13. Mutant p53 Promotes Tumor Cell Malignancy by Both Positive and Negative Regulation of the Transforming Growth Factor β (TGF-β) Pathway*

    PubMed Central

    Ji, Lei; Xu, Jinjin; Liu, Jian; Amjad, Ali; Zhang, Kun; Liu, Qingwu; Zhou, Lei; Xiao, Jianru; Li, Xiaotao

    2015-01-01

    Specific p53 mutations abrogate tumor-suppressive functions by gaining new abilities to promote tumorigenesis. Inactivation of p53 is known to distort TGF-β signaling, which paradoxically displays both tumor-suppressive and pro-oncogenic functions. The molecular mechanisms of how mutant p53 simultaneously antagonizes the tumor-suppressive and synergizes the tumor-promoting function of the TGF-β pathway remain elusive. Here we demonstrate that mutant p53 differentially regulates subsets of TGF-β target genes by enhanced binding to the MH2 domain in Smad3 upon the integration of ERK signaling, therefore disrupting Smad3/Smad4 complex formation. Silencing Smad2, inhibition of ERK, or introducing a phosphorylation-defective mutation at Ser-392 in p53 abrogates the R175H mutant p53-dependent regulation of these TGF-β target genes. Our study shows a mechanism to reconcile the seemingly contradictory observations that mutant p53 can both attenuate and cooperate with the TGF-β pathway to promote cancer cell malignancy in the same cell type. PMID:25767119

  14. Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3.

    PubMed

    Higashi, Kiyoshi; Inagaki, Yutaka; Fujimori, Ko; Nakao, Atsuhito; Kaneko, Hideo; Nakatsuka, Iwao

    2003-10-31

    Transforming growth factor-beta (TGF-beta) and interferon-gamma (IFN-gamma) exert antagonistic effects on collagen synthesis in human dermal fibroblasts. We have recently shown that Y box-binding protein YB-1 mediates the inhibitory effects of IFN-gamma on alpha2(I) procollagen gene (COL1A2) transcription through the IFN-gamma response element located between -161 and -150. Here we report that YB-1 counter-represses TGF-beta-stimulated COL1A2 transcription by interfering with Smad3 bound to the upstream sequence around -265 and subsequently by interrupting the Smad3-p300 interaction. Western blot and immunofluorescence analyses using inhibitors for Janus kinases or casein kinase II suggested that the casein kinase II-dependent signaling pathway mediates IFN-gamma-induced nuclear translocation of YB-1. Down-regulation of endogenous YB-1 expression by double-stranded YB-1-specific RNA abrogated the transcriptional repression of COL1A2 by IFN-gamma in the absence and presence of TGF-beta. In transient transfection assays, overexpression of YB-1 in human dermal fibroblasts exhibited antagonistic actions against TGF-beta and Smad3. Physical interaction between Smad3 and YB-1 was demonstrated by immunoprecipitation-Western blot analyses, and electrophoretic mobility shift assays using the recombinant Smad3 and YB-1 proteins indicated that YB-1 forms a complex with Smad3 bound to the Smad-binding element. Glutathione S-transferase pull-down assays showed that YB-1 binds to the MH1 domain of Smad3, whereas the central and carboxyl-terminal regions of YB-1 were required for its interaction with Smad3. YB-1 also interferes with the Smad3-p300 interaction by its preferential binding to p300. Altogether, the results provide a novel insight into the mechanism by which IFN-gamma/YB-1 counteracts TGF-beta/Smad3. They also indicate that IFN-gamma/YB-1 inhibits COL1A2 transcription by dual actions: via the IFN-gamma response element and through a cross-talk with the TGF-beta/Smad signaling pathway.

  15. Smad3 contributes to positioning of proliferating cells in colonic crypts by inducing EphB receptor protein expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Kiyoshi; Sato, Toru; Katsuno, Tatsuro, E-mail: katsuno@faculty.chiba-u.jp

    2011-02-25

    Research highlights: {yields} Smad3{sup -/-} mice showed an increased number of proliferating epithelial cells in colonic crypts. {yields} Proliferating epithelial cells showed activated Wnt/{beta}-catenin pathway. {yields} Smad3{sup -/-} mice also showed intermingling of proliferating cells with differentiated cells. {yields} Loss of EphB receptor expression was observed in the colonic crypts of Smad3{sup -/-} mice. {yields} Loss of EphB receptor expression is likely responsible for cell intermingling. -- Abstract: Deficiency of Smad3, an intracellular mediator of TGF-{beta}, was shown to significantly accelerate re-epithelialization of the colonic mucosa. This study was performed to investigate the molecular mechanisms by which Smad3 controls colonicmore » epithelial cell proliferation and crypt formation. Smad3{sup ex8/ex8} C57BL/6 mice were used in this study and wild-type littermates served as controls. The number of proliferating cells in the isolated colonic epithelium of Smad3{sup -/-} mice was significantly increased compared to that in wild-type littermates. Protein levels of the cell cycle inhibitors p21 and p27 were significantly decreased, while that of c-Myc was increased in the isolated colonic epithelium from Smad3{sup -/-} mice. In the colonic tissue of wild-type mice, cell proliferation was restricted to the bottom of the crypts in accordance with nuclear {beta}-catenin staining, whereas proliferating cells were located throughout the crypts in Smad3{sup -/-} mice in accordance with nuclear {beta}-catenin staining, suggesting that Smad3 is essential for locating proliferating cells at the bottom of the colonic crypts. Notably, in Smad3{sup -/-} mice, there was loss of EphB2 and EphB3 receptor protein expression, critical regulators of proliferating cell positioning, while EphB receptor protein expression was confirmed at the bottom of the colonic crypts in wild-type mice. These observations indicated that disturbance of the EphB/ephrin B system brings about mispositioning of proliferating cells in the colonic crypts of Smad3{sup -/-} mice. In conclusion, Smad3 is essential for controlling number and positioning of proliferating cells in the colonic crypts and contributes to formation of a 'proliferative zone' at the bottom of colonic crypts in the normal colon.« less

  16. Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-beta signaling.

    PubMed

    Rodriguez, C; Huang, L J; Son, J K; McKee, A; Xiao, Z; Lodish, H F

    2001-08-10

    Using the plasminogen activator inhibitor (PAI) promoter to drive the expression of a reporter gene (mouse CD2), we devised a system to clone negative regulators of the transforming growth factor-beta (TGF-beta) signaling pathway. We infected a TGF-beta-responsive cell line (MvLu1) with a retroviral cDNA library, selecting by fluorescence-activated cell sorter single cells displaying low PAI promoter activity in response to TGF-beta. Using this strategy we cloned the proto-oncogene brain factor-1 (BF-1). BF-1 represses the PAI promoter in part by associating with both unphosphorylated Smad3 (in the cytoplasm) and phosphorylated Smad3 (in the nucleus), thus preventing its binding to DNA. BF-1 also associates with Smad1, -2, and -4; the Smad MH2 domain binds to BF-1, and the C-terminal segment of BF-1 is uniquely and solely required for binding to Smads. Further, BF-1 represses another TGF-beta-induced promoter (p15), it up-regulates a TGF-beta-repressed promoter (Cyclin A), and it reverses the growth arrest caused by TGF-beta. Our results suggest that BF-1 is a general inhibitor of TGF-beta signaling and as such may play a key role during brain development.

  17. Smad4 deficiency impairs chondrocyte hypertrophy via the Runx2 transcription factor in mouse skeletal development.

    PubMed

    Yan, Jianyun; Li, Jun; Hu, Jun; Zhang, Lu; Wei, Chengguo; Sultana, Nishat; Cai, Xiaoqiang; Zhang, Weijia; Cai, Chen-Leng

    2018-06-15

    Chondrocyte hypertrophy is the terminal step in chondrocyte differentiation and is crucial for endochondral bone formation. How signaling pathways regulate chondrocyte hypertrophic differentiation remains incompletely understood. In this study, using a Tbx18:Cre ( Tbx18 Cre /+ ) gene-deletion approach, we selectively deleted the gene for the signaling protein SMAD family member 4 ( Smad4 f/f ) in the limbs of mice. We found that the Smad4 -deficient mice develop a prominent shortened limb, with decreased expression of chondrocyte differentiation markers, including Col2a1 and Acan , in the humerus at mid-to-late gestation. The most striking defects in these mice were the absence of stylopod elements and failure of chondrocyte hypertrophy in the humerus. Moreover, expression levels of the chondrocyte hypertrophy-related markers Col10a1 and Panx3 were significantly decreased. Of note, we also observed that the expression of runt-related transcription factor 2 ( Runx2 ), a critical mediator of chondrocyte hypertrophy, was also down-regulated in Smad4 -deficient limbs. To determine how the skeletal defects arose in the mouse mutants, we performed RNA-Seq with ChIP-Seq analyses and found that Smad4 directly binds to regulatory elements in the Runx2 promoter. Our results suggest a new mechanism whereby Smad4 controls chondrocyte hypertrophy by up-regulating Runx2 expression during skeletal development. The regulatory mechanism involving Smad4-mediated Runx2 activation uncovered here provides critical insights into bone development and pathogenesis of chondrodysplasia. © 2018 Yan et al.

  18. Molecular interaction between Smurf1 WW2 domain and PPXY motifs of Smad1, Smad5, and Smad6--modeling and analysis.

    PubMed

    Sangadala, Sreedhara; Metpally, Raghu Prasad Rao; Reddy, Boojala Vijay B

    2007-08-01

    The ubiquitin-proteasome proteolytic pathway is essential for various important biological processes including cell cycle progression, gene transcription, and signal transduction. One of the important regulatory mechanisms by which the bone-inducing activity of the bone morphogenetic protein (BMP) signaling is modulated involves ubiquitin-mediated proteasomal degradation. The BMP induced receptor signal is transmitted intracellularly by phosphorylation of Smad proteins by the activated receptor I. The phosphorylated Smads 1, 5, and 8 (R-Smads) oligomerize with the co-Smad (Smad4). The complex, thus, formed translocates to the nucleus and interacts with other cofactors to regulate the expression of downstream target genes. R-Smads contain PPXY motif in the linker region that interacts with Smad ubiquitin regulatory factor 1 (Smurf1), an E3 ubiquitin ligase that catalyzes ubiquitination of target proteins for proteasomal degradation. Smurf1 contains a HECT domain, a C2 domain, and 2 WW domains (WW1, WW2). The PPXY motif in target proteins and its interaction with Smurf1 may form the basis for regulation of steady-state levels of Smads in controlling BMP-responsiveness of cells. Here, we present a homology-based model of the Smurf1 WW2 domain and the target octa-peptides containing PPXY motif of Smurf1-interacting Smads. We carried out docking of Smurf1 WW2 domain with the PPXY motifs of Smad1, Smad5, and Smad6 and identified the key amino acid residues involved in interaction. Furthermore, we present experimental evidence that WW2 domain of Smurf1 does indeed interact with the Smad proteins and that the deletion of WW2 domain of Smurf1 results in loss of its binding to Smads using the purified recombinant proteins. Finally, we also present data confirming that the deletion of WW2 domain in Smurf1 abolishes its ubiquitination activity on Smad1 in an in vitro ubiquitination assay. It shows that the interaction between the WW domain and Smad PPXY motif is a key step in Smurf1-mediated ubiquitination of its natural targets such as Smad1, Smad5, and Smad6. This work facilitates further strategies to unravel the biological function of such interactions and help in designing effective mimetic compounds that either mimic or disrupt the specific interaction.

  19. Repulsive guidance molecule B (RGMB) plays negative roles in breast cancer by coordinating BMP signaling.

    PubMed

    Li, Jin; Ye, Lin; Sanders, Andrew J; Jiang, Wen G

    2012-07-01

    Repulsive guidance molecules (RGMs) coordinate axon formation and iron homestasis. These molecules are also known as co-receptors of bone morphogenetic proteins (BMPs). However, the role played by RGMs in breast cancer remains unclear. The present study investigated the impact of RGMB on functions of breast cancer cells and corresponding mechanisms. RGMB was knocked down in breast cancer cells by way of an anti-RGMB ribozyme transgene. Knockdown of RGMB resulted in enhanced capacities of proliferation, adhesion, and migration in breast cancer cells. Further investigations demonstrated RGMB knockdown resulted in a reduced expression and activity of Caspase-3, accompanied with better survival in RGMB knockdown cells under serum starvation, which might be induced by its repression on MAPK JNK pathway. Up-regulations of Snai1, Twist, FAK, and Paxillin via enhanced Smad dependent sigaling led to increased capacities of adhesion and migration. Our current data firstly revealed that RGMB may act as a negative regulator in breast cancer through BMP signaling. Copyright © 2012 Wiley Periodicals, Inc.

  20. miR-424-5p promotes proliferation of gastric cancer by targeting Smad3 through TGF-β signaling pathway

    PubMed Central

    Wang, Linjun; Zhang, Lei; Xu, Zekuan

    2016-01-01

    MiRNAs have been reported to regulate gene expression and be associated with cancer progression. Recently, miR-424-5p was reported to play important role in a variety of tumors. However, the role and molecular mechanisms of miR-424-5p in GC (gastric cancer) remains largely unknown. In this study, we aimed to explore the role of miR-424-5p in GC. QRT-PCR was used to determine the expression levels of miR-424-5p and Smad3. CCK8 assay, plate clone assay and cell cycle assay were used to measure the effects of miR-424-5p on GC cell proliferation. Luciferase reporter assay and western blotting were used to prove that Smad3 was one of the direct targets of miR-424-5p. Tumorigenesis assay was used to investigate the role of miR-424-5p in tumor growth of GC cells in vivo. We found that miR-424-5p was up-regulated in GC tissues and cells. Over-expression of miR-424-5p could promote the proliferation of GC cells. In addition, luciferase reporter assay and western blotting assay revealed that Smad3 was a direct target of miR-424-5p. Over-expression of Smad3 could partially reverse the effects of miR-424-5p on GC cell proliferation. Our study further revealed that miR-424-5p could inhibit TGF-β signaling pathway by Smad3. PMID:27655675

  1. Effect of ginseng extract on the TGF-β1 signaling pathway in CCl4-induced liver fibrosis in rats.

    PubMed

    Hafez, Mohamed M; Hamed, Sherifa S; El-Khadragy, Manal F; Hassan, Zeinab K; Al Rejaie, Salim S; Sayed-Ahmed, Mohamed M; Al-Harbi, Naif O; Al-Hosaini, Khalid A; Al-Harbi, Mohamed M; Alhoshani, Ali R; Al-Shabanah, Othman A; Alsharari, Shakir Dekhal

    2017-01-13

    Liver diseases are major global health problems. Ginseng extract has antioxidant, immune-modulatory and anti-inflammatory activities. This study investigated the effect of ginseng extract on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Male Wistar rats were divided into four groups: control group, ginseng group, CCl 4 group and CCl 4  + ginseng group. Liver injury was induced by the intraperitoneal (I.P) injection of 3 ml/kg CCl 4 (30% in olive oil) weekly for 8 weeks. The control group was I.P injected with olive oil. The expression of genes encoding transforming growth factor beta (TGF-β), type I TGF-β receptor (TβR-1), type II TGF-β receptor (TβR-II), mothers against decapentaplegic homolog 2 (Smad2), Smad3, Smad4, matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor matrix metalloproteinase-1 (TIMP-1), Collagen 1a2 (Col1a2), Collagen 3a1 (Col3a1), interleukin-8 (IL-8) and interleukin -10 (IL-10) were measured by real-time PCR. Treatment with ginseng extract decreased hepatic fat deposition and lowered hepatic reticular fiber accumulation compared with the CCl 4 group. The CCl 4 group showed a significant increase in hepatotoxicity biomarkers and up-regulation of the expression of genes encoding TGF-β, TβR-I, TβR-II, MMP2, MMP9, Smad-2,-3, -4, and IL-8 compared with the control group. However, CCl 4 administration resulted in the significant down-regulation of IL-10 mRNA expression compared with the control group. Interestingly, ginseng extract supplementation completely reversed the biochemical markers of hepatotoxicity and the gene expression alterations induced by CCl 4 . ginseng extract had an anti-fibrosis effect via the regulation of the TGF-β1/Smad signaling pathway in the CCl 4 -induced liver fibrosis model. The major target was the inhibition of the expression of TGF-β1, Smad2, and Smad3.

  2. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity.

  3. miR-24 and miR-122 Negatively Regulate the Transforming Growth Factor-β/Smad Signaling Pathway in Skeletal Muscle Fibrosis.

    PubMed

    Sun, Yaying; Wang, Hui; Li, Yan; Liu, Shaohua; Chen, Jiwu; Ying, Hao

    2018-06-01

    Fibrosis is common after skeletal muscle injury, undermining tissue regeneration and function. The mechanism underlying skeletal muscle fibrosis remains unveiled. Transforming growth factor-β/Smad signaling pathway is supposed to play a pivotal role. However, how microRNAs interact with transforming growth factor-β/Smad-related muscle fibrosis remains unclear. We showed that microRNA (miR)-24-3p and miR-122-5p declined in skeletal muscle fibrosis, which was a consequence of transforming growth factor-β. Upregulating Smad4 suppressed two microRNAs, whereas inhibiting Smad4 elevated microRNAs. Luciferase reporter assay and chromatin immunoprecipitation confirmed that Smad4 directly inhibited two microRNAs. On the other hand, overexpression of these two miRs retarded fibrotic process. We further identified that Smad2 was a direct target of miR-24-3p, whereas miR-122-5p targeted transforming growth factor-β receptor-II. Both targets were important participants in transforming growth factor-β/Smad signaling. Taken together, a positive feedback loop in transforming growth factor-β/Smad4 signaling pathway in skeletal muscle fibrosis was identified. Transforming growth factor-β/Smad axis could be downregulated by microRNAs. This effect, however, was suppressed by Smad4, the downstream of transforming growth factor-β. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. MARCH5 RNA promotes autophagy, migration, and invasion of ovarian cancer cells.

    PubMed

    Hu, Jianguo; Meng, Ying; Zhang, Zhanqin; Yan, Qiuting; Jiang, Xingwei; Lv, Zilan; Hu, Lina

    2017-02-01

    MARCH5 is a crucial regulator of mitochondrial fission. However, the expression and function of MARCH5 in ovarian cancer have not been determined. This study investigated the expression and function of MARCH5 in ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as its usefulness as an early diagnostic marker. We found that the expression of MARCH5 was substantially upregulated in ovarian cancer tissue in comparison with the normal control. Silencing MARCH5 in SKOV3 cells decreased TGFB1-induced cell macroautophagy/autophagy, migration, and invasion in vitro and in vivo, whereas the ectopic expression of MARCH5 in A2780 cells had the opposite effect. Mechanistic investigations revealed that MARCH5 RNA may function as a competing endogenous RNA (ceRNA) to regulate the expression of SMAD2 and ATG5 by competing for MIR30A. Knocking down SMAD2 or ATG5 can block the effect of MARCH5 in A2780 cells. Also, silencing the expression of MARCH5 in SKOV3 cells can inhibit the TGFB1-SMAD2/3 pathway. In contrast, the ectopic expression of MARCH5 in A2780 cells can activate the TGFB1-SMAD2/3 pathway. In turn, the TGFB1-SMAD2/3 pathway can regulate MARCH5 and ATG5 through MIR30A. Overall, the results of this study identified MARCH5 as a candidate oncogene in ovarian cancer and a potential target for ovarian cancer therapy.

  5. miR-30 Family Members Negatively Regulate Osteoblast Differentiation*

    PubMed Central

    Wu, Tingting; Zhou, Haibo; Hong, Yongfeng; Li, Jing; Jiang, Xinquan; Huang, Hui

    2012-01-01

    miRNAs are endogenously expressed 18- to 25-nucleotide RNAs that regulate gene expression through translational repression by binding to a target mRNA. Recently, it has been indicated that miRNAs are closely related to osteogenesis. Our previous data suggested that miR-30 family members might be important regulators during the biomineralization process. However, whether and how they modulate osteogenic differentiation have not been explored. In this study, we demonstrated that miR-30 family members negatively regulate BMP-2-induced osteoblast differentiation by targeting Smad1 and Runx2. Evidentially, overexpression of miR-30 family members led to a decrease of alkaline phosphatase activity, whereas knockdown of them increased the activity. Then bioinformatic analysis identified potential target sites of the miR-30 family located in the 3′ untranslated regions of Smad1 and Runx2. Western blot analysis and quantitative RT-PCR assays demonstrated that miR-30 family members inhibit Smad1 gene expression on the basis of repressing its translation. Furthermore, dual-luciferase reporter assays confirmed that Smad1 is a direct target of miR-30 family members. Rescue experiments that overexpress Smad1 and Runx2 significantly eliminated the inhibitory effect of miR-30 on osteogenic differentiation and provided strong evidence that miR-30 mediates the inhibition of osteogenesis by targeting Smad1 and Runx2. Also, the inhibitory effects of the miR-30 family were validated in mouse bone marrow mesenchymal stem cells. Therefore, our study uncovered that miR-30 family members are key negative regulators of BMP-2-mediated osteogenic differentiation. PMID:22253433

  6. Effects of c-Jun N-terminal kinase on Activin A/Smads signaling in PC12 cell suffered from oxygen-glucose deprivation.

    PubMed

    Wang, J Q; Xu, Z H; Liang, W Z; He, J T; Cui, Y; Liu, H Y; Xue, L X; Shi, W; Shao, Y K; Mang, J; Xu, Z X

    2016-02-29

    Activin A (Act A), a member of transforming growth factor-β (TGF-β) superfamily, is an early gene in response to cerebral ischemia. Growing evidences confirm the neuroprotective effect of Act A in ischemic injury through Act A/Smads signal activation. In this process, regulation networks are involved in modulating the outcomes of Smads signaling. Among these regulators, crosstalk between c-Jun N-terminal kinase (JNK) and Smads signaling has been found in the TGF-β induced epithelial-mesenchymal transition. However, in neural ischemia, the speculative regulation between JNK and Act A/Smads signaling pathways has not been clarified. To explore this issue, an Oxygen Glucose Deprivation (OGD) model was introduced to nerve-like PC12 cells. We found that JNK signal activation occurred at the early time of OGD injury (1 h). Act A administration suppressed JNK phosphorylation. In addition, JNK inhibition could elevate the strength of Smads signaling and attenuate neural apoptosis after OGD injury. Our results indicated a negative regulation effect of JNK on Smads signaling in ischemic injury. Taken together, JNK, as a critical site for neural apoptosis and negative regulator for Act A/Smads signaling, was presumed to be a molecular therapeutic target for ischemia.

  7. Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo.

    PubMed

    Goodman, Craig A; McNally, Rachel M; Hoffmann, F Michael; Hornberger, Troy A

    2013-11-01

    Myostatin, a member of the TGF superfamily, is sufficient to induce skeletal muscle atrophy. Myostatin-induced atrophy is associated with increases in E3-ligase atrogin-1 expression and protein degradation and decreases in Akt/mechanistic target of rapamycin (mTOR) signaling and protein synthesis. Myostatin signaling activates the transcription factor Smad3 (Small Mothers Against Decapentaplegic), which has been shown to be necessary for myostatin-induced atrogin-1 expression and atrophy; however, it is not known whether Smad3 is sufficient to induce these events or whether Smad3 simply plays a permissive role. Thus, the aim of this study was to address these questions with an in vivo model. To accomplish this goal, in vivo transfection of plasmid DNA was used to create transient transgenic mouse skeletal muscles, and our results show for the first time that Smad3 expression is sufficient to stimulate atrogin-1 promoter activity, inhibit Akt/mTOR signaling and protein synthesis, and induce muscle fiber atrophy. Moreover, we propose that Akt/mTOR signaling is inhibited by a Smad3-induced decrease in microRNA-29 (miR-29) expression and a subsequent increase in the translation of phosphatase and tensin homolog (PTEN) mRNA. Smad3 is also sufficient to inhibit peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) promoter activity and to increase FoxO (Forkhead Box Protein, Subclass O)-mediated signaling and the promoter activity of plasminogen activator inhibitor 1 (PAI-1). Combined, this study provides the first evidence that Smad3 is sufficient to regulate many of the events associated with myostatin-induced atrophy and therefore suggests that Smad3 signaling may be a viable target for therapies aimed at preventing myostatin-induced muscle atrophy.

  8. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roffe, Suzy; Hagai, Yosey; Institute of Animal Sciences, Volcani Center, Bet Dagan 50250

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of themore » phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.« less

  9. Single Chain Antibodies as Tools to Study transforming growth factor-β-Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens.

    PubMed

    Blokzijl, Andries; Zieba, Agata; Hust, Michael; Schirrmann, Thomas; Helmsing, Saskia; Grannas, Karin; Hertz, Ellen; Moren, Anita; Chen, Lei; Söderberg, Ola; Moustakas, Aristidis; Dübel, Stefan; Landegren, Ulf

    2016-06-01

    The cellular heterogeneity seen in tumors, with subpopulations of cells capable of resisting different treatments, renders single-treatment regimens generally ineffective. Accordingly, there is a great need to increase the repertoire of drug treatments from which combinations may be selected to efficiently target sets of pathological processes, while suppressing the emergence of resistance mutations. In this regard, members of the TGF-β signaling pathway may furnish new, valuable therapeutic targets. In the present work, we developed in situ proximity ligation assays (isPLA) to monitor the state of the TGF-β signaling pathway. Moreover, we extended the range of suitable affinity reagents for this analysis by developing a set of in-vitro-derived human antibody fragments (single chain fragment variable, scFv) that bind SMAD2 (Mothers against decapentaplegic 2), 3, 4, and 7 using phage display. These four proteins are all intracellular mediators of TGF-β signaling. We also developed an scFv specific for SMAD3 phosphorylated in the linker domain 3 (p179 SMAD3). This phosphorylation has been shown to inactivate the tumor suppressor function of SMAD3. The single chain affinity reagents developed in the study were fused tocrystallizable antibody fragments (Fc-portions) and expressed as dimeric IgG-like molecules having Fc domains (Yumabs), and we show that they represent valuable reagents for isPLA.Using these novel assays, we demonstrate that p179 SMAD3 forms a complex with SMAD4 at increased frequency during division and that pharmacological inhibition of cyclin-dependent kinase 4 (CDK4)(1) reduces the levels of p179SMAD3 in tumor cells. We further show that the p179SMAD3-SMAD4 complex is bound for degradation by the proteasome. Finally, we developed a chemical screening strategy for compounds that reduce the levels of p179SMAD3 in tumor cells with isPLA as a read-out, using the p179SMAD3 scFv SH544-IIC4. The screen identified two kinase inhibitors, known inhibitors of the insulin receptor, which decreased levels of p179SMAD3/SMAD4 complexes, thereby demonstrating the suitability of the recombinant affinity reagents applied in isPLA in screening for inhibitors of cell signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Effects of SARA on oxygen-glucose deprivation in PC12 cell line.

    PubMed

    Wang, Jiao-Qi; He, Jin-Ting; Du, Zhen-Wu; Li, Zong-Shu; Liu, Yong-Feng; Mang, Jing; Xu, Zhong-Xin

    2013-05-01

    Ischemic stroke is a major composition of cerebrovascular disease, seriously threatening to human health in the world. Activin A (ActA), belonging to transforming growth factor-beta (TGF-β) super family, plays an important role in the hypoxic-ischemic brain injury through ActA/Smads pathway. While as an essential phosphorylation assistor in TGF-β signaling, the functions and mechanisms of smad anchor for receptor activation (SARA) in ischemic brain injury remain poorly understood. To solve this problem and explore the pathological processes of ischemic stroke, we used an Oxygen-Glucose deprivation (OGD) model in nerve growth factor-induced differentiated rattus PC12 pheochromocytoma cells and down regulated the expressions of SARA by RNA interference technology. Our results showed that the repression of SARA before OGD exposure reduced the expressions of Smad2, 3, 4 mRNA and the phosphorylation rate of Smad2 protein, but it did not affect the mRNA expressions of Smad7. After OGD treatment, ActA/Smads pathway was activated and the expression of SARA in the SARA pre-repression group was significantly up-regulated. The pre-repression of SARA increased the sensitivities of nerve-like cells to OGD damage. Moreover, the mRNA expression of Smad7 which was supposed to participate in the negative feedback of ActA/Smads pathway was also elevated due to OGD injury. Taken together, these results suggest a positive role of SARA in assisting the phosphorylation of Smad2 and maintaining the neuron protective effect of ActA/Smads pathway.

  11. Differential regulations of fibronectin and laminin in Smad2 activation in vascular endothelial cells in response to disturbed flow.

    PubMed

    Yang, Tung-Lin; Lee, Pei-Ling; Lee, Ding-Yu; Wang, Wei-Li; Wei, Shu-Yi; Lee, Chih-I; Chiu, Jeng-Jiann

    2018-01-02

    Atherosclerosis occurs in arterial curvatures and branches, where the flow is disturbed with low and oscillatory shear stress (OSS). The remodeling and alterations of extracellular matrices (ECMs) and their composition is the critical step in atherogenesis. In this study, we investigated the effects of different ECM proteins on the regulation of mechanotransduction in vascular endothelial cells (ECs) in response to OSS. Through the experiments ranging from in vitro cell culture studies on effects of OSS on molecular signaling to in vivo examinations on clinical specimens from patients with coronary artery disease (CAD), we elucidated the roles of integrins and different ECMs, i.e., fibronectin (FN) and laminin (LM), in transforming growth factor (TGF)-β receptor (TβR)-mediated Smad2 activation and nuclear factor-κB (NF-κB) signaling in ECs in response to OSS and hence atherogenesis. OSS at 0.5±12 dynes/cm 2 induces sustained increases in the association of types I and II TβRs with β1 and β3 integrins in ECs grown on FN, but it only transient increases in ECs grown on LM. OSS induces a sustained activation of Smad2 in ECs on FN, but only a transient activation of Smad2 in ECs on LM. OSS-activation of Smad2 in ECs on FN regulates downstream NF-κB signaling and pro-inflammatory gene expression through the activation of β1 integrin and its association with TβRs. In contrast, OSS induces transient activations of β1 and β3 integrins in ECs on LM, which associate with type I TβR to regulate Smad2 phosphorylation, resulting in transient induction of NF-κB and pro-inflammatory gene expression. In vivo investigations on diseased human coronary arteries from CAD patients revealed that Smad2 is highly activated in ECs of atherosclerotic lesions, which is accompanied by the concomitant increase of FN rather than LM in the EC layer and neointimal region of atherosclerotic lesions. Our findings provide new insights into the mechanisms of how OSS regulates Smad2 signaling and pro-inflammatory genes through the complex signaling networks of integrins, TβRs, and ECMs, thus illustrating the molecular basis of regional pro-inflammatory activation within disturbed flow regions in the arterial tree.

  12. Molecular Interaction Between Smurfl WW2 Domain and PPXY Motifs of Smadl, Smad5, and Smad6-Modeling and Analysis.

    PubMed

    Sangadala, Sreedhara; Rao Metpally, Raghu Prasad; B Reddy, Boojala Vijay

    2007-08-01

    Abstract The ubiquitin-proteasome proteolytic pathway is essential for various important biological processes including cell cycle progression, gene transcription, and signal transduction. One of the important regulatory mechanisms by which the bone-inducing activity of the bone morphogenetic protein (BMP) signaling is modulated involves ubiquitin-mediated proteasomal degradation. The BMP induced receptor signal is transmitted intracellularly by phosphorylation of Smad proteins by the activated receptor I. The phosphorylated Smads 1, 5, and 8 (R-Smads) oligomerize with the co-Smad (Smad4). The complex, thus, formed translocates to the nucleus and interacts with other cofactors to regulate the expression of downstream target genes. R-Smads contain PPXY motif in the linker region that interacts with Smad ubiquitin regulatory factor 1 (Smurf1), an E3 ubiquitin ligase that catalyzes ubiquitination of target proteins for proteasomal degradation. Smurf1 contains a HECT domain, a C2 domain, and 2 WW domains (WW1, WW2). The PPXY motif in target proteins and its interaction with Smurf1 may form the basis for regulation of steady-state levels of Smads in controlling BMP-responsiveness of cells. Here, we present a homology-based model of the Smurf1 WW2 domain and the target octa-peptides containing PPXY motif of Smurf1- interacting Smads. We carried out docking of Smurf1 WW2 domain with the PPXY motifs of Smadl, Smad5, and Smad6 and identified the key amino acid residues involved in interaction. Furthermore, we present experimental evidence that WW2 domain of Smurf1 does indeed interact with the Smad proteins and that the deletion of WW2 domain of Smurf1 results in loss of its binding to Smads using the purified recombinant proteins. Finally, we also present data confirming that the deletion of WW2 domain in Smurf1 abolishes its ubiquitination activity on Smad1 in an in vitro ubiquitination assay. It shows that the interaction between the WW domain and Smad PPXY motif is a key step in Smurf1-mediated ubiquitination of its natural targets such as Smad1, Smad5, and Smad6. This work facilitates further strategies to unravel the biological function of such interactions and help in designing effective mimetic compounds that either mimic or disrupt the specific interaction.

  13. Fussel-15, a novel Ski/Sno homolog protein, antagonizes BMP signaling.

    PubMed

    Arndt, Stephanie; Poser, Ina; Moser, Markus; Bosserhoff, Anja-Katrin

    2007-04-01

    The Ski family of nuclear oncoproteins represses transforming growth factor-beta (TGF-beta) signaling through inhibition of transcriptional activity of Smad proteins. In this study, we identified a novel gene, fussel-15 (functional smad suppressing element on chromosome 15) with high homology to the recently discovered Fussel-18 protein. Both, Fussel-15 and Fussel-18, share important structural features, significant homology and similar genomic organization with the homolog Ski family members, Ski and SnoN. Unlike Ski and SnoN, which are ubiquitously expressed in human tissues, Fussel-15 expression, like Fussel-18, is much more restricted in its expression and is principally found in the nervous system of mouse and humans. Interestingly, Fussel-15 expression is even more restricted in adulthood to Purkinje cells of human cerebellum. In contrast to Fussel-18 that interacts with Smad 2, Smad3 and Smad4 and has an inhibitory activity on TGF-beta signaling, Fussel-15 interacts with Smad1, Smad2 and Smad3 molecules and suppresses mainly BMP signaling pathway but has only minor effects on TGF-beta signaling. This new protein expands the family of Ski/Sno proto-oncoproteins and represents a novel molecular regulator of BMP signaling.

  14. Semen Brassicae ameliorates hepatic fibrosis by regulating transforming growth factor-β1/Smad, nuclear factor-κB, and AKT signaling pathways in rats.

    PubMed

    Cao, Si; Zheng, Baoping; Chen, Tao; Chang, Xinfeng; Yin, Bao; Huang, Zhihua; Shuai, Ping; Han, Limin

    2018-01-01

    There is no effective treatment for liver fibrosis, which is a common phase during the progression of many chronic liver diseases to cirrhosis. Previous studies found that Semen Brassicae therapy can effectively improve the clinical symptoms of patients with asthma, allergic rhinitis, and chronic lung diseases; however, its effects on liver fibrosis in rats and its possible mechanisms of action remain unclear. Rats were injected intraperitoneally with 4% thioacetamide aqueous solution (5 mL·kg -1 ) at a dose of 200 mg·kg -1 twice a week for 8 consecutive weeks to establish the liver fibrosis model and were then treated with different concentrations of Semen Brassicae extract. After Semen Brassicae treatment, the morphology of the liver tissue was analyzed using hematoxylin and eosin and Masson's trichrome staining, and liver index and liver fibrosis grade were calculated. Thereafter, the levels of collagen-I, collagen-III, α-SMA, transforming growth factor (TGF)-β1, p-Smad 2/3, Smad 2/3, Smad4, NF-κB-p65, p-NF-κB-p65, IL-1β, IL-6, AKT, and p-AKT were determined using Western blotting. Compared with the untreated model group, the Semen Brassicae-treated group showed significantly decreased liver function indices; expression levels of collagen-I, collagen-III, and α-SMA; and hepatic fibrosis. Further studies also showed that the expression of TGF-β1, Smad4, p-Smad 2/3/Smad 2/3, p-NF-κB-p65/NF-κB-p65, IL-1β, IL-6, and p-AKT/AKT significantly decreased after the treatment. These results indicate that Semen Brassicae exhibits an anti-hepatic fibrosis effect, and the underlying mechanism of action may be related to the regulation of TGF-β1/Smad, NF-κB, and AKT signaling pathways and the reduction of extracellular matrix deposition.

  15. Smad4 SUMOylation is essential for memory formation through upregulation of the skeletal myopathy gene TPM2.

    PubMed

    Hsu, Wei L; Ma, Yun L; Liu, Yen C; Lee, Eminy H Y

    2017-11-28

    Smad4 is a critical effector of TGF-β signaling that regulates a variety of cellular functions. However, its role in the brain has rarely been studied. Here, we examined the molecular mechanisms underlying the post-translational regulation of Smad4 function by SUMOylation, and its role in spatial memory formation. In the hippocampus, Smad4 is SUMOylated by the E3 ligase PIAS1 at Lys-113 and Lys-159. Both spatial training and NMDA injection enhanced Smad4 SUMOylation. Inhibition of Smad4 SUMOylation impaired spatial learning and memory in rats by downregulating TPM2, a gene associated with skeletal myopathies. Similarly, knockdown of TPM2 expression impaired spatial learning and memory, while TPM2 mRNA and protein expression increased after spatial training. Among the TPM2 mutations associated with skeletal myopathies, the TPM2E122K mutation was found to reduce TPM2 expression and impair spatial learning and memory in rats. We have identified a novel role of Smad4 SUMOylation and TPM2 in learning and memory formation. These results suggest that patients with skeletal myopathies who carry the TPM2E122K mutation may also have deficits in learning and memory functions.

  16. Inhibition of CDK-mediated phosphorylation of Smad3 results in decreased oncogenesis in triple negative breast cancer cells

    PubMed Central

    Tarasewicz, Elizabeth; Rivas, Lisbi; Hamdan, Randala; Dokic, Danijela; Parimi, Vamsi; Bernabe, Beatriz Penalver; Thomas, Alexandra; Shea, Lonnie D; Jeruss, Jacqueline S

    2014-01-01

    Breast cancer onset and disease progression have been linked to members of the TGFβ superfamily and their downstream signaling components, the Smads. Alterations in Smad3 signaling are associated with the dichotomous role of TGFβ in malignancy, mediating both tumor suppressant and pro-metastatic behaviors. Overexpression of cell cycle regulators, cyclins D and E, renders cyclin-dependent kinases (CDKs) 4/2 hyperactive. Noncanonical phosphorylation of Smad3 by CDK4/2 inhibits tumor suppressant actions of Smad3. We hypothesized that CDK inhibition (CDKi) would restore Smad3 action and help promote cancer cell regression. Treatment of triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-436, Hs578T) with CDK2i or CDK4i resulted in increased Smad3 activity and decreased cell migration. Transfection with a 5M Smad3 construct containing inhibitory mutations in 5 CDK phosphorylation sites also resulted in decreased TNBC cell migration and invasion. MDA-MB-231 cells treated with CDK2i or CDK4i resulted in decreased Smad3 protein phosphorylation at the CDK phosphorylation T179 site, decreased MMP2 and c-myc expression, and increased p15 and p21 expression. Using a novel transfected cell array, we found that CDK2i treatment decreased activity of the epithelial-to-mesenchymal transition related transcription factors Snail and Twist. In vivo studies in an MDA-MB-231 tumor model showed that individual and combination treatment with paclitaxel and CDK2i resulted in decreased tumor volume and Ki67 staining. Collectively, these data support further investigation of targeted CDK inhibitors as a promising therapeutic strategy for TNBC, a breast cancer subtype with limited treatment options. PMID:25485498

  17. Retraction: Myostatin Induces Degradation of Sarcomeric Proteins through a Smad3 Signaling Mechanism During Skeletal Muscle Wasting

    PubMed Central

    Lokireddy, Sudarsanareddy; McFarlane, Craig; Ge, Xiaojia; Zhang, Huoming; Sze, Siu Kwan; Sharma, Mridula

    2011-01-01

    Ubiquitination-mediated proteolysis is a hallmark of skeletal muscle wasting manifested in response to negative growth factors, including myostatin. Thus, the characterization of signaling mechanisms that induce the ubiquitination of intracellular and sarcomeric proteins during skeletal muscle wasting is of great importance. We have recently characterized myostatin as a potent negative regulator of myogenesis and further demonstrated that elevated levels of myostatin in circulation results in the up-regulation of the muscle-specific E3 ligases, Atrogin-1 and muscle ring finger protein 1 (MuRF1). However, the exact signaling mechanisms by which myostatin regulates the expression of Atrogin-1 and MuRF1, as well as the proteins targeted for degradation in response to excess myostatin, remain to be elucidated. In this report, we have demonstrated that myostatin signals through Smad3 (mothers against decapentaplegic homolog 3) to activate forkhead box O1 and Atrogin-1 expression, which further promotes the ubiquitination and subsequent proteasome-mediated degradation of critical sarcomeric proteins. Smad3 signaling was dispensable for myostatin-dependent overexpression of MuRF1. Although down-regulation of Atrogin-1 expression rescued approximately 80% of sarcomeric protein loss induced by myostatin, only about 20% rescue was seen when MuRF1 was silenced, implicating that Atrogin-1 is the predominant E3 ligase through which myostatin manifests skeletal muscle wasting. Furthermore, we have highlighted that Atrogin-1 not only associates with myosin heavy and light chain, but it also ubiquitinates these sarcomeric proteins. Based on presented data we propose a model whereby myostatin induces skeletal muscle wasting through targeting sarcomeric proteins via Smad3-mediated up-regulation of Atrogin-1 and forkhead box O1. PMID:21964591

  18. RAS/ERK modulates TGFbeta-regulated PTEN expression in human pancreatic adenocarcinoma cells.

    PubMed

    Chow, Jimmy Y C; Quach, Khai T; Cabrera, Betty L; Cabral, Jennifer A; Beck, Stayce E; Carethers, John M

    2007-11-01

    Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is rarely mutated in pancreatic cancers, but its regulation by transforming growth factor (TGF)-beta might mediate growth suppression and other oncogenic actions. Here, we examined the role of TGFbeta and the effects of oncogenic K-RAS/ERK upon PTEN expression in the absence of SMAD4. We utilized two SMAD4-null pancreatic cell lines, CAPAN-1 (K-RAS mutant) and BxPc-3 (WT-K-RAS), both of which express TGFbeta surface receptors. Cells were treated with TGFbeta1 and separated into cytosolic/nuclear fractions for western blotting with phospho-SMAD2, SMAD 2, 4 phospho-ATP-dependent tyrosine kinases (Akt), Akt and PTEN antibodies. PTEN mRNA levels were assessed by reverse transcriptase-polymerase chain reaction. The MEK1 inhibitor, PD98059, was used to block the downstream action of oncogenic K-RAS/ERK, as was a dominant-negative (DN) K-RAS construct. TGFbeta increased phospho-SMAD2 in both cytosolic and nuclear fractions. PD98059 treatment further increased phospho-SMAD2 in the nucleus of both pancreatic cell lines, and DN-K-RAS further improved SMAD translocation in K-RAS mutant CAPAN cells. TGFbeta treatment significantly suppressed PTEN protein levels concomitant with activation of Akt by 48 h through transcriptional reduction of PTEN mRNA that was evident by 6 h. TGFbeta-induced PTEN suppression was reversed by PD98059 and DN-K-RAS compared with treatments without TGFbeta. TGFbeta-induced PTEN expression was inversely related to cellular proliferation. Thus, oncogenic K-RAS/ERK in pancreatic adenocarcinoma facilitates TGFbeta-induced transcriptional down-regulation of the tumor suppressor PTEN in a SMAD4-independent manner and could constitute a signaling switch mechanism from growth suppression to growth promotion in pancreatic cancers.

  19. Tetrahydroxystilbene glucoside improves TNF-α-induced endothelial dysfunction: involvement of TGFβ/Smad pathway and inhibition of vimentin expression.

    PubMed

    Yao, Wenjuan; Gu, Chengjing; Shao, Haoran; Meng, Guoliang; Wang, Huiming; Jing, Xiang; Zhang, Wei

    2015-01-01

    Endothelial dysfunction plays an important role in the pathogenesis of atherogenesis. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum (PM), exhibits significant anti-atherosclerotic activity. Here, we used human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-α (TNF-α) in vitro to investigate the cytoprotective effects of TSG on TNF-α-induced endothelial injury and the related mechanisms. Pretreatment with 50 and 100 μM TSG markedly attenuated TNF-α-induced loss of cell viability and release of lactate dehydrogenase (LDH) and inhibited TNF-α-induced cell apoptosis. The inhibition of vimentin expression was involved in the cytoprotection afforded by TSG. Using inhibitors for PI3K and TGFβ or siRNA for Akt and Smad2, we found that vimentin production in HUVECs is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG protects HUVECs against TNF-α-induced cell damage by inhibiting vimentin expression via the interruption of the TGFβ/Smad signaling pathway.

  20. TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis.

    PubMed

    Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T; Rane, Sushil G

    2017-02-24

    Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis*

    PubMed Central

    Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T.; Rane, Sushil G.

    2017-01-01

    Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. PMID:28069811

  2. Antiphotoaging Effect of Prunus yeonesis Blossom Extract via Inhibition of MAPK/AP-1 and Regulation of the TGF-βI/Smad and Nrf2/ARE Signaling Pathways.

    PubMed

    Li, Lu; Hwang, Eunson; Ngo, Hien T T; Lin, Pei; Gao, Wei; Liu, Ying; Yi, Tae-Hoo

    2018-02-08

    Cherry blossoms have attracted attention as an ingredient with potential for use in skincare products. However, no skin photoaging-related research has been performed with this plant. In this study, cherry blossom extract (CBE) at 1, 10 and 100 μg mL -1 was investigated for its skin antiphotoaging effects in UVB-irradiated normal human dermal fibroblasts (NHDF) cells in vitro. Our results showed that CBE markedly increased type-I procollagen during UVB exposure via two pathways. Firstly, transcription activator protein-1 expression and MAP kinases were downregulated, consequently reducing the production of matrix metalloproteinase (MMP)-1 and MMP-3. Secondly, transforming growth factor TGF-βI secretion was upregulated by Smads. Application of CBE facilitated the nuclear translocation of Nrf2 against reactive oxygen species (ROS)-induced damage, which is essential for the coordinated induction of cytoprotective enzymes. Together, our findings suggest that CBE may be a promising ingredient for skin aging therapy and provide a novel approach for alleviating cutaneous aging. © 2018 The American Society of Photobiology.

  3. Nuclear movement regulated by non-Smad Nodal signaling via JNK is associated with Smad signaling during zebrafish endoderm specification.

    PubMed

    Hozumi, Shunya; Aoki, Shun; Kikuchi, Yutaka

    2017-11-01

    Asymmetric nuclear positioning is observed during animal development, but its regulation and significance in cell differentiation remain poorly understood. Using zebrafish blastulae, we provide evidence that nuclear movement towards the yolk syncytial layer, which comprises extraembryonic tissue, occurs in the first cells fated to differentiate into the endoderm. Nodal signaling is essential for nuclear movement, whereas nuclear envelope proteins are involved in movement through microtubule formation. Positioning of the microtubule-organizing center, which is proposed to be crucial for nuclear movement, is regulated by Nodal signaling and nuclear envelope proteins. The non-Smad JNK signaling pathway, which is downstream of Nodal signaling, regulates nuclear movement independently of the Smad pathway, and this nuclear movement is associated with Smad signal transduction toward the nucleus. Our study provides insight into the function of nuclear movement in Smad signaling toward the nucleus, and could be applied to the control of TGFβ signaling. © 2017. Published by The Company of Biologists Ltd.

  4. Participation of an abnormality in the transforming growth factor-beta signaling pathway in resistance of malignant glioma cells to growth inhibition induced by that factor.

    PubMed

    Zhang, Lei; Sato, Eiji; Amagasaki, Kenichi; Nakao, Atsuhito; Naganuma, Hirofumi

    2006-07-01

    Malignant glioma cells secrete and activate transforming growth factor-beta (TGFbeta) and are resistant to growth inhibition by that factor. Nevertheless, the mechanism underlying this effect remains poorly understood. In this study, the mechanism of the resistance to growth inhibition induced by TGFbeta was investigated. The authors examined the expression of downstream components of the TGFbeta receptor, including Smad2, Smad3, Smad4, and Smad7, and the effect of TGFbeta1 treatment on the phosphorylation of Smad2 and the nuclear translocation of Smad2 and Smad3 by using 10 glioma cell lines and the A549 cell line, which is sensitive to TGFbeta-mediated growth inhibition. The expression of two transcriptional corepressor proteins, SnoN and Ski, and the effect of TGFbeta1 treatment on the expression of the SnoN protein and the cell cycle regulators p21, p15, cyclin-dependent kinase-4 (CDK4), and cyclin D1 were also examined. Expression of the Smad2 and Smad3 proteins was lower in the glioma cell lines than in the A549 cell line and in normal astrocytes. In particular, Smad3 expression was low or very low in nine of the 10 malignant glioma cell lines. Expression of Smad4 was low in four glioma cell lines, and expression of the Smad7 protein was similar when compared with protein expression in the A549 cell line and in normal astrocytes. The levels of Smad2 phosphorylation after TGFbeta1 treatment were lower in glioma cell lines than in the A549 cell line, except for one glioma cell line. Seven of the 10 glioma cell lines exhibited lower levels of nuclear translocation of Smad2 and Smad3, and two cell lines that expressed very low levels of Smad3 protein showed no nuclear translocation. All glioma cell lines expressed the SnoN protein and its expression was unaltered by treatment with TGFbeta1. Three glioma cell lines expressed high levels of the Ski protein. The expression of the p21(cip1), p15(INK4B), CDK4, and cyclin D1 proteins was not altered by TGFbeta1, treatment, except in one cell line that displayed a slight increase in p21 protein. Overall, the expression of the Smad2 and Smad3 proteins was low in the glioma cell lines, the phosphorylation and nuclear translocation of Smad2 and Smad3 were impaired, and the TGFbeta receptor signal did not affect the expression of the SnoN, p21, p15, cyclin D1, and CDK4 proteins. These results suggest that the ability to resist TGFbeta-mediated growth inhibition in malignant glioma cells is due to abnormalities in the TGFbeta signaling pathway.

  5. TGF-beta and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions.

    PubMed

    Mori, Shigeo; Matsuzaki, Koichi; Yoshida, Katsunori; Furukawa, Fukiko; Tahashi, Yoshiya; Yamagata, Hideo; Sekimoto, Go; Seki, Toshihito; Matsui, Hirofumi; Nishizawa, Mikio; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2004-09-23

    Although hepatocyte growth factor (HGF) can act synergistically or antagonistically with transforming growth factor-beta (TGF-beta) signaling, molecular mechanism of their crosstalk remains unknown. Using antibodies which selectively distinguished receptor-regulated Smads (R-Smads) phosphorylated at linker regions from those at C-terminal regions, we herein showed that either HGF or TGF-beta treatment of normal stomach-origin cells activated the JNK pathway, thereafter inducing endogenous R-Smads phosphorylation at linker regions. However, the phosphorylation at their C-terminal regions was not induced by HGF treatment. The activated JNK could directly phosphorylate R-Smads in vitro at the same sites that were phosphorylated in response to TGF-beta or HGF in vivo. Thus, the linker regions of R-Smads were the common phosphorylation sites for HGF and TGF-beta signaling pathways. The phosphorylation induced by simultaneous treatment with HGF and TGF-beta allowed R-Smads to associate with Smad4 and to translocate into the nucleus. JNK pathway involved HGF and TGF-beta-mediated infiltration potency since a JNK inhibitor SP600125 caused the reduction of invasive capacity induced by HGF and TGF-beta signals. Moreover, a combined treatment with HGF and TGF-beta led to a potent increase in plasminogen activator inhibitor type 1 transcriptional activity through Smad3 phosphorylation at the linker region. In contrast, HGF treatment reduced TGF-beta-dependent activation of p15INK4B promoter, in which Smad3 phosphorylation at the C-terminal region was involved. In conclusion, HGF and TGF-beta transmit the signals through JNK-mediated R-Smads phosphorylation at linker regions.

  6. Curcumin inhibits the proliferation and invasion of human osteosarcoma cell line MG-63 by regulating miR-138.

    PubMed

    Yu, Dazhi; An, Fengmei; He, Xu; Cao, Xuecheng

    2015-01-01

    In this study, we screened the different human osteosarcoma cell line MG-63 miRNAs after the treatment of curcumin and explored the effects of curcumin on MG-63 cells and its mechanism. Affemitrix miRNA chip was used to detect the changes of miRNA expression profile in MG-63 cells before and after curcumin treatment, and screen different expression of miRNAs. The target gene of miRNA was analyzed by bioinformatics. The expression levels of miRNA-138 target genes Smad4, NFκB p65 and cyclin D3 were detected. MTT and Transwell Cell invasion assays were used to observe the effects of curcumin on MG-63 cells. Curcumin could significantly inhibit the proliferation of MG-63 cells and the expression levels of miRNA-138 target genes Smad4, NFκB p65 and cyclin D3 in MG-63 cells (P<0.05); overexpression of hsa-miR-138 down-regulated the expression levels of Smad4, NFκB p65 and cyclin D3 compared with the treatment of curcumin, while inhibition of hsa-miR-138 up-regulated the expression levels of Smad4, NFκB p65 and cyclin D3. Curcumin could increase the expression of hsa-miR-138, hsa-miR-138 inhibited cell proliferation and invasive ability by inhibition of its target genes.

  7. Anterior segment dysgenesis correlation with epithelial-mesenchymal transition in Smad4 knockout mice.

    PubMed

    Li, Jing; Qin, Yu; Zhao, Fang-Kun; Wu, Di; He, Xue-Fei; Liu, Jia; Zhao, Jiang-Yue; Zhang, Jin-Song

    2016-01-01

    To explore the molecular mechanisms in lens development and the pathogenesis of Peters anomaly in Smad4 defective mice. Le-Cre transgenic mouse line was employed to inactivate Smad4 in the surface ectoderm selectively. Pathological techniques were used to reveal the morphological changes of the anterior segment in Smad4 defective eye. Immunohistochemical staining was employed to observe the expression of E-cadherin, N-cadherin and α-SMA in anterior segment of Smad4 defective mice and control mice at embryonic (E) day 16.5. Real-time quantitative polymerase chain reaction (qPCR) was performed to detect the expression of Snail, Zeb1, Zeb2 and Twist2 in lens of Smad4 defective mice and control mice at E16.5. Statistical evaluations were performed using the unpaired Student's t-test (two-tailed) by SPSS 11.0 software. Conditional deletion of Smad4 on eye surface ectoderm resulted in corneal dysplasia, iridocorneal angle closure, corneolenticular adhesions and cataract resembling Peters anomaly. Loss of Smad4 function inhibited E-cadherin expression in the lens epithelium cells and corneal epithelium cells in Smad4 defective eye. Expression of N-cadherin was up-regulated in corneal epithelium and corneal stroma. Both E-cadherin and N-cadherin were down-regulated at the future trabecular meshwork region in mutant eye. The qPCR results showed that the expression of Twist2 was increased significantly in the mutant lens (P<0.01). Smad4 is essential to eye development and likely a candidate pathogenic gene to Peters anomaly by regulating epithelial-mesenchymal transition. Twist2 can be regulated by Smad4 and plays an essential role in lens development.

  8. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling.

    PubMed

    Nyati, Shyam; Schinske-Sebolt, Katrina; Pitchiaya, Sethuramasundaram; Chekhovskiy, Katerina; Chator, Areeb; Chaudhry, Nauman; Dosch, Joseph; Van Dort, Marcian E; Varambally, Sooryanarayana; Kumar-Sinha, Chandan; Nyati, Mukesh Kumar; Ray, Dipankar; Walter, Nils G; Yu, Hongtao; Ross, Brian Dale; Rehemtulla, Alnawaz

    2015-01-06

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion. Copyright © 2015, American Association for the Advancement of Science.

  9. MIR-27a regulates the TGF-β signaling pathway by targeting SMAD2 and SMAD4 in lung cancer.

    PubMed

    Chae, Dong-Kyu; Ban, Eunmi; Yoo, Young Sook; Kim, Eunice EunKyeong; Baik, Ja-Hyun; Song, Eun Joo

    2017-08-01

    The transforming growth factor-β (TGF-β) signaling pathway is associated with carcinogenesis and various biological processes. SMAD2 and SMAD4, which are putative tumor suppressors, have an important role in TGF-β signaling. The aberrant expression of these genes is implicated in some cancers. However, the mechanisms of SMAD2 and SMAD4 dysregulation are poorly understood. In this study, we observed that miR-27a was upregulated in lung cancer cell lines and patients. In addition, SMAD2 and SMAD4 genes were identified as targets of miR-27a by several target prediction databases and experimental validation. Functional studies revealed that miR-27a overexpression decreased SMAD2 and SMAD4 mRNA and protein levels. Furthermore, miR-27a contributed to cell proliferation and invasion by inhibiting TGF-β-induced cell cycle arrest. These results suggest that miR-27a may function as an oncogene by regulating SMAD2 and SMAD4 in lung cancer. Thus, miR-27a may be a potential target for cancer therapy. © 2017 Wiley Periodicals, Inc.

  10. Comparative analysis of TGF-β/Smad signaling dependent cytostasis in human hepatocellular carcinoma cell lines.

    PubMed

    Dzieran, Johanna; Fabian, Jasmin; Feng, Teng; Coulouarn, Cédric; Ilkavets, Iryna; Kyselova, Anastasia; Breuhahn, Kai; Dooley, Steven; Meindl-Beinker, Nadja M

    2013-01-01

    Hepatocellular carcinoma (HCC) is a major public health problem due to increased incidence, late diagnosis and limited treatment options. TGF-β is known to provide cytostatic signals during early stages of liver damage and regeneration, but exerts tumor promoting effects in onset and progression of liver cancer. To understand the mechanistic background of such a switch, we systematically correlated loss of cytostatic TGF-β effects with strength and dynamics of its downstream signaling in 10 HCC cell lines. We demonstrate that TGF-β inhibits proliferation and induces apoptosis in cell lines with low endogenous levels of TGF-β and Smad7 and strong transcriptional Smad3 activity (PLC/PRF/5, HepG2, Hep3B, HuH7), previously characterized to express early TGF-β signatures correlated with better outcome in HCC patients. TGF-β dependent cytostasis is blunted in another group of cell lines (HLE, HLF, FLC-4) expressing high amounts of TGF-β and Smad7 and showing significantly reduced Smad3 signaling. Of those, HLE and HLF exhibit late TGF-β signatures, which is associated with bad prognosis in HCC patients. RNAi with Smad3 blunted cytostatic effects in PLC/PRF/5, Hep3B and HuH7. HCC-M and HCC-T represent a third group of cell lines lacking cytostatic TGF-β signaling despite strong and prolonged Smad3 phosphorylation and low Smad7 and TGF-β expression. Inhibitory linker phosphorylation, as in HCC-T, may disrupt C-terminally phosphorylated Smad3 function. In summary, we assort 10 HCC cell lines in at least two clusters with respect to TGF-β sensitivity. Cell lines responsive to the TGF-β cytostatic program, which recapitulate early stage of liver carcinogenesis exhibit transcriptional Smad3 activity. Those with disturbed TGF-β/Smad3 signaling are insensitive to TGF-β dependent cytostasis and might represent late stage of the disease. Regulation of this switch remains complex and cell line specific. These features may be relevant to discriminate stage dependent TGF-β functions for the design of efficient TGF-β directed therapy in liver cancer.

  11. SMAD3 Is Upregulated in Human Osteoarthritic Cartilage Independent of the Promoter DNA Methylation.

    PubMed

    Aref-Eshghi, Erfan; Liu, Ming; Razavi-Lopez, Seyd Babak; Hirasawa, Kensuke; Harper, Patricia E; Martin, Glynn; Furey, Andrew; Green, Roger; Sun, Guang; Rahman, Proton; Zhai, Guangju

    2016-02-01

    To compare SMAD3 gene expression between human osteoarthritic and healthy cartilage and to examine whether expression is regulated by the promoter DNA methylation of the gene. Human cartilage samples were collected from patients undergoing total hip/knee joint replacement surgery due to primary osteoarthritis (OA), and from patients with hip fractures as controls. DNA/RNA was extracted from the cartilage tissues. Real-time quantitative PCR was performed to measure gene expression, and Sequenom EpiTyper was used to assay DNA methylation. Mann-Whitney test was used to compare the methylation and expression levels between OA cases and controls. Spearman rank correlation coefficient was calculated to examine the association between the methylation and gene expression. A total of 58 patients with OA (36 women, 22 men; mean age 64 ± 9 yrs) and 55 controls (43 women, 12 men; mean age 79 ± 10 yrs) were studied. SMAD3 expression was on average 83% higher in OA cartilage than in controls (p = 0.0005). No difference was observed for DNA methylation levels in the SMAD3 promoter region between OA cases and controls. No correlation was found between SMAD3 expression and promoter DNA methylation. Our study demonstrates that SMAD3 is significantly overexpressed in OA. This overexpression cannot be explained by DNA methylation in the promoter region. The results suggest that the transforming growth factor-β/SMAD3 pathway may be overactivated in OA cartilage and has potential in developing targeted therapies for OA.

  12. Interaction of E3 Ubiquitin Ligase MARCH7 with Long Noncoding RNA MALAT1 and Autophagy-Related Protein ATG7 Promotes Autophagy and Invasion in Ovarian Cancer.

    PubMed

    Hu, Jianguo; Zhang, Luo; Mei, Zhiqiang; Jiang, Yuan; Yi, Yuan; Liu, Li; Meng, Ying; Zhou, Lili; Zeng, Jianhua; Wu, Huan; Jiang, Xingwei

    2018-05-22

    Ubiquitin E3 ligase MARCH7 plays an important role in T cell proliferation and neuronal development. But its role in ovarian cancer remains unclear. This study aimed to investigate the role of Ubiquitin E3 ligase MARCH7 in ovarian cancer. Real-time PCR, immunohistochemistry and western blotting analysis were performed to determine the expression of MARCH7, MALAT1 and ATG7 in ovarian cancer cell lines and clinical specimens. The role of MARCH7 in maintaining ovarian cancer malignant phenotype was examined by Wound healing assay, Matrigel invasion assays and Mouse orthotopic xenograft model. Luciferase reporter assay, western blot analysis and ChIP assay were used to determine whether MARCH7 activates TGF-β-smad2/3 pathway by interacting with TGFβR2. MARCH7 interacted with MALAT1 by miR-200a (microRNA-200a). MARCH7 may function as a competing endogenous RNA (ceRNA) to regulate the expression of ATG7 by competing with miR-200a. MARCH7 regulated TGF-β-smad2/3 pathway by interacting with TGFβR2. Inhibition of TGF-β-smad2/3 pathway downregulated MARCH7, MALAT1 and ATG7. MiR-200a regulated TGF-β induced autophagy, invasion and metastasis of SKOV3 cells by targeting MARCH7. MARCH7 silencing inhibited autophagy invasion and metastasis of SKOV3 cells both in vitro and in vivo. In contrast, MARCH7 overexpression promoted TGF-β induced autophagy, invasion and metastasis of A2780 cells in vitro by depending on MALAT1 and ATG7. We also found that TGF-β-smad2/3 pathway regulated MARCH7 and ATG7 through MALAT1. These findings suggested that TGFβR2-Smad2/3-MALAT1/MARCH7/ATG7 feedback loop mediated autophagy, migration and invasion in ovarian cancer. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration.

    PubMed

    Macias-Silva, Marina; Li, Wei; Leu, Julia I; Crissey, Mary Ann S; Taub, Rebecca

    2002-08-09

    Transforming growth factor-beta (TGF-beta) functions as an antiproliferative factor for hepatocytes. However, for unexplained reasons, hepatocytes become resistant to TGF-beta signals and can proliferate despite the presence of TGF-beta during liver regeneration. TGF-beta is up-regulated during liver regeneration, although it is not known whether it is active or latent. TGF-beta activity may be examined by assessing Smad activation, a downstream signaling pathway. Smad pathway activation during liver regeneration induced by partial hepatectomy or CC4 injury was examined by assessing the levels of phospho-Smad2 and Smad2-Smad4 complexes. We found that Smad proteins were slightly activated in quiescent liver, but that their activation was further enhanced in regenerating liver. Interestingly, TGF-beta/Smad pathway inhibitors (SnoN and Ski) were up-regulated during regeneration, and notably, SnoN was induced mainly in hepatocytes. SnoN and Ski are transcriptional repressors that may render some cells resistant to TGF-beta via binding Smad proteins. Complexes between SnoN, Ski, and the activated Smad proteins were detected from 2 to 120 h during the major proliferative phase in regenerating liver. Inhibitory complexes decreased after liver mass restitution (5-15 days), suggesting that persistently activated Smad proteins might participate in returning the liver to a quiescent state. Our data show that active TGF-beta/Smad signals are present during regeneration and suggest that SnoN/Ski induction might explain hepatocyte resistance to TGF-beta during the proliferative phase.

  14. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.

  15. Protective role of Smad6 in inflammation-induced valvular cell calcification

    PubMed Central

    Li, Xin; Lim, Jina J.; Lu, Jinxiu; Pedego, Taylor M.; Demer, Linda; Tintut, Yin

    2016-01-01

    Calcific aortic vascular and valvular disease (CAVD) is associated with hyperlipidemia, the effects of which occur through chronic inflammation. Evidence suggests that inhibitory small mothers against decapentaplegic (I-Smads; Smad6 and 7) regulate valve embryogenesis and may serve as a mitigating factor in CAVD. However, whether I-Smads regulate inflammation-induced calcific vasculopathy is not clear. Therefore, we investigated the role of I-Smads in atherosclerotic calcification. Results showed that expression of Smad6, but not Smad7, was reduced in aortic and valve tissues of hyperlipidemic compared with normolipemic mice, while expression of tumor necrosis factor alpha (TNF-a) was upregulated. To test whether the effects are in response to inflammatory cytokines, we isolated murine aortic valve leaflets and cultured valvular interstitial cells (mVIC) from the normolipemic mice. By immunochemistry, mVICs were strongly positive for vimentin, weakly positive for smooth muscle alpha actin, and negative for an endothelial cell marker. TNF-a upregulated alkaline phosphatase (ALP) activity and matrix mineralization in mVICs. By gene expression analysis, TNF-a significantly upregulated bone morphogenetic protein 2 (BMP-2) expression while downregulating Smad6 expression. Smad7 expression was not significantly affected. To further test the role of Smad6 on TNF-a-induced valvular cell calcification, we knocked down Smad6 expression using lentiviral transfection. In cells transfected with Smad6 shRNA, TNF-a further augmented ALP activity, expression of BMP-2, Wnt- and redox-regulated genes, and matrix mineralization compared with the control cells. These findings suggest that TNF-a induces valvular and vascular cell calcification, in part, by specifically reducing the expression of a BMP-2 signaling inhibitor, Smad6. PMID:25864564

  16. Protective Role of Smad6 in Inflammation-Induced Valvular Cell Calcification.

    PubMed

    Li, Xin; Lim, Jina; Lu, Jinxiu; Pedego, Taylor M; Demer, Linda; Tintut, Yin

    2015-10-01

    Calcific aortic vascular and valvular disease (CAVD) is associated with hyperlipidemia, the effects of which occur through chronic inflammation. Evidence suggests that inhibitory small mothers against decapentaplegic (I-Smads; Smad6 and 7) regulate valve embryogenesis and may serve as a mitigating factor in CAVD. However, whether I-Smads regulate inflammation-induced calcific vasculopathy is not clear. Therefore, we investigated the role of I-Smads in atherosclerotic calcification. Results showed that expression of Smad6, but not Smad7, was reduced in aortic and valve tissues of hyperlipidemic compared with normolipemic mice, while expression of tumor necrosis factor alpha (TNF-α) was upregulated. To test whether the effects are in response to inflammatory cytokines, we isolated murine aortic valve leaflets and cultured valvular interstitial cells (mVIC) from the normolipemic mice. By immunochemistry, mVICs were strongly positive for vimentin, weakly positive for smooth muscle α actin, and negative for an endothelial cell marker. TNF-α upregulated alkaline phosphatase (ALP) activity and matrix mineralization in mVICs. By gene expression analysis, TNF-α significantly upregulated bone morphogenetic protein 2 (BMP-2) expression while downregulating Smad6 expression. Smad7 expression was not significantly affected. To further test the role of Smad6 on TNF-α-induced valvular cell calcification, we knocked down Smad6 expression using lentiviral transfection. In cells transfected with Smad6 shRNA, TNF-α further augmented ALP activity, expression of BMP-2, Wnt- and redox-regulated genes, and matrix mineralization compared with the control cells. These findings suggest that TNF-α induces valvular and vascular cell calcification, in part, by specifically reducing the expression of a BMP-2 signaling inhibitor, Smad6. © 2015 Wiley Periodicals, Inc.

  17. Smad4 inhibits cell migration via suppression of JNK activity in human pancreatic carcinoma PANC-1 cells.

    PubMed

    Zhang, Xueying; Cao, Junxia; Pei, Yujun; Zhang, Jiyan; Wang, Qingyang

    2016-05-01

    Smad4 is a common Smad and is a key downstream regulator of the transforming growth factor-β signaling pathway, in which Smad4 often acts as a potent tumor suppressor and functions in a highly context-dependent manner, particularly in pancreatic cancer. However, little is known regarding whether Smad4 regulates other signaling pathways involved in pancreatic cancer. The present study demonstrated that Smad4 downregulates c-Jun N-terminal kinase (JNK) activity using a Smad4 loss-of-function or gain-of-function analysis. Additionally, stable overexpression of Smad4 clearly affected the migration of human pancreatic epithelioid carcinoma PANC-1 cells, but did not affect cell growth. In addition, the present study revealed that upregulation of mitogen-activated protein kinase phosphatase-1 is required for the reduction of JNK activity by Smad4, leading to a decrease in vascular endothelial growth factor expression and inhibiting cell migration. Overall, the present findings indicate that Smad4 may suppress JNK activation and inhibit the tumor characteristics of pancreatic cancer cells.

  18. SKI promotes Smad3 linker phosphorylations associated with the tumor-promoting trait of TGFbeta.

    PubMed

    Lin, Qiushi; Chen, Dahu; Timchenko, Nikolai A; Medrano, Estela E

    2010-05-01

    The transcriptional co-regulator SKI is a potent inhibitor of TGFbeta-growth inhibitory signals. SKI binds to receptor-activated Smads in the nucleus, forming repressor complexes containing HDACs, mSin3, NCoR, and other protein partners. Alternatively, SKI binds to activated Smads in the cytoplasm, preventing their nuclear translocation. SKI is necessary for anchorage-independent growth of melanoma cells in vitro, and most important, for human melanoma xenograft growth in vivo. We recently identified a novel role of SKI in TGFbeta signaling. SKI promotes the switch of Smad3 from repressor of proliferation to activator of oncogenesis by facilitating phosphorylations in the linker domain. High levels of endogenous SKI are required by the tumor promoting trait of TGFbeta to induce expression of the plasminogen-activator inhibitor-1 (PAI-1), sustained expression of C-Myc and for aborting upregulation of p21(Waf-1). Here we discuss how SKI diversifies and amplifies its functions by associating with multiple protein partners and by promoting Smad3 linker phosphorylation(s) in response to TGFbeta signaling in melanoma cells.

  19. Involvement of TGF-β1/Smad3 Signaling in Carbon Tetrachloride-Induced Acute Liver Injury in Mice

    PubMed Central

    Niu, Liman; Cui, Xueling; Qi, Yan; Xie, Dongxue; Wu, Qian; Chen, Xinxin; Ge, Jingyan; Liu, Zhonghui

    2016-01-01

    Transforming growth factor-beta1 (TGF-β1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF-β1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate the role of TGF-β1 and its signaling molecule Smad3 in the acute liver injury induce by CCl4. The results showed that CCl4 induced acute liver injury in mice effectively confirmed by H&E staining of liver tissues, and levels of not only liver injury markers serum ALT and AST, but also serum TGF-β1 were elevated significantly in CCl4-treated mice, compared with the control mice treated with olive oil. Our data further revealed that TGF-β1 levels in hepatic tissue homogenate increased significantly, and type II receptor of TGF-β (TβRII) and signaling molecules Smad2, 3, mRNA expressions and Smad3 and phospho-Smad3 protein levels also increased obviously in livers of CCl4-treated mice. To clarify the effect of the elevated TGF-β1/Smad3 signaling on CCl4-induced acute liver injury, Smad3 in mouse liver was overexpressed in vivo by tail vein injection of Smad3-expressing plasmids. Upon CCl4 treatment, Smad3-overexpressing mice showed more severe liver injury identified by H&E staining of liver tissues and higher serum ALT and AST levels. Simultaneously, we found that Smad3-overexpressing mice treated with CCl4 showed more macrophages and neutrophils infiltration in liver and inflammatory cytokines IL-1β and IL-6 levels increment in serum when compared with those in control mice treated with CCl4. Moreover, the results showed that the apoptosis of hepatocytes increased significantly, and apoptosis-associated proteins Bax, cytochrome C and the cleaved caspase 3 expressions were up-regulated in CCl4-treated Smad3-overexpressing mice as well. These results suggested that TGF-β1/Smad3 signaling was activated during CCl4-induced acute liver injury in mice, and Smad3 overexpression aggravated acute liver injury by promoting inflammatory cells infiltration, inflammatory cytokines release and hepatocytes apoptosis. In conclusion, the activation of TGF-β signaling contributes to the CCl4-induced acute liver injury. Thus, TGF-β1/Smad3 may serve as a potential target for acute liver injury therapy. PMID:27224286

  20. Protocadherin-1 binds to SMAD3 and suppresses TGF-β1-induced gene transcription

    PubMed Central

    Faura Tellez, Grissel; Vandepoele, Karl; Brouwer, Uilke; Koning, Henk; Elderman, Robin M.; Hackett, Tillie-Louise; Willemse, Brigitte W. M.; Holloway, John; Van Roy, Frans; Koppelman, Gerard H.

    2015-01-01

    Genetic studies have identified Protocadherin-1 (PCDH1) and Mothers against decapentaplegic homolog-3 (SMAD3) as susceptibility genes for asthma. PCDH1 is expressed in bronchial epithelial cells and has been found to interact with SMAD3 in yeast two-hybrid (Y2H) overexpression assays. Here, we test whether PCDH1 and SMAD3 interact at endogenous protein levels in bronchial epithelial cells and evaluate the consequences thereof for transforming growth factor-β1 (TGF-β1)-induced gene transcription. We performed Y2H screens and coimmunoprecipitation (co-IP) experiments of PCDH1 and SMAD3 in HEK293T and 16HBE14o− (16HBE) cell lines. Activity of a SMAD3-driven luciferase reporter gene in response to TGF-β1 was measured in BEAS-2B cells transfected with PCDH1 and in 16HBE cells transfected with PCDH1-small-interfering RNA (siRNA). TGF-β1-induced gene expression was quantified in BEAS-2B clones overexpressing PCDH1 and in human primary bronchial epithelial cells (PBECs) transfected with PCDH1-siRNA. We confirm PCDH1 and SMAD3 interactions by Y2H and by co-IP in HEK293T cells overexpressing both proteins, and at endogenous protein levels in 16HBE cells. TGF-β-induced activation of a SMAD3-driven reporter was reduced by exogenous PCDH1 in BEAS2B cells, whereas it was increased by siRNA-mediated knockdown of endogenous PCDH1 in 16HBE cells. Overexpression of PCDH1 suppressed expression of TGF-β target genes in BEAS-2B cells, whereas knockdown of PCDH1 in human PBECs increased TGF-β-induced gene expression. In conclusion, we demonstrate that PCDH1 binds to SMAD3 and regulates its activation by TGF-β signaling in bronchial epithelial cells. We propose that PCDH1 and SMAD3 act in a single pathway in asthma susceptibility that affects sensitivity of the airway epithelium to TGF-β. PMID:26209277

  1. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells.

    PubMed

    Zhu, Qingwei; Pearson-White, Sonia; Luo, Kunxin

    2005-12-01

    Transforming growth factor beta (TGF-beta) was originally identified by virtue of its ability to induce transformation of the AKR-2B and NRK fibroblasts but was later found to be a potent inhibitor of the growth of epithelial, endothelial, and lymphoid cells. Although the growth-inhibitory pathway of TGF-beta mediated by the Smad proteins is well studied, the signaling pathway leading to the transforming activity of TGF-beta in fibroblasts is not well understood. Here we show that SnoN, a member of the Ski family of oncoproteins, is required for TGF-beta-induced proliferation and transformation of AKR-2B and NRK fibroblasts. TGF-beta induces upregulation of snoN expression in both epithelial cells and fibroblasts through a common Smad-dependent mechanism. However, a strong and prolonged activation of snoN transcription that lasts for 8 to 24 h is detected only in these two fibroblast lines. This prolonged induction is mediated by Smad2 and appears to play an important role in the transformation of both AKR-2B and NRK cells. Reduction of snoN expression by small interfering RNA or shortening of the duration of snoN induction by a pharmacological inhibitor impaired TGF-beta-induced anchorage-independent growth of AKR-2B cells. Interestingly, Smad2 and Smad3 play opposite roles in regulating snoN expression in both fibroblasts and epithelial cells. The Smad2/Smad4 complex activates snoN transcription by direct binding to the TGF-beta-responsive element in the snoN promoter, while the Smad3/Smad4 complex inhibits it through a novel Smad inhibitory site. Mutations of Smad4 that render it defective in heterodimerization with Smad3, which are found in many human cancers, convert the activity of Smad3 on the snoN promoter from inhibitory to stimulatory, resulting in increased snoN expression in cancer cells. Thus, we demonstrate a novel role of SnoN in the transforming activity of TGF-beta in fibroblasts and also uncovered a mechanism for the elevated SnoN expression in some human cancer cells.

  2. Deregulation of miR-193b affects the growth of colon cancer cells via transforming growth factor-β and regulation of the SMAD3 pathway

    PubMed Central

    Wu, Kaiming; Zhao, Zhenxian; Ma, Jun; Chen, Jianhui; Peng, Jianjun; Yang, Shibin; He, Yulong

    2017-01-01

    MicroRNA-193b (miRNA-193b) is often differentially expressed and is an important regulator of gene expression in colon cancer. The aim of the present study was to determine whether miRNA-193b affects cell growth in colon cancer and to investigate the potential underlying mechanisms. Patients with colorectal cancer (CRC; n=20) and healthy volunteers (n=10) were enrolled from the Department of Gastrointestinal Surgery Center, First Affiliated Hospital of Sun Yat-Sen University (Guangzhou, China). Western blot analysis was used to evaluate the protein expression of SMAD3 and transforming growth factor-β (TGF-β) in the patient samples. It was determined that miRNA-193b expression was markedly elevated in the CRC tissue samples. Furthermore, silencing of miRNA-193bin SW620 CRC cells by specific inhibitors significantly reduced the cell proliferation and induced apoptosis. In addition, the downregulation of miRNA-193b significantly activated the protein expression of SMAD3 and TGF-β, and promoted caspase-3 activity in SW620 cells. The results of the present study suggested that the deregulation of miRNA-193b may affect cell growth in colon cancer via the TGF-β and SMAD3 signaling pathways. PMID:28454433

  3. Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice.

    PubMed

    Xu, Xiaoling; Kobayashi, Shogo; Qiao, Wenhui; Li, Cuiling; Xiao, Cuiying; Radaeva, Svetlana; Stiles, Bangyan; Wang, Rui-Hong; Ohara, Nobuya; Yoshino, Tadashi; LeRoith, Derek; Torbenson, Michael S; Gores, Gregory J; Wu, Hong; Gao, Bin; Deng, Chu-Xia

    2006-07-01

    Cholangiocellular carcinoma (CC), the second most common primary liver cancer, is associated with a poor prognosis. It has been shown that CCs harbor alterations of a number of tumor-suppressor genes and oncogenes, yet key regulators for tumorigenesis remain unknown. Here we have generated a mouse model that develops CC with high penetrance using liver-specific targeted disruption of tumor suppressors SMAD4 and PTEN. In the absence of SMAD4 and PTEN, hyperplastic foci emerge exclusively from bile ducts of mutant mice at 2 months of age and continue to grow, leading to tumor formation in all animals at 4-7 months of age. We show that CC formation follows a multistep progression of histopathological changes that are associated with significant alterations, including increased levels of phosphorylated AKT, FOXO1, GSK-3beta, mTOR, and ERK and increased nuclear levels of cyclin D1. We further demonstrate that SMAD4 and PTEN regulate each other through a novel feedback mechanism to maintain an expression balance and synergistically repress CC formation. Finally, our analysis of human CC detected PTEN inactivation in a majority of p-AKT-positive CCs, while about half also lost SMAD4 expression. These findings elucidate the relationship between SMAD4 and PTEN and extend our understanding of CC formation.

  4. TGF-β control of stem cell differentiation genes.

    PubMed

    Massagué, Joan; Xi, Qiaoran

    2012-07-04

    The canonical TGF-β/Smad signaling pathway was delineated in the mid 90s and enriched over the past decade with many findings about its specificity, regulation, networking, and malfunctions in disease. However, a growing understanding of the chromatin status of a critical class of TGF-β target genes - the genes controlling differentiation of embryonic stem cells - recently prompted a reexamination of this pathway and its critical role in the regulation of stem cell differentiation. The new findings reveal master regulators of the pluripotent state set the stage for Smad-mediated activation of master regulators of the next differentiation stage. Furthermore, a novel branch of the TGF-β/Smad pathway has been identified in which a chromatin-reading Smad complex makes the master differentiation genes accessible to canonical Smad complexes for transcriptional activation. These findings provide exciting new insights into the global role of TGF-β signaling in the regulators of stem cell fate. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. BMP and TGFbeta pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors

    PubMed Central

    2012-01-01

    Background As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP) and transforming growth factor β (TGFB) signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma. Methods Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis. Results The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other. Conclusions The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells. PMID:23088614

  6. Heat shock transcription factor 1 protects against pressure overload-induced cardiac fibrosis via Smad3.

    PubMed

    Zhou, Ning; Ye, Yong; Wang, Xingxu; Ma, Ben; Wu, Jian; Li, Lei; Wang, Lin; Wang, Dao Wen; Zou, Yunzeng

    2017-04-01

    Fibrotic cardiac muscle exhibits high stiffness and low compliance which are major risk factors of heart failure. Although heat shock transcription factor 1 (HSF1) was identified as an intrinsic cardioprotective factor, the role that HSF1 plays in cardiac fibrosis remains unclear. Our study aims to investigate the role of HSF1 in pressure overload-induced cardiac fibrosis and the underlying mechanism. HSF1 phosphorylation was significantly downregulated in transverse aortic constriction (TAC)-treated mouse hearts and mechanically stretched cardiac fibroblasts (cFBs). HSF1 transgenic (TG) mice, HSF1 deficient heterozygote (KO) mice, and their wild-type littermates were subjected to sham or TAC surgery for 4 weeks. HSF1 overexpression significantly attenuated pressure overload-induced cardiac fibrosis and dysfunction. Conversely, HSF1 KO mice showed deteriorated fibrotic response and cardiac dysfunction upon TAC. Moreover, we uncovered that overexpression of HSF1 protected against fibrotic response of cFBs to pressure overload. Mechanistically, we observed that the phosphorylation and the nuclear distribution of the Smad family member 3 (Smad3) were significantly decreased in HSF1-overexpressing mouse hearts, while being greatly increased in HSF1 KO mouse hearts upon TAC, compared to the control hearts, respectively. Similar alteration of Smad3 phosphorylation and nuclear distribution were found in isolated mouse cardiac fibroblasts and mechanically stretched cFBs. Constitutively active Smad3 blocked the anti-fibrotic effect of HSF1 in cFBs. Furthermore, we found a direct binding of phosphorylated HSF1 and Smad3, which can be suppressed by mechanical stress. In conclusion, the present study demonstrated for the first time that HSF1 acts as a novel negative regulator of cardiac fibrosis by blocking Smad3 activation. HSF1 activity is decreased in fibrotic hearts. HSF1 overexpression attenuates pressure overload-induced cardiac fibrosis and dysfunction. Deficiency of HSF1 deteriorates fibrotic response and cardiac dysfunction upon TAC. HSF1 inhibits phosphorylation and nuclear distribution of Smad3 via direct binding to Smad3. Active Smad3 blocks the anti-fibrotic effect of HSF1.

  7. Ski represses BMP signaling in Xenopus and mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    kluo@lbl.gov

    2001-05-16

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells bymore » directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-{beta} family members.« less

  8. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells

    PubMed Central

    Wang, Wei; Mariani, Francesca V.; Harland, Richard M.; Luo, Kunxin

    2000-01-01

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-β family members. PMID:11121043

  9. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells.

    PubMed

    Wang, W; Mariani, F V; Harland, R M; Luo, K

    2000-12-19

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-beta family members.

  10. Role of SMAD4 in the mechanism of valproic acid's inhibitory effect on prostate cancer cell invasiveness.

    PubMed

    Jiang, Wei; Zheng, Yi; Huang, Zhongxian; Wang, Muwen; Zhang, Yinan; Wang, Zheng; Jin, Xunbo; Xia, Qinghua

    2014-05-01

    To investigate the influence of the histone deacetylase inhibitor valproic acid (VPA) on SMAD4 expression and invasive ability of prostate cancer cell lines. DU145 and PC3 cell lines were treated with 0, 2, and 5 mMol/l of VPA; invasion of DU145 and PC3 cells were then examined by transwell assay. Immunohistochemistry and Western blot were used to examine SMAD4 protein expression in DU145 and PC3 cells. Compared with controls, VPA significantly suppressed invasiveness in both PC3 and DU145 cells in a dose-dependent way (P < 0.05). VPA also inhibited AKT protein (which was regarded as an effective indicator here), and meanwhile, SMAD4 expression was down-regulated after VPA treatment in a dose-dependent manner in both DU145 (P < 0.05) and PC3 (P < 0.01) cells. Valproic acid could suppress invasiveness of prostate cancer cell lines PC3 and Du145, possibly through multiple pathways other than the SAMD4 pathway. This implies that VPA treatment combined with other SMAD4 enhancers could form a basis for a novel prostate cancer treatment.

  11. Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells.

    PubMed

    Fu, G; Peng, C

    2011-09-15

    Nodal, a member of the transforming growth factor-β superfamily, has been recently shown to suppress cell proliferation and to stimulate the expression of cyclin G2 (CCNG2) in human epithelial ovarian cancer cells. However, the precise mechanisms underlying these events are not fully understood. In this study, we investigated the transcriptional regulation of CCNG2 by the Nodal signaling pathway. In ovarian cancer cells, overexpression of Nodal or its receptors, activin receptor-like kinase 7 (ALK7) or ALK4, resulted in an increase in the CCNG2 promoter activity. Several putative Forkhead box class O (FoxO)3a-binding sites are present in the human CCNG2 promoter and overexpression of FoxO3a enhanced the CCNG2 promoter activity. The functional FoxO3a-binding element (FBE) was mapped to a proximal region located between -398 and -380 bp (FBE1) through deletion and mutation analyses, as well as chromatin immunoprecipitation (IP) assay. Interestingly, mutation of the FBE1 not only abolished the effect of FoxO3a, but also blocked Nodal-induced CCNG2 transcription. Nodal stimulated FoxO3a mRNA and protein expression through the canonical Smad pathway and suppressed FoxO3a inactivation by inhibiting AKT activity. Silencing of FoxO3a using small interfering RNA significantly reduced the effect of Nodal on the CCNG2 promoter activity. On the other hand, overexpression of Smad2 and Smad3 enhanced the FoxO3a-induced CCNG2 promoter activity whereas knockdown of Smad4 blocked the activity of FoxO3a. Furthermore, IP assays revealed that FoxO3a formed complexes with Smad proteins and that Nodal enhanced the binding of FoxO3a to the CCNG2 promoter. Finally, silencing of FoxO3a reversed the inhibitory effect of Nodal on cell proliferation. Taken together, these findings demonstrated that Nodal signaling promotes CCNG2 transcription by upregulating FoxO3a expression, inhibiting FoxO3a phosphorylation and enhancing its synergistic interaction with Smads. These results also suggest that FoxO3a is an important mediator of Nodal signaling in ovarian cancer cells.

  12. Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis.

    PubMed

    Li, Hai-Yan; Ju, Di; Zhang, Da-Wei; Li, Hao; Kong, Ling-Min; Guo, Yanhai; Li, Can; Wang, Xi-Long; Chen, Zhi-Nan; Bian, Huijie

    2015-11-12

    Activation of hepatic stellate cells (HSCs) by transforming growth factor-β1 (TGF-β1) initiates HBV-associated fibrogenesis. The mechanism of TGF-β1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF-β1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF-β1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF-β1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF-β1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF-β1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated α-SMA, collagen I, and TGF-β1 synthesis. These findings indicate that TGF-β1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-β receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis.

  13. Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis

    PubMed Central

    Li, Hai-Yan; Ju, Di; Zhang, Da-Wei; Li, Hao; Kong, Ling-Min; Guo, Yanhai; Li, Can; Wang, Xi-Long; Chen, Zhi-Nan; Bian, Huijie

    2015-01-01

    Activation of hepatic stellate cells (HSCs) by transforming growth factor-β1 (TGF-β1) initiates HBV-associated fibrogenesis. The mechanism of TGF-β1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF-β1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF-β1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF-β1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF-β1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF-β1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated α-SMA, collagen I, and TGF-β1 synthesis. These findings indicate that TGF-β1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-β receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis. PMID:26559755

  14. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.

    PubMed

    Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K

    2005-07-01

    Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.

  15. Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes

    PubMed Central

    Yoon, Jeong-Hwan; Jung, Su Myung; Park, Seok Hee; Kato, Mitsuyasu; Yamashita, Tadashi; Lee, In-Kyu; Sudo, Katsuko; Nakae, Susumu; Han, Jin Soo; Kim, Ok-Hee; Oh, Byung-Chul; Sumida, Takayuki; Kuroda, Masahiko; Ju, Ji-Hyeon; Jung, Kyeong Cheon; Park, Seong Hoe; Kim, Dae-Kee; Mamura, Mizuko

    2013-01-01

    Varieties of transforming growth factor-β (TGF-β) antagonists have been developed to intervene with excessive TGF-β signalling activity in cancer. Activin receptor-like kinase5 (ALK5) inhibitors antagonize TGF-β signalling by blocking TGF-β receptor-activated Smad (R-Smad) phosphorylation. Here we report the novel mechanisms how ALK5 inhibitors exert a therapeutic effect on a mouse B16 melanoma model. Oral treatment with a novel ALK5 inhibitor, EW-7197 (2.5 mg/kg daily) or a representative ALK5 inhibitor, LY-2157299 (75 mg/kg bid) suppressed the progression of melanoma with enhanced cytotoxic T-lymphocyte (CTL) responses. Notably, ALK5 inhibitors not only blocked R-Smad phosphorylation, but also induced ubiquitin-mediated degradation of the common Smad, Smad4 mainly in CD8+ T cells in melanoma-bearing mice. Accordingly, T-cell-specific deletion of Smad4 was sufficient to suppress the progression of melanoma. We further identified eomesodermin (Eomes), the T-box transcription factor regulating CTL functions, as a specific target repressed by TGF-β via Smad4 and Smad3 in CD8+ T cells. Thus, ALK5 inhibition enhances anti-melanoma CTL responses through ubiquitin-mediated degradation of Smad4 in addition to the direct inhibitory effect on R-Smad phosphorylation. PMID:24127404

  16. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated atmore » a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.« less

  17. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression.

    PubMed

    Zheng, Liduan; Jiao, Wanju; Song, Huajie; Qu, Hongxia; Li, Dan; Mei, Hong; Chen, Yajun; Yang, Feng; Li, Huanhuan; Huang, Kai; Tong, Qiangsong

    2016-09-29

    Previous studies have indicated that as the only mammalian endo-β-D-glucuronidase, heparanase (HPSE) is up-regulated and associated with poor prognosis in gastric cancer, while the underlying mechanisms still remain to be determined. Herein, through integrative analysis of public datasets, we found microRNA-558 (miR-558) and SMAD family member 4 (Smad4) as the crucial transcription regulators of HPSE expression in gastric cancer, with their adjacent target sites within the promoter of HPSE. We identified that endogenous miR-558 activated the transcription and expression of HPSE in gastric cancer cell lines. In contrast, Smad4 suppressed the nascent transcription and expression of HPSE via directly binding to its promoter. Mechanistically, miR-558 recognized its complementary site within HPSE promoter to decrease the binding of Smad4 in an Argonaute 1-dependent manner. Ectopic expression or knockdown experiments indicated that miR-558 promoted the in vitro and in vivo tumorigenesis and aggressiveness of gastric cancer cell lines via attenuating Smad4-mediated repression of HPSE expression. In clinical gastric cancer specimens, up-regulation of miR-558 and down-regulation of Smad4 were positively correlated with HPSE expression. Kaplan-Meier survival analysis revealed that miR-558 and Smad4 were associated with unfavourable and favourable outcome of gastric cancer patients, respectively. Therefore, these findings demonstrate that miR-558 facilitates the progression of gastric cancer through directly targeting the HPSE promoter to attenuate Smad4-mediated repression of HPSE expression.

  18. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression

    PubMed Central

    Zheng, Liduan; Jiao, Wanju; Song, Huajie; Qu, Hongxia; Li, Dan; Mei, Hong; Chen, Yajun; Yang, Feng; Li, Huanhuan; Huang, Kai; Tong, Qiangsong

    2016-01-01

    Previous studies have indicated that as the only mammalian endo-β-D-glucuronidase, heparanase (HPSE) is up-regulated and associated with poor prognosis in gastric cancer, while the underlying mechanisms still remain to be determined. Herein, through integrative analysis of public datasets, we found microRNA-558 (miR-558) and SMAD family member 4 (Smad4) as the crucial transcription regulators of HPSE expression in gastric cancer, with their adjacent target sites within the promoter of HPSE. We identified that endogenous miR-558 activated the transcription and expression of HPSE in gastric cancer cell lines. In contrast, Smad4 suppressed the nascent transcription and expression of HPSE via directly binding to its promoter. Mechanistically, miR-558 recognized its complementary site within HPSE promoter to decrease the binding of Smad4 in an Argonaute 1-dependent manner. Ectopic expression or knockdown experiments indicated that miR-558 promoted the in vitro and in vivo tumorigenesis and aggressiveness of gastric cancer cell lines via attenuating Smad4-mediated repression of HPSE expression. In clinical gastric cancer specimens, up-regulation of miR-558 and down-regulation of Smad4 were positively correlated with HPSE expression. Kaplan–Meier survival analysis revealed that miR-558 and Smad4 were associated with unfavourable and favourable outcome of gastric cancer patients, respectively. Therefore, these findings demonstrate that miR-558 facilitates the progression of gastric cancer through directly targeting the HPSE promoter to attenuate Smad4-mediated repression of HPSE expression. PMID:27685626

  19. P38 Mitogen-Activated Protein Kinase in Metastasis Associated With Transforming Growth Factor Beta

    DTIC Science & Technology

    2005-06-01

    36, 2001. Shin I, Bakin AV, Rodeck U, Brunet A, Arteaga CL. TGFbeta enhances epithelial cell survival via Akt - dependent regulation of FKHRLI. Mol Biol... Akt mediates cell-cycle progression by phosphorylation of p27Kip’ at threonine 157 and modulation of its cellular localization. Nat Med 8:1145-1152...stress fibers. Ectopic- expression and siRNA experiments show that Smad3 and Smad4 mediate up-regulation of tropomyosins and stress fiber formation

  20. TRPM7 regulates angiotensin II-induced sinoatrial node fibrosis in sick sinus syndrome rats by mediating Smad signaling.

    PubMed

    Zhong, Hongbin; Wang, Tingjun; Lian, Guili; Xu, Changsheng; Wang, Huajun; Xie, Liangdi

    2018-03-06

    Sinoatrial node fibrosis is involved in the pathogenesis of sinus sick syndrome (SSS). Transient receptor potential (TRP) subfamily M member 7 (TRPM7) is implicated in cardiac fibrosis. However, the mechanisms underlying the regulation of sinoatrial node (SAN) fibrosis in SSS by TRPM7 remain unknown. The aim of this study was to investigate the role of angiotensin II (Ang II)/TRPM7/Smad pathway in the SAN fibrosis in rats with SSS. The rat SSS model was established with sodium hydroxide pinpoint pressing permeation. Forty-eight rats were randomly divided into six groups: normal control (ctrl), sham operation (sham), postoperative 1-, 2-, 3-, and 4-week SSS, respectively. The tissue explant culture method was used to culture cardiac fibroblasts (CFs) from rat SAN tissues. TRPM7 siRNA or encoding plasmids were used to knock down or overexpress TRPM7. Collagen (Col) distribution in SAN and atria was assessed using PASM-Masson staining. Ang II, Col I, and Col III levels in serum and tissues or in CFs were determined by ELISA. TRPM7, smad2 and p-smad2 levels were evaluated by real-time PCR, and/or western blot and immunohistochemistry. SAN and atria in rats of the SSS groups had more fibers and higher levels of Ang II, Col I and III than the sham rats. Similar findings were obtained for TRPM7 and pSmad2 expression. In vitro, Ang II promoted CFs collagen synthesis in a dose-dependent manner, and potentiated TRPM7 and p-Smad2 expression. TRPM7 depletion inhibited Ang II-induced p-Smad2 expression and collagen synthesis in CFs, whereas increased TRPM7 expression did the opposite. SAN fibrosis is regulated by the Ang II/TRPM7/Smad pathway in SSS, indicating that TRPM7 is a potential target for SAN fibrosis therapy in SSS.

  1. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells.

    PubMed

    Carlson, Morgan E; Hsu, Michael; Conboy, Irina M

    2008-07-24

    Adult skeletal muscle robustly regenerates throughout an organism's life, but as the muscle ages, its ability to repair diminishes and eventually fails. Previous work suggests that the regenerative potential of muscle stem cells (satellite cells) is not triggered in the old muscle because of a decline in Notch activation, and that it can be rejuvenated by forced local activation of Notch. Here we report that, in addition to the loss of Notch activation, old muscle produces excessive transforming growth factor (TGF)-beta (but not myostatin), which induces unusually high levels of TGF-beta pSmad3 in resident satellite cells and interferes with their regenerative capacity. Importantly, endogenous Notch and pSmad3 antagonize each other in the control of satellite-cell proliferation, such that activation of Notch blocks the TGF-beta-dependent upregulation of the cyclin-dependent kinase (CDK) inhibitors p15, p16, p21 and p27, whereas inhibition of Notch induces them. Furthermore, in muscle stem cells, Notch activity determines the binding of pSmad3 to the promoters of these negative regulators of cell-cycle progression. Attenuation of TGF-beta/pSmad3 in old, injured muscle restores regeneration to satellite cells in vivo. Thus a balance between endogenous pSmad3 and active Notch controls the regenerative competence of muscle stem cells, and deregulation of this balance in the old muscle microniche interferes with regeneration.

  2. MiR-1 suppresses tumor cell proliferation in colorectal cancer by inhibition of Smad3-mediated tumor glycolysis

    PubMed Central

    Xu, Wanfu; Zhang, Zijing; Zou, Kejian; Cheng, Yang; Yang, Min; Chen, Huan; Wang, Hongli; Zhao, Junhong; Chen, Peiyu; He, Liying; Chen, Xinwen; Geng, Lanlan; Gong, Sitang

    2017-01-01

    Aberrant expression of microRNA (miR)-1 has been observed in many human malignancies. However, the function and underlying mechanism of miR-1 remains elusive. To address the specific role of miR-1 in tumor glycolysis using the gain- or loss-of-function studies. Metabolic studies combined with gene expression analysis were performed in vitro and in vivo. We demonstrated aberrant expression of miR-1 in aerobic glycolysis, the Warburg effect, in cancer cells. MiR-1 suppressed aerobic glycolysis and tumor cell proliferation via inactivation of Smad3 and targeting HIF-1α, leading to reduce HK2 and MCT4 expression, which illustrated a novel pathway to mediate aerobic glycolysis in cancer cells. Overexpression of miR-1 mimics significantly decreased tumor glycolysis, including lactate production and glucose uptake, and cell proliferation, and these effects were reversed by ectopic expression of Smad3. Importantly, endogenous Smad3 regulated and interacted with HIF-1α, resulting in increasing activity of Smad3, and this interaction was dramatically abolished by addition of miR-1. We further demonstrated that Smad3 was central to the effects of miR-1 in colorectal cancer cells, establishing a previously unappreciated mechanism by which the miR-1/Smad3/HIF-1α axis facilitates the Warburg effect to promote cancer progression in vitro and in vivo. The results indicate that miR-1 may have an essential role as a tumor suppressor, suggesting its potential role in molecular therapy of patients with advanced colorectal cancer. PMID:28471448

  3. Opposite Effects of Dihydrosphingosine 1-Phosphate and Sphingosine 1-Phosphate on Transforming Growth Factor-β/Smad Signaling Are Mediated through the PTEN/PPM1A-dependent Pathway*S⃞

    PubMed Central

    Bu, Shizhong; Kapanadze, Bagrat; Hsu, Tien; Trojanowska, Maria

    2008-01-01

    Transforming growth factor-β (TGF-β) is an important regulator of physiological connective tissue biosynthesis and plays a central role in pathological tissue fibrosis. Previous studies have established that a biologically active lipid mediator, sphingosine 1-phosphate (S1P), mimics some of the profibrotic functions of TGF-β through cross-activation of Smad signaling. Here we report that another product of sphingosine kinase, dihydrosphingosine 1-phosphate (dhS1P), has an opposite role in the regulation of TGF-β signaling. In contrast to S1P, dhS1P inhibits TGF-β-induced Smad2/3 phosphorylation and up-regulation of collagen synthesis. The effects of dhS1P require a lipid phosphatase, PTEN, a key modulator of cell growth and survival. dhS1P stimulates phosphorylation of the C-terminal domain of PTEN and its subsequent translocation into the nucleus. We demonstrate a novel function of nuclear PTEN as a co-factor of the Smad2/3 phosphatase, PPM1A. Complex formation of PTEN with PPM1A does not require the lipid phosphatase activity but depends on phosphorylation of the serine/threonine residues located in the C-terminal domain of PTEN. Upon complex formation with PTEN, PPM1A is protected from degradation induced by the TGF-β signaling. Consequently, overexpression of PTEN abrogates TGF-β-induced Smad2/3 phosphorylation. This study establishes a novel role for nuclear PTEN in the stabilization of PPM1A. PTEN-mediated cross-talk between the sphingolipid and TGF-β signaling pathways may play an important role in physiological and pathological TGF-β signaling. PMID:18482992

  4. Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the PTEN/PPM1A-dependent pathway.

    PubMed

    Bu, Shizhong; Kapanadze, Bagrat; Hsu, Tien; Trojanowska, Maria

    2008-07-11

    Transforming growth factor-beta (TGF-beta) is an important regulator of physiological connective tissue biosynthesis and plays a central role in pathological tissue fibrosis. Previous studies have established that a biologically active lipid mediator, sphingosine 1-phosphate (S1P), mimics some of the profibrotic functions of TGF-beta through cross-activation of Smad signaling. Here we report that another product of sphingosine kinase, dihydrosphingosine 1-phosphate (dhS1P), has an opposite role in the regulation of TGF-beta signaling. In contrast to S1P, dhS1P inhibits TGF-beta-induced Smad2/3 phosphorylation and up-regulation of collagen synthesis. The effects of dhS1P require a lipid phosphatase, PTEN, a key modulator of cell growth and survival. dhS1P stimulates phosphorylation of the C-terminal domain of PTEN and its subsequent translocation into the nucleus. We demonstrate a novel function of nuclear PTEN as a co-factor of the Smad2/3 phosphatase, PPM1A. Complex formation of PTEN with PPM1A does not require the lipid phosphatase activity but depends on phosphorylation of the serine/threonine residues located in the C-terminal domain of PTEN. Upon complex formation with PTEN, PPM1A is protected from degradation induced by the TGF-beta signaling. Consequently, overexpression of PTEN abrogates TGF-beta-induced Smad2/3 phosphorylation. This study establishes a novel role for nuclear PTEN in the stabilization of PPM1A. PTEN-mediated cross-talk between the sphingolipid and TGF-beta signaling pathways may play an important role in physiological and pathological TGF-beta signaling.

  5. Curcumin inhibits the proliferation and invasion of human osteosarcoma cell line MG-63 by regulating miR-138

    PubMed Central

    Yu, Dazhi; An, Fengmei; He, Xu; Cao, Xuecheng

    2015-01-01

    Objective: In this study, we screened the different human osteosarcoma cell line MG-63 miRNAs after the treatment of curcumin and explored the effects of curcumin on MG-63 cells and its mechanism. Methods: Affemitrix miRNA chip was used to detect the changes of miRNA expression profile in MG-63 cells before and after curcumin treatment, and screen different expression of miRNAs. The target gene of miRNA was analyzed by bioinformatics. The expression levels of miRNA-138 target genes Smad4, NFκB p65 and cyclin D3 were detected. MTT and Transwell Cell invasion assays were used to observe the effects of curcumin on MG-63 cells. Results: Curcumin could significantly inhibit the proliferation of MG-63 cells and the expression levels of miRNA-138 target genes Smad4, NFκB p65 and cyclin D3 in MG-63 cells (P<0.05); overexpression of hsa-miR-138 down-regulated the expression levels of Smad4, NFκB p65 and cyclin D3 compared with the treatment of curcumin, while inhibition of hsa-miR-138 up-regulated the expression levels of Smad4, NFκB p65 and cyclin D3. Conclusions: Curcumin could increase the expression of hsa-miR-138, hsa-miR-138 inhibited cell proliferation and invasive ability by inhibition of its target genes. PMID:26823826

  6. Transforming growth factor β suppresses peroxisome proliferator-activated receptor γ expression via both SMAD binding and novel TGF-β inhibitory elements.

    PubMed

    Lakshmi, Sowmya P; Reddy, Aravind T; Reddy, Raju C

    2017-04-24

    Transforming growth factor β (TGF-β) contributes to wound healing and, when dysregulated, to pathological fibrosis. TGF-β and the anti-fibrotic nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) repress each other's expression, and such PPARγ down-regulation is prominent in fibrosis and mediated, via previously unknown SMAD-signaling mechanisms. Here, we show that TGF-β induces the association of SMAD3 with both SMAD4, needed for translocation of the complex into the nucleus, and the essential context-sensitive co-repressors E2F4 and p107. The complex mediates TGF-β-induced repression by binding to regulatory elements in the target promoter. In the PPARG promoter, we found that the SMAD3-SMAD4 complex binds both to a previously unknown consensus TGF-β inhibitory element (TIE) and also to canonical SMAD-binding elements (SBEs). Furthermore, the TIE and SBEs independently mediated the partial repression of PPARG transcription, the first demonstration of a TIE and SBEs functioning within the same promoter. Also, TGF-β-treated fibroblasts contained SMAD complexes that activated a SMAD target gene in addition to those repressing PPARG transcription, the first finding of such dual activity within the same cell. These findings describe in detail novel mechanisms by which TGF-β represses PPARG transcription, thereby facilitating its own pro-fibrotic activity. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  7. Metastic Progression of Breast Cancer by Allelic Loss on Chromosome 18q21

    DTIC Science & Technology

    2006-03-01

    Smad5 Smad2 Smad3 Smad8 Smad6 Samd7 MH1 Linker MH2 S1 S2 S3 Smad4 Smad1, Smad5 Samd2, Smad3 ,Smad8 Smad6,Smad7 ?? ?? A. B. Figure 1...homologous amino acid sequences at their N- and C- terminal regions (MH1 and MH2 respectively), which are separated by a highly divergent linker region...cancers (Figure 2). NB 2 3 4 5 6 7 8 9 10 11 12 13 14 Smad8α Smad8β Smad8γ Smad3α Smad3 β NB 1 2 3 4 5

  8. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1

    NASA Astrophysics Data System (ADS)

    Saijilafu; Hur, Eun-Mi; Liu, Chang-Mei; Jiao, Zhongxian; Xu, Wen-Lin; Zhou, Feng-Quan

    2013-10-01

    In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) signalling is activated in response to peripheral axotomy and that PI3K pathway is required for sensory axon regeneration. Moreover, we show that glycogen synthase kinase 3 (GSK3), rather than mammalian target of rapamycin, mediates PI3K-dependent augmentation of the growth potential in the PNS. Furthermore, we show that PI3K-GSK3 signal is conveyed by the induction of a transcription factor Smad1 and that acute depletion of Smad1 in adult mice prevents axon regeneration in vivo. Together, these results suggest PI3K-GSK3-Smad1 signalling as a central module for promoting sensory axon regeneration in the mammalian nervous system.

  9. Unique players in the BMP pathway: Small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling

    PubMed Central

    Knockaert, Marie; Sapkota, Gopal; Alarcón, Claudio; Massagué, Joan; Brivanlou, Ali H.

    2006-01-01

    Smad transcription factors are key signal transducers for the TGF-β/bone morphogenetic protein (BMP) family of cytokines and morphogens. C-terminal serine phosphorylation by TGF-β and BMP membrane receptors drives Smads into the nucleus as transcriptional regulators. Dephosphorylation and recycling of activated Smads is an integral part of this process, which is critical for agonist sensing by the cell. However, the nuclear phosphatases involved have remained unknown. Here we provide functional, biochemical, and embryological evidence identifying the SCP (small C-terminal domain phosphatase) family of nuclear phosphatases as mediators of Smad1 dephosphorylation in the BMP signaling pathway in vertebrates. Xenopus SCP2/Os4 inhibits BMP activity in the presumptive ectoderm and leads to neuralization. In Xenopus embryos, SCP2/Os4 and human SCP1, 2, and 3 cause selective dephosphorylation of Smad1 compared with Smad2, inhibiting BMP- and Smad1-dependent transcription and leading to the induction of the secondary dorsal axis. In human cells, RNAi-mediated depletion of SCP1 and SCP2 increases the extent and duration of Smad1 phosphorylation in response to BMP, the transcriptional action of Smad1, and the strength of endogenous BMP gene responses. The present identification of the SCP family as Smad C-terminal phosphatases sheds light on the events that attenuate Smad signaling and reveals unexpected links to the essential phosphatases that control RNA polymerase II in eukaryotes. PMID:16882717

  10. Postnatal ablation of osteoblast Smad4 enhances proliferative responses to canonical Wnt signaling through interactions with β-catenin

    PubMed Central

    Salazar, Valerie S.; Zarkadis, Nicholas; Huang, Lisa; Watkins, Marcus; Kading, Jacqueline; Bonar, Sheri; Norris, Jin; Mbalaviele, Gabriel; Civitelli, Roberto

    2013-01-01

    Summary Canonical Wnt (cWnt) signaling through β-catenin regulates osteoblast proliferation and differentiation to enhance bone formation. We previously reported that osteogenic action of β-catenin is dependent on BMP signaling. Here, we further examined interactions between cWnt and BMP in bone. In osteoprogenitors stimulated with BMP2, β-catenin localizes to the nucleus, physically interacts with Smad4, and is recruited to DNA-binding transcription complexes containing Smad4, R-Smad1/5 and TCF4. Furthermore, Tcf/Lef-dependent transcription, Ccnd1 expression and proliferation all increase when Smad4, 1 or 5 levels are low, whereas TCF/Lef activities decrease when Smad4 expression is high. The ability of Smad4 to antagonize transcription of Ccnd1 is dependent on DNA-binding activity but Smad4-dependent transcription is not required. In mice, conditional deletion of Smad4 in osterix+ cells increases mitosis of cells on trabecular bone surfaces as well as in primary osteoblast cultures from adult bone marrow and neonatal calvaria. By contrast, ablation of Smad4 delays differentiation and matrix mineralization by primary osteoblasts in response to Wnt3a, indicating that loss of Smad4 perturbs the balance between proliferation and differentiation in osteoprogenitors. We propose that Smad4 and Tcf/Lef transcription complexes compete for β-catenin, thus restraining cWnt-dependent proliferative signals while favoring the matrix synthesizing activity of osteoblasts. PMID:24101723

  11. SMAD regulatory networks construct a balanced immune system.

    PubMed

    Malhotra, Nidhi; Kang, Joonsoo

    2013-05-01

    A balanced immune response requires combating infectious assaults while striving to maintain quiescence towards the self. One of the central players in this process is the pleiotropic cytokine transforming growth factor-β (TGF-β), whose deficiency results in spontaneous systemic autoimmunity in mice. The dominant function of TGF-β is to regulate the peripheral immune homeostasis, particularly in the microbe-rich and antigen-rich environment of the gut. To maintain intestinal integrity, the epithelial cells, myeloid cells and lymphocytes that inhabit the gut secrete TGF-β, which acts in both paracrine and autocrine fashions to activate its signal transducers, the SMAD transcription factors. The SMAD pathway regulates the production of IgA by B cells, maintains the protective mucosal barrier and promotes the balanced differentiation of CD4(+) T cells into inflammatory T helper type 17 cells and suppressive FOXP3(+) T regulatory cells. While encounters with pathogenic microbes activate SMAD proteins to evoke a protective inflammatory immune response, SMAD activation and synergism with immunoregulatory factors such as the vitamin A metabolite retinoic acid enforce immunosuppression toward commensal microbes and innocuous food antigens. Such complementary context-dependent functions of TGF-β are achieved by the co-operation of SMAD proteins with distinct dominant transcription activators and accessory chromatin modifiers. This review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in the gut that are dictacted by fluid orchestrations of SMADs and their myriad partners. © 2013 Blackwell Publishing Ltd.

  12. Modularized TGFbeta-Smad Signaling Pathway

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  13. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes.

    PubMed

    Wang, Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu

    2008-11-14

    TGF-beta activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-beta enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-beta type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smad complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.

  14. Endocytosis contributes to BMP2-induced Smad signalling and neuronal growth.

    PubMed

    Hegarty, Shane V; Sullivan, Aideen M; O'Keeffe, Gerard W

    2017-03-16

    Bone morphogenetic protein 2 (BMP2) is a neurotrophic factor which induces the growth of midbrain dopaminergic (DA) neurons in vitro and in vivo, and its neurotrophic effects have been shown to be dependent on activation of BMP receptors (BMPRs) and Smad 1/5/8 signalling. However, the precise intracellular cascades that regulate BMP2-BMPR-Smad-signalling-induced neurite growth remain unknown. Endocytosis has been shown to regulate Smad 1/5/8 signalling and differentiation induced by BMPs. However, these studies were carried out in non-neural cells. Indeed, there are scant reports regarding the role of endocytosis in BMP-Smad signalling in neurons. To address this, and to further characterise the mechanisms regulating the neurotrophic effects of BMP2, the present study examined the role of dynamin-dependent endocytosis in BMP2-induced Smad signalling and neurite growth in the SH-SY5Y neuronal cell line. The activation, temporal kinetics and magnitude of Smad 1/5/8 signalling induced by BMP2 were significantly attenuated by dynasore-mediated inhibition of endocytosis in SH-SY5Y cells. Furthermore, BMP2-induced increases in neurite length and neurite branching in SH-SY5Y cells were significantly reduced following inhibition of dynamin-dependent endocytosis using dynasore. This study demonstrates that BMP2-induced Smad signalling and neurite growth is regulated by dynamin-dependent endocytosis in a model of human midbrain dopaminergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. GDF11 Modulates Ca2+-Dependent Smad2/3 Signaling to Prevent Cardiomyocyte Hypertrophy.

    PubMed

    Duran, Javier; Troncoso, Mayarling Francisca; Lagos, Daniel; Ramos, Sebastian; Marin, Gabriel; Estrada, Manuel

    2018-05-18

    Growth differentiation factor 11 (GDF11), a member of the transforming growth factor-β family, has been shown to act as a negative regulator in cardiac hypertrophy. Ca 2+ signaling modulates cardiomyocyte growth; however, the role of Ca 2+ -dependent mechanisms in mediating the effects of GDF11 remains elusive. Here, we found that GDF11 induced intracellular Ca 2+ increases in neonatal rat cardiomyocytes and that this response was blocked by chelating the intracellular Ca 2+ with BAPTA-AM or by pretreatment with inhibitors of the inositol 1,4,5-trisphosphate (IP₃) pathway. Moreover, GDF11 increased the phosphorylation levels and luciferase activity of Smad2/3 in a concentration-dependent manner, and the inhibition of IP₃-dependent Ca 2+ release abolished GDF11-induced Smad2/3 activity. To assess whether GDF11 exerted antihypertrophic effects by modulating Ca 2+ signaling, cardiomyocytes were exposed to hypertrophic agents (100 nM testosterone or 50 μM phenylephrine) for 24 h. Both treatments increased cardiomyocyte size and [³H]-leucine incorporation, and these responses were significantly blunted by pretreatment with GDF11 over 24 h. Moreover, downregulation of Smad2 and Smad3 with siRNA was accompanied by inhibition of the antihypertrophic effects of GDF11. These results suggest that GDF11 modulates Ca 2+ signaling and the Smad2/3 pathway to prevent cardiomyocyte hypertrophy.

  16. OVOL2 antagonizes TGF-β signaling to regulate epithelial to mesenchymal transition during mammary tumor metastasis

    PubMed Central

    Wu, Di; Liu, Na; Liu, Qing-Feng; Wu, Qiu-Wan; Xie, Yuan-Yuan; Liu, Yun-Jia; Zheng, Zhong-Zheng; Chan, Err-Cheng; Zhang, Zhi-Ming; Li, Bo-An

    2017-01-01

    Great progress has been achieved in the study of the role of TGF-β signaling in triggering epithelial-mesenchymal transition (EMT) in a variety of cancers; however, the regulation of TGF-β signaling during EMT in mammary tumor metastasis has not been completely defined. In the present study, we demonstrated that OVOL2, a zinc finger transcription factor, inhibits TGF-β signaling-induced EMT in mouse and human mammary tumor cells, as well as in mouse tumor models. Data from the Oncomine databases indicated a strong negative relationship between OVOL2 expression and breast cancer progression. Moreover, our experiments revealed that OVOL2 inhibits TGF-β signaling at multiple levels, including inhibiting Smad4 mRNA expression and inducing Smad7 mRNA expression, blocking the binding between Smad4 and target DNA, and interfering with complex formation between Smad4 and Smad2/3. These findings reveal a novel mechanism that controls the TGF-β signaling output level in vitro and in vivo. The modulation of these molecular processes may represent a strategy for inhibiting breast cancer invasion by restoring OVOL2 expression. PMID:28455959

  17. DACH1 inhibits transforming growth factor-beta signaling through binding Smad4.

    PubMed

    Wu, Kongming; Yang, Ying; Wang, Chenguang; Davoli, Maria A; D'Amico, Mark; Li, Anping; Cveklova, Kveta; Kozmik, Zbynek; Lisanti, Michael P; Russell, Robert G; Cvekl, Ales; Pestell, Richard G

    2003-12-19

    The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4.

  18. Identification of a novel Drosophila SMAD on the X chromosome.

    PubMed

    Henderson, K D; Andrew, D J

    1998-11-09

    TGF-beta signaling from the cell surface to the nucleus is mediated by the SMAD family of proteins, which have been grouped into three classes based upon sequence identity and function. Receptor-regulated, or pathway-restricted, SMADs (R-SMADs) are phosphorylated by ligand-specific serine/threonine kinase receptors. Phosphorylated R-SMADs oligomerize with the coactivating, or shared, SMAD (Co-SMAD) mediator and translocate to the nucleus where the complex directs transcription of downstream target genes. Inhibitory SMADs (I-SMADs) block receptor-mediated phosphorylation of R-SMADs. In Drosophila, one member of each class of SMAD has been reported: MAD, an R-SMAD, MEDEA, a Co-SMAD, and DAD, an I-SMAD. Here, we report the first identification of a novel Drosophila R-SMAD, which we have named Smox for Smad on X. We have localized the Smox gene to a specific interval on the X chromosome and shown that Smox is transcribed throughout development. Copyright 1998 Academic Press.

  19. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu

    2008-11-14

    TGF-{beta} activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-{beta} enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-{beta} type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smadmore » complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.« less

  20. Tongxinluo ameliorates renal structure and function by regulating miR-21-induced epithelial-to-mesenchymal transition in diabetic nephropathy.

    PubMed

    Wang, Jin-yang; Gao, Yan-bin; Zhang, Na; Zou, Da-wei; Xu, Li-ping; Zhu, Zhi-yao; Li, Jiao-yang; Zhou, Sheng-nan; Cui, Fang-qiang; Zeng, Xiang-jun; Geng, Jian-guo; Yang, Jin-kui

    2014-03-01

    Diabetic nephropathy (DN) is one of the most important diabetic microangiopathies. The epithelial-to-mesenchymal transition (EMT) plays an important role in DN. The physiological role of microRNA-21 (miR-21) was closely linked to EMT. However, it remained elusive whether tongxinluo (TXL) ameliorated renal structure and function by regulating miR-21-induced EMT in DN. This study aimed to determine the effect of TXL on miR-21-induced renal tubular EMT and to explore the relationship between miR-21 and TGF-β1/smads signals. Real-time RT-PCR, cell transfection, in situ hybridization (ISH), and laser confocal microscopy were used, respectively. Here, we revealed that TXL dose dependently lowered miR-21 expression in tissue, serum, and cells. Overexpression of miR-21 can enhance α-smooth muscle actin (SMA) expression and decrease E-cadherin expression by upregulating smad3/p-smad3 expression and downregulating smad7 expression. Interestingly, TXL also increased E-cadherin expression and decreased α-SMA expression by regulating miR-21 expression. More importantly, TXL decreased collagen IV, fibronectin, glomerular basement membrane, glomerular area, and the albumin/creatinine ratio, whereas it increased the creatinine clearance ratio. The results demonstrated that TXL ameliorated renal structure and function by regulating miR-21-induced EMT, which was one of the mechanisms to protect against DN, and that miR-21 may be one of the therapeutic targets for TXL in DN.

  1. Dipeptide species regulate p38MAPK–Smad3 signalling to maintain chronic myelogenous leukaemia stem cells

    PubMed Central

    Naka, Kazuhito; Jomen, Yoshie; Ishihara, Kaori; Kim, Junil; Ishimoto, Takahiro; Bae, Eun-Jin; Mohney, Robert P.; Stirdivant, Steven M.; Oshima, Hiroko; Oshima, Masanobu; Kim, Dong-Wook; Nakauchi, Hiromitsu; Takihara, Yoshihiro; Kato, Yukio; Ooshima, Akira; Kim, Seong-Jin

    2015-01-01

    Understanding the specific survival of the rare chronic myelogenous leukaemia (CML) stem cell population could provide a target for therapeutics aimed at eradicating these cells. However, little is known about how survival signalling is regulated in CML stem cells. In this study, we survey global metabolic differences between murine normal haematopoietic stem cells (HSCs) and CML stem cells using metabolomics techniques. Strikingly, we show that CML stem cells accumulate significantly higher levels of certain dipeptide species than normal HSCs. Once internalized, these dipeptide species activate amino-acid signalling via a pathway involving p38MAPK and the stemness transcription factor Smad3, which promotes CML stem cell maintenance. Importantly, pharmacological inhibition of dipeptide uptake inhibits CML stem cell activity in vivo. Our results demonstrate that dipeptide species support CML stem cell maintenance by activating p38MAPK–Smad3 signalling in vivo, and thus point towards a potential therapeutic target for CML treatment. PMID:26289811

  2. Sma- and Mad-related protein 7 (Smad7) is required for embryonic eye development in the mouse.

    PubMed

    Zhang, Rui; Huang, Heng; Cao, Peijuan; Wang, Zhenzhen; Chen, Yan; Pan, Yi

    2013-04-12

    Smad7 is an intracellular inhibitory protein that antagonizes the signaling of TGF-β family members. Deletion of Smad7 in the mouse leads to an abnormality in heart development. However, whether Smad7 has a functional role in the development of other organs has been elusive. Here we present evidence that Smad7 imparts a role to eye development in the mouse. Smad7 is expressed in both the lens and retina in the developing embryonic eye. Depletion of Smad7 caused various degrees of coloboma and microphthalmia with alterations in cell apoptosis and proliferation in eyes. Smad7 was implicated in lens differentiation but was not required for the induction of the lens placode. The development of the periocular mesenchyme was retarded with the down-regulation of Bmp7 and Pitx2 in mutant mice. Retinal spatial patterning was affected by Smad7 deletion and was accompanied by altered bone morphogenetic protein (BMP) signaling. At late gestation stages, TGF-β signaling was up-regulated in the differentiating retina. Smad7 mutant mice displayed an expanded optic disc with increasing of sonic hedgehog (SHH) signaling. Furthermore, loss of Smad7 led to a temporal change in retinal neurogenesis. In conclusion, our study suggests that Smad7 is essential for eye development. In addition, our data indicate that alterations in the signaling of BMP, TGF-β, and SHH likely underlie the defects in eye development caused by Smad7 deletion.

  3. TGF-{beta} receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian

    2010-09-10

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No changemore » in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.« less

  4. Partial loss of Smad7 function impairs bone remodeling, osteogenesis and enhances osteoclastogenesis in mice.

    PubMed

    Li, Nan; Lee, Wayne Yuk-Wai; Lin, Si-En; Ni, Ming; Zhang, Ting; Huang, Xiao-Ru; Lan, Hui-Yao; Li, Gang

    2014-10-01

    Smad7 is well demonstrated as a negative regulator of TGF-β signaling. Its alteration in expression often results in diseases such as cancer and fibrosis. However, the exact role of Smad7 in regulating bone remodeling during mammalian development has not been properly delineated. In this study we performed experiments to clarify the involvement of Smad7 in regulating osteogenesis and osteoclastogenesis both invivo and invitro. Genetically engineered Smad7(ΔE1) (KO) mice were used, whereby partial functional of Smad7 is lost by deleting exon I of the Smad7 gene and the truncated proteins cause a hypomorphic allele. Analysis with μCT imagery and bone histomorphometry showed that the KO mice had lower TbN, TbTh, higher TbSp in the metaphysic region of the femurs at 6, 12, 24weeks from birth, as well as decreased MAR and increased osteoclast surface compared with the WT mice. In vitro BM-MSC multi-lineage differentiation evaluation showed that the KO group had reduced osteogenic potential, fewer mineralized nodules, lower ALP activity, and reduced gene expression of Col1A1, Runx2 and OCN. The adipogenic potential was elevated in the KO group with more formation of lipid droplets, and increased gene expression of Adipsin and C/EBPα. The osteoclastogenic potential of KO mice BMMs was elevate, with emergence of more osteoclasts, larger resorptive areas, and increased gene expression of TRAP and CTR. Our results indicate that partial loss of Smad7 function in mice leads to compromised bone formation and enhanced bone resorption. Thus, Smad7 is acknowledged as a novel key regulator between osteogenesis and osteoclastogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The Smad3/Smad4/CDK9 complex promotes renal fibrosis in mice with unilateral ureteral obstruction.

    PubMed

    Qu, Xinli; Jiang, Mengjie; Sun, Yu Bo Yang; Jiang, Xiaoyun; Fu, Ping; Ren, Yi; Wang, Die; Dai, Lie; Caruana, Georgina; Bertram, John F; Nikolic-Paterson, David J; Li, Jinhua

    2015-12-01

    Transforming growth factor-β1 (TGF-β1)/Smad signaling has a central role in the pathogenesis of renal fibrosis. Smad3 and Smad4 are pro-fibrotic, while Smad2 is anti-fibrotic. However, these Smads form heterogeneous complexes, the functions of which are poorly understood. Here we studied Smad complex function in renal fibrosis using the mouse model of unilateral ureteric obstruction. Mice heterozygous for Smad3/4 (Smad3/4 +/- ) exhibited substantial protection from renal fibrosis through day 7 of obstruction, whereas Smad2/3 +/- and Smad2/4 +/- mice showed only modest protection. Formation of Smad3/Smad4/CDK9 complexes was an early event following obstruction in wild-type mice, which involved nuclear phosphorylation of the linker regions of Smad3. Significantly, Smad3 or Smad4 deficiency decreased the formation of Smad4/CDK9 or Smad3/CDK9 complex, Smad3 linker phosphorylation, and fibrosis but at different degrees. In vitro, TGF-β1 stimulation of collagen I promoter activity involved formation of Smad3/Smad4/CDK9 complexes, and overexpression of each component gave additive increases in collagen promoter activity. Co-administration of a CDK9 inhibitor and Smad3-specific inhibition achieved better protection from TGF-β1-induced fibrotic response in vitro and renal interstitial fibrosis in vivo. Thus formation of Smad3/Smad4/CDK9 complex drives renal fibrosis during ureteral obstruction. Formation of this complex represents a novel target for antifibrotic therapies.

  6. Salidroside Inhibits Myogenesis by Modulating p-Smad3-Induced Myf5 Transcription

    PubMed Central

    Zhang, Peng; Li, Wenjiong; Wang, Lu; Liu, Hongju; Gong, Jing; Wang, Fei; Chen, Xiaoping

    2018-01-01

    Aim: Salidroside is an active compound extracted from Rhodiola rosea which is used to alleviate fatigue and enhance endurance in high altitude regions. Some studies have demonstrated that salidroside can affect precursor cell differentiation in hematopoietic stem cells, erythrocytes, and osteoblasts. The aim of this study was to investigate the effect of salidroside on myoblast differentiation and to explore the underlying molecular mechanisms of this effect. Methods: C2C12 myoblast cells were treated with different concentrations of salidroside in differentiation media. Real-time PCR, Western blotting, and immunofluorescence assay were employed to evaluate the effects of salidroside on C2C12 differentiation. RNA interference was used to reveal the important role of Myf5 in myogenesis inhibited by salidroside. Chromatin Immunoprecipitation and dual-luciferase reporter assay were utilized to explore the underlying mechanisms of salidroside-induced upregulation of Myf5. Results: We found that salidroside inhibits myogenesis by downregulating MyoD and myogenin, preserves undifferentiated reserve cell pools by upregulating Myf5. Knocking down Myf5 expression significantly rescued the myogenesis inhibited by salidroside. The effect of salidroside on myogenesis was associated with increased phosphorylated Smad3 (p-Smad3). Both SIS3 (Specific inhibitor of p-Smad3) and dominant negative Smad3 plasmid (DN-Smad3) attenuated the inhibitory effect of salidroside on C2C12 differentiation. Moreover, the induction of Myf5 transcription by salidroside was dependent on a Smad-binding site in the promoter region of Myf5 gene. Conclusion and Implications: Our findings identify a novel role and mechanism for salidroside in regulating myogenesis through p-Smad3-induced Myf5 transcription, which may have implications for its further application in combating degenerative muscular diseases caused by depletion of muscle stem cells, such as Duchenne muscular dystrophy or sarcopenia. PMID:29593538

  7. Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development.

    PubMed

    Bonilla-Claudio, Margarita; Wang, Jun; Bai, Yan; Klysik, Elzbieta; Selever, Jennifer; Martin, James F

    2012-02-01

    We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in cranial neural crest (CNC). Conditional Bmp4 overexpression, using a tetracycline-regulated Bmp4 gain-of-function allele, resulted in facial skeletal changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4-induced genes (BIG) composed predominantly of transcriptional regulators that control self-renewal, osteoblast differentiation and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4 and Bmp7, resulted in complete or partial loss of multiple CNC-derived skeletal elements, revealing a crucial requirement for Bmp signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss-of-function mutants, indicating Bmp-regulated target genes are modulated by Bmp dose. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45γ and Gata3, that was bound by Smad1/5 in the developing mandible, revealing direct Smad-mediated regulation. These data support the hypothesis that Bmp signaling regulates craniofacial skeletal development by balancing self-renewal and differentiation pathways in CNC progenitors.

  8. Smad4 is required for the development of cardiac and skeletal muscle in zebrafish.

    PubMed

    Yang, Jie; Wang, Junnai; Zeng, Zhen; Qiao, Long; Zhuang, Liang; Jiang, Lijun; Wei, Juncheng; Ma, Quanfu; Wu, Mingfu; Ye, Shuangmei; Gao, Qinglei; Ma, Ding; Huang, Xiaoyuan

    Transforming growth factor-beta (TGF-beta) regulates cellular functions and plays key roles in development and carcinogenesis. Smad4 is the central intracellular mediator of TGF-beta signaling and plays crucial roles in tissue regeneration, cell differentiation, embryonic development, regulation of the immune system and tumor progression. To clarify the role of smad4 in development, we examined both the pattern of smad4 expression in zebrafish embryos and the effect of smad4 suppression on embryonic development using smad4-specific antisense morpholino-oligonucleotides. We show that smad4 is expressed in zebrafish embryos at all developmental stages examined and that embryonic knockdown of smad4 results in pericardial edema, decreased heartbeat and defects in the trunk structure. Additionally, these phenotypes were associated with abnormal expression of the two heart-chamber markers, cmlc2 and vmhc, as well as abnormal expression of three makers of myogenic terminal differentiation, mylz2, smyhc1 and mck. Furthermore, a notable increase in apoptosis was apparent in the smad4 knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that smad4 plays an important role in heart and skeletal muscle development. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  9. Zinc affects miR-548n, SMAD4, SMAD5 expression in HepG2 hepatocyte and HEp-2 lung cell lines.

    PubMed

    Grider, Arthur; Lewis, Richard D; Laing, Emma M; Bakre, Abhijeet A; Tripp, Ralph A

    2015-12-01

    MicroRNAs affect disease progression and nutrient status. miR-548n increased 57 % in Zn supplemented plasma from adolescent females (ages 9 to 13 years). The purpose of this study was to determine the effects of Zn concentration in cell culture on the expression of miR-548n, SMAD4 and SMAD5 in hepatocyte (HepG2) and lung epithelium (HEp-2) cell lines. Cells were incubated for 48 h in media containing 10 % Chelex 100-treated FBS (0 μM Zn), or with 15 or 50 μM Zn, before isolation of total RNA and cDNA. Expression of miR-548n, SMAD4 and SMAD5 was measured by qPCR. The ΔΔCT method was used to calculate the fold-change, and 15 µM expression levels were used as reference values. HepG2 miR-548n expression decreased 5-fold, and SMAD4 expression increased 4-fold in the absence of Zn, while HEp-2 miR-548n expression increased 10.5-fold, and SMAD5 expression increased 20-fold in the absence of Zn. HEp-2 miR-548n expression increased 23-fold, while SMAD4 expression decreased twofold, in 50 μM Zn-treated cells. However, SMAD4 and SMAD5 expression was not correlated. These data indicate that miR-548n expression is in part regulated by Zn in a cell-specific manner. SMAD4 and SMAD5 are genes in the TGF-β/BMP signaling pathway, and SMAD5 is a putative target for miR-548n; Zn participates in regulating this pathway through controlling SMAD4 and SMAD5 expression. However, SMAD5 expression may be more sensitive to Zn than to miR-548n since SMAD5 expression was not inversely correlated with miR-548n expression.

  10. Smad3 phosphoisoform-mediated signaling during sporadic human colorectal carcinogenesis.

    PubMed

    Matsuzaki, K

    2006-06-01

    Transforming growth factor-beta (TGF-beta) signaling occurring during human colorectal carcinogenesis involves a shift in TGF-beta function, reducing the cytokine's antiproliferative effect, while increasing actions that promote invasion and metastasis. TGF-beta signaling involves phosphorylation of Smad3 at serine residues 208 and 213 in the linker region and serine residues 423 and 425 in the C-terminal region. Exogenous TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), changing unphosphorylated Smad3 to its phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker phosphorylated Smad3 (pSmad3L). Either pSmad3C or pSmad3L oligomerizes with Smad4, and translocates into nuclei. While the TbetaRI/pSmad3C pathway inhibits growth of normal epithelial cells in vivo, JNK/pSmad3L-mediated signaling promotes tumor cell invasion and extracellular matrix synthesis by activated mesenchymal cells. Furthermore, hepatocyte growth factor signaling interacts with TGF-beta to activate the JNK/pSmad3L pathway, accelerating nuclear transport of cytoplasmic pSmad3L. This reduces accessibility of unphosphorylated Smad3 to membrane-anchored TbetaRI, preventing Smad3C phosphorylation, pSmad3C-mediated transcription, and antiproliferative effects of TGF-beta on epithelial cells. As neoplasia progresses from normal colorectal epithelium through adenoma to invasive adenocarcinoma with distant metastasis, nuclear pSmad3L gradually increases while pSmad3C decreases. The shift from TbetaRI/pSmad3C-mediated to JNK/pSmad3L-mediated signaling is a major mechanism orchestrating a complex transition of TGF-beta signaling during sporadic human colorectal carcinogenesis. This review summarizes the recent understanding of Smad3 phosphoisoform-mediated signaling, particularly 'cross-talk' between Smad3 and JNK pathways that cooperatively promote oncogenic activities. Understanding of these actions should help to develop more effective therapy against human colorectal cancer, involving inhibition of JNK/pSmad3L pathway.

  11. Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail.

    PubMed

    Moon, Hyuk; Ju, Hye-Lim; Chung, Sook In; Cho, Kyung Joo; Eun, Jung Woo; Nam, Suk Woo; Han, Kwang-Hyub; Calvisi, Diego F; Ro, Simon Weonsang

    2017-11-01

    Transforming growth factor beta (TGF-β) suppresses early stages of tumorigenesis, but also contributes to migration and metastasis of cancer cells. A large number of human tumors contain mutations that inactivate its receptors, or downstream proteins such as Smad transcription factors, indicating that the TGF-β signaling pathway prevents tumor growth. We investigated the effects of TGF-β inhibition on liver tumorigenesis in mice. C57BL/6 mice received hydrodynamic tail-vein injections of transposons encoding HRAS G12V and a short hairpin RNA (shRNA) to down-regulate p53, or those encoding HRAS G12V and MYC, or those encoding HRAS G12V and TAZ S89A , to induce liver tumor formation; mice were also given injections of transposons encoding SMAD7 or shRNA against SMAD2, SMAD3, SMAD4, or SNAI1 (Snail), with or without ectopic expression of Snail. Survival times were compared, and livers were weighted and examined for tumors. Liver tumor tissues were analyzed by quantitative reverse-transcription PCR, RNA sequencing, immunoblots, and immunohistochemistry. We analyzed gene expression levels in human hepatocellular carcinoma samples deposited in The Cancer Genome Atlas. A cell proliferation assay was performed using human liver cancer cell lines (HepG2 and Huh7) stably expressing Snail or shRNA against Snail. TGF-β inhibition via overexpression of SMAD7 (or knockdown of SMAD2, SMAD3, or SMAD4) consistently reduced formation and growth of liver tumors in mice that expressed activated RAS plus shRNA against p53, or in mice that expressed activated RAS and TAZ. TGF-β signaling activated transcription of the Snail gene in liver tumors induced by HRAS G12V and shRNA against p53, and by activated RAS and TAZ. Knockdown of Snail reduced liver tumor formation in both tumor models. Ectopic expression of Snail restored liver tumorigenesis suppressed by disruption of TGF-β signaling. In human hepatocellular carcinoma, Snail expression correlated with TGF-β activation. Ectopic expression of Snail increased cellular proliferation, whereas Snail knockdown led to reduced proliferation in human hepatocellular carcinoma cells. In analyses of transgenic mice, we found TGF-β signaling to be required for formation of liver tumors upon expression of activated RAS and shRNA down-regulating p53, and upon expression of activated RAS and TAZ. Snail is the TGF-β target that is required for hepatic tumorigenesis in these models. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. PDGF-AA promotes osteogenic differentiation and migration of mesenchymal stem cell by down-regulating PDGFRα and derepressing BMP-Smad1/5/8 signaling.

    PubMed

    Li, Anna; Xia, Xuechun; Yeh, James; Kua, Huiyi; Liu, Huijuan; Mishina, Yuji; Hao, Aijun; Li, Baojie

    2014-01-01

    Platelet-derived growth factors (PDGFs) play important roles in skeletal development and bone fracture healing, yet how PDGFs execute their functions remains incompletely understood. Here we show that PDGF-AA, but not -AB or -BB, could activate the BMP-Smad1/5/8 pathway in mesenchymal stem cells (MSCs), which requires BMPRIA as well as PDGFRα. PDGF-AA promotes MSC osteogenic differentiation through the BMP-Smad1/5/8-Runx2/Osx axis and MSC migration via the BMP-Smad1/5/8-Twist1/Atf4 axis. Mechanistic studies show that PDGF-AA activates BMP-Smad1/5/8 signaling by feedback down-regulating PDGFRα, which frees BMPRI and allows for BMPRI-BMPRII complex formation to activate smad1/5/8, using BMP molecules in the microenvironment. This study unravels a physical and functional interaction between PDGFRα and BMPRI, which plays an important role in MSC differentiation and migration, and establishes a link between PDGF-AA and BMPs pathways, two essential regulators of embryonic development and tissue homeostasis.

  13. Trastuzumab inhibits pituitary tumor growth modulating the TGFB/Smad2/3 pathway.

    PubMed

    Petiti, Juan Pablo; Sosa, Liliana Del Valle; Picech, Florencia; Moyano Crespo, Gabriela Deisi; Arevalo Rojas, Jean Zander; Pérez, Pablo Anibal; Guido, Carolina Beatriz; Leimgruber, Carolina; Sabatino, María Eugenia; García, Pedro Emilio; Bengió, Verónica; Papalini, Francisco Roque; Estario, Paula; Bernhardt, Maria Celina; Villarreal, Marcos; Gutiérrez, Silvina; De Paul, Ana Lucía; Mukdsi, Jorge Humberto; Torres, Alicia I

    2018-06-06

    In pituitary adenomas, early recurrences and resistance to conventional pharmacotherapies are common, but the mechanisms involved are still not understood. The high expression of epidermal growth factor receptor 2 (HER2)/extracellular signal-regulated kinase (ERK1/2) signal observed in human pituitary adenomas, together with the low levels of the antimitogenic transforming growth factor beta receptor 2 (TBR2), encouraged us to evaluate the effect of the specific HER2 inhibition with trastuzumab on experimental pituitary tumor cell growth and its effect on the antiproliferative response to TGFB1. Trastuzumab decreased the pituitary tumor growth as well as the expression of ERK1/2 and the cell cycle regulators cyclin D1 and CDK4. The HER2/ERK1/2 pathway is an attractive therapeutic target, but its intricate relations with other signaling modulators still need to be unraveled. Thus, we investigated possible cross-talk with TGFB signaling, which has not yet been studied in pituitary tumors. In tumoral GH3 cells, co-incubation with trastuzumab and TGFB1 significantly decreased cell proliferation, an effect accompanied by a reduction in ERK1/2 phosphorylation, an increase of SMAD2/3 activation. In addition, through immunoprecipitation assays, a diminution of SMAD2/3-ERK1/2 and an increase SMAD2/3-TGFBR1 interactions were observed when cells were co-incubated with Trastuzumab and TGFB1. These findings indicate that blocking HER2 by trastuzumab inhibited pituitary tumor growth and modulated HER2/ERK1/2 signaling and consequently the anti-mitogenic TGFB1/TBRs/SMADs cascade. The imbalance between HER2 and TGFBRs expression observed in human adenomas and the response to trastuzumab on experimental tumor growth, may make the HER2/ERK1/2 pathway an attractive target for future pituitary adenoma therapy.

  14. Apoptotic role of TGF-β mediated by Smad4 mitochondria translocation and cytochrome c oxidase subunit II interaction.

    PubMed

    Pang, Lijuan; Qiu, Tao; Cao, Xu; Wan, Mei

    2011-07-01

    Smad4, originally isolated from the human chromosome 18q21, is a key factor in transducing the signals of the TGF-β superfamily of growth hormones and plays a pivotal role in mediating antimitogenic and proapoptotic effects of TGF-β, but the mechanisms by which Smad4 induces apoptosis are elusive. Here we report that Smad4 directly translocates to the mitochondria of apoptotic cells. Smad4 gene silencing by siRNA inhibits TGF-β-induced apoptosis in Hep3B cells and UV-induced apoptosis in PANC-1 cells. Cell fractionation assays demonstrated that a fraction of Smad4 translocates to mitochondria after long time TGF-β treatment or UV exposure, during which the cells were under apoptosis. Smad4 mitochondria translocation during apoptosis was also confirmed by fluorescence observation of Smad4 colocalization with MitoTracker Red. We searched for mitochondria proteins that have physical interactions with Smad4 using yeast two-hybrid screening approach. DNA sequence analysis identified 34 positive clones, five of which encoded subunits in mitochondria complex IV, i.e., one clone encoded cytochrome c oxidase COXII, three clones encoded COXIII and one clone encoded COXVb. Strong interaction between Smad4 with COXII, an important apoptosis regulator, was verified in yeast by β-gal activity assays and in mammalian cells by immunoprecipitation assays. Further, mitochondrial portion of cells was isolated and the interaction between COXII and Smad4 in mitochondria upon TGF-β treatment or UV exposure was confirmed. Importantly, targeting Smad4 to mitochondria using import leader fusions enhanced TGF-β-induced apoptosis. Collectively, the results suggest that Smad4 promote apoptosis of the cells through its mitochondrial translocation and association with mitochondria protein COXII. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Infection of Hepatocytes With HCV Increases Cell Surface Levels of Heparan Sulfate Proteoglycans, Uptake of Cholesterol and Lipoprotein, and Virus Entry by Up-regulating SMAD6 and SMAD7.

    PubMed

    Zhang, Fang; Sodroski, Catherine; Cha, Helen; Li, Qisheng; Liang, T Jake

    2017-01-01

    The signaling molecule and transcriptional regulator SMAD6, which inhibits the transforming growth factor β signaling pathway, is required for infection of hepatocytes by hepatitis C virus (HCV). We investigated the mechanisms by which SMAD6 and another inhibitory SMAD (SMAD7) promote HCV infection in human hepatoma cells and hepatocytes. We infected Huh7 and Huh7.5.1 cells and primary human hepatocytes with Japanese fulminant hepatitis-1 (JFH1) HCV cell culture system (HCVcc). We then measured HCV binding, intracellular levels of HCV RNA, and expression of target genes. We examined HCV entry in HepG2/microRNA (miR) 122/CD81 cells, which support entry and replication of HCV, were transfected these cells with small interfering RNAs targeting inhibitory SMADs to analyze gene expression profiles. Uptake of labeled low-density lipoprotein (LDL) and cholesterol was measured. Cell surface proteins were quantified by flow cytometry. We obtained liver biopsy samples from 69 patients with chronic HCV infection and 19 uninfected individuals (controls) and measured levels of syndecan 1 (SDC1), SMAD7, and SMAD6 messenger RNAs (mRNAs). Small interfering RNA knockdown of SMAD6 blocked the binding and infection of hepatoma cell lines and primary human hepatocytes by HCV, whereas SMAD6 overexpression increased HCV infection. We found levels of mRNAs encoding heparan sulfate proteoglycans (HSPGs), particularly SDC1 mRNA, and cell surface levels of heparan sulfate to be reduced in cells after SMAD6 knockdown. SMAD6 knockdown also reduced transcription of genes encoding lipoprotein and cholesterol uptake receptors, including the LDL receptor (LDLR), the very LDLR, and the scavenger receptor class B member 1 in hepatocytes; knockdown of SMAD6 also inhibited cell uptake of cholesterol and lipoprotein. Overexpression of SMAD6 increased the expression of these genes. Similar effects were observed with knockdown and overexpression of SMAD7. In addition, HCV infection of cells increased the expression of SMAD6, which required the activity of nuclear factor-κB, but not transforming growth factor β. Liver tissues from patients with chronic HCV infection had significantly higher levels of SMAD6, SMAD7, and HSPG mRNAs than controls. In studies of hepatoma cell lines and primary human hepatocytes, we found that infection with HCV leads to activation of nuclear factor-κB, resulting in increased expression of SMAD6 and SMAD7. Up-regulation of SMAD6 and SMAD7 induces the expression of HSPGs, such as SDC1, as well as LDLR, very LDLR, and the scavenger receptor class B member 1, which promote HCV entry and propagation, as well as cellular uptake of cholesterol and lipoprotein. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Houttuynia cordata inhibits lipopolysaccharide-induced rapid pulmonary fibrosis by up-regulating IFN-γ and inhibiting the TGF-β1/Smad pathway.

    PubMed

    Du, Shaohui; Li, Hui; Cui, Yinghai; Yang, Lina; Wu, Jingjing; Huang, Haiyuan; Chen, Yangyan; Huang, Wei; Zhang, Rong; Yang, Jun; Chen, Dongfeng; Li, Yiwei; Zhang, Saixia; Zhou, Jianhong; Wei, Zhijun; Chow, Ngai Tan

    2012-07-01

    This study aimed to explore the effect and mechanism of H. cordata vapor extract on acute lung injury (ALI) and rapid pulmonary fibrosis (RPF). We applied the volatile extract of HC to an RPF rat model and analyzed the effect on ALI and RPF using hematoxylin-eosin (H&E) staining, routine blood tests, a cell count of bronchoalveolar lavage fluid (BALF), lactate dehydrogenase (LDH) content, van Gieson (VG) staining, hydroxyproline (Hyp) content and the dry/wet weight ratio. The expression of IFN-γ/STAT(1), IL-4/STAT(6) and TGF-β(1)/Smads was analyzed using ELISA, immunohistochemistry and western blotting methods. The active ingredients of the HC vapor extract were analyzed using a gas chromatograph-mass spectrometer (GC-MS), and the effects of the active ingredients of HC on the viability of NIH/3T3 and RAW264.7 cells were detected using an MTT assay. The active ingredients of the HC vapor extract included 4-terpineol, α-terpineol, l-bornyl acetate and methyl-n-nonyl ketone. The results of the lung H&E staining, Hyp content, dry/wet weight ratio and VG staining suggested that the HC vapor extract repaired lung injury and reduced RPF in a dose-dependent manner and up-regulated IFN-γ and inhibited the TGF-β1/Smad pathway in vivo. In vitro, it could inhibit the viability of RAW264.7 and NIH/3T3 cells. It also dose-dependently inhibited the expression of TGF-β1 and enhanced the expression of IFN-γ in NIH/3T3. The HC vapor extract inhibited LPS-induced RPF by up-regulating IFN-γ and inhibiting the TGF-β1/Smad pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis.

    PubMed

    Liu, Jian; Cho, Sung-Nam; Akkanti, Bindu; Jin, Nili; Mao, Jianqiang; Long, Weiwen; Chen, Tenghui; Zhang, Yiqun; Tang, Ximing; Wistub, Ignacio I; Creighton, Chad J; Kheradmand, Farrah; DeMayo, Francesco J

    2015-03-03

    Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with squamous cell carcinoma has identified SMAD4 to be frequently mutated. Here, we use a mouse model to determine the molecular mechanisms by which Smad4 loss leads to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium develop metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determine that loss of PTEN and SMAD4 results in ELF3 and ErbB2 pathway activation due to decreased expression of ERRFI1, a negative regulator of ERBB2 in mouse and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuate tumor progression and cell invasion, respectively. Expression profile analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both a prognostic biomarker and a therapeutic drug target for treating lung cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β–dependent cancer metastasis

    PubMed Central

    Xue, Jianfei; Lin, Xia; Chiu, Wen-Tai; Chen, Yao-Hui; Yu, Guanzhen; Liu, Mingguang; Feng, Xin-Hua; Sawaya, Raymond; Medema, René H.; Hung, Mien-Chie; Huang, Suyun

    2014-01-01

    A key feature of TGF-β signaling activation in cancer cells is the sustained activation of SMAD complexes in the nucleus; however, the drivers of SMAD activation are poorly defined. Here, using human and mouse breast cancer cell lines, we found that oncogene forkhead box M1 (FOXM1) interacts with SMAD3 to sustain activation of the SMAD3/SMAD4 complex in the nucleus. FOXM1 prevented the E3 ubiquitin-protein ligase transcriptional intermediary factor 1 γ (TIF1γ) from binding SMAD3 and monoubiquitinating SMAD4, which stabilized the SMAD3/SMAD4 complex. Loss of FOXM1 abolished TGF-β–induced SMAD3/SMAD4 formation. Moreover, the interaction of FOXM1 and SMAD3 promoted TGF-β/SMAD3–mediated transcriptional activity and target gene expression. We found that FOXM1/SMAD3 interaction was required for TGF-β–induced breast cancer invasion, which was the result of SMAD3/SMAD4-dependent upregulation of the transcription factor SLUG. Importantly, the function of FOXM1 in TGF-β–induced invasion was not dependent on FOXM1’s transcriptional activity. Knockdown of SMAD3 diminished FOXM1-induced metastasis. Furthermore, FOXM1 levels correlated with activated TGF-β signaling and metastasis in human breast cancer specimens. Together, our data indicate that FOXM1 promotes breast cancer metastasis by increasing nuclear retention of SMAD3 and identify crosstalk between FOXM1 and TGF-β/SMAD3 pathways. This study highlights the critical interaction of FOXM1 and SMAD3 for controlling TGF-β signaling during metastasis. PMID:24382352

  19. Cardiac fibroblast GSK-3β regulates ventricular remodeling and dysfunction in ischemic heart

    PubMed Central

    Lal, Hind; Ahmad, Firdos; Zhou, Jibin; Yu, Justine E.; Vagnozzi, Ronald J.; Guo, Yuanjun; Yu, Daohai; Tsai, Emily J.; Woodgett, James; Gao, Erhe; Force, Thomas

    2014-01-01

    Background Myocardial infarction-induced remodeling includes chamber dilatation, contractile dysfunction, and fibrosis. Of these, fibrosis is the least understood. Following MI, activated cardiac fibroblasts (CFs) deposit extracellular matrix. Current therapies to prevent fibrosis are inadequate and new molecular targets are needed. Methods and Results Herein we report that GSK-3β is phosphorylated (inhibited) in fibrotic tissues from ischemic human and mouse heart. Using two fibroblast-specific GSK-3β knockout mouse models, we show that deletion of GSK-3β in CFs leads to fibrogenesis, left ventricular dysfunction and excessive scarring in the ischemic heart. Deletion of GSK-3β induces a pro-fibrotic myofibroblast phenotype in isolated CFs, in post-MI hearts, and in MEFs deleted for GSK-3β. Mechanistically, GSK-3β inhibits pro-fibrotic TGF-β1-SMAD-3 signaling via interactions with SMAD-3. Moreover, deletion of GSK-3β resulted in the suppression of SMAD-3 transcriptional activity. This pathway is central to the pathology since a small molecule inhibitor of SMAD-3 largely prevented fibrosis and limited LV remodeling. Conclusion These studies support targeting GSK-3β in myocardial fibrotic disorders and establish critical roles of CFs in remodeling and ventricular dysfunction. PMID:24899689

  20. MicroRNA-144 is regulated by CP2 and decreases COX-2 expression and PGE2 production in mouse ovarian granulosa cells

    PubMed Central

    Zhou, Jiawei; Lei, Bin; Li, Huanan; Zhu, Lihua; Wang, Lei; Tao, Hu; Mei, Shuqi; Li, Fenge

    2017-01-01

    Mammalian folliculogenesis is a complex process in which primordial follicles develop into pre-ovulatory follicles, followed by ovulation to release mature oocytes. In this study, we explored the role of miR-144 in ovulation. miR-144 was one of the differentially expressed microRNAs, which showed 5.59-fold changes, in pre-ovulatory ovarian follicles between Large White and Chinese Taihu sows detected by Solexa deep sequencing. We demonstrated that overexpression of miR-144 significantly decreased the luciferase reporter activity under the control of the cyclooxygenase-2 (COX-2) or mothers against decapentaplegic homologue 4 (Smad4) 3'-untranslated region (3'-UTR) and suppressed COX-2 and Smad4 expression. In contrast, a miR-144 inhibitor increased COX-2 and Smad4 expression in mouse granulosa cells (mGCs). Meanwhile, Smad4 upregulated COX-2 expression, but this effect was abolished when the mGCs were treated with the transforming growth factor beta signalling pathway inhibitor SB431542. Moreover, luciferase reporter, chromatin immunoprecipitation and electrophoretic mobility shift assay results showed that the transcription factor CP2 upregulated miR-144 expression, which partially contributed to the suppression of COX-2 in mGCs. Both CP2 and miR-144 alter prostaglandin E2 (PGE2) production by regulating COX-2 expression. In addition, miR-144 regulated mGC apoptosis and affected follicular atresia, but these activities did not appear to be through COX-2 and Smad4. Taken together, we revealed an important CP2/miR-144/COX-2/PGE2/ovulation pathway in mGCs. PMID:28182010

  1. Identification and characterization of a human smad3 splicing variant lacking part of the linker region.

    PubMed

    Kjellman, Christian; Honeth, Gabriella; Järnum, Sofia; Lindvall, Magnus; Darabi, Anna; Nilsson, Ingar; Edvardsen, Klaus; Salford, Leif G; Widegren, Bengt

    2004-03-03

    Smad3 is one of the signal transducers that are activated in response to transforming growth factor-beta (TGF-beta). We have identified and characterized a splicing variant of smad3. The splicing variant (smad3-Delta3) lacks exon 3 resulting in a truncated linker region. We could detect mRNA expression of smad3-Delta3 in all investigated human tissues. Real-time PCR analyses demonstrated that the fraction of smad3-Delta3 mRNA compared to normal smad3 varies between tissues. The amount of spliced mRNA was estimated to represent 0.5-5% of the normal smad3 mRNA. When smad3-Delta3 is overexpressed in a fibrosarcoma cell line, the Smad3-Delta3 is translocated to the nucleus upon TGF-beta stimulation and binds the Smad responsive element. Using a CAGA luciferase reporter system, we demonstrate that Smad3-Delta3 has transcriptional activity and we conclude that Smad3-Delta3 possesses functional transactivating properties.

  2. miR-324-3p promotes gastric cancer development by activating Smad4-mediated Wnt/beta-catenin signaling pathway.

    PubMed

    Sun, Guang-Li; Li, Zheng; Wang, Wei-Zhi; Chen, Zheng; Zhang, Lei; Li, Qing; Wei, Song; Li, Bo-Wen; Xu, Jiang-Hao; Chen, Liang; He, Zhong-Yuan; Ying, Kai; Zhang, Xuan; Xu, Hao; Zhang, Dian-Cai; Xu, Ze-Kuan

    2018-06-01

    Emerging evidence suggested that miRNAs can function as oncogenes or tumor suppressors by regulating downstream target genes. miR-324-3p has been reported to function in several carcinomas, but its role in gastric cancer (GC) is still unknown. This study aims to explore the effects of miR-324-3p on the development of GC. Expression of miR-324-3p was examined in GC cells and tissues by qRT-PCR. Effects of miR-324-3p on GC cells were evaluated by cell vitality assay, colony formation assay, cell migration assay, and flow cytometric assay. The dual luciferase assay was used to verify whether miR-324-3p could interact with the potential target genes. Western blot was used to assess the expression level of Smad4 and beta-catenin. Intracellular ATP level was also examined. The tumor xenografts were established using nude mice. A gastric organoid model was made from fresh stomach tissue. miR-324-3p was expressed at higher levels in the tumor tissues compared with adjacent normal tissues. Overexpression of miR-324-3p promoted cell growth, migration, and decreased apoptosis. miR-324-3p repressed the expression of Smad4, and loss of Smad4 activated the Wnt/beta-catenin signaling pathway. Overexpression of Smad4 rescued the effects of miR-324-3p on GC cells. The intracellular ATP level was upregulated with overexpression of miR-324-3p. miR-324-3p facilitated tumor cell colonization and growth in vivo and contributed to the growth of gastric organoids. The results suggested that miR-324-3p promoted GC through activating the Smad4-mediated Wnt/beta-catenin signaling pathway. The miR-324-3p/Smad4/Wnt signaling axis may be a potential therapeutic target to prevent GC progression.

  3. Docosahexaenoic acid attenuates Western diet-induced hepatic fibrosis in Ldlr−/− mice by targeting the TGFβ-Smad3 pathway[S

    PubMed Central

    Lytle, Kelli A.; Depner, Christopher M.; Wong, Carmen P.; Jump, Donald B.

    2015-01-01

    DHA (22:6,ω3), but not EPA (20:5,ω3), attenuates Western diet (WD)-induced hepatic fibrosis in a Ldlr−/− mouse model of nonalcoholic steatohepatitis. We examined the molecular basis for the differential effect of dietary EPA and DHA on WD-induced hepatic fibrosis. DHA was more effective than EPA at preventing WD-induced effects on hepatic transcripts linked to fibrosis, including collagen 1A1 (Col1A1), transforming growth factor-β (TGFβ) signaling and proteins involved in remodeling the extracellular matrix, including metalloproteases, tissue inhibitors of metalloproteases, and lysyl oxidase subtypes. Examination of the TGFβ pathway showed that mice fed the WD supplemented with either olive oil or EPA had a significant (≥2.5-fold) increase in hepatic nuclear abundance of phospho-mothers against decapentaplegic homolog (Smad)3 when compared with mice fed the reference diet (RD); Smad3 is a key regulator of Col1A1 expression in stellate cells. In contrast, mice fed the WD supplemented with DHA had no increase in phospho-Smad3 when compared with mice fed the RD. Changes in hepatic phospho-Smad3 nuclear content correlated with proCol1A1 mRNA and protein abundance. Pretreatment of human LX2 stellate cells with DHA, but not other unsaturated fatty acids, blocked TGFβ1-mediated induction of Col1A1. In conclusion, DHA attenuates WD-induced fibrosis by targeting the TGFβ-Smad3-Col1A1 pathway in stellate cells. PMID:26315048

  4. Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease.

    PubMed

    Chen, Justin L; Walton, Kelly L; Hagg, Adam; Colgan, Timothy D; Johnson, Katharine; Qian, Hongwei; Gregorevic, Paul; Harrison, Craig A

    2017-06-27

    The transforming growth factor-β (TGF-β) network of ligands and intracellular signaling proteins is a subject of intense interest within the field of skeletal muscle biology. To define the relative contribution of endogenous TGF-β proteins to the negative regulation of muscle mass via their activation of the Smad2/3 signaling axis, we used local injection of adeno-associated viral vectors (AAVs) encoding ligand-specific antagonists into the tibialis anterior (TA) muscles of C57BL/6 mice. Eight weeks after AAV injection, inhibition of activin A and activin B signaling produced moderate (∼20%), but significant, increases in TA mass, indicating that endogenous activins repress muscle growth. Inhibiting myostatin induced a more profound increase in muscle mass (∼45%), demonstrating a more prominent role for this ligand as a negative regulator of adult muscle mass. Remarkably, codelivery of activin and myostatin inhibitors induced a synergistic response, resulting in muscle mass increasing by as much as 150%. Transcription and protein analysis indicated that this substantial hypertrophy was associated with both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis (recently identified as a positive regulator of muscle mass). Analyses indicated that hypertrophy was primarily driven by an increase in protein synthesis, but a reduction in ubiquitin-dependent protein degradation pathways was also observed. In models of muscular dystrophy and cancer cachexia, combined inhibition of activins and myostatin increased mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of specifically targeting multiple Smad2/3-activating ligands in skeletal muscle.

  5. Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease

    PubMed Central

    Chen, Justin L.; Walton, Kelly L.; Hagg, Adam; Colgan, Timothy D.; Johnson, Katharine; Qian, Hongwei; Gregorevic, Paul; Harrison, Craig A.

    2017-01-01

    The transforming growth factor-β (TGF-β) network of ligands and intracellular signaling proteins is a subject of intense interest within the field of skeletal muscle biology. To define the relative contribution of endogenous TGF-β proteins to the negative regulation of muscle mass via their activation of the Smad2/3 signaling axis, we used local injection of adeno-associated viral vectors (AAVs) encoding ligand-specific antagonists into the tibialis anterior (TA) muscles of C57BL/6 mice. Eight weeks after AAV injection, inhibition of activin A and activin B signaling produced moderate (∼20%), but significant, increases in TA mass, indicating that endogenous activins repress muscle growth. Inhibiting myostatin induced a more profound increase in muscle mass (∼45%), demonstrating a more prominent role for this ligand as a negative regulator of adult muscle mass. Remarkably, codelivery of activin and myostatin inhibitors induced a synergistic response, resulting in muscle mass increasing by as much as 150%. Transcription and protein analysis indicated that this substantial hypertrophy was associated with both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis (recently identified as a positive regulator of muscle mass). Analyses indicated that hypertrophy was primarily driven by an increase in protein synthesis, but a reduction in ubiquitin-dependent protein degradation pathways was also observed. In models of muscular dystrophy and cancer cachexia, combined inhibition of activins and myostatin increased mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of specifically targeting multiple Smad2/3-activating ligands in skeletal muscle. PMID:28607086

  6. Transcription of Epstein-Barr virus-encoded nuclear antigen 1 promoter Qp is repressed by transforming growth factor-beta via Smad4 binding element in human BL cells.

    PubMed

    Liang, C L; Tsai, C N; Chung, P J; Chen, J L; Sun, C M; Chen, R H; Hong, J H; Chang, Y S

    2000-11-10

    In Epstein-Barr virus (EBV)-infected BL cells, the oncogenic EBV-encoded nuclear antigen 1 (EBNA 1) gene is directed from the latent promoter Qp. Yeast one-hybrid screen analysis using the -50 to -37 sequence of Qp as the bait was carried out to identify transcriptional factors that may control Qp activity. Results showed that Smad4 binds the -50 to -37 sequence of Qp, indicating that this promoter is potentially regulated by TGF-beta. The association of Smad4 with Qp was further confirmed by supershift of EMSA complexes using Smad4-specific antibody. The transfection of a Qp reporter construct in two EBV(+) BL cell lines, Rael and WW2, showed that Qp activity is repressed in response to the TGF-beta treatment. This repression involves the interaction of a Smad3/Smad4 complex and the transcriptional repressor TGIF, as determined by cotransfection assay and coimmunoprecipitation analysis. Results suggest that TGF-beta may transcriptionally repress Qp through the Smad4-binding site in human BL cells. Copyright 2000 Academic Press.

  7. E-Cadherin Antagonizes Transforming Growth Factor β1 Gene Induction in Hepatic Stellate Cells by Inhibiting RhoA–Dependent Smad3 Phosphorylation

    PubMed Central

    Cho, Il Je; Kim, Young Woo; Han, Chang Yeob; Kim, Eun Hyun; Anderson, Richard A.; Lee, Young Sok; Lee, Chang Ho; Hwang, Se Jin; Kim, Sang Geon

    2011-01-01

    Cadherins mediate cell-cell adhesion and catenin (ctn)-related signaling pathways. Liver fibrosis is accompanied by the loss of E-cadherin (ECAD), which promotes the process of epithelial-mesenchymal transition. Currently, no information is available about the inhibitory role of ECAD in hepatic stellate cell activation. Because of ECAD’s potential for inhibiting the induction of transforming growth factor β1 (TGFβ1), we investigated whether ECAD overexpression prevents TGFβ1 gene induction; we also examined what the molecular basis could be. Forced expression of ECAD decreased α-smooth muscle actin and vimentin levels and caused decreases in the constitutive and inducible expression of the TGFβ1 gene and its downstream genes. ECAD overexpression decreased Smad3 phosphorylation, weakly decreased Smad2 phosphorylation, and thus inhibited Smad reporter activity induced by either treatment with TGFβ1 or Smad3 overexpression. Overexpression of a dominant negative mutant of ras homolog gene family A (RhoA) diminished the ability of TGFβ1 to elicit its own gene induction. Consistently, transfection with a constitutively active mutant of RhoA reversed the inhibition of TGFβ1-inducible or Smad3-inducible reporter activity by ECAD. Studies using the mutant constructs of ECAD revealed that the p120-ctn binding domain of ECAD was responsible for TGFβ1 repression. Consistently, ECAD was capable of binding p120-ctn, which recruited RhoA; this prevented TGFβ1 from increasing RhoA-mediated Smad3 phosphorylation. In the liver samples of patients with mild or severe fibrosis, ECAD expression reciprocally correlated with the severity of fibrosis. Conclusion Our results demonstrate that ECAD inhibits Smad3/2 phosphorylation by recruiting RhoA to p120-ctn at the p120-ctn binding domain, whereas the loss of ECAD due to cadherin switching promotes the up-regulation of TGFβ1 and its target genes, and facilitates liver fibrosis. PMID:20890948

  8. E-cadherin antagonizes transforming growth factor β1 gene induction in hepatic stellate cells by inhibiting RhoA-dependent Smad3 phosphorylation.

    PubMed

    Cho, Il Je; Kim, Young Woo; Han, Chang Yeob; Kim, Eun Hyun; Anderson, Richard A; Lee, Young Sok; Lee, Chang Ho; Hwang, Se Jin; Kim, Sang Geon

    2010-12-01

    Cadherins mediate cell-cell adhesion and catenin (ctn)-related signaling pathways. Liver fibrosis is accompanied by the loss of E-cadherin (ECAD), which promotes the process of epithelial-mesenchymal transition. Currently, no information is available about the inhibitory role of ECAD in hepatic stellate cell activation. Because of ECAD's potential for inhibiting the induction of transforming growth factor β1 (TGFβ1), we investigated whether ECAD overexpression prevents TGFβ1 gene induction; we also examined what the molecular basis could be. Forced expression of ECAD decreased α-smooth muscle actin and vimentin levels and caused decreases in the constitutive and inducible expression of the TGFβ1 gene and its downstream genes. ECAD overexpression decreased Smad3 phosphorylation, weakly decreased Smad2 phosphorylation, and thus inhibited Smad reporter activity induced by either treatment with TGFβ1 or Smad3 overexpression. Overexpression of a dominant negative mutant of ras homolog gene family A (RhoA) diminished the ability of TGFβ1 to elicit its own gene induction. Consistently, transfection with a constitutively active mutant of RhoA reversed the inhibition of TGFβ1-inducible or Smad3-inducible reporter activity by ECAD. Studies using the mutant constructs of ECAD revealed that the p120-ctn binding domain of ECAD was responsible for TGFβ1 repression. Consistently, ECAD was capable of binding p120-ctn, which recruited RhoA; this prevented TGFβ1 from increasing RhoA-mediated Smad3 phosphorylation. In the liver samples of patients with mild or severe fibrosis, ECAD expression reciprocally correlated with the severity of fibrosis. Our results demonstrate that ECAD inhibits Smad3/2 phosphorylation by recruiting RhoA to p120-ctn at the p120-ctn binding domain, whereas the loss of ECAD due to cadherin switching promotes the up-regulation of TGFβ1 and its target genes, and facilitates liver fibrosis. Copyright © 2010 American Association for the Study of Liver Diseases.

  9. The Smad4/PTEN Expression Pattern Predicts Clinical Outcomes in Colorectal Adenocarcinoma.

    PubMed

    Chung, Yumin; Wi, Young Chan; Kim, Yeseul; Bang, Seong Sik; Yang, Jung-Ho; Jang, Kiseok; Min, Kyueng-Whan; Paik, Seung Sam

    2018-01-01

    Smad4 and PTEN are prognostic indicators for various tumor types. Smad4 regulates tumor suppression, whereas PTEN inhibits cell proliferation. We analyzed and compared the performance of Smad4 and PTEN for predicting the prognosis of patients with colorectal adenocarcinoma. Combined expression patterns based on Smad4+/- and PTEN+/- status were evaluated by immunostaining using a tissue microarray of colorectal adenocarcinoma. The relationships between the protein expression and clinicopathological variables were analyzed. Smad4-/PTEN- status was most frequently observed in metastatic adenocarcinoma, followed by primary adenocarcinoma and tubular adenoma (p<.001). When Smad4-/PTEN- and Smad4+/PTEN+ groups were compared, Smad4-/PTEN- status was associated with high N stage (p=.018) and defective mismatch repair proteins (p=.006). Significant differences in diseasefree survival and overall survival were observed among the three groups (Smad4+/PTEN+, Smad4-/PTEN+ or Smad4+/PTEN-, and Smad4-/PTEN-) (all p<.05). Concurrent loss of Smad4 and PTEN may lead to more aggressive disease and poor prognosis in patients with colorectal adenocarcinoma compared to the loss of Smad4 or PTEN alone.

  10. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen genemore » expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.« less

  11. BMP15 suppresses progesterone production by down-regulating StAR via ALK3 in human granulosa cells.

    PubMed

    Chang, Hsun-Ming; Cheng, Jung-Chien; Klausen, Christian; Leung, Peter C K

    2013-12-01

    In addition to somatic cell-derived growth factors, oocyte-derived growth differentiation factor (GDF)9 and bone morphogenetic protein (BMP)15 play essential roles in female fertility. However, few studies have investigated their effects on human ovarian steroidogenesis, and fewer still have examined their differential effects or underlying molecular determinants. In the present study, we used immortalized human granulosa cells (SVOG) and human granulosa cell tumor cells (KGN) to compare the effects of GDF9 and BMP15 on steroidogenic enzyme expression and investigate potential mechanisms of action. In SVOG cells, neither GDF9 nor BMP15 affects the mRNA levels of P450 side-chain cleavage enzyme or 3β-hydroxysteroid dehydrogenase. However, treatment with BMP15, but not GDF9, significantly decreases steroidogenic acute regulatory protein (StAR) mRNA and protein levels as well as progesterone production. These suppressive effects, along with the induction of Sma and Mad-related protein (SMAD)1/5/8 phosphorylation, are attenuated by cotreatment with 2 different BMP type I receptor inhibitors (dorsomorphin and DMH-1). Furthermore, depletion of activin receptor-like kinase (ALK)3 using small interfering RNA reverses the effects of BMP15 on SMAD1/5/8 phosphorylation and StAR expression. Similarly, knockdown of ALK3 abolishes BMP15-induced SMAD1/5/8 phosphorylation in KGN cells. These results provide evidence that oocyte-derived BMP15 down-regulates StAR expression and decreases progesterone production in human granulosa cells, likely via ALK3-mediated SMAD1/5/8 signaling. Our findings suggest that oocyte may play a critical role in the regulation of progesterone to prevent premature luteinization during the late stage of follicle development.

  12. Functional characterization of TRAP1-like protein involved in modulating fibrotic processes mediated by TGF-β/Smad signaling in hypertrophic scar fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.; Department of Pediatric Surgery, Shanghai Children’s Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127; Chu, J.

    2015-03-15

    The transforming growth factor-β1 (TGF-β)-mediated signaling pathway is believed to be closely associated with wound healing and scar formation, in which TRAP1-like protein (TLP) plays a role in regulating the balance of Smad2 vs. Smad3 signaling. Our previous study revealed the relation between TLP and collagen synthesis in normal human skin fibroblasts. Here, we present a detailed analysis of the effects of TLP on the process of hypertrophic scar formation and contraction. To explore and verify a contribution of TLP to the pathological mechanism of hypertrophic scar fibroblasts (HSFb), we constructed lentiviral vectors that either overexpressed TLP or encoded smallmore » hairpin RNAs (shRNAs) targeting TLP, then we transfected them into HSFb. TLP knockdown in HSFb resulted in reduced levels of cell contraction, type I and type III collagen mRNA transcripts and protein expression, and higher levels of fibronectin (FN) compared to control groups. In addition, knockdown of TLP promoted the phosphorylation of Smad3 but repressed Smad2 and Erk-1/2 phosphorylation in human hypertrophic scar fibroblasts compared to control groups. The reduction of TLP did not interfere with HSF proliferative ability, but exogenous TLP cooperated with TGF-β1 to increase cell viability. Together, our findings demonstrate evidence for a contribution of TLP expression in hypertrophic scar formation and contraction. - Highlights: • TLP acted different roles in the activating of Smad2- and Smad3-dependent signaling. • TLP may induce TGF-β1-mediated collagens expression through Smad signalings and MAPK signaling. • TLP may enhance HSFb contraction by increasing the expression of α-SMA. • Exogenous TLP can cooperate with TGF-β1 to increase cell viability.« less

  13. Decreased SMAD4 expression is associated with induction of epithelial-to-mesenchymal transition and cetuximab resistance in head and neck squamous cell carcinoma

    PubMed Central

    Cheng, Haixia; Fertig, Elana J; Ozawa, Hiroyuki; Hatakeyama, Hiromitsu; Howard, Jason D; Perez, Jimena; Considine, Michael; Thakar, Manjusha; Ranaweera, Ruchira; Krigsfeld, Gabriel; Chung, Christine H

    2015-01-01

    Epidermal growth factor receptor (EGFR) is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC) and cetuximab, a monoclonal antibody targeting this receptor, is widely used to treat these patients. In the following investigation, we examined the role of SMAD4 down-regulation in mediating epithelial-to-mesenchymal transition (EMT) and cetuximab resistance in HNSCC. We determined that SMAD4 downregulation was significantly associated with increased cell motility, increased expression of vimentin, and cetuximab resistance in HNSCC cell lines. In the HNSCC genomic dataset obtained from The Cancer Genome Atlas, SMAD4 was altered in 20/279 (7%) of HNSCC via homozygous deletion, and nonsense, missense, and silent mutations. When SMAD4 expression was compared with respect to human papillomavirus (HPV) status, HPV-positive tumors had higher expression compared to HPV-negative tumors. Furthermore, higher SMAD4 expression also correlated with higher CDKN2A (p16) expression. Our data suggest that SMAD4 down-regulation plays an important role in the induction of EMT and cetuximab resistance. Patients with higher SMAD4 expression may benefit from cetuximab use in the clinic. PMID:26046389

  14. Smad4 regulates growth plate matrix production and chondrocyte polarity.

    PubMed

    Whitaker, Amanda T; Berthet, Ellora; Cantu, Andrea; Laird, Diana J; Alliston, Tamara

    2017-03-15

    Smad4 is an intracellular effector of the TGFβ family that has been implicated in Myhre syndrome, a skeletal dysplasia characterized by short stature, brachydactyly and stiff joints. The TGFβ pathway also plays a critical role in the development, organization and proliferation of the growth plate, although the exact mechanisms remain unclear. Skeletal phenotypes in Myhre syndrome overlap with processes regulated by the TGFβ pathway, including organization and proliferation of the growth plate and polarity of the chondrocyte. We used in vitro and in vivo models of Smad4 deficiency in chondrocytes to test the hypothesis that deregulated TGFβ signaling leads to aberrant extracellular matrix production and loss of chondrocyte polarity. Specifically, we evaluated growth plate chondrocyte polarity in tibiae of Col2-Cre +/- ;Smad4 fl/fl mice and in chondrocyte pellet cultures. In vitro and in vivo , Smad4 deficiency decreased aggrecan expression and increased MMP13 expression. Smad4 deficiency disrupted the balance of cartilage matrix synthesis and degradation, even though the sequential expression of growth plate chondrocyte markers was intact. Chondrocytes in Smad4-deficient growth plates also showed evidence of polarity defects, with impaired proliferation and ability to undergo the characteristic changes in shape, size and orientation as they differentiated from resting to hypertrophic chondrocytes. Therefore, we show that Smad4 controls chondrocyte proliferation, orientation, and hypertrophy and is important in regulating the extracellular matrix composition of the growth plate. © 2017. Published by The Company of Biologists Ltd.

  15. Smad4 regulates growth plate matrix production and chondrocyte polarity

    PubMed Central

    Whitaker, Amanda T.; Berthet, Ellora; Cantu, Andrea; Laird, Diana J.

    2017-01-01

    ABSTRACT Smad4 is an intracellular effector of the TGFβ family that has been implicated in Myhre syndrome, a skeletal dysplasia characterized by short stature, brachydactyly and stiff joints. The TGFβ pathway also plays a critical role in the development, organization and proliferation of the growth plate, although the exact mechanisms remain unclear. Skeletal phenotypes in Myhre syndrome overlap with processes regulated by the TGFβ pathway, including organization and proliferation of the growth plate and polarity of the chondrocyte. We used in vitro and in vivo models of Smad4 deficiency in chondrocytes to test the hypothesis that deregulated TGFβ signaling leads to aberrant extracellular matrix production and loss of chondrocyte polarity. Specifically, we evaluated growth plate chondrocyte polarity in tibiae of Col2-Cre+/−;Smad4fl/fl mice and in chondrocyte pellet cultures. In vitro and in vivo, Smad4 deficiency decreased aggrecan expression and increased MMP13 expression. Smad4 deficiency disrupted the balance of cartilage matrix synthesis and degradation, even though the sequential expression of growth plate chondrocyte markers was intact. Chondrocytes in Smad4-deficient growth plates also showed evidence of polarity defects, with impaired proliferation and ability to undergo the characteristic changes in shape, size and orientation as they differentiated from resting to hypertrophic chondrocytes. Therefore, we show that Smad4 controls chondrocyte proliferation, orientation, and hypertrophy and is important in regulating the extracellular matrix composition of the growth plate. PMID:28167493

  16. Potential Ameliorative Effects of Qing Ye Dan Against Cadmium Induced Prostatic Deficits via Regulating Nrf-2/HO-1 and TGF-β1/Smad Pathways.

    PubMed

    Du, Lifen; Lei, Yongfang; Chen, Jinglou; Song, Hongping; Wu, Xinying

    2017-01-01

    Cadmium (Cd) is an environmental pollutant with reproductive toxicity. Swertia mileensis is used in Chinese medicine for the treatment of prostatic deficits and named as Qing Ye Dan (QYD). This study was undertaken to investigate the potential protective effects of QYD against Cd-induced prostatic deficits. Rat model of prostatic deficits was induced by 0.2 mg/kg/d CdCl2 subcutaneous injection for 15 days. The prostatic oxidative stress was evaluated by detecting the levels of malondialdehyde, nitric oxide, reduced/ oxidized glutathione, total sulfhydryl groups and enzymatic antioxidant status. The prostatic inflammation was estimated by testing the levels of pro-inflammatory cytokines. The levels of epithelial-mesenchymal transition (EMT) markers E-cadherin, fibronectin, vimentin and α-smooth muscle actin were measured by qPCR analysis. Additionally, the prostatic expressions of transforming growth factor-β1 (TGF-β1), type I TGF-β receptor (TGF-βRI), Smad2, phosphorylation-Smad2 (p-Smad2), Smad3, p-Smad3, Smad7, nuclear related factor-2 (Nrf-2), heme oxygenase-1 (HO-1), B-cell CLL/lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax) were measured by western blot assay. It was found that QYD ameliorated the Cd-induced prostatic oxidative stress and inflammation, attenuated prostatic EMT, inhibited the TGF-β1/Smad pathway, increased Bcl-2/Bax ratio and enhanced the activity of Nrf-2/HO-1 pathway. These results showed that QYD could ameliorate Cd-induced prostatic deficits via modulating Nrf-2/HO-1 and TGF-β1/Smad pathways. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease.

    PubMed

    Hama, Taketsugu; Nakanishi, Koichi; Sato, Masashi; Mukaiyama, Hironobu; Togawa, Hiroko; Shima, Yuko; Miyajima, Masayasu; Nozu, Kandai; Nagao, Shizuko; Takahashi, Hisahide; Sako, Mayumi; Iijima, Kazumoto; Yoshikawa, Norishige; Suzuki, Hiroyuki

    2017-12-01

    Cystic epithelia acquire mesenchymal-like features in polycystic kidney disease (PKD). In this phenotypic alteration, it is well known that transforming growth factor (TGF)-β/Smad3 signaling is involved; however, there is emerging new data on Smad3 phosphoisoforms: Smad3 phosphorylated at linker regions (pSmad3L), COOH-terminal regions (pSmad3C), and both (pSmad3L/C). pSmad3L/C has a pathological role in colorectal cancer. Mesenchymal phenotype-specific cell responses in the TGF-β/Smad3 pathway are implicated in carcinomas. In this study, we confirmed mesenchymal features and examined Smad3 phosphoisoforms in the cpk mouse, a model of autosomal recessive PKD. Kidney sections were stained with antibodies against mesenchymal markers and domain-specific phospho-Smad3. TGF-β, pSmad3L, pSmad3C, JNK, cyclin-dependent kinase (CDK) 4, and c-Myc were evaluated by Western blotting. Cophosphorylation of pSmad3L/C was assessed by immunoprecipitation. α-Smooth muscle actin, which indicates mesenchymal features, was expressed higher in cpk mice. pSmad3L expression was increased in cpk mice and was predominantly localized in the nuclei of tubular epithelial cells in cysts; however, pSmad3C was equally expressed in both cpk and control mice. Levels of pSmad3L, JNK, CDK4, and c-Myc protein in nuclei were significantly higher in cpk mice than in controls. Immunoprecipitation showed that Smad3 was cophosphorylated (pSmad3L/C) in cpk mice. Smad3 knockout/ cpk double-mutant mice revealed amelioration of cpk abnormalities. These findings suggest that upregulating c-Myc through the JNK/CDK4-dependent pSmad3L pathway may be key to the pathophysiology in cpk mice. In conclusion, a qualitative rather than a quantitative abnormality of the TGF-β/Smad3 pathway is involved in PKD and may be a target for disease-specific intervention. Copyright © 2017 the American Physiological Society.

  18. Oncogenic Smad3 signaling induced by chronic inflammation is an early event in ulcerative colitis-associated carcinogenesis.

    PubMed

    Kawamata, Seiji; Matsuzaki, Koichi; Murata, Miki; Seki, Toshihito; Matsuoka, Katsuyoshi; Iwao, Yasushi; Hibi, Toshifumi; Okazaki, Kazuichi

    2011-03-01

    Both chronic inflammation and somatic mutations likely contribute to the pathogenesis of ulcerative colitis (UC)-associated dysplasia and cancer. On the other hand, both tumor suppression and oncogenesis can result from transforming growth factor (TGF)-β signaling. TGF-β type I receptor (TβRI) and Ras-associated kinases differentially phosphorylate a mediator, Smad3, to become C-terminally phosphorylated Smad3 (pSmad3C), linker phosphorylated Smad3 (pSmad3L), and both C-terminally and linker phosphorylated Smad3 (pSmad3L/C). The pSmad3C/p21(WAF1) pathway transmits a cytostatic TGF-β signal, while pSmad3L and pSmad3L/C promote cell proliferation by upregulating c-Myc oncoprotein. The purpose of this study was to clarify the alteration of Smad3 signaling during UC-associated carcinogenesis. By immunostaining and immunofluorescence, we compared pSmad3C-, pSmad3L-, and pSmad3L/C-mediated signaling in colorectal specimens representing colitis, dysplasia, or cancer from eight UC patients with signaling in normal colonic crypts. We also investigated p53 expression and mutations of p53 and K-ras genes. We further sought functional meaning of the phosphorylated Smad3-mediated signaling in vitro. As enterocytes in normal crypts migrated upward toward the lumen, cytostatic pSmad3C/p21(WAF1) tended to increase, while pSmad3L/c-Myc shown by progenitor cells gradually decreased. Colitis specimens showed prominence of pSmad3L/C/c-Myc, mediated by TGF-β and tumor necrosis factor (TNF)-α, in all enterocyte nuclei throughout entire crypts. In proportion with increases in frequency of p53 and K-ras mutations during progression from dysplasia to cancer, the oncogenic pSmad3L/c-Myc pathway came to be dominant with suppression of the pSmad3C/p21(WAF1) pathway. Oncogenic Smad3 signaling, altered by chronic inflammation and eventually somatic mutations, promotes UC-associated neoplastic progression by upregulating growth-related protein. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.

  19. Magnolol Attenuates Concanavalin A-induced Hepatic Fibrosis, Inhibits CD4+ T Helper 17 (Th17) Cell Differentiation and Suppresses Hepatic Stellate Cell Activation: Blockade of Smad3/Smad4 Signalling.

    PubMed

    Zhang, Hongjun; Ju, Baoling; Zhang, Xiaoli; Zhu, Yanfei; Nie, Ying; Xu, Yuanhong; Lei, Qiuxia

    2017-06-01

    Magnolol is a pharmacological biphenolic compound extracted from Chinese herb Magnolia officinalis, which displays anti-inflammatory and antioxidant effects. This study was aimed at exploring the potential effect of magnolol on immune-related liver fibrosis. Herein, BALB/c mice were injected with concanavalin A (ConA, 8 mg/kg/week) up to 6 weeks to establish hepatic fibrosis, and magnolol (10, 20, 30 mg/kg/day) was given to these mice orally throughout the whole experiment. We found that magnolol preserved liver function and attenuated liver fibrotic injury in vivo. In response to ConA stimulation, the CD4 + T cells preferred to polarizing towards CD4 + T helper 17 (Th17) cells in liver. Magnolol was observed to inhibit Th17 cell differentiation in ConA-treated liver in addition to suppressing interleukin (IL)-17A generation. Hepatic stellate cells were activated in fibrotic liver as demonstrated by increased alpha smooth muscle actin (α-SMA) and desmin. More transforming growth factor (TGF)-β1 and activin A were secreted into the serum. Magnolol suppressed this abnormal HSC activation. Furthermore, the phosphorylation of Smad3 in its linker area (Thr179, Ser 204/208/213) was inhibited by magnolol. In vitro, the recombinant IL-17A plus TGF-β1 or activin A induced activation of human LX2 HSCs and promoted their collagen production. Smad3/Smad4 signalling pathway was activated in LX2 cells exposed to the fibrotic stimuli, as illustrated by the up-regulated phospho-Smad3 and the enhanced interaction between Smad3 and Smad4. These alterations were suppressed by magnolol. Collectively, our study reveals a novel antifibrotic effect of magnolol on Th17 cell-mediated fibrosis. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  20. Tumour cells down-regulate CCN2 gene expression in co-cultured fibroblasts in a Smad7- and ERK-dependent manner.

    PubMed

    van Rooyen, Beverley A; Schäfer, Georgia; Leaner, Virna D; Parker, M Iqbal

    2013-10-03

    Recent studies have revealed that interactions between tumour cells and the surrounding stroma play an important role in facilitating tumour growth and invasion. Stromal fibroblasts produce most of the extracellular matrix components found in the stroma. The aim of this study was to investigate mechanisms involved in tumour cell-mediated regulation of extracellular matrix and adhesion molecules in co-cultured fibroblasts. To this end, microarray analysis was performed on CCD-1068SK human fibroblast cells after direct co-culture with MDA-MB-231 human breast tumour cells. We found that the expression of both connective tissue growth factor (CTGF/CCN2) and type I collagen was negatively regulated in CCD-1068SK fibroblast cells under direct co-culture conditions. Further analysis revealed that Smad7, a known negative regulator of the Smad signalling pathway involved in CCN2 promoter regulation, was increased in directly co-cultured fibroblasts. Inhibition of Smad7 expression in CCD-1068SK fibroblasts resulted in increased CCN2 expression, while Smad7 overexpression had the opposite effect. Silencing CCN2 gene expression in fibroblasts led, in turn, to a decrease in type I collagen mRNA and protein levels. ERK signalling was also shown to be impaired in CCD-1068SK fibroblasts after direct co-culture with MDA-MB-231 tumour cells, with Smad7 overexpression in fibroblasts leading to a similar decrease in ERK activity. These effects were not, however, seen in fibroblasts that were indirectly co-cultured with tumour cells. We therefore conclude that breast cancer cells require close contact with fibroblasts in order to upregulate Smad7 which, in turn, leads to decreased ERK signalling resulting in diminished expression of the stromal proteins CCN2 and type I collagen.

  1. Direct interaction of Ski with either Smad3 or Smad4 is necessary and sufficient for Ski-mediated repression of transforming growth factor-beta signaling.

    PubMed

    Ueki, Nobuhide; Hayman, Michael J

    2003-08-29

    The oncoprotein Ski represses transforming growth factor (TGF)-beta signaling in an N-CoR-independent manner. However, the molecular mechanism(s) underlying this event has not been elucidated. Here, we identify an additional domain in Ski that mediates interaction with Smad3 which is important for this repression. This domain is distinct from the previously reported N-terminal Smad3 binding domain in Ski. Individual alanine substitution of several residues in the domain significantly affected Ski-Smad3 interaction. Furthermore, combined mutations within this domain, together with those in the previously identified Smad3 binding domain, can completely abolish the interaction of Ski with Smad3, while mutation in each domain alone retained partial interaction. By introducing those mutations that abolish direct interaction with Smad3 or Smad4 individually, or in combination, we show that interaction of Ski with either Smad3 or Smad4 is sufficient for Ski-mediated repression of TGF-beta signaling. Furthermore our results clearly demonstrate that Ski does not disrupt Smad3-Smad4 heteromer formation, and recruitment of Ski to the Smad3/4 complex through binding to either Smad3 or Smad4 is both necessary and sufficient for repression.

  2. Differential Phosphorylation of Smad1 Integrates BMP and Neurotrophin Pathways through Erk/Dusp in Axon Development

    PubMed Central

    Finelli, Mattéa J.; Murphy, Kevin J.; Chen, Lei; Zou, Hongyan

    2013-01-01

    SUMMARY Sensory axon development requires concerted actions of growth factors for the precise control of axonal outgrowth and target innervation. How developing sensory neurons integrate different cues is poorly understood. We demonstrate here that Smad1 activation is required for neurotrophin-mediated sensory axon growth in vitro and in vivo. Through differential phosphorylation, Smad1 exerts transcriptional selectivity to regulate the expression and activity of Erk1 and Erk2—two key neurotrophin effectors. Specifically, BMPs signal through carboxy-terminal phosphorylation of Smad1 (pSmad1C) to induce Erk1/2 transcription for enhanced neurotrophin responsiveness. Meanwhile, neurotrophin signaling results in linker phosphorylation of Smad1 (pSmad1L), which in turn upregulates an Erk-specific dual-specificity phosphatase, Dusp6, leading to reduced pErk1/2, and constituting a negative feedback loop to prevent axon overgrowth. Together, BMP and neurotrophin pathways are integrated in a tightly regulated signaling network with balanced ratio of Erk1/2 and pErk1/2 to direct the precise connections between sensory neurons and peripheral targets. PMID:23665221

  3. Reduced Smad4 expression and DNA topoisomerase inhibitor chemosensitivity in non-small cell lung cancer.

    PubMed

    Ziemke, Michael; Patil, Tejas; Nolan, Kyle; Tippimanchai, Darinee; Malkoski, Stephen P

    2017-07-01

    Smad4 is a tumor suppressor that transduces transforming growth factor beta signaling and regulates genomic stability. We previously found that Smad4 knockdown in vitro inhibited DNA repair and increased sensitivity to DNA topoisomerase inhibitors. In this study, we assessed the association between reduced Smad4 expression and DNA topoisomerase inhibitor sensitivity in human non-small cell lung cancer (NSCLC) patients and evaluated the relationship between genomic alterations of Smad4 and molecular alterations in DNA repair molecules. We retrospectively identified NSCLC patients who received etoposide or gemcitabine. Chemotherapeutic response was quantified by RECIST 1.1 criteria and Smad4 expression was assessed by immunohistochemistry. Relationships between Smad4 mutation and DNA repair molecule mutations were evaluated using publically available datasets. We identified 28 individuals who received 30 treatments with gemcitabine or etoposide containing regimens for NSCLC. Reduced Smad4 expression was seen in 13/28 patients and was not associated with significant differences in clinical or pathologic parameters. Patients with reduced Smad4 expression had a larger response to DNA topoisomerase inhibitor containing regimens then patients with high Smad4 expression (-25.7% vs. -6.8% in lesion size, p=0.03); this relationship was more pronounced with gemcitabine containing regimens. The overall treatment response was higher in patients with reduced Smad4 expression (8/14 vs 2/16 p=0.02). Analysis of data from The Cancer Genome Atlas revealed that Smad4 mutation or homozygous loss was mutually exclusive with genomic alterations in DNA repair molecules. Reduced Smad4 expression may predict responsiveness to regimens that contain DNA topoisomerase inhibitors. That Smad4 signaling alterations are mutually exclusive with alterations in DNA repair machinery is consistent with an important role of Smad4 in regulating DNA repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Predicting Bone Metastatic Potential of Prostate Cancer via Computational Modeling of TGF-Beta Signaling

    DTIC Science & Technology

    2008-05-01

    receptor trafficking. Smad phosphorylation Although the receptors for TGF-β signal through both Smad2 and Smad3 proteins in epithelial cells, we...select Smad2 to represent the R-Smads, because the two are virtually identical kinetically; furthermore, Smad2 is ~12-fold more abundant than Smad3 (11...the type of R-Smads. For example, regarding nuclear import, it has been proposed that Smad2, Smad3 , and Smad4 enter the nucleus by direct

  5. Regulation of the Anaphase-promoting Complex–Separase Cascade by Transforming Growth Factor-β Modulates Mitotic Progression in Bone Marrow Stromal Cells

    PubMed Central

    Fujita, Takeo; Epperly, Michael W.; Zou, Hui; Greenberger, Joel S.

    2008-01-01

    Alteration of the tumor microenvironment by aberrant stromal cells influences many aspects of cell biology, including differentiation of stem cells and tumor metastasis. The role of transforming growth factor (TGF)-β signaling in stromal cells of the tissue microenvironment is critical to both pathways. We examined murine marrow stromal cells with deletion of Smad3 and found that they have an altered cell cycle profile, with a higher fraction of cells in G2/M phase. Deletion of Smad3 significantly abrogates TGF-β signaling and suppresses phosphorylation of CDC27–anaphase-promoting complex (APC) during mitosis, thereby resulting in elevated cyclin-dependent kinase (CDK)1 activity via increased levels of cyclin B. Enhanced CDK1 activity due to deregulation of APC leads in turn to hyperphosphorylation of separase, impeding chromatid separation. A residue Ser1126Ala mutation in separase specifically abolished separase hyperphosphorylation in Smad3-deficient cells. The present results unveil a new function for the TGF-β pathway in the regulation of APC to mediate chromatid separation during mitosis. PMID:18843049

  6. Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size.

    PubMed

    Poduri, Aruna; Chang, Andrew H; Raftrey, Brian; Rhee, Siyeon; Van, Mike; Red-Horse, Kristy

    2017-09-15

    How mechanotransduction intersects with chemical and transcriptional factors to shape organogenesis is an important question in developmental biology. This is particularly relevant to the cardiovascular system, which uses mechanical signals from flowing blood to stimulate cytoskeletal and transcriptional responses that form a highly efficient vascular network. Using this system, artery size and structure are tightly regulated, but the underlying mechanisms are poorly understood. Here, we demonstrate that deletion of Smad4 increased the diameter of coronary arteries during mouse embryonic development, a phenotype that followed the initiation of blood flow. At the same time, the BMP signal transducers SMAD1/5/8 were activated in developing coronary arteries. In a culture model of blood flow-induced shear stress, human coronary artery endothelial cells failed to align when either BMPs were inhibited or SMAD4 was depleted. In contrast to control cells, SMAD4- deficient cells did not migrate against the direction of shear stress and increased proliferation rates specifically under flow. Similar alterations were seen in coronary arteries in vivo Thus, endothelial cells perceive the direction of blood flow and respond through SMAD signaling to regulate artery size. © 2017. Published by The Company of Biologists Ltd.

  7. Identification and expression of Smads associated with TGF-beta/activin/nodal signaling pathways in the rainbow trout (Oncorhynuchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    The Smad proteins are essential components of the TGF-beta/activin/nodal family signaling pathway. We report the identification and characterization of transcripts representing 3 receptor Smads (Smad2a, Smad2b, Smad3), 2 common Smads (Smad4a, Smad4b) and one inhibitory Smad (Smad7). Phylogenetic an...

  8. Hepatitis B virus X protein shifts human hepatic transforming growth factor (TGF)-beta signaling from tumor suppression to oncogenesis in early chronic hepatitis B.

    PubMed

    Murata, Miki; Matsuzaki, Koichi; Yoshida, Katsunori; Sekimoto, Go; Tahashi, Yoshiya; Mori, Shigeo; Uemura, Yoshiko; Sakaida, Noriko; Fujisawa, Junichi; Seki, Toshihito; Kobayashi, Kazuki; Yokote, Koutaro; Koike, Kazuhiko; Okazaki, Kazuichi

    2009-04-01

    Hepatitis B virus X (HBx) protein is suspected to participate in oncogenesis during chronic hepatitis B progression. Transforming growth factor beta (TGF-beta) signaling involves both tumor suppression and oncogenesis. TGF-beta activates TGF-beta type I receptor (TbetaRI) and c-Jun N-terminal kinase (JNK), which differentially phosphorylate the mediator Smad3 to become C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Reversible shifting of Smad3-mediated signaling between tumor suppression and oncogenesis in HBx-expressing hepatocytes indicated that TbetaRI-dependent pSmad3C transmitted a tumor-suppressive TGF-beta signal, while JNK-dependent pSmad3L promoted cell growth. We used immunostaining, immunoblotting, and in vitro kinase assay to compare pSmad3L- and pSmad3C-mediated signaling in biopsy specimens representing chronic hepatitis, cirrhosis, or hepatocellular carcinoma (HCC) from 90 patients chronically infected with hepatitis B virus (HBV) with signaling in liver specimens from HBx transgenic mice. In proportion to plasma HBV DNA levels, early chronic hepatitis B specimens showed prominence of pSmad3L in hepatocytic nuclei. HBx-activated JNK/pSmad3L/c-Myc oncogenic pathway was enhanced, while the TbetaRI/pSmad3C/p21(WAF1) tumor-suppressive pathway was impaired as human and mouse HBx-associated hepatocarcinogenesis progressed. Of 28 patients with chronic hepatitis B who showed strong oncogenic pSmad3L signaling, six developed HCC within 12 years; only one of 32 patients showing little pSmad3L developed HCC. In contrast, seven of 30 patients with little Smad3C phosphorylation developed HCC, while no patient who retained hepatocytic tumor-suppressive pSmad3C developed HCC within 12 years. HBx shifts hepatocytic TGF-beta signaling from the tumor-suppressive pSmad3C pathway to the oncogenic pSmad3L pathway in early carcinogenic process. Hepatocytic pSmad3L and pSmad3C assessment in HBV-infected liver specimens should prove clinically useful for predicting risk of HCC.

  9. The Smad4/PTEN Expression Pattern Predicts Clinical Outcomes in Colorectal Adenocarcinoma

    PubMed Central

    Chung, Yumin; Wi, Young Chan; Kim, Yeseul; Bang, Seong Sik; Yang, Jung-Ho; Jang, Kiseok; Min, Kyueng-Whan; Paik, Seung Sam

    2018-01-01

    Background Smad4 and PTEN are prognostic indicators for various tumor types. Smad4 regulates tumor suppression, whereas PTEN inhibits cell proliferation. We analyzed and compared the performance of Smad4 and PTEN for predicting the prognosis of patients with colorectal adenocarcinoma. Methods Combined expression patterns based on Smad4+/– and PTEN+/– status were evaluated by immunostaining using a tissue microarray of colorectal adenocarcinoma. The relationships between the protein expression and clinicopathological variables were analyzed. Results Smad4–/PTEN– status was most frequently observed in metastatic adenocarcinoma, followed by primary adenocarcinoma and tubular adenoma (p<.001). When Smad4–/PTEN– and Smad4+/PTEN+ groups were compared, Smad4–/PTEN– status was associated with high N stage (p=.018) and defective mismatch repair proteins (p=.006). Significant differences in diseasefree survival and overall survival were observed among the three groups (Smad4+/PTEN+, Smad4–/PTEN+ or Smad4+/PTEN–, and Smad4–/PTEN–) (all p<.05). Conclusions Concurrent loss of Smad4 and PTEN may lead to more aggressive disease and poor prognosis in patients with colorectal adenocarcinoma compared to the loss of Smad4 or PTEN alone. PMID:29056035

  10. Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Camp, David G.; Gritsenko, Marina A.

    2007-11-16

    The chromosomal passenger complex (CPC) is a critical regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation specific antibody that labels the CPC using liquid chromatography coupled to mass spectrometry. A mitotic phosphorylation motif (PX{G/T/S}{L/M}[pS]P or WGL[pS]P) was identified in 11 proteins including Fzr/Cdh1 and RIC-8, two proteins with potential links to the CPC. Phosphoprotein complexes contained known CPC components INCENP, Aurora-B and TD-60, as well as SMAD2, 14-3-3 proteins, PP2A, and Cdk1, a likely kinase for this motif. Protein sequence analysis identified phosphorylation motifs in additional proteins includingmore » SMAD2, Plk3 and INCENP. Mitotic SMAD2 and Plk3 phosphorylation was confirmed using phosphorylation specific antibodies, and in the case of Plk3, phosphorylation correlates with its localization to the mitotic apparatus. A mutagenesis approach was used to show INCENP phosphorylation is required for midbody localization. These results provide evidence for a shared phosphorylation event that regulates localization of critical proteins during mitosis.« less

  11. Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells.

    PubMed

    Sasseville, Maxime; Ritter, Lesley J; Nguyen, Thao M; Liu, Fang; Mottershead, David G; Russell, Darryl L; Gilchrist, Robert B

    2010-09-15

    Ovarian folliculogenesis is driven by the combined action of endocrine cues and paracrine factors. The oocyte secretes powerful mitogens, such as growth differentiation factor 9 (GDF9), that regulate granulosa cell proliferation, metabolism, steroidogenesis and differentiation. This study investigated the role of the epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase 1 and 2 (ERK1/2; also known as MAPK3/1) signaling pathway on GDF9 action on granulosa cells. Results show that mitogenic action of the oocyte is prevented by pharmacological inhibition of the EGFR-ERK1/2 pathway. Importantly, EGFR-ERK1/2 activity as well as rous sarcoma oncogene family kinases (SFK) are required for signaling through SMADs, mediating GDF9, activin A and TGFbeta1 mitogenic action in granulosa cells. GDF9 could not activate ERK1/2 or affect EGF-stimulated ERK1/2 in granulosa cells. However, induction of the SMAD3-specific CAGA reporter by GDF9 in granulosa cells required active EGFR, SFKs and ERK1/2 as did GDF9-responsive gene expression. Finally, the EGFR-SFKs-ERK1/2 pathway was shown to be required for the maintenance of phosphorylation of the SMAD3 linker region. Together our results suggest that receptivity of granulosa cells to oocyte-secreted factors, including GDF9, is regulated by the level of activation of the EGFR and resulting ERK1/2 activity, through the requisite permissive phosphorylation of SMAD3 in the linker region. Our results indicate that oocyte-secreted TGFbeta-like ligands and EGFR-ERK1/2 signaling are cooperatively required for the unique granulosa cell response to the signal from oocytes mediating granulosa cell survival and proliferation and hence the promotion of follicle growth and ovulation.

  12. Combined Biology and Bioinformatics Approaches to Breast Cancer

    DTIC Science & Technology

    2005-04-01

    interacted with the MH 1 and linker domains in both Smad3 and Smad4; no interaction was found with the MH2 domain (Fig. 7C). These data suggest that LMO4...LMO4 interacts with these Smads. GST protein-protein interaction assays showed that LMO4 binds to the MH1 and linker domain of Smad 1, Smad3 and Smad4...by facilitating the nuclear translocation and DNA-binding of a complex composed of an R-Smad (Smad2 and/or Smad3 ) and the co-Smad, Smad4 (10). To

  13. Characterization of a Smad motif similar to Drosophila mad in the mouse Msx 1 promoter.

    PubMed

    Alvarez Martinez, Cristina E; Binato, Renata; Gonzalez, Sayonara; Pereira, Monica; Robert, Benoit; Abdelhay, Eliana

    2002-03-01

    Mouse Msx 1 gene, orthologous of the Drosophila msh, is involved in several developmental processes. BMP family members are major proteins in the regulation of Msx 1 expression. BMP signaling activates Smad 1/5/8 proteins, which associate to Smad 4 before translocating to the nucleus. Analysis of Msx 1 promoter revealed the presence of three elements similar to the consensus established for Mad, the Smad 1 Drosophila counterpart. Notably, such an element was identified in an enhancer important for Msx 1 regulation. Gel shift analysis demonstrated that proteins from 13.5 dpc embryo associate to this enhancer. Remarkably, supershift assays showed that Smad proteins are present in the complex. Purified Smad 1 and 4 also bind to this fragment. We demonstrate that functional binding sites in this enhancer are confined to the Mad motif and flanking region. Our data suggest that this Mad motif may be functional in response to BMP signaling. ©2002 Elsevier Science (USA).

  14. c-Ski, Smurf2, and Arkadia as regulators of TGF-beta signaling: new targets for managing myofibroblast function and cardiac fibrosis.

    PubMed

    Cunnington, Ryan H; Nazari, Mansoreh; Dixon, Ian M C

    2009-10-01

    Recent studies demonstrate the critical role of the extracellular matrix in the organization of parenchymal cells in the heart. Thus, an understanding of the modes of regulation of matrix production by cardiac myofibroblasts is essential. Transforming growth factor beta (TGF-beta) signaling is transduced through the canonical Smad pathway, and the involvement of this pathway in matrix synthesis and other processes requires precise control. Inhibition of Smad signaling may be achieved at the receptor level through the targeting of the TGF-beta type I receptors with an inhibitory Smad7/Smurf2 complex, or at the transcriptional level through c-Ski/receptor-Smad/co-mediator Smad4 interactions. Conversely, Arkadia protein intensifies TGF-beta-induced effects by marking c-Ski and inhibitory Smad7 for destruction. The study of these TGF-beta mediators is essential for future treatment of fibrotic disease, and this review highlights recent relevant findings that may impact our understanding of cardiac fibrosis.

  15. Blocking of SMAD4 expression by shRNA effectively inhibits fibrogenesis of human hepatic stellate cells.

    PubMed

    Khanizadeh, Sayyad; Ravanshad, Mehrdad; Hosseini, SeyedYounes; Davoodian, Parivash; Nejati Zadeh, Azim; Sarvari, Jamal

    2015-01-01

    In this study, to clarify the SMAD4 blocking impact on fibrosis process, we investigated its down-regulation by shRNA on activated human LX-2 cell, in vitro. Liver fibrosis is a critical consequence of chronic damage to the liver that can progress toward advanced diseases, liver cirrhosis and hepatocellular carcinoma (HCC). Different SMAD proteins play as major mediators in the fibrogenesis activity of hepatic stellate cells through TGF-β pathways, but the extent of SMAD4 as a co-SMAD protein remained less clear. vector expressing verified shRNA targeting human SMAD4 gene was transfected into LX-2 cells. The GFP expressing plasmid was transfected in the same manner as a control group while leptin treated cells were employed as positive controls. Subsequently, total RNA was extracted and real-time PCR was performed to measure the mRNA levels of SMAD4, COL-1A1, α-SMA, TGF-β and TIMP-1. Furthermore, trypan blue exclusion was performed to test the effect of plasmid transfection and SMAD4 shutting-down on cellular viability. The results indicated that the expression of SMAD4was down-regulated following shRNA transfection intoLX-2 cells (P<0.001). The gene expression analysis of fibrotic genes in LX-2 cells showed that SMAD4 blocking by shRNA significantly reduced the expression level of fibrotic genes when compared to control plasmids (P<0.001). Vector expressing SMAD4-shRNA induced no significant cytotoxic or proliferative effects on LX-2 cells as determined by viability assay (P<0.05). The results of this study suggested that knockdown of SMAD4 expression in stellate cell can control the progression of fibrogenesis through TGF-β pathway blocking.

  16. TGF-β1 stimulates migration of type II endometrial cancer cells by down-regulating PTEN via activation of SMAD and ERK1/2 signaling pathways.

    PubMed

    Xiong, Siyuan; Cheng, Jung-Chien; Klausen, Christian; Zhao, Jianfang; Leung, Peter C K

    2016-09-20

    PTEN acts as a tumor suppressor primarily by antagonizing the PI3K/AKT signaling pathway. PTEN is frequently mutated in human cancers; however, in type II endometrial cancers its mutation rate is very low. Overexpression of TGF-β1 and its receptors has been reported to correlate with metastasis of human cancers and reduced survival rates. Although TGF-β1 has been shown to regulate PTEN expression through various mechanisms, it is not yet known if the same is true in type II endometrial cancer. In the present study, we show that treatment with TGF-β1 stimulates the migration of two type II endometrial cancer cell lines, KLE and HEC-50. In addition, TGF-β1 treatment down-regulates both mRNA and protein levels of PTEN. Overexpression of PTEN or inhibition of PI3K abolishes TGF-β1-stimulated cell migration. TGF-β1 induces SMAD2/3 phosphorylation and knockdown of common SMAD4 inhibits the suppressive effects of TGF-β1 on PTEN mRNA and protein. Interestingly, TGF-β1 induces ERK1/2 phosphorylation and pre-treatment with a MEK inhibitor attenuates the suppression of PTEN protein, but not mRNA, by TGF-β1. This study provides important insights into the molecular mechanisms mediating TGF-β1-induced down-regulation of PTEN and demonstrates an important role of PTEN in the regulation of type II endometrial cancer cell migration.

  17. CDK2 phosphorylation of Smad2 disrupts TGF-beta transcriptional regulation in resistant primary bone marrow myeloma cells.

    PubMed

    Baughn, Linda B; Di Liberto, Maurizio; Niesvizky, Ruben; Cho, Hearn J; Jayabalan, David; Lane, Joseph; Liu, Fang; Chen-Kiang, Selina

    2009-02-15

    Resistance to growth suppression by TGF-beta1 is common in cancer; however, mutations in this pathway are rare in hematopoietic malignancies. In multiple myeloma, a fatal cancer of plasma cells, malignant cells accumulate in the TGF-beta-rich bone marrow due to loss of both cell cycle and apoptotic controls. Herein we show that TGF-beta activates Smad2 but fails to induce cell cycle arrest or apoptosis in primary bone marrow myeloma and human myeloma cell lines due to its inability to activate G(1) cyclin-dependent kinase (CDK) inhibitors (p15(INK4b), p21(CIP1/WAF1), p27(KIP1), p57(KIP2)) or to repress c-myc and Bcl-2 transcription. Correlating with aberrant activation of CDKs, CDK-dependent phosphorylation of Smad2 on Thr(8) (pT8), a modification linked to impaired Smad activity, is elevated in primary bone marrow myeloma cells, even in asymptomatic monoclonal gammopathy of undetermined significance. Moreover, CDK2 is the predominant CDK that phosphorylates Smad2 on T8 in myeloma cells, leading to inhibition of Smad2-Smad4 association that precludes transcriptional regulation by Smad2. Our findings provide the first direct evidence that pT8 Smad2 couples dysregulation of CDK2 to TGF-beta resistance in primary cancer cells, and they suggest that disruption of Smad2 function by CDK2 phosphorylation acts as a mechanism for TGF-beta resistance in multiple myeloma.

  18. CBL enhances breast tumor formation by inhibiting tumor suppressive activity of TGF-β signaling.

    PubMed

    Kang, J M; Park, S; Kim, S J; Hong, H Y; Jeong, J; Kim, H-S; Kim, S-J

    2012-12-13

    Casitas B-lineage lymphoma (CBL) protein family functions as multifunctional adaptor proteins and E3 ubiquitin ligases that are implicated as regulators of signaling in various cell types. Recent discovery revealed mutations of proto-oncogenic CBL in the linker region and RING finger domain in human acute myeloid neoplasm, and these transforming mutations induced carcinogenesis. However, the adaptor function of CBL mediated signaling pathway during tumorigenesis has not been well characterized. Here, we show that CBL is highly expressed in breast cancer cells and significantly inhibits transforming growth factor-β (TGF-β) tumor suppressive activity. Knockdown of CBL expression resulted in the increased expression of TGF-β target genes, PAI-I and CDK inhibitors such as p15(INK4b) and p21(Cip1). Furthermore, we demonstrate that CBL is frequently overexpressed in human breast cancer tissues, and the loss of CBL decreases the tumorigenic activity of breast cancer cells in vivo. CBL directly binds to Smad3 through its proline-rich motif, thereby preventing Smad3 from interacting with Smad4 and blocking nuclear translocation of Smad3. CBL-b, one of CBL protein family, also interacted with Smad3 and knockdown of both CBL and CBL-b further enhanced TGF-β transcriptional activity. Our findings provide evidence for a previously undescribed mechanism by which oncogenic CBL can block TGF-β tumor suppressor activity.

  19. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

    PubMed Central

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway. PMID:26880260

  20. MicroRNA-212 activates hepatic stellate cells and promotes liver fibrosis via targeting SMAD7.

    PubMed

    Zhu, Jie; Zhang, Ziqiang; Zhang, Yitong; Li, Wenshuai; Zheng, Wanwei; Yu, Jianghong; Wang, Bangting; Chen, Lirong; Zhuo, Qin; Chen, Lin; Zhang, Jun; Liu, Jie

    2018-01-29

    There has been an increasing number of researches about microRNAs (miRNAs) in the progression of liver fibrosis from the point of their comprehensive functions in regulating the activation of hepatic stellate cells (HSCs). Among them, it has been reported that miR-212 is up-regulated in activated rat primary HSCs. However, its mechanism has not been determined yet. Here, we confirmed that the level of miR-212-3p was up-regulated in livers of carbon tetrachloride (CCl 4 )-treated mice compared with the normal control, which is a classical model of chronically damaged fibrotic liver. In vitro, we demonstrated that TGF-β, a master fibrogenic cytokine, could induce the level of miR-212. In turn, overexpression of miR-212 could induce the activation marker of HSC including α-smooth muscle actin (α-SMA) and collagens by activating TGF-β signaling pathway. Furthermore, SMAD7, a dominant suppressor of TGF-β pathway, was identified as a direct target of miR-212-3p. Our results indicate that miR-212-3p facilitates the activation of HSCs and TGF-β pathway by targeting SMAD7, highlighting that it can be served as a novel biomarker or therapeutic target for liver fibrosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. HSP27 regulates TGF-β mediated lung fibroblast differentiation through the Smad3 and ERK pathways.

    PubMed

    Wang, Gang; Jiao, Hao; Zheng, Jun-Nian; Sun, Xia

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic lethal interstitial lung disease with unknown etiology. Recent studies have indicated that heat-shock protein 27 (HSP27) contributes to the pathogenesis of IPF through the regulation of epithelial-mesenchymal transition (EMT). However, the expression and role of HSP27 in fibroblasts during pulmonary fibrogenesis has not been investigated to date, at least to the best of our knowledge. In this study, we examined the expression of HSP27 in fibrotic lung tissue and fibroblasts from bleomycin (BLM)-challenged mice and human lung fibroblasts treated with transforming growth factor-β (TGF-β). The results revealed that the expression of HSP27 was significantly increased in fibrotic lung tissue and fibroblasts from BLM-challenged mice. In vitro, TGF-β stimulated HSP27 expression in and the differentiation of human lung fibroblasts. The knockdown of Smad3 expression or nuclear factor-κB p65 subunit attenuated the TGF-β-induced increase in HSP27 expression and the differentiation of human lung fibroblasts. In addition, the knockdown of HSP27 expression attenuated the TGF-β-induced activation of ERK and Smad3, and inhibited the differentiation of human lung fibroblasts. On the whole, the findings of our study demonstrate that HSP27 expression is upregulated in lung fibroblasts during pulmonary fibrosis, and subsequently, HSP27 modulates lung fibroblast differentiation through the Smad3 and ERK pathways.

  2. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts.

    PubMed

    Furukawa, Fukiko; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yoshida, Katsunori; Sugano, Yasushi; Yamagata, Hideo; Matsushita, Masanori; Seki, Toshihito; Inagaki, Yutaka; Nishizawa, Mikio; Fujisawa, Junichi; Inoue, Kyoichi

    2003-10-01

    Hepatic stellate cells (HSCs) spontaneously transdifferentiate into myofibroblast (MFB)-phenotype on plastic dishes. This response recapitulates the features of activation in vivo. Transforming growth factor beta (TGF-beta) plays a prominent role in stimulating liver fibrogenesis by MFBs. In quiescent HSCs, TGF-beta signaling involves TGF-beta type I receptor (TbetaRI)-mediated phosphorylation of serine residues within the conserved SSXS motif at the C-terminus of Smad2 and Smad3. The middle linker regions of Smad2 and Smad3 also are phosphorylated by mitogen-activated protein kinase (MAPK). This study elucidates the change of Smad3-mediated signals during the transdifferentiation process. By using antibodies highly specific to the phosphorylated C-terminal region and the phosphorylated linker region of Smad3, we found that TGF-beta-dependent Smad3 phosphorylation at the C-terminal region decreased, but that the phosphorylation at the linker region increased in the process of transdifferentiation. TGF-beta activated the p38 MAPK pathway, further leading to Smad3 phosphorylation at the linker region in the cultured MFBs, irrespective of Smad2. The phosphorylation promoted hetero-complex formation and nuclear translocation of Smad3 and Smad4. Once combined with TbetaRI-phosphorylated Smad2, the Smad3 and Smad4 complex bound to plasminogen activator inhibitor-type I promoter could enhance the transcription. In addition, Smad3 phosphorylation mediated by the activated TbetaRI was impaired severely in MFBs during chronic liver injury, whereas Smad3 phosphorylation at the linker region was remarkably induced by p38 MAPK pathway. In conclusion, p38 MAPK-dependent Smad3 phosphorylation promoted extracellular matrix production in MFBs both in vitro and in vivo.

  3. Intercellular Variation in Signaling through the TGF-β Pathway and Its Relation to Cell Density and Cell Cycle Phase*

    PubMed Central

    Zieba, Agata; Pardali, Katerina; Söderberg, Ola; Lindbom, Lena; Nyström, Erik; Moustakas, Aristidis; Heldin, Carl-Henrik; Landegren, Ulf

    2012-01-01

    Fundamental open questions in signal transduction remain concerning the sequence and distribution of molecular signaling events among individual cells. In this work, we have characterized the intercellular variability of transforming growth factor β-induced Smad interactions, providing essential information about TGF-β signaling and its dependence on the density of cell populations and the cell cycle phase. By employing the recently developed in situ proximity ligation assay, we investigated the dynamics of interactions and modifications of Smad proteins and their partners under native and physiological conditions. We analyzed the kinetics of assembly of Smad complexes and the influence of cellular environment and relation to mitosis. We report rapid kinetics of formation of Smad complexes, including native Smad2-Smad3-Smad4 trimeric complexes, in a manner influenced by the rate of proteasomal degradation of these proteins, and we found a striking cell to cell variation of signaling complexes. The single-cell analysis of TGF-β signaling in genetically unmodified cells revealed previously unknown aspects of regulation of this pathway, and it provided a basis for analysis of these signaling events to diagnose pathological perturbations in patient samples and to evaluate their susceptibility to drug treatment. PMID:22442258

  4. Modularized Smad-regulated TGFβ signaling pathway.

    PubMed

    Li, Yongfeng; Wang, Minli; Carra, Claudio; Cucinotta, Francis A

    2012-12-01

    The transforming Growth Factor β (TGFβ) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. TGFβ signaling can be induced by several factors including ionizing radiation. The pathway is regulated in a negative feedback loop through promoting the nuclear import of the regulatory Smads and a subsequent expression of inhibitory Smad7, that forms ubiquitin ligase with Smurf2, targeting active TGFβ receptors for degradation. In this work, we proposed a mathematical model to study the Smad-regulated TGFβ signaling pathway. By modularization, we are able to analyze mathematically each component subsystem and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, in the TGFβ signaling pathway is discussed and supported as well by numerical simulation, indicating the robustness of the model. Published by Elsevier Inc.

  5. Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression.

    PubMed

    Zhao, Hongying; Zhang, Jun; Shao, Haiyu; Liu, Jianwen; Jin, Mengran; Chen, Jinping; Huang, Yazeng

    2017-03-01

    Transforming growth factor β1 (TGFβ1)/Smad4 signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through TGFβ1/Smad4 signaling. Here, we present that TGFβ1 elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by TGFβ1. The results of luciferase reporter experiments and ChIP assays demonstrated that TGFβ1 promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo , further verifying that miR-155 is a transcriptional target of the TGFβ1/Smad4 pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the TGFβ1-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that TGFβ1/Smad4 signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

  6. Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

    PubMed Central

    Zhao, Hongying; Zhang, Jun; Shao, Haiyu; Liu, Jianwen; Jin, Mengran; Chen, Jinping; Huang, Yazeng

    2017-01-01

    Transforming growth factor β1 (TGFβ1)/Smad4 signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through TGFβ1/Smad4 signaling. Here, we present that TGFβ1 elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by TGFβ1. The results of luciferase reporter experiments and ChIP assays demonstrated that TGFβ1 promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the TGFβ1/Smad4 pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the TGFβ1-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that TGFβ1/Smad4 signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise. PMID:28359146

  7. Pluripotency Gene Expression and Growth Control in Cultures of Peripheral Blood Monocytes during Their Conversion into Programmable Cells of Monocytic Origin (PCMO): Evidence for a Regulatory Role of Autocrine Activin and TGF-β

    PubMed Central

    Ungefroren, Hendrik; Hyder, Ayman; Hinz, Hebke; Groth, Stephanie; Lange, Hans; El-Sayed, Karim M. Fawzy; Ehnert, Sabrina; Nüssler, Andreas K.; Fändrich, Fred; Gieseler, Frank

    2015-01-01

    Previous studies have shown that peripheral blood monocytes can be converted in vitro to a stem cell-like cell termed PCMO as evidenced by the re-expression of pluripotency-associated genes, transient proliferation, and the ability to adopt the phenotype of hepatocytes and insulin-producing cells upon tissue-specific differentiation. However, the regulatory interactions between cultured cells governing pluripotency and mitotic activity have remained elusive. Here we asked whether activin(s) and TGF-β(s), are involved in PCMO generation. De novo proliferation of PCMO was higher under adherent vs. suspended culture conditions as revealed by the appearance of a subset of Ki67-positive monocytes and correlated with down-regulation of p21WAF1 beyond day 2 of culture. Realtime-PCR analysis showed that PCMO express ActRIIA, ALK4, TβRII, ALK5 as well as TGF-β1 and the βA subunit of activin. Interestingly, expression of ActRIIA and ALK4, and activin A levels in the culture supernatants increased until day 4 of culture, while levels of total and active TGF-β1 strongly declined. PCMO responded to both growth factors in an autocrine fashion with intracellular signaling as evidenced by a rise in the levels of phospho-Smad2 and a drop in those of phospho-Smad3. Stimulation of PCMO with recombinant activins (A, B, AB) and TGF-β1 induced phosphorylation of Smad2 but not Smad3. Inhibition of autocrine activin signaling by either SB431542 or follistatin reduced both Smad2 activation and Oct4A/Nanog upregulation. Inhibition of autocrine TGF-β signaling by either SB431542 or anti-TGF-β antibody reduced Smad3 activation and strongly increased the number of Ki67-positive cells. Furthermore, anti-TGF-β antibody moderately enhanced Oct4A/Nanog expression. Our data show that during PCMO generation pluripotency marker expression is controlled positively by activin/Smad2 and negatively by TGF-β/Smad3 signaling, while relief from growth inhibition is primarily the result of reduced TGF-β/Smad3, and to a lesser extent, activin/Smad2 signaling. PMID:25707005

  8. Iron regulation of hepcidin despite attenuated Smad1,5,8 signaling in mice without transferrin receptor 2 or Hfe

    PubMed Central

    Corradini, Elena; Rozier, Molly; Meynard, Delphine; Odhiambo, Adam; Lin, Herbert Y.; Feng, Qi; Migas, Mary C.; Britton, Robert S.; Babitt, Jodie L.; Fleming, Robert E.

    2011-01-01

    Background & Aims HFE and transferrin receptor 2 (TFR2) are each necessary for the normal relationship between body iron status and liver hepcidin expression. In murine Hfe and Tfr2 knockout models of hereditary hemochromatosis (HH), signal transduction to hepcidin via the bone morphogenetic protein 6 (Bmp6)/Smad1,5,8 pathway is attenuated. We examined the effect of dietary iron on regulation of hepcidin expression via the Bmp6/Smad1,5,8 pathway using mice with targeted disruption of Tfr2, Hfe, or both genes. Methods Hepatic iron concentrations and mRNA expression of Bmp6 and hepcidin were compared with wild-type mice in each of the HH models on standard or iron-loading diets. Liver phospho-Smad (P-Smad)1,5,8 and Id1 mRNA levels were measured as markers of Bmp/Smad signaling. Results While Bmp6 expression was increased, liver hepcidin and Id1 expression were decreased in each of the HH models compared with wild-type mice. Each of the HH models also demonstrated attenuated P-Smad1,5,8 levels relative to liver iron status. Mice with combined Hfe/Tfr2 disruption were most affected. Dietary iron loading increased hepcidin and Id1 expression in each of the HH models. Compared with wild-type mice, HH mice demonstrated attenuated (Hfe knockout) or no increases in P-Smad1,5,8 levels in response to dietary iron loading. Conclusions These observations demonstrate that Tfr2 and Hfe are each required for normal signaling of iron status to hepcidin via Bmp6/Smad1,5,8 pathway. Mice with combined loss of Hfe and Tfr2 up-regulate hepcidin in response to dietary iron loading without increases in liver BMP6 mRNA or steady-state P-Smad1,5,8 levels. PMID:21745449

  9. MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4

    PubMed Central

    Zhang, Kundong; Cen, Gang; Jiang, Tao; Cao, Jun; Huang, Kejian; Zhao, Qian; Qiu, Zhengjun

    2015-01-01

    Background Aim to determine the clinicopathological and prognostic role of miR-301a-3p in pancreatic ductal adenocarcinoma(PDAC), to investigate the biological mechanism of miR-301a-3p in vitro and in vivo. Methods By tissue microarray analysis, we studied miR-301a-3p expression in PDAC patients and its clinicopathological correlations as well as prognostic significance. qRT-PCR was used to test miR-301a-3p expression in PDAC tissues and cell lines. Functional experiments including in vitro and in vivo were performed. Results Significantly higher expression of miR-301a-3p were found in PDAC patients with lymph node metastasis and advanced pathological stages and identified as an independent prognostic factor for worse survival. In PDAC samples and cell lines, miR-301a-3p was significantly up-regulated compared with matched non-tumor tissues and normal pancreatic ductal cells, respectively. Overexpression of miR-301a-3p enhanced PDAC cells colony, invasion and migration abilities in vitro as well as tumorigenicity in vivo. Furthermore, SMAD4 was identified as a target gene of miR-301a-3p by cell as well as mice xenograft experiments. In PDAC tissue microarray, a significantly inverse correlation between miR-301a-3p ISH scores and SMAD4 IHC scores were observed in both tumor and corresponding non-tumor tissues. Conclusion MiR-301a-3p functions as a novel oncogene in PDAC and the oncogenic activity may involve its inhibition of the target gene SMAD4. PMID:26019136

  10. Reestablishment of Energy Balance in a Male Mouse Model With POMC Neuron Deletion of BMPR1A.

    PubMed

    Townsend, Kristy L; Madden, Christopher J; Blaszkiewicz, Magdalena; McDougall, Lindsay; Tupone, Domenico; Lynes, Matthew D; Mishina, Yuji; Yu, Paul; Morrison, Shaun F; Tseng, Yu-Hua

    2017-12-01

    The regulation of energy balance involves complex processes in the brain, including coordination by hypothalamic neurons that contain pro-opiomelanocortin (POMC). We previously demonstrated that central bone morphogenetic protein (BMP) 7 reduced appetite. Now we show that a type 1 BMP receptor, BMPR1A, is colocalized with POMC neurons and that POMC-BMPR1A-knockout (KO) mice are hyperphagic, revealing physiological involvement of BMP signaling in anorectic POMC neurons in the regulation of appetite. Surprisingly, the hyperphagic POMC-BMPR1A-KO mice exhibited a lack of obesity, even on a 45% high-fat diet. This is because the brown adipose tissue (BAT) of KO animals exhibited increased sympathetic activation and greater thermogenic capacity owing to a reestablishment of energy balance, most likely stemming from a compensatory increase of BMPR1A in the whole hypothalamus of KO mice. Indeed, control animals given central BMP7 displayed increased energy expenditure and a specific increase in sympathetic nerve activity (SNA) in BAT. In these animals, pharmacological blockade of BMPR1A-SMAD signaling blunted the ability of BMP7 to increase energy expenditure or BAT SNA. Together, we demonstrated an important role for hypothalamic BMP signaling in the regulation of energy balance, including BMPR1A-mediated appetite regulation in POMC neurons as well as hypothalamic BMP-SMAD regulation of the sympathetic drive to BAT for thermogenesis. Copyright © 2017 Endocrine Society.

  11. Smad4 deletion in blood vessel endothelial cells promotes ovarian cancer metastasis.

    PubMed

    Yang, Jie; Wang, Ya; Zeng, Zhen; Qiao, Long; Zhuang, Liang; Gao, Qinglei; Ma, Ding; Huang, Xiaoyuan

    2017-05-01

    SMAD4 is a critical co-smad in signal transduction pathways activated in response to transforming growth factor-β (TGF-β)-related ligands, regulating cell growth and differentiation. The roles played by SMAD4 inactivation in tumors highlighted it as a tumor-suppressor gene. Herein, we report that loss of SMAD4 expression in vascular endothelial cells promotes ovarian cancer invasion. SiRNA transfer of this gene in the HUVEC reduced SMAD4 protein expression and function. Although it reduced the vessel endothelial cell tubule formation in vitro and in vivo, it did not affect the tumor growth significantly in vivo. However, it weakened the barrier integrity in endothelial cells and increased vessel permeability and the ovarian cancer liver metastasis. We documented reduced angiogenesis and increased invasion histologically and by intravital microscopy, and gained mechanistic insight at the messenger and gene level. Finally, we found a negative reciprocal regulation between SMAD4 and FYN. FYN is one of the Src family kinases (SFK), activation of which can cause dissociation of cell-cell junctions and adhesion, resulting in paracellular hypermeability. Upon SMAD4 deletion, we detected high expression levels of FYN in vessel endothelial cells, suggesting the mechanism of the ovarian tumor cells cross the endothelial barrier and transform to an invasive phenotype.

  12. Activin A prevents neuron-like PC12 cell apoptosis after oxygen-glucose deprivation☆

    PubMed Central

    Xu, Guihua; He, Jinting; Guo, Hongliang; Mei, Chunli; Wang, Jiaoqi; Li, Zhongshu; Chen, Han; Mang, Jing; Yang, Hong; Xu, Zhongxin

    2013-01-01

    In this study, PC12 cells were induced to differentiate into neuron-like cells using nerve growth factor, and were subjected to oxygen-glucose deprivation. Cells were treated with 0, 10, 20, 30, 50, 100 ng/mL exogenous Activin A. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and Hoechst 33324 staining showed that the survival percentage of PC12 cells significantly decreased and the rate of apoptosis significantly increased after oxygen-glucose deprivation. Exogenous Activin A significantly increased the survival percentage of PC12 cells in a dose-dependent manner. Reverse transcription-PCR results revealed a significant increase in Activin receptor IIA, Smad3 and Smad4 mRNA levels, which are key sites in the Activin A/Smads signaling pathway, in neuron-like cells subjected to oxygen-glucose deprivation, while mRNA expression of the apoptosis-regulation gene caspase-3 decreased. Our experimental findings indicate that exogenous Activin A plays an anti-apoptotic role and protects neurons by means of activating the Activin A/Smads signaling pathway. PMID:25206395

  13. The oncoprotein Ski acts as an antagonist of transforming growth factor-beta signaling by suppressing Smad2 phosphorylation.

    PubMed

    Prunier, Celine; Pessah, Marcia; Ferrand, Nathalie; Seo, Su Ryeon; Howe, Philip; Atfi, Azeddine

    2003-07-11

    The phosphorylation of Smad2 and Smad3 by the transforming growth factor (TGF)-beta-activated receptor kinases and their subsequent heterodimerization with Smad4 and translocation to the nucleus form the basis for a model how Smad proteins work to transmit TGF-beta signals. The transcriptional activity of Smad2-Smad4 or Smad3-Smad4 complexes can be limited by the corepressor Ski, which is believed to interact with Smad complexes on TGF-beta-responsive promoters and represses their ability to activate TGF-beta target genes by assembling on DNA a repressor complex containing histone deacetylase. Here we show that Ski can block TGF-beta signaling by interfering with the phosphorylation of Smad2 and Smad3 by the activated TGF-beta type I receptor. Furthermore, we demonstrate that overexpression of Ski induces the assembly of Smad2-Smad4 and Smad3-Smad4 complexes independent of TGF-beta signaling. The ability of Ski to engage Smad proteins in nonproductive complexes provides new insights into the molecular mechanism used by Ski for disabling TGF-beta signaling.

  14. Acceleration of Smad2 and Smad3 phosphorylation via c-Jun NH(2)-terminal kinase during human colorectal carcinogenesis.

    PubMed

    Yamagata, Hideo; Matsuzaki, Koichi; Mori, Shigeo; Yoshida, Katsunori; Tahashi, Yoshiya; Furukawa, Fukiko; Sekimoto, Go; Watanabe, Toshihiko; Uemura, Yoshiko; Sakaida, Noriko; Yoshioka, Kazuhiko; Kamiyama, Yasuo; Seki, Toshihito; Okazaki, Kazuichi

    2005-01-01

    Conversion of normal epithelial cells to tumors is associated with a shift in transforming growth factor-beta (TGF-beta) function: reduction of tumor suppressor activity and increase of oncogenic activity. However, specific mechanisms of this functional alteration during human colorectal carcinogenesis remain to be elucidated. TGF-beta signaling involves Smad2/3 phosphorylated at linker regions (pSmad2/3L) and COOH-terminal regions (pSmad2/3C). Using antibodies specific to each phosphorylation site, we herein showed that Smad2 and Smad3 were phosphorylated at COOH-terminal regions but not at linker regions in normal colorectal epithelial cells and that pSmad2/3C were located predominantly in their nuclei. However, the linker regions of Smad2 and Smad3 were phosphorylated in 31 sporadic colorectal adenocarcinomas. In particular, late-stage invasive and metastatic cancers typically showed a high degree of phosphorylation of Smad2/3L. Their extent of phosphorylation in 11 adenomas was intermediate between those in normal epithelial cells and adenocarcinomas. Whereas pSmad2L remained in the cytoplasm, pSmad3L was located exclusively in the nuclei of Ki-67-immunoreactive adenocarcinomas. In contrast, pSmad3C gradually decreased as the tumor stage progressed. Activated c-Jun NH(2)-terminal kinase in cancers could directly phosphorylate Smad2/3L. Although Mad homology 2 region sequencing in the Smad4 gene revealed a G/A substitution at codon 361 in one adenocarcinoma, the mutation did not correlate with phosphorylation. No mutations in the type II TGF-beta receptor and Smad2 genes were observed in the tumors. In conclusion, pSmad3C, which favors tumor suppressor activity of TGF-beta, was found to decrease, whereas c-Jun NH(2)-terminal kinase tended to induce the phosphorylation of Smad2/3L in human colorectal adenoma-carcinoma sequence.

  15. Ubiquitin-proteasomal degradation of COX-2 in TGF-β stimulated human endometrial cells is mediated through endoplasmic reticulum mannosidase I.

    PubMed

    Singh, Mohan; Chaudhry, Parvesh; Parent, Sophie; Asselin, Eric

    2012-01-01

    Cyclooxygenase (COX)-2 is a key regulatory enzyme in the production of prostaglandins (PG) during various physiological processes. Mechanisms of COX-2 regulation in human endometrial stromal cells (human endometrial stromal cells) are not fully understood. In this study, we investigate the role of TGF-β in the regulation of COX-2 in human uterine stromal cells. Each TGF-β isoform decreases COX-2 protein level in human uterine stromal cells in Smad2/3-dependent manner. The decrease in COX-2 is accompanied by a decrease in PG synthesis. Knockdown of Smad4 using specific small interfering RNA prevents the decrease in COX-2 protein, confirming that Smad pathway is implicated in the regulation of COX-2 expression in human endometrial stromal cells. Pretreatment with 26S proteasome inhibitor, MG132, significantly restores COX-2 protein and PG synthesis, indicating that COX-2 undergoes proteasomal degradation in the presence of TGF-β. In addition, each TGF-β isoform up-regulates endoplasmic reticulum (ER)-mannosidase I (ERManI) implying that COX-2 degradation is mediated through ER-associated degradation pathway in these cells. Furthermore, inhibition of ERManI activity using the mannosidase inhibitor (kifunensine), or small interfering RNA-mediated knockdown of ERManI, prevents TGF-β-induced COX-2 degradation. Taken together, these studies suggest that TGF-β promotes COX-2 degradation in a Smad-dependent manner by up-regulating the expression of ERManI and thereby enhancing ER-associated degradation and proteasomal degradation pathways.

  16. TGF-β signaling directly regulates transcription and functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), via Smad4 in mouse astrocytes.

    PubMed

    Khakipoor, Shokoufeh; Ophoven, Christian; Schrödl-Häußel, Magdalena; Feuerstein, Melanie; Heimrich, Bernd; Deitmer, Joachim W; Roussa, Eleni

    2017-08-01

    The electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4) expressed in astrocytes regulates intracellular and extracellular pH. Here, we introduce transforming growth factor beta (TGF-β) as a novel regulator of NBCe1 transcription and functional expression. Using hippocampal slices and primary hippocampal and cortical astrocyte cultures, we investigated regulation of NBCe1 and elucidated the underlying signaling pathways by RT-PCR, immunoblotting, immunofluorescence, intracellular H( + ) recording using the H( + ) -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, mink lung epithelial cell (MLEC) assay, and chromatin immunoprecipitation. Activation of TGF-β signaling significantly upregulated transcript, protein, and surface expression of NBCe1. These effects were TGF-β receptor-mediated and suppressed following inhibition of JNK and Smad signaling. Moreover, 4-aminopyridine (4AP)-dependent NBCe1 regulation requires TGF-β. TGF-β increased the rate and amplitude of intracellular H + changes upon challenging NBCe1 in wild-type astrocytes but not in cortical astrocytes from Slc4a4-deficient mice. A Smad4 binding sequence was identified in the NBCe1 promoter and Smad4 binding increased after activation of TGF-β signaling. The data show for the first time that NBCe1 is a direct target of TGF-β/Smad4 signaling. Through activation of the canonical pathway TGF-β acts directly on NBCe1 by binding of Smad4 to the NBCe1 promoter and regulating its transcription, followed by increased protein expression and transport activity. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.

  17. Combination immunohistochemistry for SMAD4 and Runt-related transcription factor 3 may identify a favorable prognostic subgroup of pancreatic ductal adenocarcinomas.

    PubMed

    Lee, Yangkyu; Lee, Hyejung; Park, Hyunjin; Kim, Jin-Won; Hwang, Jin-Hyeok; Kim, Jaihwan; Yoon, Yoo-Seok; Han, Ho-Seong; Kim, Haeryoung

    2017-09-29

    SMAD4/DPC4 mutations have been associated with aggressive behavior in pancreatic ductal adenocarcinomas (PDAC), and it has recently been suggested that RUNX3 expression combined with SMAD4 status may predict the metastatic potential of PDACs. We evaluated the prognostic utility of SMAD4/RUNX3 status in human PDACs by immunohistochemistry. Immunohistochemical stains were performed for SMAD4 and RUNX3 on 210 surgically resected PDACs, and the results were correlated with the clinicopathological features. Loss of SMAD4 expression was associated with poor overall survival (OS) ( p = 0.015) and progression-free survival (PFS) ( p = 0.044). Nuclear RUNX3 expression was associated with decreased OS ( p = 0.010) and PFS ( p = 0.009), and more frequent in poorly differentiated PDACs ( p = 0.037). On combining RUNX3/SMAD4 status, RUNX3-/SMAD4+ PDACs demonstrated longer OS ( p = 0.008, median time; RUNX3-/SMAD4+ 34 months, others 17 months) and PFS ( p = 0.009, median time; RUNX3-/SMAD4+ 29 months, others 8 months) compared to RUNX3+/SMAD4+ and SMAD4- groups; RUNX3-/SMAD4+ was a significant independent predictive factor for both OS [ p = 0.025, HR 1.842 (95% CI 1.079-3.143)] and PFS [ p = 0.020, HR 1.850 (95% CI 1.100-3.113)]. SMAD4-positivity with RUNX3-negativity was a significant independent predictive factor for favorable OS and PFS in PDAC. This is the first and large clinicopathological study of RUNX3/SMAD4 expression status in human PDAC. Combination immunohistochemistry for SMAD4 and RUNX3 may help identify a favorable prognostic subgroup of PDAC.

  18. Combination immunohistochemistry for SMAD4 and Runt-related transcription factor 3 may identify a favorable prognostic subgroup of pancreatic ductal adenocarcinomas

    PubMed Central

    Lee, Yangkyu; Lee, Hyejung; Park, Hyunjin; Kim, Jin-Won; Hwang, Jin-Hyeok; Kim, Jaihwan; Yoon, Yoo-Seok; Han, Ho-Seong; Kim, Haeryoung

    2017-01-01

    Purposes SMAD4/DPC4 mutations have been associated with aggressive behavior in pancreatic ductal adenocarcinomas (PDAC), and it has recently been suggested that RUNX3 expression combined with SMAD4 status may predict the metastatic potential of PDACs. We evaluated the prognostic utility of SMAD4/RUNX3 status in human PDACs by immunohistochemistry. Materials and Methods Immunohistochemical stains were performed for SMAD4 and RUNX3 on 210 surgically resected PDACs, and the results were correlated with the clinicopathological features. Results Loss of SMAD4 expression was associated with poor overall survival (OS) (p = 0.015) and progression-free survival (PFS) (p = 0.044). Nuclear RUNX3 expression was associated with decreased OS (p = 0.010) and PFS (p = 0.009), and more frequent in poorly differentiated PDACs (p = 0.037). On combining RUNX3/SMAD4 status, RUNX3-/SMAD4+ PDACs demonstrated longer OS (p = 0.008, median time; RUNX3-/SMAD4+ 34 months, others 17 months) and PFS (p = 0.009, median time; RUNX3-/SMAD4+ 29 months, others 8 months) compared to RUNX3+/SMAD4+ and SMAD4- groups; RUNX3-/SMAD4+ was a significant independent predictive factor for both OS [p = 0.025, HR 1.842 (95% CI 1.079-3.143)] and PFS [p = 0.020, HR 1.850 (95% CI 1.100-3.113)]. Conclusions SMAD4-positivity with RUNX3-negativity was a significant independent predictive factor for favorable OS and PFS in PDAC. This is the first and large clinicopathological study of RUNX3/SMAD4 expression status in human PDAC. Combination immunohistochemistry for SMAD4 and RUNX3 may help identify a favorable prognostic subgroup of PDAC. PMID:29100342

  19. [The role of transforming growth factor-β1/connective tissue growth factor signaling pathway in paraquat-induced pulmonary fibrosis].

    PubMed

    Li, H H; Cai, Q; Wang, Y P; Liu, H R; Huang, M

    2016-07-20

    Objective: To investigate the effects of Paraquat on human embryonic lung fibroblasts (MRC5) and explore the role of transforming growth factor-β 1 /connective tissue growth factor signaling pathway in paraquat-induced pulmonary fibrosis. Methods: MRC5 cells were cultured with different concentration of PQ (0, 12.5, 25, 50, 100, 200, 400 μmol/L) for 24 h. The viability of cells was measured by MTT. The protein level of TGF-β 1 were analyzed by ELISA after PQ treatment (0, 25, 50, 100 μmol/L) . To examine whether TGF-β 1 /CTGF signaling pathway was involved in paraquat-induced cytotoxicity, cells was divided into 6 groups: (1) control; (2) 25 μmol/L PQ group; (3) 50 μmol/L PQ group; (4) 100 μmol/L PQ group; (5) TGF-β 1 positive control group (50 μmol/L rhTGF-β 1 ) ; (6) stimulate group (100 μmol/L PQ+50 μmol/L TGF-β 1 ) . The protein levels of p-Smad2, p-Smad3 and CTGF were assayed by western blot. The mRNA level of CTGF was assayed by real time RT-PCR. Results: MTT showed that cell viability decreased with increasing PQ concentration ( P <0.05) . The protein expression of TGF-β 1 treated with PQ (25, 50, 100 μmol/L) significantly increased compared with control in a dose-independent manner ( P <0.05) . Exposure to PQ (25, 50, 100 μmol/L) induced increase of protein levels of p-Smad2 and p-Smad3. Noteworthy, the expression of p-Smad2 and p-Smad3 were dramatically increased following PQ plus TGF-β 1 stimulation ( P <0.05) . Exposure to PQ (50, 100μmol/L) induced increase of CTGF protein expression and similar greatly increase following PQ plus TGF-β 1 stimulation ( P <0.05) . Real time RT-PCR showed CTGF mRNA in all groups also significantly up-regulated compared with control ( P <0.05) . Conclusion: TGF-β 1 regulates the expression of target gene CTGF to exhibit its pro-fibrogenic effects by activating TGF-β 1 /Smad signaling pathway in PQ-induced pulmonary fibrosis.

  20. BMP4 and BMP7 Suppress StAR and Progesterone Production via ALK3 and SMAD1/5/8-SMAD4 in Human Granulosa-Lutein Cells.

    PubMed

    Zhang, Han; Klausen, Christian; Zhu, Hua; Chang, Hsun-Ming; Leung, Peter C K

    2015-11-01

    Adequate production of progesterone by the corpus luteum is critical to the successful establishment of pregnancy. In animal models, bone morphogenetic protein (BMP) 4 and BMP7 have been shown to suppress either basal or gonadotropin-induced progesterone production, depending on the species examined. However, the effects of BMP4 and BMP7 on progesterone production in human granulosa cells are unknown. In the present study, we used immortalized (SVOG) and primary human granulosa-lutein cells to investigate the effects of BMP4 and BMP7 on steroidogenic acute regulatory protein (StAR) expression and progesterone production and to examine the underlying molecular mechanism. Treatment of primary and immortalized human granulosa cells with recombinant BMP4 or BMP7 decreased StAR expression and progesterone accumulation. In SVOG cells, the suppressive effects of BMP4 and BMP7 on StAR expression were blocked by pretreatment with inhibitors of activin receptor-like kinase (ALK)2/3/6 (dorsomorphin) or ALK2/3 (DMH1) but not ALK4/5/7 (SB-431542). Moreover, small interfering RNA-mediated depletion of ALK3, but not ALK2 or ALK6, reversed the effects of BMP4 and BMP7 on StAR expression. Likewise, BMP4- and BMP7-induced phosphorylation of SMAD 1/5/8 was reversed by treatment with DMH1 or small interfering RNA targeting ALK3. Knockdown of SMAD4, the essential common SMAD for BMP/TGF-β signaling, abolished the effects of BMP4 and BMP7 on StAR expression. Our results suggest that BMP4 and BMP7 down-regulate StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 signaling in human granulosa-lutein cells.

  1. Mechanism of Mechanical Trauma-Induced Extracellular Matrix Remodeling of Fibroblasts in Association with Nrf2/ARE Signaling Suppression Mediating TGF-β1/Smad3 Signaling Inhibition

    PubMed Central

    Liu, Cheng; Li, Qiannan; Wang, Linlin; Min, Jie; Hu, Ming; Hong, Shasha

    2017-01-01

    Stress urinary incontinence (SUI) is a common hygienic problem affecting the quality of women's life worldwide. In this research, we revealed the involvement and regulation of extracellular matrix (ECM) remodeling, oxidative damage, and TGF-β1 signaling in the pathological mechanisms of mechanical trauma-induced SUI. We found that excessive mechanical strain significantly increased apoptosis rate, decreased cell viability and ECM production, and broke the balance of MMPs/TIMPs compared with the nonstrain control (NC) group. The expression levels of TGFβ1, p-Smad3, Nrf2, GPx1, and CAT were downregulated, the production of ROS, 8-OHdG, 4-HNE, and MDA was increased, and the nuclear translocation of Smad2/3 was suppressed after 5333 μstrain's treatment. Both mTGF-β1 pretreatment and Nrf2 overexpression could reverse mechanical injury-induced TGFβ1/Smad3 signaling inhibition and ECM remodeling, whereas mTGF-β1 had no effect on Nrf2 expression. Nrf2 overexpression significantly alleviated mechanical injury-induced ROS accumulation and oxidative damage; in contrast, Nrf2 silencing exhibited opposite effects. Besides, vaginal distention- (VD-) induced in vivo SUI model was used to confirm the in vitro results; Nrf2 knockout aggravates mechanical trauma-induced LPP reduction, ECM remodeling, oxidative damage, and TGF-β1/Smad3 suppression in mice. Therefore, we deduce that mechanical injury-induced ECM remodeling might be associated with Nrf2/ARE signaling suppression mediating TGF-β1/Smad3 signaling inhibition. This might reflect a new molecular target for SUI researches. PMID:29109834

  2. Differential phosphorylation of Smad1 integrates BMP and neurotrophin pathways through Erk/Dusp in axon development.

    PubMed

    Finelli, Mattéa J; Murphy, Kevin J; Chen, Lei; Zou, Hongyan

    2013-05-30

    Sensory axon development requires concerted actions of growth factors for the precise control of axonal outgrowth and target innervation. How developing sensory neurons integrate different cues is poorly understood. We demonstrate here that Smad1 activation is required for neurotrophin-mediated sensory axon growth in vitro and in vivo. Through differential phosphorylation, Smad1 exerts transcriptional selectivity to regulate the expression and activity of Erk1 and Erk2-two key neurotrophin effectors. Specifically, bone morphogenetic proteins (BMPs) signal through carboxy-terminal phosphorylation of Smad1 (pSmad1C) to induce Erk1/2 transcription for enhanced neurotrophin responsiveness. Meanwhile, neurotrophin signaling results in linker phosphorylation of Smad1 (pSmad1L), which in turn upregulates an Erk-specific dual-specificity phosphatase, Dusp6, leading to reduced pErk1/2 and constituting a negative-feedback loop for the prevention of axon overgrowth. Together, the BMP and neurotrophin pathways form a tightly regulated signaling network with a balanced ratio of Erk1/2 and pErk1/2 to direct the precise connections between sensory neurons and peripheral targets. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-β in human breast cancer

    PubMed Central

    2014-01-01

    Introduction Transforming growth factor-βs (TGF-βs) play a dual role in breast cancer, with context-dependent tumor-suppressive or pro-oncogenic effects. TGF-β antagonists are showing promise in early-phase clinical oncology trials to neutralize the pro-oncogenic effects. However, there is currently no way to determine whether the tumor-suppressive effects of TGF-β are still active in human breast tumors at the time of surgery and treatment, a situation that could lead to adverse therapeutic responses. Methods Using a breast cancer progression model that exemplifies the dual role of TGF-β, promoter-wide chromatin immunoprecipitation and transcriptomic approaches were applied to identify a core set of TGF-β-regulated genes that specifically reflect only the tumor-suppressor arm of the pathway. The clinical significance of this signature and the underlying biology were investigated using bioinformatic analyses in clinical breast cancer datasets, and knockdown validation approaches in tumor xenografts. Results TGF-β-driven tumor suppression was highly dependent on Smad3, and Smad3 target genes that were specifically enriched for involvement in tumor suppression were identified. Patterns of Smad3 binding reflected the preexisting active chromatin landscape, and target genes were frequently regulated in opposite directions in vitro and in vivo, highlighting the strong contextuality of TGF-β action. An in vivo-weighted TGF-β/Smad3 tumor-suppressor signature was associated with good outcome in estrogen receptor-positive breast cancer cohorts. TGF-β/Smad3 effects on cell proliferation, differentiation and ephrin signaling contributed to the observed tumor suppression. Conclusions Tumor-suppressive effects of TGF-β persist in some breast cancer patients at the time of surgery and affect clinical outcome. Carefully tailored in vitro/in vivo genomic approaches can identify such patients for exclusion from treatment with TGF-β antagonists. PMID:24890385

  4. Intracellular mediators of transforming growth factor beta superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo.

    PubMed

    Rajagopal, Ramya; Ishii, Shunsuke; Beebe, David C

    2007-06-25

    Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Proteins that are downstream of the transforming growth factor-beta superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFbeta superfamily for their normal development. Phosphorylated Smad1 (pSmad1), pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA) and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-beta superfamily to endosomes is important for the regulation of growth factor signaling.

  5. CTGF Mediates Smad-Dependent Transforming Growth Factor β Signaling To Regulate Mesenchymal Cell Proliferation during Palate Development

    PubMed Central

    Parada, Carolina; Li, Jingyuan; Iwata, Junichi; Suzuki, Akiko

    2013-01-01

    Transforming growth factor β (TGF-β) signaling plays crucial functions in the regulation of craniofacial development, including palatogenesis. Here, we have identified connective tissue growth factor (Ctgf) as a downstream target of the TGF-β signaling pathway in palatogenesis. The pattern of Ctgf expression in wild-type embryos suggests that it may be involved in key processes during palate development. We found that Ctgf expression is downregulated in both Wnt1-Cre; Tgfbr2fl/fl and Osr2-Cre; Smad4fl/fl palates. In Tgfbr2 mutant embryos, downregulation of Ctgf expression is associated with p38 mitogen-activated protein kinase (MAPK) overactivation, whereas loss of function of Smad4 itself leads to downregulation of Ctgf expression. We also found that CTGF regulates its own expression via TGF-β signaling. Osr2-Cre; Smad4fl/fl mice exhibit a defect in cell proliferation similar to that of Tgfbr2 mutant mice, as well as cleft palate. We detected no alteration in bone morphogenetic protein (BMP) downstream targets in Smad4 mutant palates, suggesting that the reduction in cell proliferation is due to defective transduction of TGF-β signaling via decreased Ctgf expression. Significantly, an exogenous source of CTGF was able to rescue the cell proliferation defect in both Tgfbr2 and Smad4 mutant palates. Collectively, our data suggest that CTGF regulates proliferation as a mediator of the canonical pathway of TGF-β signaling during palatogenesis. PMID:23816882

  6. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    András, Ibolya E., E-mail: iandras@med.miami; Toborek, Michal, E-mail: mtoborek@med.miami.edu

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity ofmore » dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.« less

  7. TGF-β induces fascin expression in gastric cancer via phosphorylation of smad3 linker area.

    PubMed

    Li, Liling; Cao, Fang; Liu, Baoan; Luo, Xiaojuan; Ma, Xin; Hu, Zhongliang

    2015-01-01

    Fascin is an actin-bundling protein critical for tumor invasion. TGF-β could induce fascin expression in gastric cancer cells. In this study, we attempted to explore the role of p-smad3L in the expression of fascin induced by TGF-β in gastric cancer cells. Pseudopodia were evaluated by immunofluorescence. Fascin expression was detected by RT-PCR and western blot. Smad3 siRNA was used to repress the endogenous smad3. The phosphorylations of smad3 linker region at sites s204, s208 and s213 were detected by western blot. The fascin promoter reporter activity was measured by dual luciferase assay. TGF-β could increase the formation of pseudopodia and the expression of fascin in gastric cancer cells. Smad3 depletion abrogated the expression of fascin induced by TGF-β. The phosphorylation of smad3 linker region at serine 204, 208 and 213 was enhanced in gastric cancer cells after TGF-β treatment. The fascin promoter reporter activity was significantly enhanced with TGF-β treatment in both wild-type Smad3 group and Smad3EPSM group (P<0.05). Furthermore, the fascin promoter reporter activity in the wild-type Smad3 transfectant cells was significantly higher than that in Smad3EPSM cells (P<0.05). fascin expression induced by TGF-β depends on smad3, at least in part, depends on smad3 linker phosphorylation.

  8. Combined Biology and Bioinformatics Approaches to Breast Cancer

    DTIC Science & Technology

    2006-04-01

    In these experiments, LMO4 interacted with the MH1 and linker domains of Smad3 ; no interaction was found with the MH2 domain (Figure 4b). Figure 2...transcriptional response to TGFb by interacting with Smad proteins, and that both the MH1 and linker domains of Smad3 participate in the interaction. LMO4 can...LMO4 interacts with the MH1 and linker regions of Smad proteins. (a) Full-length, 35S-labeled Smad2, Smad3 , Smad4, Smad5, and Smad8 were incubated with

  9. Amelotin gene expression is temporarily being upregulated at the initiation of apoptosis induced by TGFβ1 in mouse gingival epithelial cells.

    PubMed

    Nakayama, Yohei; Matsui, Sari; Noda, Keisuke; Yamazaki, Mizuho; Iwai, Yasunobu; Matsumura, Hiroyoshi; Izawa, Takashi; Tanaka, Eiji; Ganss, Bernhard; Ogata, Yorimasa

    2016-10-01

    Amelotin (AMTN) is expressed and secreted by ameloblasts in the maturation stage of amelogenesis and persist with low levels in the junctional epithelium (JE) of erupted teeth. The purpose of this study is to investigate the transcriptional regulation of the AMTN gene by transforming growth factor beta1 (TGFβ1) in gingival epithelial (GE1) cells in the apoptosis phase. Apoptosis was evaluated by the fragmentation of chromosomal DNA and TUNEL staining. A real-time PCR was carried out to examine the AMTN mRNA levels induced by TGFβ1 and Smad3 overexpression. Transient transfection analyses were completed using the various lengths of mouse AMTN gene promoter constructs with or without TGFβ1. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the Smad3 bindings to the AMTN gene promoter by TGFβ1. TGFβ1-induced apoptosis in GE1 cells were detected at 24 and 48 h by DNA fragmentation and TUNEL staining. AMTN mRNA levels increased at 6 h and reached maximum at 24 h in GE1 cells. Luciferase activities of the mouse AMTN gene promoter constructs were induced by TGFβ1. The results of the ChIP assays showed that there was an increase in Smad3 binding to Smad-binding element (SBE)#1 and SBE#2 after stimulation by TGFβ1. Immunohistochemical localization of AMTN was detected in the JE, and the AMTN protein levels in Smad3-deficient mice were decreased compared with wild-type mice. AMTN mRNA levels were induced at the initiation of apoptosis by TGFβ1, which mediated through the Smad3 bindings to SBEs in the mouse AMTN gene promoter.

  10. Constitutive Smad linker phosphorylation in melanoma: a mechanism of resistance to transforming growth factor-β-mediated growth inhibition.

    PubMed

    Cohen-Solal, Karine A; Merrigan, Kim T; Chan, Joseph L-K; Goydos, James S; Chen, Wenjin; Foran, David J; Liu, Fang; Lasfar, Ahmed; Reiss, Michael

    2011-06-01

    Melanoma cells are resistant to transforming growth factor-β (TGFβ)-induced cell-cycle arrest. In this study, we investigated a mechanism of resistance involving a regulatory domain, called linker region, in Smad2 and Smad3, main downstream effectors of TGFβ. Melanoma cells in culture and tumor samples exhibited constitutive Smad2 and Smad3 linker phosphorylation. Treatment of melanoma cells with the MEK1/2 inhibitor, U0126, or the two pan-CDK and GSK3 inhibitors, Flavopiridol and R547, resulted in decreased linker phosphorylation of Smad2 and Smad3. Overexpression of the linker phosphorylation-resistant Smad3 EPSM mutant in melanoma cells resulted in an increase in expression of p15(INK4B) and p21(WAF1) , as compared with cells transfected with wild-type (WT) Smad3. In addition, the cell numbers of EPSM Smad3-expressing melanoma cells were significantly reduced compared with WT Smad3-expressing cells. These results suggest that the linker phosphorylation of Smad3 contributes to the resistance of melanoma cells to TGFβ-mediated growth inhibition. 2011 John Wiley & Sons A/S.

  11. Constitutive Smad linker phosphorylation in melanoma: A mechanism of resistance to Transforming Growth Factor-β-mediated growth inhibition

    PubMed Central

    Cohen-Solal, Karine A.; Merrigan, Kim T.; Chan, Joseph L.-K.; Goydos, James S.; Chen, Wenjin; Foran, David J.; Liu, Fang; Lasfar, Ahmed; Reiss, Michael

    2011-01-01

    SUMMARY Melanoma cells are resistant to Transforming Growth Factor-β (TGFβ)-induced cell cycle arrest. In this study, we investigated a mechanism of resistance involving a regulatory domain, called linker region, in Smad2 and Smad3, main downstream effectors of TGFβ. Melanoma cells in culture and in tumor samples exhibited constitutive Smad2 and Smad3 linker phosphorylation. Treatment of melanoma cells with the MEK1/2 inhibitor, U0126, or the two pan-CDK and GSK3 inhibitors, Flavopiridol and R547, resulted in decreased linker phosphorylation of Smad2 and Smad3. Overexpression of the linker phosphorylation-resistant Smad3 EPSM mutant in melanoma cells resulted in an increase in expression of p15INK4B and p21WAF1, as compared with cells transfected with wild-type Smad3. In addition, the cell numbers of EPSM Smad3-expressing melanoma cells were significantly reduced compared to wild-type Smad3-expressing cells. These results suggest that the linker phosphorylation of Smad3 contributes to the resistance of melanoma cells to TGFβ-mediated growth inhibition. PMID:21477078

  12. Decreased levels of active SMAD2 correlate with poor prognosis in gastric cancer.

    PubMed

    Wu, Yijun; Li, Qi; Zhou, Xinhui; Yu, Jiren; Mu, Yunchuan; Munker, Stefan; Xu, Chengfu; Shen, Zhe; Müllenbach, Roman; Liu, Yan; Li, Li; Gretz, Norbert; Zieker, Derek; Li, Jun; Matsuzaki, Kouichi; Li, Youming; Dooley, Steven; Weng, Honglei

    2012-01-01

    TGF-β plays a dual role in the progression of human cancer. During the early stages of carcinogenesis, TGF-β functions as a tumor suppressor. During the late stages of tumor development, however, TGF-β can promote tumor growth and metastasis. A shift in Smad2/3 phosphorylation from the carboxy terminus to linker sites is a key event determining biological function of TGF-β in colorectal and hepatocellular carcinoma. In the present study, we investigated the potential role of differential Smad2/3 phosphorylation in gastric adenocarcinoma. Immunohistochemical staining with anti-P-Smad2/3C and P-Smad2/3L antibodies was performed on 130 paraffin-embedded gastric adenocarcinoma specimens. The relationship between P-Smad2/3C and P-Smad2/3L immunohistochemical score and clinicopathologic characteristics of patients was analyzed. Real time PCR was used to measure mRNA expression of Smad2 and Smad3 in cancer and surrounding non-tumor tissue. No significant P-Smad2L and/or P-Smad3L positive staining was detected in the majority of specimens (positive staining in 18/130 samples). Positive P-Smad2/3L staining was not associated with a decrease in carboxyterminal phosphorylation staining. Loss of P-Smad2C remarkably correlated with depth of tumor infiltration and poor differentiation of cancer cells in patients with gastric cancer. No correlation was detectable between P-Smad3C and clinicopathologic characteristics of gastric adenocarcinoma. However, co-staining analysis revealed that P-Smad3C co-localised with α-SMA and collagen I in gastric cancer cells, indicating a potential link between P-Smad3C and epithelial-to-mesenchymal transition of cancer. Real time PCR demonstrated reduced mRNA expression of Smad2 in gastric cancer when compared with surrounding non-tumor tissue in 15/16 patients. Loss of P-Smad2C tightly correlated with cancer invasion and poor differentiation in gastric cancer. Contrary to colorectal and hepatocellular carcinoma, canonical carboxy-terminal phosphorylation, but not linker phosphorylation, of Smad2 is critical for gastric cancer.

  13. Different modifications of phosphorylated Smad3C and Smad3L through TGF-β after spinal cord injury in mice.

    PubMed

    Joko, Masahiro; Osuka, Koji; Usuda, Nobuteru; Atsuzawa, Kimie; Aoyama, Masahiro; Takayasu, Masakazu

    2013-08-09

    Transforming growth factor-β (TGF-β) is an anti-inflammatory cytokine and is expressed in the injured spinal cord. TGF-β signals through receptors to activate Smad proteins, which translocate into the nucleus. In the present study, we investigated the chronological alterations and cellular locations of the TGF-β/Smad signaling pathway following spinal cord injury (SCI) in mice. ELISA analysis showed that the concentration of interleukin-6 (IL-6) in injured spinal cords significantly increases immediately after SCI, while the concentration of TGF-β gradually increased after SCI, peaked at 2 days, and then gradually decreased. Immunohistochemical studies revealed that Smad3 was mainly expressed in neurons of the spinal cord. Phosphorylated Smad3 at the C-terminus (p-Smad3C) was stained within the motor neurons in the anterior horn, while phosphorylated Smad3 at the linker regions (p-Smad3L) was expressed in astrocytes within gray matter. These findings suggest that SCI induces gradual increases in TGF-β and induces different activation of p-Smad3C and p-Smad3L. Phosphorylated Smad3C might be involved in neuronal degeneration after SCI, and p-Smad3L may play a role in glial scar formation by astrocytes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts

    PubMed Central

    Costamagna, Domiziana; Quattrocelli, Mattia; van Tienen, Florence; Umans, Lieve; de Coo, Irineus F. M.; Zwijsen, An; Huylebroeck, Danny; Sampaolesi, Maurilio

    2016-01-01

    Mesoangioblasts (MABs) are vessel-associated stem cells that express pericyte marker genes and participate in skeletal muscle regeneration. Molecular circuits that regulate the myogenic commitment of MABs are still poorly characterized. The critical role of bone morphogenetic protein (BMP) signalling during proliferation and differentiation of adult myogenic precursors, such as satellite cells, has recently been established. We evaluated whether BMP signalling impacts on the myogenic potential of embryonic and adult MABs both in vitro and in vivo. Addition of BMP inhibited MAB myogenic differentiation, whereas interference with the interactions between BMPs and receptor complexes induced differentiation. Similarly, siRNA-mediated knockdown of Smad8 in Smad1/5-null MABs or inhibition of SMAD1/5/8 phosphorylation with Dorsomorphin (DM) also improved myogenic differentiation, demonstrating a novel role of SMAD8. Moreover, using a transgenic mouse model of Smad8 deletion, we demonstrated that the absence of SMAD8 protein improved MAB myogenic differentiation. Furthermore, once injected into α-Sarcoglycan (Sgca)-null muscles, DM-treated MABs were more efficacious to restore α-sarcoglycan (αSG) protein levels and re-establish functional muscle properties. Similarly, in acute muscle damage, DM-treated MABs displayed a better myogenic potential compared with BMP-treated and untreated cells. Finally, SMADs also control the myogenic commitment of human MABs (hMABs). BMP signalling antagonists are therefore novel candidates to improve the therapeutic effects of hMABs. PMID:26450990

  15. The Roles of TGF-Beta and TGF-Beta Signaling Receptors in Breast Carcinogenesis.

    DTIC Science & Technology

    1997-07-01

    phosphorylation of these molecules in a normal mammary epithelial cell line. Subsequently, we have focused on the functional role of Smad3 and Smad4 as...serine residues in the C-terminal portion of Smadl and Smad2, though the corresponding highly conserved sites in Smad3 and Smad5 most likely serve the...far, it appears that Smad2 and Smad3 , which share 92% sequence identity, are likely mediators for the TGF-B signal, whereas Smadl and Smad5, which

  16. Interaction with Smad4 is indispensable for suppression of BMP signaling by c-Ski.

    PubMed

    Takeda, Masafumi; Mizuide, Masafumi; Oka, Masako; Watabe, Tetsuro; Inoue, Hirofumi; Suzuki, Hiroyuki; Fujita, Toshiro; Imamura, Takeshi; Miyazono, Kohei; Miyazawa, Keiji

    2004-03-01

    c-Ski is a transcriptional corepressor that interacts strongly with Smad2, Smad3, and Smad4 but only weakly with Smad1 and Smad5. Through binding to Smad proteins, c-Ski suppresses signaling of transforming growth factor-beta (TGF-beta) as well as bone morphogenetic proteins (BMPs). In the present study, we found that a mutant of c-Ski, termed c-Ski (ARPG) inhibited TGF-beta/activin signaling but not BMP signaling. Selectivity was confirmed in luciferase reporter assays and by determination of cellular responses in mammalian cells (BMP-induced osteoblastic differentiation of C2C12 cells and TGF-beta-induced epithelial-to-mesenchymal transdifferentiation of NMuMG cells) and Xenopus embryos. The ARPG mutant recruited histone deacetylases 1 (HDAC1) to the Smad3-Smad4 complex but not to the Smad1/5-Smad4 complex. c-Ski (ARPG) was unable to interact with Smad4, and the selective loss of suppression of BMP signaling by c-Ski (ARPG) was attributed to the lack of Smad4 binding. We also found that c-Ski interacted with Smad3 or Smad4 without disrupting Smad3-Smad4 heteromer formation. c-Ski (ARPG) would be useful for selectively suppressing TGF-beta/activin signaling.

  17. Interaction with Smad4 Is Indispensable for Suppression of BMP Signaling by c-Ski

    PubMed Central

    Takeda, Masafumi; Mizuide, Masafumi; Oka, Masako; Watabe, Tetsuro; Inoue, Hirofumi; Suzuki, Hiroyuki; Fujita, Toshiro; Imamura, Takeshi; Miyazono, Kohei; Miyazawa, Keiji

    2004-01-01

    c-Ski is a transcriptional corepressor that interacts strongly with Smad2, Smad3, and Smad4 but only weakly with Smad1 and Smad5. Through binding to Smad proteins, c-Ski suppresses signaling of transforming growth factor-β (TGF-β) as well as bone morphogenetic proteins (BMPs). In the present study, we found that a mutant of c-Ski, termed c-Ski (ARPG) inhibited TGF-β/activin signaling but not BMP signaling. Selectivity was confirmed in luciferase reporter assays and by determination of cellular responses in mammalian cells (BMP-induced osteoblastic differentiation of C2C12 cells and TGF-β–induced epithelial-to-mesenchymal transdifferentiation of NMuMG cells) and Xenopus embryos. The ARPG mutant recruited histone deacetylases 1 (HDAC1) to the Smad3-Smad4 complex but not to the Smad1/5-Smad4 complex. c-Ski (ARPG) was unable to interact with Smad4, and the selective loss of suppression of BMP signaling by c-Ski (ARPG) was attributed to the lack of Smad4 binding. We also found that c-Ski interacted with Smad3 or Smad4 without disrupting Smad3-Smad4 heteromer formation. c-Ski (ARPG) would be useful for selectively suppressing TGF-β/activin signaling. PMID:14699069

  18. Linker phosphorylation of Smad3 promotes fibro-carcinogenesis in chronic viral hepatitis of hepatocellular carcinoma.

    PubMed

    Murata, Miki; Yoshida, Katsunori; Yamaguchi, Takashi; Matsuzaki, Koichi

    2014-11-07

    Epidemiological and clinical data point to a close association between chronic hepatitis B virus infection or chronic hepatitis C virus infection and development of hepatocellular carcinoma (HCC). HCC develops over several decades and is associated with fibrosis. This sequence suggests that persistent viral infection and chronic inflammation can synergistically induce liver fibrosis and hepatocarcinogenesis. The transforming growth factor-β (TGF-β) signaling pathway plays a pivotal role in diverse cellular processes and contributes to hepatic fibro-carcinogenesis under inflammatory microenvironments during chronic liver diseases. The biological activities of TGF-β are initiated by the binding of the ligand to TGF-β receptors, which phosphorylate Smad proteins. TGF-β type I receptor activates Smad3 to create COOH-terminally phosphorylated Smad3 (pSmad3C), while pro-inflammatory cytokine-activated kinases phosphorylates Smad3 to create the linker phosphorylated Smad3 (pSmad3L). During chronic liver disease progression, virus components, together with pro-inflammatory cytokines and somatic mutations, convert the Smad3 signal from tumor-suppressive pSmad3C to fibro-carcinogenic pSmad3L pathways, accelerating liver fibrosis and increasing the risk of HCC. The understanding of Smad3 phosphorylation profiles may provide new opportunities for effective chemoprevention and personalized therapy for patients with hepatitis virus-related HCC in the future.

  19. TGF-β1 stimulates migration of type II endometrial cancer cells by down-regulating PTEN via activation of SMAD and ERK1/2 signaling pathways

    PubMed Central

    Xiong, Siyuan; Cheng, Jung-Chien; Klausen, Christian; Zhao, Jianfang; Leung, Peter C.K.

    2016-01-01

    PTEN acts as a tumor suppressor primarily by antagonizing the PI3K/AKT signaling pathway. PTEN is frequently mutated in human cancers; however, in type II endometrial cancers its mutation rate is very low. Overexpression of TGF-β1 and its receptors has been reported to correlate with metastasis of human cancers and reduced survival rates. Although TGF-β1 has been shown to regulate PTEN expression through various mechanisms, it is not yet known if the same is true in type II endometrial cancer. In the present study, we show that treatment with TGF-β1 stimulates the migration of two type II endometrial cancer cell lines, KLE and HEC-50. In addition, TGF-β1 treatment down-regulates both mRNA and protein levels of PTEN. Overexpression of PTEN or inhibition of PI3K abolishes TGF-β1-stimulated cell migration. TGF-β1 induces SMAD2/3 phosphorylation and knockdown of common SMAD4 inhibits the suppressive effects of TGF-β1 on PTEN mRNA and protein. Interestingly, TGF-β1 induces ERK1/2 phosphorylation and pre-treatment with a MEK inhibitor attenuates the suppression of PTEN protein, but not mRNA, by TGF-β1. This study provides important insights into the molecular mechanisms mediating TGF-β1-induced down-regulation of PTEN and demonstrates an important role of PTEN in the regulation of type II endometrial cancer cell migration. PMID:27542208

  20. STAT3 selectively interacts with Smad3 to antagonize TGF-β signaling

    PubMed Central

    Wang, Gaohang; Yu, Yi; Sun, Chuang; Liu, Ting; Liang, Tingbo; Zhan, Lixing; Lin, Xia; Feng, Xin-Hua

    2015-01-01

    Smad and STAT proteins are critical signal transducers and transcription factors in controlling cell growth and tumorigenesis. Here we report that the STAT3 signaling pathway attenuates TGF-β-induced responses through a direct Smad3-STAT3 interplay. Activated STAT3 blunts TGF-β-mediated signaling. Depletion of STAT3 promotes TGF-β-mediated transcriptional and physiological responses, including cell cycle arrest, apoptosis and epithelial-to-mesenchymal transition. STAT3 directly interacts with Smad3 in vivo and in vitro, resulting in attenuation of the Smad3-Smad4 complex formation and suppression of DNA-binding ability of Smad3. The N-terminal region of DNA-binding domain of STAT3 is responsible for the STAT3-Smad3 interaction and also indispensable for STAT3-mediated inhibition of TGF-β signaling. Thus, our finding illustrates a direct crosstalk between the STAT3 and Smad3 signaling pathways that may contribute to tumor development and inflammation. PMID:26616859

  1. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamminen, Jenni A.; Yin, Miao; Transplantation Laboratory, Haartman Institute, University of Helsinki

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cellsmore » in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.« less

  2. TGF-β induces fascin expression in gastric cancer via phosphorylation of smad3 linker area

    PubMed Central

    Li, Liling; Cao, Fang; Liu, Baoan; Luo, Xiaojuan; Ma, Xin; Hu, Zhongliang

    2015-01-01

    Background: Fascin is an actin-bundling protein critical for tumor invasion. TGF-β could induce fascin expression in gastric cancer cells. In this study, we attempted to explore the role of p-smad3L in the expression of fascin induced by TGF-β in gastric cancer cells. Methods: Pseudopodia were evaluated by immunofluorescence. Fascin expression was detected by RT-PCR and western blot. Smad3 siRNA was used to repress the endogenous smad3. The phosphorylations of smad3 linker region at sites s204, s208 and s213 were detected by western blot. The fascin promoter reporter activity was measured by dual luciferase assay. Results: TGF-β could increase the formation of pseudopodia and the expression of fascin in gastric cancer cells. Smad3 depletion abrogated the expression of fascin induced by TGF-β. The phosphorylation of smad3 linker region at serine 204, 208 and 213 was enhanced in gastric cancer cells after TGF-β treatment. The fascin promoter reporter activity was significantly enhanced with TGF-β treatment in both wild-type Smad3 group and Smad3EPSM group (P<0.05). Furthermore, the fascin promoter reporter activity in the wild-type Smad3 transfectant cells was significantly higher than that in Smad3EPSM cells (P<0.05). Conclusions: fascin expression induced by TGF-β depends on smad3, at least in part, depends on smad3 linker phosphorylation. PMID:26269751

  3. Aberrant hypertrophy in Smad3-deficient murine chondrocytes is rescued by restoring transforming growth factor beta-activated kinase 1/activating transcription factor 2 signaling: a potential clinical implication for osteoarthritis.

    PubMed

    Li, Tian-Fang; Gao, Lin; Sheu, Tzong-Jen; Sampson, Erik R; Flick, Lisa M; Konttinen, Yrjö T; Chen, Di; Schwarz, Edward M; Zuscik, Michael J; Jonason, Jennifer H; O'Keefe, Regis J

    2010-08-01

    To investigate the biologic significance of Smad3 in the progression of osteoarthritis (OA), the crosstalk between Smad3 and activating transcription factor 2 (ATF-2) in the transforming growth factor beta (TGFbeta) signaling pathway, and the effects of ATF-2 overexpression and p38 activation in chondrocyte differentiation. Joint disease in Smad3-knockout (Smad3(-/-)) mice was examined by microfocal computed tomography and histologic analysis. Numerous in vitro methods including immunostaining, real-time polymerase chain reaction, Western blotting, an ATF-2 DNA-binding assay, and a p38 kinase activity assay were used to study the various signaling responses and protein interactions underlying the altered chondrocyte phenotype in Smad3(-/-) mice. In Smad3(-/-) mice, an end-stage OA phenotype gradually developed. TGFbeta-activated kinase 1 (TAK1)/ATF-2 signaling was disrupted in Smad3(-/-) mouse chondrocytes at the level of p38 MAP kinase (MAPK) activation, resulting in reduced ATF-2 phosphorylation and transcriptional activity. Reintroduction of Smad3 into Smad3(-/-) cells restored the normal p38 response to TGFbeta. Phosphorylated p38 formed a complex with Smad3 by binding to a portion of Smad3 containing both the MAD homology 1 and linker domains. Additionally, Smad3 inhibited the dephosphorylation of p38 by MAPK phosphatase 1 (MKP-1). Both ATF-2 overexpression and p38 activation repressed type X collagen expression in wild-type and Smad3(-/-) chondrocytes. P38 was detected in articular cartilage and perichondrium; articular and sternal chondrocytes expressed p38 isoforms alpha, beta, and gamma, but not delta. Smad3 is involved in both the onset and progression of OA. Loss of Smad3 abrogates TAK1/ATF-2 signaling, most likely by disrupting the Smad3-phosphorylated p38 complex, thereby promoting p38 dephosphorylation and inactivation by MKP-1. ATF-2 and p38 activation inhibit chondrocyte hypertrophy. Modulation of p38 isoform activity may provide a new therapeutic approach for OA.

  4. Repression of endogenous Smad7 by Ski.

    PubMed

    Denissova, Natalia G; Liu, Fang

    2004-07-02

    The Ski protein has been proposed to serve as a corepressor for Smad4 to maintain a transforming growth factor-beta (TGF-beta)-responsive promoter at a repressed, basal level. However, there have been no reports so far that it indeed acts on a natural promoter. We have previously cloned the human Smad7 promoter and shown that it contains the 8-base pair palindromic Smad-binding element (SBE) necessary for TGF-beta induction. In this report, we have characterized the negative regulation of Smad7 promoter basal activity by Ski. We show that Ski inhibits the Smad7 promoter basal activity in a SBE-dependent manner. Mutation of the SBE abrogates the inhibitory effect of Ski on the Smad7 promoter. Moreover, mutation of the SBE increases the Smad7 promoter basal activity. Using the chromatin immunoprecipitation assay, we further show that Ski together with Smad4 binds to the endogenous Smad7 promoter. Finally, we show that RNAi knockdown of Ski increases Smad7 reporter gene activity in transient transfection assays as well as elevating the endogenous level of Smad7 mRNA. Taken together, our results provide the first evidence that Ski is indeed a corepressor for Smad4, which can inhibit a natural TGF-beta responsive gene at the basal state.

  5. Breast Tumorigenesis: Interaction of Two Signaling Pathways- -TGF- -beta versus Estrogen Receptor.

    DTIC Science & Technology

    1997-08-01

    on the functional role of Smad3 and Smad4 as tumor suppressors in mediating the TGF-B signal in transactivating downstream target genes. We have...extended our analysis of the biological activity of the Smad proteins in TGF-B signaling by studying the nuclear activity of Smad2, Smad3 and Sliad4...groups using in vitro phosphorylation assays. Taken together these data suggest that Smad2 and Smad3 are inducibly phosphorylated in response to TGF-P3 and

  6. SMAD4 is Involved in the Development of Endotoxin Tolerance in Microglia.

    PubMed

    Liu, Xiaorong; Qin, Yongwei; Dai, Aihua; Zhang, Yu; Xue, Huaqing; Ni, Haidan; Han, Lijian; Zhu, Liang; Yuan, Debin; Tao, Tao; Cao, Maohong

    2016-07-01

    Initial exposure of macrophages to LPS induces hyporesponsiveness to a second challenge with LPS, a phenomenon termed LPS tolerance. Smad4 plays important roles in the induction of LPS tolerance. However, the function of Smad4 in microglia remains unknown. Here we show that expression of Smad4 was highly up-regulated in LPS-tolerized mouse cerebral cortex. Smad4 was mostly colocalized with microglia, rarely with neurons. Using a microglia cell line, BV2, we find that LPS activates endogenous Smad4, inducing its migration into the nucleus and increasing its expression. Smad4 significantly suppressed TLR-triggered production of proinflammatory cytokines (IL-6), increased anti-inflammatory cytokine in LPS-tolerized microglia. Moreover, IL-6 concentrations in culture supernatants after second LPS challenge are higher in SMAD4 small interfering RNA (siRNA) BV2 cells than control siRNA BV2 cells, indicating failure to induce tolerance in absence of Smad4 signaling. In our study, we conclude that both in vivo and in vitro, Smad4 signaling is required for maximal induction of endotoxin tolerance.

  7. Phosphorylated Smad2 and Smad3 signaling: Shifting between tumor suppression and fibro-carcinogenesis in chronic hepatitis C.

    PubMed

    Yamaguchi, Takashi; Matsuzaki, Koichi; Inokuchi, Ryosuke; Kawamura, Rinako; Yoshida, Katsunori; Murata, Miki; Fujisawa, Junichi; Fukushima, Nobuyoshi; Sata, Michio; Kage, Masayoshi; Nakashima, Osamu; Tamori, Akihiro; Kawada, Norifumi; Tsuneyama, Koichi; Dooley, Steven; Seki, Toshihito; Okazaki, Kazuichi

    2013-12-01

    Insight into hepatic fibrogenesis and carcinogenesis (fibro-carcinogenesis) caused by hepatitis C virus (HCV) infection has come from recent analyses of transforming growth factor (TGF)-β signaling. TGF-β type I receptor and pro-inflammatory cytokine-activated kinases differentially phosphorylate Smad2 and Smad3 to create C-terminally (C), linker (L) or dually (L/C) phosphorylated (p) isoforms. This study aimed to elucidate how HCV infection affected hepatic fibro-carcinogenesis, particularly via phospho-Smad signaling. We first studied phospho-Smad2/3 positivity of 100 patients in different stages of HCV-related chronic liver disease. To examine changes in phospho-Smad2/3 after HCV clearance, we analyzed 32 paired liver biopsy samples obtained before and after sustained virological response (SVR), dividing patients into two groups: 20 patients not developing hepatocellular carcinoma (HCC) after attaining SVR (non-HCC group), and 12 patients who developed HCC despite SVR (HCC group). Hepatocytic tumor-suppressive pSmad3C signaling shifted to carcinogenic pSmad3L and fibrogenic pSmad2L/C signaling as liver diseases progressed. In the non-HCC group, 13 patients (65%) displayed fibrotic regression and inflammation reduction after SVR. Interestingly, SVR restored cytostatic pSmad3C signaling in hepatocytes, while eliminating prior carcinogenic pSmad3L and fibrogenic pSmad2L/C signaling. In the HCC group, seven patients (58%) displayed unchanged or even progressed fibrosis despite smoothened inflammatory activity, reflecting persistently high numbers of hepatocytes with pSmad3L- and pSmad2L/C-signaling and low pSmad3C-signaling. HCV clearance limits fibrosis and reduces HCC incidence by switching inflammation-dependent phospho-Smad signaling from fibro-carcinogenesis to tumor suppression. However, progression to HCC would occur in severely fibrotic livers if an inflammation-independent fibro-carcinogenic process has already begun before HCV clearance. © 2013 The Japan Society of Hepatology.

  8. Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NF{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliseev, Roman A.; Schwarz, Edward M.; Zuscik, Michael J.

    2006-01-01

    The transcription factor NF{kappa}B is constitutively activated in various tumor cells where it promotes proliferation and represses apoptosis. The bone morphogenetic proteins (BMPs) delay cell proliferation and promote differentiation and apoptosis of bone cells through activation of Smad downstream effectors and via Smad-independent mechanisms. Thus, NF{kappa}B and BMP pathways play opposing roles in regulating osteoblastic cell fate. Here, we show that in osteosarcoma Saos2 osteoblasts, NF{kappa}B regulates the activity of the BMP/Smad signaling. Inhibition of NF{kappa}B by overexpression of mI{kappa}B leads to the induction of osteoblast differentiation. Saos2 cells overexpressing mI{kappa}B (Saos2-mI{kappa}B) exhibit higher expression of osteoblast phenotypic genes suchmore » as alkaline phosphatase, Runx2 and osteocalcin and are more responsive to BMP2 in comparison to wild-type cells (Saos2-wt) or empty vector infected controls (Saos2-EV). Furthermore, BMP-2 signaling and Smad phosphorylation are significantly increased in Saos2-mI{kappa}B cells in comparison to Saos2-EV cells. Inhibition of NF{kappa}B signaling in Saos2-mI{kappa}B cells is associated with decreased expression of the BMP signaling inhibitor Smad7. While gain of Smad7 function in Saos2-mI{kappa}B cells results in inhibition of BMP signaling, anti-sense knockdown of Smad7 in Saos2-EV cells leads to upregulation of BMP signaling. We therefore conclude that in osteosarcoma Saos2 cells, NF{kappa}B represses BMP/Smad signaling and BMP2-induced differentiation through Smad7.« less

  9. Activation of Bone Morphogenetic Protein 4 Signaling Leads to Glomerulosclerosis That Mimics Diabetic Nephropathy*

    PubMed Central

    Tominaga, Tatsuya; Abe, Hideharu; Ueda, Otoya; Goto, Chisato; Nakahara, Kunihiko; Murakami, Taichi; Matsubara, Takeshi; Mima, Akira; Nagai, Kojiro; Araoka, Toshikazu; Kishi, Seiji; Fukushima, Naoshi; Jishage, Kou-ichi; Doi, Toshio

    2011-01-01

    Diabetic nephropathy (DN) is the most common cause of chronic kidney disease. We have previously reported that Smad1 transcriptionally regulates the expression of extracellular matrix (ECM) proteins in DN. However, little is known about the regulatory mechanisms that induce and activate Smad1. Here, bone morphogenetic protein 4 (Bmp4) was found to up-regulate the expression of Smad1 in mesangial cells and subsequently to phosphorylate Smad1 downstream of the advanced glycation end product-receptor for advanced glycation end product signaling pathway. Moreover, Bmp4 utilized Alk3 and affected the activation of Smad1 and Col4 expressions in mesangial cells. In the diabetic mouse, Bmp4 was remarkably activated in the glomeruli, and the mesangial area was expanded. To elucidate the direct function of Bmp4 action in the kidneys, we generated transgenic mice inducible for the expression of Bmp4. Tamoxifen treatment dramatically induced the expression of Bmp4, especially in the glomeruli of the mice. Notably, in the nondiabetic condition, the mice exhibited not only an expansion of the mesangial area and thickening of the basement membrane but also remarkable albuminuria, which are consistent with the distinct glomerular injuries in DN. ECM protein overexpression and activation of Smad1 in the glomeruli were also observed in the mice. The mesangial expansion in the mice was significantly correlated with albuminuria. Furthermore, the heterozygous Bmp4 knock-out mice inhibited the glomerular injuries compared with wild type mice in diabetic conditions. Here, we show that BMP4 may act as an upstream regulatory molecule for the process of ECM accumulation in DN and thereby reveals a new aspect of the molecular mechanisms involved in DN. PMID:21471216

  10. c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3.

    PubMed

    Velden, Jos L J van der; Alcorn, John F; Guala, Amy S; Badura, Elsbeth C H L; Janssen-Heininger, Yvonne M W

    2011-04-01

    Transforming growth factor (TGF)-β1 is a key mediator of lung remodeling and fibrosis. Epithelial cells are both a source of and can respond to TGF-β1 with epithelial-to-mesenchymal transition (EMT). We recently determined that TGF-β1-induced EMT in lung epithelial cells requires the presence of c-Jun N-terminal kinase (JNK) 1. Because TGF-β1 signals via Smad complexes, the goal of the present study was to determine the impact of JNK1 on phosphorylation of Smad3 and Smad3-dependent transcriptional responses in lung epithelial cells. Evaluation of JNK1-deficient lung epithelial cells demonstrated that TGF-β1-induced terminal phosphorylation of Smad3 was similar, whereas phosphorylation of mitogen-activated protein kinase sites in the linker regions of Smad3 was diminished, in JNK1-deficient cells compared with wild-type cells. In comparison to wild-type Smad3, expression of a mutant Smad3 in which linker mitogen-activated protein kinase sites were ablated caused a marked attenuation in JNK1 or TGF-β1-induced Smad-binding element transcriptional activity, and expression of plasminogen activator inhibitor-1, fibronectin-1, high-mobility group A2, CArG box-binding factor-A, and fibroblast-specific protein-1, genes critical in the process of EMT. JNK1 enhanced the interaction between Smad3 and Smad4, which depended on linker phosphorylation of Smad3. Conversely, Smad3 with phosphomimetic mutations in the linker domain further enhanced EMT-related genes and proteins, even in the absence of JNK1. Finally, we demonstrated a TGF-β1-induced interaction between Smad3 and JNK1. Collectively, these results demonstrate that Smad3 phosphorylation in the linker region and Smad transcriptional activity are directly or indirectly controlled by JNK1, and provide a putative mechanism whereby JNK1 promotes TGF-β1-induced EMT.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Lim, Min; Ahn, Jiyeon; Youn Yi, Jae

    Fibrosis is one of the most serious side effects in cancer patients undergoing radio-/ chemo-therapy, especially of the lung, pancreas or kidney. Based on our previous finding that galectin-1 (Gal-1) was significantly increased during radiation-induced lung fibrosis in areas of pulmonary fibrosis, we herein clarified the roles and action mechanisms of Gal-1 during fibrosis. Our results revealed that treatment with TGF-β1 induced the differentiation of fibroblast cell lines (NIH3T3 and IMR-90) to myofibroblasts, as evidenced by increased expression of the fibrotic markers smooth muscle actin-alpha (α-SMA), fibronectin, and collagen (Col-1). We also observed marked and time-dependent increases in the expressionmore » level and nuclear accumulation of Gal-1. The TGF-β1-induced increases in Gal-1, α-SMA and Col-1 were decreased by inhibitors of PI3-kinase and p38 MAPK, but not ERK. Gal-1 knockdown using shRNA decreased the phosphorylation and nuclear retention of Smad2, preventing the differentiation of fibroblasts. Gal-1 interacted with Smad2 and phosphorylated Smad2, which may accelerate fibrotic processes. In addition, up-regulation of Gal-1 expression was demonstrated in a bleomycin (BLM)-induced mouse model of lung fibrosis in vivo. Together, our results indicate that Gal-1 may promote the TGF-β1-induced differentiation of fibroblasts by sustaining nuclear localization of Smad2, and could be a potential target for the treatment of pulmonary fibrotic diseases. - Highlights: • Galectin-1 (Gal-1) promotes TGF-β-induced fibroblast differentiation via activation of PI3-kinase and p38 MAPK. • Gal-1 binds to Smad2 and phosphorylated Smad2. • GAl-1 may be a new therapeutic target for attenuating lung fibrotic process.« less

  12. Linker phosphorylation of Smad3 promotes fibro-carcinogenesis in chronic viral hepatitis of hepatocellular carcinoma

    PubMed Central

    Murata, Miki; Yoshida, Katsunori; Yamaguchi, Takashi; Matsuzaki, Koichi

    2014-01-01

    Epidemiological and clinical data point to a close association between chronic hepatitis B virus infection or chronic hepatitis C virus infection and development of hepatocellular carcinoma (HCC). HCC develops over several decades and is associated with fibrosis. This sequence suggests that persistent viral infection and chronic inflammation can synergistically induce liver fibrosis and hepatocarcinogenesis. The transforming growth factor-β (TGF-β) signaling pathway plays a pivotal role in diverse cellular processes and contributes to hepatic fibro-carcinogenesis under inflammatory microenvironments during chronic liver diseases. The biological activities of TGF-β are initiated by the binding of the ligand to TGF-β receptors, which phosphorylate Smad proteins. TGF-β type I receptor activates Smad3 to create COOH-terminally phosphorylated Smad3 (pSmad3C), while pro-inflammatory cytokine-activated kinases phosphorylates Smad3 to create the linker phosphorylated Smad3 (pSmad3L). During chronic liver disease progression, virus components, together with pro-inflammatory cytokines and somatic mutations, convert the Smad3 signal from tumor-suppressive pSmad3C to fibro-carcinogenic pSmad3L pathways, accelerating liver fibrosis and increasing the risk of HCC. The understanding of Smad3 phosphorylation profiles may provide new opportunities for effective chemoprevention and personalized therapy for patients with hepatitis virus-related HCC in the future. PMID:25386050

  13. Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor beta signaling, promoting cirrhosis and hepatocellular carcinoma.

    PubMed

    Matsuzaki, Koichi; Murata, Miki; Yoshida, Katsunori; Sekimoto, Go; Uemura, Yoshiko; Sakaida, Noriko; Kaibori, Masaki; Kamiyama, Yasuo; Nishizawa, Mikio; Fujisawa, Junichi; Okazaki, Kazuichi; Seki, Toshihito

    2007-07-01

    Many patients with chronic hepatitis caused by hepatitis C virus (HCV) infection develop liver fibrosis with high risk for hepatocellular carcinoma (HCC), but the mechanism underling this process is unclear. Conversely, transforming growth factor beta (TGF-beta) activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), which convert the mediator Smad3 into two distinctive phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Whereas the TbetaRI/pSmad3C pathway suppresses epithelial cell growth by upregulating p21(WAF1) transcription, JNK/pSmad3L-mediated signaling promotes extracellular matrix deposition, partly, by upregulating plasminogen activator inhibitor 1 (PAI-1). We studied the domain-specific Smad3 phosphorylation in biopsy specimens representing chronic hepatitis, cirrhosis, or HCC from 100 patients chronically infected with HCV, and correlated Smad3 phosphorylation with clinical course. As HCV-infected livers progressed from chronic hepatitis through cirrhosis to HCC, hepatocytic pSmad3L/PAI-1 increased with fibrotic stage and necroinflammatory grade, and pSmad3C/p21(WAF1) decreased. Of 14 patients with chronic hepatitis C with strong hepatocytic pSmad3L positivity, 8 developed HCC within 12 years; only 1 of 12 showing little pSmad3L positivity developed HCC. We further sought molecular mechanisms in vitro. JNK activation by the pro-inflammatory cytokine interleukin-1beta stimulated the pSmad3L/PAI-1 pathway in facilitating hepatocytic invasion, in the meantime reducing TGF-beta-dependent tumor-suppressive activity by the pSmad3C/p21(WAF1) pathway. These results indicate that chronic inflammation associated with HCV infection shifts hepatocytic TGF-beta signaling from tumor-suppression to fibrogenesis, accelerating liver fibrosis and increasing risk for HCC.

  14. Four Amino Acids within a Tandem QxVx Repeat in a Predicted Extended α-Helix of the Smad-Binding Domain of Sip1 Are Necessary for Binding to Activated Smad Proteins

    PubMed Central

    Conidi, Andrea; van den Berghe, Veronique; Leslie, Kris; Stryjewska, Agata; Xue, Hua; Chen, Ye-Guang; Seuntjens, Eve; Huylebroeck, Danny

    2013-01-01

    The zinc finger transcription factor Smad-interacting protein-1 (Sip1; Zeb2, Zfhx1b) plays an important role during vertebrate embryogenesis in various tissues and differentiating cell types, and during tumorigenesis. Previous biochemical analysis suggests that interactions with several partner proteins, including TGFβ family receptor-activated Smads, regulate the activities of Sip1 in the nucleus both as a DNA-binding transcriptional repressor and activator. Using a peptide aptamer approach we mapped in Sip1 its Smad-binding domain (SBD), initially defined as a segment of 51 amino acids, to a shorter stretch of 14 amino acids within this SBD. Modelling suggests that this short SBD stretch is part of an extended α-helix that may fit the binding to a hydrophobic corridor within the MH2 domain of activated Smads. Four amino acids (two polar Q residues and two non-polar V residues) that form the tandem repeat (QxVx)2 in this 14-residue stretch were found to be crucial for binding to both TGFβ/Nodal/Activin-Smads and BMP-Smads. A full-length Sip1 with collective mutation of these Q and V residues (to A) no longer binds to Smads, while it retains its binding activity to its cognate bipartite target DNA sequence. This missense mutant Sip1(AxAx)2 provides a new molecular tool to identify SBD (in)dependent target genes in Sip1-controlled TGFβ and/or BMP (de)regulated cellular, developmental and pathological processes. PMID:24146916

  15. Reversible Human TGF-β Signal Shifting between Tumor Suppression and Fibro-Carcinogenesis: Implications of Smad Phospho-Isoforms for Hepatic Epithelial-Mesenchymal Transitions.

    PubMed

    Yoshida, Katsunori; Murata, Miki; Yamaguchi, Takashi; Matsuzaki, Koichi; Okazaki, Kazuichi

    2016-01-12

    Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are observed during both physiological liver wound healing and the pathological fibrotic/carcinogenic (fibro-carcinogenetic) process. TGF-β and pro-inflammatory cytokine are considered to be the major factors accelerating liver fibrosis and promoting liver carcinogenesis. Smads, consisting of intermediate linker regions connecting Mad homology domains, act as the intracellular mediators of the TGF-β signal transduction pathway. As the TGF-β receptors, c-Jun N-terminal kinase and cyclin-dependent kinase, differentially phosphorylate Smad2/3, we have generated numerous antibodies against linker (L) and C-terminal (C) phosphorylation sites in Smad2/3 and identified four types of phosphorylated forms: cytostatic COOH-terminally-phosphorylated Smad3 (pSmad3C), mitogenic pSmad3L (Ser-213) signaling, fibrogenic pSmad2L (Ser-245/250/255)/C signaling and migratory pSmad2/3L (Thr-220/179)/C signaling. After acute liver injury, TGF-β upregulates pSmad3C signaling and terminates pSmad3L (Ser-213)-mediated hepatocyte proliferation. TGF-β and pro-inflammatory cytokines cooperatively enhance collagen synthesis by upregulating pSmad2L (Thr-220)/C and pSmad3L (Thr-179)/C pathways in activated hepatic stellate cells. During chronic liver injuries, hepatocytes persistently affected by TGF-β and pro-inflammatory cytokines eventually become pre-neoplastic hepatocytes. Both myofibroblasts and pre-neoplastic hepatocyte exhibit the same carcinogenic (mitogenic) pSmad3L (Ser-213) and fibrogenic pSmad2L (Ser-245/250/255)/C signaling, with acquisition of fibro-carcinogenic properties and increasing risk of hepatocellular carcinoma (HCC). Firstly, we review phospho-Smad-isoform signalings in epithelial and mesenchymal cells in physiological and pathological conditions and then consider Smad linker phosphorylation as a potential target for pathological EMT during human fibro-carcinogenesis, because human Smad phospho-isoform signals can reverse from fibro-carcinogenesis to tumor-suppression in a process of MET after therapy.

  16. Heme oxygenase-1/carbon monoxide axis suppresses transforming growth factor-β1-induced growth inhibition by increasing ERK1/2-mediated phosphorylation of Smad3 at Thr-179 in human hepatocellular carcinoma cell lines.

    PubMed

    Park, Seong Ji; Lee, Seung Koo; Lim, Chae Rin; Park, Hye Won; Liu, Fang; Kim, Seong-Jin; Kim, Byung-Chul

    2018-04-06

    Heme oxygenase-1 (HO-1) has been implicated in tumor progression, but the underlying molecular mechanisms remain largely unknown. Transforming growth factor-β1 (TGF-β1) exhibits cytostatic and apoptotic effects in hepatocytes and several types of hepatocellular carcinoma (HCC) cell lines, and deregulation of its signaling pathway is linked to hepatic tumorigenesis. In the present study, we observed that HO-1 is expressed at higher levels in HCC tissues than in paired normal tissues. Moreover, TGF-β1-induced cell cycle arrest and up-regulation of cyclin-dependent kinase inhibitors in HCC cell lines were significantly attenuated by overexpression of HO-1 or treatment with tricarbonyldichlororuthenium(II) dimer ([Ru(CO) 3 Cl 2 ] 2 , suggesting an inhibitory role of the HO-1/CO axis in TGF-β signaling to growth inhibition in HCC cell lines. Interestingly, we observed that [Ru(CO) 3 Cl 2 ] 2 inhibits TGF-β1-induced Smad3-dependent reporter activity without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation. Additional experiments revealed that HO-1/CO axis selectively induces phosphorylation of Smad3 at Thr-179 residue in the linker region through activation of extracellular signal-activated kinase (ERK) 1/2. Transfection with a phospho-deficient Smad3 (T179A) mutant or treatment with FR180204, a specific inhibitor for ERK1/2, significantly reversed the inhibitory effects of HO-1 and [Ru(CO) 3 Cl 2 ] 2 on cell cycle arrest induced by TGF-β1. These findings for the first time demonstrate that HO-1/CO axis confer resistance of HCC cells to TGF-β growth inhibitory signal by increasing Smad3 phosphorylation at Thr-179 via ERK1/2 pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Transforming Growth Factor-β1 Attenuates Expression of Both the Progesterone Receptor and Dickkopf in Differentiated Human Endometrial Stromal Cells

    PubMed Central

    Kane, Nicole; Jones, Marius; Brosens, Jan J.; Saunders, Philippa T. K.; Kelly, Rodney W.; Critchley, Hilary O. D.

    2008-01-01

    TGFβ1 is thought to be intimately involved in cyclic tissue remodeling and inflammatory events associated with menstruation. Menstruation is initiated by progesterone withdrawal; however, the underlying mechanisms are not well understood. In the present study, we have tested the hypothesis that locally produced TGFβ1 may influence expression of progesterone receptor (PR) or the Wnt antagonist Dickkopf-1 (DKK) with consequential impact on regulation of menstruation. Endometrial stromal cells (ESC) were isolated from endometrial biopsy samples collected from patients undergoing gynecological procedures for benign indications. Treatment of differentiated ESC with TGFβ1 (10 ng/ml) significantly inhibited the expression of mRNAs encoding PR and DKK. TGFβ1 also attenuated the protein expression of PR and secretion of DKK proteins in culture supernatants. Neutralization of endogenous TGFβ1 signaling abolished the TGFβ1-induced effects, significantly increased expression of PR, and increased DKK protein release levels to that of differentiated ESCs, confirming the specificity of the TGFβ1 effect. Additionally, in vitro decidualization of ESCs significantly augmented DKK protein release. Moreover, although TGFβ1 was capable of signaling via the Sma- and mothers against decapentaplegic (MAD)-related protein (SMAD) pathway, the inhibitory effect on DKK was SMAD independent. Conversely, the inhibitory effect of TGFβ1 on PR was dependent on SMAD signal transduction. In conclusion, these results suggest that local TGFβ1 signaling can potentiate progesterone withdrawal by suppressing expression of PR and may coordinate tissue remodeling associated with menstruation by inducing Wnt-signaling via inhibition of DKK, which we found to be up-regulated as a consequence of decidualization of ESCs. PMID:18032694

  18. Mouse macrophages primed with alendronate down-regulate monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) production in response to Toll-like receptor (TLR) 2 and TLR4 agonist via Smad3 activation.

    PubMed

    Masuda, Takahiro; Deng, Xue; Tamai, Riyoko

    2009-08-01

    Alendronate is one of the nitrogen-containing bisphosphonates (NBPs) used as anti-bone resorptive drugs. However, NBPs have inflammatory side effects including osteomyelitis and osteonecrosis of the jaw. In the present study, we examined the effects of alendronate on chemokine production by the macrophage-like cell line, J774.1, when incubated with Pam(3)CSK(4) (a Toll-like receptor (TLR) 2 agonist) and Lipid A (a TLR4 agonist). Pretreatment of J774.1 cells with alendronate decreased the production of TLR ligand-induced monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) but did not influence nuclear factor-kappaB (NF-kappaB) activation. While this agent induced caspase-8 activation, a caspase-8 inhibitor did not affect the decrease in MCP-1 production by alendronate and TLR ligands. Thus, the alendronate-mediated decrease in chemokine production was independent of NF-kappaB and caspase-8 activation. Although transforming growth factor-beta1 (TGF-beta1) is known to inhibit chemokine production by various cell types via Smad3 activation, pretreatment with alendronate did not increase TGF-beta1 production by J774.1 cells incubated in the presence or absence of TLR ligands. However, alendronate directly activated Smad3. These results suggest that by down-regulating MCP-1 and MIP-1alpha production via Smad3, long-term use of alendronate might inhibit normal activation and migration of osteoclasts and cause osteonecrosis.

  19. Caerulomycin A Enhances Transforming Growth Factor-β (TGF-β)-Smad3 Protein Signaling by Suppressing Interferon-γ (IFN-γ)-Signal Transducer and Activator of Transcription 1 (STAT1) Protein Signaling to Expand Regulatory T Cells (Tregs)*

    PubMed Central

    Gurram, Rama Krishna; Kujur, Weshely; Maurya, Sudeep K.; Agrewala, Javed N.

    2014-01-01

    Cytokines play a very important role in the regulation of immune homeostasis. Regulatory T cells (Tregs) responsible for the generation of peripheral tolerance are under the tight regulation of the cytokine milieu. In this study, we report a novel role of a bipyridyl compound, Caerulomycin A (CaeA), in inducing the generation of Tregs. It was observed that CaeA substantially up-regulated the pool of Tregs, as evidenced by an increased frequency of CD4+ Foxp3+ cells. In addition, CaeA significantly suppressed the number of Th1 and Th17 cells, as supported by a decreased percentage of CD4+/IFN-γ+ and CD4+/IL-17+ cells, respectively. Furthermore, we established the mechanism and observed that CaeA interfered with IFN-γ-induced STAT1 signaling by augmenting SOCS1 expression. An increase in the TGF-β-mediated Smad3 activity was also noted. Furthermore, CaeA rescued Tregs from IFN-γ-induced inhibition. These results were corroborated by blocking Smad3 activity, which abolished the CaeA-facilitated generation of Tregs. In essence, our results indicate a novel role of CaeA in inducing the generation of Tregs. This finding suggests that CaeA has enough potential to be considered as a potent future drug for the treatment of autoimmunity. PMID:24811173

  20. Sedimentation studies reveal a direct role of phosphorylation in Smad3:Smad4 homo- and hetero-trimerization.

    PubMed

    Correia, J J; Chacko, B M; Lam, S S; Lin, K

    2001-02-06

    SMAD proteins are known to oligomerize and hetero-associate during their activation and translocation to the nucleus for transcriptional control. Analytical ultracentrifuge studies on Smad3 and Smad4 protein constructs are presented to clarify the model of homo- and hetero-oligomerization and the role of phosphorylation in the activation process. These constructs all exhibit a tendency to form disulfide cross-linked aggregates, primarily dimers, and a strong reducing agent, TCEP, was found to be required to determine the best estimates for reversible association models and equilibrium constants. A Smad4 construct, S4AF, consisting of the middle linker (L) domain and the C-terminal (C) domain, is shown to be a monomer, while a Smad3 construct, S3LC, consisting of the LC domains, is shown to form a trimer with an affinity K(3) = (1.2-3.1) x 10(9) M(-2). A Smad3 construct that mimics phosphorylation at the C-terminal target sequence, S3LC(3E), has 17--35-fold enhanced ability to form trimer over that of the wild-type construct, S3LC. S4AF associates with either S3LC or S3LC(3E) to form a hetero-trimer. In each case, the hetero-trimer is favored over the formation of the homo-trimer. Despite high sequence homology between Smad3 and Smad4, a chimeric Smad4 construct with an engineered Smad3 C-terminal pseudo-phosphorylation sequence, S4AF(3E), shows no tendency to form trimer. This suggests a Smad4-specific sequence insert inhibits homo-trimer formation, or other domains or sequences in S3LC are required in addition to the target sequence to mediate the formation of trimer. These results represent a direct molecular measure of the importance of hetero-trimerization and phosphorylation in the TGF-beta-activated Smad protein signal transduction process.

  1. Selenium modulates MMP2 expression through the TGFβ1/Smad signalling pathway in human umbilical vein endothelial cells and rabbits following lipid disturbance.

    PubMed

    Xu, Chenggui; Lu, Guihua; Li, Qinglang; Zhang, Juhong; Huang, Zhibin; Gao, Xiuren

    2017-07-01

    A high-fat diet is a major risk factor for coronary heart diseases. Matrix metalloprotease (MMP) expression is changed in many cardiovascular diseases. Selenium, which is an important trace element in animals, has a close relationship with cardiovascular diseases. The TGFβ1/Smad signalling pathway is ubiquitous in diverse tissues and cells, and it is also associated with the occurrence and development of cardiovascular diseases. Therefore, in this study, we aimed to determine selenium's effect on lipid metabolism, atherosclerotic plaque formation, and MMP2 expression, as well as the underlying functional mechanism. In vivo tests: 24 male New Zealand white rabbits were randomly divided into 4 groups: regular diet, high-fat diet, high-fat diet+selenium and regular diet+selenium groups. The high-fat diet induced the lipid disturbances of rabbits at week 12. Selenium supplementation lowered total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels (p<0.01). Selenium supplementation also suppressed MMP2 over-expression in thoracic aortas. In vitro tests: Human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of selenium or ox-LDL. Ox-LDL promoted MMP2 expression by increasing TGFβ1, pSmad2, pSmad3 and Smad3 expression (p<0.01). Selenium attenuated MMP2 over-expression by regulating the TGFβ1/Smad signalling pathway. Selenium suppressed high-fat diet-induced MMP2 over-expression in vivo by improving lipid metabolism. In vitro, selenium attenuated MMP2 over-expression through the TGFβ1/Smad signalling pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Epigenetic control of vascular smooth muscle cells in Marfan and non-Marfan thoracic aortic aneurysms

    PubMed Central

    Gomez, Delphine; Coyet, Aurélie; Ollivier, Véronique; Jeunemaitre, Xavier; Jondeau, Guillaume; Michel, Jean-Baptiste; Vranckx, Roger

    2011-01-01

    Aims Human thoracic aortic aneurysms (TAAs) are characterized by extracellular matrix breakdown associated with progressive smooth muscle cell (SMC) rarefaction. These features are present in all types of TAA: monogenic forms [mainly Marfan syndrome (MFS)], forms associated with bicuspid aortic valve (BAV), and degenerative forms. Initially described in a mouse model of MFS, the transforming growth factor-β1 (TGF-β1)/Smad2 signalling pathway is now assumed to play a role in TAA of various aetiologies. However, the relation between the aetiological diversity and the common cell phenotype with respect to TGF-β signalling remains unexplained. Methods and results This study was performed on human aortic samples, including TAA [MFS, n = 14; BAV, n = 15; and degenerative, n = 19] and normal aortas (n = 10) from which tissue extracts and human SMCs and fibroblasts were obtained. We show that all types of TAA share a complex dysregulation of Smad2 signalling, independent of TGF-β1 in TAA-derived SMCs (pharmacological study, qPCR). The Smad2 dysregulation is characterized by an SMC-specific, heritable activation and overexpression of Smad2, compared with normal aortas. The cell specificity and heritability of this overexpression strongly suggest the implication of epigenetic control of Smad2 expression. By chromatin immunoprecipitation, we demonstrate that the increases in H3K9/14 acetylation and H3K4 methylation are involved in Smad2 overexpression in TAA, in a cell-specific and transcription start site-specific manner. Conclusion Our results demonstrate the heritability, the cell specificity, and the independence with regard to TGF-β1 and genetic backgrounds of the Smad2 dysregulation in human thoracic aneurysms and the involvement of epigenetic mechanisms regulating histone marks in this process. PMID:20829218

  3. Multipotent mesenchymal stromal cells decrease transforming growth factor β1 expression in microglia/macrophages and down-regulate plasminogen activator inhibitor 1 expression in astrocytes after stroke.

    PubMed

    Xin, Hongqi; Chopp, Michael; Shen, Li Hong; Zhang, Rui Lan; Zhang, Li; Zhang, Zheng Gang; Li, Yi

    2013-05-10

    Multipotent mesenchymal stromal cells (MSCs) decrease the expression of transforming growth factor β1 (TGFβ1) in astrocytes and subsequently decrease astrocytic plasminogen activator inhibitor 1 (PAI-1) level in an autocrine manner. Since activated microglia/macrophages are also a source of TGFβ1 after stroke, we therefore tested whether MSCs regulate TGFβ1 expression in microglia/macrophages and subsequently alters PAI-1 expression after ischemia. TGFβ1 and its downstream effector phosphorylated SMAD 2/3 (p-SMAD 2/3) were measured in mice subjected to middle cerebral artery occlusion (MCAo). MSC treatment significantly decreased TGFβ1 protein expression in both astrocytes and microglia/macrophages in the ischemic boundary zone (IBZ) at day 14 after stroke. However, the p-SMAD 2/3 was only detected in astrocytes and decreased after MSC treatment. In vitro, RT-PCR results showed that the TGFβ1 mRNA level was increased in both astrocytes and microglia/macrophages in an astrocyte-microglia/macrophage co-culture system after oxygen-glucose deprived (OGD) treatment. MSCs treatment significantly decreased the above TGFβ1 mRNA level under OGD conditions, respectively. OGD increased the PAI-1 mRNA in astrocytes in the astrocyte-microglia/macrophage co-culture system, and MSC administration significantly decreased this level. PAI-1 mRNA was very low in microglia/macrophages compared with that in astrocytes under different conditions. Western blot results also verified that MSC administration significantly decreased p-SMAD 2/3 and PAI-1 level in astrocytes in astrocyte-microglia/macrophage co-culture system under OGD conditions. Our in vivo and in vitro data, in concert, suggest that MSCs decrease TGFβ1 expression in microglia/macrophages in the IBZ which contribute to the down-regulation of PAI-1 level in astrocytes. Published by Elsevier Ireland Ltd.

  4. The correlation between pulmonary fibrosis and methylation of peripheral Smad3 in cases of pigeon breeder's lung in a Chinese Uygur population.

    PubMed

    Wu, Chao; Ding, Wei; Li, Qifeng; Wang, Wenyi; Deng, Mingqin; Jin, Rong; Pang, Baosen; Yang, Xiaohong

    2017-06-27

    Smad3 is a key protein in the transforming growth factor-beta (TGF-β)/Smad signaling pathway, which is involved in fibrosis in many organs. We investigated the relationship between Smad3 gene methylation and pulmonary fibrosis in pigeon breeder's lung (PBL). Twenty Uygur PBL patients with pulmonary fibrosis in Kashi between October 2015 and March 2016 were enrolled. Twenty PBL-free pigeon breeders and 20 healthy non-pigeon breeders enrolled during the same period constituted the negative and normal control groups, respectively. Participants' data and peripheral blood samples were collected, and three Smad3 CpG loci were examined. Distributions of CpG_2 and CpG_4 methylation rates did not differ across groups, whereas distributions of CpG_3 methylation rates were significantly different among the three groups. The CpG_3 methylation rate was significantly lower in the patient group than in the negative control group. Smad3 mRNA expression was significantly higher in the patient group than in the negative control group but did not differ between the two control groups. TGF-βlevels were significantly higher in the patient group than in either control group (both P<0.01). Smad3 gene methylation and Smad3 mRNA expression were negatively correlated, with a correlation coefficient of -0.84. The number of pigeons bred during the preceding three months was positively correlated with Smad3 mRNA expression, with a correlation coefficient of 0.77. Smad3 gene hypomethylation might promote pulmonary fibrosis in Uygur PBL patients via increased Smad3 mRNA expression. Smad3 methylation, Smad3 mRNA expression and TGF-β level were correlated with the number of pigeons bred by patients.

  5. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Chen, Lin; Zeng, Jing

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observedmore » that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic differentiaton and expression of BMP2 in PMVECs. • CBDL-rat serum activates the BMP2/smad signaling pathway. • The downregulation of Smurf1 stimulates the accumulation of Smad1/5 in PMVECs. • Noggin reverses partially the myogenic differentiaton in PMVECs.« less

  6. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads.

    PubMed

    Chaikuad, Apirat; Bullock, Alex N

    2016-11-01

    Stimulation of the transforming growth factor β (TGF-β) family receptors activates an intracellular phosphorylation-dependent signaling cascade that culminates in Smad transcriptional activation and turnover. Structural studies have identified a number of allosteric mechanisms that control the localization, conformation, and oligomeric state of the receptors and Smads. Such mechanisms dictate the ordered binding of substrate and adaptor proteins that determine the directionality of the signaling process. Activation of the pathway has been illustrated by the various structures of the receptor-activated Smads (R-Smads) with SARA, Smad4, and YAP, respectively, whereas mechanisms of down-regulation have been elucidated by the structural complexes of FKBP12, Ski, and Smurf1. Interesting parallels have emerged between the R-Smads and the Forkhead-associated (FHA) and interferon regulatory factor (IRF)-associated domains, as well as the Hippo pathway. However, important questions remain as to the mechanism of Smad-independent signaling. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Smad Ubiquitylation Regulatory Factor 1/2 (Smurf1/2) Promotes p53 Degradation by Stabilizing the E3 Ligase MDM2*

    PubMed Central

    Nie, Jing; Xie, Ping; Liu, Lin; Xing, Guichun; Chang, Zhijie; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2010-01-01

    The tumor suppressor p53 protein is tightly regulated by a ubiquitin-proteasomal degradation mechanism. Several E3 ubiquitin ligases, including MDM2 (mouse double minute 2), have been reported to play an essential role in the regulation of p53 stability. However, it remains unclear how the activity of these E3 ligases is regulated. Here, we show that the HECT-type E3 ligase Smurf1/2 (Smad ubiquitylation regulatory factor 1/2) promotes p53 degradation by enhancing the activity of the E3 ligase MDM2. We provide evidence that the role of Smurf1/2 on the p53 stability is not dependent on the E3 activity of Smurf1/2 but rather is dependent on the activity of MDM2. We find that Smurf1/2 stabilizes MDM2 by enhancing the heterodimerization of MDM2 with MDMX, during which Smurf1/2 interacts with MDM2 and MDMX. We finally provide evidence that Smurf1/2 regulates apoptosis through p53. To our knowledge, this is the first report to demonstrate that Smurf1/2 functions as a factor to stabilize MDM2 protein rather than as a direct E3 ligase in regulation of p53 degradation. PMID:20484049

  8. Upregulation of SMAD4 by MZF1 inhibits migration of human gastric cancer cells.

    PubMed

    Lee, Jin-Hee; Kim, Sung-Su; Lee, Hun Seok; Hong, Sungyoul; Rajasekaran, Nirmal; Wang, Li-Hui; Choi, Joon-Seok; Shin, Young Kee

    2017-01-01

    SMAD4 is a tumor suppressor that is frequently inactivated in many types of cancer. The role of abnormal expression of SMAD4 has been reported in developmental processes and the progression of various human cancers. The expression level of SMAD4 has been related to the survival rate in gastric cancer patients. However, the molecular mechanism underlying transcriptional regulation of SMAD4 remains largely unknown. In the present study, we characterized the promoter region of SMAD4 and identified myeloid zinc finger 1 (MZF1), as a putative transcription factor. MZF1 directly bound to a core region of the SMAD4 promoter and stimulated transcriptional activity. We also found that the expression of MZF1 influences the migration ability of gastric adenocarcinoma cells. Collectively, our results showed that MZF1 has a role in cellular migration of gastric cancer cells via promoting an increase in intracellular SMAD4 levels. This study might provide new evidence for the molecular basis of the tumor suppressive effect of the MZF1-SMAD4 axis, a new therapeutic target in advanced human gastric cancer.

  9. Compound Astragalus and Salvia miltiorrhiza extracts suppress hepatocarcinogenesis by modulating transforming growth factor-β/Smad signaling.

    PubMed

    Hu, Xiangpeng; Rui, Wenjuan; Wu, Chao; He, Shufang; Jiang, Jiemei; Zhang, Xiaoxiang; Yang, Yan

    2014-06-01

    Previous studies showed Compound Astragalus and Salvia miltiorrhiza extract (CASE), extract from Astragalus membranaceus and Salvia miltiorhiza, significantly suppresses hepatocellular carcinoma (HCC) in rats induced by diethylinitrosamine (DEN), and in vitro experiments further demonstrated that CASE's anti-HepG2 cell invasion is associated with transforming growth factor-β (TGF-β). We hypothesized that CASE's suppression of HCC is modulated by TGF-β/Smad signaling, and we conducted this in vivo study to test this hypothesis. Rats were divided into the normal control, the DEN group, and three CASE (60, 120, and 240 mg/kg) treatment groups. The expression of phosphorylation(p) Smad both at C-terminal and linker region, plasminogen activator inhibitor 1, and Smad4 and Smad7 of liver tissues were measured and compared across the five groups. The positive staining of pSmad2L and pSmad3L increased both in hepatoma nodule areas and adjacent relatively normal liver tissues in rats treated with DEN, while the positive staining of pSmad2C and pSmad3C increased only in relatively normal liver tissues adjacent to hepatoma tissues. The elevated expression of pSmad2C, pSmad2L, pSmad3L, Smad4, and plasminogen activator inhibitor 1 proteins were suppressed by CASE in a dose-dependent manner. CASE treatment also significantly reduced the intranuclear amounts of pSmad2L and pSmad3L, and upregulated the elevation of pSmad3C positive cells and protein expression in a dose-dependent manner. The results suggest that CASE significantly suppresses HCC progression by mediating TGF-β/Smad signaling, especially by modulating Smad3 phosphorylation both at the C-terminal and linker region. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  10. The Response of wnt/ ß-Catenin Signaling Pathway in Osteocytes Under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Sun, Lian-Wen; Liang, Meng; Wang, Xiao-Nan; Fan, Yu-Bo

    2015-11-01

    Osteocytes were considered as potential sensors of mechanical loading and orchestrate the bone remodeling adapted to mechanical loading. On the other hand, osteocytes are also considered as the unloading sensors in vivo. Previous studies showed that the mechanosensation and mechanotransduction of osteocytes may play an essential role in mediating bone response to microgravity, and one of the most important molecular signaling pathway involved in the mechanotransduction is the Wnt/ ß-catenin signaling pathway. In order to investigate the effect of simulated microgravity on the Wnt/ ß-catenin signaling pathway in osteocytes, MLO-Y4 cells (an osteocyte-like cell line) were cultured under controlled rotation to simulate microgravity for 5 days. The cytoskeleton and ß-catenin nuclear translocation of MLO-Y4 cells were detected by laser scanning confocal microscope and the fluorescence intensity was quantified; the mRNA expressions of upstream and downstream key components in Wnt canonical signaling were detected with RT-PCR. Two regulators of the Wnt/ ß-catenin pathway, NMP4/CIZ and Smads, were also investigated by RT-PCR; finally the expression of Wnt target genes and Sost protein level were detected with the absence or presence of the Sclerostin antibody (Scl-AbI) under simulated microgravity. The results showed that under simulated microgravity, (1) F-actin filaments were disassembled and some short dendritic processes appeared at the cell periphery; (2) the gene expression of Wnt3a, Wnt5a, DKK1, CyclinD1, LEF-1 and CX43 in the simulated microgravity group were significantly lower whereas Wnt1 and Sost in the simulated microgravity group were significantly higher than the control group; (3) the gene and protein level of ß-catenin were reduced, and no ß-catenin nuclear translocation observed; (4) the gene expression of Smad1, Smad4 and Smad7 were significantly lower whereas NMP4/CIZ and Smad3 in the simulated microgravity were significantly higher than the control group; (5) Scl-AbI partially inhibited the down-regulation of simulated microgravity to Wnt target gene expression and Sclerostin protein expression. The results suggested that firstly the cytoskeleton was disturbed in MLO-Y4 by simulated microgravity; secondly the activity of Wnt/ ß-catenin signaling pathway was depressed, with the nuclear translocation of ß-catenin suppressed by simulated microgravity; thirdly the Wnt/ ß-catenin signaling pathway positive regulators (Smads) were decreased, while the negative regulator (NMP4/CIZ) was increased under simulated microgravity; finally Scl-AbI could partially restore the adverse effect of simulated microgravity to Wnt signaling. This study may help us to understand the mechanotransduction alteration of Wnt/ ß-catenin signaling pathway in osteocytes under simulated microgravity, and further may partly clarify the mechanism of microgravity-induced osteoporosis.

  11. The Four-Herb Chinese Medicine ANBP Enhances Wound Healing and Inhibits Scar Formation via Bidirectional Regulation of Transformation Growth Factor Pathway

    PubMed Central

    Hao, Hao-Jie; Han, Qing-Wang; Chen, Li; Dong, Liang; Liu, Jie-Jie; Li, Xiang; Zhang, Ya-Jing; Ma, Ying-Zhi; Han, Wei-Dong; Fu, Xiao-Bing

    2014-01-01

    The four-herb Chinese medicine ANBP is a pulverized mixture of four herbs including Agrimonia Eupatoria (A), Nelumbo Nucifera Gaertn (N), Boswellia Carteri (B) and Pollen Typhae Angustifoliae (P). The combination of the four herbs was first described in Chinese canonical medicine about 2000 years ago for treatment of various trauma disorders, such as hemostasis, antiinflammatory, analgesia, and wound healing, etc. However, the precise mechanisms of ANBP are still unclear. In our study, using rabbit ear hypertrophic scar models of full-thickness skin defect, we showed that local ANBP treatment not only significantly enhanced wound healing by relieving inflammation, increasing formation of granulation tissue and accelerating re-epithelialization, but also reduced scar formation by decreasing collagen production, protuberant height and volume of scars, and increasing collagen maturity. We demonstrated that these effects of ANBP are associated with transforming growth factor (TGF)-β1-mediated signalling pathways through Smad-dependent pathways. ANBP treatment significantly increased expression of TGF-β1 and Smad2/3 mRNA at the early stage of wound healing, and led to markedly decrease expression of TGF-β1 and Smad2/3 compared with the control group after 14 days post-wounding. Taken together, our results defined a bidirectional regulation role of ANBP for TGF-β1/Smad pathway in promoting wound healing and alleviating scar formation, which may be an effective therapy for human wounds at the earliest stage. PMID:25489732

  12. Temporal Control of Transforming Growth Factor (TGF) - Betal Expression on Mammary Cell Multistep Transformation

    DTIC Science & Technology

    2000-10-01

    phosphorylation of Smad2 tumors, EMT appears to be initiated by TGF-P produced and Smad3 at specific Erk consensus sites in the linker by peritumoral host...1243-1252. linker region of Smad2 and Smad3 , which, in turn, inhibit Smad accumula- Inhibition of autocrine TGF-j signaling, by expression of dominant...mediated mostly by TGF-P1 and TGF-j2 are potent immunosuppressants the receptor specific Smad2 and Smad3 proteins [47,48], [73]. Thus, elevated levels

  13. Smad2/3 Linker Phosphorylation Is a Possible Marker of Pancreatic Stem/Progenitor Cells in the Regenerative Phase of Acute Pancreatitis.

    PubMed

    Sakao, Masayuki; Sakaguchi, Yutaku; Suzuki, Ryo; Takahashi, Yu; Kishimoto, Masanobu; Fukui, Toshiro; Uchida, Kazushige; Nishio, Akiyoshi; Matsuzaki, Koichi; Okazaki, Kazuichi

    The aims of this study are to characterize cell proliferation and differentiation during regeneration after pancreatitis and pancreatic buds during development to evaluate the role of Smad2/3, phosphorylated at the specific linker threonine residues (pSmad2/3L-Thr) in positive cells. Male C57BL/6 mice received hourly intraperitoneal injections of cerulein and were analyzed after induced pancreatitis. Pancreatitis-affected tissue sections and pancreatic buds were immunostained for pSmad2/3L-Thr, with other markers thought to be stem/progenitor markers of the pancreas. pSmad2/3L-Thr immunostaining-positive cells increased as the pancreatitis progressed. The expression of pSmad2/3L-Thr was seen in acinar cells and ductlike tubular complexes. These results suggest that pSmad2/3L-Thr is expressed during acinar-ductal metaplasia. Immunohistochemical colocalization of pSmad2/3L-Thr with Ki67 was never observed. pSmad2/3L-Thr-positive cells may remain in an undifferentiated state. During the pancreatic development process, pSmad2/3L-Thr was expressed as other markers. pSmad2/3L-Thr develops in duct structure of the undifferentiated cell population in the last part of viviparity that acinar structure is formed clearly. pSmad2/3L-Thr expression occurs during acinar-ductal metaplasia after pancreatitis and may represent the contribution of stem cells and/or progenitor cells to the differentiation of the pancreas.

  14. Caffeine and rolipram affect Smad signalling and TGF-β1 stimulated CTGF and transgelin expression in lung epithelial cells.

    PubMed

    Fehrholz, Markus; Speer, Christian P; Kunzmann, Steffen

    2014-01-01

    Caffeine administration is an important part of the therapeutic treatment of bronchopulmonary dysplasia (BPD) in preterm infants. However, caffeine mediated effects on airway remodelling are still undefined. The TGF-β/Smad signalling pathway is one of the key pathways involved in airway remodelling. Connective tissue growth factor (CTGF), a downstream mediator of TGF-β, and transgelin, a binding and stabilising protein of the cytoskeleton, are both regulated by TGF-β1 and play an important role in airway remodelling. Both have also been implicated in the pathogenesis of BPD. The aim of the present study was to clarify whether caffeine, an unspecific phosphodiesterase (PDE) inhibitor, and rolipram, a prototypical PDE-4 selective inhibitor, were both able to affect TGF-β1-induced Smad signalling and CTGF/transgelin expression in lung epithelial cells. Furthermore, the effect of transgelin knock-down on Smad signalling was studied. The pharmacological effect of caffeine and rolipram on Smad signalling was investigated by means of a luciferase assay via transfection of a TGF-β1-inducible reporter plasmid in A549 cells. The regulation of CTGF and transgelin expression by caffeine and rolipram were studied by promoter analysis, real-time PCR and Western blot. Endogenous transgelin expression was down-regulated by lentiviral transduction mediating transgelin-specific shRNA expression. The addition of caffeine and rolipram inhibited TGF-β1 induced reporter gene activity in a concentration-related manner. They also antagonized the TGF-β1 induced up-regulation of CTGF and transgelin on the promoter-, the mRNA-, and the protein-level. Functional analysis showed that transgelin silencing reduced TGF-β1 induced Smad-signalling and CTGF induction in lung epithelial cells. The present study highlights possible new molecular mechanisms of caffeine and rolipram including an inhibition of Smad signalling and of TGF-β1 regulated genes involved in airway remodelling. An understanding of these mechanisms might help to explain the protective effects of caffeine in prevention of BPD and suggests rolipram to be a potent replacement for caffeine.

  15. Phosphorylation of Smad2/3 at specific linker threonine indicates slow-cycling intestinal stem-like cells before reentry to cell cycle.

    PubMed

    Kishimoto, Masanobu; Fukui, Toshiro; Suzuki, Ryo; Takahashi, Yu; Sumimoto, Kimi; Okazaki, Takashi; Sakao, Masayuki; Sakaguchi, Yutaku; Yoshida, Katsunori; Uchida, Kazushige; Nishio, Akiyoshi; Matsuzaki, Koichi; Okazaki, Kazuichi

    2015-02-01

    Quiescent (slow-cycling) and active (rapid-cycling) stem cells are demonstrated in small intestines. We have identified significant expression of Smad2/3, phosphorylated at specific linker threonine residues (pSmad2/3L-Thr), in murine stomach, and suggested these cells are epithelial stem cells. Here, we explore whether pSmad2/3L-Thr could serve as a biomarker for small intestine and colon stem cells. We examined small intestines and colons from C57BL/6 mice and colons with dextran sulfate sodium (DSS)-induced colitis. We performed double-immunofluorescent staining of pSmad2/3L-Thr with Ki67, cytokeratin 8, chromogranin A, CDK4, DCAMKL1, and Musashi-1. Small intestines and colons from Lgr5-EGFP knock-in mice were examined by pSmad2/3L-Thr immunofluorescent staining. To examine BrdU label retention of pSmad2/3L-Thr immunostaining-positive cells, we collected specimens after BrdU administration and observed double-immunofluorescent staining of pSmad2/3L-Thr with BrdU. In small intestines and colons, pSmad2/3L-Thr immunostaining-strongly positive cells were detected around crypt bases. Immunohistochemical co-localization of pSmad2/3L-Thr with Ki67 was not observed. pSmad2/3L-Thr immunostaining-strongly positive cells showed co-localization with cytokeratin 8, CDK4, and Musashi-1 and different localization from chromogranin A and DCAMKL1 immunostaining-positive cells. Under a light microscope, pSmad2/3L-Thr immunostaining-strongly positive cells were morphologically undifferentiated. In Lgr5-EGFP knock-in mice, some but not all pSmad2/3L-Thr immunostaining-strongly positive cells showed co-localization with Lgr5. pSmad2/3L-Thr immunostaining-strongly positive cells showed co-localization with BrdU at 5, 10, and 15 days after administration. In DSS-induced colitis, pSmad2/3L-Thr and Ki67 immunostaining-positive cells increased in the regeneration phase and decreased in the injury phase. In murine small intestines and colons, we suggest pSmad2/3L-Thr immunostaining-strongly positive cells are epithelial stem-like cells just before reentry to the cell cycle.

  16. LncRNA AWPPH inhibits SMAD4 via EZH2 to regulate bladder cancer progression.

    PubMed

    Zhu, Feng; Zhang, Xinjun; Yu, Qinnan; Han, Guangye; Diao, Fengxia; Wu, Chunlei; Zhang, Yan

    2018-06-01

    This study aimed to investigate the effect and underlying mechanism of lncRNA AWPPH in bladder cancer (BC). A total of 20 Ta-T1 stage BC tissues, 20 T2-T4 stage BC tissues, and 20 normal bladder tissues, as well as human bladder epithelial cell line SV-HUC-1, human BC cell lines RT4, and T24 were obtained to detect the levels of AWPPH, enhancer of zeste homolog 2 (EZH2) and SMAD4 using RT-qPCR or Western blotting. RT4 cells were transfected with pc-AWPPH, pc-EZH2, or pc-control and T24 cells were transfected with si-AWPPH, si-EZH2, si-control, or pc-AWPPH + pc-SMAD4, respectively. Then, cell proliferation, apoptosis, autophagy, and migration, were detected using MTT assay, colony formation assay, Annexin V-FITC/PI method, Western blotting, and Transwell analysis, respectively. The relationship of AWPPH and EZH2 or SMAD4 was evaluated by RNA immunoprecipitation (RIP) assay or Chromatin immunoprecipitation (ChIP) assay. Compared with normal bladder tissues or cells, the levels of AWPPH and EZH2 were overexpressed, while SMAD4 was down-regulated in BC tissues or cells (all P < 0.01). Cell viability, colony number, and migration were significantly increased, while cell apoptosis ratio was reduced in cells with pc-AWPPH compared with cells with pc-control (all P < 0.05), meanwhile, these effects were reversed by the treatment of pc-SMAD4. Then, RIP assay revealed that AWPPH could bind to EZH2 and ChIP assay showed SMAD4 was regulated by EZH2. LncRNA AWPPH can promote cell proliferation, autophagy, and migration, as well as inhibit cell apoptosis in BC by inhibiting SMAD4 via EZH2. © 2017 Wiley Periodicals, Inc.

  17. TGF-β1 downregulates StAR expression and decreases progesterone production through Smad3 and ERK1/2 signaling pathways in human granulosa cells.

    PubMed

    Fang, Lanlan; Chang, Hsun-Ming; Cheng, Jung-Chien; Leung, Peter C K; Sun, Ying-Pu

    2014-11-01

    Regulation of progesterone production in granulosa cells is important for normal reproductive functions. Steroidogenic acute regulatory protein (StAR) is recognized as the key regulatory protein involved in the rate-limiting step of steroidogenesis. TGF-β1 protein is detected in human follicular fluid, and TGF-β1 and its receptors are expressed in human granulosa cells. However, the functional role of TGF-β1 in the regulation of StAR expression and progesterone production in human granulosa cells remains unknown. Our objective was to investigate the effects of TGF-β1 on StAR expression and progesterone production in human granulosa cells. SVOG cells are human granulosa cells that were obtained from women undergoing in vitro fertilization and immortalized with SV40 large T antigen. SVOG cells were used to investigate the effects of TGF-β1 on StAR expression and progesterone production at an academic research center. Levels of mRNA and protein were examined by RT-qPCR and western blotting, respectively. The accumulation levels of progesterone were measured by enzyme-linked immunosorbent assay (ELISA). TGF-β1 treatment downregulated StAR expression and decreased progesterone production. The suppressive effects of TGF-β1 on StAR expression and progesterone production were abolished by the inhibition of TGF-β type I receptor. In addition, treatment with TGF-β1 activated the Smad2/3 and ERK1/2 signaling pathways. The inhibition of the Smad3 and ERK1/2 signaling pathways attenuated the TGF-β1-induced downregulation of StAR expression and progesterone production. TGF-β1 downregulated StAR expression and decreased progesterone production by activating the Smad3 and ERK1/2 signaling pathways in human granulosa cells.

  18. SUMOylation regulates TGF-β1/Smad4 signalling in-resistant glioma cells.

    PubMed

    Wang, Zhengfeng; Wang, Kai; Wang, Ruihua; Liu, Xianzhi

    2017-12-18

    The aim of this study was to explore the role of TGF-β1/Smad4 signalling in the DNA damage-induced ionization radiation (IR) resistance of glioma cells. T98G cells were assigned to the IR group (treated with IR) or the Blank group (with no treatment). The IR-treated cells were also treated/transfected with the TGF-β receptor inhibitor SB431542, SUMO1-overexpressing plasmids (SUMO1 group), SUMO1-interfering plasmids (si-SUMO1 group) or negative control plasmids group. The wound-healing capacity, cell proliferation and cell apoptosis were evaluated by the scratch assay, flow cytometry and the CCK-8 assay, respectively, and protein interactions were investigated by coimmunoprecipitation and colocalization assays. IR-treated T98G cells had DNA damage, but the wound-healing capacity and cell apoptosis were not significantly suppressed. DNA damage also induced TGF-β1, Smad4, SUMO1, SUMO2/3 and Ubc9 expression. In IR-treated cells cultured with SB431542, the wound-healing capacity and proliferation were promoted. SUMO1 and Smad4 colocalized in the nucleus of T98G cells, and the IR-treated cells had a significantly higher expression of the SUMO1-Smad4 protein complex. Smad4 expression in the nucleus was significantly reduced in the si-SUMO1 group, but was markedly increased in the SUMO1 group; the SUMO1 group had significantly elevated apoptotic activity, whereas the si-SUMO1 group showed significantly suppressed apoptotic activity and the si-SUMO1+SB41542 group had the lowest levels of cell apoptosis. DNA damage may activate Smad4 SUMOylation and the SUMOylation of Smad4 participates in the activation of TGF-β/Smad4 signalling; therefore, enhanced Smad4 SUMOylation is critical for the damage-induced activation of IR resistance.

  19. Aberrant TGFβ/SMAD4 signaling contributes to epigenetic silencing of a putative tumor suppressor, RunX1T1, in ovarian cancer

    PubMed Central

    Yang, Hui-Wen; Chou, Jian-Liang; Chen, Lin-Yu; Yeh, Chia-Ming; Chen, Yu-Hsin; Lin, Ru-Inn; Su, Her-Young; Chen, Gary CW; Deatherage, Daniel E; Huang, Yi-Wen; Yan, Pearlly S; Lin, Huey-Jen; Nephew, Kenneth P; Huang, Tim H-M; Lai, Hung-Cheng

    2011-01-01

    Aberrant TGFβ signaling pathway may alter the expression of down-stream targets and promotes ovarian carcinogenesis. However, the mechanism of this impairment is not fully understood. Our previous study identified RunX1T1 as a putative SMAD4 target in an immortalized ovarian surface epithelial cell line, IOSE. In this study, we report that transcription of RunX1T1 was confirmed to be positively regulated by SMAD4 in IOSE cells and epigenetically silenced in a panel of ovarian cancer cell lines by promoter hypermethylation and histone methylation at H3 lysine 9. SMAD4 depletion increased repressive histone modifications of RunX1T1 promoter without affecting promoter methylation in IOSE cells. Epigenetic treatment can restore RunX1T1 expression by reversing its epigenetic status in MCP 3 ovarian cancer cells. When transiently treated with a demethylating agent, the expression of RunX1T1 was partially restored in MCP 3 cells, but gradual re-silencing through promoter re-methylation was observed after the treatment. Interestingly, SMAD4 knockdown accelerated this re-silencing process, suggesting that normal TGFβ signaling is essential for the maintenance of RunX1T1 expression. In vivo analysis confirmed that hypermethylation of RunX1T1 was detected in 35.7% (34/95) of ovarian tumors with high clinical stages (p = 0.035) and in 83% (5/6) of primary ovarian cancer-initiating cells. Additionally, concurrent methylation of RunX1T1 and another SMAD4 target, FBXO32 which was previously found to be hypermethylated in ovarian cancer was observed in this same sample cohort (p < 0.05). Restoration of RunX1T1 inhibited cancer cell growth. Taken together, dysregulated TGFβ/SMAD4 signaling may lead to epigenetic silencing of a putative tumor suppressor, RunX1T1, during ovarian carcinogenesis. PMID:21540640

  20. IGF-binding proteins mediate TGF-beta 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells.

    PubMed

    Gajewska, Małgorzata; Motyl, Tomasz

    2004-10-01

    TGF-beta 1 is an antiproliferative and apoptogenic factor for mammary epithelial cells (MEC) acting in an auto/paracrine manner and thus considered an important local regulator of mammary tissue involution. However, the apoptogenic signaling pathway induced by this cytokine in bovine MEC remains obscure. The present study was focused on identification of molecules involved in apoptogenic signaling of transforming growth factor-beta 1 (TGF-beta 1) in the model of bovine mammary epithelial cell line (BME-UV1). Laser scanning cytometry (LSC), Western blot and electrophoretic mobility shift assay (EMSA) were used for analysis of expression and activity of TGF-beta 1-related signaling molecules. The earliest response occurring within 1-2 h after TGF-beta 1 administration was an induction and activation of R-Smads (Smad2 and Smad3) and Co-Smad (Smad4). An evident formation of Smad-DNA complexes began from 2nd hour after MEC exposure to TGF-beta 1. Similarly to Smads, proteins of AP1 complex: phosphorylated c-Jun and JunD appeared to be early reactive molecules; however, an increase in their expression was detected only in cytosolic fraction. In the next step, an increase of IGF binding protein-3 (IGFBP-3) and IGFBP-4 expression was observed from 6th hour followed by a decrease in the activity of protein kinase B (PKB/Akt), which occurred after 24 h of MEC exposure to TGF-beta 1. The decrease in PKB/Akt activity coincided in time with the decline of phosphorylated Bad expression (inactive form). Present study supported additional evidence that stimulation of insulin-like growth factor I (IGF-I) was associated with complete abrogation of TGF-beta 1-induced activation of Bad and Bax and in the consequence protection against apoptosis. In conclusion, apoptotic effect of TGF-beta 1 in bovine MEC is mediated by IGFBPs and occurs through IGF-I sequestration, resulting in inhibition of PKB/Akt-dependent survival pathway.

  1. Phenytoin activates Smad3 phosphorylation and periostin expression in drug-induced gingival enlargement.

    PubMed

    Kim, Shawna S; Nikoloudaki, Georgia; Darling, Mark; Rieder, Michael J; Hamilton, Douglas W

    2018-06-19

    Drug-induced gingival enlargement (DIGE) is a fibrotic condition associated with systemic administration of the anti-epileptic drug, phenytoin. We have previously demonstrated that periostin, which is transforming growth factor-beta (TGF-β) inducible gene, is upregulated in various fibrotic conditions including gingival enlargement associated with nifedipine. The objective of this study was to assess periostin expression in phenytoin-induced gingival enlargement (PIGE) tissues and to investigate the mechanisms underlying periostin expression. Human PIGE tissues were assessed using Masson's trichrome, with cell infiltration and changes in extracellular matrix composition characterized through labeling with antibodies to periostin, phospho-SMAD 3, TGF-β, as well as the macrophage markers CD68 and RM3/1. Using human gingival fibroblasts (HGFs) in vitro we examined the pathways through which phenytoin acts on fibroblasts. In PIGE tissues, which demonstrate altered collagen organization and increased inflammatory cell infiltration, periostin protein was increased compared with healthy tissues. p-SMAD2/3, the transcription factor associated with canonical TGF-β signaling, is localized to the nuclei in both gingival fibroblasts and oral epithelial cells in PIGE tissues, but not in healthy tissue. In vitro culture of HGFs with 15 and 30 μg/ml of phenytoin increased periostin protein levels, which correlated with p-SMAD3 phosphorylation. Inhibition of canonical TGF-β signaling with SB431542 significantly reduced phenytoin induction of SMAD3 phosphorylation and periostin expression in HGFs. Analysis of PIGE tissues showed a subset of CD68 stained macrophages were TGF-β positive and that RM1/3 regenerative macrophages were present in the tissues. Our results demonstrate that phenytoin up-regulates periostin in HGFs in a TGF-β-dependent manner.

  2. Cyclic AMP Enhances TGFβ Responses of Breast Cancer Cells by Upregulating TGFβ Receptor I Expression

    PubMed Central

    Oerlecke, Ilka; Bauer, Elke; Dittmer, Angela; Leyh, Benjamin; Dittmer, Jürgen

    2013-01-01

    Cellular functions are regulated by complex networks of many different signaling pathways. The TGFβ and cAMP pathways are of particular importance in tumor progression. We analyzed the cross-talk between these pathways in breast cancer cells in 2D and 3D cultures. We found that cAMP potentiated TGFβ-dependent gene expression by enhancing Smad3 phosphorylation. Higher levels of total Smad3, as observed in 3D-cultured cells, blocked this effect. Two Smad3 regulating proteins, YAP (Yes-associated protein) and TβRI (TGFβ receptor 1), were responsive to cAMP. While YAP had little effect on TGFβ-dependent expression and Smad3 phosphorylation, a constitutively active form of TβRI mimicked the cAMP effect on TGFβ signaling. In 3D-cultured cells, which show much higher levels of TβRI and cAMP, TβRI was unresponsive to cAMP. Upregulation of TβRI expression by cAMP was dependent on transcription. A proximal TβRI promoter fragment was moderately, but significantly activated by cAMP suggesting that cAMP increases TβRI expression at least partially by activating TβRI transcription. Neither the cAMP-responsive element binding protein (CREB) nor the TβRI-regulating transcription factor Six1 was required for the cAMP effect. An inhibitor of histone deacetylases alone or together with cAMP increased TβRI expression by a similar extent as cAMP alone suggesting that cAMP may exert its effect by interfering with histone acetylation. Along with an additive stimulatory effect of cAMP and TGFβ on p21 expression an additive inhibitory effect of these agents on proliferation was observed. Finally, we show that mesenchymal stem cells that interact with breast cancer cells can simultaneously activate the cAMP and TGFβ pathways. In summary, these data suggest that combined effects of cAMP and TGFβ, as e.g. induced by mesenchymal stem cells, involve the upregulation of TβRI expression on the transcriptional level, likely due to changes in histone acetylation. As a consequence, cancer cell functions such as proliferation are affected. PMID:23349840

  3. Smad phospho-isoforms direct context-dependent TGF-β signaling.

    PubMed

    Matsuzaki, Koichi

    2013-08-01

    Better understanding of TGF-β signaling has deepened our appreciation of normal epithelial cell homeostasis and its dysfunction in such human disorders as cancer and fibrosis. Smad proteins, which convey signals from TGF-β receptors to the nucleus, possess intermediate linker regions connecting Mad homology domains. Membrane-bound, cytoplasmic, and nuclear protein kinases differentially phosphorylate Smad2 and Smad3 to create C-tail (C), the linker (L), or dually (L/C) phosphorylated (p, phospho-) isoforms. According to domain-specific phosphorylation, distinct transcriptional responses, and selective metabolism, Smad phospho-isoform pathways can be grouped into 4 types: cytostatic pSmad3C signaling, mitogenic pSmad3L (Ser-213) signaling, invasive/fibrogenic pSmad2L (Ser-245/250/255)/C or pSmad3L (Ser-204)/C signaling, and mitogenic/migratory pSmad2/3L (Thr-220/179)/C signaling. We outline how responses to TGF-β change through the multiple Smad phospho-isoforms as normal epithelial cells mature from stem cells through progenitors to differentiated cells, and further reflect upon how constitutive Ras-activating mutants favor the Smad phospho-isoform pathway promoting tumor progression. Finally, clinical analyses of reversible Smad phospho-isoform signaling during human carcinogenesis could assess effectiveness of interventions aimed at reducing human cancer risk. Spatiotemporally separate, functionally different Smad phospho-isoforms have been identified in specific cells and tissues, answering long-standing questions about context-dependent TGF-β signaling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Snail1 induced in breast cancer cells in 3D collagen I gel environment suppresses cortactin and impairs effective invadopodia formation.

    PubMed

    Lee, Mi-Sook; Kim, Sudong; Kim, Baek Gil; Won, Cheolhee; Nam, Seo Hee; Kang, Suki; Kim, Hye-Jin; Kang, Minkyung; Ryu, Jihye; Song, Haeng Eun; Lee, Doohyung; Ye, Sang-Kyu; Jeon, Noo Li; Kim, Tai Young; Cho, Nam Hoon; Lee, Jung Weon

    2014-09-01

    Although an in vitro 3D environment cannot completely mimic the in vivo tumor site, embedding tumor cells in a 3D extracellular matrix (ECM) allows for the study of cancer cell behaviors and the screening of anti-metastatic reagents with a more in vivo-like context. Here we explored the behaviors of MDA-MB-231 breast cancer cells embedded in 3D collagen I. Diverse tumor environmental conditions (including cell density, extracellular acidity, or hypoxia as mimics for a continuous tumor growth) reduced JNKs, enhanced TGFβ1/Smad signaling activity, induced Snail1, and reduced cortactin expression. The reduced JNKs activity blocked efficient formation of invadopodia labeled with actin, cortactin, or MT1-MMP. JNKs inactivation activated Smad2 and Smad4, which were required for Snail1 expression. Snail1 then repressed cortactin expression, causing reduced invadopodia formation and prominent localization of MT1-MMP at perinuclear regions. MDA-MB-231 cells thus exhibited less efficient collagen I degradation and invasion in 3D collagen I upon JNKs inhibition. These observations support a signaling network among JNKs, Smads, Snail1, and cortactin to regulate the invasion of MDA-MB-231 cells embedded in 3D collagen I, which may be targeted during screening of anti-invasion reagents. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Requirements of transcription factor Smad-dependent and -independent TGF-β signaling to control discrete T-cell functions.

    PubMed

    Gu, Ai-Di; Wang, Yunqi; Lin, Lin; Zhang, Song S; Wan, Yisong Y

    2012-01-17

    TGF-β modulates immune response by suppressing non-regulatory T (Treg) function and promoting Treg function. The question of whether TGF-β achieves distinct effects on non-Treg and Treg cells through discrete signaling pathways remains outstanding. In this study, we investigated the requirements of Smad-dependent and -independent TGF-β signaling for T-cell function. Smad2 and Smad3 double deficiency in T cells led to lethal inflammatory disorder in mice. Non-Treg cells were spontaneously activated and produced effector cytokines in vivo on deletion of both Smad2 and Smad3. In addition, TGF-β failed to suppress T helper differentiation efficiently and to promote induced Treg generation of non-Treg cells lacking both Smad2 and Smad3, suggesting that Smad-dependent signaling is obligatory to mediate TGF-β function in non-Treg cells. Unexpectedly, however, the development, homeostasis, and function of Treg cells remained intact in the absence of Smad2 and Smad3, suggesting that the Smad-independent pathway is important for Treg function. Indeed, Treg-specific deletion of TGF-β-activated kinase 1 led to failed Treg homeostasis and lethal immune disorder in mice. Therefore, Smad-dependent and -independent TGF-β signaling discretely controls non-Treg and Treg function to modulate immune tolerance and immune homeostasis.

  6. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Ryosuke; Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo; Kayamori, Kou

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and themore » bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. - Highlights: • Cancer cell, fibroblastic cells, and osteoclasts at bone resorbing area by oral cancer exhibited TGF-β and p-Smad2. • TGF-β1 stimulated osteoclastogenesis induced by RAKL in RAW264 cell. • Xenograft model of oral cancer-induced bone resorption was substantially inhibited by SB431542. • TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction.« less

  7. MiR-130a inhibition protects rat cardiac myocytes from hypoxia-triggered apoptosis by targeting Smad4.

    PubMed

    Li, Yuanshi; Du, Yingrong; Cao, Junxian; Gao, Qianping; Li, Hongjuan; Chen, Yangjun; Lu, Nihong

    2018-02-05

    Cardiomyocyte death facilitates the pathological process underlying ischemic heart diseases, such as myocardial infarction. Emerging evidence suggests that microRNAs play a critical role in the pathological process underlying myocardial infarction by regulating cardiomyocyte apoptosis. However, the relevance of miR-130a in regulating cardiomyocyte apoptosis and the mechanism of regulation is still uncertain. This study aimed to explore the regulatory effect of miR-130a on hypoxic cardiomyocyte apoptosis. The expression of miR-130a was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell survival was determined by the MTT assay. The lactate dehydrogenase (LDH) assay was performed to determine the severity of hypoxia-induced cell injury. Apoptosis was assessed via caspase-3 analysis. Protein expression level was determined by Western blotting. The genes targeted by miR-130a were predicted using bioinformatics and were validated via the dual-luciferase reporter assay. We found that miR-130a expression was greatly increased in hypoxic cardiac myocytes, and that the downregulation of miR-130a effectively shielded cardiac myocytes from hypoxia-triggered apoptosis. The results of our bioinformatic analysis predicted the Smad4 gene to be the target of miR-130a. This finding was validated through the Western blot assay, dual-luciferase reporter gene assay, and qRT-PCR. MiR-130a inhibition significantly promoted the activation of Smad4 in hypoxic cardiomyocytes. Interestingly, knockdown of Smad4 markedly reversed the protective effects induced by miR-130a inhibition. Moreover, we found that the inhibition of miR-130a promoted the activation of TGF-β signaling. Blocking Smad4 signaling significantly abrogated the protective effects of miR-130a inhibition. Overall, these findings indicate that inhibition of miR-130a, which targets the Smad4 gene, shields cardiac myocytes from hypoxic apoptosis. This study offers a novel perspective of the molecular basis of hypoxia-induced cardiomyocyte apoptosis and suggests a possible drug target for the treatment of myocardial infarction.

  8. miR-15a/miR-16 cluster inhibits invasion of prostate cancer cells by suppressing TGF-β signaling pathway.

    PubMed

    Jin, Wei; Chen, Fangjie; Wang, Kefeng; Song, Yan; Fei, Xiang; Wu, Bin

    2018-05-23

    To determine whether and how miR15a/16 regulate TGF-β signaling pathways during the progression of prostate cancer. We used bioinformatics prediction, reporter gene assay, real-time PCR, Matrigel invasion assay and Western blot to dissect the molecular mechanism of how miR-15a/miR-16 may cause metastasis in prostate tumor. MiR-15a/16 targeted and inhibited the expression of endogenous Smad3 and ACVR2A proteins. The overexpression of miR15a/16 down-regulated p-smad3 expression, affected the expression of both MMP2 and E-cadherin, and down-regulated the expression of the EMT-mediated factors Snail and Twist in LNCaP prostate cancer cells. The overexpression of miR15a/16 decreased the invasion of LNCaP cells. MiR-15a/miR-16 cluster could reverse the invasion of activin A-mediated prostate cancer cells. After the inhibition of the activin/smad signaling pathway, the inhibitory effect of invasion in prostate cancer cells by miR-15a/miR-16 cluster disappeared. Our data indicated that miR15a/16 inhibited the components of TGF-β signaling pathways in LNCaP cell line, which might relate to the progression and metastasis of prostate cancer. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. SARS coronavirus papain-like protease up-regulates the collagen expression through non-Samd TGF-β1 signaling.

    PubMed

    Wang, Ching-Ying; Lu, Chien-Yi; Li, Shih-Wen; Lai, Chien-Chen; Hua, Chun-Hung; Huang, Su-Hua; Lin, Ying-Ju; Hour, Mann-Jen; Lin, Cheng-Wen

    2017-05-02

    SARS coronavirus (CoV) papain-like protease (PLpro) reportedly induced the production of TGF-β1 through p38 MAPK/STAT3-meidated Egr-1-dependent activation (Sci. Rep. 6, 25754). This study investigated the correlation of PLpro-induced TGF-β1 with the expression of Type I collagen in human lung epithelial cells and mouse pulmonary tissues. Specific inhibitors for TGF-βRI, p38 MAPK, MEK, and STAT3 proved that SARS-CoV PLpro induced TGF-β1-dependent up-regulation of Type I collagen in vitro and in vivo. Subcellular localization analysis of SMAD3 and SMAD7 indicated that non-SMAD pathways in TGF-β1 signaling involved in the production of Type I collagen in transfected cells with pSARS-PLpro. Comprehensive analysis of ubiquitin-conjugated proteins using immunoprecipitation and nanoLC-MS/MS indicated that SARS-CoV PLpro caused the change in the ubiquitination profile of Rho GTPase family proteins, in which linked with the increase of Rho-like GTPase family proteins. Moreover, selective inhibitors TGF-βRI and STAT6 (AS1517499) ascertained that STAT6 activation was required for PLpro-induced TGF-β1-dependent up-regulation of Type I collagen in human lung epithelial cells. The results showed that SARS-CoV PLpro stimulated TGF-β1-dependent expression of Type I collagen via activating STAT6 pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Inhibition of c-Jun NH2-terminal kinase switches Smad3 signaling from oncogenesis to tumor- suppression in rat hepatocellular carcinoma.

    PubMed

    Nagata, Hiromitsu; Hatano, Etsuro; Tada, Masaharu; Murata, Miki; Kitamura, Koji; Asechi, Hiroyuki; Narita, Masato; Yanagida, Atsuko; Tamaki, Nobuyuki; Yagi, Shintaro; Ikai, Iwao; Matsuzaki, Koichi; Uemoto, Shinji

    2009-06-01

    Transforming growth factor beta (TGF-beta) signaling involves both tumor-suppression and oncogenesis. TGF-beta activates the TGF-beta type I receptor (TbetaRI) and c-Jun N-terminal kinase (JNK), which differentially phosphorylate the mediator Smad3 to become COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). TbetaRI-dependent pSmad3C transmits a tumor-suppressive TGF-beta signal, while JNK-dependent pSmad3L promotes carcinogenesis in human chronic liver disorders. The aim of this study is to elucidate how SP600125, a JNK inhibitor, affected rat hepatocellular carcinoma (HCC) development, while focusing on the domain-specific phosphorylation of Smad3. The rats received subcutaneous injections of either SP600125 or vehicle 11 times weekly together with 100 ppm N-diethylnitrosamine (DEN) administration for 56 days and were sacrificed in order to evaluate HCC development 28 days after the last DEN administration. The number of tumor nodules greater than 3 mm in diameter and the liver weight/body weight ratio were significantly lower in the SP600125-treated rats than those in the vehicle-treated rats (7.9 +/- 0.8 versus 17.7 +/- 0.9: P < 0.001; 6.3 +/- 1.2 versus 7.1 +/- 0.2%: P < 0.05). SP600125 significantly prolonged the median survival time in rats with DEN-induced HCC (113 versus 97 days: log-rank P = 0.0018). JNK/pSmad3L/c-Myc was enhanced in the rat hepatocytes exposed to DEN. However, TbetaRI/pSmad3C/p21(WAF1) was impaired as DEN-induced HCC developed and progressed. The specific inhibition of JNK activity by SP600125 suppressed pSmad3L/c-Myc in the damaged hepatocytes and enhanced pSmad3C/p21(WAF1), acting as a tumor suppressor in normal hepatocytes. Administration of SP600125 to DEN-treated rats shifted hepatocytic Smad3-mediated signal from oncogenesis to tumor suppression, thus suggesting that JNK could be a therapeutic target of human HCC development and progression.

  11. Sorting nexin 9 differentiates ligand-activated Smad3 from Smad2 for nuclear import and transforming growth factor β signaling

    PubMed Central

    Wilkes, Mark C.; Repellin, Claire E.; Kang, Jeong-Han; Andrianifahanana, Mahefatiana; Yin, Xueqian; Leof, Edward B.

    2015-01-01

    Transforming growth factor β (TGFβ) is a pleiotropic protein secreted from essentially all cell types and primary tissues. While TGFβ’s actions reflect the activity of a number of signaling networks, the primary mediator of TGFβ responses are the Smad proteins. Following receptor activation, these cytoplasmic proteins form hetero-oligomeric complexes that translocate to the nucleus and affect gene transcription. Here, through biological, biochemical, and immunofluorescence approaches, sorting nexin 9 (SNX9) is identified as being required for Smad3-dependent responses. SNX9 interacts with phosphorylated (p) Smad3 independent of Smad2 or Smad4 and promotes more rapid nuclear delivery than that observed independent of ligand. Although SNX9 does not bind nucleoporins Nup153 or Nup214 or some β importins (Imp7 or Impβ), it mediates the association of pSmad3 with Imp8 and the nuclear membrane. This facilitates nuclear translocation of pSmad3 but not SNX9. PMID:26337383

  12. Canonical TGF-β Signaling Negatively Regulates Neuronal Morphogenesis through TGIF/Smad Complex-Mediated CRMP2 Suppression.

    PubMed

    Nakashima, Hideyuki; Tsujimura, Keita; Irie, Koichiro; Ishizu, Masataka; Pan, Miao; Kameda, Tomonori; Nakashima, Kinichi

    2018-05-16

    Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases. SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-β/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders. Copyright © 2018 the authors 0270-6474/18/384791-20$15.00/0.

  13. The inhibition of macrophage foam cell formation by tetrahydroxystilbene glucoside is driven by suppressing vimentin cytoskeleton.

    PubMed

    Yao, Wenjuan; Huang, Lei; Sun, Qinju; Yang, Lifeng; Tang, Lian; Meng, Guoliang; Xu, Xiaole; Zhang, Wei

    2016-10-01

    Macrophage foam cell formation triggered by oxLDL is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) exhibits significant anti-atherosclerotic activity. Herein we used U937 cells induced by PMA and oxLDL in vitro to investigate the inhibitory effects of TSG on U937 differentiation and macrophage foam cell formation. TSG pretreatment markedly inhibited cell differentiation induced by PMA, macrophage apoptosis and foam cell formation induced by oxLDL. The inhibition of vimentin expression and cleavage was involved in these inhibitory effects of TSG. The suppression of vimentin by siRNA in U937 significantly inhibited cell differentiation, apoptosis and foam cell formation. Using inhibitors for TGFβR1 and PI3K, we found that vimentin production in U937 cells is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG pretreatment inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by PMA and oxLDL. Furthermore, TSG attenuated the induced caspase-3 activation and adhesion molecules levels by PMA and oxLDL. PMA and oxLDL increased the co-localization of vimentin with ICAM-1, which was attenuated by pretreatment with TSG. These results suggest that TSG inhibits macrophage foam cell formation through suppressing vimentin expression and cleavage, adhesion molecules expression and vimentin-ICAM-1 co-localization. The interruption of TGFβ/Smad pathway and caspase-3 activation is responsible for the downregulation of TSG on vimentin expression and degradation, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Non-canonical Smads phosphorylation induced by the glutamate release inhibitor, riluzole, through GSK3 activation in melanoma.

    PubMed

    Abushahba, Walid; Olabisi, Oyenike O; Jeong, Byeong-Seon; Boregowda, Rajeev K; Wen, Yu; Liu, Fang; Goydos, James S; Lasfar, Ahmed; Cohen-Solal, Karine A

    2012-01-01

    Riluzole, an inhibitor of glutamate release, has shown the ability to inhibit melanoma cell xenograft growth. A phase 0 clinical trial of riluzole as a single agent in patients with melanoma resulted in involution of tumors associated with inhibition of both the mitogen-activated protein kinase (MAPK) and phophoinositide-3-kinase/AKT (PI3K/AKT) pathways in 34% of patients. In the present study, we demonstrate that riluzole inhibits AKT-mediated glycogen synthase kinase 3 (GSK3) phosphorylation in melanoma cell lines. Because we have demonstrated that GSK3 is involved in the phosphorylation of two downstream effectors of transforming growth factor beta (TGFβ), Smad2 and Smad3, at their linker domain, our aim was to determine whether riluzole could induce GSK3β-mediated linker phosphorylation of Smad2 and Smad3. We present evidence that riluzole increases Smad2 and Smad3 linker phosphorylation at the cluster of serines 245/250/255 and serine 204 respectively. Using GSK3 inhibitors and siRNA knock-down, we demonstrate that the mechanism of riluzole-induced Smad phosphorylation involved GSK3β. In addition, GSK3β could phosphorylate the same linker sites in vitro. The riluzole-induced Smad linker phosphorylation is mechanistically different from the Smad linker phosphorylation induced by TGFβ. We also demonstrate that riluzole-induced Smad linker phosphorylation is independent of the expression of the metabotropic glutamate receptor 1 (GRM1), which is one of the glutamate receptors whose involvement in human melanoma has been documented. We further show that riluzole upregulates the expression of INHBB and PLAU, two genes associated with the TGFβ signaling pathway. The non-canonical increase in Smad linker phosphorylation induced by riluzole could contribute to the modulation of the pro-oncogenic functions of Smads in late stage melanomas.

  15. Non-Canonical Smads Phosphorylation Induced by the Glutamate Release Inhibitor, Riluzole, through GSK3 Activation in Melanoma

    PubMed Central

    Jeong, Byeong-Seon; Boregowda, Rajeev K.; Wen, Yu; Liu, Fang; Goydos, James S.; Lasfar, Ahmed; Cohen-Solal, Karine A.

    2012-01-01

    Riluzole, an inhibitor of glutamate release, has shown the ability to inhibit melanoma cell xenograft growth. A phase 0 clinical trial of riluzole as a single agent in patients with melanoma resulted in involution of tumors associated with inhibition of both the mitogen-activated protein kinase (MAPK) and phophoinositide-3-kinase/AKT (PI3K/AKT) pathways in 34% of patients. In the present study, we demonstrate that riluzole inhibits AKT-mediated glycogen synthase kinase 3 (GSK3) phosphorylation in melanoma cell lines. Because we have demonstrated that GSK3 is involved in the phosphorylation of two downstream effectors of transforming growth factor beta (TGFβ), Smad2 and Smad3, at their linker domain, our aim was to determine whether riluzole could induce GSK3β-mediated linker phosphorylation of Smad2 and Smad3. We present evidence that riluzole increases Smad2 and Smad3 linker phosphorylation at the cluster of serines 245/250/255 and serine 204 respectively. Using GSK3 inhibitors and siRNA knock-down, we demonstrate that the mechanism of riluzole-induced Smad phosphorylation involved GSK3β. In addition, GSK3β could phosphorylate the same linker sites in vitro. The riluzole-induced Smad linker phosphorylation is mechanistically different from the Smad linker phosphorylation induced by TGFβ. We also demonstrate that riluzole-induced Smad linker phosphorylation is independent of the expression of the metabotropic glutamate receptor 1 (GRM1), which is one of the glutamate receptors whose involvement in human melanoma has been documented. We further show that riluzole upregulates the expression of INHBB and PLAU, two genes associated with the TGFβ signaling pathway. The non-canonical increase in Smad linker phosphorylation induced by riluzole could contribute to the modulation of the pro-oncogenic functions of Smads in late stage melanomas. PMID:23077590

  16. Deletion of Smad4 attenuates the hepatic inflammation and fibrogenesis during nonalcoholic steatohepatitis progression.

    PubMed

    Qin, Geng; Wang, Guo Zhen; Guo, Dan Dan; Bai, Ru-Xue; Wang, Miao; Du, Shi Yu

    2018-04-25

    To explore the effects of Smad4 deletion on inflammation and fibrogenesis during nonalcoholic steatohepatitis (NASH) progression. We collected 56 liver tissues from NASH patients (NASH group) and 60 normal liver tissues from patients received liver resection for trauma (control group). Smad4 Co/Co mice and wild-type (WT) mice were used to construct NASH model by high-fat diet (HFD) or methionine- and choline-deficient (MCD) diet. Hematoxylin and eosin (HE) staining and Tunnel assay were performed to observe pathological changes and apoptosis of liver tissues, respectively, quantitative real-time polymerase chain reaction (qRT-PCR) to detect expressions of inflammatory, fibrogenesis and apoptosis-related genes, and immunohistochemistry to determine proteins expressions of Smad4, MCP-1 and α-SMA. Smad4 protein expression was significantly increased in NASH patients as compared with Control group. Besides, in terms of HFD- and MCD- fed mice, those in Smad4 Co/Co group showed reduction of hepatic steatosis, inflammatory, liver apoptosis and NAS scores, and presented a decrease in glucose, TG, FFAs, AST and ALT, a great up-regulation in adiponectin. Besides, as compared with the WT mice fed with HFD and MCD, Smad4 Co/Co decreased the expressions of inflammatory markers (TNF-α, MCP-1, IFN-γ), fibrogenesis markers (COL1A1, α-SMA and TGF-β1), lipogenic genes (SREBP1c, FAS and ACC) and proapoptotic genes (Bax and caspase 3) in liver tissues, but increased the expressions of β-oxidation genes (PPARα, CPT1 and ACO) and antiapoptotic gene Bcl-2. Smad4 deletion may inhibit lipogenesis, stimulateβ-oxidation, ameliorate lipid metabolism and liver function, alleviate inflammation, fibrosis, and reduce liver apoptosis during NASH. This article is protected by copyright. All rights reserved.

  17. Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance.

    PubMed

    Sun, Yu B Y; Qu, Xinli; Howard, Victor; Dai, Lie; Jiang, Xiaoyun; Ren, Yi; Fu, Ping; Puelles, Victor G; Nikolic-Paterson, David J; Caruana, Georgina; Bertram, John F; Sleeman, Mark W; Li, Jinhua

    2015-08-01

    Signaling by TGF-β/Smad3 plays a key role in renal fibrosis. As obesity is one of the major risk factors of chronic and end-stage renal disease, we studied the role of Smad3 signaling in the pathogenesis of obesity-related renal disease. After switching to a high fat diet, the onset of Smad3 C-terminal phosphorylation, increase in albuminuria, and the early stages of peripheral and renal insulin resistance occurred at 1 day, and 4 and 8 weeks, respectively, in C57BL/6 mice. The loss of synaptopodin, a functional marker of podocytes, and phosphorylation of the Smad3 linker region (T179 and S213) appeared after 4 weeks of the high fat diet. This suggests a temporal pattern of Smad3 signaling activation leading to kidney injury and subsequent insulin resistance in the development of obesity-related renal disease. In vivo, Smad3 knockout attenuated the high fat diet-induced proteinuria, renal fibrosis, overall podocyte injury, and mitochondrial dysfunction in podocytes. In vitro palmitate caused a rapid activation of Smad3 in 30 min, loss of synaptopodin in 2 days, and impaired insulin signaling in 3 days in isolated mouse podocytes. Blockade of either Smad3 phosphorylation by SIS3 (a Smad3 inhibitor) or T179 phosphorylation by flavopiridol (a CDK9 inhibitor) prevented the palmitate-induced loss of synaptopodin and mitochondrial function in podocytes. Thus, Smad3 signaling plays essential roles in obesity-related renal disease and may be a novel therapeutic target.

  18. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression.

    PubMed

    Stephen, Tom L; Rutkowski, Melanie R; Allegrezza, Michael J; Perales-Puchalt, Alfredo; Tesone, Amelia J; Svoronos, Nikolaos; Nguyen, Jenny M; Sarmin, Fahmida; Borowsky, Mark E; Tchou, Julia; Conejo-Garcia, Jose R

    2014-09-18

    Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Restenosis Inhibition and Re-differentiation of TGFβ/Smad3-activated Smooth Muscle Cells by Resveratrol

    PubMed Central

    Zhu, Yichen; Takayama, Toshio; Wang, Bowen; Kent, Alycia; Zhang, Mengxue; Binder, Bernard Y.K.; Urabe, Go; Shi, Yatao; DiRenzo, Daniel; Goel, Shakti A.; Zhou, Yifan; Little, Christopher; Roenneburg, Drew A.; Shi, Xu Dong; Li, Lingjun; Murphy, William L.; Kent, K. Craig; Ke, Jianjuan; Guo, Lian-Wang

    2017-01-01

    To date, there is no periadventitial drug delivery method available in the clinic to prevent restenotic failure of open vascular reconstructions. Resveratrol is a promising anti-restenotic natural drug but subject to low bioavailability when systemically administered. In order to reconcile these two prominent issues, we tested effects of periadventitial delivery of resveratrol on all three major pro-restenotic pathologies including intimal hyperplasia (IH), endothelium impairment, and vessel shrinkage. In a rat carotid injury model, periadventitial delivery of resveratrol either via Pluronic gel (2-week), or polymer sheath (3-month), effectively reduced IH without causing endothelium impairment and vessel shrinkage. In an in vitro model, primary smooth muscle cells (SMCs) were stimulated with elevated transforming growth factor (TGFβ) and its signaling protein Smad3, known contributors to IH. TGFβ/Smad3 up-regulated Kruppel-like factor (KLF5) protein, and SMC de-differentiation which was reversed by KLF5 siRNA. Furthermore, TGFβ/Smad3-stimulated KLF5 production and SMC de-differentiation were blocked by resveratrol via its inhibition of the Akt-mTOR pathway. Concordantly, resveratrol attenuated Akt phosphorylation in injured arteries. Taken together, periadventitial delivery of resveratrol produces durable inhibition of all three pro-restenotic pathologies — a rare feat among existing anti-restenotic methods. Our study suggests a potential anti-restenotic modality of resveratrol application suitable for open surgery. PMID:28165488

  20. High SMAD7 and p-SMAD2,3 expression is associated with environmental enteropathy in children.

    PubMed

    Syed, Sana; Dinallo, Vincenzo; Iqbal, Najeeha T; Di Iorio, Laura; Di Fusco, Davide; Guleria, Shan; Amadi, Beatrice C; Sadiq, Kamran; Moskaluk, Christopher; Ali, S Asad; Kelly, Paul; Monteleone, Giovanni

    2018-02-01

    Enteropathies such as Crohn's disease are associated with enteric inflammation characterized by impaired TGF-β signaling, decreased expression of phosphorylated (p)-SMAD2,3 and increased expression of SMAD7 (an inhibitor of SMAD3 phosphorylation). Environmental enteropathy (EE) is an acquired inflammatory disease of the small intestine (SI), which is associated with linear growth disruption, cognitive deficits, and reduced oral vaccine responsiveness in children <5 y in resource-poor countries. We aimed to characterize EE inflammatory pathways by determining SMAD7 and p-SMAD2,3 levels (using Western blotting) in EE duodenal biopsies (N = 19 children, 7 from Pakistan, 12 from Zambia) and comparing these with healthy controls (Ctl) and celiac disease (CD) patients from Italy. Densitometric analysis of immunoblots showed that EE SI biopsies expressed higher levels of both SMAD7 (mean±SD in arbitrary units [a.u.], Ctl = 0.47±0.20 a.u., EE = 1.13±0.25 a.u., p-value = 0.03) and p-SMAD2,3 (mean±SD, Ctl = 0.38±0.14 a.u., EE = 0.60±0.10 a.u., p-value = 0.03). Immunohistochemistry showed that, in EE, SMAD7 is expressed in both the epithelium and in mononuclear cells of the lamina propria (LP). In contrast, p-SMAD3 in EE is expressed much more prominently in epithelial cells than in the LP. The high SMAD7 immunoreactivity and lack of p-SMAD3 expression in the LP suggests defective TGF-β signaling in the LP in EE similar to a previously reported SMAD7-mediated inflammatory pathway in refractory CD and Crohn's disease. However, Western blot densitometry showed elevated p-SMAD2,3 levels in EE, possibly suggesting a different inflammatory pathway than Crohn's disease but more likely reflecting cumulative protein expression from across all compartments of the mucosa as opposed to the LP alone. Further studies are needed to substantiate these preliminary results and to illustrate the relationship between SMAD proteins, TGF-β signaling, and inflammatory cytokine production, all of which may be potential therapeutic targets.

  1. A critical role for transcription factor Smad4 in T cell function independent of transforming growth factor beta receptor signaling

    PubMed Central

    Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A.; Wan, Yisong Y.

    2014-01-01

    Summary Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. While Smad4 was dispensable for T cell generation, homeostasis and effector function, it was essential for T cell proliferation following activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity and anti-tumor immunity. PMID:25577439

  2. A critical role for transcription factor Smad4 in T cell function that is independent of transforming growth factor β receptor signaling.

    PubMed

    Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A; Wan, Yisong Y

    2015-01-20

    Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. Although Smad4 was dispensable for T cell generation, homeostasis, and effector function, it was essential for T cell proliferation after activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity, and anti-tumor immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming

    PubMed Central

    Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko

    2016-01-01

    The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells. PMID:27606421

  4. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming.

    PubMed

    Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko

    2016-09-01

    The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells.

  5. Smad4 suppresses the tumorigenesis and aggressiveness of neuroblastoma through repressing the expression of heparanase.

    PubMed

    Qu, Hongxia; Zheng, Liduan; Jiao, Wanju; Mei, Hong; Li, Dan; Song, Huajie; Fang, Erhu; Wang, Xiaojing; Li, Shiwang; Huang, Kai; Tong, Qiangsong

    2016-09-06

    Heparanase (HPSE) is the only endo-β-D-glucuronidase that is correlated with the progression of neuroblastoma (NB), the most common extracranial malignancy in childhood. However, the mechanisms underlying HPSE expression in NB still remain largely unknown. Herein, through analyzing cis-regulatory elements and mining public microarray datasets, we identified SMAD family member 4 (Smad4) as a crucial transcription regulator of HPSE in NB. We demonstrated that Smad4 repressed the HPSE expression at the transcriptional levels in NB cells. Mechanistically, Smad4 suppressed the HPSE expression through directly binding to its promoter and repressing the lymphoid enhancer binding factor 1 (LEF1)-facilitated transcription of HPSE via physical interaction. Gain- and loss-of-function studies demonstrated that Smad4 inhibited the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo. Restoration of HPSE expression prevented the NB cells from changes in these biological features induced by Smad4. In clinical NB specimens, Smad4 was under-expressed and inversely correlated with HPSE levels, while LEF1 was highly expressed and positively correlated with HPSE expression. Patients with high Smad4 expression, low LEF1 or HPSE levels had greater survival probability. These results demonstrate that Smad4 suppresses the tumorigenesis and aggressiveness of NB through repressing the HPSE expression.

  6. RACK1 binds to Smad3 to modulate transforming growth factor-beta1-stimulated alpha2(I) collagen transcription in renal tubular epithelial cells.

    PubMed

    Okano, Kazuhiro; Schnaper, H William; Bomsztyk, Karol; Hayashida, Tomoko

    2006-09-08

    Although it is clear that transforming growth factor-beta1 (TGF-beta1) is critical for renal fibrogenesis, the complexity of the involved mechanisms is increasingly apparent. TGF-beta1 stimulates phosphorylation of Smad2/3 and activates other signaling molecules as well. The molecular link between these other kinases and Smads is not known. We sought new binding partners for Smad3 in renal cells and identified receptor for activated protein kinase C 1 (RACK1) as a novel binding partner of Smad3. The linker region of Smad3 and the tryptophan-aspartic acid repeat 6 and 7 of RACK1 are sufficient for the association. RACK1 also interacts with Smad3 in the human kidney epithelial cell line, HKC. Silencing RACK1 increases transcriptional activity of TGF-beta1-responsive promoter sequences of the Smad binding element (SBE), p3TP-Lux, and alpha2(I) collagen. Conversely, overexpressed RACK1 negatively modulates alpha2(I) collagen transcriptional activity in TGF-beta1-stimulated cells. RACK1 did not affect phosphorylation of Smad3 at the C terminus or in the linker region. However, RACK1 reduced direct binding of Smad3 to the SBE motif. Mutating a RACK1 tyrosine at residue 246, but not at 228, decreased the inhibitory effect of RACK1 on both alpha2(I) collagen promoter activity and Smad binding to SBE induced by TGF-beta1. These results suggest that RACK1 modulates transcription of alpha2(I) collagen by TGF-beta1 through interference with Smad3 binding to the gene promoter.

  7. Procollagen Lysyl Hydroxylase 2 Expression Is Regulated by an Alternative Downstream Transforming Growth Factor β-1 Activation Mechanism*

    PubMed Central

    Gjaltema, Rutger A. F.; de Rond, Saskia; Rots, Marianne G.; Bank, Ruud A.

    2015-01-01

    PLOD2 (procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2) hydroxylates lysine residues in collagen telopeptides and is essential for collagen pyridinoline cross-link formation. PLOD2 expression and subsequent pyridinoline cross-links are increased in fibrotic pathologies by transforming growth factor β-1 (TGFβ1). In this report we examined the molecular processes underlying TGFβ1-induced PLOD2 expression. We found that binding of the TGFβ1 pathway related transcription factors SMAD3 and SP1-mediated TGFβ1 enhanced PLOD2 expression and could be correlated to an increase of acetylated histone H3 and H4 at the PLOD2 promoter. Interestingly, the classical co-activators of SMAD3 complexes, p300 and CBP, were not responsible for the enhanced H3 and H4 acetylation. Depletion of SMAD3 reduced PLOD2 acetylated H3 and H4, indicating that another as of yet unidentified histone acetyltransferase binds to SMAD3 at PLOD2. Assessing histone methylation marks at the PLOD2 promoter depicted an increase of the active histone mark H3K79me2, a decrease of the repressive H4K20me3 mark, but no role for the generally strong transcription-related modifications: H3K4me3, H3K9me3 and H3K27me3. Collectively, our findings reveal that TGFβ1 induces a SP1- and SMAD3-dependent recruitment of histone modifying enzymes to the PLOD2 promoter other than the currently known TGFβ1 downstream co-activators and epigenetic modifications. This also suggests that additional activation strategies are used downstream of the TGFβ1 pathway, and hence their unraveling could be of great importance to fully understand TGFβ1 activation of genes. PMID:26432637

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying, E-mail: yingliu@doheny.org; Sun Yet-sen University, Zhongshan Ophthalmic Center, State Key Ophthalmic Laboratory, Guangzhou 510060; Kawai, Kirio

    Research highlights: {yields} Inactivation of Smad4 caused disruption in the development of the anterior segment. {yields} Inactivation of Smad4 failed to disrupt early lens development. {yields} Smad4 controlled lens cell cycle and cell death processes. {yields} Smad4 may regulate actin stress fiber assembly and eyelid epithelial movement. -- Abstract: Purpose: Signaling by members of the TGF{beta} superfamily of molecules is essential for embryonic development and homeostasis. Smad4, a key intracellular mediator in TGF{beta} signaling, forms transcriptional activator complexes with Activin-, BMP-, and TGF{beta}-restricted Smad proteins. However, the functional role of Smad4 in controlling different visual system compartments has not beenmore » fully investigated. Methods: Using the Pax6 promoter-driven Cre transgenic, smad4 was conditionally inactivated in the lens, cornea and ectoderm of the eyelids. Standard histological and molecular analytical approaches were employed to reveal morphological and cellular changes. Results: Inactivation of Smad4 in the lens led to microphthalmia and cataract formation in addition to the persistent adhesion of the retina to the lens and the iris to the cornea. Inactivation of Smad4 from the ectoderm of the eyelid and cornea caused disruption to eyelid fusion and proper development of the corneal epithelium and corneal stroma. Conclusions: Smad4 is required for the development and maintenance of the lens in addition to the proper development of the cornea, eyelids, and retina.« less

  9. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration.

    PubMed

    Paris, Nicole D; Soroka, Andrew; Klose, Alanna; Liu, Wenxuan; Chakkalakal, Joe V

    2016-11-18

    Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expression of Smad4 , the downstream cofactor for canonical TGFβ superfamily signaling, and the target Id1 in aged SCs and MPs during regeneration. Specific deletion of Smad4 in adult mouse SCs led to increased propensity for terminal myogenic commitment connected to impaired proliferative potential. Furthermore, SC-specific Smad4 disruption compromised adult skeletal muscle regeneration. Finally, loss of Smad4 in aged SCs did not promote aged skeletal muscle regeneration. Therefore, SC-specific reduction of Smad4 is a feature of aged regenerating skeletal muscle and Smad4 is a critical regulator of SC and MP amplification during skeletal muscle regeneration.

  10. Involvement of Smad3 phosphoisoform-mediated signaling in the development of colonic cancer in IL-10-deficient mice.

    PubMed

    Hachimine, Daisaku; Uchida, Kazushige; Asada, Masanori; Nishio, Akiyoshi; Kawamata, Seiji; Sekimoto, Go; Murata, Miki; Yamagata, Hideo; Yoshida, Katsunori; Mori, Shigeo; Tahashi, Yoshiya; Matsuzaki, Koichi; Okazaki, Kazuichi

    2008-06-01

    Chronic inflammation predisposes to cancer. Transforming growth factor (TGF)-beta, a multifunctional protein, suppresses the growth of normal colonic epithelial cells, whereas it stimulates the proliferation of cancer cells. Interleukin (IL)-10-deficient mice, which develop colitis and colorectal cancer, show an increased level of plasma TGF-beta. Although TGF-beta may be a key molecule in the development of colon cancer arising from chronic colitis in IL-10-deficient mice, the role of TGF-beta still remains unclear. TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), which converts the mediator Smad3 into two distinctive phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). We studied C57BL/6-IL-10-deficient mice (n=18) at 4 to 32 weeks of age. We investigated histology, and pSmad2/3L, pSmad2/3C, and p53 by immunohistochemistry. pSmad3L staining was detected in the cancer cells in all 10 mice with colonic cancer and in the epithelial cells in 7 of 12 mice with colonic dysplasia, but not in the normal or colitic mice. pSmad3c was detected without any significant difference between stages. p53 was weakly stained in a few cancer cells in 5 out of 10 mice. Smad3L signaling plays an important role in the carcinogenesis of chronic colitis in IL-10-deficient mice.

  11. The kinases MEKK2 and MEKK3 regulate transforming growth factor-β-mediated helper T cell differentiation.

    PubMed

    Chang, Xing; Liu, Fang; Wang, Xiaofang; Lin, Aiping; Zhao, Hongyu; Su, Bing

    2011-02-25

    Mitogen-activated protein kinases (MAPKs) are key mediators of the T cell receptor (TCR) signals but their roles in T helper (Th) cell differentiation are unclear. Here we showed that the MAPK kinase kinases MEKK2 (encoded by Map3k2) and MEKK3 (encoded by Map3k3) negatively regulated transforming growth factor-β (TGF-β)-mediated Th cell differentiation. Map3k2(-/-)Map3k3(Lck-Cre/-) mice showed an abnormal accumulation of regulatory T (Treg) and Th17 cells in the periphery, consistent with Map3k2(-/-)Map3k3(Lck-Cre/-) naive CD4(+) T cells' differentiation into Treg and Th17 cells with a higher frequency than wild-type (WT) cells after TGF-β stimulation in vitro. In addition, Map3k2(-/-)Map3k3(Lck-Cre/-) mice developed more severe experimental autoimmune encephalomyelitis. Map3k2(-/-)Map3k3(Lck-Cre/-) T cells exhibited impaired phosphorylation of SMAD2 and SMAD3 proteins at their linker regions, which negatively regulated the TGF-β responses in T cells. Thus, the crosstalk between TCR-induced MAPK and the TGF-β signaling pathways is important in regulating Th cell differentiation. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Arginine methylation of Smad7 by PRMT1 in TGF-β-induced epithelial-mesenchymal transition and epithelial stem cell generation.

    PubMed

    Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan A; Wang, Hongjun; Jackson-Weaver, Olan; Zhang, Tingwei; Lamouille, Samy; Wu, Jian; Burlingame, A L L; Xu, Jian; Derynck, Rik

    2018-06-15

    The epithelial-to-mesenchymal transdifferentiation (EMT) is crucial for tissue differentiation in development, and drives essential steps in cancer and fibrosis. EMT is accompanied by reprogramming of gene expression, and has been associated with the epithelial stem cell state in normal and carcinoma cells. The cytokine TGF-β drives this program in cooperation with other signaling pathways and through TGF-β-activated Smad3 as major effector. TGF-β-induced Smad3 activation is inhibited by Smad7 and to a lesser extent by Smad6, and Smad6 and Smad7 both inhibit Smad1 and Smad5 activation in response to the TGF-β-related bone morphogenetic proteins (BMPs). We previously reported that, in response to BMP, the protein arginine methyltransferase PRMT1 methylates Smad6 at the BMP receptor complex, thereby promoting its dissociation from the receptors and enabling BMP-induced Smad1 and Smad5 activation. We now provide evidence that PRMT1 also facilitates TGF-β signaling by methylating Smad7, which complements Smad6 methylation. We found that PRMT1 is required for TGF-β-induced Smad3 activation, through a mechanism similar to that of BMP-induced Smad6 methylation, and thus promotes the TGF-β-induced EMT and epithelial stem cell generation. This critical mechanism positions PRMT1 as an essential mediator of TGF-β signaling that controls the EMT and epithelial cell stemness through Smad7 methylation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Synergistic function of Smad4 and PTEN in suppressing forestomach squamous cell carcinoma in the mouse.

    PubMed

    Teng, Yan; Sun, An-Na; Pan, Xiao-Chen; Yang, Guan; Yang, Lei-Lei; Wang, Ming-Rong; Yang, Xiao

    2006-07-15

    The genetic bases underlying esophageal tumorigenesis are poorly understood. Our previous studies have shown that coordinated deletion of the Smad4 and PTEN genes results in accelerated hair loss and skin tumor formation in mice. Herein, we exemplify that the concomitant inactivation of Smad4 and PTEN accelerates spontaneous forestomach carcinogenesis at complete penetrance during the first 2 months of age. All of the forestomach tumors were invasive squamous cell carcinomas (SCCs), which recapitulated the natural history and pathologic features of human esophageal SCCs. A small population of the SCC lesions was accompanied by adenocarcinomas at the adjacent submucosa region in the double mutant mice. The rapid progression of forestomach tumor formation in the Smad4 and PTEN double knockout mice corresponded to a dramatic increase in esophageal and forestomach epithelial proliferation. The decreased expression of p27, p21, and p16 together with the overexpression of cyclin D1 contributed cooperatively to the accelerated forestomach tumorigenesis in the double mutant mice. Our results point strongly to the crucial relevance of synergy between Smad4 and PTEN to suppress forestomach tumorigenesis through the cooperative induction of cell cycle inhibitors.

  14. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.

    PubMed

    Pierreux, C E; Nicolás, F J; Hill, C S

    2000-12-01

    Smad4 plays a pivotal role in all transforming growth factor beta (TGF-beta) signaling pathways. Here we describe six widely expressed alternatively spliced variants of human Smad4 with deletions of different exons in the linker, the region of Smad4 that separates the two well-conserved MH1 and MH2 domains. All these Smad4 variants form complexes with activated Smad2 and Smad3 and are incorporated into DNA-binding complexes with the transcription factor Fast-1, regardless of the amount of linker they contain. However, sequences encoded by exons 5 to 7 in the linker are essential for transcriptional activation. Most importantly, our observation that different Smad4 isoforms have different subcellular localizations has led us to the identification of a functional CRM1-dependent nuclear export signal in the Smad4 linker and a constitutively active nuclear localization signal in the N-terminal MH1 domain. In the absence of TGF-beta signaling, we conclude that Smad4 is rapidly and continuously shuttling between the nucleus and the cytoplasm, the distribution of Smad4 between the nucleus and the cytoplasm being dictated by the relative strengths of the nuclear import and export signals. We demonstrate that inhibition of CRM1-mediated nuclear export by treatment of cells with leptomycin B results in endogenous Smad4 accumulating very rapidly in the nucleus. Endogenous Smad2 and Smad3 are completely unaffected by leptomycin B treatment, indicating that the nucleocytoplasmic shuttling is specific for Smad4. We propose that, upon TGF-beta signaling, complex formation between Smad4 and activated Smad2 or -3 leads to nuclear accumulation of Smad4 through inhibition of its nuclear export. We demonstrate that after prolonged TGF-beta signaling Smad2 becomes dephosphorylated and Smad2 and Smad4 accumulate back in the cytoplasm.

  15. Transforming Growth Factor β-Independent Shuttling of Smad4 between the Cytoplasm and Nucleus

    PubMed Central

    Pierreux, Christophe E.; Nicolás, Francisco J.; Hill, Caroline S.

    2000-01-01

    Smad4 plays a pivotal role in all transforming growth factor β (TGF-β) signaling pathways. Here we describe six widely expressed alternatively spliced variants of human Smad4 with deletions of different exons in the linker, the region of Smad4 that separates the two well-conserved MH1 and MH2 domains. All these Smad4 variants form complexes with activated Smad2 and Smad3 and are incorporated into DNA-binding complexes with the transcription factor Fast-1, regardless of the amount of linker they contain. However, sequences encoded by exons 5 to 7 in the linker are essential for transcriptional activation. Most importantly, our observation that different Smad4 isoforms have different subcellular localizations has led us to the identification of a functional CRM1-dependent nuclear export signal in the Smad4 linker and a constitutively active nuclear localization signal in the N-terminal MH1 domain. In the absence of TGF-β signaling, we conclude that Smad4 is rapidly and continuously shuttling between the nucleus and the cytoplasm, the distribution of Smad4 between the nucleus and the cytoplasm being dictated by the relative strengths of the nuclear import and export signals. We demonstrate that inhibition of CRM1-mediated nuclear export by treatment of cells with leptomycin B results in endogenous Smad4 accumulating very rapidly in the nucleus. Endogenous Smad2 and Smad3 are completely unaffected by leptomycin B treatment, indicating that the nucleocytoplasmic shuttling is specific for Smad4. We propose that, upon TGF-β signaling, complex formation between Smad4 and activated Smad2 or -3 leads to nuclear accumulation of Smad4 through inhibition of its nuclear export. We demonstrate that after prolonged TGF-β signaling Smad2 becomes dephosphorylated and Smad2 and Smad4 accumulate back in the cytoplasm. PMID:11074002

  16. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis

    PubMed Central

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2017-01-01

    Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis. PMID:29163854

  17. Characterization of dSnoN and its relationship to Decapentaplegic signaling in Drosophila.

    PubMed

    Barrio, Rosa; López-Varea, Ana; Casado, Mar; de Celis, Jose F

    2007-06-01

    Vertebrate members of the ski/snoN family of proto-oncogenes antagonize TGFbeta and BMP signaling in a variety of experimental situations. This activity of Ski/SnoN proteins is related to their ability to interact with Smads, the proteins acting as key mediators of the transcriptional response to the TGFbeta superfamily members. However, despite extensive efforts to identify the physiological roles of the Ski/SnoN proteins, it is not yet clear whether they participate in regulating Activin and/or BMP signaling during normal development. It is therefore crucial to examine their roles in vivo mostly because of the large number of known Ski/SnoN-interacting proteins and the association between the up-regulation of these genes and cancer progression. Here we characterize the Drosophila homolog to vertebrate ski and snoN genes. The Drosophila dSnoN protein retains the ability of its vertebrate counterparts to antagonize BMP signaling in vivo and in cultured cells. dSnoN does not interfere with Mad phosphorylation but it interacts genetically with Mad, Medea and dSmad2. Mutations in either the Smad2-3 or Smad4 putative binding sites of dSnoN prevent the antagonism of dSnoN towards Dpp signaling, although homozygous flies for these mutations or for a genetic deficiency of the locus are viable and have wings of normal size and pattern.

  18. Angiotensin II promotes the proliferation of activated pancreatic stellate cells by Smad7 induction through a protein kinase C pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hama, Kouji; Ohnishi, Hirohide; Aoki, Hiroyoshi

    2006-02-17

    Activated pancreatic stellate cells (PSCs) play major roles in promoting pancreatic fibrosis. We previously reported that angiotensin II (Ang II) enhances activated PSC proliferation through EGF receptor transactivation. In the present study, we elucidated a novel intracellular mechanism by which Ang II stimulates cellular proliferation. TGF-{beta}{sub 1} inhibits activated PSC proliferation via a Smad3 and Smad4-dependent pathway in an autocrine manner. We demonstrated that Ang II inhibited TGF-{beta}{sub 1}-induced nuclear accumulation of Smad3 and Smad4. Furthermore, Ang II rapidly induced inhibitory Smad7 mRNA expression. Adenovirus-mediated Smad7 overexpression inhibited TGF-{beta}{sub 1}-induced nuclear accumulation of Smad3 and Smad4, and potentiated activated PSCmore » proliferation. PKC inhibitor Go6983 blocked the induction of Smad7 mRNA expression by Ang II. In addition, 12-O-tetradecanoyl-phorbol 13-acetate, a PKC activator, increased Smad7 mRNA expression. These results suggest that Ang II enhances activated PSC proliferation by blocking autocrine TGF-{beta}{sub 1}-mediated growth inhibition by inducing Smad7 expression via a PKC-dependent pathway.« less

  19. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4.

    PubMed

    Cheng, Dantong; Zhao, Senlin; Tang, Huamei; Zhang, Dongyuan; Sun, Hongcheng; Yu, Fudong; Jiang, Weiliang; Yue, Ben; Wang, Jingtao; Zhang, Meng; Yu, Yang; Liu, Xisheng; Sun, Xiaofeng; Zhou, Zongguang; Qin, Xuebin; Zhang, Xin; Yan, Dongwang; Wen, Yugang; Peng, Zhihai

    2016-07-19

    Tumor metastasis is one of the leading causes of poor prognosis for colorectal cancer (CRC) patients. Loss of Smad4 contributes to aggression process in many human cancers. However, the underlying precise mechanism of aberrant Smad4 expression in CRC development is still little known. miR-20a-5p negatively regulated Smad4 by directly targeting its 3'UTR in human colorectal cancer cells. miR-20a-5p not only promoted CRC cells aggression capacity in vitro and liver metastasis in vivo, but also promoted the epithelial-to-mesenchymal transition process by downregulating Smad4 expression. In addition, tissue microarray analysis obtained from 544 CRC patients' clinical characters showed that miR-20a-5p was upregulated in human CRC tissues, especially in the tissues with metastasis. High level of miR-20a-5p predicted poor prognosis in CRC patients. Five miRNA target prediction programs were applied to identify potential miRNA(s) that target(s) Smad4 in CRC. Luciferase reporter assay and transfection technique were used to validate the correlation between miR-20a-5p and Smad4 in CRC. Wound healing, transwell and tumorigenesis assays were used to explore the function of miR-20a-5p and Smad4 in CRC progression in vitro and in vivo. The association between miR-20a-5p expression and the prognosis of CRC patients was evaluated by Kaplan-Meier analysis and multivariate cox proportional hazard analyses based on tissue microarray data. miR-20a-5p, as an onco-miRNA, promoted the invasion and metastasis ability by suppressing Smad4 expression in CRC cells, and high miR-20a-5p predicted poor prognosis for CRC patients, providing a novel and promising therapeutic target in human colorectal cancer.

  20. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4

    PubMed Central

    Zhang, Dongyuan; Sun, Hongcheng; Yu, Fudong; Yue, Ben; Wang, Jingtao; Zhang, Meng; Yu, Yang; Liu, Xisheng; Sun, Xiaofeng; Zhou, Zongguang; Qin, Xuebin; Zhang, Xin; Yan, Dongwang; Wen, Yugang; Peng, Zhihai

    2016-01-01

    Background Tumor metastasis is one of the leading causes of poor prognosis for colorectal cancer (CRC) patients. Loss of Smad4 contributes to aggression process in many human cancers. However, the underlying precise mechanism of aberrant Smad4 expression in CRC development is still little known. Results miR-20a-5p negatively regulated Smad4 by directly targeting its 3′UTR in human colorectal cancer cells. miR-20a-5p not only promoted CRC cells aggression capacity in vitro and liver metastasis in vivo, but also promoted the epithelial-to-mesenchymal transition process by downregulating Smad4 expression. In addition, tissue microarray analysis obtained from 544 CRC patients’ clinical characters showed that miR-20a-5p was upregulated in human CRC tissues, especially in the tissues with metastasis. High level of miR-20a-5p predicted poor prognosis in CRC patients. Methods Five miRNA target prediction programs were applied to identify potential miRNA(s) that target(s) Smad4 in CRC. Luciferase reporter assay and transfection technique were used to validate the correlation between miR-20a-5p and Smad4 in CRC. Wound healing, transwell and tumorigenesis assays were used to explore the function of miR-20a-5p and Smad4 in CRC progression in vitro and in vivo. The association between miR-20a-5p expression and the prognosis of CRC patients was evaluated by Kaplan–Meier analysis and multivariate cox proportional hazard analyses based on tissue microarray data. Conclusions miR-20a-5p, as an onco-miRNA, promoted the invasion and metastasis ability by suppressing Smad4 expression in CRC cells, and high miR-20a-5p predicted poor prognosis for CRC patients, providing a novel and promising therapeutic target in human colorectal cancer. PMID:27286257

  1. Smad3 mutant mice develop colon cancer with overexpression of COX-2

    PubMed Central

    Zhu, Yu-Ping; Liu, Zhuo; Fu, Zhi-Xuan; Li, De-Chuan

    2017-01-01

    Colon cancer is the second most common cause of cancer-associated mortality in human populations. The aim of the present study was to identify the role of cyclooxygenase-2 (COX-2) in Smad3 mutant mice, which are known to develop colon cancer. Homozygous Smad3 (−/−) mutant mice were generated from inbred and hybrid Smad3 mouse strains by intercrossing the appropriate heterozygotes. Immunohistochemistry with COX-2 antibody was performed throughout this experiment and the data was validated and cross-checked with reverse transcription-polymerase chain reaction (RT-PCR). Homozygous mutant Smad3 mice were generated and the overexpression pattern of COX-2 was identified by immunohistochemistry and validated with RT-PCR. The results of the present study demonstrated a link between the Smad3 mutant mice, colon cancer and COX-2. In addition, the overexpression pattern of COX-2 in Smad3 mutant mice that develop colon cancer was identified. PMID:28454287

  2. PfSMAD4 plays a role in biomineralization and can transduce bone morphogenetic protein-2 signals in the pearl oyster Pinctada fucata.

    PubMed

    Zhao, Mi; Shi, Yu; He, Maoxian; Huang, Xiande; Wang, Qi

    2016-04-26

    Mollusca is the second largest phylum in nature. The shell of molluscs is a remarkable example of a natural composite biomaterial. Biomineralization and how it affects mollusks is a popular research topic. The BMP-2 signaling pathway plays a canonical role in biomineralization. SMAD4 is an intracellular transmitter in the BMP signaling pathway in mammals, and some genomic data show SMAD4's involvement in BMP signaling in invertebrates, but whether SMAD4 plays a conservative role in pearl oyster, Pinctada fucata, still need to be tested. In this study, we identified a SMAD4 gene (hereafter designated PfSMAD4) in pearl oyster Pinctada fucata. Bioinformatics analysis of PfSMAD4 showed high identity with its orthologs. PfSMAD4 was located in the cytoplasm in immunofluorescence assays and analyses of PfSMAD4 mRNA in tissues and developmental stages showed high expression in ovaries and D-shaped larvae. An RNA interference experiment, performed by PfSMAD4 double-stranded RNA (dsRNA) injection, demonstrated inhibition not only of nacre growth but also organic sheet formation with a decrease in PfSMAD4 expression. A knockdown experiment using PfBMP2 dsRNA showed decreased PfBMP2 and PfSMAD4 mRNA and irregular crystallization of the nacreous layer using scanning electron microscopy. In co-transfection experiments, PfBMP2-transactivated reporter constructs contained PfSMAD4 promoter sequences. Our results suggest that PfSMAD4 plays a role in biomineralization and can transduce BMP signals in P. fucata. Our data provides important clues about the molecular mechanisms that regulate biomineralization in pearl oyster.

  3. Modulation of TGF-beta signaling during progression of chronic liver diseases.

    PubMed

    Matsuzaki, Koichi

    2009-01-01

    A large body of work has established roles for epithelial cells as important mediators of progressive fibrosis and carcinogenesis. Transforming growth factor-beta (TGF-beta) and pro-inflammatory cytokines are important inducers of fibro-carcinogenesis. TGF-beta signaling involves phosphorylation of Smad3 at middle linker and/or C-terminal regions. Reversible shifting of Smad3-dependent signaling between tumor-suppression and oncogenesis in hyperactive Ras-expressing epithelial cells indicates that Smad3 phosphorylated at the C-terminal region (pSmad3C) transmits a tumor-suppressive TGF-beta signal, while oncogenic activities such as cell proliferation and invasion are promoted by Smad3 phosphorylated at the linker region (pSmad3L). Notably, pSmad3L-mediated signaling promotes extracellular matrix deposition by activated mesenchymal cells. During progression of chronic liver diseases, hepatic epithelial hepatocytes undergo transition from the tumor-suppressive pSmad3C pathway to the fibrogenic/oncogenic pSmad3L pathway, accelerating liver fibrosis and increasing risk of hepatocellular carcinoma. c-Jun N-terminal kinase activated by pro-inflammatory cytokines is mediating this perturbed hepatocytic TGF-beta signaling. Thus, TGF-beta signaling of hepatocytes affected by chronic inflammation offers a general framework for understanding the molecular mechanisms of human fibro-carcinogenesis during progression of chronic liver diseases.

  4. The Role of SncN and Ski in Mammary Epithelial Cell Transformation

    DTIC Science & Technology

    2005-07-01

    cellular activities through the Smad proteins. Upon phosphorylation by the active TGFβ receptor kinases, Smad2 and Smad3 oligomerize with Smad4, translocate...sequence in sense and antisense orientation with an intervening linker . Primer pairs were designed to generate single-strand overhangs upon annealing...nuclear protein, based on studies of ectopically expressed SnoN and endogenous SnoN in cancer cell lines. In the nucleus, SnoN binds to Smad2, Smad3 , and

  5. Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling.

    PubMed

    Baldwin, Rae Lynn; Tran, Hang; Karlan, Beth Y

    2003-03-15

    Many epithelial carcinomas, including ovarian, are refractory to the antiproliferative effects of transforming growth factor (TGF) beta. In some cancers, TGF-beta resistance has been linked to TGF-beta receptor II (TbetaR-II) and Smad4 mutations; however, in ovarian cancer, the mechanism of resistance remains unclear. Primary ovarian epithelial cell cultures were used as a model system to determine the mechanisms of TGF-beta resistance. To simulate in vivo responses to TGF-beta, primary cultures derived from normal human ovarian surface epithelium (HOSE) and from ovarian carcinomas (CSOC) were grown on collagen I gel, the predominant matrix molecule in the ovarian tumor milieu. When treated with 5 ng/ml TGF-beta for 72 h, HOSE (n = 11) proliferation was inhibited by 20 +/- 21% on average. In contrast, CSOC (n = 10) proliferation was stimulated 5 +/- 10% in response to TGF-beta (a statistically significant difference in response when compared with HOSE; P = 0.001). To dissect the TGF-beta/Smad signaling pathway we used a quantitative RNase protection assay (RPA) for measuring mRNA levels of TGF-beta pathway components in 20 HOSE and 20 CSOC cultures. Basal mRNA levels of TGF-beta receptors I and II, downstream signaling components Smad2, 3, 4, 6, 7, and the transcriptional corepressors Ski and SnoN did not show a statistically significant difference between HOSE and CSOC, and cannot explain their differential susceptibility to TGF-beta-induced cell cycle arrest. To assess functional differences of the TGF-beta pathway in TGF-beta-sensitive HOSE and TGF-beta-resistant CSOC, we measured Smad2/4 and 3/4 complex induction after TGF-beta treatment. HOSE and CSOC showed equivalent Smad2/4 and 3/4 complex induction after TGF-beta exposure for 0, 0.5, 2, and 4 h. It has been proposed that SnoN and Ski are corepressors of the TGF-beta/Smad pathway and undergo TGF-beta-induced degradation followed by reinduction of SnoN mRNA. However, our data show equivalent SnoN degradation in HOSE and CSOC, and equivalent SnoN mRNA induction after TGF-beta treatment. Surprising, TGF-beta-induced Ski degradation was not observed in HOSE or CSOC, suggesting that Ski may not function as a TGF-beta/Smad corepressor in ovarian epithelial cells. These data implied that the TGF-beta/Smad pathway remains functional in CSOC, although CSOC cells are resistant to antimitogenic TGF-beta effects. CSOC resistance to TGF-beta coincided with the loss of c-myc down-regulation. These data suggest that TGF-beta/Smad signaling is blocked downstream of Smad complex formation or that an alternate signaling pathway other than TGF-beta/Smad may transmit TGF-beta-induced cell cycle arrest in the ovarian epithelium.

  6. Therapeutic Inhibition of miR-4260 Suppresses Colorectal Cancer via Targeting MCC and SMAD4.

    PubMed

    Xiao, Junjie; Lv, Dongchao; Zhou, Jinzhe; Bei, Yihua; Chen, Ting; Hu, Muren; Zhou, Qiulian; Fu, Siyi; Huang, Qi

    2017-01-01

    Dysregulation of microRNAs (miRNAs, miRs) and their putative target genes have been increasingly reported to contribute to colorectal cancer. However, miRNAs that directly target the mutated in colorectal cancer (MCC) gene, a tumor suppressor which is downregulated or inactivated in colorectal cancer, remain largely unknown. By using an array-based miRNA analysis, we identified a group of miRNAs that were dysregulated in human metastatic versus non-metastatic colorectal cancer tissues. One of these miRNAs, miR-4260, was predicted to target MCC in the miRDB database. Results using human HCT116 and HT29 colorectal cancer cell lines showed that miR-4260 mimic enhanced cell proliferation and migration and reduced apoptosis induced by the chemotherapeutic agent 5-fluorouracil while miR-4260 inhibitor had inverse effects. Furthermore, miR-4260 negatively regulated MCC as well as SMAD4 by directly binding to the 3'untranslational region (3'UTR). Using siRNAs targeting MCC or SMAD4, we showed that upregulation of MCC and SMAD4 was essential to mediate the functional roles of miR-4260 inhibitor in colorectal cancer cells. Our in vivo experiments indicated that inhibition of miR-4260 reduced colorectal tumor growth in nude mice subcutaneously implanted with HCT116 cells. Significantly, miR-4260 was increased in human colorectal cancer tissues with simultaneous downregulation of MCC and SMAD4, strongly suggesting the clinical relevance of targeting miR-4260 in the treatment of colorectal cancer. In summary, we identified miR-4260 as a novel oncomiR for colorectal cancer that targets MCC and SMAD4. Inhibition of miR-4260 can, therefore, be a potential therapeutic strategy for colorectal cancer.

  7. Micro-RNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin-mediated NADPH oxidase in experimental and human nonalcoholic steatohepatitis.

    PubMed

    Dattaroy, Diptadip; Pourhoseini, Sahar; Das, Suvarthi; Alhasson, Firas; Seth, Ratanesh Kumar; Nagarkatti, Mitzi; Michelotti, Gregory A; Diehl, Anna Mae; Chatterjee, Saurabh

    2015-02-15

    Hepatic fibrosis in nonalcoholic steatohepatitis (NASH) is the common pathophysiological process resulting from chronic liver inflammation and oxidative stress. Although significant research has been carried out on the role of leptin-induced NADPH oxidase in fibrogenesis, the molecular mechanisms that connect the leptin-NADPH oxidase axis in upregulation of transforming growth factor (TGF)-β signaling have been unclear. We aimed to investigate the role of leptin-mediated upregulation of NADPH oxidase and its subsequent induction of micro-RNA 21 (miR21) in fibrogenesis. Human NASH livers and a high-fat (60% kcal) diet-fed chronic mouse model, where hepatotoxin bromodichloromethane was used to induce NASH, were used for this study. To prove the role of the leptin-NADPH oxidase-miR21 axis, mice deficient in genes for leptin, p47phox, and miR21 were used. Results showed that wild-type mice and human livers with NASH had increased oxidative stress, increased p47phox expression, augmented NF-κB activation, and increased miR21 levels. These mice and human livers showed increased TGF-β, SMAD2/3-SMAD4 colocalizations in the nucleus, increased immunoreactivity against Col1α, and α-SMA with a concomitant decrease in protein levels of SMAD7. Mice that were deficient in leptin or p47phox had decreased activated NF-κB and miR21 levels, suggesting the role of leptin and NADPH oxidase in inducing NF-κB-mediated miR21 expression. Further miR21 knockout mice had decreased colocalization events of SMAD2/3-SMAD4 in the nucleus, increased SMAD7 levels, and decreased fibrogenesis. Taken together, the studies show the novel role of leptin-NADPH oxidase induction of miR21 as a key regulator of TGF-β signaling and fibrogenesis in experimental and human NASH. Copyright © 2015 the American Physiological Society.

  8. Smad4 suppresses the tumorigenesis and aggressiveness of neuroblastoma through repressing the expression of heparanase

    PubMed Central

    Qu, Hongxia; Zheng, Liduan; Jiao, Wanju; Mei, Hong; Li, Dan; Song, Huajie; Fang, Erhu; Wang, Xiaojing; Li, Shiwang; Huang, Kai; Tong, Qiangsong

    2016-01-01

    Heparanase (HPSE) is the only endo-β-D-glucuronidase that is correlated with the progression of neuroblastoma (NB), the most common extracranial malignancy in childhood. However, the mechanisms underlying HPSE expression in NB still remain largely unknown. Herein, through analyzing cis-regulatory elements and mining public microarray datasets, we identified SMAD family member 4 (Smad4) as a crucial transcription regulator of HPSE in NB. We demonstrated that Smad4 repressed the HPSE expression at the transcriptional levels in NB cells. Mechanistically, Smad4 suppressed the HPSE expression through directly binding to its promoter and repressing the lymphoid enhancer binding factor 1 (LEF1)-facilitated transcription of HPSE via physical interaction. Gain- and loss-of-function studies demonstrated that Smad4 inhibited the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo. Restoration of HPSE expression prevented the NB cells from changes in these biological features induced by Smad4. In clinical NB specimens, Smad4 was under-expressed and inversely correlated with HPSE levels, while LEF1 was highly expressed and positively correlated with HPSE expression. Patients with high Smad4 expression, low LEF1 or HPSE levels had greater survival probability. These results demonstrate that Smad4 suppresses the tumorigenesis and aggressiveness of NB through repressing the HPSE expression. PMID:27595937

  9. Loss of Smad4 in Sertoli and Leydig Cells Leads to Testicular Dysgenesis and Hemorrhagic Tumor Formation in Mice1

    PubMed Central

    Archambeault, Denise R.; Yao, Humphrey Hung-Chang

    2014-01-01

    ABSTRACT As the central component of canonical TGFbeta superfamily signaling, SMAD4 is a critical regulator of organ development, patterning, tumorigenesis, and many other biological processes. Because numerous TGFbeta superfamily ligands are expressed in developing testes, there may exist specific requirements for SMAD4 in individual testicular cell types. Previously, we reported that expansion of the fetal testis cords requires expression of SMAD4 by the Sertoli cell lineage. To further uncover the role of Smad4 in murine testes, we produced conditional knockout mice lacking Smad4 in either Leydig cells or in both Sertoli and Leydig cells simultaneously. Loss of Smad4 concomitantly in Sertoli and Leydig cells led to underdevelopment of the testis cords during fetal life and mild testicular dysgenesis in young adulthood (decreased testis size, partially dysgenic seminiferous tubules, and low sperm production). When the Sertoli/Leydig cell Smad4 conditional knockout mice aged (56- to 62-wk old), the testis phenotypes became exacerbated with the appearance of hemorrhagic tumors, Leydig cell adenomas, and a complete loss of spermatogenesis. In contrast, loss of Smad4 in Leydig cells alone did not appreciably alter fetal and adult testis development. Our findings support a cell type-specific requirement of Smad4 in testis development and suppression of testicular tumors. PMID:24501173

  10. Anterior visceral endoderm SMAD4 signaling specifies anterior embryonic patterning and head induction in mice.

    PubMed

    Li, Cuiling; Li, Yi-Ping; Fu, Xin-Yuan; Deng, Chu-Xia

    2010-09-27

    SMAD4 serves as a common mediator for signaling of TGF-β superfamily. Previous studies illustrated that SMAD4-null mice die at embryonic day 6.5 (E6.5) due to failure of mesoderm induction and extraembryonic defects; however, functions of SMAD4 in each germ layer remain elusive. To investigate this, we disrupted SMAD4 in the visceral endoderm and epiblast, respectively, using a Cre-loxP mediated approach. We showed that mutant embryos lack of SMAD4 in the visceral endoderm (Smad4(Co/Co);TTR-Cre) died at E7.5-E9.5 without head-fold and anterior embryonic structures. We demonstrated that TGF-β regulates expression of several genes, such as Hex1, Cer1, and Lim1, in the anterior visceral endoderm (AVE), and the failure of anterior embryonic development in Smad4(Co/Co);TTR-Cre embryos is accompanied by diminished expression of these genes. Consistent with this finding, SMAD4-deficient embryoid bodies showed impaired responsiveness to TGF-β-induced gene expression and morphological changes. On the other hand, embryos carrying Cre-loxP mediated disruption of SMAD4 in the epiblasts exhibited relatively normal mesoderm and head-fold induction although they all displayed profound patterning defects in the later stages of gastrulation. Cumulatively, our data indicate that SMAD4 signaling in the epiblasts is dispensable for mesoderm induction although it remains critical for head patterning, which is significantly different from SMAD4 signaling in the AVE, where it specifies anterior embryonic patterning and head induction.

  11. Anterior Visceral Endoderm SMAD4 Signaling Specifies Anterior Embryonic Patterning and Head Induction in Mice

    PubMed Central

    Li, Cuiling; Li, Yi-Ping; Fu, Xin-Yuan; Deng, Chu-Xia

    2010-01-01

    SMAD4 serves as a common mediator for signaling of TGF-β superfamily. Previous studies illustrated that SMAD4-null mice die at embryonic day 6.5 (E6.5) due to failure of mesoderm induction and extraembryonic defects; however, functions of SMAD4 in each germ layer remain elusive. To investigate this, we disrupted SMAD4 in the visceral endoderm and epiblast, respectively, using a Cre-loxP mediated approach. We showed that mutant embryos lack of SMAD4 in the visceral endoderm (Smad4Co/Co;TTR-Cre) died at E7.5-E9.5 without head-fold and anterior embryonic structures. We demonstrated that TGF-β regulates expression of several genes, such as Hex1, Cer1, and Lim1, in the anterior visceral endoderm (AVE), and the failure of anterior embryonic development in Smad4Co/Co;TTR-Cre embryos is accompanied by diminished expression of these genes. Consistent with this finding, SMAD4-deficient embryoid bodies showed impaired responsiveness to TGF-β-induced gene expression and morphological changes. On the other hand, embryos carrying Cre-loxP mediated disruption of SMAD4 in the epiblasts exhibited relatively normal mesoderm and head-fold induction although they all displayed profound patterning defects in the later stages of gastrulation. Cumulatively, our data indicate that SMAD4 signaling in the epiblasts is dispensable for mesoderm induction although it remains critical for head patterning, which is significantly different from SMAD4 signaling in the AVE, where it specifies anterior embryonic patterning and head induction. PMID:20941375

  12. A Smad action turnover switch operated by WW domain readers of a phosphoserine code

    PubMed Central

    Aragón, Eric; Goerner, Nina; Zaromytidou, Alexia-Ileana; Xi, Qiaoran; Escobedo, Albert; Massagué, Joan; Macias, Maria J.

    2011-01-01

    When directed to the nucleus by TGF-β or BMP signals, Smad proteins undergo cyclin-dependent kinase 8/9 (CDK8/9) and glycogen synthase kinase-3 (GSK3) phosphorylations that mediate the binding of YAP and Pin1 for transcriptional action, and of ubiquitin ligases Smurf1 and Nedd4L for Smad destruction. Here we demonstrate that there is an order of events—Smad activation first and destruction later—and that it is controlled by a switch in the recognition of Smad phosphoserines by WW domains in their binding partners. In the BMP pathway, Smad1 phosphorylation by CDK8/9 creates binding sites for the WW domains of YAP, and subsequent phosphorylation by GSK3 switches off YAP binding and adds binding sites for Smurf1 WW domains. Similarly, in the TGF-β pathway, Smad3 phosphorylation by CDK8/9 creates binding sites for Pin1 and GSK3, then adds sites to enhance Nedd4L binding. Thus, a Smad phosphoserine code and a set of WW domain code readers provide an efficient solution to the problem of coupling TGF-β signal delivery to turnover of the Smad signal transducers. PMID:21685363

  13. TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells

    PubMed Central

    Eiselein, Larissa; Nyunt, Tun; Lamé, Michael W.; Ng, Kit F.; Wilson, Dennis W.; Rutledge, John C.; Aung, Hnin H.

    2015-01-01

    Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses. PMID:26709509

  14. Activin-A, transforming growth factor-beta, and myostatin signaling pathway in experimental dilated cardiomyopathy.

    PubMed

    Mahmoudabady, Maryam; Mathieu, Myrielle; Dewachter, Laurence; Hadad, Ielham; Ray, Lynn; Jespers, Pascale; Brimioulle, Serge; Naeije, Robert; McEntee, Kathleen

    2008-10-01

    The pathogenic mechanisms of dilated cardiomyopathy are still uncertain. A number of cytokines and growth factors participate in the remodeling process of the disease. We investigated the cardiac myostatin, transforming growth factor (TGF)beta, and activin-A/Smad growth inhibitory signaling pathway in experimental dilated cardiomyopathy. Transvenous endomyocardial biopsies of the interventricular septum were taken weekly in 15 beagle dogs during the development of heart failure (HF) induced by rapid pacing over a period of 7 weeks. Genes involved in the myostatin-TGFbeta-activin-A/Smad signaling pathway and the cardiac hypertrophic process were quantified by real-time quantitative polymerase chain reaction. Left ventricular volume, function, and mass were evaluated by echocardiography. Overpacing was associated with increased left ventricular volumes and decreased ejection fraction, whereas the left ventricular mass remained unchanged. TGFbeta was increased in moderate HF. Activin-A mRNA expression was 4-fold higher in overt congestive HF than at baseline. A 2-fold decrease of activin type II receptors and activin receptor interacting protein 2 gene expressions were observed, as well as a transient decrease of follistatin. Activin type I receptors, activin receptor interacting protein 1, follistatin-related gene, and myostatin remained unchanged. The inhibitory Smad 7, a negative feedback loop regulator of the Smad pathway, was overexpressed in severe HF. Gene expression of the cyclin-dependent kinase inhibitor p21, a direct target gene of the Smad pathway, was 8-fold up-regulated in HF, whereas cyclin D1 was down-regulated. We conclude that tachycardia-induced dilated cardiomyopathy is characterized by gene overexpression of the TGFbeta-activin-A/Smad signaling pathway and their target gene p21 and by the absence of ventricular hypertrophy.

  15. Mutation analysis of the Smad3 gene in human osteoarthritis.

    PubMed

    Yao, Jun-Yan; Wang, Yan; An, Jing; Mao, Chun-Ming; Hou, Ning; Lv, Ya-Xin; Wang, You-Liang; Cui, Fang; Huang, Min; Yang, Xiao

    2003-09-01

    Osteoarthritis (OA) is the most common joint disease worldwide. Recent studies have shown that targeted disruption of Smad3 in mouse results in OA. To reveal the possible association between the Smad3 gene mutation and human OA, we employed polymerase chain reaction-single strand conformation polymorphism and sequencing to screen mutations in all nine exons of the Smad3 gene in 32 patients with knee OA and 50 patients with only bone fracture. A missense mutation of the Smad3 gene was found in one patient. The single base mutation located in the linker region of the SMAD3 protein was A --> T change in the position 2 of codon 197 and resulted in an asparagine to isoleucine amino-acid substitution. The expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 in sera of the patient carrying the mutation were higher than other OA patients and controls. This is the first report showing that the Smad3 gene mutations could be associated with the pathogenesis of human OA.

  16. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration

    PubMed Central

    Paris, Nicole D; Soroka, Andrew; Klose, Alanna; Liu, Wenxuan; Chakkalakal, Joe V

    2016-01-01

    Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expression of Smad4, the downstream cofactor for canonical TGFβ superfamily signaling, and the target Id1 in aged SCs and MPs during regeneration. Specific deletion of Smad4 in adult mouse SCs led to increased propensity for terminal myogenic commitment connected to impaired proliferative potential. Furthermore, SC-specific Smad4 disruption compromised adult skeletal muscle regeneration. Finally, loss of Smad4 in aged SCs did not promote aged skeletal muscle regeneration. Therefore, SC-specific reduction of Smad4 is a feature of aged regenerating skeletal muscle and Smad4 is a critical regulator of SC and MP amplification during skeletal muscle regeneration. DOI: http://dx.doi.org/10.7554/eLife.19484.001 PMID:27855784

  17. Studying the Roles of GRK2-Mediated Smad2/3 Phosphorylation as a Negative Feedback Mechanism of TGF-Beta Signaling and a Target of Breast Cancer Therapeutics

    DTIC Science & Technology

    2014-01-01

    as blocking this pathway could slow down metastasis in animal models. Since Smad2 and Smad3 are transcription factors, they are not ideal drug...through different mechanisms. Whereas GRK2 phosphorylates a defined serine/threonine residue on the linker region of the Smad, BCAR3 recruits another...500) and a rabbit anti-phospho- Smad3 antibody (#9520, Cell Signaling, 1:500), or Alexa568-labled Phalloidin (Life Technologies). Cells were then

  18. Disruption of Smad-dependent signaling for growth of GST-P-positive lesions from the early stage in a rat two-stage hepatocarcinogenesis model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichimura, Ryohei, E-mail: red0828@hotmail.co.j; Mizukami, Sayaka, E-mail: non_sugar_life@hotmail.co.j; Takahashi, Miwa, E-mail: mtakahashi@nihs.go.j

    2010-08-01

    To clarify the involvement of signaling of transforming growth factor (TGF)-{beta} during the hepatocarcinogenesis, the immunohistochemical distribution of related molecules was analyzed in relation with liver cell lesions expressing glutathione S-transferase placental form (GST-P) during liver tumor promotion by fenbendazole, phenobarbital, piperonyl butoxide, or thioacetamide, using rats. Our study focused on early-stage promotion (6 weeks after starting promotion) and late-stage promotion (57 weeks after starting promotion). With regard to Smad-dependent signaling, cytoplasmic accumulation of phosphorylated Smad (phospho-Smad)-2/3 - identified as Smad3 by later immunoblot analysis - increased in the subpopulation of GST-P{sup +} foci, while Smad4, a nuclear transporter ofmore » Smad2/3, decreased during early-stage promotion. By late-stage promotion, GST-P{sup +} lesions lacking phospho-Smad2/3 had increased in accordance with lesion development from foci to carcinomas, while Smad4 largely disappeared in most proliferative lesions. With regard to Smad-independent mitogen-activated protein kinases, GST-P{sup +} foci that co-expressed phospho-p38 mitogen-activated protein kinase increased during early-stage promotion; however, p38-downstream phospho-activating transcriptional factor (ATF)-2, ATF3, and phospho-c-Myc, were inversely downregulated without relation to promotion. By late-stage promotion, proliferative lesions downregulated phospho-ATF2 and phospho-c-Myc along with lesion development, as with downregulation of phospho-p38 in all lesions. These results suggest that from the early stages, carcinogenic processes were facilitated by disruption of tumor suppressor functions of Smad-dependent signaling, while Smad-independent activation of p38 was an early-stage phenomenon. GST-P{sup -} foci induced by promotion with agonists of peroxisome proliferator-activated receptor-{alpha} did not change Smad expression, suggesting an aberration in the Smad-dependent signaling prerequisites for induction of GST-P{sup +} proliferative lesions.« less

  19. HYAL-2–WWOX–SMAD4 Signaling in Cell Death and Anticancer Response

    PubMed Central

    Hsu, Li-Jin; Chiang, Ming-Fu; Sze, Chun-I; Su, Wan-Pei; Yap, Ye Vone; Lee, I-Ting; Kuo, Hsiang-Ling; Chang, Nan-Shan

    2016-01-01

    Hyaluronidase HYAL-2 is a membrane-anchored protein and also localizes, in part, in the lysosome. Recent study from animal models revealed that both HYAL-1 and HYAL-2 are essential for the metabolism of hyaluronan (HA). Hyal-2 deficiency is associated with chronic thrombotic microangiopathy with hemolytic anemia in mice due to over accumulation of high molecular size HA. HYAL-2 is essential for platelet generation. Membrane HYAL-2 degrades HA bound by co-receptor CD44. Also, in a non-canonical signal pathway, HYAL-2 serves as a receptor for transforming growth factor beta (TGF-β) to signal with downstream tumor suppressors WWOX and SMAD4 to control gene transcription. When SMAD4 responsive element is overly driven by the HYAL-2–WWOX–SMAD4 signaling complex, cell death occurs. When rats are subjected to traumatic brain injury, over accumulation of a HYAL-2–WWOX complex occurs in the nucleus to cause neuronal death. HA induces the signaling of HYAL-2–WWOX–SMAD4 and relocation of the signaling complex to the nucleus. If the signaling complex is overexpressed, bubbling cell death occurs in WWOX-expressing cells. In addition, a small synthetic peptide Zfra (zinc finger-like protein that regulates apoptosis) binds membrane HYAL-2 of non-T/non-B spleen HYAL-2+ CD3− CD19− Z lymphocytes and activates the cells to generate memory anticancer response against many types of cancer cells in vivo. Whether the HYAL-2–WWOX–SMAD4 signaling complex is involved is discussed. In this review and opinion article, we have updated the current knowledge of HA, HYAL-2 and WWOX, HYAL-2–WWOX–SMAD4 signaling, bubbling cell death, and Z cell activation for memory anticancer response. PMID:27999774

  20. PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3.

    PubMed

    Remy, Ingrid; Montmarquette, Annie; Michnick, Stephen W

    2004-04-01

    Transforming growth factor beta (TGF-beta) has a major role in cell proliferation, differentiation and apoptosis in many cell types. Integration of the TGF-beta pathway with other signalling cascades that control the same cellular processes may modulate TGF-beta responses. Here we report the discovery of a new functional link between TGF-beta and growth factor signalling pathways, mediated by a physical interaction between the serine-threonine kinase PKB (protein kinase B)/Akt and the transcriptional activator Smad3. Formation of the complex is induced by insulin, but inhibited by TGF-beta stimulation, placing PKB-Smad3 at a point of convergence between these two pathways. PKB inhibits Smad3 by preventing its phosphorylation, binding to Smad4 and nuclear translocation. In contrast, Smad3 does not inhibit PKB. Inhibition of Smad3 by PKB occurs through a kinase-activity-independent mechanism, resulting in a decrease in Smad3-mediated transcription and protection of cells against TGF-beta-induced apoptosis. Consistently, knockdown of the endogenous PKB gene with small-interfering RNA (siRNA) has the opposite effect. Our results suggest a very simple mechanism for the integration of signals arising from growth-factor- and TGF-beta-mediated pathways.

  1. Lactobacillus acidophilus attenuates Salmonella-induced intestinal inflammation via TGF-β signaling.

    PubMed

    Huang, I-Fei; Lin, I-Chun; Liu, Pei-Feng; Cheng, Ming-Fang; Liu, Yen-Chen; Hsieh, Yao-Dung; Chen, Jih-Jung; Chen, Chun-Lin; Chang, Hsueh-Wei; Shu, Chih-Wen

    2015-10-07

    Salmonella is a common intestinal pathogen that causes acute and chronic inflammatory response. Probiotics reduce inflammatory cytokine production and serve as beneficial commensal microorganisms in the human gastrointestinal tract. TGF-β (transforming growth factor β)/SMAD and NF-κB signaling play important roles in inflammation in intestinal cells. However, the involvement of the signaling in regulating inflammation between Salmonella and probiotics is not fully understood. L. acidophilus and prebiotic inulin were used to treat human intestinal Caco-2 cells prior to infection with Salmonella. The cells were harvested to examine the cytokines and MIR21 expression with immunoblotting and real-time PCR. NF-κB and SMAD3/4 reporter vectors were transfected into cells to monitor inflammation and TGF-β1 signaling, respectively. In this study, we showed that the probiotic L. acidophilus decreased Salmonella-induced NF-κB activation in human intestinal Caco-2 cells. Expression of the inflammatory cytokines, TNF-α and IL-8, in L. acidophilus-pretreated cells was also significantly lower than that in cells infected with Salmonella alone. Moreover, TGF-β1 and MIR21 expression was elevated in cells pretreated with L. acidophilus or synbiotic, a combination of inulin and L. acidophilus, compared to that in untreated cells or cells infected with S. typhimurium alone. By contrast, expression of SMAD7, a target of MIR21, was accordingly reduced in cells treated with L. acidophilus or synbiotics. Consistent with TGF-β1/MIR21 and SMAD7 expression, SMAD3/4 transcriptional activity was significantly higher in the cells treated with L. acidophilus or synbiotics. Furthermore, TGF-β1 antibody antagonized the SMAD3/4 and NF-κB transcriptional activity modulated by L. acidophilus in intestinal cells. Our results suggest that the TGF-β1/MIR21 signaling pathway may be involved in the suppressive effects of L. acidophilus on inflammation caused by S. typhimurium in intestinal Caco-2 cells.

  2. Decorin alleviated chronic hydrocephalus via inhibiting TGF-β1/Smad/CTGF pathway after subarachnoid hemorrhage in rats.

    PubMed

    Yan, Hui; Chen, Yujie; Li, Lingyong; Jiang, Jiaode; Wu, Guangyong; Zuo, Yuchun; Zhang, John H; Feng, Hua; Yan, Xiaoxin; Liu, Fei

    2016-01-01

    Chronic hydrocephalus is one of the severe complications after subarachnoid hemorrhage (SAH). However, there is no efficient treatment for the prevention of chronic hydrocephalus, partially due to poor understanding of underlying pathogenesis, subarachnoid fibrosis. Transforming growth factor-β1(TGF-β1) is a potent fibrogenic factor implicated in wide range of fibrotic diseases. To investigate whether decorin, a natural antagonist for TGF-β1, protects against subarachnoid fibrosis and chronic hydrocephalus after SAH, two-hemorrhage-injection SAH model was conducted in 6-week-old rats. Recombinant human decorin(rhDecorin) (30ug/2ul) was administered before blood injection and on the 10th day after SAH. TGF-β1, p-Smad2/3, connective tissue growth factor (CTGF), collagen I and pro-collagen I c-terminal propeptide were assessed via western blotting, enzyme-linked immunosorbent assay, radioimmunoassay and immunofluorescence. And neurobehavioral tests and Morris water maze were employed to evaluate long-term neurological functions after SAH. We found that SAH induced heightened activation of TGF-β1/Smad/CTGF axis, presenting as a two peak response of TGF-β1 in cerebrospinal fluid, elevation of TGF-β1, p-Smad2/3, CTGF, collagen I in brain parenchyma and pro-collagen I c-terminal propeptide in cerebrospinal fluid, and increased lateral ventricle index. rhDecorin treatment effectively inhibited up-regulation of TGF-β1, p-Smad2/3, CTGF, collagen I and pro-collagen I c-terminal propeptide after SAH. Moreover, rhDecorin treatment significantly reduced lateral ventricular index and incidence of chronic hydrocephalus after SAH. Importantly, rhDecorin improved neurocognitive deficits after SAH. In conclusion, rhDecorin suppresses extracellular matrix accumulation and following subarachnoid fibrosis via inhibiting TGF-β1/Smad/CTGF pathway, preventing development of hydrocephalus and attenuating long-term neurocognitive defects after SAH. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Phosphorylation of Smad2/3 at the specific linker threonine residue indicates slow-cycling esophageal stem-like cells before re-entry to the cell cycle.

    PubMed

    Takahashi, Y; Fukui, T; Kishimoto, M; Suzuki, R; Mitsuyama, T; Sumimoto, K; Okazaki, T; Sakao, M; Sakaguchi, Y; Yoshida, K; Uchida, K; Nishio, A; Matsuzaki, K; Okazaki, K

    2016-01-01

    The stem cell compartment in the esophageal epithelium is possibly located in the basal layer. We have identified significant expression of Smad2/3, phosphorylated at specific linker threonine residues (pSmad2/3L-Thr), in the epithelial cells of murine stomach and intestine, and have suggested that these cells are epithelial stem cells. In this study, we explore whether pSmad2/3L-Thr could serve as a biomarker for esophageal stem cells. We examined esophageal tissues from normal C57BL/6 mice and those with esophagitis. Double immunofluorescent staining of pSmad2/3L-Thr with Ki67, CDK4, p63, or CK14 was performed. After immunofluorescent staining, we stained the same sections with hematoxylin-eosin and observed these cells under a light microscope. We used the 5-bromo-2-deoxyuridine (BrdU) labeling assay to examine label retention of pSmad2/3L-Thr immunostaining-positive cells. We collected specimens 5, 10, 15 and 20 days after repeated BrdU administrations and observed double immunofluorescent staining of pSmad2/3L-Thr with BrdU. In the esophagus, pSmad2/3L-Thr immunostaining-positive cells were detected in the basal layer. These cells were detected between Ki67 immunostaining-positive cells, but they were not co-localized with Ki67. pSmad2/3L-Thr immunostaining-positive cells showed co-localization with CDK4, p63, and CK14. Under a light microscope, pSmad2/3L-Thr immunostaining-positive cells indicated undifferentiated morphological features. Until 20 days follow-up period, pSmad2/3L-Thr immunostaining-positive cells were co-localized with BrdU. pSmad2/3L-Thr immunostaining-positive cells significantly increased in the regeneration phase of esophagitis mucosae, as compared with control mice (esophagitis vs. 6.889 ± 0.676/cm vs. 4.293 ± 0.659/cm; P < 0.001). We have identified significant expression of pSmad2/3L-Thr in the specific epithelial cells of murine esophagi. We suggest that these cells are slow-cycling epithelial stem-like cells before re-entry to the cell cycle. © 2016 International Society for Diseases of the Esophagus.

  4. STAT3-mediated SMAD3 activation underlies Oncostatin M-induced Senescence

    PubMed Central

    Junk, Damian J.; Cipriano, Rocky; Jackson, Mark W.

    2017-01-01

    ABSTRACT Cytokines in the developing tumor microenvironment (TME) can drive transformation and subsequent progression toward metastasis. Elevated levels of the Interleukin-6 (IL-6) family cytokine Oncostatin M (OSM) in the breast TME correlate with aggressive, metastatic cancers, increased tumor recurrence, and poor patient prognosis. Paradoxically, OSM engages a tumor-suppressive, Signal Transducer and Activator of Transcription 3 (STAT3)-dependent senescence response in normal and non-transformed human mammary epithelial cells (HMEC). Here, we identify a novel link between OSM-activated STAT3 signaling and the Transforming Growth Factor-β (TGF-β) signaling pathway that engages senescence in HMEC. Inhibition of functional TGF-β/SMAD signaling by expressing a dominant-negative TGF-β receptor, treating with a TGF-β receptor inhibitor, or suppressing SMAD3 expression using a SMAD3-shRNA prevented OSM-induced senescence. OSM promoted a protein complex involving activated-STAT3 and SMAD3, induced the nuclear localization of SMAD3, and enhanced SMAD3-mediated transcription responsible for senescence. In contrast, expression of MYC (c-MYC) from a constitutive promoter abrogated senescence and strikingly, cooperated with OSM to promote a transformed phenotype, epithelial-mesenchymal transition (EMT), and invasiveness. Our findings suggest that a novel STAT3/SMAD3-signaling axis is required for OSM-mediated senescence that is coopted during the transformation process to confer aggressive cancer cell properties. Understanding how developing cancer cells bypass OSM/STAT3/SMAD3-mediated senescence may help identify novel targets for future “pro-senescence” therapies aiming to reengage this hidden tumor-suppressive response. PMID:27892764

  5. The specific linker phosphorylation of Smad2/3 indicates epithelial stem cells in stomach; particularly increasing in mucosae of Helicobacter-associated gastritis.

    PubMed

    Fukui, Toshiro; Kishimoto, Masanobu; Nakajima, Atsushi; Yamashina, Masao; Nakayama, Shinji; Kusuda, Takeo; Sakaguchi, Yutaku; Yoshida, Katsunori; Uchida, Kazushige; Nishio, Akiyoshi; Matsuzaki, Koichi; Okazaki, Kazuichi

    2011-04-01

    The gastric corpus and antrum are believed to contain epithelial stem cells in the isthmus. However, the lack of useful markers has hindered studies of their origin. We explored whether Smad2/3, phosphorylated at specific linker threonine residues (pSmad2/3L-Thr), could serve as a marker for stem cells. Stomachs, small intestines, and colons from Helicobacter felis-infected and noninfected C57BL/6 mice were examined. Double immunofluorescent staining of pSmad2/3L-Thr with Ki67, cytokeratin 8, or doublecortin and calcium/calmodulin-dependent protein kinase-like-1 (DCAMKL1) was performed, and pSmad2/3L-Thr immunostaining-positive cells were counted. After immunofluorescent staining, we stained the same sections with hematoxylin-eosin and observed these cells under a light microscope. In infected mice, pSmad2/3L-Thr immunostaining-positive cells were significantly increased in the corpus and antrum compared with those of noninfected mice (p < 0.0001). The number of Ki67 immunostaining-positive cells in the corpus and antrum of infected mice was also much greater than in the noninfected mice. Although pSmad2/3L-Thr immunostaining-positive cells were detected among the Ki67 cells, immunohistochemical co-localization of pSmad2/3L-Thr with Ki67 was never observed. pSmad2/3L-Thr immunostaining-positive cells showed immunohistochemical co-localization with cytokeratin 8, but some of them showed co-localization or adjacent localization with DCAMKL1 immunostaining-positive cells. Under a light microscope, pSmad2/3L-Thr immunostaining-positive cells indicated undifferentiated morphological features and were confirmed in the isthmus. In small intestines and colons, pSmad2/3L-Thr immunostaining-positive cells were detected in specific epithelial cells around crypt bases, where the respective putative stem cells are thought to exist. We have identified the significant expression of pSmad2/3L-Thr in specific epithelial cells of the murine stomach and have suggested these cells to be epithelial stem cells.

  6. Mangiferin inhibits apoptosis and oxidative stress via BMP2/Smad-1 signaling in dexamethasone-induced MC3T3-E1 cells.

    PubMed

    Ding, Ling-Zhi; Teng, Xiao; Zhang, Zhao-Bo; Zheng, Chang-Jun; Chen, Shi-Hong

    2018-05-01

    Mangiferin is a xanthone glucoside, which possesses antioxidant, antiviral, antitumor and anti-inflammatory functions, and is associated with gene regulation. However, it remains unknown whether mangiferin protects osteoblasts, such as the MC3T3-E1 cell line, against glucocorticoid-induced damage. In the present study, MC3T3-E1 cells were treated with dexamethasone (Dex), which is a well-known synthetic glucocorticoid, in order to establish a glucocorticoid-induced cell injury model. After Dex and/or mangiferin treatment, cell viability, apoptosis and reactive oxygen species (ROS) production was measured by Cell Counting kit-8 (CCK-8) and flow cytometry, respectively, and the concentration of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and macrophage colony-stimulating factor (M-CSF) was measured by ELISA. The expression of bone morphogenetic protein 2 (BMP2), phosphorylated‑SMAD family member 1 (p-Smad-1), t-Smad-1, osterix (OSX), osteocalcin (OCN), osteoprotegerin (OPG), receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL), B‑cell lymphoma 2 (Bcl-2) and Bcl‑2‑associated X protein (Bax) was measured by real-time PCR and/or western blot analysis. The results indicated that pretreatment of MC3T3-E1 cells with mangiferin for 3 h prior to exposure to Dex for 48 h significantly attenuated Dex-induced injury and inflammation, as demonstrated by increased cell viability, and decreases in apoptosis, ROS generation, and the secretion of TNF-α, IL-6 and M-CSF. In addition, pretreatment with mangiferin markedly reduced Dex-induced BMP2 and p‑Smad-1 downregulation, and corrected the expression of differentiation‑ and apoptosis‑associated markers, including alkaline phosphatase, OSX, OCN, OPG, RANK, RANKL, Bcl-2 and Bax, which were altered by Dex treatment. Similar to the protective effects of mangiferin, overexpression of BMP2 suppressed not only Dex-induced cytotoxicity, but also ROS generation, and the secretion of TNF-α, IL-6 and M-CSF. In conclusion, the results of the present study are the first, to the best of our knowledge, to demonstrate that mangiferin protects MC3T3-E1 cells against Dex-induced apoptosis and oxidative stress by activating the BMP2/Smad-1 signaling pathway.

  7. Osthole inhibits the expressions of collagen I and III through Smad signaling pathway after treatment with TGF-β1 in mouse cardiac fibroblasts.

    PubMed

    Liu, Jin-Cheng; Wang, Feng; Xie, Mei-Lin; Cheng, Zong-Qi; Qin, Qiong; Chen, Lin; Chen, Rong

    2017-02-01

    Osthole, a natural coumarin and bioactive compound isolated from the fruit of Cnidium monnieri (L.) Cusson, was reported to prevent isoprenaline-induced myocardial fibrosis in mice by inhibiting the transforming growth factor-β1 (TGF-β1) expression, but the underlying mechanism is still unclear. The aim of this study is to illuminate whether the mechanism of osthole inhibiting collagen I and III expressions is associated with Smad signaling pathway in mouse cardiac fibroblasts (CFs) treated with TGF-β1. The mouse CFs stimulated with TGF-β1 were cultured and treated with osthole 1.25-5μg/ml for 24h. The expressions of α-SMA, collagen I, collagen III, TGF-β receptor I (TβRI), Smad2/3, phospho-Smad2/3 (P-Smad2/3), Smad4 and Smad7 were detected by real-time PCR method and western blot method, respectively. After treatment with TGF-β1 and osthole in CFs, the levels of α-SMA expression and collagen I and III were reduced by osthole treatment. Accordingly, the ratio of collagen I/III had a similar changing trend. Besides, the levels of TβRI, Smad2/3, P-Smad2/3 and Smad4 expressions were decreased, while the level of Smad7 expression was increased after treatment with osthole. The present results demonstrated that osthole could inhibit the collagen I and III expressions and their ratio in CFs treated with TGF-β1 via Smad signaling pathway, which might be one of its anti-fibrotic action mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Smad phosphoisoform signals in acute and chronic liver injury: similarities and differences between epithelial and mesenchymal cells.

    PubMed

    Matsuzaki, Koichi

    2012-01-01

    Hepatocellular carcinoma (HCC) usually arises from hepatic fibrosis caused by chronic inflammation. In chronic liver damage, hepatic stellate cells undergo progressive activation to myofibroblasts (MFB), which are important extracellular-matrix-producing mesenchymal cells. Concomitantly, perturbation of transforming growth factor (TGF)-β signaling by pro-inflammatory cytokines in the epithelial cells of the liver (hepatocytes) promotes both fibrogenesis and carcinogenesis (fibro-carcinogenesis). Insights into fibro-carcinogenic effects on chronically damaged hepatocytes have come from recent detailed analyses of the TGF-β signaling process. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β type I receptor and pro-inflammatory cytokine-activated kinases differentially phosphorylate Smad2 and Smad3 to create phosphoisoforms phosphorylated at the COOH-terminal, linker, or both (L/C) regions. After acute liver injury, TGF-β-mediated pSmad3C signaling terminates hepatocytic proliferation induced by the pro-inflammatory cytokine-mediated mitogenic pSmad3L pathway; TGF-β and pro-inflammatory cytokines synergistically enhance collagen synthesis by activated hepatic stellate cells via pSmad2L/C and pSmad3L/C pathways. During chronic liver disease progression, pre-neoplastic hepatocytes persistently affected by TGF-β together with pro-inflammatory cytokines come to exhibit the same carcinogenic (mitogenic) pSmad3L and fibrogenic pSmad2L/C signaling as do MFB, thereby accelerating liver fibrosis while increasing risk of HCC. This review of Smad phosphoisoform-mediated signals examines similarities and differences between epithelial and mesenchymal cells in acute and chronic liver injuries and considers Smad linker phosphorylation as a potential target for the chemoprevention of fibro-carcinogenesis.

  9. Selective Small Molecule Compounds Increase BMP-2 Responsiveness by Inhibiting Smurf1-mediated Smad1/5 Degradation

    PubMed Central

    Cao, Yu; Wang, Cheng; Zhang, Xueli; Xing, Guichun; Lu, Kefeng; Gu, Yongqing; He, Fuchu; Zhang, Lingqiang

    2014-01-01

    The ubiquitin ligase Smad ubiquitination regulatory factor-1 (Smurf1) negatively regulates bone morphogenetic protein (BMP) pathway by ubiquitinating certain signal components for degradation. Thus, it can be an eligible pharmacological target for increasing BMP signal responsiveness. We established a strategy to discover small molecule compounds that block the WW1 domain of Smurf1 from interacting with Smad1/5 by structure based virtual screening, molecular experimental examination and cytological efficacy evaluation. Our selected hits could reserve the protein level of Smad1/5 from degradation by interrupting Smurf1-Smad1/5 interaction and inhibiting Smurf1 mediated ubiquitination of Smad1/5. Further, these compounds increased BMP-2 signal responsiveness and the expression of certain downstream genes, enhanced the osteoblastic activity of myoblasts and osteoblasts. Our work indicates targeting Smurf1 for inhibition could be an accessible strategy to discover BMP-sensitizers that might be applied in future clinical treatments of bone disorders such as osteopenia. PMID:24828823

  10. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling.

    PubMed

    Cortez, Victor S; Ulland, Tyler K; Cervantes-Barragan, Luisa; Bando, Jennifer K; Robinette, Michelle L; Wang, Qianli; White, Andrew J; Gilfillan, Susan; Cella, Marina; Colonna, Marco

    2017-09-01

    Among the features that distinguish type 1 innate lymphoid cells (ILC1s) from natural killer (NK) cells is a gene signature indicative of 'imprinting' by cytokines of the TGF-β family. We studied mice in which ILC1s and NK cells lacked SMAD4, a signal transducer that facilitates the canonical signaling pathway common to all cytokines of the TGF-β family. While SMAD4 deficiency did not affect ILC1 differentiation, NK cells unexpectedly acquired an ILC1-like gene signature and were unable to control tumor metastasis or viral infection. Mechanistically, SMAD4 restrained non-canonical TGF-β signaling mediated by the cytokine receptor TGFβR1 in NK cells. NK cells from a SMAD4-deficient person affected by polyposis were also hyper-responsive to TGF-β. These results identify SMAD4 as a previously unknown regulator that restricts non-canonical TGF-β signaling in NK cells.

  11. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling

    PubMed Central

    Cortez, Victor S; Ulland, Tyler K; Cervantes-Barragan, Luisa; Bando, Jennifer K; Robinette, Michelle L; Wang, Qianli; White, Andrew J; Gilfillan, Susan; Cella, Marina; Colonna, Marco

    2017-01-01

    Among the features that distinguish type 1 innate lymphoid cells (ILC1s) from natural killer (NK) cells is a gene signature indicative of ‘imprinting’ by cytokines of the TGF-β family. We examined mice in which ILC1s and NK cells lacked SMAD4, a signal transducer that facilitates the canonical signaling pathway common to all cytokines of the TGF-β family. While SMAD4 deficiency did not affect ILC1 differentiation, NK cells unexpectedly acquired an ILC1-like gene signature and were unable to control tumor metastasis or viral infection. Mechanistically, SMAD4 restrained non-canonical TGF-β signaling mediated by the cytokine receptor TGF-βR1 in NK cells. NK cells from a SMAD4-deficient person affected by polyposis were also hyper-responsive to TGF-β. These results identify SMAD4 as a previously unknown regulator that restricts non-canonical TGF-β signaling in NK cells. PMID:28759002

  12. Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor beta signaling through interaction with CREB-binding protein/p300.

    PubMed

    Mori, N; Morishita, M; Tsukazaki, T; Giam, C Z; Kumatori, A; Tanaka, Y; Yamamoto, N

    2001-04-01

    Human T-cell leukemia virus type I (HTLV-I) Tax is a potent transcriptional regulator that can activate or repress specific cellular genes and that has been proposed to contribute to leukemogenesis in adult T-cell leukemia. Previously, HTLV-I- infected T-cell clones were found to be resistant to growth inhibition by transforming growth factor (TGF)-beta. Here it is shown that Tax can perturb Smad-dependent TGF-beta signaling even though no direct interaction of Tax and Smad proteins could be detected. Importantly, a mutant Tax of CREB-binding protein (CBP)/p300 binding site, could not repress the Smad transactivation function, suggesting that the CBP/p300 binding domain of Tax is essential for the suppression of Smad function. Because both Tax and Smad are known to interact with CBP/p300 for the potentiation of their transcriptional activities, the effect of CBP/p300 on suppression of Smad-mediated transactivation by Tax was examined. Overexpression of CBP/p300 reversed Tax-mediated inhibition of Smad transactivation. Furthermore, Smad could repress Tax transcriptional activation, indicating reciprocal repression between Tax and Smad. These results suggest that Tax interferes with the recruitment of CBP/p300 into transcription initiation complexes on TGF-beta-responsive elements through its binding to CBP/p300. The novel function of Tax as a repressor of TGF-beta signaling may contribute to HTLV-I leukemogenesis. (Blood. 2001;97:2137-2144)

  13. Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels.

    PubMed

    Alexanian, Arshak R; Liu, Qing-song; Zhang, Zhiying

    2013-08-01

    Advances in cell reprogramming technologies to generate patient-specific cells of a desired type will revolutionize the field of regenerative medicine. While several cell reprogramming methods have been developed over the last decades, the majority of these technologies require the exposure of cell nuclei to reprogramming large molecules via transfection, transduction, cell fusion or nuclear transfer. This raises several technical, safety and ethical issues. Chemical genetics is an alternative approach for cell reprogramming that uses small, cell membrane penetrable substances to regulate multiple cellular processes including cell plasticity. Recently, using the combination of small molecules that are involved in the regulation chromatin structure and function and agents that favor neural differentiation we have been able to generate neural-like cells from human mesenchymal stem cells. In this study, to improve the efficiency of neuronal differentiation and maturation, two specific inhibitors of SMAD signaling (SMAD1/3 and SMAD3/5/8) that play an important role in neuronal differentiation of embryonic stem cells, were added to our previous neural induction recipe. Results demonstrated that human mesenchymal stem cells grown in this culture conditions exhibited higher expression of several mature neuronal genes, formed synapse-like structures and exerted electrophysiological properties of differentiating neural stem cells. Thus, an efficient method for production of mature neuronal-like cells from human adult bone marrow derived mesenchymal stem cells has been developed. We concluded that specific combinations of small molecules that target specific cell signaling pathways and chromatin modifying enzymes could be a promising approach for manipulation of adult stem cell plasticity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. BMP-2 up-regulates PTEN expression and induces apoptosis of pulmonary artery smooth muscle cells under hypoxia.

    PubMed

    Pi, Weifeng; Guo, Xuejun; Su, Liping; Xu, Weiguo

    2012-01-01

    To investigate the role of bone morphogenetic protein 2 (BMP-2) in regulation of phosphatase and tensin homologue deleted on chromosome ten (PTEN) and apoptosis of pulmonary artery smooth muscle cells (PASMCs) under hypoxia. Normal human PASMCs were cultured in growth medium (GM) and treated with BMP-2 from 5-80 ng/ml under hypoxia (5% CO(2)+94% N(2)+1% O(2)) for 72 hours. Gene expression of PTEN, AKT-1 and AKT-2 were determined by quantitative RT-PCR (QRT-PCR). Protein expression levels of PTEN, AKT and phosph-AKT (pAKT) were determined. Apoptosis of PASMCs were determined by measuring activities of caspases-3, -8 and -9. siRNA-smad-4, bpV(HOpic) (PTEN inhibitor) and GW9662 (PPARγ antagonist) were used to determine the signalling pathways. Proliferation of PASMCs showed dose dependence of BMP-2, the lowest proliferation rate was achieved at 60 ng/ml concentration under hypoxia (82.2±2.8%). BMP-2 increased PTEN gene expression level, while AKT-1 and AKT-2 did not change. Consistently, the PTEN protein expression also showed dose dependence of BMP-2. AKT activity significantly reduced in BMP-2 treated PASMCs. Increased activities of caspase-3, -8 and -9 of PASMCs were found after cultured with BMP-2. PTEN expression remained unchanged when Smad-4 expression was inhibited by siRNA-Smad-4. bpV(HOpic) and GW9662 (PPARγ inhibitor) inhibited PTEN protein expression and recovered PASMCs proliferation rate. BMP-2 increased PTEN expression under hypoxia in a dose dependent pattern. BMP-2 reduced AKT activity and increased caspase activity of PASMCs under hypoxia. The increased PTEN expression may be mediated through PPARγ signalling pathway, instead of BMP/Smad signalling pathway.

  15. Heterodimer formation by Oct4 and Smad3 differentially regulates epithelial-to-mesenchymal transition-associated factors in breast cancer progression.

    PubMed

    Mandal, Gunjan; Biswas, Subir; Roy Chowdhury, Sougata; Chatterjee, Annesha; Purohit, Suman; Khamaru, Poulomi; Chakraborty, Sayan; Mandal, Palash Kumar; Gupta, Arnab; de la Mare, Jo-Anne; Edkins, Adrienne Lesley; Bhattacharyya, Arindam

    2018-06-01

    The multifunctional cytokine TGF-β crucially participates in breast cancer (BCa) metastasis and works differently in the disease stages, thus contributing in BCa progression. We address connections between TGF-β and the stem cell-related transcription factor (TF) Oct4 in BCa. In 147 BCa patients with infiltrating duct carcinoma, we identified a significantly higher number of cases with both moderate/high Oct4 expression and high TGF-β in late stages compared to early stages of the disease. In vitro studies showed that TGF-β elevated Oct4 expression, which in turn, regulated Epithelial-to-Mesenchymal transition (EMT)-regulatory gene (Snail and Slug) expression, migratory ability, chemotactic invasiveness and extracellular matrix (ECM) degradation potential of BCa cells. Putative binding sites for Oct4 on the snail, slug and cxcl13 promoters and for Smad3 on the snail and slug promoters were identified. Promoter activities of snail and slug were greater in dual-treated cells than only TGF-β-treated or Oct4-overexpressing cells. CXCL13 mRNA fold changes, however, were low in cells induced with TGF-β, compared to dual-treated or Oct4-overexpressing cells. Our co-IP studies confirmed that Oct4 and Smad3 form heterodimers that recognize specific promoter sequences to promote Snail and Slug expression, but which in turn, indirectly inhibits Smad3-mediated repression of CXCL13 expression, allowing Oct4 to act as a positive TF for CXCL13. Taken together, these data suggest that TGF-β signaling and Oct4 cooperate to induce expression of EMT-related genes Snail, Slug and CXCL13, which accelerates disease progression, particularly in the late stages, and may indicate a poor prognosis for BCa patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Glucocorticoids Recruit Tgfbr3 and Smad1 to Shift Transforming Growth Factor-β Signaling from the Tgfbr1/Smad2/3 Axis to the Acvrl1/Smad1 Axis in Lung Fibroblasts*

    PubMed Central

    Schwartze, Julian T.; Becker, Simone; Sakkas, Elpidoforos; Wujak, Łukasz A.; Niess, Gero; Usemann, Jakob; Reichenberger, Frank; Herold, Susanne; Vadász, István; Mayer, Konstantin; Seeger, Werner; Morty, Rory E.

    2014-01-01

    Glucocorticoids represent the mainstay therapy for many lung diseases, providing outstanding management of asthma but performing surprisingly poorly in patients with acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung fibrosis, and blunted lung development associated with bronchopulmonary dysplasia in preterm infants. TGF-β is a pathogenic mediator of all four of these diseases, prompting us to explore glucocorticoid/TGF-β signaling cross-talk. Glucocorticoids, including dexamethasone, methylprednisolone, budesonide, and fluticasone, potentiated TGF-β signaling by the Acvrl1/Smad1/5/8 signaling axis and blunted signaling by the Tgfbr1/Smad2/3 axis in NIH/3T3 cells, as well as primary lung fibroblasts, smooth muscle cells, and endothelial cells. Dexamethasone drove expression of the accessory type III TGF-β receptor Tgfbr3, also called betaglycan. Tgfbr3 was demonstrated to be a “switch” that blunted Tgfbr1/Smad2/3 and potentiated Acvrl1/Smad1 signaling in lung fibroblasts. The Acvrl1/Smad1 axis, which was stimulated by dexamethasone, was active in lung fibroblasts and antagonized Tgfbr1/Smad2/3 signaling. Dexamethasone acted synergistically with TGF-β to drive differentiation of primary lung fibroblasts to myofibroblasts, revealed by acquisition of smooth muscle actin and smooth muscle myosin, which are exclusively Smad1-dependent processes in fibroblasts. Administration of dexamethasone to live mice recapitulated these observations and revealed a lung-specific impact of dexamethasone on lung Tgfbr3 expression and phospho-Smad1 levels in vivo. These data point to an interesting and hitherto unknown impact of glucocorticoids on TGF-β signaling in lung fibroblasts and other constituent cell types of the lung that may be relevant to lung physiology, as well as lung pathophysiology, in terms of drug/disease interactions. PMID:24347165

  17. An endogenous tryptophan photo-product, FICZ, is potentially involved in photo-aging by reducing TGF-β-regulated collagen homeostasis.

    PubMed

    Murai, Mika; Tsuji, Gaku; Hashimoto-Hachiya, Akiko; Kawakami, Yoshihito; Furue, Masutaka; Mitoma, Chikage

    2018-01-01

    Persistent ultraviolet (UV) radiation in the form of sunlight causes photo-aging of the skin by reducing the production of type I collagen, the major constituent of the extracellular matrix of the dermis. Transforming growth factor (TGF)-β transforms dermal fibroblasts into α2-smooth muscle actin (ACTA2)-expressing myofibroblasts. Myofibroblasts produce a precursor form of type I collagen, type I procollagen (collagen I), consisting of pro-alpha1 (produced by the COL1A1 gene) and pro-alpha2 chains (produced by the COL1A2 gene). Smad2/3 is a key downstream molecule of TGF-β signaling. The mechanisms through which UV inhibits collagen I synthesis are not fully understood. 6-Formylindolo[3,2-b]carbazole (FICZ) is an endogenous tryptophan photo-metabolite generated by UV irradiation. FICZ is well known as a high-affinity ligand for aryl hydrocarbon receptor (AHR). However, the physiological roles of FICZ in photo-aging have yet to be addressed. To evaluate the effects of FICZ on the TGF-β-mediated ACTA2 and collagen I expression in normal human dermal fibroblasts (NHDFs). Quantitative real-time polymerase chain reaction and western blot analysis were performed to determine the expression of ACTA2, COL1A1, and COL1A2 in NHDFs with or without FICZ and TGF-β. The phosphorylated Smad2/3 (pSmad2/3) protein levels in cytoplasmic or nuclear portions were investigated by western blot analysis. Immunofluorescence staining was conducted to evaluate pSmad2/3 localization, and F-actin staining with phalloidin was performed to visualize actin polymerization in myofibroblasts. The actions of FICZ on the TGF-β-mediated collagen I expression and nuclear translocation of pSmad2/3 were analyzed in the presence of selective AHR antagonists or in AHR-knockdown NHDFs. We found that FICZ significantly inhibited the TGF-β-induced upregulation of mRNA and protein levels of ACTA2 and collagen I and actin polymerization in myofibroblasts. FICZ did not disturb the phosphorylation of Smad2/3. Notably, FICZ reduced the expression of pSmad2/3 in the nucleus, while it increased that in the cytoplasm, suggesting that it inhibits the nuclear translocation of pSmad2/3 induced by TGF-β. The inhibitory actions of FICZ on the TGF-β-mediated collagen I expression and nuclear translocation of pSmad2/3 were independent of AHR signaling. Another endogenous AHR agonist, kynurenine, also inhibited the TGF-β-mediated ACTA2 and collagen I upregulation in NHDFs in an AHR-independent manner; however, its effects were insignificant in comparison with those of FICZ. These findings suggest that the endogenous photo-product FICZ may be a key chromophore that involves in photo-aging. Downregulation of FICZ signaling is thus a potential strategy to protect against photo-aging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  18. Smad phosphoisoform signaling specificity: the right place at the right time.

    PubMed

    Matsuzaki, Koichi

    2011-11-01

    Transforming growth factor (TGF)-β antagonizes mitogenic Ras signaling during epithelial regeneration, but TGF-β and Ras act synergistically in driving tumor progression. Insights into these apparently contradictory effects have come from recent detailed analyses of the TGF-β signaling process. Here, we summarize the different modes of TGF-β/Ras signaling in normal epithelium and neoplasms and show how perturbation of TGF-β signaling by Ras may contribute to a shift from tumor-suppressive to protumorigenic TGF-β activity during tumor progression. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β Type I receptor and Ras-associated kinases differentially phosphorylate Smad2 and Smad3 to create C-terminally (C), linker (L) or dually (L/C) phosphorylated (p) isoforms. In epithelial homeostasis, TGF-β-mediated pSmad3C signaling opposes proliferative responses induced by mitogenic signals. During carcinogenesis, activation of cytoplasmic Ras-associated kinases including mitogen-activated protein kinase confers a selective advantage on benign tumors by shifting Smad3 signaling from a tumor-suppressive pSmad3C to an oncogenic pSmad3L pathway, leading to carcinoma in situ. Finally, at the edges of advanced carcinomas invading adjacent tissues, nuclear Ras-associated kinases such as cyclin-dependent kinases, together with cytoplasmic kinases, alter TGF-β signals to more invasive and proliferative pSmad2L/C and pSmad3L/C signaling. Taken together, TGF-β signaling specificity arises from spatiotemporal dynamics of Smad phosphoisoforms. Based on these findings, we have reason to hope that pharmacologic inhibition of linker phosphorylation might suppress progression to human advanced carcinomas by switching from protumorigenic to tumor-suppressive TGF-β signaling.

  19. Coupling of tandem Smad ubiquitination regulatory factor (Smurf) WW domains modulates target specificity.

    PubMed

    Chong, P Andrew; Lin, Hong; Wrana, Jeffrey L; Forman-Kay, Julie D

    2010-10-26

    Smad ubiquitination regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that participates in degradation of TGF-β receptors and other targets. Smurf2 WW domains recognize PPXY (PY) motifs on ubiquitin ligase target proteins or on adapters, such as Smad7, that bind to E3 target proteins. We previously demonstrated that the isolated WW3 domain of Smurf2, but not the WW2 domain, can directly bind to a Smad7 PY motif. We show here that the WW2 augments this interaction by binding to the WW3 and making auxiliary contacts with the PY motif and a novel E/D-S/T-P motif, which is N-terminal to all Smad PY motifs. The WW2 likely enhances the selectivity of Smurf2 for the Smad proteins. NMR titrations confirm that Smad1 and Smad2 are bound by Smurf2 with the same coupled WW domain arrangement used to bind Smad7. The analogous WW domains in the short isoform of Smurf1 recognize the Smad7 PY peptide using the same coupled mechanism. However, a longer Smurf1 isoform, which has an additional 26 residues in the inter-WW domain linker, is only partially able to use the coupled WW domain binding mechanism. The longer linker results in a decrease in affinity for the Smad7 peptide. Interdomain coupling of WW domains enhances selectivity and enables the tuning of interactions by isoform switching.

  20. Coupling of tandem Smad ubiquitination regulatory factor (Smurf) WW domains modulates target specificity

    PubMed Central

    Chong, P. Andrew; Lin, Hong; Wrana, Jeffrey L.; Forman-Kay, Julie D.

    2010-01-01

    Smad ubiquitination regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that participates in degradation of TGF-β receptors and other targets. Smurf2 WW domains recognize PPXY (PY) motifs on ubiquitin ligase target proteins or on adapters, such as Smad7, that bind to E3 target proteins. We previously demonstrated that the isolated WW3 domain of Smurf2, but not the WW2 domain, can directly bind to a Smad7 PY motif. We show here that the WW2 augments this interaction by binding to the WW3 and making auxiliary contacts with the PY motif and a novel E/D-S/T-P motif, which is N-terminal to all Smad PY motifs. The WW2 likely enhances the selectivity of Smurf2 for the Smad proteins. NMR titrations confirm that Smad1 and Smad2 are bound by Smurf2 with the same coupled WW domain arrangement used to bind Smad7. The analogous WW domains in the short isoform of Smurf1 recognize the Smad7 PY peptide using the same coupled mechanism. However, a longer Smurf1 isoform, which has an additional 26 residues in the inter-WW domain linker, is only partially able to use the coupled WW domain binding mechanism. The longer linker results in a decrease in affinity for the Smad7 peptide. Interdomain coupling of WW domains enhances selectivity and enables the tuning of interactions by isoform switching. PMID:20937913

Top