Sample records for small alpine catchment

  1. High resolution climate scenarios for snowmelt modelling in small alpine catchments

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Peleg, N.; Burlando, P.; Jonas, T.

    2017-12-01

    Snow in the Alps is affected by climate change with regard to duration, timing and amount. This has implications with respect to important societal issues as drinking water supply or hydropower generation. In Switzerland, the latter received a lot of attention following the political decision to phase out of nuclear electricity production. An increasing number of authorization requests for small hydropower plants located in small alpine catchments was observed in the recent years. This situation generates ecological conflicts, while the expected climate change poses a threat to water availability thus putting at risk investments in such hydropower plants. Reliable high-resolution climate scenarios are thus required, which account for small-scale processes to achieve realistic predictions of snowmelt runoff and its variability in small alpine catchments. We therefore used a novel model chain by coupling a stochastic 2-dimensional weather generator (AWE-GEN-2d) with a state-of-the-art energy balance snow cover model (FSM). AWE-GEN-2d was applied to generate ensembles of climate variables at very fine temporal and spatial resolution, thus providing all climatic input variables required for the energy balance modelling. The land-surface model FSM was used to describe spatially variable snow cover accumulation and melt processes. The FSM was refined to allow applications at very high spatial resolution by specifically accounting for small-scale processes, such as a subgrid-parametrization of snow covered area or an improved representation of forest-snow processes. For the present study, the model chain was tested for current climate conditions using extensive observational dataset of different spatial and temporal coverage. Small-scale spatial processes such as elevation gradients or aspect differences in the snow distribution were evaluated using airborne LiDAR data. 40-year of monitoring data for snow water equivalent, snowmelt and snow-covered area for entire Switzerland was used to verify snow distribution patterns at coarser spatial and temporal scale. The ability of the model chain to reproduce current climate conditions in small alpine catchments makes this model combination an outstanding candidate to produce high resolution climate scenarios of snowmelt in small alpine catchments.

  2. Interaction of various flow systems in small alpine catchments: conceptual model of the upper Gurk Valley aquifer, Carinthia, Austria

    NASA Astrophysics Data System (ADS)

    Hilberg, Sylke; Riepler, Franz

    2016-08-01

    Small alpine valleys usually show a heterogeneous hydraulic situation. Recurring landslides create temporal barriers for the surface runoff. As a result of these postglacial processes, temporal lakes form, and thus lacustrine fine-grained sedimentation intercalates with alluvial coarse-grained layers. A sequence of alluvial sediments (confined and thus well protected aquifers) and lacustrine sediments (aquitards) is characteristic for such an environment. The hydrogeological situation of fractured hard-rock aquifers in the framing mountain ranges is characterized by superficially high hydraulic conductivities as the result of tectonic processes, deglaciation and postglacial weathering. Fracture permeability and high hydraulic gradients in small-scaled alpine catchments result in the interaction of various flow systems in various kinds of aquifers. Spatial restrictions and conflicts between the current land use and the requirements of drinking-water protection represent a special challenge for water resource management in usually densely populated small alpine valleys. The presented case study describes hydrogeological investigations within the small alpine valley of the upper Gurktal (Upper Carinthia, Austria) and the adjacent Höllenberg Massif (1,772 m above sea level). Hydrogeological mapping, drilling, and hydrochemical and stable isotope analyses of springs and groundwater were conducted to identify a sustainable drinking-water supply for approximately 1,500 inhabitants. The results contribute to a conceptual hydrogeological model with three interacting flow systems. The local and the intermediate flow systems are assigned to the catchment of the Höllenberg Massif, whereas the regional flow system refers to the bordering Gurktal Alps to the north and provides an appropriate drinking water reservoir.

  3. Root reinforcement and its implications in shallow landsliding susceptibility on a small alpine catchment

    NASA Astrophysics Data System (ADS)

    Morandi, M. C.; Farabegoli, E.; Onorevoli, G.

    2012-04-01

    Roots shear resistance offers a considerable contribution to hill-slope stability on vegetated terrains. Through the pseudo-cohesion of shrubs, trees and turf's roots, the geomechanical properties of soils can be drastically increased, exerting a positive influence on the hillslope stability. We analysed the shallow landsliding susceptibility of a small alpine catchment (Duron valley, Central Dolomites, Italy) that we consider representative of a wide altitude belt of the Dolomites (1800 - 2400 m a.s.l). The catchment is mostly mantled by grass (Nardetum strictae s.l.), with clustered shrubs (Rhododendron hirsutum and Juniperus nana), and trees (Pinus cembra, Larix decidua and Picea abies). The soil depth, investigated with direct and indirect methods, ranges from 0 to 180 cm, with its peak at the hollow axes. Locally, the bedrock, made of Triassic volcanic rocks, is deeply incised by the Holocene drainage network. Intensive grazing of cows and horses pervades the catchment area and cattle-trails occupy ca 20% of the grass cover. We used laboratory and field tests to characterize the geotechnical properties of these alpine soils; moreover we designed and tested an experimental device that measures, in situ, the shear strengths of the grass mantle. In the study area we mapped 18 shallow landslides, mostly related to road cuts and periodically reactivated as retrogressive landslides. The triggering mechanisms of these shallow landslides were qualitatively analysed at large scale and modelled at smaller scale. We used SHALSTAB to model the shallow landsliding susceptibility of the catchment at the basin scale and SLIDE (RocScience) to compute the Safety Factor at the versant scale. Qualitative management solutions are provided, in order to reduce the shallow landsliding susceptibility risk in this alpine context.

  4. Mountain Rivers and Climate Change: Analysis of hazardous events in torrents of small alpine watersheds

    NASA Astrophysics Data System (ADS)

    Lutzmann, Silke; Sass, Oliver

    2016-04-01

    Torrential processes like flooding, heavy bedload transport or debris flows in steep mountain channels emerge during intense, highly localized rainfall events. They pose a serious risk on the densely populated Alpine region. Hydrogeomorphic hazards are profoundly nonlinear, threshold mediated phenomena frequently causing costly damage to infrastructure and people. Thus, in the context of climate change, there is an ever rising interest in whether sediment cascades of small alpine catchments react to changing precipitation patterns and how the climate signal is propagated through the fluvial system. We intend to answer the following research questions: (i) What are critical meteorological characteristics triggering torrential events in the Eastern Alps of Austria? (ii) The effect of external triggers is strongly mediated by the internal disposition of catchments to respond. Which factors control the internal susceptibility? (iii) Do torrential processes show an increase in magnitude and frequency or a shift in seasonality in the recent past? (iv) Which future changes can be expected under different climate scenarios? Quantifications of bedload transport in small alpine catchments are rare and often associated with high uncertainties. Detailed knowledge though exists for the Schöttlbach catchment, a 71 km2 study area in Styria in the Eastern Alps. The torrent is monitored since a heavy precipitation event resulted in a disastrous flood in July 2011. Sediment mobilisation from slopes as well as within-channel storage and fluxes are regularly measured by photogrammetric methods and sediment impact sensors (SIS). The associated hydro-meteorological conditions are known from a dense station network. Changing states of connectivity can thus be related to precipitation and internal dynamics (sediment availability, cut-and-fill cycles). The site-specific insights are then conceptualized for application to a broader scale. Therefore, a Styria wide database of torrential events dating back several decades is analysed. Precipitation thresholds varying in space and time are established using highly resolved INCA data of the Austrian weather service. Parameters possibly controlling the basic susceptibility of catchments are evaluated in a regional GIS analysis (vegetation, geology, topography, stream network, proxies for sediment availability). Similarity measures are then used to group catchments into sensitivity classes. Applying different climate scenarios, the spatiotemporal distribution of catchments sensitive towards heavier and more frequent precipitation can be determined giving valuable advice for planning and managing mountain protection zones.

  5. Winter streamflow analysis in frozen, alpine catchments to quantify groundwater contribution and properties

    NASA Astrophysics Data System (ADS)

    Stoelzle, Michael; Weiler, Markus

    2016-04-01

    Alpine catchments are often considered as quickly responding systems where streamflow contributions from subsurface storages (groundwater) are mostly negligible due to the steep topography, low permeable bedrock and the absence of well-developed soils. Many studies in high altitude catchments have hence focused on water stored in snowpack and glaciers or on rainfall-runoff processes as the dominant streamflow contributions. Interestingly less effort has been devoted to winter streamflow analysis when melt- or rainfall-driven contributions are switched off due to the frozen state of the catchment. Considering projected changes in the alpine cryosphere (e.g. snow, glacier, permafrost) quantification of groundwater storage and contribution to streamflow is crucial to assess the social and ecological implications for downstream areas (e.g. water temperature, drought propagation). In this study we hypothesize that groundwater is the main streamflow contribution during winter and thus being responsible for the perennial regime of many alpine catchments. The hypothesis is investigated with well-known methods based on recession and breakpoint analysis of the streamflow regimes and temperature data to determine frozen periods. Analyzing nine catchments in Switzerland with mean elevation between 1000 and 2400 m asl, we found that above a mean elevation of 1800 m asl winter recessions are sufficient long and persistent enough to quantify groundwater contribution to streamflow and to characterize the properties of subsurface storage. The results show that groundwater in alpine catchment is the dominant streamflow contribution for nearly half a year and accountable for several hundred millimeter of annual streamflow. In sub-alpine catchments, driven by a mix of snowmelt and rainfall, a clear quantification of groundwater contributions is rather challenging due to discontinuous frozen periods in winter. We found that the inter-annual variability of different streamflow contributions is helpful to assess the water sustainability of alpine catchments functioning as water towers for downstream water basins. We outline how well-known hydrograph and recession analyses in alpine catchments can help to explore the role of catchment storage and to advance our understanding of (ground-)water management in alpine environments.

  6. Small lakes in big landscape: Multi-scale drivers of littoral ecosystem in alpine lakes.

    PubMed

    Zaharescu, Dragos G; Burghelea, Carmen I; Hooda, Peter S; Lester, Richard N; Palanca-Soler, Antonio

    2016-05-01

    In low nutrient alpine lakes, the littoral zone is the most productive part of the ecosystem, and it is a biodiversity hotspot. It is not entirely clear how the scale and physical heterogeneity of surrounding catchment, its ecological composition, and larger landscape gradients work together to sustain littoral communities. A total of 113 alpine lakes from the central Pyrenees were surveyed to evaluate the functional connectivity between littoral zoobenthos and landscape physical and ecological elements at geographical, catchment and local scales, and to ascertain how they affect the formation of littoral communities. At each lake, the zoobenthic composition was assessed together with geolocation, catchment hydrodynamics, geomorphology and topography, riparian vegetation composition, the presence of trout and frogs, water pH and conductivity. Multidimensional fuzzy set models integrating benthic biota and environmental variables revealed that at geographical scale, longitude unexpectedly surpassed altitude and latitude in its effect on littoral ecosystem. This reflects a sharp transition between Atlantic and Mediterranean climates and suggests a potentially high horizontal vulnerability to climate change. Topography (controlling catchment type, snow coverage and lakes connectivity) was the most influential catchment-scale driver, followed by hydrodynamics (waterbody size, type and volume of inflow/outflow). Locally, riparian plant composition significantly related to littoral community structure, richness and diversity. These variables, directly and indirectly, create habitats for aquatic and terrestrial stages of invertebrates, and control nutrient and water cycles. Three benthic associations characterised distinct lakes. Vertebrate predation, water conductivity and pH had no major influence on littoral taxa. This work provides exhaustive information from relatively pristine sites, and unveils a strong connection between littoral ecosystem and catchment heterogeneity at scales beyond the local environment. This underpins the role of alpine lakes as sensors of local and large-scale environmental changes, which can be used in monitoring networks to evaluate further impacts. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Catchment nitrogen saturation drives ecological change in an alpine lake in SW China (eastern margin of Tibet)

    NASA Astrophysics Data System (ADS)

    Anderson, N. J.; Hu, Z.; Yang, X.; Zhang, E.

    2011-12-01

    There is substantial evidence for recent (last ca. 120 years) ecological change in remote arctic and alpine lakes (increased productivity, altered biological structure). Initially, these changes were attributed to global warming which has altered the heat budgets of these lakes (stronger stratification, longer ice free periods). The emphasis on temperature, however, ignores that global environmental change is driven by a range of multiple stressors (e.g. altered biogeochemical cycles, land cover change). One of the characteristics of the observed change in remote lakes is the expansion of small species of the planktonic diatom genus Cyclotella. It is increasingly obvious that the recent success of this diatom genus is driven by other factors (nutrients, light, mixing depth) as much as temperature. SE Asia is a major hotspot for the emission of reactive nitrogen as a result of intensive agriculture and fossil fuel combustion. In this study we report recent ecological change in a small, oligotrophic alpine lake (ShadeCo; altitude 4423 m) located in Sichuan Province (SW China), one of many relatively unstudied alpine lakes on the eastern margin of Tibet. The lake is located above the tree-line and there is no cultural land-use; the catchment vegetation is dominated by alpine shrub (predominantly Rhododendron). We used a multi-proxy palaeolimnological approach (diatom, geochemical and stable isotope analyses of a 210-Pb dated core) coupled with regional long-term climate data to understand the pronounced 20th century changes in the diatom record, notably an expansion of Cyclotella spp from around 1920. This initial increase is coincident with warming in SW China but the maximum Cyclotella abundance occurs in in the 1970s and 1980s, a period of regional cooling and major changes in catchment-lake biogeochemistry as indicated by geochemical analyses. The possible drivers of the observed changes (nitrogen deposition, temperature) at this site are discussed in the context of regional water chemistry surveys.

  8. Preface [to special section on recent Loch Vale Watershed research

    USGS Publications Warehouse

    Baron, Jill S.; Williams, Mark W.

    2000-01-01

    Catchment-scale intensive and extensive research conducted over the last decade shows that our understanding of the biogeochemical and hydrologic processes in subalpine and alpine basins is not yet sufficiently mature to model and predict how biogeochemical transformations and surface water quality will change in response to climatic or human-driven changes in energy, water, and chemicals. A better understanding of these processes is needed for input to decision-making regulatory agencies and federal land managers. In recognition of this problem the National Research Council [1998] has identified as a critical research need an improved understanding of how global change will affect biogeochemical interactions with the hydrologic cycle and biogeochemical controls over the transport of water, nutrients, and materials from land to freshwater ecosystems. Improved knowledge of alpine and subalpine ecosystems is particularly important since high-elevation catchments are very sensitive to small changes in the flux of energy, chemicals, and water. Furthermore, alpine ecosystems may act as early warning indicators for ecosystem changes at lower elevations.

  9. A continuous high resolution water isotope dataset to constrain Alpine water balance estimates

    NASA Astrophysics Data System (ADS)

    Michelon, Anthony; Ceperley, Natalie; Beria, Harsh; Larsen, Josh; Schaefli, Bettina

    2017-04-01

    Water delivered from Alpine environments is a crucial resource for many countries around the world. Precipitation accumulated during cold seasons as snowpack or glaciers is often an important source of water during warm (dry) season but also a dominant contributor to the annual water balance. In Switzerland, water from high Alpine, glacier-fed catchments provides a large portion of both the hydroelectric power and water supply. However, large uncertainties regarding changes in glacier volume and snow accumulation can have significant impacts on hydrologic, biologic, physical and economic understanding, modeling, and predictions. Accurately quantifying these water resources is therefore an on-going challenge. Given the well-known difficulty observing solid precipitation (snowfall), it can be assumed that most of the uncertainty in water balance estimates for snow-dominated environments is due to: 1) Poor measurement of winter precipitation and 2) A poor estimation of timing and amount of snow melt. It is noteworthy that the timing of melt plays a crucial role even for annual water balance estimates since it might significantly influence melt runoff flow paths and thereby groundwater recharge. We use continuous monitoring of water stable isotopes over the entire annual cycle in an Alpine catchment to shed light on how such observations can constrain water balance estimates. The selected catchment is the experimental Vallon de Nant catchment in the Vaud Alps of Switzerland, where detailed hydrologic observations have recently started in addition to the existing vegetation and soil investigations. The Vallon de Nant (14 km2, and an altitude ranging from 1200 to 3051 m) is a narrow valley that accumulates large amounts of snow during winter. In spring and summer, the river discharge is mainly supplied by snowmelt, with additional inputs from a small glacier and rainfall. Continuous monitoring of water stable isotopes (δO18 and δD) is combined with measurements of climatic and hydrological parameters to quantify water fluxes. Measurements and sampling in such an environment is challenging and has rarely been done at such a high temporal resolution for a full annual cycle. We will discuss the advantage of our approach for 1) evaluating the dominant hydrological processes and pathways in Alpine environments and 2) for reducing the uncertainties of water resource estimation in Alpine catchments.

  10. Sediment connectivity evolution on an alpine catchment undergoing glacier retreat

    NASA Astrophysics Data System (ADS)

    Goldin, Beatrice; Rudaz, Benjamin; Bardou, Eric

    2014-05-01

    Climate changes can result in a wide range of variations of natural environment including retreating glaciers. Melting from glaciers will have a significant impact on the sediment transport characteristics of glacierized alpine catchments that can affect downstream channel network. Sediment connectivity assessment, i.e. the degree of connections that controls sediment fluxes between different segments of a landscape, can be useful in order to address management activity on sediment fluxes changes of alpine streams. Through the spatial characterization of the connectivity patterns of a catchment and its potential evolution it is possible to both define sediment transport pathways and estimate different contributions of the sub-catchment as sediment sources. In this study, a topography based index (Cavalli et al., 2013) has been applied to assess spatial sediment connectivity in the Navisence catchment (35 km2), an alpine basin located in the southern Walliser Alps (Switzerland) characterized by a complex glacier system with well-developed lateral moraines on glacier margins already crossed by several lateral channels. Glacier retreat of the main glacial edifice will provide a new connectivity pattern. At present the glacier disconnects lateral slopes from the main talweg: it is expected that its retreat will experience an increased connectivity. In order to study this evolution, two high resolution (2 m) digital terrain models (DTMs) describing respectively the terrain before and after glacier retreat have been analyzed. The current DTM was obtained from high resolution photogrammetry (2 m resolution). The future DTM was derived from application of the sloping local base level (SLBL) routine (Jaboyedoff et al., 2004) on the current glacier system, allowing to remove the ice body by reconstituting a U-shaped polynomial bedrock surface. From this new surface a coherent river network was drawn and slight random noise was added. Finally the river network was burned into the rough surface of the SLBL results. The impact of sediment dynamic changes on the study catchment due to glacier retreat has been assessed by comparing predictions deriving from model application on different scenarios. Simulations allowed the analysis of sediment connectivity evolution over decade scales suggesting an increase of potential sediment transfer and connections in areas close to the main channel network. References: Cavalli, M., Trevisani, S., Comiti, F., Marchi, L., 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188, 31-41. Jaboyedoff M., Bardou E., Derron M.-H. 2004. Sloping local base level: a tool to estimate potential erodible volume and infilling alluvial sediment of glacial valleys. Swiss Geo-Scientists meeting, November 2004, Lausanne.

  11. Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment

    NASA Astrophysics Data System (ADS)

    Wever, Nander; Comola, Francesco; Bavay, Mathias; Lehning, Michael

    2017-08-01

    The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in surface simulations exists and that the runoff dynamics are controlled by only a shallow soil layer. Runoff coefficients (i.e. ratio of rainfall over discharge) based on measurements for high rainfall and snowmelt events were found to be dependent on the simulated initial soil moisture state at the onset of an event, further illustrating the important role of soil moisture for the hydrological processes in the catchment. The runoff coefficients using simulated discharge were found to reproduce this dependency, which shows that the Alpine3D model framework can be successfully applied to assess the predisposition of the catchment to flood risks from both snowmelt and rainfall events.

  12. Applying A Multi-Objective Based Procedure to SWAT Modelling in Alpine Catchments

    NASA Astrophysics Data System (ADS)

    Tuo, Y.; Disse, M.; Chiogna, G.

    2017-12-01

    In alpine catchments, water management practices can lead to conflicts between upstream and downstream stakeholders, like in the Adige river basin (Italy). A correct prediction of available water resources plays an important part, for example, in defining how much water can be stored for hydropower production in upstream reservoirs without affecting agricultural activities downstream. Snow is a crucial hydrological component that highly affects seasonal behavior of streamflow. Therefore, a realistic representation of snow dynamics is fundamental for water management operations in alpine catchments. The Soil and Water Assessment Tool (SWAT) model has been applied in alpine catchments worldwide. However, during model calibration of catchment scale applications, snow parameters were generally estimated based on streamflow records rather than on snow measurements. This may lead to streamflow predictions with wrong snow melt contribution. This work highlights the importance of considering snow measurements in the calibration of the SWAT model for alpine hydrology and compares various calibration methodologies. In addition to discharge records, snow water equivalent time series of both subbasin scale and monitoring station were also utilized to evaluate the model performance by comparing with the SWAT subbasin and elevation band snow outputs. Comparing model results obtained calibrating the model using discharge data only and discharge data along with snow water equivalent data, we show that the latter approach allows us to improve the reliability of snow simulations while maintaining good estimations of streamflow. With a more reliable representation of snow dynamics, the hydrological model can provide more accurate references for proposing adequate water management solutions. This study offers to the wide SWAT user community an effective approach to improve streamflow predictions in alpine catchments and hence support decision makers in water allocation.

  13. Groundwater Storage and Flow Pathways in a Rock Glacier Complex in the Canadian Rockies

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Mozil, A.; Harrington, J.; Bentley, L. R.

    2015-12-01

    Hydrological functions of alpine glaciers and their responses to the warming climate have received much attention by hydrologists working in alpine catchments around the world. As alpine glaciers retreat, they commonly leave debris-covered ice or ice-cored moraine behind, which can remain frozen in ground for many decades or centuries. In many alpine catchments, characteristic landforms indicating rock glaciers or their relicts are found in locations where glaciers do not exist under the current climate. These landscape features associated with mountain permafrost are ubiquitous in alpine catchments, but their hydrological functions have not received much attention. Do rock glaciers and other mountain-permafrost features contribute significantly to storage of snowmelt water and its delayed release to sustain baseflow in the critical alpine stream habitats? How are these storage functions responding to the climate warming? In order to answer these questions, we initiated a hydrological study of rock glaciers in an alpine catchment in the Canadian Rockies in 2014. We will present preliminary results of our study using geophysical imaging techniques, hydro-meteorological monitoring, and groundwater tracing using various environmental tracers. Key findings are: 1) substantial amount of permafrost exists in the rock glacier which is inactive (i.e. no active motion) under the present climate, 2) spatial distribution of permafrost is controlled by both meteorological and geological factors, 3) the rock glacier complex contributes 30-50 % of summer stream flow even though they occupy less than 5% of the catchment area, and 4) the low temperature (< 2 C) of groundwater discharging at the toe of rock glacier plays a significant role in regulating the temperature of stream, which hosts a population of trout species that is listed as "threatened" in the list of the status of endangered wildlife in Canada.

  14. Water and Sediment Output Evaluation Using Cellular Automata on Alpine Catchment: Soana, Italy - Test Case

    NASA Astrophysics Data System (ADS)

    Pasculli, Antonio; Audisio, Chiara; Sciarra, Nicola

    2017-12-01

    In the alpine contest, the estimation of the rainfall (inflow) and the discharge (outflow) data are very important in order to, at least, analyse historical time series at catchment scale; determine the hydrological maximum and minimum estimate flood and drought frequency. Hydrological researches become a precious source of information for various human activities, in particular for land use management and planning. Many rainfall- runoff models have been proposed to reflect steady, gradually-varied flow condition inside a catchment. In these last years, the application of Reduced Complexity Models (RCM) has been representing an excellent alternative resource for evaluating the hydrological response of catchments, within a period of time up to decades. Hence, this paper is aimed at the discussion of the application of the research code CAESAR, based on cellular automaton (CA) approach, in order to evaluate the water and the sediment outputs from an alpine catchment (Soana, Italy), selected as test case. The comparison between the predicted numerical results, developed through parametric analysis, and the available measured data are discussed. Finally, the analysis of a numerical estimate of the sediment budget over ten years is presented. The necessity of a fast, but reliable numerical support when the measured data are not so easily accessible, as in Alpine catchments, is highlighted.

  15. A free tool integrating GIS features and workflows to evaluate sediment connectivity in alpine catchments

    NASA Astrophysics Data System (ADS)

    Crema, Stefano; Schenato, Luca; Goldin, Beatrice; Marchi, Lorenzo; Cavalli, Marco

    2014-05-01

    The increased interest in sediment connectivity has brought the geomorphologists' community to focus on sediment fluxes as a key process (Cavalli et al., 2013; Heckmann and Schwanghart, 2013). The challenge of dealing with erosion-related processes in alpine catchments is of primary relevance for different fields of investigations and applications, including, but not limited to natural hazards, hydraulic structures design, ecology and stream restoration. The present work focuses on the development of a free tool for sediment connectivity assessment as described in Cavalli et al. (2013), introducing some novel improvements. The choice of going for a free software is motivated by the need of widening the access and improving participation beyond the restrictions on algorithms customization, typical of commercial software. A couple of features further enhance the tool: being completely free and adopting a user-friendly interface, its target audience includes researchers and stakeholders (e.g., local managers and civil protection authorities in charge of planning the priorities of intervention in the territory), being written in Python programming language, it can benefit from optimized algorithms for high-resolution DEMs (Digital Elevation Models) handling and for propagation workflows implementation; these two factors make the tool computationally competitive with the most recent commercial GIS products. The overall goal of this tool is supporting the analysis of sediment connectivity, facing the challenge of widening, as much as possible, the users' community among scientists and stakeholders. This aspect is crucial, as future improvement of this tool will benefit of feedbacks from users in order to improve the quantitative assessment of sediment connectivity as a major input information for the optimal management of mountain areas. References: Cavalli, M., Trevisani, S., Comiti, F., Marchi, L., 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188, 31-41. Heckmann, T., Schwanghart, W., 2013. Geomorphic coupling and sediment connectivity in an alpine catchment - Exploring sediment cascades using graph theory. Geomorphology 182, 89-103.

  16. Hydrological significance of soil frost for pre-alpine areas

    NASA Astrophysics Data System (ADS)

    Stähli, Manfred

    2017-03-01

    Soil frost can have a substantial impact on water flows at the soil surface and-potentially-alter the dynamics of catchment runoff. While these findings are mainly based on studies from alpine and Northern-latitude areas (including permafrost areas), little is known about the significance of soil frost for hydrology in pre-alpine areas, i.e. the region at the transition from central European lowlands to high-alpine areas. Here I synthesize soil temperature data and soil frost observations from ten sites in Switzerland to assess the occurrence of soil frost and to determine its impact on catchment runoff. In addition, a well-established numerical model was used to reconstruct the presence of soil frost in two first-order catchments for single runoff events and winters. The data clearly demonstrates that shallow soil frost has formed regularly in this altitudinal range over the past decade. The presence of a frozen soil surface was found to be highly variable among the sites under study and did not significantly correlate with altitude or forest density. For the first-order catchments, it was not possible to relate important flood peaks or increased runoff coefficients to winter situations with substantial soil frost. Thus, the present analysis suggests that although soil frost is widespread and regularly occurring at this altitudinal range, it has no significant impact on winter runoff in pre-alpine watersheds.

  17. Of microbes and men: Determining sources of nitrate in a high alpine catchment in the Front Range of Colorado and science outreach on alpine hydrology

    NASA Astrophysics Data System (ADS)

    Hafich, Katya A.

    High elevation ecosystems throughout the Colorado Front Range are undergoing changes in biogeochemical cycling due to an increase in nitrogen deposition in precipitation and a changing climate. While nitrate concentrations continue to rise in surface water of the Green Lakes Valley (GLV) by 0.27 umol L-1 per year, atmospheric deposition of inorganic nitrogen has recently curtailed due to drought, leaving a gap in our understanding of the source of the increased export of nitrate. Here, we employ a novel triple isotope method, using Delta 17O-NO3- for the first time in an alpine catchment to quantify the terrestrial and atmospheric contribution of nitrate to numerous water types in GLV. Results show that nitrate in surface waters, including talus, soil water and rock glacier melt, is more than 75% terrestrial, with the strongest atmospheric signals present during snowmelt. Results suggest that alpine catchment biogeochemistry in GLV has transitioned to a net nitrification system.

  18. Flash floods in small Alpine catchments in a changing climate

    NASA Astrophysics Data System (ADS)

    Breinl, Korbinian; Di Baldassarre, Giuliano

    2017-04-01

    Climate change is expected to increase the frequency and intensity of hazardous meteorological and hydrological events in numerous mountainous areas. The mountain environment is becoming more and more important for urbanization and the tourism-based economy. Here we show new and innovative methodologies for assessing intensity and frequency of flash floods in small Alpine catchments, in South Tyrol (Italy), under climate change. This research is done within the STEEP STREAMS project, whereby we work closely with decision makers in Italian authorities, and the final goal is to provide them with clear guidelines on how to adapt current structural solutions for mitigating hazardous events under future climate conditions. To this end, we develop a coupled framework of weather generation (i.e. extrapolation of observations and trained with climate projections), time series disaggregation and hydrological modelling using the conceptual HBV model. One of the key challenges is the transfer of comparatively coarse RCM projections to small catchments, whose sizes range from only about 10km2 to 100km2. We examine different strategies to downscale the RCM data from e.g. the EURO-CORDEX dataset using our weather generator. The selected projections represent combinations of warmer, milder, drier and wetter conditions. In general, our main focus is to develop an improved understanding of the impact of the multiple sources of uncertainty in this modelling framework, and make these uncertainties tangible. The output of this study (i.e. discharge with a return period and associated uncertainty) will allow hydraulic and sediment transport modelling of flash floods and debris flows.

  19. Monitoring mountain lakes in a changing Alpine cryosphere: the Lago Nero project (Ticino, Switzerland)

    NASA Astrophysics Data System (ADS)

    Scapozza, Cristian; Bruder, Andreas; Domenici, Mattia; Lepori, Fabio; Pera, Sebastian; Pozzoni, Maurizio; Rioggi, Stefano; Colombo, Luca

    2017-04-01

    Mountain lakes and their catchments of the Alpine cryosphere are facing global pressures including climate warming and deposition of atmospheric pollutants. Due to their remoteness, often low buffer capacities and sensitive biotic communities, alpine lake catchments are particularly well suited as sentinels of environmental change. Lago Nero is the object of an intensive survey, aimed at developing predictive models of catchment-wide ecosystem responses to environmental change (Bruder et al. 2016). Lago Nero is located at the head of Val Bavona (Canton Ticino, southern Switzerland), in a southwest-facing catchment, with altitude ranging from 2385 to 2842 m asl. The substrate is dominated by gneissic bedrock with patches of grassy vegetation and shallow soils. The catchment is snow-covered approximately from November to May. For a similar period, the lake is ice-covered. Lago Nero is an oligotrophic, soft-water lake with a surface of approximatively 13 ha and a maximal depth of 73 m. According to the regional model of potential permafrost distribution in the southern Swiss Alps (Scapozza & Mari 2010), the presence of discontinuous permafrost is probable in almost the entire surface of the catchment covered by loose debris. A direct evidence of permafrost occurrence is the presence of a small active/inactive rock glacier in the south-eastern part of the catchment (front altitude: 2560 m asl). Monitoring of the site began in summer 2014, with an initial phase aimed at developing and testing methodologies and at evaluating the suitability of the catchment and the feasibility of the monitoring program. The intensive survey at Lago Nero measures a wide array of ecosystem responses, including runoff quantity and chemistry, catchment soil temperature (also on the rock glacier) and composition of terrestrial vegetation. Sampling frequency depends on the parameter measured, varying from nearly continuous (e.g. runoff and temperature) to five-year intervals (e.g. soil and vegetation). First results suggest that Lago Nero is particularly sensitive to changes in the cryosphere, particularly concerning thickness of snow cover, snowmelt date and duration, and length of ice-free period of the lake surface. Probable storage of ground ice during the 1966-1985 period (deduced from the nearby Basòdino Glacier) and its significant melting in the last decades may explain the high amounts of sulphur measured in the outflow of the rock glacier. High levels of sulphur are likely to have ecological effects on the sensitive biota of the Lago Nero catchment, for instance by retarding the recovery from past acidification. REFERENCES Bruder A., Lepori F., Pozzoni M., Pera S., Scapozza C., Rioggi S., Domenici M. & Colombo L. (2016). Lago Nero - a new site to assess the effects of environmental change on high-alpine lakes and their catchments. In: S. Kleemola & M. Forsius (eds.), 25th Annual Report 2016. Convention on Long-range transboundary air pollution. Reports of the Finnish Environments Institute 29: 52-56. Scapozza C. & Mari S. (2010). Catasto, caratteristiche e dinamica dei rock glacier delle Alpi Ticinesi. Bollettino della Società ticinese di Scienze naturali 98: 15-29. [http://repository.supsi.ch/2152/

  20. Improvement of a free software tool for the assessment of sediment connectivity

    NASA Astrophysics Data System (ADS)

    Crema, Stefano; Lanni, Cristiano; Goldin, Beatrice; Marchi, Lorenzo; Cavalli, Marco

    2015-04-01

    Sediment connectivity expresses the degree of linkage that controls sediment fluxes throughout landscape, in particular between sediment sources and downstream areas. The assessment of sediment connectivity becomes a key issue when dealing with risk mitigation and priorities of intervention in the territory. In this work, the authors report the improvements made to an open source and stand-alone application (SedInConnect, http://www.sedalp.eu/download/tools.shtml), along with extensive applications to alpine catchments. SedInConnect calculates a sediment connectivity index as expressed in Cavalli et al. (2013); the software improvements consisted primarily in the introduction of the sink feature, i.e. areas that act as traps for sediment produced upstream (e.g., lakes, sediment traps). Based on user-defined sinks, the software decouples those parts of the catchment that do not deliver sediment to a selected target of interest (e.g., fan apex, main drainage network). In this way the assessment of sediment connectivity is achieved by taking in consideration effective sediment contributing areas. Sediment connectivity analysis has been carried out on several catchments in the South Tyrol alpine area (Northern Italy) with the goal of achieving a fast and objective characterization of the topographic control on sediment transfer. In addition to depicting the variability of sediment connectivity inside each basin, the index of connectivity has proved to be a valuable indicator of the dominant process characterizing the basin sediment dynamics (debris flow, bedload, mixed behavior). The characterization of the dominant process is of great importance for the hazard and risk assessment in mountain areas, and for choice and design of structural and non-structural intervention measures. The recognition of the dominant sediment transport process by the index of connectivity is in agreement with evidences arising from post-event field surveys and with the application of morphometric indexes, such as the Melton ruggedness number, commonly used for discriminating debris-flow catchments from bedload catchments. References: Cavalli, M., Trevisani, S., Comiti, F., Marchi, L., 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188,31-41. doi:10.1016/j.geomorph.2012.05.007

  1. Water resources: Research network to track alpine water

    USDA-ARS?s Scientific Manuscript database

    The water cycle in alpine environments worldwide supplies fresh water to vast downstream areas inhabited by more than half of humanity. The International Network for Alpine Research Catchment Hydrology (INARCH) was launched this year by the Global Energy and Water Exchanges project of the World Clim...

  2. Analysis of streamflow variability in Alpine catchments at multiple spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    Pérez Ciria, T.; Chiogna, G.

    2017-12-01

    Alpine watersheds play a pivotal role in Europe for water provisioning and for hydropower production. In these catchments, temporal fluctuations of river discharge occur at multiple temporal scales due to natural as well as anthropogenic driving forces. In the last decades, modifications of the flow regime have been observed and their origin lies in the complex interplay between construction of dams for hydro power production, changes in water management policies and climatic changes. The alteration of the natural flow has negative impacts on the freshwater biodiversity and threatens the ecosystem integrity of the Alpine region. Therefore, understanding the temporal and spatial variability of river discharge has recently become a particular concern for environmental protection and represents a crucial contribution to achieve sustainable water resources management in the Alps. In this work, time series analysis is conducted for selected gauging stations in the Inn and the Adige catchments, which cover a large part of the central and eastern region of the Alps. We analyze the available time series using the continuous wavelet transform and change-point analyses for determining how and where changes have taken place. Although both catchments belong to different climatic zones of the Greater Alpine Region, streamflow properties share some similar characteristics. The comparison of the collected streamflow time series in the two catchments permits detecting gradients in the hydrological system dynamics that depend on station elevation, longitudinal location in the Alps and catchment area. This work evidences that human activities (e.g., water management practices and flood protection measures, changes in legislation and market regulation) have major impacts on streamflow and should be rigorously considered in hydrological models.

  3. Intercomparison of different uncertainty sources in hydrological climate change projections for an alpine catchment (upper Clutha River, New Zealand)

    NASA Astrophysics Data System (ADS)

    Jobst, Andreas M.; Kingston, Daniel G.; Cullen, Nicolas J.; Schmid, Josef

    2018-06-01

    As climate change is projected to alter both temperature and precipitation, snow-controlled mid-latitude catchments are expected to experience substantial shifts in their seasonal regime, which will have direct implications for water management. In order to provide authoritative projections of climate change impacts, the uncertainty inherent to all components of the modelling chain needs to be accounted for. This study assesses the uncertainty in potential impacts of climate change on the hydro-climate of a headwater sub-catchment of New Zealand's largest catchment (the Clutha River) using a fully distributed hydrological model (WaSiM) and unique ensemble encompassing different uncertainty sources: general circulation model (GCM), emission scenario, bias correction and snow model. The inclusion of snow models is particularly important, given that (1) they are a rarely considered aspect of uncertainty in hydrological modelling studies, and (2) snow has a considerable influence on seasonal patterns of river flow in alpine catchments such as the Clutha. Projected changes in river flow for the 2050s and 2090s encompass substantial increases in streamflow from May to October, and a decline between December and March. The dominant drivers are changes in the seasonal distribution of precipitation (for the 2090s +29 to +84 % in winter) and substantial decreases in the seasonal snow storage due to temperature increase. A quantitative comparison of uncertainty identified GCM structure as the dominant contributor in the seasonal streamflow signal (44-57 %) followed by emission scenario (16-49 %), bias correction (4-22 %) and snow model (3-10 %). While these findings suggest that the role of the snow model is comparatively small, its contribution to the overall uncertainty was still found to be noticeable for winter and summer.

  4. Climate-scale modelling of suspended sediment load in an Alpine catchment debris flow (Rio Cordon-northeastern Italy)

    NASA Astrophysics Data System (ADS)

    Diodato, Nazzareno; Mao, Luca; Borrelli, Pasquale; Panagos, Panos; Fiorillo, Francesco; Bellocchi, Gianni

    2018-05-01

    Pulsing storms and prolonged rainfall can drive hydrological damaging events in mountain regions with soil erosion and debris flow in river catchments. The paper presents a parsimonious model for estimating climate forcing on sediment loads in an Alpine catchment (Rio Cordon, northeastern Italian Alps). Hydroclimatic forcing was interpreted by the novel CliSMSSL (Climate-Scale Modelling of Suspended Sediment Load) model to estimate annual sediment loads. We used annual data on suspended-solid loads monitored at an experimental station from 1987 to 2001 and on monthly precipitation data. The quality of sediment load data was critically examined, and one outlying year was identified and removed from further analyses. This outlier revealed that our model underestimates exceptionally high sediment loads in years characterized by a severe flood event. For all other years, the CliSMSSL performed well, with a determination coefficient (R2) equal to 0.67 and a mean absolute error (MAE) of 129 Mg y-1. The calibrated model for the period 1986-2010 was used to reconstruct sediment loads in the river catchment for historical times when detailed precipitation records are not available. For the period 1810-2010, the model results indicate that the past centuries have been characterized by large interannual to interdecadal fluctuations in the conditions affecting sediment loads. This paper argues that climate-induced erosion processes in Alpine areas and their impact on environment should be given more attention in discussions about climate-driven strategies. Future work should focus on delineating the extents of these findings (e.g., at other catchments of the European Alpine belt) as well as investigating the dynamics for the formation of sediment loads.

  5. Predicting alpine headwater stream intermittency: a case study in the northern Rocky Mountains

    USGS Publications Warehouse

    Sando, Thomas R.; Blasch, Kyle W.

    2015-01-01

    This investigation used climatic, geological, and environmental data coupled with observational stream intermittency data to predict alpine headwater stream intermittency. Prediction was made using a random forest classification model. Results showed that the most important variables in the prediction model were snowpack persistence, represented by average snow extent from March through July, mean annual mean monthly minimum temperature, and surface geology types. For stream catchments with intermittent headwater streams, snowpack, on average, persisted until early June, whereas for stream catchments with perennial headwater streams, snowpack, on average, persisted until early July. Additionally, on average, stream catchments with intermittent headwater streams were about 0.7 °C warmer than stream catchments with perennial headwater streams. Finally, headwater stream catchments primarily underlain by coarse, permeable sediment are significantly more likely to have intermittent headwater streams than those primarily underlain by impermeable bedrock. Comparison of the predicted streamflow classification with observed stream status indicated a four percent classification error for first-order streams and a 21 percent classification error for all stream orders in the study area.

  6. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet.

    PubMed

    Hu, Zhujun; Anderson, Nicholas John; Yang, Xiangdong; McGowan, Suzanne

    2014-05-01

    The south-east margin of Tibet is highly sensitive to global environmental change pressures, in particular, high contemporary reactive nitrogen (Nr) deposition rates (ca. 40 kg ha(-1)  yr(-1) ), but the extent and timescale of recent ecological change is not well prescribed. Multiproxy analyses (diatoms, pigments and geochemistry) of (210) Pb-dated sediment cores from two alpine lakes in Sichuan were used to assess whether they have undergone ecological change comparable to those in Europe and North America over the last two centuries. The study lakes have contrasting catchment-to-lake ratios and vegetation cover: Shade Co has a relatively larger catchment and denser alpine shrub than Moon Lake. Both lakes exhibited unambiguous increasing production since the late 19th to early 20th. Principle component analysis was used to summarize the trends of diatom and pigment data after the little ice age (LIA). There was strong linear change in biological proxies at both lakes, which were not consistent with regional temperature, suggesting that climate is not the primary driver of ecological change. The multiproxy analysis indicated an indirect ecological response to Nr deposition at Shade Co mediated through catchment processes since ca. 1930, while ecological change at Moon Lake started earlier (ca. 1880) and was more directly related to Nr deposition (depleted δ(15) N). The only pronounced climate effect was evidenced by changes during the LIA when photoautotrophic groups shifted dramatically at Shade Co (a 4-fold increase in lutein concentration) and planktonic diatom abundance declined at both sites because of longer ice cover. The substantial increases in aquatic production over the last ca. 100 years required a substantial nutrient subsidy and the geochemical data point to a major role for Nr deposition although dust cannot be excluded. The study also highlights the importance of lake and catchment morphology for determining the response of alpine lakes to recent global environmental forcing. © 2013 John Wiley & Sons Ltd.

  7. Relict rock glaciers in alpine catchments: A regional study in Central Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Pauritsch, Marcus; Winkler, Gerfried

    2013-04-01

    Alpine catchments represent an important freshwater source in many regions. Catchments in the subalpine to nival altitudinal levels are generally characterised by higher precipitation, lower evapotranspiration and consequently higher discharge rates compared to lower elevated areas of the montane and foothill levels of the same region. Particularly in crystalline mountain regions in the mid- to high latitudes glacial and periglacial sediments cover larger areas and form important aquifers in alpine catchments. Typical periglacial landforms in mountain areas are rock glaciers. Relict rock glaciers consist of sediment accumulations without permafrost at present. This rock glacier type has a strong influence on water storage capacities and discharge behaviour of the catchments. The hydraulic properties of rock glaciers have a positive impact on flood-risk reduction and the riparian ecology below rock glacier springs during dry periods. Furthermore, the exceptional high discharge rates at springs at the front of relict rock glaciers compared to nearby non-rock glacier springs are also of economic interest. Knowledge about morphometric characteristics of rock glacier catchments helps to increase the understanding of the groundwater system and discharge dynamics of rock glaciers. In this context the main objectives of our study are (a) to assess and quantitatively describe rock glacier catchments at a regional scale by analysing different morphometric parameters of the catchments and (b) to combine the rock glacier catchment properties with water balance data. In doing so, at first an inventory of 295 rock glacier catchments was established for the 2440 km² large study area (Niedere Tauern Range, Styria) in Central Austria ranging from 590 to 2862 m a.s.l.. In a second step, the inventory data were combined with area-wide precipitation, discharge and evapotranspiration data. Results reveal that 108 km² or 4.4% of the entire study area belongs to rock glacier catchments. This proportion increases to 8.6% for areas above 1500 m a.s.l. and even to 23% for areas above 2000 m a.s.l.. Results for a 626 km² large subunit (Seckauer Tauern Range) reveal that even 15.6% of the area above 1500 m a.s.l. and more 42% above 2000 m a.s.l. are influenced by relict rock glaciers as aquifers. A total water volume of 4240 Mio m³ is precipitated annually (mean value for the normal period 1971-2000) in the entire study area. 22% of this water is evapotranspirated and the remaining water is the discharge of the catchments. Despite the fact that 8.6% of the entire Niedere Tauern Range above 1500 m a.s.l. belong to rock glacier catchments, about 9.5% of the total discharge and 9.2% of the total precipitation originates in the rock glacier catchments. In contrast, only 7.9% of all precipitated water is evapotranspirated in these catchments. In the subunit Seckauer Tauern Range the same figures for rock glacier catchments are substantially higher and more pronounced in their differences with 15.6% for area, 16.8% for precipitation, 14.5% for evapotranspiration and even 17.3% for discharge. These figures exemplarily show that rock glaciers and their catchments are highly relevant in the alpine water cycle of the study area.

  8. Bridging the gap between small and large scale sediment budgets? - A scaling challenge in the Upper Rhone Basin, Switzerland

    NASA Astrophysics Data System (ADS)

    Schoch, Anna; Blöthe, Jan; Hoffmann, Thomas; Schrott, Lothar

    2016-04-01

    A large number of sediment budgets have been compiled on different temporal and spatial scales in alpine regions. Detailed sediment budgets based on the quantification of a number of sediment storages (e.g. talus cones, moraine deposits) exist only for a few small scale drainage basins (up to 10² km²). In contrast, large scale sediment budgets (> 10³ km²) consider only long term sediment sinks such as valley fills and lakes. Until now, these studies often neglect small scale sediment storages in the headwaters. However, the significance of these sediment storages have been reported. A quantitative verification whether headwaters function as sediment source regions is lacking. Despite substantial transport energy in mountain environments due to steep gradients and high relief, sediment flux in large river systems is frequently disconnected from alpine headwaters. This leads to significant storage of coarse-grained sediment along the flow path from rockwall source regions to large sedimentary sinks in major alpine valleys. To improve the knowledge on sediment budgets in large scale alpine catchments and to bridge the gap between small and large scale sediment budgets, we apply a multi-method approach comprising investigations on different spatial scales in the Upper Rhone Basin (URB). The URB is the largest inneralpine basin in the European Alps with a size of > 5400 km². It is a closed system with Lake Geneva acting as an ultimate sediment sink for suspended and clastic sediment. We examine the spatial pattern and volumes of sediment storages as well as the morphometry on the local and catchment-wide scale. We mapped sediment storages and bedrock in five sub-regions of the study area (Goms, Lötschen valley, Val d'Illiez, Vallée de la Liène, Turtmann valley) in the field and from high-resolution remote sensing imagery to investigate the spatial distribution of different sediment storage types (e.g. talus deposits, debris flow cones, alluvial fans). These sub-regions cover all three litho-tectonic units of the URB (Helvetic nappes, Penninic nappes, External massifs) and different catchment sizes to capture the inherent variability. Different parameters characterizing topography, surface characteristics, and vegetation cover are analyzed for each storage type. The data is then used in geostatistical models (PCA, stepwise logistic regression) to predict the spatial distribution of sediment storage for the whole URB. We further conduct morphometric analyses of the URB to gain information on the varying degree of glacial imprint and postglacial landscape evolution and their control on the spatial distribution of sediment storage in a large scale drainage basin. Geophysical methods (ground penetrating radar and electrical resistivity tomography) are applied on different sediment storage types on the local scale to estimate mean thicknesses. Additional data from published studies are used to complement our dataset. We integrate the local data in the statistical model on the spatial distribution of sediment storages for the whole URB. Hence, we can extrapolate the stored sediment volumes to the regional scale in order to bridge the gap between small and large scale studies.

  9. Water erosion and climate change in a small alpine catchment

    NASA Astrophysics Data System (ADS)

    Berteni, Francesca; Grossi, Giovanna

    2017-04-01

    WATER EROSION AND CLIMATE CHANGE IN A SMALL ALPINE CATCHMENT Francesca Berteni, Giovanna Grossi A change in the mean and variability of some variables of the climate system is expected to affect the sediment yield of mountainous areas in several ways: for example through soil temperature and precipitation peak intensity change, permafrost thawing, snow- and ice-melt time shifting. Water erosion, sediment transport and yield and the effects of climate change on these physical phenomena are the focus of this work. The study area is a small mountainous basin, the Guerna creek watershed, located in the Central Southern Alps. The sensitivity of sediment yield estimates to a change of condition of the climate system may be investigated through the application of different models, each characterized by its own features and limits. In this preliminary analysis two different empirical mathematical models are considered: RUSLE (Revised Universal Soil Loss Equation; Renard et al., 1991) and EPM (Erosion Potential Method; Gavrilovic, 1988). These models are implemented in a Geographical Information System (GIS) supporting the management of the territorial database used to estimate relevant geomorphological parameters and to create different thematic maps. From one side the geographical and geomorphological information is required (land use, slope and hydrogeological instability, resistance to erosion, lithological characterization and granulometric composition). On the other side the knowledge of the weather-climate parameters (precipitation and temperature data) is fundamental as well to evaluate the intensity and variability of the erosive processes and estimate the sediment yield at the basin outlet. Therefore different climate change scenarios were considered in order to tentatively assess the impact on the water erosion and sediment yield at the small basin scale. Keywords: water erosion, sediment yield, climate change, empirical mathematical models, EPM, RUSLE, GIS, Guerna

  10. TUM Critical Zone Observatory, Germany

    NASA Astrophysics Data System (ADS)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  11. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-08-01

    Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources may be an important source of C and nutrients for these environments. We evaluated the magnitude of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long-term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were 1.12 ± 0.19 mg l-1, and weekly concentrations reached peaks as high at 6-10 mg l-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. To investigate potential sources of C in atmospheric deposition, we evaluated the chemical quality of dissolved organic matter (DOM) and relationships between DOM and other solutes in wet deposition. Relationships between DOC concentration, fluorescence, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring, which may reflect an association of DOM with dust. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples. Our C budget estimates for the Green Lake 4 catchment illustrated that wet deposition (9.9 kg C ha-1 yr-1) and dry deposition (6.9 kg C ha-1 yr-1) were a combined input of approximately 17 kg C ha-1 yr-1, which could be as high as 24 kg C ha-1 yr-1 in high dust years. This atmospheric C input approached the C input from microbial autotrophic production in barren soils. Atmospheric wet and dry deposition also contributed 4.3 kg N ha-1 yr-1, 0.15 kg P ha-1 yr-1, and 2.7 kg Ca2+ ha-1 yr-1 to this alpine catchment.

  12. Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change.

    PubMed

    Du, Yingxun; Zhang, Yuanyuan; Chen, Feizhou; Chang, Yuguang; Liu, Zhengwen

    2016-10-15

    Due to climate change, tree line advance is occurring in many alpine regions. Within the next 50 to 100years, alpine lake catchments are expected to develop increased vegetation cover similar to that of sub-alpine lake catchments which currently exist below the tree line. Such changes in vegetation could trigger increased allochthonous DOM inputs to alpine lakes. To understand the fate of allochthonous DOM in alpine lakes impacted by climate change, the photochemical reactivity of DOM in sub-alpine Lake Tiancai (located 200m below the tree line) was investigated by excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) and UV-Vis spectra analysis. With photo-exposure, a decrease in apparent DOM molecular weight was observed and 32% DOM was photomineralized to CO2. Interestingly, the aromaticity of DOM increased after photodegradation, as evidenced by increases in both the specific UV absorbance at 254nm (SUVA254) and the humification index (HIX). Five EEM-PARAFAC components were identified, including four terrestrially-derived substances (C1, C2, C3 and C4; allochthonous) and one tryptophan-like substance (C5; autochthonous). Generally, allochthonous DOM represented by C2 and C3 exhibited greater photoreactivity than autochthonous DOM represented by C5. C4 was identified as a possible photoproduct with relatively high aromaticity and photorefractive tendencies and contributed to the observed increase in SUVA254 and HIX. UV light facilitated the photodegradation of DOM and had the greatest effect on the removal of C3. This study provides information on the transformation of EEM-PARAFAC components in a sub-alpine lake, which is important in understanding the fate of increased allochthonous DOM inputs to alpine lakes impacted by climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. What can we learn from sediment connectivitiy indicies regarding natural hazard processes in torrent catchments?

    NASA Astrophysics Data System (ADS)

    Schmutz, Daria; Zimmermann, Markus; Keiler, Margreth

    2017-04-01

    Sediment connectivity is defined as the degree of coupling between sediment sources and sinks in a system and describes the effectiveness of the transfer of sediment from hillslopes into channels and within channels (Bracken et al. 2015). Borselli et al. (2008) developed a connectivity index (IC) based on digital terrain models (DTMs). Cavalli et al. (2013) adapted this index for mountainous catchments. These measures of connectivity provide overall information about connectivity pattern in the catchment, thus the understanding of sediment connectivity can help to improve the hazard analysis in these areas. Considering the location of settlements in the alpine regions, high sediment transfer can pose a threat to villages located nearby torrents or at the debris cones. However, there is still a lack of studies on the linkage between IC and hazardous events with high sediment yield in alpine catchments. In this study, the expressiveness and applicability of IC is tested in relation with hazardous events in several catchments of the Bernese and Pennine Alps (Switzerland). The IC is modelled based on DTMs (resolution 2 m or if available 0.5 m) indicating the surface from the time before and after a documented hazardous event and analysed with respect to changes in connectivity caused by the event. The spatial pattern of connectivity is compared with the observed sediment dynamic during the event using event documentations. In order to validate the IC, a semi-quantitative field connectivity index (FIC) is developed addressing characteristics of the channel, banks and slopes and applied in a selection of the case studies. First analysis shows that the IC is highly sensitive to the resolution and quality of the DTM. Connectivity calculated by the IC is highest along the channel. The general pattern of connectivity is comparable applying the IC for the DTM before and after the event. Range of the connectivity values gained from IC modelling is highly specific for each study area and so are their changes by the events. Whereas some slopes show an increased connectivity, others are less connected or not affected according to the IC. Further results of the comparison between the FIC and the IC and an evaluation of both indices in the context of hazardous events will be presented. REFERENCES Borselli, L., Cassi, P. & Torri, D. 2008: Prolegomena to sediment and flow connectivity in the landscape. A GIS and field numerical assessment. CATENA 75 (3), 268-277. Bracken, L. J., Turnbull, L., Wainwright, J. & Bogaart, P. 2015: Sediment connectivity. A framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms 40 (2), 177-188. Cavalli, M., Trevisani, S., Comiti, F. & Marchi, L. 2013: Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188, 31-41.

  14. Controls on ecohydrological dynamics of riparian zones in Alpine catchments: A comparison study of two rivers in the Eastern Italian Alps

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Penna, Daniele; Frentress, Jay; Andreoli, Andrea; Hecher, Peter; Van Meerveld, Ilja; Comiti, Francesco

    2017-04-01

    In recent decades, restauration actions have been implemented in mountain rivers to face widespread morphological changes. Such natural and anthropogenic modifications can have relevant impacts on the ecological and ecohydrological functioning of riparian vegetation. Understanding the water sources used by riparian vegetation is important for the implementation of effective river restoration initiatives. Therefore, more ecohydrological research is needed to quantify the complex interactions between hydrology and vegetation in different alpine river systems. In this study we used water stable isotopes and electrical conductivity (EC) as tracers to better understand the hydrological and ecohydrological relationship between the riparian vegetation and the river bed of alpine river systems. We choose two catchments, Ahr/Aurino River and Mareit/Ridanna River catchments (South Tyrol, Italy) as study sites. In both catchments, we selected two sites comprising a younger (< 5 years) and an older (> 10 years) alder (Alnus incana) stand. At each site, soil moisture at different depths and groundwater levels were monitored. Suction lysimeters were installed at the same depths than the soil moisture sensors. Samples for tracer analysis were collected since June 2016 on a bi-weekly or monthly basis from precipitation, soil water, groundwater and stream water. EC was continuously measured in a piezometer at the Mareit River. In addition, we extracted sap water for isotopic analysis from alder trees. First results show that all water types sampled in both catchments fell along the global meteoric water line showing no evaporative enrichments. Sap samples are expected to deviate from the meteoric line but they have not been analysed yet. At both sites in the Ahr catchment, soil water seemed to be more variable and isotopically more enriched at 10 cm depth (δ2H: - 34 to -69 ‰) than at 50 cm (δ2H: -45 to -71 ‰), indicating a decreasing influence of precipitation with increasing soil depth. In contrast, soil water at Mareit River seemed to depend stronger on the topographical location of the site than on the soil depth. Groundwater in the Ahr catchment at the end of July 2016 showed isotopic depletion (δ2H: -89 ‰), which occurred about one month later than the isotopic depletion observed in the stream (δ2H: -96 ‰). This may indicate a stream-groundwater connectivity with a specific time lag. These observations may provide a first insight into the main controls on the complex interactions between stream and vegetation in the riparian zone. Keywords: stable isotopes of water; sap; alpine rivers; riparian zone connectivity; ecohydrology

  15. Driving factors for torrential mass-movements occurrence in the Western Alps

    NASA Astrophysics Data System (ADS)

    Tiranti, Davide; Cremonini, Roberto; Asprea, Irene; Marco, Federica

    2016-02-01

    To understand the behaviour of torrential processes in the alpine environment, the conditions mainly responsiblefor the occurrence of these phenomena have to be identified and distinguished(classified) aspredisposing and triggering factors. In this regard, this study is aimed to understanding which factors lead to the occurrence of a given torrential processes in alpine catchments in the Western Alps, where information on past events are exhaustive and characterized by a long historical series. More than 769 documented torrential eventsoccurred from 1728 to 2015 within 78 catchments. Datasets concerning climate, geology and morphology, land use and the presence of historical landslide activity have been elaborated as input for multivariate statistical analysis to characterize the behaviour of the catchments. The results pinpoint the factors that mainly drive the type of torrential dominant process occurring in a given catchment, its occurrence probability, and its frequency. This study has demonstrated that catchments characterized by a significant percentage of outcropping rocks show a greater occurrence of torrential processes, especially hyperconcentrated flows and debris flows; on the contrary highly vegetated catchments are typically subject to water flows. This result can be a useful tool for the evaluation of hazards related to this specific phenomenon, making it possible to predict the most likely torrential processes that can be generated in a specific basin, given the characteristics of outcropping rock and vegetation cover.

  16. Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China)

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Yang, Xiangdong; Anderson, Nicholas John; Dong, Xuhui

    2016-07-01

    The reconstruction of Holocene environmental changes in lakes on the plateau region of southwest China provides an understanding of how these ecosystems may respond to climate change. Fossil diatom assemblages were investigated from an 11,000-year lake sediment core from a deep, alpine lake (Lugu Hu) in southwest China, an area strongly influenced by the southwest (or the Indian) summer monsoon. Changes in diatom assemblage composition, notably the abundance of the two dominant planktonic species, Cyclotella rhomboideo-elliptica and Cyclostephanos dubius, reflect the effects of climate variability on nutrient dynamics, mediated via thermal stratification (internal nutrient cycling) and catchment-vegetation processes. Statistical analyses of the climate-diatom interactions highlight the strong effect of changing orbitally-induced solar radiation during the Holocene, presumably via its effect on the lake's thermal budget. In a partial redundancy analysis, climate (solar insolation) and proxies reflecting catchment process (pollen percentages, C/N ratio) were the most important drivers of diatom ecological change, showing the strong effects of climate-catchment-vegetation interactions on lake functioning. This diatom record reflects long-term ontogeny of the lake-catchment ecosystem and suggests that climatic changes (both temperature and precipitation) impact lake ecology indirectly through shifts in thermal stratification and catchment nutrient exports.

  17. An integrated study to evaluate debris flow hazard in alpine environment

    NASA Astrophysics Data System (ADS)

    Tiranti, Davide; Crema, Stefano; Cavalli, Marco; Deangeli, Chiara

    2018-05-01

    Debris flows are among the most dangerous natural processes affecting the alpine environment due to their magnitude (volume of transported material) and the long runout. The presence of structures and infrastructures on alluvial fans can lead to severe problems in terms of interactions between debris flows and human activities. Risk mitigation in these areas requires identifying the magnitude, triggers, and propagation of debris flows. Here, we propose an integrated methodology to characterize these phenomena. The methodology consists of three complementary procedures. Firstly, we adopt a classification method based on the propensity of the catchment bedrocks to produce clayey-grained material. The classification allows us to identify the most likely rheology of the process. Secondly, we calculate a sediment connectivity index to estimate the topographic control on the possible coupling between the sediment source areas and the catchment channel network. This step allows for the assessment of the debris supply, which is most likely available for the channelized processes. Finally, with the data obtained in the previous steps, we modelled the propagation and depositional pattern of debris flows with a 3D code based on Cellular Automata. The results of the numerical runs allow us to identify the depositional patterns and the areas potentially involved in the flow processes. This integrated methodology is applied to a test-bed catchment located in Northwestern Alps. The results indicate that this approach can be regarded as a useful tool to estimate debris flow related potential hazard scenarios in an alpine environment in an expeditious way without possessing an exhaustive knowledge of the investigated catchment, including data on historical debris flow events.

  18. Temperature signal in suspended sediment export from an Alpine catchment

    NASA Astrophysics Data System (ADS)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through hillslope erosion by rainfall on snow-free surfaces, and increased meltwater production on snow-free glacier surfaces. Despite the rise in air temperature, changes in mean discharge in the mid-1980s were not statistically significant, and their interpretation is complicated by hydropower reservoir management and the flushing operations at intakes. Overall, the results show that to explain changes in suspended sediment transport from large Alpine catchments it is necessary to include an understanding of the multitude of sediment sources involved together with the hydroclimatic conditioning of their activation (e.g. changes in precipitation, runoff, air temperature). In addition, this study points out that climate signals in suspended sediment dynamics may be visible even in highly regulated and human-impacted systems. This is particularly relevant for quantifying climate change and hydropower impacts on streamflow and sediment budgets in Alpine catchments.

  19. Climate Change Increasing Calcium and Magnesium Leaching from Granitic Alpine Catchments.

    PubMed

    Kopáček, Jiří; Kaňa, Jiří; Bičárová, Svetlana; Fernandez, Ivan J; Hejzlar, Josef; Kahounová, Marie; Norton, Stephen A; Stuchlík, Evžen

    2017-01-03

    Climate change can reverse trends of decreasing calcium and magnesium [Ca + Mg] leaching to surface waters in granitic alpine regions recovering from acidification. Despite decreasing concentrations of strong acid anions (-1.4 μeq L -1 yr -1 ) during 2004-2016 in nonacidic alpine lakes in the Tatra Mountains (Central Europe), the average [Ca + Mg] concentrations increased (2.5 μeq L -1 yr -1 ), together with elevated terrestrial export of bicarbonate (HCO 3 - ; 3.6 μeq L -1 yr -1 ). The percent increase in [Ca + Mg] concentrations in nonacidic lakes (0.3-3.2% yr -1 ) was significantly and positively correlated with scree proportion in the catchment area and negatively correlated with the extent of soil cover. Leaching experiments with freshly crushed granodiorite, the dominant bedrock, showed that accessory calcite and (to a lesser extent) apatite were important sources of Ca. We hypothesize that elevated terrestrial export of [Ca + Mg] and HCO 3 - resulted from increased weathering caused by accelerated physical erosion of rocks due to elevated climate-related mechanical forces (an increasing frequency of days with high precipitation amounts and air temperatures fluctuating around 0 °C) during the last 2-3 decades. These climatic effects on water chemistry are especially strong in catchments where fragmented rocks are more exposed to weathering, and their position is less stable than in soil.

  20. [Canopy interception of sub-alpine dark coniferous communities in western Sichuan, China].

    PubMed

    Lü, Yu-liang; Liu, Shi-rong; Sun, Peng-sen; Liu, Xing-liang; Zhang, Rui-pu

    2007-11-01

    Based on field measurements of throughfall and stemflow in combination with climatic data collected from the meteorological station adjacent to the studied sub-alpine dark coniferous forest in Wolong, Sichuan Province, canopy interception of sub-alpine dark coniferous forests was analyzed and modeled at both stand scale and catchment scale. The results showed that monthly interception rate of Fargesia nitida, Bashania fangiana--Abies faxoniana old-growth ranged from 33% Grass to 72%, with the average of 48%. In growing season, there was a linear or powerful or exponential relationship between rainfall and interception an. a negative exponential relationship between rainfall and interception rate. The mean maximum canopy interception by the vegetation in the catchment of in.44 km was 1.74 ment and the significant differences among the five communities occurred in the following sequence: Moss-Fargesia nitida, Bashan afanglana-A. faxoniana stand > Grass-F. nitida, B. fangiana-A. faxoniana stand > Moss-Rhododendron spp.-A. faxoniana stand > Grass-Rh. spp.-A. faxoniana stand > Rh. spp. shrub. In addition, a close linear relationship existed between leaf area index (LAI) and maximum canopy interception. The simulated value of canopy interception rate, maximum canopy interception rate and addition interception rate of the vegetation in the catchment were 39%, 25% and 14%, respectively. Simulation of the canopy interception model was better at the overall growing season scale, that the mean relative error was 9%-14%.

  1. A comparison of multicopter and fixed-wing unmanned aerial systems (UAS) applied to mapping debris flows in small alpine catchments

    NASA Astrophysics Data System (ADS)

    Sotier, Bernadette; Lechner, Veronika

    2016-04-01

    The use of unmanned aerial systems (UAS) for documenting natural hazard events (e.g. debris flows) is becoming increasingly popular, as UAS allow on-demand, flexible and cost-efficient data acquisition. In this paper, we present the results of a comparison of multicopter and fixed-wing UAS. They were employed in the summer of 2015 to map two small alpine catchments located in Western Austria, where debris flows had occurred recently: The first event took place in the Seigesbach (Tyrol), the second occurred in the Plojergraben (Salzburg). For the Seigesbach mission, a fixed-wing UAS (Multiplex Mentor), equipped with a Sony NEX5 (50 mm prime lens, 14 MP sensor resolution) was employed to acquire approximately 4,000 images. In the Plojergraben an AustroDrones X18 octocopter was used, carrying a Sony ILCE-7R (35 mm prime lens, 36 MP sensor resolution) to record 1,700 images. Both sites had a size of approximately 2km². 20 ground control points (GCP) were distributed within both catchments, and their location was measured (Trimble GeoXT, expected accuracy 0.15 m). Using standard structure-from-motion photogrammetry software (AgiSoft PhotoScan Pro, v. 1.1.6), orthophotos (5 cm ground sampling distance - GSD) and digital surface models (DSM) (20 cm GSD) were calculated. Volume differences caused by the debris flow (i.e. deposition heights and erosion depths) computed by subtracting post-event from pre-event DSMs. Even though the terrain conditions in the two catchments were comparable, the challenges during the field campaign and the evaluation of the aerial images were very different. The main difference between the two campaigns was the number of flights required to cover the catchment: only four were needed by the fixed-wing UAS, while the multicopter required eleven in the Plojergraben. The fixed-wing UAS is specially designed for missions in hardly accessible regions, requiring only two people to carry the whole equipment, while in this case a car was needed for the multicopter deployment. This plays an important role especially for the monitoring of events, where the access roads were destroyed or non-existent. On the other hand, the fixed-wing UAS requires more space for starting and landing. Both campaigns were performed over a full day therefore the lighting conditions changed from flight to flight, affecting the quality of the recorded images. Although the Sony ILCE-7R offers much higher images quality and higher sensor resolution, the results of image processing of Seigesbach and Plojergraben are comparable in terms of processing time, GSD and accuracy for this application. One important difference between the campaigns is for example, that in the Plojergraben, the torrent is partly hidden by bank-side trees and many trees are lying in the riverbed, which causes large errors in calculated volumes. From our experience, external conditions like lighting, visibility and accessibility are determining factors for getting high-quality results in alpine environments, and good results are possible with low-cost equipment. Notwithstanding the operational constraints, the choice of the platform therefore is of secondary importance for debris flow volume mapping.

  2. Flood triggering in Switzerland: the role of daily to monthly preceding precipitation

    NASA Astrophysics Data System (ADS)

    Froidevaux, P.; Schwanbeck, J.; Weingartner, R.; Chevalier, C.; Martius, O.

    2015-09-01

    Determining the role of different precipitation periods for peak discharge generation is crucial for both projecting future changes in flood probability and for short- and medium-range flood forecasting. In this study, catchment-averaged daily precipitation time series are analyzed prior to annual peak discharge events (floods) in Switzerland. The high number of floods considered - more than 4000 events from 101 catchments have been analyzed - allows to derive significant information about the role of antecedent precipitation for peak discharge generation. Based on the analysis of precipitation times series, a new separation of flood-related precipitation periods is proposed: (i) the period 0 to 1 day before flood days, when the maximum flood-triggering precipitation rates are generally observed, (ii) the period 2 to 3 days before flood days, when longer-lasting synoptic situations generate "significantly higher than normal" precipitation amounts, and (iii) the period from 4 days to 1 month before flood days when previous wet episodes may have already preconditioned the catchment. The novelty of this study lies in the separation of antecedent precipitation into the precursor antecedent precipitation (4 days before floods or earlier, called PRE-AP) and the short range precipitation (0 to 3 days before floods, a period when precipitation is often driven by one persistent weather situation like e.g., a stationary low-pressure system). A precise separation of "antecedent" and "peak-triggering" precipitation is not attempted. Instead, the strict definition of antecedent precipitation periods permits a direct comparison of all catchments. The precipitation accumulating 0 to 3 days before an event is the most relevant for floods in Switzerland. PRE-AP precipitation has only a weak and region-specific influence on flood probability. Floods were significantly more frequent after wet PRE-AP periods only in the Jura Mountains, in the western and eastern Swiss plateau, and at the outlet of large lakes. As a general rule, wet PRE-AP periods enhance the flood probability in catchments with gentle topography, high infiltration rates, and large storage capacity (karstic cavities, deep soils, large reservoirs). In contrast, floods were significantly less frequent after wet PRE-AP periods in glacial catchments because of reduced melt. For the majority of catchments however, no significant correlation between precipitation amounts and flood occurrences is found when the last 3 days before floods are omitted in the precipitation amounts. Moreover, the PRE-AP was not higher for extreme floods than for annual floods with a high frequency and was very close to climatology for all floods. The fact that floods are not significantly more frequent nor more intense after wet PRE-AP is a clear indicator of a short discharge memory of Pre-Alpine, Alpine and South Alpine Swiss catchments. Our study poses the question whether the impact of long-term precursory precipitation for floods in such catchments is not overestimated in the general perception. The results suggest that the consideration of a 3-4 days precipitation period should be sufficient to represent (understand, reconstruct, model, project) Swiss Alpine floods.

  3. Runoff of small rocky headwater catchments: Field observations and hydrological modeling

    NASA Astrophysics Data System (ADS)

    Gregoretti, C.; Degetto, M.; Bernard, M.; Crucil, G.; Pimazzoni, A.; De Vido, G.; Berti, M.; Simoni, A.; Lanzoni, S.

    2016-10-01

    In dolomitic headwater catchments, intense rainstorms of short duration produce runoff discharges that often trigger debris flows on the scree slopes at the base of rock cliffs. In order to measure these discharges, we placed a measuring facility at the outlet (elevation 1770 m a.s.l.) of a small, rocky headwater catchment (area ˜0.032 km2, average slope ˜320%) located in the Venetian Dolomites (North Eastern Italian Alps). The facility consists of an approximately rectangular basin, ending with a sharp-crested weir. Six runoff events were recorded in the period 2011-2014, providing a unique opportunity for characterizing the hydrological response of the catchment. The measured hydrographs display impulsive shapes, with an abrupt raise up to the peak, followed by a rapidly decreasing tail, until a nearly constant plateau is eventually reached. This behavior can be simulated by means of a distributed hydrological model if the excess rainfall is determined accurately. We show that using the Soil Conservation Service Curve-Number (SCS-CN) method and assuming a constant routing velocity invariably results in an underestimated peak flow and a delayed peak time. A satisfactory prediction of the impulsive hydrograph shape, including peak value and timing, is obtained only by combining the SCS-CN procedure with a simplified version of the Horton equation, and simulating runoff routing along the channel network through a matched diffusivity kinematic wave model. The robustness of the proposed methodology is tested through a comparison between simulated and observed timings of runoff or debris flow occurrence in two neighboring alpine basins.

  4. Runoff-generated debris flows: observations and modeling of surge initiation, magnitude, and frequency

    USGS Publications Warehouse

    Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.

    2013-01-01

    Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.

  5. Tracing Changes in Carbon Chemistry Caused by an Extreme Mid-Summer Rain Event in a Lake-Stream System in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Miller, M.; McKnight, D.; Alexander, K.

    2006-12-01

    We studied the impact of a sustained high elevation rain event in mid-summer on the biogeochemistry of dissolved organic material (DOM) in an aquatic ecosystem in the Colorado Front Range. In the Green Lakes Valley, an alpine-subalpine catchment, the hydrology is typically defined by two distinct periods: snowmelt and baseflow. Similarly, characterization of DOM by fluorescence spectroscopy and other methods shows that the source and chemical character of the DOM changes with the hydrology. Surface water samples were collected from the outlet of a small alpine lake as well as a stream site downstream of a larger subalpine lake from the initiation of snowmelt through late summer. Beginning on July 7th and ending on July 9th 2006 a continuous low intensity rain event produced approximately 9 cm of precipitation. The rain event increased discharge at the two sites to flow rates that were 2.5 fold greater than those observed during peak snowmelt. The fluorescence characteristics of the DOM as well as the percent fulvic acid contribution to the sample were reset to values similar to those observed during snowmelt at the alpine site but were relatively unaffected at the subalpine site. These results suggest that alpine ecosystems are more sensitive to hydrologic changes than subalpine ecosystems and residence times of the lakes in these systems may play an important role in regulating stream chemistry.

  6. Effects of Desert Dust on Nutrient Cycling in the San Juan Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    Neff, J. C.; Farmer, L.; Painter, T. H.; Landry, C.; Reynolds, R.

    2005-12-01

    The San Juan Mountains of southwestern Colorado lie downwind from several major deserts and experience several dust-deposition events each year. These events appear related to storms that erode soils in the deserts of the western US and then deposit atmospheric dust from these soils during or after snowfall during large late winter and spring deposition events. To evaluate the biogeochemical implications of eolian deposition, we collected dust from distinct layers deposited into the seasonal snowpack. We also sampled soils and lake sediments in a high-elevation catchment in the San Juan Mountains. Atmospheric dust was characterized by measurements of chemical composition, Sr isotopic content and analysis of the organic and inorganic constituents of deposited eolian material. The origins of snowpack dust in the San Juans were analyzed using atmospheric tracer transport modeling. These analyses suggest that many dust events originate in southern Utah and northern Arizona, areas that have undergone substantial land use change through the 20th century and that experience severe wind erosion of soils during periodic severe droughts. Analyses of 87Sr/86Sr isotope ratios dust, soils, bedrock, and sediments suggest that eolian dust may compose as much as 90% of the near-surface soil (top 5 cm). In alpine lake sediments, Sr isotopes suggest a relatively recent (20th century) increase in the fraction of sediments derived from dust (relative to bedrock) and a similarly large contribution of dust to surface sediments. Sediment chemistry in two small alpine tarns show changes in Ca, Mg, Al, and Fe concentrations that imply increasing dust (vs. bedrock) contributions to lake sediments over the past 100-200 years. Increasing loading of Ca, Mg and P to alpine basins may have implications for alpine and sub-alpine biogeochemical cycling including water quality and plant nutrient use.

  7. Spatially distributed rockfall activity inferred from talus deposits and corresponding rockwall areas in the Gradenbach catchment (Schober Mountains, Austria)

    NASA Astrophysics Data System (ADS)

    Götz, Joachim; Buckel, Johannes; Heckmann, Tobias

    2013-04-01

    The analysis of alpine sediment cascades requires the identification, differentiation and quantification of sediment sources, storages, and transport processes. This study deals with the origin of alpine sediment transfer and relates primary talus deposits to corresponding rockwall source areas within the Gradenbach catchment (Schober Mountains, Austrian Alps). Sediment storage landforms are based on a detailed geomorphological map of the catchment which was generated to analyse the sediment transfer system. Mapping was mainly performed in the field and supplemented by post-mapping analysis using LIDAR data and digital orthophotos. A fundamental part of the mapping procedure was to capture additional landform-based information with respect to morphometry, activity and connectivity. The applied procedure provides a detailed inventory of sediment storage landforms including additional information on surface characteristics, dominant and secondary erosion and deposition processes, process activity and sediment storage coupling. We develop the working hypothesis that the present-day surface area ratio between rockfall talus (area as a proxy for volume, backed by geophysical analysis of selected talus cones) and corresponding rockwall source area is a measure of rockfall activity since deglaciation; large talus cones derived from small rockwall catchments indicate high activity, while low activity can be inferred where rockfall from large rock faces has created only small deposits. The surface area ratio of talus and corresponding rockwalls is analysed using a landform-based and a process-based approach. For the landform-based approach, we designed a GIS procedure which derives the (hydrological) catchment area of the contact lines of talus and rockwall landforms in the geomorphological map. The process-based approach simulates rockfall trajectories from steep (>45°) portions of a DEM generated by a random-walk rockfall model. By back-tracing those trajectories that end on a selected talus landform, the 'rockfall contributing area' is delineated; this approach takes account of the stochastic nature of rockfall trajectories and is able to identify, for example, rockfall delivery from one rockwall segment to multiple talus landforms (or from multiple rockfall segments to the same deposit, respectively). Using both approaches, a total of 290 rockwall-talus-subsystems are statistically analysed indicating a constant relationship between rockfall source areas and corresponding areas of talus deposits of almost 1:1. However, certain rockwall-talus-subsystems deviate from this correlation since sediment storage landforms of similar size originate from varying rockwall source areas and vice versa. This varying relationship is assumed to be strongly controlled by morphometric parameters, such as rockwall slope, altitudinal interval, and aspect. The impact of these parameters on the surface area ratio will be finally discussed.

  8. Multi-Ecosystem Assessment of Mercury Bioaccumulation in Fishes: Habitat, Landscape, and Biogeochemical Drivers of Fish Mercury

    NASA Astrophysics Data System (ADS)

    Eagles-Smith, C.; Ackerman, J.; Herring, G.; Willacker, J.; Flanagan, C.

    2014-12-01

    Mercury (Hg) is a globally distributed contaminant that threatens ecosystem health across aquatic environments. The complexity of the Hg cycle and its primary drivers, coupled with dynamic food web processes that govern biomagnification, result in marked spatial variability in Hg bioaccumulation across aquatic ecosystems. However, it is unclear if patterns of bioaccumulation are consistent in magnitude and direction across ecosystem types. We synthesized data from several studies spanning more than 200 individual sites, comprising four distinct ecosystem classifications (estuaries, sub-alpine lakes, rivers, and managed wetlands). Within each ecosystem, we compared fish Hg concentrations among replicated sub-habitats and also evaluated the influence of land use, landscape composition, and biogeochemical drivers on fish Hg concentrations. We found substantial variability in fish Hg concentrations among adjacent sub-habitats within ecosystems. In estuarine environments, fish Hg concentrations were 7.4x higher in seasonal-saline wetlands than adjacent tidal wetland habitats. In riverine alcoves, preliminary data suggest that fish Hg concentrations were 1.5x higher than in fishes from paired mainstem river habitat. Among managed wetland habitats, fish Hg concentrations in rice fields were 2x higher than those in managed seasonal wetlands that were subjected to identical wetting and drying patterns. Across ecosystems, dissolved organic carbon (DOC) concentrations in surface waters were consistently correlated with fish Hg concentrations, highlighting its importance in Hg methylation and transport processes. Yet, the strength and direction of the relationships varied among habitat types. For example, fish Hg concentrations were positively correlated with DOC concentrations in riverine environments, whereas we found a negative correlation in alpine lakes. Instead, the most important determinant of fish Hg concentrations in alpine lakes was conifer tree density within a lake's catchment, resulting in a 4x increase in fish Hg concentration in lakes with the lowest to the highest catchment conifer tree density. Together, this integrated ecosystem analysis highlights the importance of understanding small-scale variation in bioaccumulation processes in order to better predict Hg risk.

  9. Rock glaciers in crystalline catchments: Hidden permafrost-related threats to alpine headwater lakes.

    PubMed

    Ilyashuk, Boris P; Ilyashuk, Elena A; Psenner, Roland; Tessadri, Richard; Koinig, Karin A

    2018-04-01

    A global warming-induced transition from glacial to periglacial processes has been identified in mountainous regions around the world. Degrading permafrost in pristine periglacial environments can produce acid rock drainage (ARD) and cause severe ecological damage in areas underlain by sulfide-bearing bedrock. Limnological and paleolimnological approaches were used to assess and compare ARDs generated by rock glaciers, a typical landform of the mountain permafrost domain, and their effects on alpine headwater lakes with similar morphometric features and underlying bedrock geology, but characterized by different intensities of frost action in their catchments during the year. We argue that ARD and its effects on lakes are more severe in the alpine periglacial belt with mean annual air temperatures (MAAT) between -2°C and +3°C, where groundwater persists in the liquid phase for most of the year, in contrast to ARD in the periglacial belt where frost action dominates (MAAT < -2°C). The findings clearly suggest that the ambient air temperature is an important factor affecting the ARD production in alpine periglacial environments. Applying the paleoecological analysis of morphological abnormalities in chironomids through the past millennium, we tested and rejected the hypothesis that unfavorable conditions for aquatic life in the ARD-stressed lakes are largely related to the temperature increase over recent decades, responsible for the enhanced release of ARD contaminants. Our results indicate that the ARDs generated in the catchments are of a long-lasting nature and the frequency of chironomid morphological deformities was significantly higher during the Little Ice Age (LIA) than during pre- or post-LIA periods, suggesting that lower water temperatures may increase the adverse impacts of ARD on aquatic invertebrates. This highlights that temperature-mediated modulations of the metabolism and life cycle of aquatic organisms should be considered when reconstructing long-term trends in the ecotoxicological state of lakes. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  10. Streamflow response to future land-cover change at a headwaters catchment spanning the alpine-subalpine transition on the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Barnhart, T. B.; Vukomanovic, J.; Bourgeron, P.; Molotch, N. P.

    2017-12-01

    Land-cover change at the alpine-subalpine interface has the potential to change the water balance of mountainous, snow-dominated catchments due to the influence of vegetation on blowing snow, effective precipitation, evapotranspiration, and other processes. Understanding how land-cover change will impact water resources in snow-dominated regions is of critical importance as these locations produce a disproportionate amount of runoff relative to their land area. We coupled the LANdscape DIsturbance and Succession (LANDIS-II) model with a spatially explicit, physics-based, watershed process model, the Regional Hydro-Ecologic Simulation System (RHESSys), to simulate land-cover change and its impact on the water balance in a 6.6 km­2 headwater catchment that spans the alpine-subalpine transition on the Colorado Front Range. We simulated two potential futures of air temperature warming (+4 °C/century) to 2100: a) increased precipitation (+15%, MP) and b) decreased precipitation (-15%, LP). As the LANDIS-II model simulates forest succession in a stochastic manner, we use three LANDIS-II model runs each for the MP and LP future forcing conditions. For both MP and LP, the RHESSys forcing data set was updated to reflect the changes in precipitation and temperature used to generate the land-cover futures. Forest cover in the catchment increased from 72% in 2000 to 84% and 83% in 2050 and to 95% and 92% in 2100 for MP and LP, respectively. Somewhat surprisingly, this increase in forest cover led to mean increases in streamflow production of 9% for MP and 3% for LP in 2050. In 2100, mean streamflow production increased by 15% and 6% for the MP and LP scenarios, respectively. This is likely due to increases in effective precipitation as the catchment forested and blowing snow decreased. Indeed, catchment effective precipitation increased from 94% in 2000 to 97% and 99% in 2050 and 2100, respectively, for both MP and LP conditions. This result counters previous work as runoff production increased with forested area, highlighting the need to better understand the impacts of forest expansion on blowing snow and effective precipitation. Identifying the hydrologic response of mountainous areas to climate warming induced land-cover change is of critical importance due to the potential water resources impacts in downstream regions.

  11. Hydrology of the North Klondike River: carbon export, water balance and inter-annual climate influences within a sub-alpine permafrost catchment.

    PubMed

    Lapp, Anthony; Clark, Ian; Macumber, Andrew; Patterson, Tim

    2017-10-01

    Arctic and sub-arctic watersheds are undergoing significant changes due to recent climate warming and degrading permafrost, engendering enhanced monitoring of arctic rivers. Smaller catchments provide understanding of discharge, solute flux and groundwater recharge at the process level that contributes to an understanding of how larger arctic watersheds are responding to climate change. The North Klondike River, located in west central Yukon, is a sub-alpine permafrost catchment, which maintains an active hydrological monitoring station with a record of >40 years. In addition to being able to monitor intra-annual variability, this data set allows for more complex analysis of streamflow records. Streamflow data, geochemistry and stable isotope data for 2014 show a groundwater-dominated system, predominantly recharged during periods of snowmelt. Radiocarbon is shown to be a valuable tracer of soil zone recharge processes and carbon sources. Winter groundwater baseflow contributes 20 % of total annual discharge, and accounts for up to 50 % of total river discharge during the spring and summer months. Although total stream discharge remains unchanged, mean annual groundwater baseflow has increased over the 40-year monitoring period. Wavelet analysis reveals a catchment that responds to El Niño and longer solar cycles, as well as climatic shifts such as the Pacific Decadal Oscillation. Dedicated to Professor Peter Fritz on the occasion of his 80th birthday.

  12. Regional Assessment of the Relationship Between Landscape Attributes and Water Quality in Five National Parks of the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Williams, M. W.; Campbell, D. H.

    2005-12-01

    Atmospheric deposition of pollutants threatens pristine environments around the world. However, scientifically-based decisions regarding management of these environments has been confounded by spatial variability of atmospheric deposition, particularly across regional scales at which resource management is typically considered. A statistically based methodology coupled within GIS is presented that builds on small alpine lake and sub-alpine catchments scale to identify deposition-sensitive lakes across larger watershed and regional scales. The sensitivity of 874 alpine and subalpine lakes to acidification from atmospheric deposition of nitrogen and sulfur was estimated using statistical models relating water quality and landscape attributes in Glacier National Park, Yellowstone National Park, Grand Teton National Park, Rocky Mountain National Park and Great Sand Dunes National Park and Preserve. Water-quality data measured during synoptic lake surveys were used to calibrate statistical models of lake sensitivity. In the case of nitrogen deposition, water quality data were supplemented with dual isotopic measurements of d15N and d18O of nitrate. Landscape attributes for the lake basins were derived from GIS including the following explanatory variables; topography (basin slope, basin aspect, basin elevation), bedrock type, vegetation type, and soil type. Using multivariate logistic regression analysis, probability estimates were developed for acid-neutralizing capacity, nitrate, sulfate and DOC concentrations, and lakes with a high probability of being sensitive to atmospheric deposition were identified. Water-quality data collected at 60 lakes during fall 2004 were used to validate statistical models. Relationships between landscape attributes and water quality vary by constituent, due to spatial variability in landscape attributes and spatial variation in the atmospheric deposition of pollutants within and among the five National Parks. Predictive ability, model fit and sensitivity were first assessed for each of the five National Parks individually, to evaluate the utility of this methodology for prediction of alpine and sub-alpine lake sensitivity across the catchment scale. A similar assessment was then performed, treating the five parks as a group. Validation results showed that 85 percent of lakes sampled were accurately identified by the model as having a greater than 60 percent probability of acid-neutralizing capacity concentrations less than 200 microequivalents per liter. Preliminary findings indicate good predictive ability and reasonable model fit and sensitivity, suggesting that logistic regression modeling coupled within a GIS framework is an appropriate approach for remote identification of deposition-sensitive lakes across the Rocky Mountain region. To assist resource management decisions regarding alpine and sub-alpine lakes across this region, screening procedures were developed based on terrain and landscape attribute information available to all participating parks. Since the screening procedure is based on publicly available data, our methodology and similar screening procedures may be applicable to other National Parks with deposition-sensitive surface waters.

  13. A multi-objective approach to improve SWAT model calibration in alpine catchments

    NASA Astrophysics Data System (ADS)

    Tuo, Ye; Marcolini, Giorgia; Disse, Markus; Chiogna, Gabriele

    2018-04-01

    Multi-objective hydrological model calibration can represent a valuable solution to reduce model equifinality and parameter uncertainty. The Soil and Water Assessment Tool (SWAT) model is widely applied to investigate water quality and water management issues in alpine catchments. However, the model calibration is generally based on discharge records only, and most of the previous studies have defined a unique set of snow parameters for an entire basin. Only a few studies have considered snow observations to validate model results or have taken into account the possible variability of snow parameters for different subbasins. This work presents and compares three possible calibration approaches. The first two procedures are single-objective calibration procedures, for which all parameters of the SWAT model were calibrated according to river discharge alone. Procedures I and II differ from each other by the assumption used to define snow parameters: The first approach assigned a unique set of snow parameters to the entire basin, whereas the second approach assigned different subbasin-specific sets of snow parameters to each subbasin. The third procedure is a multi-objective calibration, in which we considered snow water equivalent (SWE) information at two different spatial scales (i.e. subbasin and elevation band), in addition to discharge measurements. We tested these approaches in the Upper Adige river basin where a dense network of snow depth measurement stations is available. Only the set of parameters obtained with this multi-objective procedure provided an acceptable prediction of both river discharge and SWE. These findings offer the large community of SWAT users a strategy to improve SWAT modeling in alpine catchments.

  14. StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction

    NASA Astrophysics Data System (ADS)

    Gallice, Aurélien; Bavay, Mathias; Brauchli, Tristan; Comola, Francesco; Lehning, Michael; Huwald, Hendrik

    2016-12-01

    Climate change is expected to strongly impact the hydrological and thermal regimes of Alpine rivers within the coming decades. In this context, the development of hydrological models accounting for the specific dynamics of Alpine catchments appears as one of the promising approaches to reduce our uncertainty of future mountain hydrology. This paper describes the improvements brought to StreamFlow, an existing model for hydrological and stream temperature prediction built as an external extension to the physically based snow model Alpine3D. StreamFlow's source code has been entirely written anew, taking advantage of object-oriented programming to significantly improve its structure and ease the implementation of future developments. The source code is now publicly available online, along with a complete documentation. A special emphasis has been put on modularity during the re-implementation of StreamFlow, so that many model aspects can be represented using different alternatives. For example, several options are now available to model the advection of water within the stream. This allows for an easy and fast comparison between different approaches and helps in defining more reliable uncertainty estimates of the model forecasts. In particular, a case study in a Swiss Alpine catchment reveals that the stream temperature predictions are particularly sensitive to the approach used to model the temperature of subsurface flow, a fact which has been poorly reported in the literature to date. Based on the case study, StreamFlow is shown to reproduce hourly mean discharge with a Nash-Sutcliffe efficiency (NSE) of 0.82 and hourly mean temperature with a NSE of 0.78.

  15. Modeling of Future Changes in Seasonal Snowpack and Impacts on Summer Low Flows in Alpine Catchments

    NASA Astrophysics Data System (ADS)

    Jenicek, Michal; Seibert, Jan; Staudinger, Maria

    2018-01-01

    It is expected that an increasing proportion of the precipitation will fall as rain in alpine catchments in the future. Consequently, snow storage is expected to decrease, which, together with changes in snowmelt rates and timing, might cause reductions in spring and summer low flows. The objectives of this study were (1) to simulate the effect of changing snow storage on low flows during the warm seasons and (2) to relate drought sensitivity to the simulated snow storage changes at different elevations. The Swiss Climate Change Scenarios 2011 data set was used to derive future changes in air temperature and precipitation. A typical bucket-type catchment model, HBV-light, was applied to 14 mountain catchments in Switzerland to simulate streamflow and snow in the reference period and three future periods. The largest relative decrease in annual maximum SWE was simulated for elevations below 2,200 m a.s.l. (60-75% for the period 2070-2099) and the snowmelt season shifted by up to 4 weeks earlier. The relative decrease in spring and summer minimum runoff that was caused by the relative decrease in maximum SWE (i.e., elasticity), reached 40-90% in most of catchments for the reference period and decreased for the future periods. This decreasing elasticity indicated that the effect of snow on summer low flows is reduced in the future. The fraction of snowmelt runoff in summer decreased by more than 50% at the highest elevations and almost disappeared at the lowest elevations. This might have large implications on water availability during the summer.

  16. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    PubMed Central

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. PMID:24757012

  17. Simulation of torrential rain as a means for assessment of surface runoff coefficients and calculation of recurrent design events in alpine catchments

    NASA Astrophysics Data System (ADS)

    Markart, Gerhard; Kohl, Bernhard; Sotier, Bernadette; Klebinder, Klaus; Schauer, Thomas; Bunza, Günther

    2010-05-01

    Simulation of heavy rain is an established method for studying infiltration characteristics, runoff and erosion behaviour in alpine catchments. Accordingly for characterization and differentiation of various runoff producing areas in alpine catchments transportable spray irrigation installations for large plots have been developed at the BFW, Department of Natural Hazards and Alpine Timberline, in Innsbruck, Austria. One installation has been designed for assessment of surface runoff coefficients under convective torrential rain with applicable precipitation intensities between 30 and 120 mm*h-1 and a plot size between 50 and 100 m2. The second device is used for simulation of persistent rain events (rain intensity about 10 mm*h-1, plot size: 400-1200 m2). Very reasonable results have been achieved during the comparison with spray irrigations from other institutions (e.g. Bavarian Environmental Agency in Munich) in the field. Rain simulations at BFW are mostly combined with comprehensive additional investigations on land-use, vegetation cover, soil physical characteristics, soil humidity, hydrogeology and other features of the test-sites. This allows proper interpretation of the achieved runoff data. At the moment results from more than 280 rain simulations are available from about 25 catchments / regions of the Eastern Alps at the BFW. Results show that the surface runoff coefficient, when runoff is constant at the test site (φconst) increases only slightly between rain intensities from 30 to 120 mm*h-1 (increment is 6%). Therefore φconst shall be used for assessment of runoff behaviour of runoff contributing areas, because it is less dependent form system conditions than φtot. BFW-data have been consolidated with results of the LfU (Bavarian Environmental Agency in Munich) in a data base and formed the basis for the development of a simple code of practice for assessment of surface runoff coefficients in torrential rain. The manual is freely available under: http://bfw.ac.at/rz/bfwcms.web?dok=4342 (in German language). The runoff contributing areas delineated by use of the manual in the field can be compiled in digital surface runoff coefficient maps and surface roughness maps. These maps in Austria form the basis for calculation of recurrent design events by use of precipitation/runoff models (P/R-models) like ZEMOKOST (optimized runtime method after Zeller = ZEller MOdified by KOhl and STepanek) or HEC-HMS. The result is substantial information on runoff disposition in each sub-catchment and hydrographs showing peak runoff and runoff freight. The code of practice for assessment of surface runoff coefficients has become the standard procedure in Austria to derive input parameters for P/R-models in practice. Recent investigations done at the Institute of Geography at the University of Berne show that the code of practice is suitable for application in catchments at the northern edge of the Swiss Alps too.

  18. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes.

    PubMed

    Mladenov, N; Sommaruga, R; Morales-Baquero, R; Laurion, I; Camarero, L; Diéguez, M C; Camacho, A; Delgado, A; Torres, O; Chen, Z; Felip, M; Reche, I

    2011-07-26

    Remote lakes are usually unaffected by direct human influence, yet they receive inputs of atmospheric pollutants, dust, and other aerosols, both inorganic and organic. In remote, alpine lakes, these atmospheric inputs may influence the pool of dissolved organic matter, a critical constituent for the biogeochemical functioning of aquatic ecosystems. Here, to assess this influence, we evaluate factors related to aerosol deposition, climate, catchment properties, and microbial constituents in a global dataset of 86 alpine and polar lakes. We show significant latitudinal trends in dissolved organic matter quantity and quality, and uncover new evidence that this geographic pattern is influenced by dust deposition, flux of incident ultraviolet radiation, and bacterial processing. Our results suggest that changes in land use and climate that result in increasing dust flux, ultraviolet radiation, and air temperature may act to shift the optical quality of dissolved organic matter in clear, alpine lakes. © 2011 Macmillan Publishers Limited. All rights reserved.

  19. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an average input of approximately 13 kg C ha-1 yr-1 that could be as high as 24 kg C ha-1 yr-1 in high dust years and approaches that of autotrophic C fixation in barren soils.

  20. Climatic change effects on hydro-metereological variables in the Alps: a case study on the upper Arve catchment at Chamonix (France) over the last 50 years

    NASA Astrophysics Data System (ADS)

    Viani, Alessandra; Condom, Thomas; Bacchi, Baldassare; Zin, Isabella; Six, Delphine; Gottardi, Frederic; Rabatel, Antoine; Morin, Samuel

    2016-04-01

    Hydrological changes in partially glaciated catchments are expected under future climate scenarios, with consequences for water availability and management at catchment and regional scales. In order to correctly predict the magnitude of such changes and envisage adaptation and/or mitigation measures against water related hazards, a good understanding of the water cycle dynamics at different spatial and temporal scales is needed. The Upper Arve catchment in Chamonix (202 square kilometers), situated in the French Northern Alps, between the two massifs of Mont Blanc and Aiguilles Rouges, is a perfect case study for evaluating the sensitivity of the alpine water cycle to climate change. It is highly glaciated (32% of the total area in 2012) with three important glaciers: Glacier du Tour, Glacier d'Argentiere and Glacier de la Mer de Glace. Its elevation ranges from 1025 up to 4295 m a.s.l. and the exposure of the ice cover is generally north and east oriented. Long term time-series exist of (i) glacier mass balance, (ii) meteorological (in-situ and reanalyses) and (iii) hydrological data. The objectives of the presented study were: 1 - To characterize the inter-annual regimes of the different climatological and hydrological variables: precipitation, temperature and discharge; 2 - To estimate trends on the previous variables, at different temporal scales (annual and monthly) for different altitudes, and compare them to usually observed values in alpine regions; 3 - To infer from the previous statistical analyses and from a cross-analysis between the different considered variables the catchment's hydrological evolution during the last 50 years. Results showed precipitation, temperature and discharge regimes typical of high mountainous partially glaciated catchments. In the long term period, this catchment is characterized by an evident retreat of glacier. Long term trends over the past five decades show no significant change in the annual amount of precipitation. At the same time, a significantly increase of the number of rainy or snowy days is observed, related to an increase of the number of days with small precipitation intensities. Particularly, we have estimated a significant positive trend in the number of liquid precipitation days with intensities less than 10 mm per day (+ 49 days/year from 1934 to 2014). On the other hand, temperature increases significantly of about 0.3 K per decade in average over the lower part of the catchment (between 1100 and 2100 m a.s.l.). This increase is slightly greater than the previous estimated trends over the French Alps. At the same time, a weaker trend is estimated at higher altitudes, from 3000 to 3600 m a.s.l., which is a more surprising result with respect to the previous published values. Finally, an hydrological regime shift is observed with a melting season occurring earlier for the last two decades.

  1. Identification of groundwater nitrate sources in pre-alpine catchments: a multi-tracer approach

    NASA Astrophysics Data System (ADS)

    Stoewer, Myriam; Stumpp, Christine

    2014-05-01

    Porous aquifers in pre-alpine areas are often used as drinking water resources due to their good water quality status and water yield. Maintaining these resources requires knowledge about possible sources of pollutants and a sustainable management practice in groundwater catchment areas. Of particular interest in agricultural areas, like in pre-alpine regions, is limiting nitrate input as main groundwater pollutant. Therefore, the objective of the presented study is i) to identify main nitrate sources in a pre-alpine groundwater catchment with current low nitrate concentration using stable isotopes of nitrate (d18O and d15N) and ii) to investigate seasonal dynamics of nitrogen compounds. The groundwater catchment areas of four porous aquifers are located in Southern Germany. Most of the land use is organic grassland farming as well as forestry and residential area. Thus, potential sources of nitrate mainly are mineral fertilizer, manure/slurry, leaking sewage system and atmospheric deposition of nitrogen compounds. Monthly freshwater samples (precipitation, river water and groundwater) are analysed for stable isotope of water (d2H, d18O), the concentration of major anions and cations, electrical conductivity, water temperature, pH and oxygen. In addition, isotopic analysis of d18O-NO3- and d15N-NO3- for selected samples is carried out using the denitrifier method. In general, all groundwater samples were oxic (10.0±2.6mg/L) and nitrate concentrations were low (0.2 - 14.6mg/L). The observed nitrate isotope values in the observation area compared to values from local precipitation, sewage, manure and mineral fertilizer as well as to data from literature shows that the nitrate in freshwater samples is of microbial origin. Nitrate derived from ammonium in fertilizers and precipitation as well as from soil nitrogen. It is suggested that a major potential threat to the groundwater quality is ammonia and ammonium at a constant level mainly from agriculture activities as well as continuously release of nitrogen stored in agricultural soils due to mineralization processes. In all groundwater and river water samples a seasonal variation of nitrate sources and concentration is absent but nitrate in precipitation shows a clear seasonal variation with peaks in spring and fall according to agricultural activity. This points to dilution effects of high nitrate inputs due to the large groundwater volume and mean residence time and highlights the function of soil as initial sink for nitrogen compounds delivered by fertilizer. Even though nitrate contamination was low in the study area, the results emphasize the importance of reducing additional nitrate sources in pre-alpine oxic aquifers. This will maintain the good water quality status of the aquifers and enable its use for drinking water supply.

  2. Snowpack sensitivity to perturbed climate changes in alpine catchements

    USDA-ARS?s Scientific Manuscript database

    There is great interest in ascertaining the degree of climate change necessary to induce substantial changes in snow accumulation and ablation processes in mountain headwater catchments. Therefore, the response of mountain snow hydrology to changes in air temperature and precipitation was examined ...

  3. Trade-offs Between Electricity Production from Small Hydropower Plants and Ecosystem Services in Alpine River Basins

    NASA Astrophysics Data System (ADS)

    Meier, Philipp; Schwemmle, Robin; Viviroli, Daniel

    2015-04-01

    The need for a reduction in greenhouse gas emissions and the decision to phase out nuclear power plants in Switzerland and Germany increases pressure to develop the remaining hydropower potential in Alpine catchments. Since most of the potential for large reservoirs is already exploited, future development focusses on small run-of-the-river hydropower plants (SHP). Being considered a relatively environment-friendly electricity source, investment in SHP is promoted through subsidies. However, SHP can have a significant impact on riverine ecosystems, especially in the Alpine region where residual flow reaches tend to be long. An increase in hydropower exploitation will therefore increase pressure on ecosystems. While a number of studies assessed the potential for hydropower development in the Alps, two main factors were so far not assessed in detail: (i) ecological impacts within a whole river network, and (ii) economic conditions under which electricity is sold. We present a framework that establishes trade-offs between multiple objectives regarding environmental impacts, electricity production and economic evaluation. While it is inevitable that some ecosystems are compromised by hydropower plants, the context of these impacts within a river network should be considered when selecting suitable sites for SHP. From an ecological point of view, the diversity of habitats, and therefore the diversity of species, should be maintained within a river basin. This asks for objectives that go beyond lumped parameters of hydrological alteration, but also consider habitat diversity and the spatial configuration. Energy production in run-of-the-river power plants depends on available discharge, which can have large fluctuations. In a deregulated electricity market with strong price variations, an economic valuation should therefore be based on the expected market value of energy produced. Trade-off curves between different objectives can help decision makers to define policies for licensing new SHP and for defining minimum flow requirements. The trade-offs are established using a multi-objective evolutionary algorithm. A case study on an Alpine catchment is presented. The position of water intake and outlet and the design capacity of SHP, and different environmental flow policies are used as decision variables. The calculation of complex objectives, as described above, relies on an accurate representation of the physical system. The river network is divided into segments of 500 meters length for each of which the slope is calculated. Natural incremental flows are calculated for each segment using the PREVAH hydrological modelling system. Trade-offs are established on the basin scale as well as on the sub-basin scale. This allows the assessment of the influence of different configurations of SHP on ecosystem quality across different spatial scales.

  4. Development of the Finse Alpine Research Station towards a platform for multi-disciplinary research on Land-Atmosphere Interaction in Cold Environments (LATICE)

    NASA Astrophysics Data System (ADS)

    Burkhart, John F.; Decker, Sven; Filhol, Simon; Hulth, John; Nesje, Atle; Schuler, Thomas V.; Sobolowski, Stefan; Tallaksen, Lena M.

    2017-04-01

    The Finse Alpine Research Station provides convenient access to the Hardangervidda mountain plateau in Southern Norway (60 deg N, 1222 m asl). The station is located above the tree-line in vicinity to the west-eastern mountain water divide and is easily accessible by train from Bergen and Oslo. The station itself offers housing and basic laboratory facilities and has been used for ecological monitoring. Over the past years, studies on small-scale snow distribution and ground temperature have been performed and accompanied by a suite of meteorological measurements. Supported by strategic investments by the University of Oslo and ongoing research projects, these activities are currently expanded and the site is developed towards a mountain field laboratory for studies on Land-Atmosphere Interaction in Cold Environments, facilitated by the LATICE project (www.mn.uio.no/latice). Additional synergy comes from close collaborations with a range of institutions that perform operational monitoring close to Finse, including long-term time series of meteorological data and global radiation. Through our activities, this infrastructure has been complemented by a permanent tower for continuous Eddy-Covariance measurements along with associated gas fluxes. A second, mobile covariance system is in preparation and will become operational in 2017. In addition, a wireless sensor network is set up to grasp the spatial distributions of basic meteorological variables, snow depth and glacier mass balance on the nearby Hardangerjøkulen ice cap. While the research focus so far was on small scale processes (snow redistribution), this is now being expanded to cover hydrological processes on the catchment and regional scale. To this end, two discharge stations have been installed to gauge discharge from two contrasting catchments (glacier dominated and non-glacierized). In this presentation, we provide an overview over existing and planned infrastructure, field campaigns and research activities, accompanied by available data, the result of some preliminary analysis and discuss opportunities for future collaboration.

  5. Ecological stability during the LGM and the mid-Holocene in the Alpine Steppes of Tibet?

    NASA Astrophysics Data System (ADS)

    Miehe, Georg; Miehe, Sabine; Bach, Kerstin; Kluge, Jürgen; Wesche, Karsten; Yongping, Yang; Jianquan, Liu

    2011-09-01

    Arid and Alpine ecosystems are known for extreme environmental changes during the Late Quaternary. We hypothesize that the world's largest Alpine arid ecosystem however, the Alpine Steppes of the Tibetan highlands, remained ecologically stable during the LGM and the mid-Holocene. This hypothesis is tested by distributional range of plant species, plant life forms and rate of endemism. The set of character species has a precipitation gradient between 50 and 350 mm/a, testifying for resilience to precipitation changes. 83% of the species have a wider vertical range than 1000 m used as a proxy for resilience to temperature changes. 30% of the species are endemic with 10 endemic genera, including plate-shaped cushions as a unique plant life form. These findings are in line with palaeo-ecological proxies (δ 18O, pollen) allowing the assumption that Alpine Steppes persisted during the LGM with 3 to 4 K lower summer temperatures. During the mid-Holocene, forests could have replaced Alpine Steppes in the upper catchments of the Huang He, Yangtze, Mekong, Salween and Yarlung Zhangbo, but not in the interior basins of the north-western highlands, because the basins were then flooded, suppressing forests and supporting the environmental stability of this arid Alpine grassland biome.

  6. Influence of Slope-Scale Snowmelt on Catchment Response Simulated With the Alpine3D Model

    NASA Astrophysics Data System (ADS)

    Brauchli, Tristan; Trujillo, Ernesto; Huwald, Hendrik; Lehning, Michael

    2017-12-01

    Snow and hydrological modeling in alpine environments remains challenging because of the complexity of the processes affecting the mass and energy balance. This study examines the influence of snowmelt on the hydrological response of a high-alpine catchment of 43.2 km2 in the Swiss Alps during the water year 2014-2015. Based on recent advances in Alpine3D, we examine how snow distributions and liquid water transport within the snowpack influence runoff dynamics. By combining these results with multiscale observations (snow lysimeter, distributed snow depths, and streamflow), we demonstrate the added value of a more realistic snow distribution at the onset of melt season. At the site scale, snowpack runoff is well simulated when the mass balance errors are corrected (R2 = 0.95 versus R2 = 0.61). At the subbasin scale, a more heterogeneous snowpack leads to a more rapid runoff pulse originating in the shallower areas while an extended melting period (by a month) is caused by snowmelt from deeper areas. This is a marked improvement over results obtained using a traditional precipitation interpolation method. Hydrological response is also improved by the more realistic snowpack (NSE of 0.85 versus 0.74), even though calibration processes smoothen out the differences. The added value of a more complex liquid water transport scheme is obvious at the site scale but decreases at larger scales. Our results highlight not only the importance but also the difficulty of getting a realistic snowpack distribution even in a well-instrumented area and present a model validation from multiscale experimental data sets.

  7. Rain-on-snow events, floods and climate change in the Alps: Events may increase with warming up to 4°C and decrease thereafter.

    PubMed

    Beniston, Martin; Stoffel, Markus

    2016-11-15

    This paper focuses on the influence of mountain rain-on-snow (ROS) events that can on occasion trigger major floods in alpine catchments. In order to assess the evolution of these events in a recent past, and the potential changes that could be experienced in a changing climate over coming decades, we have focused on a small catchment in north-eastern Switzerland, the Sitter, well-endowed with both climate and hydrological data. Observations show that there has been an increase in the number of rain-on-snow events since the early 1960s related to the rise in atmospheric temperatures. Results from a simple temperature-based snow model show that the number of ROS events could increase by close to 50% with temperatures 2-4°C warmer than today, before declining when temperatures go beyond 4°C. The likelihood of more ROS events suggests that the risks of flooding in a future climate may indeed get worse before they improve. Copyright © 2016. Published by Elsevier B.V.

  8. Catchment Integration of Sensor Array Observations to Understand Hydrologic Connectivity

    NASA Astrophysics Data System (ADS)

    Redfern, S.; Livneh, B.; Molotch, N. P.; Suding, K.; Neff, J. C.; Hinckley, E. L. S.

    2017-12-01

    Hydrologic connectivity and the land surface water balance are likely to be impacted by climate change in the coming years. Although recent work has started to demonstrate that climate modulates connectivity, we still lack knowledge of how local ecology will respond to environmental and atmospheric changes and subsequently interact with connectivity. The overarching goal of this research is to address and forecast how climate change will affect hydrologic connectivity in an alpine environment, through the use of near-surface observations (temperature, humidity, soil moisture, snow depth) from a new 16-sensor array (plus 5 precipitation gauges), together with a distributed hydrologic model, over a small catchment on Colorado's Niwot Ridge (above 3000m). Model simulations will be constrained to distributed sensor measurements taken in the study area and calibrated with streamflow. Periods of wetting and dry-down will be analyzed to identify signatures of connectivity across the landscape, its seasonal signals and its sensitivity to land cover. Further work will aim to develop future hydrologic projections, compare model output with related observations, conduct multi-physics experiments, and continue to expand the existing sensor network.

  9. Mineral magnetism and other characteristics of sediments from a sub-alpine lake (3080 m a.s.l.) in central east China and their implications on environmental changes for the last 5770 years

    NASA Astrophysics Data System (ADS)

    Wang, Hongya; Song, Yaqiong; Cheng, Ying; Luo, Yao; Zhang, Cai'na; Gao, Yishen; Qiu, An'an; Deng, Lei; Liu, Hongyan

    2016-10-01

    A sediment sequence (SQC07) was recovered from Sanqing Chi, a small sub-alpine lake (3080 m a.s.l.) on Taibai (3767 m a.s.l.), the highest mountain in east mainland China (east of 105°). The Mountain is also the highest part and central massif of the Qinling Mountain Range functioning as the boundary between the warm temperate climate zone to the north and sub-tropical climate zone to the south in east China. Soils and debris were also sampled from the catchment of Sanqing Chi. SQC07 was AMS 14C dated. Mineral magnetism was measured for the sediment sequence and catchment samples. Particle-size, TOC and TN analysis were undertaken on SQC07, while pollen analysis was made for the sediment sequence and surface-soil samples. With the mineral magnetism of the catchment materials, the magnetic and other characteristics of SQC07 indicate the environmental changes occurring on the high altitudes of Taibai Mountain during the past 5770 years. Environments were still moderately warm and wet over 5770-5100 cal. yr BP around this sub-alpine lake. Then cold and dry conditions persisted in the period of 5100-4000 cal. yr BP. Local environments began to ameliorate from 4000 cal. yr BP onwards and were thus generally warm and wet over 4000-1200 cal. yr BP. The warmth and wetness culminated in 1200-800 cal. yr BP. During the period of 800-400 cal. yr BP, cold and arid conditions again predominated. Environments have subsequently become warm and humid since ∼400 cal. yr BP. The overall trend of the changes is coincident with what have been identified at several other sites in east mainland China and Taiwan. Presumably, the deterioration over 5100-4000 cal. yr BP marks the termination of the Holocene optimum, corresponds to or encompasses Holocene event 3, while the deterioration occurring in 800-400 cal. yr BP may correspond to LIA cooling. However, they appear to have commenced earlier than the aforementioned sites at relatively low altitudes in east mainland China or even higher altitudes but far southeast in Taiwan. These differences are possibly caused partly by uncertainties and/or errors of chronologies. Nevertheless, they also could be attributed to the spatial variability of East Asian monsoon and/or earlier responses of local landscapes around Sanqing Chi to larger-scale climate-deterioration.

  10. Why risk managers need information about spatio-temporal variability of natural hazards. Examples from practice

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas

    2013-04-01

    Integrated risk management consists of risk prevention, early warning, intervention during an event and restoration/re-construction after an event. The prevention phase consists of land use planning measures with a long-term time horizon and of structural measures that sometimes have a lifespan of more than 30-50 years. In this case, it is important to analyse the long-term evolvement of natural risks due to climate changes or land use changes. Besides of this, the spatial and temporal variability of a natural hazard process during the course of an event is also important. The shift from "static" hazard and risk assessment towards a "dynamic" assessment offers benefits for improving the intervention phase in risk management. This contribution describes some examples and points out the benefits of this shift for risk management. One example is the variable disposition of small alpine catchments for runoff and its relevance for early warning. The disposition for runoff depends on the actual status of environmental variables such as soil moisture and the snowpack characteristics. A feasibility study showed how the monitoring of soil moisture and the status of the snowpack can be incorporated into a rule base for describing the temporal variability of the disposition for high runoff in alpine catchments. The study showed that this information about the system state of alpine catchments can be used to improve the assessment of the consequences of a weather forecast for risk management. Another example is the use of snowpack and weather monitoring and traffic intensity measurements for avalanche risk management on alpine roads. Here, the information about the spatio-temporal variability of the snow avalanches and the presence of vehicles can be used for improving the procedures for road closure and re-opening. Another example is the preparation of intervention plans for fire brigades and other relief units during urban floods. The simulation of the temporal evolvement of a single flood event (time horizon of 0-24 hours) provides information for the elaboration of the intervention tactic. The following questions can be answered only by knowing the temporal and spatial evolvement during an event itself: Which intervention priorities have to be set if the resources of the relief units are limited? Which early interventions could be turn out to be unhelpful because in a later step the object to be protected will be flooded anyway? What is the time available for setting up object protection measures and other flood protection measures? The most important factor to implement the theory in practice is the focus on the interlinkages between the simulation of all possible scenarios in advance (scenario techniques, analysing the time-steps in flood simulation), the monitoring system (now-casting, real-time-data), the scenarios of intervention measures and their interdependency with the hazard scenarios. The interlinkages can be set up and described with the expert system approach.

  11. Is proglacial field an important contributor to runoff in glacierized watershed? Lesson learned from a case study in Duke River watershed, Yukon, Canada.

    NASA Astrophysics Data System (ADS)

    Chesnokova, A.; Baraer, M.

    2017-12-01

    Sub-Arctic glacierized catchments are complex hydrological systems of paramount importance not only for water resources management but also for various ecosystem services. Those areas are environmentally fragile and host many climate-sensitive components of hydrological cycle. In a context of shifting from glacial to non-glacial regimes in Sub-Arctic, this study focuses on understanding hydrological role of proglacial field in runoff generation in headwaters of Duke River watershed, Canada, by comparing to that of alpine meadow (area that is not recently reworked by glacier). Duke Glacier, as many glaciers in St. Elias Mountains, is a surging glacier, and produced debris-charged dead-ice masses once the last surge has seized. In addition, such features as ice-cored moraines and taluses are found in proglacial field. Those features are hypothesised to cause high storage capacity and complex groundwater distribution systems which might affect significantly watershed hydrology. In order to estimate the contribution of different components of the alpine meadow and the proglacial field to runoff, HBCM, a multi-component distributed hydrochemical mixing model (Baraer et al., 2015) was applied. During field campaign in June 2016, 157 samples were taken from possible hydrological sources (end-members) and from main stream, and analysed for major ions, dissolved organic compounds and heavy stable water isotopes. End-members contribution was quantified based on tracer concentration at mixing points. Discharge was measured 6 km downstream from the glacier snout so that both proglacial field and alpine meadow occupy comparable areas of the catchment. Results show the difference between main water sources for the two hydrological systems: buried ice, ice-cored moraines and groundwater sources within proglacial field, and groundwater and supra-permafrost water within alpine meadow. Overall contribution of glaciers during June 2016 exceeded the contribution of the rest of the components of hydrological system. However, water production from both proglacial field and alpine meadow was significant, with proglacial field yielding more water than alpine meadow. Since the Duke Glacier keeps retreating, the area of proglacial field is increasing as well as it role in runoff generation in the area.

  12. Alpine Ecohydrology Across Scales: Propagating Fine-scale Heterogeneity to the Catchment and Beyond

    NASA Astrophysics Data System (ADS)

    Mastrotheodoros, T.; Pappas, C.; Molnar, P.; Burlando, P.; Hadjidoukas, P.; Fatichi, S.

    2017-12-01

    In mountainous ecosystems, complex topography and landscape heterogeneity govern ecohydrological states and fluxes. Here, we investigate topographic controls on water, energy and carbon fluxes across different climatic regimes and vegetation types representative of the European Alps. We use an ecohydrological model to perform fine-scale numerical experiments on a synthetic domain that comprises a symmetric mountain with eight catchments draining along the cardinal and intercardinal directions. Distributed meteorological model input variables are generated using observations from Switzerland. The model computes the incoming solar radiation based on the local topography. We implement a multivariate statistical framework to disentangle the impact of landscape heterogeneity (i.e., elevation, aspect, flow contributing area, vegetation type) on the simulated water, carbon, and energy dynamics. This allows us to identify the sensitivities of several ecohydrological variables (including leaf area index, evapotranspiration, snow-cover and net primary productivity) to topographic and meteorological inputs at different spatial and temporal scales. We also use an alpine catchment as a real case study to investigate how the natural variability of soil and land cover affects the idealized relationships that arise from the synthetic domain. In accordance with previous studies, our analysis shows a complex pattern of vegetation response to radiation. We find also different patterns of ecosystem sensitivity to topography-driven heterogeneity depending on the hydrological regime (i.e., wet vs. dry conditions). Our results suggest that topography-driven variability in ecohydrological variables (e.g. transpiration) at the fine spatial scale can exceed 50%, but it is substantially reduced ( 5%) when integrated at the catchment scale.

  13. Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Konz, N.; Schaub, M.; Alewell, C.

    2010-06-01

    The focus of soil erosion research in the Alps has been in two categories: (i) on-site measurements, which are rather small scale point measurements on selected plots often constrained to irrigation experiments or (ii) off-site quantification of sediment delivery at the outlet of the catchment. Results of both categories pointed towards the importance of an intact vegetation cover to prevent soil loss. With the recent availability of high-resolution satellites such as IKONOS and QuickBird options for detecting and monitoring vegetation parameters in heterogeneous terrain have increased. The aim of this study is to evaluate the usefulness of QuickBird derived vegetation parameters in soil erosion models for alpine sites by comparison to Cesium-137 (Cs-137) derived soil erosion estimates. The study site (67 km 2) is located in the Central Swiss Alps (Urseren Valley) and is characterised by scarce forest cover and strong anthropogenic influences due to grassland farming for centuries. A fractional vegetation cover (FVC) map for grassland and detailed land-cover maps are available from linear spectral unmixing and supervised classification of QuickBird imagery. The maps were introduced to the Pan-European Soil Erosion Risk Assessment (PESERA) model as well as to the Universal Soil Loss Equation (USLE). Regarding the latter model, the FVC was indirectly incorporated by adapting the C factor. Both models show an increase in absolute soil erosion values when FVC is considered. In contrast to USLE and the Cs-137 soil erosion rates, PESERA estimates are low. For the USLE model also the spatial patterns improved and showed "hotspots" of high erosion of up to 16 t ha -1 a -1. In conclusion field measurements of Cs-137 confirmed the improvement of soil erosion estimates using the satellite-derived vegetation data.

  14. PROMAB-GIS: A GIS based Tool for Estimating Runoff and Sediment Yield in running Waters

    NASA Astrophysics Data System (ADS)

    Jenewein, S.; Rinderer, M.; Ploner, A.; Sönser, T.

    2003-04-01

    In recent times settlements have expanded, traffic and tourist activities have increased in most alpine regions. As a consequence, on the one hand humans and goods are affected by natural hazard processes more often, while on the other hand the demand for protection by both technical constructions and planning measures carried out by public authorities is growing. This situation results in an ever stronger need of reproducibility, comparability, transparency of all methods applied in modern natural hazard management. As a contribution to a new way of coping this situation Promab-GIS Version 1.0 has been developed. Promab-Gis has been designed as a model for time- and space-dependent determination of both runoff and bedload transport in rivers of small alpine catchment areas. The estimation of the unit hydrograph relies upon the "rational formula" and the time-area curves of the watershed. The time area diagram is a graph of cumulative drainage area contributing to discharge at the watershed outlet within a specified time of travel. The sediment yield is estimated for each cell of the channel network by determining the actual process type (erosion, transport or accumulation). Two types of transport processes are considered, sediment transport and debris flows. All functions of Promab-GIS are integrated in the graphical user interface of ArcView as pull-up menus and tool buttons. Hence the application of Promab-GIS does not rely on a sophisticated knowledge of GIS in general, respectively the ArcView software. However, despite the use of computer assistance, Promab-GIS still is an expert support system. In order to obtain plausible results, the users must be familiar with all the relevant processes controlling runoff and sediment yield in torrent catchments.

  15. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.

    PubMed

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-10-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  16. Adaptations of a physical-based hydrological model for alpine catchments. Application to the upper Durance catchment.

    NASA Astrophysics Data System (ADS)

    Lafaysse, Matthieu; Hingray, Benoit

    2010-05-01

    The impact of global change on water resources is expected to be especially pronounced in mountainous areas. Future hydrological scenarios required for impact studies are classically simulated with hydrological models from future meteorological scenarios based on GCMs outputs. Future hydrological regimes of French rivers were estimated following this methodology by Boé et al. (2009) with the physical-based hydrological model SAFRAN-ISBA-MODCOU (SIM), developed by Météo-France. Scenarios obtained for the Alps seem however not very reliable due to the poor performance achieved by the model for the present climate over this region. This work presents possible improvements of SIM for a more relevant simulation of alpine catchments hydrological behavior. Results obtained for the upper Durance catchment (3580 km2) are given for illustration. This catchment is located in Southern French Alps. Its outlet is the Serre-Ponçon lake, a large dam operated for hydropower production, with a key role for water supply in southeastern France. With altitudes ranging from 700 to 4100 meters, the catchment presents highly seasonal flows: minimum and maximum discharges are observed in winter and spring respectively due to snow accumulation and melt, low flows are sustained by glacier melt in late summer (39 km2 are covered by glaciers), major floods can be observed in fall due to large liquid precipitation amounts. Two main limitations of SIM were identified for this catchment. First the 8km-side grid discretization gives a bad representation of the spatial variability of hydrological processes induced by elevation and orientation. Then, low flows are not well represented because the model doesn't include deep storage in aquifers nor ice melt from glaciers. We modified SIM accordingly. For the first point, we applied a discretization based on topography : we divided the catchment in 9 sub-catchments and further 300 meters elevation bands. The vertical variability of meteorological inputs and vegetation cover could be thus better accounted for. Then, each elevation band is divided in 7 exposure classes, in order to represent the influence on snow cover of the solar radiation spatial variability . This discretisation results in 539 Hydrological Units where hydrological processes are assumed to be homogeneous. For the second point, we first included the possibility for glacier melt in previous discretization. We next added a conceptual non-linear underground reservoir in order to simulate water retention by aquifers. These adaptations lead to a clear improvement of simulations for all the hydrometric stations. Daily simulated discharges fit well with measurements (Nash score = 0.8). The model has a good ability to simulate interannual variability and it is robust under a long simulation period (1959-2006). This encourages us to use it in a modified climate context. We studied the effect of each model improvement with a set of sensitivity tests. Accounting for elevation bands allows simulating more persistent snow cover at high altitudes, contributing later to river flows. Adding underground storage leads to delay the snowmelt runoff transfer in river. The exposure influence is not so sensitive for discharges simulation, but it gives a more accurate description of the spatial variability of snow cover. Although glaciered areas are very small compared to total basin area, a better simulation of summer low flows is obtained including a glacier melt module. Despite previous improvements, winter low flows are still slightly underestimated. As suggested by a simple sensitivity analysis, this could be partly due to the fact that the model doesn't correctly simulate basal snowmelt by ground heat flow.

  17. Integrating petrography, mineralogy and hydrochemistry to constrain the influence and distribution of groundwater contributions to baseflow in poorly productive aquifers: insights from Gortinlieve catchment, Co. Donegal, NW Ireland.

    PubMed

    Caulfield, John; Chelliah, Merlyn; Comte, Jean-Christophe; Cassidy, Rachel; Flynn, Raymond

    2014-12-01

    Identifying groundwater contributions to baseflow forms an essential part of surface water body characterisation. The Gortinlieve catchment (5 km(2)) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite-montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently form the chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the maintenance of annual baseflow levels. This study identifies the importance of deep groundwater in maintaining annual baseflow levels in poorly productive bedrock systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Response Characteristics of Dissolved Organic Carbon Flushing in a Subarctic Alpine Catchment

    NASA Astrophysics Data System (ADS)

    Carey, S. K.

    2002-12-01

    Dissolved organic carbon (DOC) is an important part of ecosystem-scale carbon balances and in the transport of contaminants as it interacts with other dissolved substances including trace metals. It also can be used as a surrogate hydrological tracer in permafrost regions as near-surface waters are often DOC enriched due to the presence of thick organic soils. In a small subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, DOC was studied in the summer of 2001 and spring of 2002 to determine the role frost (both permanent and seasonal), snowmelt and summer storms on DOC flushing. Peak DOC concentrations occurred during the snowmelt period, approximately one week prior to peak discharge. However, peak discharge took place several weeks after snow on south facing exposures had melted. Within the hillslopes, DOC concentrations were three to five times greater in wells underlain with permafrost compared with seasonal frost. Groundwater DOC concentrations declined during snowmelt, yet remained at levels above the streamflow. After peaking, streamflow DOC concentrations declined exponentially suggesting a simple flushing mechanism, however there did not appear to be a relation between DOC and topographic position. Following melt, permafrost underlain slopes had near-surface water tables and retained elevated levels of DOC, whereas slopes without permafrost had rapidly declining water tables at upslope locations with low DOC concentrations at all positions except near-stream riparian zones. The influence of summer rainstorms on DOC was monitored on three occasions. In each case DOC peaked on the ascending limb of the runoff hydrograph and declined exponentially on the receding limb and hysteretic behavior occurred between discharge and DOC during all events. Patterns of DOC within the hillslopes and streams suggest that runoff from permafrost-underlain slopes control DOC flushing within the stream during both snowmelt and summer periods. This flushing mechanism conforms with conceptual models of runoff generation in discontinuous permafrost catchments whereby water tables within permafrost-underlain slopes rise into porous organic-layers, whereupon DOC is leached into the water and rapidly conveyed to the stream.

  19. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts

    PubMed Central

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart EG; Robinson, Christopher T

    2013-01-01

    Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning. PMID:23842653

  20. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts.

    PubMed

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart E G; Robinson, Christopher T

    2013-12-01

    Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning.

  1. Flash flood warning in mountainaious areas: using damages reports to evaluate the method at small ungauged catchments

    NASA Astrophysics Data System (ADS)

    Defrance, Dimitri; Javelle, Pierre; Ecrepont, Stéphane; Andreassian, Vazken

    2013-04-01

    In Europe, flash floods mainly occur in the Mediterranean area on small catchments with a short concentration time. Anticipating this kind of events is a major issue in order to reduce the resulting damages. But for many of the impacted catchments, no data are available to calibrate and evaluate hydrological models. In this context, the aims of this study is to develop and evaluate a warning method for the Southern French Alps. This area is of particular interest, because it regroups different hydrological regimes, from purely Mediterranean to purely Alpine influences. Two main issues should be addressed: - How to define the hydrological model and its parameterization for an application in an ungauged context? - How to evaluate the final results on 'real' ungauged catchments? The first issue is a classic one. Using a 'observed' data set (154 streamflow stations with catchment areas ranging from 5 to 1000 km² and distributed rainfall available on the 1997-2006 period), we developed a regional model specifically for the studied area. For this purpose, the AIGA method, initially developed for Mediterranean catchments was adapted, in order to take into account snowmelt and to produce baseflows. Then, different parameterizations were tested, derived from different simple regionalisation techniques: - the same parameters set for the whole area defined as the median of the local calibrated parameters; - the same technique as the previous case, but by considering different sub-areas, defined as "hydro-climatically" homogeneous by previous studies; - and finally the neighbour's method. The second issue is more original. Indeed, in most studies the final evaluation is done using gauged stations as they were 'ungauged', ie keeping the at-site discharge data only for validation ant not for calibration. The main disadvantage of this approach is that the evaluation is made at the scale of the gauged catchments, which are in general greater than the catchments impacted by flash floods. Furthermore, many events are missed, since flash floods can occur very locally. In this study, we try to evaluate the results on observations collected by witnesses on 'real' ungauged catchments. The proposed method consists to use an historical data-base of flood damages reports. These data have been collected by local authorities (RTM). Finally, 139 ungauged locations were considered, where we simulated discharges for the entire 1997-2006 period. The comparison of these modelled discharges with the occurrence of an observed discharge makes it possible to determine a local 'modelled' discharge threshold above it most of the damages are observed. The pertinence of this threshold (and consequently of the model used for the simulation) is assessed by considering classical contingency statistics: probability of detection (POD), false alarm rate (FAR) and critical success index (CSI). The main advantage of this historical approach is the availability of many events in the database on very small catchments (50% less than 20 km²). The preliminary results show that on gauged basins, the base flow and the snowmelt added modules improve the performance of the AIGA method when locally calibrated. But when results are applied on real ungauged catchments, improvements become less obvious, with a small advantage for neighbour's method. These results shows the difficulty arising with ungauged catchments, specially when target catchments are smaller than the gauged 'parents'. It also illustrates the interest of the damages database used as 'proxy' data to investigate the model performances at smaller scales. This work has been done in the framework of the RHYTMME project, with the financial support of the European Union, the Provence-Alpes-Côte d'Azur Region and the French Ministry in charge of Ecology.

  2. Groundwater, springs, and stream flow generation in an alpine meadow of a tropical glacierized catchment

    NASA Astrophysics Data System (ADS)

    Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.

    2013-12-01

    Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by discharge measurements and isotopic mixing. However, we expect that as streams flow down through extensive meadows and wetlands in many Cordillera Blanca valleys, meadow groundwater is a more significant contributor to streamflow. Results from this small, high meadow in Llanganuco will be compared to a larger and lower-elevation meadow system in the Quilcayhuanca valley.

  3. Seasonal characteristics of flood regimes across the Alpine-Carpathian range.

    PubMed

    Parajka, J; Kohnová, S; Bálint, G; Barbuc, M; Borga, M; Claps, P; Cheval, S; Dumitrescu, A; Gaume, E; Hlavčová, K; Merz, R; Pfaundler, M; Stancalie, G; Szolgay, J; Blöschl, G

    2010-11-17

    The aim of this paper is to analyse the differences in the long-term regimes of extreme precipitation and floods across the Alpine-Carpathian range using seasonality indices and atmospheric circulation patterns to understand the main flood-producing processes. This is supported by cluster analyses to identify areas of similar flood processes, both in terms of precipitation forcing and catchment processes. The results allow to isolate regions of similar flood generation processes including southerly versus westerly circulation patterns, effects of soil moisture seasonality due to evaporation and effects of soil moisture seasonality due to snow melt. In many regions of the Alpine-Carpathian range, there is a distinct shift in flood generating processes with flood magnitude as evidenced by a shift from summer to autumn floods. It is argued that the synoptic approach proposed here is valuable in both flood analysis and flood estimation.

  4. Impact of climate change and water use policies on hydropower potential in the south-eastern Alpine region.

    PubMed

    Majone, Bruno; Villa, Francesca; Deidda, Roberto; Bellin, Alberto

    2016-02-01

    Climate change is expected to cause alterations of streamflow regimes in the Alpine region, with possible relevant consequences for several socio-economic sectors including hydropower production. The impact of climate change on water resources and hydropower production is evaluated with reference to the Noce catchment, which is located in the Southeastern Alps, Italy. Projected changes of precipitation and temperature, derived from an ensemble of 4 climate model (CM) runs for the period 2040-2070 under the SRES A1B emission scenario, have been downscaled and bias corrected before using them as climatic forcing in a hydrological model. Projections indicate an increase of the mean temperature of the catchment in the range 2-4K, depending on the climate model used. Projections of precipitation indicate an increase of annual precipitation in the range between 2% and 6% with larger changes in winter and autumn. Hydrological simulations show an increase of water yield during the period 2040-2070 with respect to 1970-2000. Furthermore, a transition from glacio-nival to nival regime is projected for the catchment. Hydrological regime is expected to change as a consequence of less winter precipitation falling as snow and anticipated melting in spring, with the runoff peak decreasing in intensity and anticipating from July to June. Changes in water availability reflect in the Technical Hydropower Potential (THP) of the catchment, with larger changes projected for the hydropower plants located at the highest altitudes. Finally, the impacts on THP of water use policies such as the introduction of prescriptions for minimum ecological flow (MEF) have been analyzed. Simulations indicate that in the lower part of the catchment reduction of the hydropower production due to MEF releases from the storage reservoirs counterbalances the benefits associated to the projected increases of inflows as foreseen by simulations driven only by climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Intra-basin variability of snowmelt water balance calculations in a subarctic catchment

    NASA Astrophysics Data System (ADS)

    McCartney, Stephen E.; Carey, Sean K.; Pomeroy, John W.

    2006-03-01

    The intra-basin variability of snowmelt and melt-water runoff hydrology in an 8 km2 subarctic alpine tundra catchment was examined for the 2003 melt period. The catchment, Granger Creek, is within the Wolf Creek Research Basin, Yukon, which is typical of mountain subarctic landscapes in northwestern Canada. The study catchment was segmented into nine internally uniform zones termed hydrological response units (HRUs) based on their similar hydrological, physiographic, vegetation and soil properties. Snow accumulation exhibited significant variability among the HRUs, with greatest snow water equivalent in areas of tall shrub vegetation. Melt began first on southerly exposures and at lower elevations, yet average melt rates for the study period varied little among HRUs with the exception of those with steep aspects. In HRUs with capping organic soils, melt water first infiltrated this surface horizon, satisfying its storage capacity, and then percolated into the frozen mineral substrate. Infiltration and percolation into frozen mineral soils was restricted where melt occurred rapidly and organic soils were thin; in this case, melt-water delivery rates exceeded the frozen mineral soil infiltration rate, resulting in high runoff rates. In contrast, where there were slower melt rates and thick organic soils, infiltration was unlimited and runoff was suppressed. The snow water equivalent had a large impact on runoff volume, as soil storage capacity was quickly surpassed in areas of deep snow, diverting the bulk of melt water laterally to the drainage network. A spatially distributed water balance indicated that the snowmelt freshet was primarily controlled by areas with tall shrub vegetation that accumulate large quantities of snow and by alpine areas with no capping organic soils. The intra-basin water balance variability has important implications for modelling freshet in hydrological models.

  6. Impact of droughts on water provision in managed alpine grasslands in two climatically different regions of the Alps.

    PubMed

    Leitinger, Georg; Ruggenthaler, Romed; Hammerle, Albin; Lavorel, Sandra; Schirpke, Uta; Clement, Jean-Christophe; Lamarque, Pénélope; Obojes, Nikolaus; Tappeiner, Ulrike

    2015-12-01

    This study analyzes the impact of droughts, compared with average climatic conditions, on the supporting ecosystem service water provision in sub-watersheds in managed alpine grasslands in two climatically different regions of the Alps, Lautaret (French Alps) and Stubai (Austrian Alps). Soil moisture was modelled in the range of 0-0.3 m. At both sites, current patterns showed that the mean seasonal soil moisture was (1) near field capacity for grasslands with low management intensity and (2) below field capacity for grasslands with higher land-use intensity. Soil moisture was significantly reduced by drought at both sites, with lower reductions at the drier Lautaret site. At the sub-watershed scale, soil moisture spatial heterogeneity was reduced by drought. Under drought conditions, the evapotranspiration to precipitation ratios at Stubai was slightly higher than those at Lautaret, indicating a dominant 'water spending' strategy of plant communities. Regarding catchment water balance, deep seepage was reduced by drought at Stubai more strongly than at Lautaret. Hence, the observed 'water spending' strategy at Stubai might have negative consequences for downstream water users. Assessing the water provision service for alpine grasslands provided evidence that, under drought conditions, evapotranspiration was influenced not only by abiotic factors but also by the water-use strategy of established vegetation. These results highlight the importance of 'water-use' strategies in existing plant communities as predictors of the impacts of drought on water provision services and related ecosystem services at both the field and catchment scale.

  7. Runoff sources and flow paths dynamics in the Andean Páramo.

    NASA Astrophysics Data System (ADS)

    Correa, Alicia; Windhorst, David; Tetzlaff, Doerthe; Silva, Camila; Crespo, Patricio; Celleri, Rolando; Feyen, Jan; Breuer, Lutz

    2017-04-01

    The dynamics of runoff sources and flow paths in headwater catchments are still poorly understood. This is even more the case for remote areas such as the Páramo (Alpine grasslands) in the Andes, where these ecosystems act as water towers for a large fraction of the society. Temporal dynamics in water source areas, flow paths and relative age were assessed in a small catchment in the Ecuadorian Andes using data from the Zhurucay Ecohydrological Observatory (7.53 km2). We applied End Member Mixing Analysis, Hydrograph Separation and Inverse Transit Time Proxies to a multi-tracer set of solutes, stable isotopes, pH and electrical conductivity sampled from stream and twelve potential sources during two years. Rainfall, spring water and water from the bottom layers of Histosols (located at the foot of the hillslopes and in the riparian zone) and Andosols (located at the hillslopes) represented the dominant sources for runoff generation. Water coming from Histosols was the main contributor to stream water year-round, in line with a hydrological system that is dominated by pre-event water. Rainfall presented a uniform contribution during the year, while in drier conditions the spring water tripled in contribution. In wetter conditions, the relative age of stream water decreases, when the contributing area of the riparian zone expands, increasing the connectivity with lateral flow from hillslopes to the channel network. Being one of the earliest in the region, this multi-method study improved the understanding of the hydrological processes of headwater catchments and allowed to demonstrate that catchments with relatively homogeneous hydro-climatic conditions are characterized by inter-annual varying source contributions.

  8. Hydrogeology of an alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow

    NASA Astrophysics Data System (ADS)

    Lauber, U.; Kotyla, P.; Morche, D.; Goldscheider, N.

    2014-06-01

    The frequency and intensity of extreme hydrological events in alpine regions is projected to increase with climate change. The goal of this study was to better understand the functioning of aquifers composed of complex alluvial and rockfall deposits in alpine valleys and to quantify the role of these natural storage spaces in flood attenuation and baseflow maintenance. Geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements were conducted in the Reintal valley (German Alps), where runoff from a karst spring infiltrates into a series of postglacial alluvial/rockfall aquifers. During high-flow conditions, groundwater velocities of 30 m h-1 were determined along 500 m; hydrograph analyses revealed short lag times (5 h) between discharge peaks upstream and downstream from the aquifer series; the maximum discharge ratio downstream (22) and the peak recession coefficient (0.196 d-1) are low compared with other alpine catchments. During low-flow conditions, the underground flow path length increased to 2 km and groundwater velocities decreased to 13 m h-1. Downstream hydrographs revealed a delayed discharge response after 101 h and peaks dampened by a factor of 1.5. These results indicate that alluvial/rockfall aquifers might play an important role in the flow regime and attenuation of floods in alpine regions.

  9. Hydrogeology of an Alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow

    NASA Astrophysics Data System (ADS)

    Lauber, U.; Kotyla, P.; Morche, D.; Goldscheider, N.

    2014-11-01

    The frequency and intensity of extreme hydrological events in Alpine regions is projected to increase with climate change. The goal of this study is to better understand the functioning of aquifers composed of complex alluvial and rockfall deposits in Alpine valleys and to quantify the role of these natural storage spaces in flood attenuation and baseflow maintenance. Geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements were conducted in the Reintal (German Alps), where runoff from a karst spring infiltrates a series of postglacial alluvial/rockfall aquifers. During high-flow conditions, groundwater velocities of 30 m h-1 were determined along 500 m; hydrograph analyses revealed short lag times (5 h) between discharge peaks upstream and downstream from the aquifer series; the maximum discharge ratio downstream (22) and the peak recession coefficient (0.196 d-1) are low compared with other Alpine catchments. During low-flow conditions, the underground flow path length increased to 2 km and groundwater velocities decreased to 13 m h-1. Downstream hydrographs revealed a delayed discharge response after 101 h and peaks damped by a factor of 1.5. These results indicate that alluvial/rockfall aquifers might play an important role in the flow regime and attenuation of floods in Alpine regions.

  10. Sensitivity of alpine watersheds to global change

    NASA Astrophysics Data System (ADS)

    Zierl, B.; Bugmann, H.

    2003-04-01

    Mountains provide society with a wide range of goods and services, so-called mountain ecosystem services. Besides many others, these services include the most precious element for life on earth: fresh water. Global change imposes significant environmental pressure on mountain watersheds. Climate change is predicted to modify water availability as well as shift its seasonality. In fact, the continued capacity of mountain regions to provide fresh water to society is threatened by the impact of environmental and social changes. We use RHESSys (Regional HydroEcological Simulation System) to analyse the impact of climate as well as land use change (e.g. afforestation or deforestation) on hydrological processes in mountain catchments using sophisticated climate and land use scenarios. RHESSys combines distributed flow modelling based on TOPMODEL with an ecophysiological canopy model based on BIOME-BGC and a climate interpolation scheme based on MTCLIM. It is a spatially distributed daily time step model designed to solve the coupled cycles of water, carbon, and nitrogen in mountain catchments. The model is applied to various mountain catchments in the alpine area. Dynamic hydrological and ecological properties such as river discharge, seasonality of discharge, peak flows, snow cover processes, soil moisture, and the feedback of a changing biosphere on hydrology are simulated under current as well as under changed environmental conditions. Results of these studies will be presented and discussed. This project is part of an over overarching EU-project called ATEAM (acronym for Advanced Terrestrial Ecosystem Analysis and Modelling) assessing the vulnerability of European ecosystem services.

  11. A 15,400-year record of environmental magnetic variations in sub-alpine lake sediments from the western Nanling Mountains in South China: Implications for palaeoenvironmental changes

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Wei, Zhiqiang; Shang, Shentan; Ye, Susu; Tang, Xiaowen; Zhu, Chan; Xue, Jibin; Ouyang, Jun; Smol, John P.

    2018-04-01

    A detailed environmental magnetic investigation has been performed on a sub-alpine sedimentary succession deposited over the past 15,400 years in Daping Swamp in the western Nanling Mountains of South China. Magnetic parameters reveal that fine grains of pseudo-single domain (PSD) magnetite or titanomagnetite are the dominant magnetic minerals in the lake sediments and surface soils collected from the catchment, which suggests that magnetic minerals in lake sediments mainly originated from surface soil erosion of the catchment. Variation of surface runoff caused by rainfall is interpreted as the main process for transportation of weathered soils into the lake. In the Last Deglacial period (LGP, 15,400-11,500 cal a BP), the influx of magnetic minerals of detrital material may have been significantly affected by the severe dry and cold conditions of the Last Glacial Maximum. Stabilised conditions of the catchment associated with increased vegetation coverage (e.g., 8000-4500 and 2500-1000 cal a BP) limited the input of magnetic minerals. Intensive soil erosion caused by increased human activity may have given rise to abnormal increases in multiple magnetic parameters after 1000 cal a BP. Because changes in runoff and vegetation coverage are closely related to Asian summer monsoon (ASM) intensity, the sedimentary magnetism of Daping Swamp provides another source of information to investigate the evolution of the ASM.

  12. Application of in-situ measurement to determine 137Cs in the Swiss Alps.

    PubMed

    Schaub, M; Konz, N; Meusburger, K; Alewell, C

    2010-05-01

    Establishment of (137)Cs inventories is often used to gain information on soil stability. The latter is crucial in mountain systems, where ecosystem stability is tightly connected to soil stability. In-situ measurements of (137)Cs in steep alpine environments are scarce. Most studies have been carried out in arable lands and with Germanium (Ge) detectors. Sodium Iodide (NaI) detector system is an inexpensive and easy to handle field instrument, but its validity on steep alpine environments has not been tested yet. In this study, a comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of (137)Cs gamma soil radiation has been done in an alpine catchment with high (137)Cs concentration (Urseren Valley, Switzerland). The aim of this study was to calibrate the in-situ NaI detector system for application on steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley, measured in the laboratory with a GeLi detector, showed a large variability in (137)Cs activities at a meter scale. This small-scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provides integrated estimates of (137)Cs within the field of view (3.1 m(2)) of each measurement. There was no dependency of (137)Cs on pH, clay content and carbon content, but a close relationship was determined between measured (137)Cs activities and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation (R(2) = 0.86, p < 0.0001) was found for (137)Cs activities (in Bq kg(-1)) estimated with in-situ (NaI detector) and laboratory (GeLi detector) methods. We thus concluded that the NaI detector system is a suitable tool for in-situ measurements in alpine environments. This paper describes the calibration of the NaI detector system for field application under elevated (137)Cs activities originating from Chernobyl fallout. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. A detrital garnet fingerprint of the Central Swiss Alps

    NASA Astrophysics Data System (ADS)

    Stutenbecker, Laura; Berger, Alfons; Schlunegger, Fritz

    2017-04-01

    Detrital garnet is a promising candidate to reliably fingerprint sediment sources in the Alps, which has so far been complicated by the wide range and similarity of some of the lithologies. Garnet is present in most Alpine sediments, is easy to identify, is fairly stable and, most importantly, reflects the type and the metamorphic grade of its source rock in its chemical composition. This study aims to establish fingerprints based on detrital garnet composition for the most important tectonic units of the Central Alps, including European, Penninic and Adriatic basement rocks and their respective meta-sedimentary cover. Sediments collected from modern rivers, which drain representative portions of the individual tectonic units, contain a natural mixture of the various garnet populations present in each unit. We selected six catchments in southwestern Switzerland draining the External Massifs, Helvetic sediments and the Penninic nappe stack at the transition of Alpine greenschist- to amphibolite-facies metamorphism in order to test the variability of Alpine garnets and the role of inherited (pre-Alpine) garnets. Extraordinary grossular- and spessartine-rich garnets of the External massifs, which experienced greenschist facies metamorphism, are clearly distinguishable from generally almandine-rich garnets supplied by the higher-grade metamorphic Penninic nappe stack. The variable pyrope-, grossular- and spessartine-components of these almandine-rich garnets can be used to further distinguish pre-Alpine, Alpine eclogite-facies and low-grade metasedimentary garnets. This fingerprint has the potential to be used for reconstructing sediment sources, transport and dispersal patterns in a variety of settings throughout the Alpine sedimentary record.

  14. The potential of detrital garnet as a provenance proxy in the Central Swiss Alps

    NASA Astrophysics Data System (ADS)

    Stutenbecker, Laura; Berger, Alfons; Schlunegger, Fritz

    2017-04-01

    Detrital garnet is a promising candidate to reliably fingerprint sediment sources in the Alps, which has so far been complicated by the wide range and similarity of some of the lithologies. Garnet is present in most Alpine sediments, is easy to identify, is fairly stable and, most importantly, reflects the type and the metamorphic grade of its source rock in its chemical composition. This study aims to establish fingerprints based on detrital garnet composition for the most important tectonic units of the Central Alps, including European, Penninic and Adriatic basement rocks and their respective metasedimentary covers. Sediments collected from modern rivers, which drain representative portions of the individual tectonic units, contain a natural mixture of the various garnet populations present in each unit. We selected six catchments in southwestern Switzerland draining the External massifs, Helvetic sediments and the Penninic nappe stack at the transition of Alpine greenschist- to amphibolite-facies metamorphism in order to test the variability of Alpine garnets and the role of inherited (pre-Alpine) garnets. Extraordinary grossular- and spessartine-rich garnets of the External massifs, which experienced greenschist facies metamorphism, are clearly distinguishable from generally almandine-rich garnets supplied by the higher-grade metamorphic Penninic nappe stack. The variable pyrope, grossular and spessartine components of these almandine-rich garnets can be used to further distinguish pre-Alpine, Alpine eclogite-facies and low-grade metasedimentary garnets. This provenance proxy has the potential to be used for reconstructing sediment sources, transport and dispersal patterns in a variety of settings throughout the Alpine sedimentary record.

  15. Inverse Geochemical Reaction Path Modelling and the Impact of Climate Change on Hydrologic Structure in Snowmelt-Dominated Catchments in the Southwestern USA

    NASA Astrophysics Data System (ADS)

    Driscoll, J. M.; Meixner, T.; Molotch, N. P.; Sickman, J. O.; Williams, M. W.; McIntosh, J. C.; Brooks, P. D.

    2011-12-01

    Snowmelt from alpine catchments provides 70-80% of the American Southwest's water resources. Climate change threatens to alter the timing and duration of snowmelt in high elevation catchments, which may also impact the quantity and the quality of these water resources. Modelling of these systems provides a robust theoretical framework to process the information extracted from the sparse physical measurement available in these sites due to their remote locations. Mass-balance inverse geochemical models (via PHREEQC, developed by the USGS) were applied to two snowmelt-dominated catchments; Green Lake 4 (GL4) in the Rockies and Emerald Lake (EMD) in the Sierra Nevada. Both catchments primarily consist of granite and granodiorite with a similar bulk geochemistry. The inputs for the models were the initial (snowpack) and final (catchment output) hydrochemistry and a catchment-specific suite of mineral weathering reactions. Models were run for wet and dry snow years, for early and late time periods (defined hydrologically as 1/2 of the total volume for the year). Multiple model solutions were reduced to a representative suite of reactions by choosing the model solution with the fewest phases and least overall phase change. The dominant weathering reactions (those which contributed the most solutes) were plagioclase for GL4 and albite for EMD. Results for GL4 show overall more plagioclase weathering during the dry year (214.2g) than wet year (89.9g). Both wet and dry years show more weathering in the early time periods (63% and 56%, respectively). These results show that the snowpack and outlet are chemically more similar during wet years than dry years. A possible hypothesis to explain this difference is a change in contribution from subsurface storage; during the wet year the saturated catchment reduces contact with surface materials that would result in mineral weathering reactions by some combination of reduced infiltration and decreased subsurface transit time. By contrast, during the dry year infiltration and subsequent displacement of stored water that has had longer contact time with minerals and therefore has become more geochemically evolved to produce a greater difference between snowmelt and catchment outlet hydrochemistry. The results for EMD show little distinction between albite weathering for wet and dry years (55.9g and 66.0g, relatively). A hypothesis for this lack of difference in mineral phase changes may be due to less subsurface storage capacity in EMD relative to GL4. The spatial distribution of snowmelt has also been shown to influence the integrated watershed response, and future work includes using the Alpine Hydrochemical Model (AHM) to further investigate catchment response to these spatial data. The AHM will also provide further insight of surface-groundwater interactions through a more integrated model which includes hydrochemical, biological and physical processes to elucidate catchment response to changes in snowmelt dynamics.

  16. Travel Times of Water Derived from Three Naturally Occurring Cosmogenic Radioactive Isotopes

    NASA Astrophysics Data System (ADS)

    Visser, Ate; Thaw, Melissa; Deinhart, Amanda; Bibby, Richard; Esser, Brad

    2017-04-01

    Hydrological travel times are studied on scales that span six orders of magnitude, from daily event water in stream flow to pre-Holocene groundwater in wells. Groundwater vulnerability to contamination, groundwater surface water interactions and catchment response are often focused on "modern" water that recharged after the introduction of anthropogenic tritium in precipitation in 1953. Shorter residence times are expected in smaller catchments, resulting in immediate vulnerability to contamination. We studied a small (4.6 km2) alpine (1660-2117 m) catchment in a Mediterranean climate (8 ˚ C, 1200 mm/yr) in the California Sierra Nevada to assess subsurface storage and investigate the response to the recent California drought. We analyzed a combination of three cosmogenic radioactive isotopes with half-lives varying from 87 days (sulfur-35), 2.6 years (sodium-22) to 12.3 years (tritium) in precipitation and stream samples. Tritium samples (1 L) are analyzed by noble gas mass spectrometry after helium-3 accumulation. Samples for sulfur-35 and sodium-22 are collected by processing 20-1000 L of water through an anion and cation exchange column in-situ. Sulfur-35 is analyzed by liquid scintillation counting after chemical purification and precipitation. Sodium-22 is analyzed by gamma counting after eluting the cations into a 4L Marinelli beaker. Monthly collected precipitation samples show variability of deposition rate for tritium and sulfur-35. Sodium-22 levels in cumulative yearly precipitation samples are consistent with recent studies in the US and Japan. The observed variability of deposition rates complicates direct estimation of stream water age fractions. The level and variability of tritium in monthly stream samples indicate a mean residence time on the order of 10 years and only small contributions of younger water during high flow conditions. Estimates of subsurface storage are in agreement with estimates from geophysical studies. Detections of sodium-22 confirm a small fraction of younger (< 5 years) water. Low concentrations of sulfur-35 suggest very small contributions of same-year snowmelt or precipitation. Results from two contrasting years (severe drought in 2015 and near-normal conditions in 2016) illustrate travel time responses to hydrological conditions and further characterize the catchment properties. Combined analysis of three cosmogenic tracers provides a unique insight into the functioning of the catchment and constrains the volume of subsurface water storage. Short-lived naturally occurring radioactive isotopes sulfur-35 and sodium-22 are especially useful for vulnerability assessment of springs and karst systems where a contribution of very young water is expected. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-717377

  17. Revealing the Hidden Water Budget of an Alpine Volcanic Watershed Using a Bayesian Mixing Model

    NASA Astrophysics Data System (ADS)

    Markovich, K. H.; Arumi, J. L.; Dahlke, H. E.; Fogg, G. E.

    2017-12-01

    Climate change is altering alpine water budgets in observable ways, such as snow melting sooner or falling as rain, but also in hidden ways, such as shifting recharge timing and increased evapotranspiration demand leading to diminished summer low flows. The combination of complex hydrogeology and sparse availability of data make it difficult to predict the direction or magnitude of shifts in alpine water budgets, and thus difficult to inform decision-making. We present a data sparse watershed in the Andes Mountains of central Chile in which complex geology, interbasin flows, and surface water-groundwater interactions impede our ability to fully describe the water budget. We collected water samples for stable isotopes and major anions and cations, over the course of water year 2016-17 to characterize the spatial and temporal variability in endmember signatures (snow, rain, and groundwater). We use a Bayesian Hierarchical Model (BHM) to explicitly incorporate uncertainty and prior information into a mixing model, and predict the proportional contribution of snow, rain, and groundwater to streamflow throughout the year for the full catchment as well as its two sub-catchments. Preliminary results suggest that streamflow is likely more rainfall-dominated than previously thought, which not only alters our projections of climate change impacts, but make this watershed a potential example for other watersheds undergoing a snow to rain transition. Understanding how these proportions vary in space and time will help us elucidate key information on stores, fluxes, and timescales of water flow for improved current and future water resource management.

  18. Promise and Pitfalls of Using Grain Size Analysis to Identify Glacial Sediments in Alpine Lake Cores.

    NASA Astrophysics Data System (ADS)

    Clark, D. H.

    2011-12-01

    Lakes fed by glacier outwash should have a clastic particle-size record distinct from non-glacial lakes in the same area, but do they? The unique turquoise color of alpine glacial lakes reflects the flux of suspended clastic glacial rock flour to those lakes; conversely, lakes not fed by outwash are generally clear with sediments dominated by organics or slope-wash from nearby hillslopes. This contrast in sediment types and sources should produce a distinct and measureable different in grain sizes between the two settings. Results from a variety of lakes suggest the actual situation is often more subtle and complex. I compare grain size results to other proxies to assess the value of grain size analysis for paleoglacier studies. Over the past 10 years, my colleagues and I have collected and analyzed sediment cores from a wide variety of lakes below small alpine glaciers in an attempt to constrain the timing and magnitude of alpine glaciation in those basins. The basic concept is that these lakes act as continuous catchments for any rock flour produced upstream by glacier abrasion; as a glacier grows, the flux of rock flour to the lake will also increase. If the glacier disappears entirely, rock flour deposition will also cease in short order. We have focused our research in basins with simple sedimentologic settings: mostly small, high-altitude, stripped granitic or metamorphic cirques in which the cirque glaciers are the primary source of clastic sediments. In most cases, the lakes are fed by meltwater from a modern glacier, but were ice free during the earlier Holocene. In such cases, the lake cores should record formation of and changes in activity of the glacier upstream. We used a Malvern Mastersizer 2000 laser particle size analyzer for our grain size analyses, as well as recording magnetic susceptibility, color, and organics for the same cores. The results indicate that although lakes often experience increases in silt and clay-size (<0.63 mm) clastic particles when a glacier is present upstream, the signal can be highly variable and complex, most likely the result of stochastic processes in the basin. Our analyses indicate that although particle size reflects glacier activity upstream, it is rarely the best record of glacier change and is most useful in combination with other proxies, most notably MS, color, and organic content.

  19. Coupled prediction of flash flood response and debris flow occurrence in an alpine basin

    NASA Astrophysics Data System (ADS)

    Amponsah, William

    2015-04-01

    Coupled prediction of flash flood response and debris flow occurrence in an alpine basin Author(s): William Amponsah1, E.I. Nikolopoulos2, Lorenzo Marchi1, Roberto Dinale4, Francesco Marra3,Davide Zoccatelli2 , Marco Borga2 Affiliation(s): 1CNR - IRPI, Corso Stati Uniti 4, 35127, Padova, ITALY, 2Department of Land, Environment, Agriculture and Forestry, University of Padova,VialeDell'Università 16, 35020, Legnaro PD, ITALY 3Department of Geography, Hebrew University of Jerusalem, ISRAEL 4Ufficio Idrografico, Provincia Autonoma di Bolzano, Bolzano, Italy This contribution examines the main hydrologic and morphologic metrics responsible for widespread triggering of debris-flows associated with flash flood occurrences in headwater alpine catchments.To achieve this objective, we investigate the precipitation forcing, hydrologic responses and landslides and debris-flow occurrences that prevailed during the August 4-5, 2012 extreme flash flood on the 140 km2 Vizze basin in the Eastern Alps of Italy. An intensive post-event survey was carried out a few days after the flood. This included the surveys of cross-sectional geometry and flood marks for the estimation of the peak discharges at multiple river sections and of the initiation and deposition areas of several debris flows. Rainfall estimates are based on careful analysis of weather radar observations and raingauge data. These data and observations permitted the implementation and calibration of a spatially distributed hydrological model, which was used to derive simulated flood hydrographs in 58 tributaries of the Vizze basin. Of these, 33 generated debris-flows, with area ranging from 0.02 km2 to 10 km2, with an average of 1.5 km2. With 130 mm peak event rainfall and a duration of 4 hours (with a max intensity of 90 mm h-1 for 10 min), model-simulated unit peak discharges range from 4 m3 s-1 km-2for elementary catchments up to 10 km2 to 2 m3 s-1 km-2 for catchments in the range of 50 - 100 km2. These are very high values when considering the local runoff regime. We used a threshold criterion based on past works (Tognaccaet al., 2000; Berti and Simoni, 2005; Gregoretti and Dalla Fontana, 2008) to identify tributaries associated to debris flow events. The threshold is defined for each channel grid as a function of the simulated unit width peak flow, of the local channel bed slope and of the mean grain size. Based on assumptions concerning the mean grain size and given the distribution of the threshold values over the river network, we derive a catchment scale threshold index for the tributaries. The results show that the index has considerable skill in identifying the catchments where the studied rainstorm caused debris-flows. Berti, M. andA.Simoni, 2005: Experimental evidences and numerical modelling of debris flow initiated by channel runoff. Landslides, 2 (3), 171-182. Gregoretti, C. and G. Dalla Fontana, 2008:The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff. Hydrol. Process. 22, 2248-2263. Tognacca C., G.R. Bezzola andH.E.Minor, 2000: Threshold criterion fodebrisflow initiation due to channel bed failure. In Proceedings of the Second International Conference on Debris Flow Hazards Mitigation Taipei,August, Wiezczorek, Naeser (eds): 89-97.

  20. The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau.

    PubMed

    Sun, Xuejun; Wang, Kang; Kang, Shichang; Guo, Junming; Zhang, Guoshuai; Huang, Jie; Cong, Zhiyuan; Sun, Shiwei; Zhang, Qianggong

    2017-01-01

    Glaciers, particularly alpine glaciers, have been receding globally at an accelerated rate in recent decades. The glacial melt-induced release of pollutants (e.g., mercury) and its potential impact on the atmosphere and glacier-fed ecosystems has drawn increasing concerns. During 15th-20th August, 2011, an intensive sampling campaign was conducted in Qugaqie Basin (QB), a typical high mountain glacierized catchment in the inland Tibetan Plateau, to investigate the export and transport of mercury from glacier to runoff. The total mercury (THg) level in Zhadang (ZD) glacier ranged from <1 to 20.8 ng L -1 , and was slightly higher than levels measured in glacier melt water and the glacier-fed river. Particulate Hg (PHg) was the predominant form of Hg in all sampled environmental matrices. Mercury concentration in Qugaqie River (QR) was characterized by a clear diurnal variation which is linked to glacier melt. The estimated annual Hg exports by ZD glacier, the upper river basin and the entire QB were 8.76, 7.3 and 157.85 g, respectively, with respective yields of 4.61, 0.99 and 2.74 μg m -2  yr -1 . Unique landforms and significant gradients from the glacier terminus to QB estuary might promote weathering and erosion, thereby controlling the transport of total suspended particulates (TSP) and PHg. In comparison with other glacier-fed rivers, QB has a small Hg export yet remarkably high Hg yield, underlining the significant impact of melting alpine glaciers on regional Hg biogeochemical cycles. Such impacts are expected to be enhanced in high altitude regions under the changing climate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The role of melting alpine glaciers in mercury export and transport: an intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Sun, X.; Zhang, Q.

    2016-12-01

    Glaciers, particularly alpine glaciers, have been receding globally at an accelerated rate in recent decades. The glacial melt-induced release of pollutants (e.g., mercury) and its potential impact on the atmosphere and glacier-fed ecosystems has drawn increasing concerns. During 15th to 20th August, 2011, an intensive sampling campaign was conducted in Qugaqie Basin (QB), a typical high mountain glacierized catchment in the inland Tibetan Plateau, to investigate the export and transport of mercury from glacier to runoff. The total mercury (THg) level in Zhadang (ZD) glacier ranged from < 1 to 20.8 ng L-1, and was slightly higher than levels measured in glacier melt water and the glacier-fed river. Particulate Hg (PHg) was the predominant form of Hg in all sampled environmental matrices. Mercury concentration in Qugaqie River (QR) was characterized by a clear diurnal variation which is linked to glacier melt. The estimated annual Hg exports by ZD glacier, the upper river basin and the entire QB were 8.76, 7.3 and 157.85 g, respectively, with respective yields of 4.61, 0.99 and 2.74 μg m-2 yr-1. Unique landforms and significant gradients from the glacier terminus to QB estuary might promote weathering and erosion, thereby controlling the transport of total suspended particulates (TSP) and PHg. In comparison with other glacier-fed rivers, QB has a small Hg export yet remarkably high Hg yield, underlining the significant impact of melting alpine glaciers on regional Hg biogeochemical cycles. Such impacts are expected to be enhanced in high altitude regions under the changing climate.

  2. Validation of a simple distributed sediment delivery approach in selected sub-basins of the River Inn catchment area

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Kittlaus, Steffen; Scherer, Ulrike

    2015-04-01

    For large areas without highly detailed data the empirical Universal Soil Loss Equation (USLE) is widely used to quantify soil loss. The problem though is usually the quantification of actual sediment influx into the rivers. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). But it gets difficult with spatially lumped approaches in large catchment areas where the geographical properties have a wide variance. In this study we developed a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in the catchments. The sediment delivery ratio was determined using an empirical approach considering the slope, morphology and land use properties along the flow path as an estimation of travel time of the eroded particles. The model was tested against suspended solids measurements in selected sub-basins of the River Inn catchment area in Germany and Austria, ranging from the high alpine south to the Molasse basin in the northern part.

  3. Influence of spatial discretization, underground water storage and glacier melt on a physically-based hydrological model of the Upper Durance River basin

    NASA Astrophysics Data System (ADS)

    Lafaysse, M.; Hingray, B.; Etchevers, P.; Martin, E.; Obled, C.

    2011-06-01

    SummaryThe SAFRAN-ISBA-MODCOU hydrological model ( Habets et al., 2008) presents severe limitations for alpine catchments. Here we propose possible model adaptations. For the catchment discretization, Relatively Homogeneous Hydrological Units (RHHUs) are used instead of the classical 8 km square grid. They are defined from the dilineation of hydrological subbasins, elevation bands, and aspect classes. Glacierized and non-glacierized areas are also treated separately. In addition, new modules are included in the model for the simulation of glacier melt, and retention of underground water. The improvement resulting from each model modification is analysed for the Upper Durance basin. RHHUs allow the model to better account for the high spatial variability of the hydrological processes (e.g. snow cover). The timing and the intensity of the spring snowmelt floods are significantly improved owing to the representation of water retention by aquifers. Despite the relatively small area covered by glaciers, accounting for glacier melt is necessary for simulating the late summer low flows. The modified model is robust over a long simulation period and it produces a good reproduction of the intra and interannual variability of discharge, which is a necessary condition for its application in a modified climate context.

  4. Quantifying fluvial sediment transport in a mountain catchment (Schöttlbach, Styria) using sediment impact sensors

    NASA Astrophysics Data System (ADS)

    Stangl, Johannes; Sass, Oliver; Schneider, Josef; Harb, Gabriele

    2013-04-01

    Sediment transport in river systems, being the output of geomorphic processes in the catchment, is a recurrent problem for geomorphological sediment budget studies, natural hazard assessment and river engineering. Sediment budgets of alpine catchments are likely to be modified by changing total precipitation and the probability of heavy precipitation events in the context of climate change, even if projections of precipitation change for Austria and the entire Alpine region are still very uncertain. Effective sediment management requires profound knowledge on the sediment cascade in the head-waters. However, bedload measurements at alpine rivers or torrents are rare; in Styria, they are altogether missing. Due to a three hour heavy rainfall event on 07-Jul 2011, which caused cata-strophic flooding with massive damage in the city of Oberwölz and its surrounding, we chose the catchment area of the Schöttlbach in the upper Mur river valley in Styria (Austria) as our study area. In the framework of the ClimCatch project, we intend to develop a conceptual model of coupled and decoupled sediment routing to quantify the most prominent sediment fluxes and sediment sinks, combining up-to-date geomorphological and river engineering techniques. Repeated Airborne Laser Scans will provide an overview of ongoing processes, diachronous TLS surveys (cut-and-fill analysis), ground-penetrating radar and 2D-geoelectric surveys should quantity the most important mass fluxes on the slopes and in the channels and derive a quantitative sediment budget, including the volume of temporary sediment stores. Besides quantifying slope processes, sediment sinks and total sediment output, the sediment trans-port in the torrents is of particular interest. We use sediment impact sensors (SIS) which were in-stalled in several river sections in the main stretch of the Schöttlbach and in its tributaries. The SIS mainly consists of two parts connected by a coated cable, the steel shell with the sensor mounted in the riverbed and the logger-case nearby the river. The number of clast impacts is recorded through an acceleration sensor installed underneath a steel plate. This type of sensor was developed by Richardson et al. and later applied e.g. by Raven et al. and Rickenmann & Fritschi. However, this device does not supply volumetric information of sediment flux. For data on sediment volumes we are monitoring the sediment retention dam at the outlet of the Schöttlbach using repeated TLS sur-veys. Our measurements focus on the representative sub-catchments and will deliver values on the in- and output of river sections. Tests and calibration are carried out in an artificial channel at the Water Engineering laboratory of the TU Graz; the sensors are sensitive enough to record impacts of parti-cles > 5 mm. Further calibrations are carried out in the field using mobile basket samplers. The SIS were installed in winter 2012/13. First results allow us to derive the start of sediment transport in dependence of precipitation or water level, respectively. ClimCatch should find out where the sediments of the Schöttlbach catchment actually derive from, which geomorphic processes are the most important in our study area and which catchment areas are significant for the overall sediment output.

  5. Characterizing the spatiotemporal variability of groundwater levels of alluvial aquifers in different settings using drought indices

    NASA Astrophysics Data System (ADS)

    Haas, Johannes Christoph; Birk, Steffen

    2017-05-01

    To improve the understanding of how aquifers in different alluvial settings respond to extreme events in a changing environment, we analyze standardized time series of groundwater levels (Standardized Groundwater level Index - SGI), precipitation (Standardized Precipitation Index - SPI), and river stages of three subregions within the catchment of the river Mur (Austria). Using correlation matrices, differences and similarities between the subregions, ranging from the Alpine upstream part of the catchment to its shallow foreland basin, are identified and visualized. Generally, river stages exhibit the highest correlations with groundwater levels, frequently affecting not only the wells closest to the river, but also more distant parts of the alluvial aquifer. As a result, human impacts on the river are transferred to the aquifer, thus affecting the behavior of groundwater levels. Hence, to avoid misinterpretation of groundwater levels in this type of setting, it is important to account for the river and human impacts on it. While the river is a controlling factor in all of the subregions, an influence of precipitation is evident too. Except for deep wells found in an upstream Alpine basin, groundwater levels show the highest correlation with a precipitation accumulation period of 6 months (SPI6). The correlation in the foreland is generally higher than that in the Alpine subregions, thus corresponding to a trend from deeper wells in the Alpine parts of the catchment towards more shallow wells in the foreland. Extreme events are found to affect the aquifer in different ways. As shown with the well-known European 2003 drought and the local 2009 floods, correlations are reduced under flood conditions, but increased under drought. Thus, precipitation, groundwater levels and river stages tend to exhibit uniform behavior under drought conditions, whereas they may show irregular behavior during floods. Similarly, correlations are found to be weaker in years with little snow as compared with those with much snow. This is in agreement with typical aquifer response times over 1 month, suggesting that short events such as floods will not affect much of the aquifer, whereas a long-term event such as a drought or snow-rich winter will. Splitting the time series into periods of 12 years reveals a tendency towards higher correlations in the most recent time period from 1999 to 2010. This time period also shows the highest number of events with SPI values below -2. The SGI values behave in a similar way only in the foreland aquifer, whereas the investigated Alpine aquifers exhibit a contrasting behavior with the highest number of low SGI events in the time before 1986. This is a result of overlying trends and suggests that the groundwater levels within these subregions are more strongly influenced by direct human impacts, e.g., on the river, than by changes in precipitation. Thus, direct human impacts must not be ignored when assessing climate change impacts on alluvial aquifers situated in populated valleys.

  6. Contrasting model complexity under a changing climate in a headwaters catchment.

    NASA Astrophysics Data System (ADS)

    Foster, L.; Williams, K. H.; Maxwell, R. M.

    2017-12-01

    Alpine, snowmelt-dominated catchments are the source of water for more than 1/6th of the world's population. These catchments are topographically complex, leading to steep weather gradients and nonlinear relationships between water and energy fluxes. Recent evidence suggests that alpine systems are more sensitive to climate warming, but these regions are vastly simplified in climate models and operational water management tools due to computational limitations. Simultaneously, point-scale observations are often extrapolated to larger regions where feedbacks can both exacerbate or mitigate locally observed changes. It is critical to determine whether projected climate impacts are robust to different methodologies, including model complexity. Using high performance computing and an integrated model of a representative headwater catchment we determined the hydrologic response from 30 projected climate changes to precipitation, temperature and vegetation for the Rocky Mountains. Simulations were run with 100m and 1km resolution, and with and without lateral subsurface flow in order to vary model complexity. We found that model complexity alters nonlinear relationships between water and energy fluxes. Higher-resolution models predicted larger changes per degree of temperature increase than lower resolution models, suggesting that reductions to snowpack, surface water, and groundwater due to warming may be underestimated in simple models. Increases in temperature were found to have a larger impact on water fluxes and stores than changes in precipitation, corroborating previous research showing that mountain systems are significantly more sensitive to temperature changes than to precipitation changes and that increases in winter precipitation are unlikely to compensate for increased evapotranspiration in a higher energy environment. These numerical experiments help to (1) bracket the range of uncertainty in published literature of climate change impacts on headwater hydrology; (2) characterize the role of precipitation and temperature changes on water supply for snowmelt-dominated downstream basins; and (3) identify which climate impacts depend on the scale of simulation.

  7. Driver detection of water availability changes in a large Alpine river basin

    NASA Astrophysics Data System (ADS)

    Mallucci, Stefano; Majone, Bruno; Bellin, Alberto

    2017-04-01

    The Alpine region is widely recognised as an area with a particularly sensitive environment, where climate change is expected to modify the river flow regime, which effects on freshwater ecosystems and water resources have not been explored at depth. In the middle of the last century the Alpine region has been characterised by an intensive exploitation of water resources for hydropower production and irrigated agriculture that, in combination with climate change, induced significant and spatially uneven alterations in the flow regime. Disentangling the effects of human activities from climate change is a difficult task, which only recently attracted the interest of scientists and stakeholders. In this study historical time series of hydro-climatic data (i.e. streamflow, precipitation and temperature) recorded since 1920 in the Adige river basin, located in the southeastern part of the Alps, were analysed in order to quantify alterations of the main hydrological fluxes due to climate change and water uses and separate their reciprocal contribution. Spatial and temporal patterns of change are identified by comparing the water budget performed in 4 representative sub-basins of the Adige river basin: Adige at Trento (9852 km2) and Bronzolo (6891 km2), Gadera at Mantana (394 km2) and Avisio at Soraga (207 km2). These sub-catchments are characterised by different climatic and water uses conditions. Disentangling the effects of water uses from climate change is difficult because none are known through measurements, such that the water balance equation contains two unknowns. We overcome this difficulty by calibrating a real evapotranspiration model in the period 1920-1950, when the effects of both climate change and water uses are deemed small to negligible. This model is then included into the water balance equation, to obtain water uses in the following period, under the usual hypothesis of no significant interannual accumulation. The effect of climate change is therefore included in the external drivers (precipitation and temperature) and manifests itself through changes in precipitation and evapotranspiration, besides possible changes in runoff due to seasonal shifts in the precipitation. The northern part of the catchment (Adige at Bronzolo) does not show significant alterations of the hydrological balance, due to water uses, whereas a significant reducing trend of streamflow volumes is found in the middle course of the Adige (at Trento) since the '70s, which can be attributed to the intense development of irrigation agriculture in the drainage area of the Noce river, one of the main tributaries of the middle course of the Adige river. Conversely, Gadera at Mantana shows a significant positive trend in streamflow as a result of the complex interplay between shifts in the seasonal distribution of precipitation and rise of the temperature. This study shows that climate change is the main driver only in headwater basins, while water uses overcome its effect in the lower part of the catchment.

  8. Assessing the response of Emerald Lake, an alpine watershed in Sequoia National Park, California, to acidification during snowmelt by using a simple hydrochemical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, R.P.; West, C.T.; Peters, N.E.

    1990-01-01

    A sparsely parameterized hydrochemical model has been developed by using data from Emerald Lake watershed, which is a 120-ha alpine catchment in Sequoia National Park, California. Greater than 90% of the precipitation to this watershed is snow; hence, snowmelt is the dominant hydrologic event. A model which uses a single alkalinity-generating mechanism, primary mineral weathering, was able to capture the pattern of solute concentrations in surface waters during snowmelt. An empirical representation of the weathering reaction, which is based on rock weathering stoichiometry and which uses discharge as a measure of residence time, was included in the model. Results ofmore » the model indicate that current deposition levels would have to be increased between three-fold and eight-fold to exhaust the alkalinity of the lake during snowmelt if their is a mild acidic pulse in the stream at the beginning of snowmelt as was observed during the study period. The acidic pulse in the inflow stream at the onset of snowmelt was less pronounced than acidic pulses observed in the meltwater draining the snowpack at a point using snow lysimeters or in the laboratory. Sulfate concentrations in the stream water were the most constant; chloride and nitrate concentrations increased slightly at the beginning of snowmelt. Additional field work is required to resolve whether an acidic meltwater pulse occurs over a large area as well as at a point or whether, due to physical and chemical processes within the snowpack, the acidic meltwater pulse is attenuated at the catchment scale. The modest data requirements of the model permit its applications to other alpine watersheds that are much less intensively studied than Emerald Lake watershed.« less

  9. Impact of droughts on water provision in managed alpine grasslands in two climatically different regions of the Alps

    PubMed Central

    Ruggenthaler, Romed; Hammerle, Albin; Lavorel, Sandra; Schirpke, Uta; Clement, Jean‐Christophe; Lamarque, Pénélope; Obojes, Nikolaus; Tappeiner, Ulrike

    2015-01-01

    Abstract This study analyzes the impact of droughts, compared with average climatic conditions, on the supporting ecosystem service water provision in sub‐watersheds in managed alpine grasslands in two climatically different regions of the Alps, Lautaret (French Alps) and Stubai (Austrian Alps). Soil moisture was modelled in the range of 0–0.3 m. At both sites, current patterns showed that the mean seasonal soil moisture was (1) near field capacity for grasslands with low management intensity and (2) below field capacity for grasslands with higher land‐use intensity. Soil moisture was significantly reduced by drought at both sites, with lower reductions at the drier Lautaret site. At the sub‐watershed scale, soil moisture spatial heterogeneity was reduced by drought. Under drought conditions, the evapotranspiration to precipitation ratios at Stubai was slightly higher than those at Lautaret, indicating a dominant ‘water spending’ strategy of plant communities. Regarding catchment water balance, deep seepage was reduced by drought at Stubai more strongly than at Lautaret. Hence, the observed ‘water spending’ strategy at Stubai might have negative consequences for downstream water users. Assessing the water provision service for alpine grasslands provided evidence that, under drought conditions, evapotranspiration was influenced not only by abiotic factors but also by the water‐use strategy of established vegetation. These results highlight the importance of ‘water‐use’ strategies in existing plant communities as predictors of the impacts of drought on water provision services and related ecosystem services at both the field and catchment scale. © 2015 The Authors. Ecohydrology published by John Wiley & Sons, Ltd. PMID:26688705

  10. Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range

    USGS Publications Warehouse

    Clow, D.W.; Schrott, L.; Webb, R.; Campbell, D.H.; Torizzo, A.O.; Dornblaser, M.

    2003-01-01

    Ground water occurrence, movement, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Front Range of the Colorado Rocky Mountains. Hydrogeomorphologic mapping, seismic refraction measurements, and porosity and permeability estimates indicate that talus slopes are the primary ground water reservoir, with a maximum storage capacity that is equal to, or greater than, total annual discharge from the basin (5.4 ± 0.8 × 106 m3). Although snowmelt and glacial melt provide the majority of annual water flux to the basin, tracer tests and gauging along a stream transect indicate that ground water flowing from talus can account for ≥75% of streamflow during storms and the winter base flow period. The discharge response of talus springs to storms and snowmelt reflects rapid transmittal of water through coarse debris at the talus surface and slower release of water from finer-grained sediments at depth.Ice stored in permafrost (including rock glaciers) is the second largest ground water reservoir in Loch Vale; it represents a significant, but seldom recognized, ground water reservoir in alpine terrain. Mean annual air temperatures are sufficiently cold to support permafrost above 3460 m; however, air temperatures have increased 1.1° to 1.4°C since the early 1990s, consistent with long-term (1976–2000) increases in air temperature measured at other high-elevation sites in the Front Range, European Alps, and Peruvian Andes. If other climatic factors remain constant, the increase in air temperatures at Loch Vale is sufficient to increase the lower elevational limit of permafrost by 150 to 190 m. Although this could cause a short-term increase in streamflow, it may ultimately result in decreased flow in the future.

  11. Temporal coherence of two alpine lake basins of the Colorado Front Range, USA

    USGS Publications Warehouse

    Baron, Jill S.; Caine, N.

    2000-01-01

    1. Knowledge of synchrony in trends is important to determining regional responses of lakes to disturbances such as atmospheric deposition and climate change. We explored the temporal coherence of physical and chemical characteristics of two series of mostly alpine lakes in nearby basins of the Colorado Rocky Mountains. Using year-to-year variation over a 10-year period, we asked whether lakes more similar in exposure to the atmosphere be-haved more similarly than those with greater influence of catchment or in-lake processes.2. The Green Lakes Valley and Loch Vale Watershed are steeply incised basins with strong altitudinal gradients. There are glaciers at the heads of each catchment. The eight lakes studied are small, shallow and typically ice-covered for more than half the year. Snowmelt is the dominant hydrological event each year, flushing about 70% of the annual discharge from each lake between April and mid-July. The lakes do not thermally stratify during the period of open water. Data from these lakes included surface water temper-ature, sulphate, nitrate, calcium, silica, bicarbonate alkalinity and conductivity.3. Coherence was estimated by Pearson's correlation coefficient between lake pairs for each of the different variables. Despite close geographical proximity, there was not a strong direct signal from climatic or atmospheric conditions across all lakes in the study. Individual lake characteristics overwhelmed regional responses. Temporal coherence was higher for lakes within each basin than between basins and was highest for nearest neighbours.4. Among the Green Lakes, conductivity, alkalinity and temperature were temporally coherent, suggesting that these lakes were sensitive to climate fluctuations. Water tem-perature is indicative of air temperature, and conductivity and alkalinity concentrations are indicative of dilution from the amount of precipitation flushed through by snowmelt.5. In Loch Vale, calcium, conductivity, nitrate, sulphate and alkalinity were temporally coherent, while silica and temperature were not. This suggests that external influences are attenuated by internal catchment and lake processes in Loch Vale lakes. Calcium and sulphate are primarily weathering products, but sulphate derives both from deposition and from mineral weathering. Different proportions of snowmelt versus groundwater in different years could influence summer lake concentrations. Nitrate is elevated in lake waters from atmospheric deposition, but the internal dynamics of nitrate and silica may be controlled by lake food webs. Temperature is attenuated by inconsistently different climates across altitude and glacial meltwaters.6. It appears that, while the lakes in the two basins are topographically close, geologically and morphologically similar, and often connected by streams, only some attributes are temporally coherent. Catchment and in-lake processes influenced temporal patterns, especially for temperature, alkalinity and silica. Montane lakes with high altitudinal gradients may be particularly prone to local controls compared to systems where coherence is more obvious.

  12. Risk-based flood protection planning under climate change and modeling uncertainty: a pre-alpine case study

    NASA Astrophysics Data System (ADS)

    Dittes, Beatrice; Kaiser, Maria; Špačková, Olga; Rieger, Wolfgang; Disse, Markus; Straub, Daniel

    2018-05-01

    Planning authorities are faced with a range of questions when planning flood protection measures: is the existing protection adequate for current and future demands or should it be extended? How will flood patterns change in the future? How should the uncertainty pertaining to this influence the planning decision, e.g., for delaying planning or including a safety margin? Is it sufficient to follow a protection criterion (e.g., to protect from the 100-year flood) or should the planning be conducted in a risk-based way? How important is it for flood protection planning to accurately estimate flood frequency (changes), costs and damage? These are questions that we address for a medium-sized pre-alpine catchment in southern Germany, using a sequential Bayesian decision making framework that quantitatively addresses the full spectrum of uncertainty. We evaluate different flood protection systems considered by local agencies in a test study catchment. Despite large uncertainties in damage, cost and climate, the recommendation is robust for the most conservative approach. This demonstrates the feasibility of making robust decisions under large uncertainty. Furthermore, by comparison to a previous study, it highlights the benefits of risk-based planning over the planning of flood protection to a prescribed return period.

  13. A numerical solution to define channel heads and hillslope parameters from digital topography of glacially conditioned catchments

    NASA Astrophysics Data System (ADS)

    Salcher, Bernhard; Baumann, Sebastian; Kober, Florian; Robl, Jörg; Heiniger, Lukas

    2016-04-01

    The analysis of the slope-area relationship in bedrock streams is a common way for discriminating the channel from the hillslope domain and associated landscape processes. Spatial variations of these domains are important indicators of landscape change. In fluvial catchments, this relationship is a function of contributing drainage area, channel slope and the threshold drainage area for fluvial erosion. The resulting pattern is related to climate, tectonic and underlying bedrock. These factors may become secondary in catchments affected by glacial erosion, as it is the case in many mid- to high-latitude mountain belts. The perturbation (i.e. the destruction) of an initial steady state fluvial bedrock morphology (where uplift is balanced by surface lowering rates) will tend to become successively larger if the repeated action of glacial processes exceeds the potential of fluvial readjustment during deglaciated periods. Topographic change is associated with a decrease and fragmentation of the channel network and an extension of the hillslope domain. In case of glacially conditioned catchments discrimination of the two domains remains problematic and a discrimination inconsistent. A definition is therefore highly needed considering that (i) a spatial shift in the domains affect the process and rate of erosion and (ii) topographic classifications of alpine catchments often base on channel and hillslope parameters (i.e.channel or hillslope relief). Here we propose a novel numerical approach to topographically define channel heads from digital topography in glacially conditioned mountain range catchments in order to discriminate the channel from the hillslope domain. We analyzed the topography of the southern European Central Alps, a region which (i) has been glaciated multiple times during the Quaternary, shows (ii) little lithological variations, is (iii) home of very low erodible rocks and is (iv) known as a region were tectonic processes have largely ceased. The region shows a distinct increase of mean elevation from the major overdeepend valleys near the Foreland to the alpine main divide at around 4000 m.a.s.l. within a distance of only 150 km. To define channel heads we first analyzed the variations to fine-scale topography of catchments by calculating the plan curvature at low topographic wavelengths. Higher elevated catchments more frequently impacted by glacial erosion show a higher degree in topographic flattening than catchments with a lower mean elevation where rougher fluvial (steady state) channels dominate. We found that this process of glacial destruction of fine-scale topography can well be analyzed by extracting the plan curvature from a DEM (1-30 m resolution). We furthermore found that the plan curvature frequency depends on the mean elevation of a catchment. Accordingly, the correlation between mean elevation of basins and the related density of pixels with a certain curvature is highly controlled by the used curvature threshold (e.g. used range of curvature pixels). A statistically derived optimum of the negative plan curvature was taken to define a threshold for the concavity of channels. The resulting fragmented network of channel segments was then fully integrated by utilizing a steepest descent algorithm. The upstream-most point of this fully integrated network was then defined as channel head. Our approach offers not only a consistent method to derive (i) hillslope and channel parameters in formerly glaciated catchments but also to (ii) measure the degree in glacial conditioning and therefore (iii) separating non-glacial from glacial catchments.

  14. The application of GEOtop for catchment scale hydrology in Ireland

    NASA Astrophysics Data System (ADS)

    Lewis, C.; Xu, X.; Albertson, J.; Kiely, G.

    2009-04-01

    GEOtop represents the new generation of distributed hydrological model driven by geospatial data (e.g. topography, soils, vegetation, land cover). It estimates rainfall-runoff, evapotranspiration and provides spatially distributed outputs as well as routing water and sediment flows through stream and river networks. The original version of GEOtop designed in Italy, includes a rigorous treatment of the core hydrological processes (e.g. unsaturated and saturated flow and transport, surface energy balances, and streamflow generation/routing). Recently GEOtop was extended to include treatment of shallow landslides. The GEOtop model is built on an open-source programming framework, which makes it well suited for adaptation and extension. GEOtop has been run very successfully in a number of alpine catchments (such as Brenta) but has not been used on Irish catchments before. The cell size used for the spatially distributed inputs varies from catchment to catchment. In smaller catchments (less than 2000ha) 50 by 50m cells have been used and 200 by 200 for larger catchments. Smaller cell sizes have been found to significantly increase the computational time so a larger cell size is used providing it does not significantly affect the performance of the model. Digital elevation model, drainage direction, landuse and soil type maps are the minimum spatial requirements with precipitation, radiation, temperature, atmospheric pressure and wind speed been the minimum meteorological requirements for a successful run. The soil type maps must also contain information regarding texture and hydraulic conductivity. The first trial of GEOtop in Ireland was on a small 1524 ha catchment in the south of Ireland. The catchment ranges from 50 to just over 200m, the land use is predominately agricultural grassland and it receives on average 1400mm of rain per year. Within this catchment there is a meteorological tower which provides the meteorological inputs, soil moisture is also recorded at this location. GEOtop was run from the end of April 2006 to December 2007. A comparison of measured and simulated values of soil moisture showed some good results and proved that the model could be successfully be used in Ireland. Following initial success in modelling soil moisture in a small catchment GEOtop was then used in the much larger 115,000 ha Blackwater catchment. The variation of soil type within the catchment was obtained from a national soils database while Landuse data was obtained from the national Corrine Land use database. Hydraulic properties were estimated by carrying out on site infiltration experiments. As GEOtop can accept multiple rainfall inputs and it was known that the rainfall varies substantially within in the catchment it was decided to make use of a rainfall study on the Blackwater catchment. A total of 21 rain gauges were deployed around the catchment for year 2006. The data from these 21 rain gauges were then added to the inputs which GEOtop interpolated the rainfall using the kriging method. Continuous flow is recorded at the outlet of the Blackwater catchment and as GEOtop simulates stream flows we were able to see how well GEOtop modelled the hydrology of the catchment. Comparisons of simulated versus real flow showed that GEOtop was providing us with satisfactory results. Once we were satisfied that GEOtop was successfully modelling the catchment we were able to see the effects of varying rain fall and land use on many different hydraulic parameters such stream flow, soil suction potential, soil moisture content etc. When this process has been carried out for other parts of the country it is planned to use GEOtop study potential threats to soil quality such as erosion, surface sealing, compaction, landslides and loss of organic matter. New modules will be develop for GEOtop to help understand and quantify these threats. The model will also be used to help understand the interactions between soil hydrology, land use and climate change (with climate projections from the IPCC fourth assessment). These outputs will be combined with Irish geo-spatial data to develop a GIS-based risk assessment tool to predict impacts on soil quality based on hydrology, land use and climate change.

  15. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  16. Assessing the response of Emerald Lake, an alpine watershed in Sequoia National Park, California, to acidification during snowmelt by using a simple hydrochemical model. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, R.P.; West, C.T.; Peters, N.E.

    1990-08-01

    The authors constructed a simple, process-oriented model, called the Alpine Lake Forecaster (ALF), using data collected during the Integrated Watershed Study at Emerald Lake, Sequoia National Park, CA. The model was designed to answer questions concerning the impact of acid deposition on high-elevation watersheds in the Sierra Nevada, CA. ALF is able to capture the basic solute patterns in stream water during snowmelt in this alpine catchment where ground water is a minor contributor to stream flow. It includes an empirical representation of primary mineral weathering as the only alkalinity-generating mechanism. Hydrologic and chemical data from a heavy snow yearmore » were used to calibrate the model. Watershed processes during a light snow year appeared to be different from the calibration year. The model forecast concludes that stream and lake water are most likely to experience a loss of ANC and depression in pH during spring rain storms that occur during the snowmelt dilution phase.« less

  17. Reliable estimates of predictive uncertainty for an Alpine catchment using a non-parametric methodology

    NASA Astrophysics Data System (ADS)

    Matos, José P.; Schaefli, Bettina; Schleiss, Anton J.

    2017-04-01

    Uncertainty affects hydrological modelling efforts from the very measurements (or forecasts) that serve as inputs to the more or less inaccurate predictions that are produced. Uncertainty is truly inescapable in hydrology and yet, due to the theoretical and technical hurdles associated with its quantification, it is at times still neglected or estimated only qualitatively. In recent years the scientific community has made a significant effort towards quantifying this hydrologic prediction uncertainty. Despite this, most of the developed methodologies can be computationally demanding, are complex from a theoretical point of view, require substantial expertise to be employed, and are constrained by a number of assumptions about the model error distribution. These assumptions limit the reliability of many methods in case of errors that show particular cases of non-normality, heteroscedasticity, or autocorrelation. The present contribution builds on a non-parametric data-driven approach that was developed for uncertainty quantification in operational (real-time) forecasting settings. The approach is based on the concept of Pareto optimality and can be used as a standalone forecasting tool or as a postprocessor. By virtue of its non-parametric nature and a general operating principle, it can be applied directly and with ease to predictions of streamflow, water stage, or even accumulated runoff. Also, it is a methodology capable of coping with high heteroscedasticity and seasonal hydrological regimes (e.g. snowmelt and rainfall driven events in the same catchment). Finally, the training and operation of the model are very fast, making it a tool particularly adapted to operational use. To illustrate its practical use, the uncertainty quantification method is coupled with a process-based hydrological model to produce statistically reliable forecasts for an Alpine catchment located in Switzerland. Results are presented and discussed in terms of their reliability and resolution.

  18. Floods, droughts and anomalous weather during the late Spörer minimum in Central Europe: the examples of the Carpathian Basin, the Eastern Alpine Region and Northern Italy

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea; Enzi, Silvia; Rohr, Christian

    2017-04-01

    Central Europe suffered from a major multi-decadal environmental crisis from the early 1470s onwards. The turn of the 15th-16th centuries was characterised by an unusually high number of stress factors related to large-scale climate variability, amongst others locally manifested in the great increase of weather-related extremes such as the multiannual droughts of the 1470s, with further significant drought periods in the 1490s and 1500s; the extraordinary high frequency of hard winters in the 1470s-1490s, and a major flood-rich period from the late 1470s to the mid-1520s. From the human impact side, the recurrent crisis was greatly intensified by biological hazards such as plague epidemic cycles and devastating multi-annual locust invasions that gravely affected our investigated region. Wars and war-expenses further deepened this crisis. In our presentation we provide an overview of flood peaks on major Italian (e.g. Po, Adige) and Eastern-Alpine (e.g. Danube, Salzach, Traun), Carpathian-Basin (Danube, Danube catchment, Tisza catchment) rivers and river catchments, with special emphasis on great flood years (e.g. 1485, 1499, 1501, 1508 etc.). Further topics of the discussion are droughts and multiannual dry periods, together with related environmental problems (e.g. locust invasions, bad harvests) such as the one in the 1470s, the early-mid 1490s, 1503 and 1506-1507. The third major group of weather extremes in the period consists of hard winters. This and other extreme weather events, together with their (potential) socio-economic effects comprise the final major topic of discussion of the paper.

  19. Assesment of future river habitat suitability under climate change scenarios in a mesoscale Alpine watershed of Italy (Serio River, Italian Alps)

    NASA Astrophysics Data System (ADS)

    Groppelli, B.; Confortola, G.; Soncini, A.; Bocchiola, D.; Rosso, R.

    2011-12-01

    We merge hydraulic river modelling, use of suitability functions for fish guild colonization and hydrological modelling of catchment response to investigate future (until 2100) hydrological cycle and fish habitat suitability for an Alpine catchment in Italy, Serio river (drainage area 450 Km2, average altitude 1300 m a.s.l., main channel length ca. 36 km). Based upon detailed river channel morphology data for 73 river sections and direct local investigation we then set up and tune a quasi 2-D (i.e. with floodplains) hydraulic model for in channel flows hydraulics, depending upon daily in stream discharge. We then evaluate distributed values of hydraulic variables and therein composite habitat suitability indexes CS for a representative target species (brown trout, Salmo Trutta Fario L.), resulting into usable wetted area WUA for fish colonization. We consider both juvenile JUV and adults AD, and we evaluate the frequency (days in a year/season) of yearly/seasonal, spatially distributed and bulk (whole stream) habitat quality. We then provide synthetic indicators of (yearly/seasonal) suitability level and duration within the river. We then set up a minimal (T, P), properly tuned hydrological model able to mimick Serio river's hydrological cycle. We then use downscaled future precipitation and temperature from three general circulation models, GCMs (PCM, CCSM3, and HadCM3) available within the IPCC's data base chosen for the purpose based upon previous studies, to feed our hydrological model and provide projected hydrological regime of the catchment, together with modified habitat suitability. We then comment upon modified flow regime, habitat suitability as obtained and related uncertainty. The proposed results may be of use for river managers and may provide a template for investigation about future river habitat quality pending climate change.

  20. Implications of climate change scenarios for agriculture in alpine regions--a case study in the Swiss Rhone catchment.

    PubMed

    Fuhrer, J; Smith, P; Gobiet, A

    2014-09-15

    Coping with climate change in agriculture requires knowledge of trends in agro-climatic conditions with a focus at the smaller scales where decisions are taken. As part of the EU FP7 ACQWA project, the situation was analyzed for agriculture in the case of the Swiss Rhone catchment (Valais) where cultivation of permanent crops (orchards and vineyards) and livestock production are the most important agro-economic activities. The aim of this study was to use daily data from four downscaled and bias corrected transient climate change scenarios to analyze changes in water and temperature related indices over the period 1951-2050 for three locations (Aigle, Sion, Montana) that are representative of different production zones in the catchment. The results indicate that most relevant implications are caused by projected changes in temperature and not in precipitation. They indicate an extension of the thermal growing season with potentially positive effects on pasture and livestock production, most pronounced at the mountain site (Montana), but a trend towards increasing risks of frost in permanent crops and in heat stress for livestock at the valley bottom (Aigle, Sion). The increase in water requirement for irrigation in 2021-2050 relative to 1981-2009 is moderate (4-16%, depending on location). However, in years with low amounts of snow and rain, in small catchments with a nival regime, reduced water supply by rivers could restrict the surface area of grassland that can be irrigated, particularly during springtime. It is concluded that coping with heat-related risks may be most needed at the lower cropland and pasture sites while water-related issues would become more relevant in more elevated locations where pasture-based livestock production is the dominant type of agricultural land use. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis.

    PubMed

    Slatyer, Rachel A; Nash, Michael A; Miller, Adam D; Endo, Yoshinori; Umbers, Kate D L; Hoffmann, Ary A

    2014-10-02

    Mountain landscapes are topographically complex, creating discontinuous 'islands' of alpine and sub-alpine habitat with a dynamic history. Changing climatic conditions drive their expansion and contraction, leaving signatures on the genetic structure of their flora and fauna. Australia's high country covers a small, highly fragmented area. Although the area is thought to have experienced periods of relative continuity during Pleistocene glacial periods, small-scale studies suggest deep lineage divergence across low-elevation gaps. Using both DNA sequence data and microsatellite markers, we tested the hypothesis that genetic partitioning reflects observable geographic structuring across Australia's mainland high country, in the widespread alpine grasshopper Kosciuscola tristis (Sjösted). We found broadly congruent patterns of regional structure between the DNA sequence and microsatellite datasets, corresponding to strong divergence among isolated mountain regions. Small and isolated mountains in the south of the range were particularly distinct, with well-supported divergence corresponding to climate cycles during the late Pliocene and Pleistocene. We found mixed support, however, for divergence among other mountain regions. Interestingly, within areas of largely contiguous alpine and sub-alpine habitat around Mt Kosciuszko, microsatellite data suggested significant population structure, accompanied by a strong signature of isolation-by-distance. Consistent patterns of strong lineage divergence among different molecular datasets indicate genetic breaks between populations inhabiting geographically distinct mountain regions. Three primary phylogeographic groups were evident in the highly fragmented Victorian high country, while within-region structure detected with microsatellites may reflect more recent population isolation. Despite the small area of Australia's alpine and sub-alpine habitats, their low topographic relief and lack of extensive glaciation, divergence among populations was on the same scale as that detected in much more extensive Northern hemisphere mountain systems. The processes driving divergence in the Australian mountains might therefore differ from their Northern hemisphere counterparts.

  2. Integrating remotely sensed hydrologic parameters into an index of sediment connectivity

    NASA Astrophysics Data System (ADS)

    Ahlmer, Anna-Klara; Kalantari, Zhara; Cavalli, Marco; Crema, Stefano

    2017-04-01

    As a consequence of a changing climate the occurrence of unexpected events, like flooding and erosion, that affects urban areas will most likely increase. The infrastructure is especially vulnerable to heavy rainfall events due to high costs and long term investments. Accumulation of water and sediments thus has a large impact on the consequences of such events, and it is therefore essential to identify factors that influence the catchment and the occurrence of flooding. Both spatial and temporal characteristics of the patterns of sediment connectivity is important for estimating the sediment contribution and transfer paths in a catchment. In recent years several approaches have been developed to assess sediment connectivity, as for example the geomorphometric indices of sediment connectivity which mainly picture a static frame of the system. With the development of remote sensing technology and the growing availability of satellite images the opportunity to consider also temporal variability and hydrological parameters as soil moisture within this kind of indices is increasing (e.g., Foerster et al., 2014; Gay et al., 2015). However, there is still a knowledge gap in considering the potential of soil moisture satellite imagery in assessing sediment connectivity at the catchment scale. This study aims to integrate spatial and temporal soil moisture properties in the index of sediment connectivity by Cavalli et al. (2013), which can be used to predict where flood events will have the strongest impact. The results will provide decision makers with a prediction tool to identify road-intersections that are prone to flood risk at the catchment scale. The method developed in this study would increase awareness and be a basis for decision makers and stakeholders to promote action towards enabling sustainable water and land management. References Cavalli, M., Trevisani, S., Comiti, F., Marchi, L. , (2013) Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188: 31-41, doi:10.1016/j.geomorph.2012.05.007. Foerster, S., Wilczok,.C., Brosinsky, A., Segl, K., (2014) Assessment of sediment connectivity from vegetation cover and topography using remotely sensed data in a dryland catchment in the Spanish Pyrenees. J Soils Sediments 14:1982-2000 Gay, A., Cerdan, O., Mardhel, V., Desmet, M. (2015) Application of an index of sediment connectivity in a lowland area. J. Soils Sediments 16(1), 280-293, doi:10.1007/s11368-015-1235-y,.

  3. From Points to Patterns - Functional Relations between Groundwater Connectivity and Catchment-scale Streamflow Response

    NASA Astrophysics Data System (ADS)

    Rinderer, M.; McGlynn, B. L.; van Meerveld, I. H. J.

    2016-12-01

    Groundwater measurements can help us to improve our understanding of runoff generation at the catchment-scale but typically only provide point-scale data. These measurements, therefore, need to be interpolated or upscaled in order to obtain information about catchment scale groundwater dynamics. Our approach used data from 51 spatially distributed groundwater monitoring sites in a Swiss pre-alpine catchment and time series clustering to define six groundwater response clusters. Each of the clusters was characterized by distinctly different site characteristics (i.e., Topographic Wetness Index and curvature), which allowed us to assign all unmonitored locations to one of these clusters. Time series modeling and the definition of response thresholds (i.e., the depth of more transmissive soil layers) allowed us to derive maps of the spatial distribution of active (i.e., responding) locations across the catchment at 15 min time intervals. Connectivity between all active locations and the stream network was determined using a graph theory approach. The extent of the active and connected areas differed during events and suggests that not all active locations directly contributed to streamflow. Gate keeper sites prevented connectivity of upslope locations to the channel network. Streamflow dynamics at the catchment outlet were correlated to catchment average connectivity dynamics. In a sensitivity analysis we tested six different groundwater levels for a site to be considered "active", which showed that the definition of the threshold did not significantly influence the conclusions drawn from our analysis. This study is the first one to derive patterns of groundwater dynamics based on empirical data (rather than interpolation) and provides insight into the spatio-temporal evolution of the active and connected runoff source areas at the catchment-scale that is critical to understanding the dynamics of water quantity and quality in streams.

  4. WegenerNet 1km-scale sub-daily rainfall data and their application: a hydrological modeling study on the sensitivity of small-catchment runoff to spatial rainfall variability

    NASA Astrophysics Data System (ADS)

    Oh, Sungmin; Hohmann, Clara; Foelsche, Ulrich; Fuchsberger, Jürgen; Rieger, Wolfgang; Kirchengast, Gottfried

    2017-04-01

    WegenerNet Feldbach region (WEGN), a pioneering experiment for weather and climate observations, has recently completed its first 10-year precipitation measurement cycle. The WEGN has measured precipitation, temperature, humidity, and other parameters since the beginning of 2007, supporting local-level monitoring and modeling studies, over an area of about 20 km x 15 km centered near the City of Feldbach (46.93 ˚ N, 15.90 ˚ E) in the Alpine forelands of southeast Austria. All the 151 stations in the network are now equipped with high-quality Meteoservis sensors as of August 2016, following an equipment with Friedrichs sensors at most stations before, and continue to provide high-resolution (2 km2/5-min) gauge based precipitation measurements for interested users in hydro-meteorological communities. Here we will present overall characteristics of the WEGN, with a focus on sub-daily precipitation measurements, from the data processing (data quality control, gridded data products generation, etc.) to data applications (e.g., ground validation of satellite estimates). The latter includes our recent study on the propagation of uncertainty from rainfall to runoff. The study assesses responses of small-catchment runoff to spatial rainfall variability in the WEGN region over the Raab valley, using a physics-based distributed hydrological model; Water Flow and Balance Simulation Model (WaSiM), developed at ETH Zurich (Schulla, ETH Zurich, 1997). Given that uncertainty due to resolution of rainfall measurements is believed to be a significant source of error in hydrologic modeling especially for convective rainfall that dominates in the region during summer, the high-resolution of WEGN data furnishes a great opportunity to analyze effects of rainfall events on the runoff at different spatial resolutions. Furthermore, the assessment can be conducted not only for the lower Raab catchment (area of about 500 km2) but also for its sub-catchments (areas of about 30-70 km2). Beside the question how many stations are necessary for reliable hydrological modeling, different interpolation methods like Inverse Distance Interpolation, Elevation Dependent Regression, and combinations will be tested. This presentation will show the first results from a scale-depending analysis of spatial and temporal structures of heavy rainfall events and responses of simulated runoff at the event scale in the WEGN region.

  5. Tracer-based identification of rock glacier thawing in a glacierized Alpine catchment

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Penna, Daniele; Tirler, Werner; Comiti, Francesco

    2017-04-01

    Current warming in high mountains leads to increased melting of snow, glacier ice and permafrost. In particular rock glaciers, as a creeping form of mountain permafrost, may release contaminants such as heavy metals into the stream during intense melting periods in summer. This may have strong impacts on both water quantity and quality of fresh water resources but might also harm the aquatic fauna in mountain regions. In this context, the present study used stable isotopes of water and electrical conductivity (EC) combined with trace, major and minor elements to identify the influence of permafrost thawing on the water quality in the glacierized Solda catchment (130 km2) in South Tyrol (Italy). We carried out a monthly sampling of two springs fed by an active rock glacier at about 2600 m a.s.l. from July to October 2015. Furthermore, we took monthly water samples from different stream sections of the Solda River (1110 to m a.s.l.) from March to November 2015. Meteorological data were measured by an Automatic Weather Station at 2825 m a.s.l. of the Hydrographic Office (Autonomous Province of Bozen-Bolzano). First results show that water from the rock glacier springs and stream water fell along the global meteoric water line. Spring water was slightly more variable in isotopic ratio (δ2H: -91 to - 105 ) and less variable in dissolved solutes (EC: 380 to 611 μS/cm) than stream water (δ2H: -96 to - 107 ‰ and EC: 212 to 927 μS/cm). Both spring water and stream water showed a pronounced drop in EC during July and August, very likely induced by increased melt water dilution. In both water types, element concentrations of Ca and Mg were highest (up to 160 and 20 mg/l, respectively). In September, spring water showed higher concentrations in Cu, As, and Pb than stream water, indicating that these elements partly exceeded the concentration limit for drinking water. These observations highlight the important control, which rock glacier thawing may have on water quality of alpine streams and they underline the need for water quality monitoring at high elevations. Keywords: stable isotopes of water; heavy metals, permafrost thawing; alpine rivers; glacierized catchment

  6. Customization of a hydrological model for the estimation of water resources in an alpine karstified catchment with sparse data

    NASA Astrophysics Data System (ADS)

    Kauzlaric, Martina; Schädler, Bruno; Weingartner, Rolf

    2014-05-01

    The main objective of the MontanAqua transdisciplinary project is to develop strategies moving towards a more sustainable water resources management in the Crans-Montana-Sierre region (Valais, Switzerland) in view of global change. Therefore, a detailed assessment of the available water resources in the study area today and in the future is needed. The study region is situated in the inner alpine zone, with strong altitudinal precipitation gradients: from the precipitation rich alpine ridge down to the dry Rhône plain. A typical plateau glacier on top of the ridge is partly drained through the karstic underground formations and linked to various springs to either side of the water divide. The main anthropogenic influences on the system are reservoirs and diversions to the irrigation channels. Thus, the study area does not cover a classical hydrological basin as the water flows frequently across natural hydrographic boundaries. This is a big challenge from a hydrological point of view, as we cannot easily achieve a closed, measured water balance. Over and above, a lack of comprehensive historical data in the catchment reduces the degree of process conceptualization possible, as well as prohibits usual parameter estimation procedures. The Penn State Integrated Hydrologic Model (PIHM) (Kumar, 2009) has been selected to estimate the available natural water resource for the whole study area. It is a semi-discrete, physically-based model which includes: channel routing, overland flow, subsurface saturated and unsaturated flow, rainfall interception, snow melting and evapotranspiration. Its unstructured mesh decomposition offers a flexible domain decomposition strategy for efficient and accurate integration of the physiographic, climatic and hydrographic watershed. The model was modified in order to be more suitable for a karstified mountainous catchment: it now includes the possibility to punctually add external sources, and the temperature-index approach for estimating melt was adjusted to include the influence of solar radiation. No parameter calibration in a classical sense was used as sufficient observations are missing. Hence, parameters are estimated with values obtained from the literature, catchment boundaries were determined basing on tracer experiments, as well as the relationship between precipitation, spring- and river-discharge. Historical data such as river discharge, infiltration experiments and snow and glacier mass balance measurements were used to validate simulations. Here some case studies are presented, illustrating the difficulty of estimating snowmelt and icemelt parameters, of judging their correctness, as well as the consequent sensitivity of the regional water balance. REFERENCES Kumar, M. 2009: Toward a hydrologic modeling system. PhD Thesis, Departement of civil and Environmental engineering, Pennsylvania State University, USA.

  7. The role of alpine rockfall aquifer systems in baseflow maintenance and flood attenuation

    NASA Astrophysics Data System (ADS)

    Lauber, Ute; Kotyla, Patrick; Morche, David; Goldscheider, Nico

    2015-04-01

    Rockfall masses are frequent in alpine valleys. Huge rockfalls (millions to billions m³) precipitated after the end of the last glaciation, but many large events (thousand to millions m³) have occurred in historical time, and increasingly during the past decades, as a result of glacier retreat and thawing of permafrost. Most hydrological research focuses on water as a cause or trigger of rockfalls, while much less research has been done on the hydrogeological properties and functions of rockfall masses in alpine valleys. We have studied a series of rockfall and alluvial aquifer systems in the Reintal valley, German Alps, where all surface water infiltrates underground and reemerges downgradient from the rockfall masses. The goal of the study was to characterize the role of this rockfall aquifer in baseflow maintenance and flood attenuation. Employed methods include geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements. Field observations have revealed that both the infiltration and exfiltration locations vary as a function of the hydrologic conditions. Underground flow path length range from 500 m during high flows to 2 km during low flows; measured groundwater flow velocities range between 13 and 30 m/h; lag times between upstream and downstream flood peaks are 5 to 101 hours. Flood peaks were dampened by a factor of 1.5 and the maximum discharge ratio (22) and peak recession coefficient (0.2/d) downstream are very low compared with other alpine catchments. These results indicate that rockfall aquifers can play an important role in the flow regime and flood attenuation in alpine regions.

  8. Using fluorescence spectroscopy to gain new insights into seasonal patterns of stream DOC concentrations in an alpine, headwater catchment underlain by discontinuous permafrost in Wolf Creek Research Basin, Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Shatilla, N. J.; Carey, S.; Tang, W.

    2017-12-01

    The Canadian subarctic is experiencing rapid climate warming resulting in decreased depth and duration of snowcover, decreased permafrost extent and time span of seasonal frozen ground resulting in increased active layer depth, and increased frequency and magnitude of rainfall events during the growing season. These changes challenge our conceptual models of permafrost hydrology as comparisons between recent and historical streamflow records show an emerging secondary post-freshet peak in flow in recent years along with enhanced winter flows. Long-term monitoring of Granger Creek (7.6km2), an alpine watershed underlain by discontinuous permafrost located within Wolf Creek Research Basin (176km2) in Yukon Territory, Canada provided a multi-decadal record of hydro-meteorological measurements. Granger Creek experienced warmer and wetter summers in 2015-6 compared to 2001-8, and an altered streamflow pattern with an earlier spring freshet and peak in dissolved organic carbon (DOC) concentrations. DOC concentrations post-freshet remained low at both the headwater and meso-catchment scale, which contradicts trends of increasing DOC concentrations observed in larger river systems. Hysteresis loops of sub-hourly measurements of streamflow, salinity and chromophoric dissolved organic matter (CDOM) were analyzed to provide new insights into how hydrological connectivity at the headwater scale affected the timing of solute release with supporting information from optical indices calculated from fluorescence spectroscopy. These indices provided a more nuanced view of catchment dynamics than the DOC concentrations. The composition and quality of DOM varied throughout the growing season with the delivery of older, terrestrially-derived material corresponding to high DOC concentrations at the onset of spring freshet when the catchment was initially being flushed. The origin and quality of stream DOM shifted throughout the rest of the season to newer, more easily mobilized DOM. Comparison of historical and current data show a shift from the freshet-driven primary flush of DOC from the system to an increasingly important mobilization of solutes at the end of the growing season that could begin impacting the quantity and quality of solutes exported in the subsequent spring.

  9. Storylines of socio-economic and climatic drivers for land use and their hydrological impacts in alpine catchments - the STELLA project example

    NASA Astrophysics Data System (ADS)

    Strasser, Ulrich; Formayer, Herbert; Förster, Kristian; Marke, Thomas; Meißl, Gertraud; Schermer, Markus; Stotten, Friederike; Themessl, Matthias

    2016-04-01

    Future land use in Alpine catchments is controlled by the evolution of socio-economy and climate. Estimates of their coupled development should hence fulfill the principles of plausibility (be convincing) and consistency (be unambiguous). In the project STELLA, coupled future climate and land use scenarios are used as input in a hydrological modelling exercise with the physically-based, distributed water balance model WaSiM. The aim of the project is to quantify the effects of these two framing components on the future water cycle. The test site for the simulations is the catchment of the Brixentaler Ache in Tyrol/Austria (47.5°N, 322 km2). The so-called „storylines" of future coupled climate and forest/land use management, policy, social cooperation, tourism and economy have jointly been developed in an inter- and transdisciplinary assessment with local actors. The climate background is given by simulations for the A1B (temperature conditions like today in Merano/Italy, 46.7°N) and RCP 8.5 (temperature conditions like today in Bologna/Italy, 44.5°N) emission scenarios. These two climate scenarios were combined with three potential socio-economic developments („local"/„glocal"/ „superglobal"), each in a positive and in a negative specification. From these twelve storylines of coupled climate/land use future, a set of four storylines was selected to be used in transient hydrological modelling experiments. Historical simulations of the water balance for the test site reveal the pattern of land use being the most prominent factor for the spatial distribution of its components. A new prototype for a snow-canopy interaction simulation module provides explicit rates of intercepted and sublimated snow from the trees and stems of the different forest stands in the catchment. This new canopy module will be used to model the coupled climate/land use future storylines for the Brixental. The aim is to quantify the effects of climate change and land use on the water balance and streamflow, both separately and in their respective combination.

  10. Sediment budgets of unglaciated alpine catchments - the example of the Johnsbach and Schöttlbach valleys in Styria

    NASA Astrophysics Data System (ADS)

    Sass, Oliver; Rascher, Eric; Stangl, Johannes; Lutzmann, Silke

    2017-04-01

    Extensive research has been performed in glacier forefields and in glaciated catchments in order to predict their future behaviour in a warming climate. However, the majority of medium-scale torrential catchments in the European Alps are non-glaciated and their response to disturbance events (e.g. changing climate) is more subtle and hard to predict. We report from two torrential catchments in the Eastern Alps, the Johnsbach and the Schöttlbach valleys, that have been monitored for several years. The catchments are located in Styria (Austria) and are remarkably similar in terms of size (60-70 km3) and elevation (600/800 - 2400 m). The main difference is the geological setting of the sediment delivering areas which is limestone and brittle dolomite at Johnsbach, and a prominent late-pleistocene valley fill at Schöttlbach, respectively. Slope processes in both areas were monitored by means of repeated TLS surveys of active slope and channel areas and by ALS and/or UAV surveys. Fluvial transport in the main channels was measured using Helly-Smith samplers and recorded continuously by means of new developed, low-budget sediment impact sensors (SIS). In both areas, the catchment output was quantified: by regular surveys of a retention basin at Schöttlbach and by a bedload measurement station (geophone sill) at Johnsbach. The results show that at Johnsbach, the sediment source areas are active tributary trenches in the lower third of the catchment. The sediments derive from brittle dolomite rockwalls and are transported to the main river episodically during rainstorm events. In a 2-yr period, 7400 m3 yr-1 were eroded in the surveyed areas and 9900 m3 yr-1 m3 yr-1 were deposited; of this amount, only a minor portion of 650 m3 yr-1 reached the Johnsbach River. The degree of coupling between tributaries and creek is strongly influenced by anthropogenic measures, e.g. former disturbance by gravel mining and undersized bridge openings. Besides limited bank erosion, sediment transport of the main creek is governed by the reworking of recurrent sediment pulses from the tributaries. At Schöttlbach, sediment budget is strongly governed by the steep valley sides along the lowermost stretch of the main creek. Here, a catastrophic event in 2011 mobilized huge amounts of sediments which are being reworked since. Many erosional areas and side gullies developed which now become stowly stabilized. The highest average retreat rates of erosional cuts are 0.08 m yr-1 for glacifluvial valley fills while those in weathered bedrock are lower by an order of magnitude (0.006 m yr-1). Sedimentation rates at the outlet decreased from 40-50,000 m3 in the years after the event to approx. 7000 m3 yr-1 in recent years. Current catchment-wide sediment production at slope erosion sites is around 2000 m3 yr-1 and so we assume that parts of the sediment pulse originating from the disturbance event are still being reworked in the channel. Despite many dissimilarities, both catchments are similar with regard to the sediments being provided in their lowest parts, while large areas of the alpine process domain are widely decoupled from the sediment output. Schematic diagrams showing spatial and temporal distribution of sediment yields will be presented, with the aim to better understand the catchments' response to possibly higher rainstorm frequencies in a warming climate.

  11. A new perspective on soil erosion: exploring a thermodynamic approach in a small area of the River Inn catchment

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Scherer, Ulrike; Zehe, Erwin

    2016-04-01

    Soil erosion modeling has always struggled with compensating for the difference in time and spatial scale between model, data and the actual processes involved. This is especially the case with non-event based long-term models based on the Universal Soil Loss Equation (USLE), yet USLE based soil erosion models are among the most common and widely used for they have rather low data requirements and can be applied to large areas. But the majority of mass from soil erosion is eroded within short periods of times during heavy rain events, often within minutes or hours. Advancements of the USLE (eg. the Modified Universal Soil Loss Equation, MUSLE) allow for a daily time step, but still apply the same empirical methods derived from the USLE. And to improve the actual quantification of sediment input into rivers soil erosion models are often combined with a Sediment Delivery Ratio (SDR) to get results within the range of measurements. This is still a viable approach for many applications, yet it leaves much to be desired in terms of understanding and reproducing the processes behind soil erosion and sediment input into rivers. That's why, instead of refining and retuning the existing methods, we explore a more comprehensive, physically consistent description on soil erosion. The idea is to describe soil erosion as a dissipative process (Kleidon et al., 2013) and test it in a small sub-basin of the River Inn catchment area in the pre-Alpine foothills. We then compare the results to sediment load measurements from the sub-basin and discuss the advantages and issues with the application of such an approach.

  12. On the significance of future trends in flood frequencies

    NASA Astrophysics Data System (ADS)

    Bernhardt, M.; Schulz, K.; Wieder, O.

    2015-12-01

    Floods are a significant threat for alpine headwater catchments and for the forelands. The formation of significant flood events is thereby often coupled on processes occurring in the alpine zone. Rain on snow events are just one example. The prediction of flood risks or trends of flood risks is of major interest to people under direct threat, policy and decision makers as well as for insurance companies. A lot of research was and is currently done in view of detecting future trends in flood extremes or return periods. From a pure physically based point of view, there is strong evidence that those trends exist. But, the central point question is if trends in flood events or other extreme events could be detected from a statistical point of view and on the basis of the available data. This study will investigate this question on the basis of different target parameters and by using long term measurements.

  13. Evaluation of precipitation nowcasting techniques for the Alpine region

    NASA Astrophysics Data System (ADS)

    Panziera, L.; Mandapaka, P.; Atencia, A.; Hering, A.; Germann, U.; Gabella, M.; Buzzi, M.

    2010-09-01

    This study presents a large sample evaluation of different nowcasting systems over the Southern Swiss Alps. Radar observations are taken as a reference against which to assess the performance of the following short-term quantitative precipitation forecasting methods: -Eulerian persistence: the current radar image is taken as forecast. -Lagrangian persistence: precipitation patterns are advected following the field of storm motion (the MAPLE algorithm is used). -NORA: novel nowcasting system which exploits the presence of the orographic forcing; by comparing meteorological predictors estimated in real-time with those from the large historical data set, the events with the highest resemblance are picked to produce the forecast. -COSMO2, the limited area numerical model operationally used at MeteoSwiss -Blending of the aforementioned nowcasting tools precipitation forecasts. The investigation is aimed to set up a probabilistic radar rainfall runoff model experiment for steep Alpine catchments as part of the European research project IMPRINTS.

  14. Alpine glacier-fed turbid lakes are discontinuous cold polymictic rather than dimictic

    PubMed Central

    Peter, Hannes; Sommaruga, Ruben

    2017-01-01

    Abstract Glacier retreat as a consequence of climate change influences freshwater ecosystems in manifold ways, yet the physical and chemical bases of these effects are poorly studied. Here, we characterize how water temperature differs between alpine lakes with and without direct glacier influence on seasonal and diurnal timescales. Using high temporal resolution monitoring of temperature in 4 lakes located in a catchment influenced by glacier retreat, we reported unexpectedly high surface temperatures, even in proglacial lakes located 2600 m a.s.l. Cold glacier meltwater and low nighttime air temperatures caused a distinct diurnal pattern of water temperature in the water column of glacier-influenced lakes. Precipitation onto glacier surfaces apparently leads to rapid cooling of the glacier-fed lakes and disrupts the thermal stratification with several mixing events during the summer. Taken together, these mechanisms contribute to the unique seasonal and diurnal dynamics of glacier-influenced lakes that contrast with the typical dimictic pattern of clear alpine lakes and represent an example of discontinuous cold polymictic lake type. This work contributes to the basic description of how climate and meteorology affect the physical properties of an increasingly common lake type. PMID:28690780

  15. Hydrological Dynamics In High Mountain Catchment Areas of Central Norway

    NASA Astrophysics Data System (ADS)

    Löffler, Jörg; Rößler, Ole

    Large-scaled landscape structure is regarded as a mosaic of ecotopes where process dynamics of water and energy fluxes are analysed due to its effects on ecosystem functioning. The investigations have been carried out in the continental most Vågå/Oppland high mountains in central Norway since 1994 (LÖFFLER &WUNDRAM 1999, 2000, 2001). Additionally, comparable investigations started in 2000 dealing with the oceanic high mountain landscapes on same latitudes (LÖFFLER et al. 2001). The theoretical and methodological framework of the project is given by the Landscape-Ecological Complex Analysis (MOSIMANN 1984, 1985) and its variations due to technical and principle methodical challenges in this high mountain landscape (KÖHLER et al. 1994, LÖFFLER 1998). The aim of the project is to characterize high mountain ecosystem structure, functioning and dynamics within small catchment areas, that are chosen in two different altitudinal belts each in the eastern continental and the western oceanic region of central Norway. In the frame of this research project hydrological and meteorological measurements on ground water, percolation and soil moisture dynamics as well as on evaporation, air humidity and air-, surface- and soil-temperatures have been conducted. On the basis of large-scaled landscape-ecological mappings (LÖFFLER 1997) one basic meteorological station and several major data logger run stations have been installed in representative sites of each two catchment areas in the low and mid alpine belts of the investigation regions ( JUNGet al. 1997, LÖFFLER &WUNDRAM 1997). Moreover, spatial differentiations of groundwater level, soil moisture and temperature profiles have been investigated by means of hand held measurements at different times of the day, during different climatic situations and different seasons. Daily and annual air-, surface- and soil-temperature dynamics are demonstrated by means of thermoisopleth-diagrams for different types of ecotopes of the different altitudinal belts. The local differences of temperature dynamics are illustrated in a map as an example of the low alpine altitudinal belt showing a 4-dimensional characterization (in space and time) of high mountain ecosystem functioning. Hydrological aspects derived from those results are presented showing the large- scaled hydrological dynamics of high mountain catchment basins in central Norway. The results of the process analysis of hydrological dynamics in the central Norwegian high mountains are discussed within the frame of investigations on altitudinal changes of mountain ecosystem structure and functioning (LÖFFLER &WUNDRAM [in print]). The poster illustrates the theoretical and methodological conception, methods and techniques, examples from complex data material as well as general outcomes of the project (RÖßLER [in prep.]. JUNG, G., J. LÖFFLER &D. WUNDRAM (1997): Untersuchungen zur Struktur, Funktion und Dynamik mittelnorwegischer Hochgebirgsökosysteme. Forschungsansatz. Oldenburger Geoökologisches Kolloquium 3: 4-36. Oldenburg. KÖHLER, B., J. LÖFFLER &D. WUNDRAM (1994): Probleme der kleinräumigen Geoökovarianz im mittelnorwegischen Gebirge. Norsk geogr. Tidsskr. 48: 99- 111. LÖFFLER, J. (1997): Großmaßstäbige geoökologische Kartierungen in den Höhenstufen des mittelnorwegischen Gebirges. NORDEN 12: 205-228. Bremen. LÖFFLER, J. (1998): Geoökologische Untersuchungen zur Struktur mittelnorwegischer Hochgebirgsökosysteme. Oldenburger Geoökologische Studien 1. Oldenburg. LÖFFLER, J., O.-D. FINCH, J. NAUJOK &R. PAPE (2001): Möglichkeiten der Integration zoologischer Aspekte in die landschaftsökologische Untersuchung von Hochgebirgen. Methodendiskussion am Beispiel ökologischer Prozesssysteme und Biozönosen. Naturschutz u. Landschaftsplanung 33 (11): 351-357. LÖFFLER, J. &D. WUNDRAM (1997): Klimatische Phänomene in mittelnorwegischen Hochgebirgslandschaften und ihre ökosystemare Bedeutung. Oldenburger Geoökologisches Kolloquium 3: 37-86. Oldenburg. LÖFFLER, J. &D. WUNDRAM (1999): Kleinräumige Klimavarianz im mittelnorwegischen Hochgebirgsraum Vågå/Oppland. NORDEN 13: 267 -276. Bremen. LÖFFLER, J. &D. WUNDRAM (2000) : Temperature Dynamics of Ecotopes in small Catchment Areas. In: C. BEIERKUHNLEIN et al. (Hrsg.): Zukunft mitteleuropäischer Kulturlandschaft. Analyse - Planung - Management. Tagungsband mit Kurzfassungen der Beiträge zur 1. Jahrestagung der IALE- Region Deutschland: 76, Nürtingen. LÖFFLER, J. &D. WUNDRAM (2001): Räumliche und zeitliche Differenzierung des Temperaturhaushalts von Hochgebirgsökosystemen. NORDEN 14: 85 -102. Bremen. LÖFFLER, J. &D. WUNDRAM (in print): Geoökologische Untersuchungen zur Prozessdynamik mittelnorwegischer Hochgebirgsökosysteme. Oldenburger Geoökologische Studien 2. Oldenburg. MOSIMANN, T. (1984): Landschaftsökologische Komplexanalyse. Wiesbaden. MOSIMANN, T. (1985): Untersuchungen zur Funktion subarktischer und alpiner Geoökosysteme (Finnmark [Norwegen] und Schweizer Alpen). Physiogeographica 7. Basel. RÖßLER, O. (in prep.): Modelling the Water Balance of Central Norwegian High Mountain Ecosystems. University of Oldenburg.

  16. Streamflow variability and optimal capacity of run-of-river hydropower plants

    NASA Astrophysics Data System (ADS)

    Basso, S.; Botter, G.

    2012-10-01

    The identification of the capacity of a run-of-river plant which allows for the optimal utilization of the available water resources is a challenging task, mainly because of the inherent temporal variability of river flows. This paper proposes an analytical framework to describe the energy production and the economic profitability of small run-of-river power plants on the basis of the underlying streamflow regime. We provide analytical expressions for the capacity which maximize the produced energy as a function of the underlying flow duration curve and minimum environmental flow requirements downstream of the plant intake. Similar analytical expressions are derived for the capacity which maximize the economic return deriving from construction and operation of a new plant. The analytical approach is applied to a minihydro plant recently proposed in a small Alpine catchment in northeastern Italy, evidencing the potential of the method as a flexible and simple design tool for practical application. The analytical model provides useful insight on the major hydrologic and economic controls (e.g., streamflow variability, energy price, costs) on the optimal plant capacity and helps in identifying policy strategies to reduce the current gap between the economic and energy optimizations of run-of-river plants.

  17. A measurement routine to determine 137Cs activities at steep mountain slopes

    NASA Astrophysics Data System (ADS)

    Schaub, Monika; Konz, Nadine; Meusburger, Katrin; Alewell, Chrstine

    2010-05-01

    Caesium-137 (137Cs) is a common tracer for soil erosion. So far, in-situ measurements in steep alpine environments have not often been done. Most studies have been carried out in arable lands and with Ge detectors. However, the NaI detector system is a good priced, easy to handle field instrument. A comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of 137Cs gamma soil radiation has been done in an alpine catchment (Urseren Valley, Swizerland). The aim of this study was to calibrate the in-situ NaI detector system for application at steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley were measured ex situ in the laboratory with a GeLi detector, and compared to in situ NaI detector measurements. Ex situ soil samples showed a big variability in 137Cs activities at a meter-scale. This large, small scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provide integrated estimates of 137Cs within the field of view of each measurement (3.1 m2). There was no dependency of 137Cs on pH, clay content and carbon content. However, a close relationship was determined between 137Cs and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation (R2 = 0.86) was found for 137Cs activities (in Bq kg-1) estimated with both, in-situ (NaI detector) and laboratory (GeLi detector) methods which proves the validity of the in-situ measurements with the NaI detector system. This paper describes the calibration of the NaI detector system for field application under elevated 137Cs activities originating from Chernobyl fallout.

  18. Tracing freshwater nitrate sources in pre-alpine groundwater catchments using environmental tracers

    NASA Astrophysics Data System (ADS)

    Stoewer, M. M.; Knöller, K.; Stumpp, C.

    2015-05-01

    Groundwater is one of the main resources for drinking water. Its quality is still threatened by the widespread contaminant nitrate (NO3-). In order to manage groundwater resources in a sustainable manner, we need to find options of lowering nitrate input. Particularly, a comprehensive knowledge of nitrate sources is required in areas which are important current and future drinking water reservoirs such as pre-alpine aquifers covered with permanent grassland. The objective of the present study was to identify major sources of nitrate in groundwater with low mean nitrate concentrations (8 ± 2 mg/L). To achieve the objective, we used environmental tracer approaches in four pre-alpine groundwater catchments. The stable isotope composition and tritium content of water were used to study the hydrogeology and transit times. Furthermore, nitrate stable isotope methods were applied to trace nitrogen from its sources to groundwater. The results of the nitrate isotope analysis showed that groundwater nitrate was derived from nitrification of a variety of ammonium sources such as atmospheric deposition, mineral and organic fertilizers and soil organic matter. A direct influence of mineral fertilizer, atmospheric deposition and sewage was excluded. Since temporal variation in stable isotopes of nitrate were detected only in surface water and locally at one groundwater monitoring well, aquifers appeared to be well mixed and influenced by a continuous nitrate input mainly from soil derived nitrogen. Hydrogeological analysis supported that the investigated aquifers were less vulnerable to rapid impacts due to long average transit times, ranging from 5 to 21 years. Our study revealed the importance of combining environmental tracer approaches and a comprehensive sampling campaign (local sources of nitrate, soil water, river water, and groundwater) to identify the nitrate sources in groundwater and its vulnerability. In future, the achieved results will help develop targeted strategies for a sustainable groundwater management focusing more on soil nitrogen storage.

  19. Engaging students in research learning experiences through hydrology field excursions and projects

    NASA Astrophysics Data System (ADS)

    Ewen, T.; Seibert, J.

    2014-12-01

    One of the best ways to engage students and instill enthusiasm for hydrology is to expose them to hands-on learning. A focus on hydrology field research can be used to develop context-rich and active learning, and help solidify idealized learning where students are introduced to individual processes through textbook examples, often neglecting process interactions and an appreciation for the complexity of the system. We introduced a field course where hydrological measurement techniques are used to study processes such as snow hydrology and runoff generation, while also introducing students to field research and design of their own field project. In the field projects, students design a low-budget experiment with the aim of going through the different steps of a 'real' scientific project, from formulating the research question to presenting their results. In one of the field excursions, students make discharge measurements in several alpine streams with a salt tracer to better understand the spatial characteristics of an alpine catchment, where source waters originate and how they contribute to runoff generation. Soil moisture measurements taken by students in this field excursion were used to analyze spatial soil moisture patterns in the alpine catchment and subsequently used in a publication. Another field excursion repeats a published experiment, where preferential soil flow paths are studied using a tracer and compared to previously collected data. For each field excursion, observational data collected by the students is uploaded to an online database we developed, which also allows students to retrieve data from past excursions to further analyze and compare their data. At each of the field sites, weather stations were installed and a webviewer allows access to realtime data from data loggers, allowing students to explore how processes relate to climatic conditions. With in-house film expertise, these field excursions were also filmed and short virtual excursions were produced, which we plan to use in a large introductory course, exposing students to field research at an early stage.

  20. Detecting seasonal flood changes in the Upper Danube River basin

    NASA Astrophysics Data System (ADS)

    Kohnová, Silvia; Jeneiová, Katarína; Parajka, Juraj; Hall, Julia; Marková, Romana

    2017-04-01

    Due to a number of large-scale floods observed worldwide in recent years, the analysis of changes in long-term hydrological time series is becoming increasingly important. This study focuses on the Upper Danube region, which was struck by many flood events in the past decade. The flood seasonality of the study region, defined as the area of Germany, the Czech Republic, Switzerland, Austria and Slovakia, is examined to interpret the dominant flood processes. A spatial assessment of the seasonality indices of the annual maximum discharges and the seasonal discharges (derived from daily average discharges) was conducted for 117 gauging stations. Hot spots for potential changes in the mean dates of occurrence of the discharges were identified, and the results were linked with derived spatial characteristics for the catchments. The first results of the study of the seasonal discharges revealed that the variability of occurrence of summer floods is higher than winter floods in lowlands of the upper Danube catchment. In high Alpine catchments the winter floods variability of occurrence is the same or higher than for the summer floods. The summer season floods tend to appear for all catchment sizes in the same time period. With increased magnitude of floods in the summer season, the variability of occurrence of the floods is higher.

  1. The effects of biotic and abiotic factors on the spatial heterogeneity of alpine grassland vegetation at a small scale on the Qinghai-Tibet Plateau (QTP), China.

    PubMed

    Wen, Lu; Dong, Shi Kui; Li, Yuan Yuan; Sherman, Ruth; Shi, Jian Jun; Liu, De Mei; Wang, Yan Long; Ma, Yu Shou; Zhu, Lei

    2013-10-01

    Understanding the complex effects of biotic and abiotic factors on the composition of vegetation is very important for developing and implementing strategies for promoting sustainable grassland development. The vegetation-disturbance-environment relationship was examined in degraded alpine grasslands in the headwater areas of three rivers on the Qinghai-Tibet Plateau in this study. The investigated hypotheses were that (1) the heterogeneity of the vegetation of the alpine grassland is due to a combination of biotic and abiotic factors and that (2) at a small scale, biotic factors are more important for the distribution of alpine vegetation. On this basis, four transects were set along altitudinal gradients from 3,770 to 3,890 m on a sunny slope, and four parallel transects were set along altitudinal gradients on a shady slope in alpine grasslands in Guoluo Prefecture of Qinghai Province, China. It was found that biological disturbances were the major forces driving the spatial heterogeneity of the alpine grassland vegetation and abiotic factors were of secondary importance. Heavy grazing and intensive rat activity resulted in increases in unpalatable and poisonous weeds and decreased fine forages in the form of sedges, forbs, and grasses in the vegetation composition. Habitat degradation associated with biological disturbances significantly affected the spatial variation of the alpine grassland vegetation, i.e., more pioneer plants of poisonous or unpalatable weed species, such as Ligularia virgaurea and Euphorbia fischeriana, were found in bare patches. Environmental/abiotic factors were less important than biological disturbances in affecting the spatial distribution of the alpine grassland vegetation at a small scale. It was concluded that rat control and light grazing should be applied first in implementing restoration strategies. The primary vegetation in lightly grazed and less rat-damaged sites should be regarded as a reference for devising vegetation restoration measures in alpine pastoral regions.

  2. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China

    PubMed Central

    Yao, Lei; Chen, Liding; Wei, Wei

    2017-01-01

    In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521

  3. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China.

    PubMed

    Yao, Lei; Chen, Liding; Wei, Wei

    2017-02-28

    In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area ( TIA ), Directly Connected Impervious Area ( DCIA ), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth ( Q t and Q p ) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Q t and Q p ; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Q p . These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.

  4. Estimating the snowfall limit in alpine and pre-alpine valleys: A local evaluation of operational approaches

    NASA Astrophysics Data System (ADS)

    Fehlmann, Michael; Gascón, Estíbaliz; Rohrer, Mario; Schwarb, Manfred; Stoffel, Markus

    2018-05-01

    The snowfall limit has important implications for different hazardous processes associated with prolonged or heavy precipitation such as flash floods, rain-on-snow events and freezing precipitation. To increase preparedness and to reduce risk in such situations, early warning systems are frequently used to monitor and predict precipitation events at different temporal and spatial scales. However, in alpine and pre-alpine valleys, the estimation of the snowfall limit remains rather challenging. In this study, we characterize uncertainties related to snowfall limit for different lead times based on local measurements of a vertically pointing micro rain radar (MRR) and a disdrometer in the Zulg valley, Switzerland. Regarding the monitoring, we show that the interpolation of surface temperatures tends to overestimate the altitude of the snowfall limit and can thus lead to highly uncertain estimates of liquid precipitation in the catchment. This bias is much smaller in the Integrated Nowcasting through Comprehensive Analysis (INCA) system, which integrates surface station and remotely sensed data as well as outputs of a numerical weather prediction model. To reduce systematic error, we perform a bias correction based on local MRR measurements and thereby demonstrate the added value of such measurements for the estimation of liquid precipitation in the catchment. Regarding the nowcasting, we show that the INCA system provides good estimates up to 6 h ahead and is thus considered promising for operational hydrological applications. Finally, we explore the medium-range forecasting of precipitation type, especially with respect to rain-on-snow events. We show for a selected case study that the probability for a certain precipitation type in an ensemble-based forecast is more persistent than the respective type in the high-resolution forecast (HRES) of the European Centre for Medium Range Weather Forecasts Integrated Forecasting System (ECMWF IFS). In this case study, the ensemble-based forecast could be used to anticipate such an event up to 7-8 days ahead, whereas the use of the HRES is limited to a lead time of 4-5 days. For the different lead times investigated, we point out possibilities of considering uncertainties in snowfall limit and precipitation type estimates so as to increase preparedness to risk situations.

  5. Flood triggering in Switzerland: the role of daily to monthly preceding precipitation

    NASA Astrophysics Data System (ADS)

    Froidevaux, P.; Schwanbeck, J.; Weingartner, R.; Chevalier, C.; Martius, O.

    2015-03-01

    Determining the role of different precipitation periods for peak discharge generation is crucial for both projecting future changes in flood probability and for short- and medium-range flood forecasting. We analyze catchment-averaged daily precipitation time series prior to annual peak discharge events (floods) in Switzerland. The high amount of floods considered - more than 4000 events from 101 catchments have been analyzed - allows to derive significant information about the role of antecedent precipitation for peak discharge generation. Based on the analysis of precipitation times series, we propose a new separation of flood-related precipitation periods: (i) the period 0 to 1 day before flood days, when the maximum flood-triggering precipitation rates are generally observed, (ii) the period 2 to 3 days before flood days, when longer-lasting synoptic situations generate "significantly higher than normal" precipitation amounts, and (iii) the period from 4 days to one month before flood days when previous wet episodes may have already preconditioned the catchment. The novelty of this study lies in the separation of antecedent precipitation into the precursor antecedent precipitation (4 days before floods or earlier, called PRE-AP) and the short range precipitation (0 to 3 days before floods, a period when precipitation is often driven by one persistent weather situation like e.g. a stationary low-pressure system). Because we consider a high number of events and because we work with daily precipitation values, we do not separate the "antecedent" and "peak-triggering" precipitation. The whole precipitation recorded during the flood day is included in the short-range antecedent precipitation. The precipitation accumulating 0 to 3 days before an event is the most relevant for floods in Switzerland. PRE-AP precipitation has only a weak and region-specific influence on flood probability. Floods were significantly more frequent after wet PRE-AP periods only in the Jura Mountains, in the western and eastern Swiss plateau, and at the exit of large lakes. As a general rule, wet PRE-AP periods enhance the flood probability in catchments with gentle topography, high infiltration rates, and large storage capacity (karstic cavities, deep soils, large reservoirs). In contrast, floods were significantly less frequent after wet PRE-AP periods in glacial catchments because of reduced melt. For the majority of catchments however, no significant correlation between precipitation amounts and flood occurrences is found when the last three days before floods are omitted in the precipitation amounts. Moreover, the PRE-AP was not higher for extreme floods than for annual floods with a high frequency and was very close to climatology for all floods. The weak influence of PRE-AP is a clear indicator of a short discharge memory of Prealpine, Alpine and Southalpine Swiss catchments. Our study nevertheless poses the question whether the impact of long-term precursory precipitation for floods in such catchments is not overestimated in the general perception. We conclude that the consideration of a 3-4 days precipitation period should be sufficient to represent (understand, reconstruct, model, project) Swiss Alpine floods.

  6. Heterotrophic prokaryotic production in ultra-oligotrophic alpine karst aquifers and ecological implications

    PubMed Central

    Wilhartitz, Inés C.; Kirschner, Alexander K.T.; Stadler, Hermann; Herndl, Gerhard J.; Dietzel, Martin; Latal, Christine; Mach, Robert L.; Farnleitner, Andreas H.

    2011-01-01

    Spring waters from alpine karst aquifers are important drinking water resources. To investigate in situ prokaryotic heterotrophic production (HP) and its controlling factors, two alpine karst springs of contrasting hydrogeology but of nearby catchments were studied over two annual cycles. Heterotrophic production in spring water, as determined by [3H]leucine incorporation, was low but revealed strong seasonal variations ranging from 0.06 to 6.83 pmol C l−1 h−1 (DKAS1, dolomitic karst-spring) and from 0.50 to 75.6 pmol C l−1 h−1 (LKAS2, limestone karst-spring). Microautoradiography combined with catalyzed reporter deposition - fluorescence in situ hybridization (MAR-CARD-FISH) showed that only about 7 % of the picoplankton community took up [3H]leucine resulting in generation times of 3 to 684 days. Principal component analysis, applying hydrological, chemical and biological parameters demonstrated that planktonic heterotrophic production in LKAS2 was strongly governed by hydrogeographical components (e.g. discharge), whereas variations in DKAS1 are also strongly influenced by changes within the aquifer itself. Measurements in sediments recovered from LKAS2, DKAS1 and similar alpine karst aquifers (n=12) revealed an 106-fold higher heterotrophic production (average 19 μmol C dm−3 h−1) with significantly lower generation times as compared to the planktonic fraction, highlighting the metabolic potential of surface associated endokarst communities to add to self-purification processes. Estimates of microbially mediated CO2 in this compartment indicated a possible contribution to karstification. PMID:19490127

  7. Mineral nitrogen transformations in and under seasonal snow in a high-elevation catchment in the Rocky Mountains, United States

    USGS Publications Warehouse

    Williams, Mark W.; Brooks, Paul D.; Mosier, Arvin; Tonnessen, Kathy A.

    1996-01-01

    In an effort to understand sources of nitrate (NO3−) in surface waters of high-elevation catchments, nitrogen (N) transformations in and under seasonal snow were investigated from 1993 to 1995 on Niwot Ridge, an alpine ecosystem at 3,500 m located in the Colorado Front Range of the Rocky Mountains. Ammonium (NH4+) and NO3− labeled with 15N applied as nonconservative tracers to the snow showed no evidence of nitrification in the snowpack. Furthermore, NH4+ movement through the amended snowpack was highly correlated with a conservative chloride tracer (r2 = 0.99). In an unamended snowpack NH4+ concentrations in meltwater before contact with the ground were highly correlated with NO3− concentrations (r2 = 0.98), which is consistent with no nitrification in the snowpack. The isotopically labeled 15NH+4applied to the snowpack was found in underlying soils, showing that NH4+ released from snow can be rapidly immobilized. Resin bag (mixed-bed ion-exchange resins) measurements (n = 22) showed that 80% of the mobile inorganic N in unamended subnivial soils was NO3−. Measurements of KCl-extractable inorganic N from surface soils showed that highest values were prior to the initiation of snowmelt and lowest values were during the growing season. The natural δ15N abundance of unamended soils was negative and ranged from −12 to −2, suggesting that atmospheric deposition of δ15N-depleted N is an important component of N cycling in these alpine soils. These results suggest that soil mineralization under seasonal snow, rather than snowmelt release of NO3−, may control NO3− concentrations in surface waters of high-elevation catchments.

  8. Alpine Warming induced Nitrogen Export from Green Lakes Valley, Colorado Front Range, USA

    NASA Astrophysics Data System (ADS)

    Barnes, R. T.; Williams, M. W.; Parman, J.

    2012-12-01

    Alpine ecosystems are particularly susceptible to disturbance due to their short growing seasons, sparse vegetation and thin soils. Atmospheric nitrogen deposition and warming temperatures currently affect Green Lakes Valley (GLV) within the Colorado Front Range. Research conducted within the alpine links chronic nitrogen inputs to a suite of ecological impacts, resulting in increased nitrate export. According to NADP records at the site, the atmospheric flux of nitrogen has decreased by 0.56 kg ha-1 yr-1 since 2000, due to a decrease in precipitation. Concurrent with this decrease, alpine nitrate yields have continued to increase; by 32% relative to the previous decade (1990-1999). In order to determine the source(s) of the sustained nitrate increases we utilized long term datasets to construct a mass balance model for four stream segments (glacier to subalpine) for nitrogen and weathering product constituents. We also compared geochemical fingerprints of various solute sources (glacial meltwater, thawing permafrost, snow, and stream water) to alpine stream water to determine if sources had changed over time. Long term trends indicate that in addition to increases in nitrate; sulfate, calcium, and silica have also increased over the same period. The geochemical composition of thawing permafrost (as indicated by rock glacial meltwater) suggests it is the source of these weathering products. Mass balance results indicate the high ammonium loads within glacial meltwater are rapidly nitrified, contributing approximately 0.45 kg yr-1 to the NO3- flux within the upper reaches of the watershed. The sustained export of these solutes during dry, summer months is likely facilitated by thawing cryosphere providing hydraulic connectivity late into the growing season. In a neighboring catchment, lacking permafrost and glacial features, there were no long term weathering or nitrogen solute trends; providing further evidence that the changes in alpine chemistry in GLV are likely due to cryospheric thaw exposing soils to biological and geochemical processes. These findings suggest that efforts to reduce nitrogen deposition loads may not improve water quality, as thawing cryosphere associated with climate change may affect alpine nitrate concentrations as much, or more than atmospheric deposition trends.

  9. Tracing the spatial and temporal variability of different water sources in a glacierized Alpine catchment (Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Penna, Daniele; Comiti, Francesco; Vignoli, Gianluca; Simoni, Silvia; Dinale, Roberto

    2016-04-01

    Glacierized catchments are important sources of fresh water. Although recent tracer-based studies have been carried out in these environments, more investigations are needed to understand more in detail the complex dynamics of snowmelt, glacier melt and groundwater contributions to stream water, the spatial and temporal variability of these sources of runoff and suspended sediment. In this study we used stable isotopes of water and electrical conductivity (EC) as tracers to identify the origin of different waters in the glacierized Sulden/Solda catchment (130 km², Eastern Italian Alps). The site ranges in elevation between 1112 and 3905 m a.s.l. and includes two major sub-catchments. Rainfall samples were taken from bulk collectors placed along an elevation gradient (905-2585 m a.s.l.). Winter-integrated snowmelt samples were collected from passive capillary samplers installed at different elevations (1600-2825 m a.s.l.), whereas snowmelt was sampled from dripping snow patches. Glacier melt samples were taken in summer from small rivulets on the glacier surface. Samples from the two main streams were collected monthly in 2014 and 2015 at different stream sections, major tributaries and springs. At the outlet, stream water was sampled daily by an automatic sampler, and EC, turbidity and water stage were measured every 5 minutes. Meteorological data were measured by two weather stations at 1600 and 2825 m a.s.l.. Manual samples were taken from February 2014 to November 2015 while the automatic sampling at the outlet was carried out from May to October 2014 and 2015. Results indicate that precipitation originated from air masses coming from the Atlantic Ocean, with limited influence of Mediterrean air masses. Snowmelt showed a pronounced isotopic enrichment during summer, which was also found for glacier melt, but less strong. Spring water from both sub-catchments seemed to be affected by infiltrating snowmelt during summer and represented the major stream component during winter baseflow. The tracer-based comparison of stream locations in both sub-catchments showed similar isotopic and EC dynamics during summer, highlighting that meltwater dynamics may hide the hydrochemical impact of different geology in both sub-catchments. However, EC dynamics in the left sub-catchment during winter indicated a spatial gradient of increasing solute concentrations along the stream. In contrast, an inverse spatial gradient of solute concentrations was found in the right sub-catchment, revealing a different geological setting and highlighting the impact of intensive subglacial weathering. At the outlet, EC and isotopic composition could identify clear seasonal melt water dynamics with periods of pronounced snowmelt contributions in early summer followed by dominant glacier melt contributions. Rainfall events seemed to play a major role on stream water composition in autumn. Also the impact of early snowfall and its melting in autumn 2015 could be traced and well distinguished from early summer snowmelt water. Turbidity showed strong oscillations at the daily scale during summer melt periods and markedly responded to rainfall events, which could be attributed to rapid mobilization of fine sediments and suspended sediment transport in the study catchment.

  10. Hydrological Dynamics In High Mountain Catchment Areas of Central Norway

    NASA Astrophysics Data System (ADS)

    Löffler, J.; Rössler, O.

    Large-scaled landscape structure is regarded as a mosaic of ecotopes where pro- cess dynamics of water and energy fluxes are analysed due to its effects on ecosys- tem functioning. The investigations have been carried out in the continental most Vågå/Oppland high mountains in central Norway since 1994 (LÖFFLER WUN- DRAM 1999, 2000, 2001). Additionally, comparable investigations started in 2000 dealing with the oceanic high mountain landscapes on same latitudes (LÖFFLER et al. 2001). The theoretical and methodological framework of the project is given by the Landscape-Ecological Complex Analysis (MOSIMANN 1984, 1985) and its variations due to technical and principle methodical challenges in this high moun- tain landscape (KÖHLER et al. 1994, LÖFFLER 1998). The aim of the project is to characterize high mountain ecosystem structure, functioning and dynamics within small catchment areas, that are chosen in two different altitudinal belts each in the eastern continental and the western oceanic region of central Norway. In the frame of this research project hydrological and meteorological measurements on ground water, percolation and soil moisture dynamics as well as on evaporation, air humidity and air-, surface- and soil-temperatures have been conducted. On the basis of large-scaled landscape-ecological mappings (LÖFFLER 1997) one basic meteorological station and several major data logger run stations have been installed in representative sites of each two catchment areas in the low and mid alpine belts of the investigation re- gions (JUNG et al. 1997, LÖFFLER WUNDRAM 1997). Moreover, spatial differ- entiations of groundwater level, soil moisture and temperature profiles have been in- vestigated by means of hand held measurements at different times of the day, during different climatic situations and different seasons. Daily and annual air-, surface- and soil-temperature dynamics are demonstrated by means of thermoisopleth-diagrams for different types of ecotopes of the different altitudinal belts. The local differences of temperature dynamics are illustrated in a map as an example of the low alpine al- titudinal belt showing a 4-dimensional characterization (in space and time) of high mountain ecosystem functioning. Hydrological aspects derived from those results are presented showing the large-scaled hydrological dynamics of high mountain catch- ment basins in central Norway. The results of the process analysis of hydrological dynamics in the central Norwegian high mountains are discussed within the frame of 1 investigations on altitudinal changes of mountain ecosystem structure and function- ing (LÖFFLER WUNDRAM [in print]). The poster illustrates the theoretical and methodological conception, methods and techniques, examples from complex data material as well as general outcomes of the project (RÖSSLER [in prep.]. 2

  11. Automatic Identification of Alpine Mass Movements by a Combination of Seismic and Infrasound Sensors

    PubMed Central

    Hübl, Johannes; McArdell, Brian W.; Walter, Fabian

    2018-01-01

    The automatic detection and identification of alpine mass movements such as debris flows, debris floods, or landslides have been of increasing importance for devising mitigation measures in densely populated and intensively used alpine regions. Since these mass movements emit characteristic seismic and acoustic waves in the low-frequency range (<30 Hz), several approaches have already been developed for detection and warning systems based on these signals. However, a combination of the two methods, for improving detection probability and reducing false alarms, is still applied rarely. This paper presents an update and extension of a previously published approach for a detection and identification system based on a combination of seismic and infrasound sensors. Furthermore, this work evaluates the possible early warning times at several test sites and aims to analyze the seismic and infrasound spectral signature produced by different sediment-related mass movements to identify the process type and estimate the magnitude of the event. Thus, this study presents an initial method for estimating the peak discharge and total volume of debris flows based on infrasound data. Tests on several catchments show that this system can detect and identify mass movements in real time directly at the sensor site with high accuracy and a low false alarm ratio. PMID:29789449

  12. GIS-based modeling of debris flow processes in an Alpine catchment, Antholz valley, Italy

    NASA Astrophysics Data System (ADS)

    Sandmeier, Christine; Damm, Bodo; Terhorst, Birgit

    2010-05-01

    Debris flows are frequent natural hazards in mountain regions, which seriously can threat human lives and economic values. In the European Alps the occurrence of debris flows might even increase with respect to climate change, including permafrost degradation, glacier retreat and variable precipitation patterns. Thus, detailed understanding of process parameters and spatial distribution of debris flows is necessary to take appropriate protection measures for risk assessment. In this context, numerical models have been developed and applied successfully for simulation and prediction of debris-flow hazards and related process areas. In our study a GIS-based model is applied in an alpine catchment to address the following questions: Where are potential initiating areas of debris flows? How much material can be mobilized? What is the influence of topography and precipitation? The study area is located in the Antholz valley in the eastern Alps of Northern Italy. The investigated catchment of the Klammbach creek comprises 6.5 km² and is divided into two sub-catchments. Geologically it is dominated by metamorphic rock and altitudes range between 1310 and 3270 m. In summer 2005 a debris flow of more than 100000 m³ took place, originating from a steep, sparsely vegetated debris cone in the western part of the catchment. According to a regional study, the lower permafrost boundary in this area has risen by 250 m. In a first step, during a field survey, geomorphological mapping was performed, several channel cross-sections were measured and sediment samples were taken. Using mapping results and aerial images, a geomorphological map was created. In further steps, results from the field work, the geomorphological map and existing digital data sets, including a digital elevation model with 2.5 m resolution, are used to derive input data for the modeling of debris flow processes. The model framework ‘r.debrisflow' based on GRASS GIS is applied (Mergili, 2008*), as it is capable of simulating the potential spatial patterns of debris flow deposition, as well as their initiation and movement. Furthermore it is a freely available and opensource software and can thus be improved and extended. ‘r.debrisflow' couples a hydraulic, a slope stability, a sediment transport and a debris flow runout model, which are combined differently in 6 simulation modes. In a first step, model parameters are calibrated using the runout only mode with known parameters of the 2005 debris flow. Finally, the full mode will be used to evaluate the debris-flow potential of the whole catchment. First results from the geomorphological mapping reveal numerous surface forms, like levees, debris flow lobes or scars that indicate past and recent debris flow activity in the area. In both sub-catchments, there are large areas of unconsolidated, sparsely or unvegetated sediments, surrounded by high rock walls, which conduct precipitation rapidly into the debris. The two sub-catchments, however, have different topographic characteristics, which can be analyzed with the model in more detail. In a next step, the potential starting areas of future debris flows shall be identified and the potential amount of mobilized material shall be estimated by the model. *Mergili, M. (2008): Integrated modelling of debris flows with Open Source GIS. Ph.D. thesis. University of Innsbruck. http://www.uibk.ac.at/geographie/personal/mergili/dissertation.pdf

  13. Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps.

    PubMed

    Warscher, M; Strasser, U; Kraller, G; Marke, T; Franz, H; Kunstmann, H

    2013-05-01

    [1] Runoff generation in Alpine regions is typically affected by snow processes. Snow accumulation, storage, redistribution, and ablation control the availability of water. In this study, several robust parameterizations describing snow processes in Alpine environments were implemented in a fully distributed, physically based hydrological model. Snow cover development is simulated using different methods from a simple temperature index approach, followed by an energy balance scheme, to additionally accounting for gravitational and wind-driven lateral snow redistribution. Test site for the study is the Berchtesgaden National Park (Bavarian Alps, Germany) which is characterized by extreme topography and climate conditions. The performance of the model system in reproducing snow cover dynamics and resulting discharge generation is analyzed and validated via measurements of snow water equivalent and snow depth, satellite-based remote sensing data, and runoff gauge data. Model efficiency (the Nash-Sutcliffe coefficient) for simulated runoff increases from 0.57 to 0.68 in a high Alpine headwater catchment and from 0.62 to 0.64 in total with increasing snow model complexity. In particular, the results show that the introduction of the energy balance scheme reproduces daily fluctuations in the snowmelt rates that trace down to the channel stream. These daily cycles measured in snowmelt and resulting runoff rates could not be reproduced by using the temperature index approach. In addition, accounting for lateral snow transport changes the seasonal distribution of modeled snowmelt amounts, which leads to a higher accuracy in modeling runoff characteristics.

  14. Contribution of rainfall, snow and ice melt to the hydrological regime of the Arve upper catchment and to severe flood events

    NASA Astrophysics Data System (ADS)

    Lecourt, Grégoire; Revuelto, Jesús; Morin, Samuel; Zin, Isabella; Lafaysse, Matthieu; Condom, Thomas; Six, Delphine; Vionnet, Vincent; Charrois, Luc; Dumont, Marie; Gottardi, Frédéric; Laarman, Olivier; Coulaud, Catherine; Esteves, Michel; Lebel, Thierry; Vincent, Christian

    2016-04-01

    In Alpine catchments, the hydrological response to meteorological events is highly influenced by the precipitation phase (liquid or solid) and by snow and ice melt. It is thus necessary to simulate accurately the snowpack evolution and its spatial distribution to perform relevant hydrological simulations. This work is focused on the upper Arve Valley (Western Alps). This 205 km2 catchment has large glaciated areas (roughly 32% of the study area) and covers a large range of elevations (1000-4500 m a.s.l.). Snow presence is significant year-round. The area is also characterized by steep terrain and strong vegetation heterogeneity. Modelling hydrological processes in such a complex catchment is therefore challenging. The detailed ISBA land surface model (including the Crocus snowpack scheme) has been applied to the study area using a topography based discretization (classifying terrain by aspect, elevation, slope and presence of glacier). The meteorological forcing used to run the simulations is the reanalysis issued from the SAFRAN model which assimilates meteorological observations from the Meteo-France networks. Conceptual reservoirs with calibrated values of emptying parameters are used to represent the underground water storage. This approach has been tested to simulate the discharge on the Arve catchment and three sub-catchments over 1990-2015. The simulations were evaluated with respect to observed water discharges for several headwaters with varying glaciated areas. They allow to quantify the relative contribution of rainfall, snow and ice melt to the hydrological regime of the basin. Additionally, we present a detailed analysis of several particular flood events. For these events, the ability of the model to correctly represent the catchment behaviour is investigated, looking particularly to the relevance of the simulated snowpack. Particularly, its spatial distribution is evaluated using MODIS snow cover maps, punctual snowpack observations and summer glacier mass balance estimations.

  15. Timescales for migration of atmospherically derived sulphate through an alpine/subalpine watershed, Loch Vale Colorado

    USGS Publications Warehouse

    Michel, Robert L.; Campbell, Donald H.; Clow, David W.; Turk, John T.

    2000-01-01

    Sulphur 35, a cosmogenically produced radioisotope with a short half‐life (87 days), was measured in snowpack during 1993–1997 and at four locations within the Loch Vale watershed during 1995–1997. The four sites include the two main drainages in the watershed, Andrews Creek and Icy Brook, a small south facing catchment flowing into Andrews Creek (Andrews Spring 1), and a similar north facing catchment flowing out of a scree field into Icy Brook (Spring 19). Concentrations ranged from a high of almost 50 mBq/L for a sample from Spring 19 in June 1996 to a concentration near the detection limit for a sample from Andrews Creek in April 1997. Sulphur 35 concentrations were normalized to sulphate (as mBq/mg SO4−2) and were decay‐corrected to a Julian day of 90 (April 1) for each year. Snowpack had the highest 35S concentration with an average concentration of 53 mBq/mg SO4−2. Concentrations in the streams were much lower, even when corrected for decay relative to JD 90. The large 35S concentrations found in Spring 19 were the result of increases in concentration due to sublimation and/or evapotranspiration and were lower than snowpack when normalized to sulphate. Using 35S concentrations found in snowpack as of JD 90 as a beginning concentration, the fraction of sulphate in streamflow that was derived from atmospheric deposition within the prior water year was estimated. For Icy Brook and Andrews Creek the fraction of the sulphate in streamflow derived from that year's snowpack and precipitation was low prior to the beginning of the main spring melt, reached a maximum during the period of maximum flow, and decreased as the summer progressed. A calculation of the seasonal flux indicated that about 40% of the sulphate that flowed out of the watershed was derived from atmospheric sulphate deposited during the previous year. This suggests that more than half of the sulphate deposited in the watershed by atmospheric processes during the previous year was removed during the following summer. Thus sulphate retention in alpine watersheds like Loch Vale is very limited, and changes in sulphate deposition should be quickly reflected in stream chemistry.

  16. Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850-2000)

    NASA Astrophysics Data System (ADS)

    Kopcek, J.; Vesel, J.; Stuchlk, E.

    Major fluxes of sulphur and dissolved inorganic nitrogen were estimated in Central European mountain ecosystems of the Bohemian Forest (forest lakes) and Tatra Mountains (alpine lakes) over the industrial period. Sulphur outputs from these ecosystems were comparable to inputs during a period of relatively stable atmospheric deposition (10-35 mmol m-2 yr-1) around the 1930s. Atmospheric inputs of sulphur increased by three- to four-fold between the 1950s and 1980s to ~140 and ~60 mmol mm-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively. Sulphur outputs were lower than inputs due to accumulation in soils, which was higher in forest soils than in the sparser alpine soils and represented 0.8-1.6 and 0.2-0.3 mol m-2, respectively, for the whole 1930-2000 period. In the 1990s, atmospheric inputs of sulphur decreased 80% and 50% in the Bohemian Forest and Tatra Mountains, respectively, and sulphur outputs exceeded inputs. Catchment soils became pronounced sources of sulphur with output fluxes averaging between 15 and 31 mmol m-2 yr-1. Higher sulphur accumulation in the forest soils has delayed (by several decades) recovery of forest lakes from acidification compared to alpine lakes. Estimated deposition of dissolved inorganic nitrogen was 53-75 mmol m-2 yr-1 in the Bohemian Forest and 35-45 mmol m-2 yr-1 in the Tatra Mountains in the 1880- 1950 period, i.e. below the empirically derived threshold of ~70 mmol m-2 yr-1, above which nitrogen leaching often occurs. Dissolved inorganic nitrogen was efficiently retained in the ecosystems and nitrate export was negligible (0-7 mmol m-2 yr-1). By the 1980s, nitrogen deposition increased to ~160 and ~80 mmol m-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively, and nitrogen output increased to 120 and 60 mmol m-2 yr-1. Moreover, assimilation of nitrogen in soils declined from ~40 to 10-20 mmol m-2 yr-1 in the alpine soils and even more in the Bohemian Forest, where one of the catchments has even become a net source of nitrogen. In the 1990s, nitrogen deposition decreased by ~30% and DIN output decreased to < 70 and 35 mmol m-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively. New steady-state conditions, with negligible nitrogen export, could be reached in future but at lower nitrogen depositions than in the 1930s.

  17. Engaging students in research learning experiences through hydrology field excursions and short films

    NASA Astrophysics Data System (ADS)

    Ewen, Tracy; Seibert, Jan

    2015-04-01

    One of the best ways to engage students and instill enthusiasm for hydrology is to expose them to hands-on learning. A focus on hydrology field research can be used to develop context-rich and active learning, and help solidify idealized learning where students are introduced to individual processes through textbook examples, often neglecting process interactions and an appreciation for the complexity of the system. We introduced a field course where hydrological measurement techniques are used to study processes such as snow hydrology and runoff generation, while also introducing students to field research and design of their own field project. Additionally, we produced short films of each of these research-based field excursions, with in-house film expertise. These films present a short overview of field methods applied in alpine regions and will be used for our larger introductory hydrology courses, exposing students to field research at an early stage, and for outreach activities, including for potential high school students curious about hydrology. In the field course, students design a low-budget experiment with the aim of going through the different steps of a 'real' scientific project, from formulating the research question to presenting their results. During the field excursions, students make discharge measurements in several alpine streams with a salt tracer to better understand the spatial characteristics of an alpine catchment, where source waters originate and how they contribute to runoff generation. Soil moisture measurements taken by students in this field excursion were used to analyze spatial soil moisture patterns in the alpine catchment and subsequently used in a publication. Another field excursion repeats a published experiment, where preferential soil flow paths are studied using a tracer and compared to previously collected data. For each field excursion, observational data collected by the students is uploaded to an online database we developed, where students can also retrieve data from past excursions to further analyze and compare their data. At each of the field sites, weather stations were installed and a webviewer allows access to realtime data from data loggers, allowing students to explore how processes relate to climatic conditions. Together, these field excursions give students the necessary tools they will need to carry out field research of their own in future projects, whether in academia or industry, while the short films give potential or first-year students an impression of what hydrology is all about and hopefully inspire them to become future hydrologists.

  18. Assessing the protection function of Alpine forest ecosystems using BGC modelling theory

    NASA Astrophysics Data System (ADS)

    Pötzelsberger, E.; Hasenauer, H.; Petritsch, R.; Pietsch, S. A.

    2009-04-01

    The purpose of this study was to assess the protection function of forests in Alpine areas by modelling the flux dynamics (water, carbon, nutrients) within a watershed as they may depend on the vegetation pattern and forest management impacts. The application case for this study was the catchment Schmittenbach, located in the province of Salzburg. Data available covered the hydrology (rainfall measurements from 1981 to 1998 and runoff measurements at the river Schmittenbach from 1981 to 2005), vegetation dynamics (currently 69% forest, predominantly Norway Spruce). The method of simulating the forest growth and water outflow was validated. For simulations of the key ecosystem processes (e.g. photosynthesis, carbon and nitrogen allocation in the different plant parts, litter fall, mineralisation, tree water uptake, transpiration, rainfall interception, evaporation, snow accumulation and snow melt, outflow of spare water) the biogeochemical ecosystem model Biome-BGC was applied. Relevant model extensions were the tree species specific parameter sets and the improved thinning regime. The model is sensitive to site characteristics and needs daily weather data and information on the atmospheric composition, which makes it sensitive to higher CO2-levels and climate change. For model validation 53 plots were selected covering the full range of site quality and stand age. Tree volume and soil was measured and compared with the respective model results. The outflow for the watershed was predicted by combining the simulated forest-outflow (derived from plot-outflow) with the outflow from the non-forest area (calculated with a fixed outflow/rainfall coefficient (OC)). The analysis of production and water related model outputs indicated that mechanistic modelling can be used as a tool to assess the performance of Alpine protection forests. The Water Use Efficiency (WUE), the ratio of Net primary production (NPP) and Transpiration, was found the highest for juvenile stands (≤20yr). The WUE was also found directly proportional to the elevation. A positive correlation between annual outflow and the WUE could be shown. Yearly outflow predictions for the whole catchment for the years 1981-2005 showed no significant difference from the measurements. Key words: protection forests, outflow, flux dynamics, BGC-Modelling

  19. Comparison of Stream Temperature Modeling Approaches: The Case of a High Alpine Watershed in the Context of Climate Change

    NASA Astrophysics Data System (ADS)

    Gallice, A.

    2015-12-01

    Stream temperature controls important aspects of the riverine habitat, such as the rate of spawning or death of many fish species, or the concentration of numerous dissolved substances. In the current context of accelerating climate change, the future evolution of stream temperature is regarded as uncertain, particularly in the Alps. This uncertainty fostered the development of many prediction models, which are usually classified in two categories: mechanistic models and statistical models. Based on the numerical resolution of physical conservation laws, mechanistic models are generally considered to provide more reliable long-term estimates than regression models. However, despite their physical basis, these models are observed to differ quite significantly in some aspects of their implementation, notably (1) the routing of water in the river channel and (2) the estimation of the temperature of groundwater discharging into the stream. For each one of these two aspects, we considered several of the standard modeling approaches reported in the literature and implemented them in a new modular framework. The latter is based on the spatially-distributed snow model Alpine3D, which is essentially used in the framework to compute the amount of water infiltrating in the upper soil layer. Starting from there, different methods can be selected for the computation of the water and energy fluxes in the hillslopes and in the river network. We relied on this framework to compare the various methodologies for river channel routing and groundwater temperature modeling. We notably assessed the impact of each these approaches on the long-term stream temperature predictions of the model under a typical climate change scenario. The case study was conducted over a high Alpine catchment in Switzerland, whose hydrological and thermal regimes are expected to be markedly affected by climate change. The results show that the various modeling approaches lead to significant differences in the model predictions, and that these differences may be larger than the uncertainties in future air temperature. It is also shown that the temperature of groundwater discharging into the stream has a marked impact on the modeled stream temperature at the catchment outlet.

  20. Lacustrine Paleoseismology Reveals Earthquake Segmentation of the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Howarth, J. D.; Fitzsimons, S.; Norris, R.; Langridge, R. M.

    2013-12-01

    Transform plate boundary faults accommodate high rates of strain and are capable of producing large (Mw>7.0) to great (Mw>8.0) earthquakes that pose significant seismic hazard. The Alpine Fault in New Zealand is one of the longest, straightest and fastest slipping plate boundary transform faults on Earth and produces earthquakes at quasi-periodic intervals. Theoretically, the fault's linearity, isolation from other faults and quasi-periodicity should promote the generation of earthquakes that have similar magnitudes over multiple seismic cycles. We test the hypothesis that the Alpine Fault produces quasi-regular earthquakes that contiguously rupture the southern and central fault segments, using a novel lacustrine paleoseismic proxy to reconstruct spatial and temporal patterns of fault rupture over the last 2000 years. In three lakes located close to the Alpine Fault the last nine earthquakes are recorded as megaturbidites formed by co-seismic subaqueous slope failures, which occur when shaking exceeds Modified Mercalli (MM) VII. When the fault ruptures adjacent to a lake the co-seismic megaturbidites are overlain by stacks of turbidites produced by enhanced fluvial sediment fluxes from earthquake-induced landslides. The turbidite stacks record shaking intensities of MM>IX in the lake catchments and can be used to map the spatial location of fault rupture. The lake records can be dated precisely, facilitating meaningful along strike correlations, and the continuous records allow earthquakes closely spaced in time on adjacent fault segments to be distinguished. The results show that while multi-segment ruptures of the Alpine Fault occurred during most seismic cycles, sequential earthquakes on adjacent segments and single segment ruptures have also occurred. The complexity of the fault rupture pattern suggests that the subtle variations in fault geometry, sense of motion and slip rate that have been used to distinguish the central and southern segments of the Alpine Fault can inhibit rupture propagation, producing a soft earthquake segment boundary. The study demonstrates the utility of lakes as paleoseismometers that can be used to reconstruct the spatial and temporal patterns of earthquakes on a fault.

  1. Controls on nitrogen flux in alpine/subalpine watersheds of Colorado

    USGS Publications Warehouse

    Campbell, Donald H.; Baron, Jill S.; Tonnessen, Kathy A.; Brooks, Paul D.; Schuster, Paul F.

    2000-01-01

    High‐altitude watersheds in the Front Range of Colorado show symptoms of advanced stages of nitrogen excess, despite having less nitrogen in atmospheric deposition than other regions where watersheds retain nitrogen. In two alpine/subalpine subbasins of the Loch Vale watershed, atmospheric deposition of NO3− plus NH4+ was 3.2–5.5 kg N ha−1, and watershed export was 1.8–3.9 kg N ha−1 for water years 1992–1997. Annual N export increased in years with greater input of N, but most of the additional N was retained in the watershed, indicating that parts of the ecosystem are nitrogen‐limited. Dissolved inorganic nitrogen (DIN) concentrations were greatest in subsurface water of talus landscapes, where mineralization and nitrification augment high rates of atmospheric deposition of N. Tundra landscapes had moderately high DIN concentrations, whereas forest and wetland landscapes had low concentrations, indicating little export of nitrogen from these landscapes. Between the two subbasins the catchment of Icy Brook had greater retention of nitrogen than that of Andrews Creek because of landscape and hydrologic characteristics that favor greater N assimilation in both the terrestrial and aquatic ecosystems. These results suggest that export of N from alpine/subalpine watersheds is caused by a combination of direct flushing of N from atmospheric deposition and release of N from ecosystem biogeochemical processes (N cycling). Sensitivity of alpine ecosystems in the western United States to atmospheric deposition of N is a function of landscape heterogeneity, hydrologic flow paths, and climatic extremes that limit primary productivity and microbial activity, which, in turn, control retention and release of nitrogen. Conceptual and mechanistic models of N excess that have been developed for forested ecosystems need to be modified in order to predict the response of alpine ecosystems to future changes in climate and atmospheric deposition of N.

  2. An Investigation into Groundwater Recharge Dynamics and Hydrologic Connectivity in an Alpine/Subalpine Mountainous Headwater Catchment, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Dailey, K. R.; Hughes, H.; Williams, M. W.

    2015-12-01

    Geochemical surface and groundwater data were used to examine groundwater recharge dynamics and hydrologic connectivity in the dominantly subalpine Como Creek headwater catchment within the Boulder Creek Watershed in the Colorado Front Range. Streamwater chemistry along an elevational gradient of Como Creek showed strong responses to variations in precipitation inputs spanning 2011-2014. Elevation effects on δ18O were apparent, with more depleted values indicative of snowmelt influence observed at the higher elevation sites. Results from one-way ANOVA indicated that the highest elevation stream site, situated right below treeline, was significantly different from the lower three sites with regards to DOC, δ18O, and Ca2+ (p < 0.05) over May-October 2011-2014. Additionally, the second highest site in elevation was found to be significantly different from all other sites with respect to Ca2+ concentrations. Soil moisture sensor and geochemical data from soil tension lysimeters co-located with subalpine groundwater wells revealed a disconnect between soil and surface water chemistry during snowmelt and that of deeper, underlying groundwater. The initial results of this study provide insight on where groundwater recharge and discharge may be occurring in the catchment and help us to evaluate the large September 2013 rain event in the Colorado Front Range, a once in a 1000 year event. Water isotopes were enriched, Ca2+ decreased, and DOC was enriched, showing that new event water had flowed through near-surface soils but not deeper, recharging groundwater, with all values returning to normal within six months. The event was also observable compared to a long-term geochemical and stream stage record at the stream site near the catchment outlet, with the most enriched δ18O value on record of -13.41‰ corresponding to the flood. Remaining questions concerning groundwater dynamics in the catchment include constraining the tradeoffs between forest ET, groundwater recharge, and streamflow under a warming climate in order to forecast future water yield from the catchment. Further research quantifying where and when groundwater is recharging in the catchment will be conducted to determine how hydrological resilience of the catchment will change under varying climatic conditions.

  3. Extending amulti-scale parameter regionalization (MPR) method by introducing parameter constrained optimization and flexible transfer functions

    NASA Astrophysics Data System (ADS)

    Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten

    2015-04-01

    A multi-scale parameter-estimation method, as presented by Samaniego et al. (2010), is implemented and extended for the conceptual hydrological model COSERO. COSERO is a HBV-type model that is specialized for alpine-environments, but has been applied over a wide range of basins all over the world (see: Kling et al., 2014 for an overview). Within the methodology available small-scale information (DEM, soil texture, land cover, etc.) is used to estimate the coarse-scale model parameters by applying a set of transfer-functions (TFs) and subsequent averaging methods, whereby only TF hyper-parameters are optimized against available observations (e.g. runoff data). The parameter regionalisation approach was extended in order to allow for a more meta-heuristical handling of the transfer-functions. The two main novelties are: 1. An explicit introduction of constrains into parameter estimation scheme: The constraint scheme replaces invalid parts of the transfer-function-solution space with valid solutions. It is inspired by applications in evolutionary algorithms and related to the combination of learning and evolution. This allows the consideration of physical and numerical constraints as well as the incorporation of a priori modeller-experience into the parameter estimation. 2. Spline-based transfer-functions: Spline-based functions enable arbitrary forms of transfer-functions: This is of importance since in many cases the general relationship between sub-grid information and parameters are known, but not the form of the transfer-function itself. The contribution presents the results and experiences with the adopted method and the introduced extensions. Simulation are performed for the pre-alpine/alpine Traisen catchment in Lower Austria. References: Samaniego, L., Kumar, R., Attinger, S. (2010): Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., doi: 10.1029/2008WR007327 Kling, H., Stanzel, P., Fuchs, M., and Nachtnebel, H. P. (2014): Performance of the COSERO precipitation-runoff model under non-stationary conditions in basins with different climates, Hydrolog. Sci. J., doi: 10.1080/02626667.2014.959956.

  4. Hydro-economic performances of streamflow withdrawal strategies: the case of small run-of-river power plants

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Lazzaro, Gianluca; Schirmer, Mario; Botter, Gianluca

    2014-05-01

    River flows withdrawals to supply small run-of-river hydropower plants have been increasing significantly in recent years - particularly in the Alpine area - as a consequence of public incentives aimed at enhancing energy production from renewable sources. This growth further raised the anthropic pressure in areas traditionally characterized by an intense exploitation of water resources, thereby triggering social conflicts among local communities, hydropower investors and public authorities. This brought to the attention of scientists and population the urgency for novel and quantitative tools for assessing the hydrologic impact of these type of plants, and trading between economic interests and ecologic concerns. In this contribution we propose an analytical framework that allows for the estimate of the streamflow availability for hydropower production and the selection of the run-of-river plant capacity, as well as the assessment of the related profitability and environmental impacts. The method highlights the key role of the streamflow variability in the design process, by showing the significance control of the coefficient of variation of daily flows on the duration of the optimal capacity of small run-of-river plants. Moreover, the analysis evidences a gap between energy and economic optimizations, which may result in the under-exploitation of the available hydropower potential at large scales. The disturbances to the natural flow regime produced between the intake and the outflow of run-of-river power plants are also estimated within the proposed framework. The altered hydrologic regime, described through the probability distribution and the correlation function of streamflows, is analytically expressed as a function of the natural regime for different management strategies. The deviations from pristine conditions of a set of hydrologic statistics are used, jointly with an economic index, to compare environmental and economic outcomes of alternative plant setups and management strategies. Benefits connected to ecosystem services provided by unimpaired riverine environments can be also included in the analysis, possibly accounting for the disruptive effect of multiple run-of-river power plants built in cascade along the same river. The application to case studies in the Alpine region shows the potential of the tool to assess different management strategies and design solution, and to evaluate local and catchment scale impacts of small run-of-river hydropower development.

  5. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2014-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  6. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2015-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  7. Assessment of snow-dominated water resources: (Ir-)relevant scales for observation and modelling

    NASA Astrophysics Data System (ADS)

    Schaefli, Bettina; Ceperley, Natalie; Michelon, Anthony; Larsen, Joshua; Beria, Harsh

    2017-04-01

    High Alpine catchments play an essential role for many world regions since they 1) provide water resources to low lying and often relatively dry regions, 2) are important for hydropower production as a result of their high hydraulic heads, 3) offer relatively undisturbed habitat for fauna and flora and 4) provide a source of cold water often late into the summer season (due to snowmelt), which is essential for many downstream river ecosystems. However, the water balance of such high Alpine hydrological systems is often difficult to accurately estimate, in part because of seasonal to interannual accumulation of precipitation in the form of snow and ice and by relatively low but highly seasonal evapotranspiration rates. These processes are strongly driven by the topography and related vegetation patterns, by air temperature gradients, solar radiation and wind patterns. Based on selected examples, we will discuss how the spatial scale of these patterns dictates at which scales we can make reliable water balance assessments. Overall, this contribution will provide an overview of some of the key open questions in terms of observing and modelling the dominant hydrological processes in Alpine areas at the right scale. A particular focus will be on the observation and modelling of snow accumulation and melt processes, discussing in particular the usefulness of simple models versus fully physical models at different spatial scales and the role of observed data.

  8. THE HYDROLOGIC RESPONSE OF A SMALL CATCHMENT TO CLEAR-CUTTING

    EPA Science Inventory

    We simulated how a landscape disturbance (e.g., fire or clear-cutting) alters hillslope and catchment hydrologic processes. Specifically, we simulated how the pattern and magnitude of tree removal in a catchment increases downslope transport of water and alters catchment soil moi...

  9. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  10. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes.

    PubMed

    Eagles-Smith, Collin A; Herring, Garth; Johnson, Branden; Graw, Rick

    2016-05-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish. Published by Elsevier Ltd.

  11. Are lake sediments mere archives of degraded organic matter? - evidence of rapid biotic changes tracked in sediments of pre-alpine Lake Lunz, Austria

    NASA Astrophysics Data System (ADS)

    Hollaus, Lisa-Maria; Khan, Samiullah; Schelker, Jakob; Ejarque, Elisabet; Battin, Tom; Kainz, Martin

    2016-04-01

    Lake sediments are used as sentinels of changes in organic matter composition and dynamics within lakes and their catchments. In an effort to investigate how past and recent hydrological extreme events have affected organic matter composition in lake sediments, we investigated the biogeochemical composition of sediment cores and settling particles, using sediment traps in the pre-alpine, oligotrophic Lake Lunz, Austria. We assessed annual sedimentation rates using 137Cs and 210Pb, time integrated loads of settling particles, analyze stable carbon (δ13C) and nitrogen (δ15N) isotopes to track changes of carbon sources and trophic compositions, respectively, and use source-specific fatty acids as indicators of allochthonous, bacterial, and algal-derived organic matter. Preliminary results indicate that settling particles of Lake Lunz (33 m depth) contain high algae-derived organic matter, as assessed by long-chain polyunsaturated fatty acids (LC-PUFA), indicating low degradation of such labile organic matter within the water column of this lake. However, LC-PUFA decreased rapidly in sediment cores below the sediment-water interface. Concentrations of phosphorous remained stable throughout the sediment cores (40 cm), suggesting that past changes in climatic forcing did not alter the load of this limiting nutrient in lakes. Ongoing work reveals dramatic biotic changes within the top layers of the sediment cores as evidenced by high numbers of small-bodied cladocerans (e.g., Bosmina) and large-bodied zooplankton (e.g., Daphnia) are only detected at lower sediment layers. Current research on these lake sediments is aimed at investigating how organic matter sources changed during the past century as a result of recorded weather changes.

  12. Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments

    NASA Astrophysics Data System (ADS)

    Griessinger, Nena; Seibert, Jan; Magnusson, Jan; Jonas, Tobias

    2016-09-01

    In Alpine catchments, snowmelt is often a major contribution to runoff. Therefore, modeling snow processes is important when concerned with flood or drought forecasting, reservoir operation and inland waterway management. In this study, we address the question of how sensitive hydrological models are to the representation of snow cover dynamics and whether the performance of a hydrological model can be enhanced by integrating data from a dedicated external snow monitoring system. As a framework for our tests we have used the hydrological model HBV (Hydrologiska Byråns Vattenbalansavdelning) in the version HBV-light, which has been applied in many hydrological studies and is also in use for operational purposes. While HBV originally follows a temperature-index approach with time-invariant calibrated degree-day factors to represent snowmelt, in this study the HBV model was modified to use snowmelt time series from an external and spatially distributed snow model as model input. The external snow model integrates three-dimensional sequential assimilation of snow monitoring data with a snowmelt model, which is also based on the temperature-index approach but uses a time-variant degree-day factor. The following three variations of this external snow model were applied: (a) the full model with assimilation of observational snow data from a dense monitoring network, (b) the same snow model but with data assimilation switched off and (c) a downgraded version of the same snow model representing snowmelt with a time-invariant degree-day factor. Model runs were conducted for 20 catchments at different elevations within Switzerland for 15 years. Our results show that at low and mid-elevations the performance of the runoff simulations did not vary considerably with the snow model version chosen. At higher elevations, however, best performance in terms of simulated runoff was obtained when using the snowmelt time series from the snow model, which utilized data assimilation. This was especially true for snow-rich years. These findings suggest that with increasing elevation and the correspondingly increased contribution of snowmelt to runoff, the accurate estimation of snow water equivalent (SWE) and snowmelt rates has gained importance.

  13. A 10Be-based sediment budget of the Upper Rhône basin, Central Swiss Alps

    NASA Astrophysics Data System (ADS)

    Stutenbecker, Laura; Delunel, Romain; Schlunegger, Fritz; Akçar, Naki; Christl, Marcus

    2017-04-01

    The Upper Rhône catchment located in southwestern Switzerland is one of the largest Alpine intramontane basins and, due to high topographic gradients and intense glacial conditioning, an important sediment factory in the Alps. Sediment is being produced in around 50 tributary basins, transported along the 150 km long course of the Rhône River, and deposited in the river delta and associated subaquatic canyons within Lake Geneva, its primary sedimentary sink. In order to quantify the modern sediment fluxes in this Alpine basin we infer catchment-wide denudation rates from concentrations of the cosmogenic nuclide 10Be in quartz extracted from modern fluvial sediment of the major tributary basins. Additionally, 10Be-based denudation rates are calculated for 14 locations along the main Rhône River to track downstream changes. Results from the tributary basins show a large scatter of 10Be concentrations and their respective inferred denudation rates, ranging from 9.72 x 104 atoms/g and 0.17 mm/a to 0.13 x 104 atoms/g and 2.64 mm/a. The Rhône basin does show a rather large spatial variability of parameters that are known to possibly influence denudation rates, for example recent rock uplift rates, lithology, precipitation and temperature, as well as geomorphological parameters such as relief, mean elevation and slope values. However, there is no significant correlation between those parameters and the calculated denudation rates. Instead, the denudation rates are found to be positively correlated with the recent glacial cover in the catchments. This suggests that in glaciated basins glaciogenic material with very low 10Be concentrations is the dominating source of sediment, and inferred denudation rates must be interpreted with great care, as they may overestimate the actual rates. Downstream the main Rhône River the 10Be-concentrations are rather stable and do not record significant inputs of the glaciogenic material supplied by the glaciated basins. Possible explanations we would like to discuss here include differences in sediment connectivity and temporary sediment storage.

  14. RNICO: a new simple geometric index for assessing the impact of urban development pattern on peak flows in urban catchments

    NASA Astrophysics Data System (ADS)

    Kasaee Roodsari, B.; Chandler, D. G.

    2016-12-01

    Urban sprawl is widespread across the world and the associated hydrologic impacts are increasing in peri-urban catchments due to increased area of impervious. There is a strong agreement on the positive correlation between the fractional impervious area and peak flows in urban catchments. Nevertheless, the effect of land development pattern on peak flows is not well investigated. In this study, a new simple geometric index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), is defined to correlate imperviousness distribution of peri-urban catchments to runoff peak flows. Results of applying RNICO to 20 sub-catchments in New York State showed a strong positive correlation (R2>0.97) between RNICO and runoff peak flows for small peri-urban catchments (A< 42 km2) indicating higher flood risk of downstream urbanization. For large catchments (A> 42 km2), no correlation was indicated between RNICO and peak flows. We highlight the necessity of a greater discharge monitoring network at small peri-urban catchments to support local urban flood forecast.

  15. Observing and Modeling Snow Processes Across Spatial and Temporal Scales in Rocky Mountain Headwater Catchments

    NASA Astrophysics Data System (ADS)

    Bearup, L. A.; Carroll, R. W. H.; Williams, K. H.; Maxwell, R. M.; Foster, L.

    2016-12-01

    Recently we presented two papers one dedicated to the estimation of the water budget components in a small, basin, the Posina catchment [Abera et al., 2017], and the other in a large basin, the Blue Nile [Abera et al., 2017b]. At the smallest scale the ground measurements available do not guarantee the closure of the budget without making additional hypothesis. The large scale case, instead, was largely supported by remote sensing data either for calibration and/or validation. This contribution explains how we actually did it, clarifies some aspects of the informatics and openly discusses the issues risen in our work. We also consider varying configuration of the water budget schemes at the subbasin level, and how this affects the estimates.Finally we analyse the problem of travel times [Rigon et al., 2016a, Rigon et al, 2016b] as it comes out from considering the multiple fluxes and storages. All considerations and simulations are based on the JGrass-NewAGE system [Formetta et al., 2014] and its evolution (Bancheri [2017]).ReferencesAbera, W., Formetta, G., Borga, M., & Rigon, R. (2017a). Estimating the water budget components and their variability in a pre-alpine basin with JGrass-NewAGE. Advances in Water Resources, http://doi.org/10.1016/j.advwatres.2017.03.010Abera, W., Formetta, G., Brocca, L., & Rigon, R. (2017b). Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data. Hydrology and Earth System Sciences. http://doi.org/10.5194/hess-21-3145-2017Bancheri, M., A travel time model for water budget of complex catchments, ph.D Thesis, 2017Formetta, G., Antonello, A., Franceschi, S., David, O., & Rigon, R. (2014). Hydrological modelling with components: A GIS-based open-source framework. Environmental Modelling and Software,. http://doi.org/10.1016/j.envsoft.2014.01.019Rigon, R., Bancheri, M., Formetta, G., & de Lavenne, A. (2016). The geomorphological unit hydrograph from a historical-critical perspective. Earth Surface Processes and Landform. http://doi.org/10.1002/esp.3855Rigon, R., Bancheri, M., & Green, T. R. (2016). Age-ranked hydrological budgets and a travel time description of catchment hydrology. Hydrology and Earth System Sciences. http://doi.org/10.5194/hess-20-4929-2016

  16. Water Futures for Cold Mountain Ecohydrology under Climate Change - Results from the North American Cordilleran Transect

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Fang, X.; Whitfield, P. H.; Marks, D. G.; Janowicz, J. R.

    2017-12-01

    A transect comprising three intensively researched mountain headwater catchments stretching from the northern US to northern Canada provides the basis to downscale climate models outputs for mountain hydrology and insight for an assessment of water futures under changing climate and vegetation using a physically based hydrological model. Reynolds Mountain East, Idaho; Marmot Creek, Alberta and Wolf Creek, Yukon are high mountain catchments dominated by forests and alpine shrub and grass vegetation with long-term snow, hydrometric and meteorological observations and extensive ecohydrological process studies. The physically based, modular, flexible and object-oriented Cold Regions Hydrological Modelling Platform (CRHM) was used to create custom spatially distributed hydrological models for these three catchments. Model parameterisations were based on knowledge of hydrological processes, basin physiography, soils and vegetation with minimal or no calibration from streamflow measurements. The models were run over multidecadal periods using high-elevation meteorological observations to assess the recent ecohydrological functioning of these catchments. The results showed unique features in each catchment, from snowdrift-fed aspen pocket forests in Reynolds Mountain East, to deep late-lying snowdrifts at treeline larch forests in Marmot Creek, and snow-trapping shrub tundra overlying discontinuous permafrost in Wolf Creek. The meteorological observations were then perturbed using the changes in monthly temperature and precipitation predicted by the NARCCAP modelling outputs for the mid-21st C. In all catchments there is a dramatic decline in snow redistribution and sublimation by wind and of snow interception by and sublimation from evergreen canopies that is associated with warmer winters. Reduced sublimation loss only partially compensated for greater rainfall fractions of precipitation. Under climate change, snowmelt was earlier and slower and at the lowest elevations and latitudes produced less proportion of runoff from snowmelt. Transient vegetation changes counteracted increasing streamflow yields from climate change partly due to increased snow retention by enhanced vegetation heights at high elevations and reduced vegetation canopy coverage at low elevations.

  17. Marsupials don't adjust their thermal energetics for life in an alpine environment

    PubMed Central

    Cooper, Christine E.; Withers, Philip C.; Hardie, Andrew; Geiser, Fritz

    2016-01-01

    ABSTRACT Marsupials have relatively low body temperatures and metabolic rates, and are therefore considered to be maladapted for life in cold habitats such as alpine environments. We compared body temperature, energetics and water loss as a function of ambient temperature for 4 Antechinus species, 2 from alpine habitats and 2 from low altitude habitats. Our results show that body temperature, metabolic rate, evaporative water loss, thermal conductance and relative water economy are markedly influenced by ambient temperature for each species, as expected for endothermic mammals. However, despite some species and individual differences, habitat (alpine vs non-alpine) does not affect any of these physiological variables, which are consistent with those for other marsupials. Our study suggests that at least under the environmental conditions experienced on the Australian continent, life in an alpine habitat does not require major physiological adjustments by small marsupials and that they are physiologically equipped to deal with sub-zero temperatures and winter snow cover. PMID:28349088

  18. Marsupials don't adjust their thermal energetics for life in an alpine environment.

    PubMed

    Cooper, Christine E; Withers, Philip C; Hardie, Andrew; Geiser, Fritz

    2016-01-01

    Marsupials have relatively low body temperatures and metabolic rates, and are therefore considered to be maladapted for life in cold habitats such as alpine environments. We compared body temperature, energetics and water loss as a function of ambient temperature for 4 Antechinus species, 2 from alpine habitats and 2 from low altitude habitats. Our results show that body temperature, metabolic rate, evaporative water loss, thermal conductance and relative water economy are markedly influenced by ambient temperature for each species, as expected for endothermic mammals. However, despite some species and individual differences, habitat (alpine vs non-alpine) does not affect any of these physiological variables, which are consistent with those for other marsupials. Our study suggests that at least under the environmental conditions experienced on the Australian continent, life in an alpine habitat does not require major physiological adjustments by small marsupials and that they are physiologically equipped to deal with sub-zero temperatures and winter snow cover.

  19. Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Winkler, Gerfried; Wagner, Thomas; Pauritsch, Marcus; Birk, Steffen; Kellerer-Pirklbauer, Andreas; Benischke, Ralf; Leis, Albrecht; Morawetz, Rainer; Schreilechner, Marcellus G.; Hergarten, Stefan

    2016-06-01

    More than 2,600 relict rock glaciers are known in the Austrian Alps but the knowledge of their hydraulic properties is severely limited. The relict Schöneben Rock Glacier (Niedere Tauern Range, Austria), with an extension of 0.17 km2, was investigated based on spring data (2006-2014) and seismic refraction survey. Spring-discharge hydrographs and natural and artificial tracer data suggest a heterogeneous aquifer with a layered internal structure for the relict rock glacier. The discharge behavior exhibits a fast and a delayed flow component. The spring discharge responds to recharge events within a few hours but a mean residence time of several months can also be observed. The internal structure of the rock glacier (up to several tens of meters thick) consists of: an upper blocky layer with a few meters of thickness, which lacks fine-grained sediments; a main middle layer with coarse and finer-grained sediments, allowing for fast flow; and an approximately 10-m-thick basal till layer as the main aquifer body responsible for the base flow. The base-flow component is controlled by (fine) sandy to silty sediments with low hydraulic conductivity and high storage capacity, exhibiting a difference in hydraulic conductivity to the upper layer of about three orders of magnitude. The high storage capacity of relict rock glaciers has an impact on water resources management in alpine catchments and potentially regulates the risk of natural hazards such as floods and related debris flows. Thus, the results highlight the importance of such aquifer systems in alpine catchments.

  20. Precipitation chemistry in and ionic loading to an Alpine Basin, Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Williams, Mark W.; Melack, John M.

    1991-07-01

    Wet deposition of solutes to an alpine catchment in the southern Sierra Nevada was measured from October 1984 through March 1988. Rainfall had a volume-weighted pH of 4.9, and snowfall had a volume-weighted pH of 5.3. Acetic and formic acids were important components of all wet deposition, contributing 25-30% of the measured anions in snowfall and, through analysis of charge balance deficits, the same percentage in rainfall. The NO3- to SO42- equivalent ratio for all wet deposition was 1.16. Ammonium concentration was tenfold greater than H+ in rainfall; ammonium nitrate and ammonium sulfate appear to be the principal nitrate and sulfate containing aerosols in wet deposition. Snowmelt runoff (1985 and 1986) or snowpack runoff plus rainfall during the period of snowpack runoff (1987) supplied 90% of the annual solute flux from wet deposition to the catchment. The amount of snow water equivalence (mm m-2) and H+, SO42-, and Cl- (eq m-2) in cumulative snowfall measured on snowboards was similar to the accumulated deposition of these parameters measured in snowpils at midwinter and during maximum snow accumulation periods, while about 20% of the NO3- in snowfall was not stored in the winter snowpack. Dry deposition was therefore not an important contributor of H+, NO3-, and SO42- to the winter snowpack. The source of the ions in snowfall was air masses that originated over the Pacific Ocean, while low Cl- and Na+ relative to NO3- and NH4+ in rainfall indicate that local urban and agricultural areas were the major source of the ions in rainfall.

  1. A mountain river sediment cascade and its controls: the Schöttlbach torrent, Styria

    NASA Astrophysics Data System (ADS)

    Lutzmann, Silke; Stangl, Johannes; Sass, Oliver

    2017-04-01

    Steep alpine headwater torrents are characterized by episodic heavy floods and bedload pulses triggered by local high-intensity mountain rainstorms. They frequently pose serious risks and damage in the densely populated East Alpine Region. It is important to understand where critical sediments are mobilized, how much bedload is delivered to the outlet and what controls the variability. We present a concept to quantify the sediment cascade's components and influencing factors for the Schöttlbach torrent - a 71 km2 non-glaciated catchment in the Niedere Tauern mountain Range in Styria, Austria. Geomorphic mapping is used to identify primary bedload sources on slope as well as patterns of lithology, slope-channel coupling and vegetation conditioning erosion intensity. We apply modern near-range measuring techniques (TLS, Structure from Motion) to monitor erosion rates from representative erosion sites and sediment delivery rates at the outlet since 2014. These measurements are interpreted based on the geomorphic map to derive a catchment-wide seasonal sediment budget. To explain seasonal variations we evaluate precipitation and discharge data from a dense station network as storm precipitation and runoff events are the main triggers of torrent sediment mobilization. Torrent reaches in instable glaciofluvial sediments of the last glaciation show high average erosion rates of ca. 0.08 m/a from 2014 to 2016 surpassing rates in deeply weathered bedrock reaches by an order of magnitude (approx. 0.006 m/a). We model a torrent-wide erosion volume of 2000 m3/a opposing an output of 7000 m3/a in that period. We attribute parts of this discrepancy to a sediment wave reworking signal of an extreme flood event in 2011.

  2. Increased concentrations of polycyclic aromatic hydrocarbons in Alpine streams during annual snowmelt: investigating effects of sampling method, site characteristics, and meteorology.

    PubMed

    Shahpoury, Pourya; Hageman, Kimberly J; Matthaei, Christoph D; Alumbaugh, Robert E; Cook, Michelle E

    2014-10-07

    Silicone passive samplers and macroinvertebrates were used to measure time-integrated concentrations of polycyclic aromatic hydrocarbons (PAHs) in alpine streams during annual snowmelt. The three sampling sites were located near a main highway in Arthur's Pass National Park in the Southern Alps of New Zealand. A similar set of PAH congeners, composed of 2-4 rings, were found in silicone passive samplers and macroinvertebrates. The background PAH concentrations were similar at all sites, implying that proximity to the highway did not affect concentrations. In passive samplers, an increase of PAH concentrations by up to seven times was observed during snowmelt. In macroinvertebrates, the concentration changes were moderate; however, macroinvertebrate sampling did not occur during the main pulse observed in the passive samplers. The extent of vegetation in the catchment appeared to affect the concentration patterns seen at the different stream sites. A strong correlation was found between PAH concentrations in passive samplers and the amount of rainfall in the study area, indicating that the washout of contaminants from snowpack by rainfall was an important process.

  3. Compound-specific stable isotopes of organic compounds from lake sediments track recent environmental changes in an alpine ecosystem, Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Enders, S.K.; Pagani, M.; Pantoja, S.; Baron, Jill S.; Wolfe, A.P.; Pedentchouk, N.; Nunez, L.

    2008-01-01

    Compound-specific nitrogen, carbon, and hydrogen isotope records from sediments of Sky Pond, an alpine lake in Rocky Mountain National Park (Colorado, United States of America), were used to evaluate factors contributing to changes in diatom assemblages and bulk organic nitrogen isotope records identified in lake sediments across Colorado, Wyoming, and southern Montana. Nitrogen isotopic records of purified algal chlorins indicate a substantial shift in nitrogen cycling in the region over the past ???60 yr. Temporal changes in the growth characteristics of algae, captured in carbon isotope records in and around Sky Pond, as well as a -60??? excursion in the hydrogen isotope composition of algal-derived palmitic acid, are coincident with changes in nitrogen cycling. The confluence of these trends is attributed to an increase in biologically available nitrogenous compounds caused by an expansion of anthropogenic influences and temporal changes in catchment hydrology and nutrient delivery associated with meltwater dynamics. ?? 2008, by the American Society of Limnology and Oceanography, Inc.

  4. Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado front range

    USGS Publications Warehouse

    Miller, Matthew P.; McKnight, Diane M.; Cory, R.M.; Williams, Mark W.; Runkel, Robert L.

    2006-01-01

    The influence of hyporheic zone interactions on the redox state of fulvic acids and other redox active species was investigated in an alpine stream and adjacent wetland, which is a more reducing environment. A tracer injection experiment using bromide (Br-) was conducted in the stream system. Simulations with a transport model showed that rates of exchange between the stream and hyporheic zone were rapid (?? ??? 10-3 s -1). Parallel factor analysis of fluorescence spectra was used to quantify the redox state of dissolved fulvic acids. The rate coefficient for oxidation of reduced fulvic acids (?? = 6.5 ?? 10-3 s -1) in the stream indicates that electron-transfer reactions occur over short time scales. The rate coefficients for decay of ammonium (?? = 1.2 ?? 10-3 s-1) and production of nitrate (?? = -1.0 ?? 10-3 s-1) were opposite in sign but almost equal in magnitude. Our results suggest that fulvic acids are involved in rapid electron-transfer processes in and near the stream channel and may be important in determining ecological energy flow at the catchment scale. ?? 2006 American Chemical Society.

  5. Impacts after four years of experimental trampling on alpine/sub-alpine environments in western Tasmania.

    PubMed

    Whinam, Jennie; Chilcott, Nicole M

    2003-04-01

    Experimental trials were undertaken over four years to assess the impact of recreational trampling in undisturbed alpine and sub-alpine vegetation communities in the Western Arthur Range, western Tasmania. Data on 'pad' formation due to human trampling were collected using vegetation cover assessments, biomass estimates and detailed cross-sectional surface profiles. In sub-alpine buttongrass and alpine herbfield, prolonged and sustained damage may occur after 100 passes by walkers. The environmental threshold of the flat alpine herbfield site was breached after 200 passes. Plant morphology was one determinant of resistance and resilience, with upright woody shrubs and tall tussock graminoids most vulnerable to sustained trampling damage. Cushions are susceptible to trampling impacts at 500 passes. Loss of vegetation cover peaks 6-12 months after trampling. Our results show that pads formed with as few as 30-100 passes per annum and tracks form at between 100 and 500 passes per annum. Two years after the cessation of trampling, there is some small recovery in vegetation cover after 30 and 100 passes per annum applied for three years, but no evidence of recovery at the 500 pass treatments. The low trampling threshold and slow recovery rates in western Tasmania suggest that concentrating walkers on a minimal number of sites may be the best management option for these untracked alpine and sub-alpine environments.

  6. Staying cool: preadaptation to temperate climates required for colonising tropical alpine-like environments.

    PubMed

    Gehrke, Berit

    2018-01-01

    Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like) climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments - at least tropical ones - are species sinks.

  7. Staying cool: preadaptation to temperate climates required for colonising tropical alpine-like environments

    PubMed Central

    Gehrke, Berit

    2018-01-01

    Abstract Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like) climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments – at least tropical ones – are species sinks. PMID:29706788

  8. Tracking Dramatic Changes at Hawaii's Only Alpine Lake

    NASA Astrophysics Data System (ADS)

    Patrick, Matthew R.; Delparte, Donna

    2014-04-01

    Lake Waiau is a small lake (normally 100 meters in diameter) just below the summit of Mauna Kea Volcano (elevation of 4207 meters) on the island of Hawaii. The only alpine lake in the Hawaiian Islands, it is fed mainly by sporadic winter storms that drop snow in the otherwise arid summit region.

  9. A Spatially Distributed Conceptual Model for Estimating Suspended Sediment Yield in Alpine catchments

    NASA Astrophysics Data System (ADS)

    Costa, Anna; Molnar, Peter; Anghileri, Daniela

    2017-04-01

    Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units, while the distance from the outlet is accounted for by including sediment wave velocities. The model is calibrated and validated on the basis of continuous turbidity data measured at the outlet of the basin. In addition, SSC data measured twice per week since 1964 are used to evaluate the performance of the model over longer time scales. Our predictive model is shown to reproduce SSC dynamics of the upper Rhône basin satisfactorily. The model accounts for the spatial distribution of sediment sources (location and processes of erosion and transport) and their activation/deactivation throughout the hydrological year. Therefore, it can reproduce the effects of changes in climate on sediment fluxes. In particular, we show that observed changes in SSC in the upper Rhône basin during the last 40 years are likely a consequence of increased air temperatures in this period and the consequent acceleration of glacial erosion.

  10. Long-term effects of climate and land cover change on freshwater provision in the tropical Andes

    NASA Astrophysics Data System (ADS)

    Molina, A.; Vanacker, V.; Brisson, E.; Mora, D.; Balthazar, V.

    2015-06-01

    Andean headwater catchments play a pivotal role to supply fresh water for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes. In this paper, we assess multi-decadal change in freshwater provision based on long time series (1974-2008) of hydrometeorological data and land cover reconstructions for a 282 km2 catchment located in the tropical Andes. Three main land cover change trajectories can be distinguished: (1) rapid decline of native vegetation in montane forest and páramo ecosystems in ~1/5 or 20% of the catchment area, (2) expansion of agricultural land by 14% of the catchment area, (3) afforestation of 12% of native páramo grasslands with exotic tree species in recent years. Given the strong temporal variability of precipitation and streamflow data related to El Niño-Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow that exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term climate change but very likely result from direct anthropogenic disturbances after land cover change. Partial water budgets for montane cloud forest and páramo ecosystems suggest that the strongest changes in evaporative water losses are observed in páramo ecosystems, where progressive colonization and afforestation of high alpine grasslands leads to a strong increase in transpiration losses.

  11. Towards the determination of an optimal scale for stormwater quality management: micropollutants in a small residential catchment.

    PubMed

    Bressy, A; Gromaire, M-C; Lorgeoux, C; Saad, M; Leroy, F; Chebbo, G

    2012-12-15

    Stormwater and atmospheric deposits were collected on a small residential urban catchment (0.8 ha) near Paris in order to determine the levels of certain micropollutants (using a preliminary scan of 69 contaminants, followed by a more detailed quantification of PAHs, PCBs, alkylphenols and metals). Atmospheric inputs accounted for only 10%-38% of the stormwater contamination (except for PCBs), thus indicating substantial release within the catchment. On this small upstream catchment however, stormwater contamination is significantly lower than that observed downstream in storm sewers on larger adjacent urban catchments with similar land uses. These results likely stem from cross-contamination activity during transfers inside the sewer system and underscore the advantages of runoff management strategies at the source for controlling stormwater pollutant loads. Moreover, it has been shown that both contamination levels and contaminant speciation evolve with the scale of the catchment, in correlation with a large fraction of dissolved contaminants in upstream runoff, which differs from what has been traditionally assumed for stormwater. Consequently, the choice of treatment device/protocol must be adapted to the management scale as well as to the targeted type of contaminant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Sediment storage quantification and postglacial evolution of an inner-alpine sedimentary basin (Gradenmoos, Schober Mountains, Austria)

    NASA Astrophysics Data System (ADS)

    Götz, J.; Buckel, J.; Otto, J. C.; Schrott, L.

    2012-04-01

    Knickpoints in longitudinal valley profiles of alpine headwater catchments can be frequently assigned to the lithological and tectonical setting, to damming effects through large (rockfall) deposits, or to the impact of Pleistocene glaciations causing overdeepened basins. As a consequence various sedimentary sinks developed, which frequently interrupt sediment flux in alpine drainage basins. Today these locations may represent landscape archives documenting a sedimentary history of great value for the understanding of alpine landscape evolution. The glacially overdeepened Gradenmoos basin at 1920 m a.s.l. (an alpine lake mire with adjacent floodplain deposits and surrounding slope storage landforms; approx. 4.1 km2) is the most pronounced sink in the studied Gradenbach catchment (32.5 km2). The basin is completely filled up with sediments delivered by mainly fluvial processes, debris flows, and rock falls, it is assumed to be deglaciated since Egesen times and it is expected to archive a continuous stratigraphy of postglacial sedimentation. As the analysis of denudation-accumulation-systems is generally based on back-calculation of stored sediment volumes to a specific sediment delivering area, most reliable results will be consequently obtained (1) if sediment output of the system can be neglected for the investigated period of time, (2) if - due to spatial scale - sediment storage can be assessed quantitatively with a high level of accuracy, and (3) if the sediment contributing area can be clearly delimited. All three aspects are considered to be fulfilled to a high degree within the Gradenmoos basin. Sediment storage is quantified using geophysical methods, core drillings and GIS modelling whereas postglacial reconstruction is based on radiocarbon dating and palynological analyses. Subject to variable subsurface conditions, different geophysical methods were applied to detect bedrock depth. Electrical resistivity surveying (2D/3D) was used most extensively as it delivered detailed and realistic subsurface models with low residual errors in the fine grained and water saturated central and distal part of the basin. With a lower data density, ground penetrating radar and refraction seismic supplied bedrock depths underneath adjacent debris and talus slope deposits. Additionally extracted sediment cores (up to 22 m depth) yielded a detailed stratigraphic record of the basin comprising a basal till layer underneath lake sediments (sandy-silty, partly varved), a sandy matrix with several oxidised layers in the upper sections, and layers of peat towards the surface. As bedrock was reached several times, core drilling further enabled to calibrate resistivity models. On the base of geophysical derived bedrock points, the shape of the assumed bedrock basin was modelled using a thin-plate-spline interpolation. Sediment volumes were calculated by subtracting the bedrock model from a surface DEM derived from terrestrial laser scanning. Since sediment delivering areas can be clearly assigned to single storage landform volumes, denudation rates could be calculated in detail and related to sedimentation rates obtained by radiocarbon dating results. An integrated analysis of surface, subsurface and temporal information finally yielded a model of postglacial basin evolution which will be discussed in a paraglacial context. This presentation is supported by the EUROCORES programme TOPO-EUROPE of the European Science Foundation.

  13. Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.

    PubMed

    Langhammer, Jakub; Rödlová, Sylva

    2013-12-01

    Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.

  14. High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry

    NASA Astrophysics Data System (ADS)

    Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.

    2017-12-01

    Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential accumulation and ablation, snow depth maps provide geostatistically robust insights into seasonal snow processes, with unprecedented detail. Such data may enhance understanding of physical processes controlling spatial and temporal distribution of seasonal snow, and their relative importance at varying spatial and temporal scales.

  15. A multiple wavelet coherency method for temporal streamflow-precipitation-temperature relationships in 17 small catchments on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Liu, B.

    2017-12-01

    Climate change and human activities are two critical factors causing the dramatical variations of streamflow in the Yellow River Basin of China during the last several decades. More and more attention has been paid to the temporal relationships of streamflow with precipitation and temperature recently. The objective of the current study was to explore the contributions of precipitation and temperature to the temporal variations of streamflow on the Loess Plateau using a multiple wavelet coherency method. Annual streamflow during 1961-2013 for 17 small catchments were collected from the Yellow River Conservancy Commission and annual precipitation and temperature for each catchment were derived from the meteorological data at the national weather stations across the Loess Plateau through the China Meteorological Data Sharing Service System. An abrupt decrease was observed in the annual streamflow around year 2000 for any of the 17 catchments investigated, which was believed to be related with the extensive Grain for Green Project. According to bivariate wavelet coherences, however, annual streamflow showed strong temporal variations with annual precipitation at 8 out of the 17 catchments, where the percentage area of significant coherency (PASC) exceeded 50%. Especially in Weihe and Yiluohe catchments, the corresponding PASC were close to 100%, suggesting that annual precipitation change accounted for almost all the temporal streamflow variations. Compared to annual precipitation, the temporal correlation of temperature with streamflow was relatively small, as implied in the lower mean wavelet coherence (MWC) and PASC. Moreover, including temperature in addition to precipitation in the multiple wavelet coherency analysis failed to increase either MWC or PASC in any of the 17 catchments except for Qingjianhe and Qiushuihe catchments. It was indicated that for most catchments on the Loess Plateau, annual temperature was not significantly different from the red noise in explaining the additional variation in streamflow. In view of the small PASC values resulted for most catchments, there existed other environmental and/or anthropogenic factors responsible for the temporal variations of streamflow.

  16. Assessing the impact of climate change on flood types in the Austrian and French Alps using the stochastic weather generator TripleM and rainfall-runoff modeling

    NASA Astrophysics Data System (ADS)

    Breinl, Korbinian; Turkington, Thea

    2017-04-01

    We developed a new methodology for classifying flood types, which appears to be particularly suitable for climate change impact studies. Climate change is not only expected to change the magnitude and frequency of Alpine floods but also the types of floods. The distribution of existing flood types may change and new flood types may develop. A shift away from solely focusing on the magnitude and frequency of floods in flood hazard assessment and disaster risk management towards the causal types of floods is required as the types and therefore also timing and characteristics of floods will have implications on both the local social and ecological systems. The flood types are classified using k-means clustering of temperature and precipitation indicators, capturing differences in rainfall amounts, antecedent rainfall, snow-cover, and the day of the year. In a first step, we used the open-source multi-site weather generator TripleM coupled with the fast conceptual rainfall-runoff model HBV to extrapolate the observed discharge time series and generate a large inventory of different types of observed flood events and flood types. The weather generator was then parameterized based on projections of rainfall and temperature to simulate future flood types and events. We selected four climate projections (mild dry, mild wet, warm dry and warm wet conditions) from a set of 15, which originated from the EURO-CORDEX dataset. We worked in two catchments in the Austrian and French Alps that have been affected by floods in the past: the medium-sized Salzach catchment in Austria, which is dominated by rainfall driven flooding during the summer and autumn period, and the small Ubaye catchment in the Southern French Alps, which is dominated by rain-on-snow floods in the spring period. The analysis of the simulated future flood types shows clear changes in the distribution and characteristics of flood types in both study areas under the different climate projections examined.

  17. Exploring hydrological uncertainties and thresholds of a drought vulnerable region in Austria

    NASA Astrophysics Data System (ADS)

    Hohmann, Clara; Kirchengast, Gottfried; Birk, Steffen

    2015-04-01

    In the region of South-Eastern Styria, Austria, a strong increase of summer temperature over the last decades was recognized by Kabas et. al. (Meteorol. Z./ 20 (3), 277-289, 2011). With climate change the temperature will further increase, so that the possibility for more frequent droughts in summer will rise. This leads to the question if, for example, a steppe climate similar to that in the neighboring Hungarian Pussta can evolve in this region. Drastic climatic changes will be accompanied by strong changes in the hydrological balance. Since the region is strongly influenced by agriculture and other non-climatic factors as well, these human impacts on the water cycle must be considered. The Wegener Center, University of Graz is studying the Raab catchment in South-Eastern Styria, Austria, as an example of a small catchment of the climate-sensitive southern Alpine foothills. The available data indicate that the region is vulnerable to droughts in summer, signalled by a strong temperature increase over the recent decades and a tendency of precipitation decrease. The main goals of this study are to explore how the water balance in the region is going to change in the future, what the most significant uncertainties are and where there might be thresholds towards drastic changes. In this poster we report on the first steps, which is to build up a hydrological model for the Styrian Raab valley based on the Water balance Simulation Model (WaSiM) of ETH Zurich, Switzerland. Within the calibration the focus is on low flow conditions in summer. Given that the model shows good results for the well observed recent decades, a sensitivity analysis for changes in specific (control) parameters of the surface water balance is conducted. This will include anomalies of temperature and precipitation, water use for irrigation, and others. This enables to explore how warmer temperatures or changes in irrigation and crops affect the catchment. Model analyses do not only focus on flow conditions but also on internal variables, such as the soil moisture, which has a significant impact on the water balance and the drought vulnerability of the region.

  18. Influence of catchment-scale military land use on stream physical and organic matter variables in small Southeaster Plains Catchments (USA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, Kelly

    2005-01-01

    We conducted a 3-year study designed to examine the relationship between disturbance from military land use and stream physical and organic matter variables within 12 small (<5.5 km2) Southeastern Plains catchments at the Fort Benning Military Installation, Georgia, USA. Primary land-use categories were based on percentages of bare ground and road cover and nonforested land (grasslands, sparse vegetation, shrublands, fields) in catchments and natural catchments features, including soils (% sandy soils) and catchment size (area). We quantified stream flashiness (determined by slope of recession limbs of storm hydrographs), streambed instability (measured by relative changes in bed height over time), organicmore » matter storage [coarse wood debris (CWD) relative abundance, benthic particulate organic matter (BPOM)] and stream-water dissolved organic carbon concentration (DOC). Stream flashiness was positively correlated with average storm magnitude and percent of the catchment with sandy soil, whereas streambed instability was related to percent of the catchment containing nonforested (disturbed) land. The proportions of in-stream CWD and sediment BPOM, and stream-water DOC were negatively related to the percent of bare ground and road cover in catchments. Collectively, our results suggest that the amount of catchment disturbance causing denuded vegetation and exposed, mobile soil is (1) a key terrestrial influence on stream geomorphology and hydrology and (2) a greater determinant of in-stream organic matter conditions than is natural geomorphic or topographic variation (catchment size, soil type) in these systems.« less

  19. Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.

    2006-12-01

    Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).

  20. AN ENVIRONMENTAL SIMULATION MODEL FOR TRANSPORT AND FATE OF MERCURY IN SMALL RURAL CATCHMENTS

    EPA Science Inventory

    The development of an extensively modified version of the environmental model GLEAMS to simulate fate and transport of mercury in small catchments is presented. Methods for parameter estimation are proposed and in some cases simple relationships for mercury processes are derived....

  1. Uncertainties in discharge projections in consequence of climate change

    NASA Astrophysics Data System (ADS)

    Liebert, J.; Düthmann, D.; Berg, P.; Feldmann, H.; Ihringer, J.; Kunstmann, H.; Merz, B.; Ott, I.; Schädler, G.; Wagner, S.

    2012-04-01

    The fourth assessment report of the IPCC summarizes possible effects of the global climate change. For Europe an increasing variability of temperature and precipitation is expected. While the increasing temperature is projected almost uniformly for Europe, for precipitation the models indicate partly heterogeneous tendencies. In order to maintain current safety-standards in the infrastructure of our various water management systems, the possible future floods discharges are very often a central question. In the planning and operation of water infrastructure systems uncertainties considerations have an important function. In times of climate change the analyses of measured historical gauge data (normally 30 - 80 years) are not sufficient enough, because even significant trends are only valid in the analyzed time period and extrapolations are exceedingly difficult. Therefore combined climate and hydrological modeling for scenario based projections become more and more popular. Regarding that adaptation measures in water infrastructure are in general very time-consuming and cost intensive qualified questions to the variability and uncertainty of model based results are important as well. The CEDIM-Project "Flood hazards in a changing climate" is focusing on both: future changes in flood discharge and assess the uncertainties that are involved in such model based future predictions. In detail the study bases on an ensemble of hydrological model (HM) simulations in 3 representative small to medium sized German river catchments (Ammer, Mulde and Ruhr). The meteorological Input bases on 2 high resolution (7 km) regional climate models (RCM) driven by 2 global climate models (GCM) for the near future (2021 - 2050) following the A1B emission scenario (SRES). Two of the catchments (Ruhr and Mulde) have sub-mountainous and one (Ammer) has alpine character. Besides analyzing the future changes in discharge in the catchments, the describing and potential quantification of the variability of the results, based on the different driving data, regionalization methods, spatial resolutions and model types, is one main goal of the study and should stay in the focus of the poster. The general result is a large variability in the discharge projection. The identified variabilities are in the annual regime mainly attributable to different causes in the used model chain (GCM-RCM-HM). In winter the global climate models (GCM) bring the main uncertainties in the future projection. In summer the main variability refers to the meteorological downscaling to the regional scale (RCM) in combination with the hydrological modeling (HM). But with an appropriate ensemble statistic are despite the large variabilities mean future tendencies detectable. The Ruhr catchment shows tendencies to future higher flood discharges and in the Ammer and Mulde catchments are no significant changes expected.

  2. Thermal Fluxes and Temperatures in Small Urban Headwater Streams of the BES LTER: Landscape Forest and Impervious Patches and the Importance of Spatial and Temporal Scales

    NASA Astrophysics Data System (ADS)

    Kim, H.; Belt, K. T.; Welty, C.; Heisler, G.; Pouyat, R. V.; McGuire, M. P.; Stack, W. P.

    2006-05-01

    Water and material fluxes from urban landscape patches to small streams are modulated by extensive "engineered" drainage networks. Small urban headwater catchments are different in character and function from their larger receiving streams because of their extensive, direct connections to impervious surface cover (ISC) and their sometimes buried nature. They need to be studied as unique functional hydrologic units if impacts on biota are to be fully understood. As part of the Baltimore Ecosystem Study LTER project, continuous water temperature data are being collected at 2-minute intervals at over twenty small catchments representing various mixtures of forest and ISC. Suburban stream sites with greater ISC generally have higher summer water temperatures. Suburban catchments with most of their channel drainage contained within storm drain pipes show subdued diurnal variation and cool temperatures, but with very large spikes in summer runoff events. Conversely, high ISC urban piped streams have elevated "baseline" temperatures that stand well above all the other monitoring sites. There is a pronounced upstream-downstream effect; nested small headwater catchments experience more frequent, larger temperature spikes related to runoff events than downstream sites. Also, runoff-initiated temperature elevations at small stream sites unexpectedly last much longer than the storm runoff hydrographs. These observations suggest that for small headwater catchments, urban landscapes not only induce an ambient, "heat island" effect on stream temperatures, but also introduce thermal disturbance regimes and fluxes that are not trivial to aquatic biota.

  3. Landslide-induced river channel avulsions in mountain catchments of southwest New Zealand

    NASA Astrophysics Data System (ADS)

    Korup, Oliver

    2004-11-01

    Pulsed or chronic supply of landslide debris to valley floors has historically caused substantial aggradation and channel instability in several alpine catchments of SW New Zealand. In this regional investigation of landslide impacts on river morphology, three types of landslide-induced channel avulsion are discerned: (i) upstream/backwater avulsions, (ii) contact avulsions, and (iii) downstream/loading avulsions. The basis for this qualitative geomorphic process-response framework is the principal direction of fluvial response with respect to its position relative to the causative landslide emplacement site. Downstream avulsions have the highest damage potential to land use and infrastructure on unconfined mountain-fringe alluvial fans. In the wake of such events, catastrophic aggradation may obliterate up to several km 2 of mature floodplain forests by burial under several metres within a few decades. Estimates of mean aggradation rates are high (<220 mm year -1) and exceed long-term (10 3 year) trends of fluvial degradation by an order of magnitude. Future potential avulsion routeways may be detected by geomorphic mapping of abandoned channels, which are preferentially reactivated in the wake of landslide-induced sediment waves.

  4. Response of stream benthic macroinvertebrates to current water management in Alpine catchments massively developed for hydropower.

    PubMed

    Quadroni, Silvia; Crosa, Giuseppe; Gentili, Gaetano; Espa, Paolo

    2017-12-31

    The present work focuses on evaluating the ecological effects of hydropower-induced streamflow alteration within four catchments in the central Italian Alps. Downstream from the water diversions, minimum flows are released as an environmental protection measure, ranging approximately from 5 to 10% of the mean annual natural flow estimated at the intake section. Benthic macroinvertebrates as well as daily averaged streamflow were monitored for five years at twenty regulated stream reaches, and possible relationships between benthos-based stream quality metrics and environmental variables were investigated. Despite the non-negligible inter-site differences in basic streamflow metrics, benthic macroinvertebrate communities were generally dominated by few highly resilient taxa. The highest level of diversity was detected at sites where upstream minimum flow exceedance is higher and further anthropogenic pressures (other than hydropower) are lower. However, according to the current Italian normative index, the ecological quality was good/high on average at all of the investigated reaches, thus complying the Water Framework Directive standards. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The gut morphology of the African ice rat, Otomys sloggetti robertsi, shows adaptations to cold environments and sex-specific seasonal variation.

    PubMed

    Schwaibold, U; Pillay, N

    2003-11-01

    We studied the gut morphology of the ice rat Otomys sloggetti robertsi, a non-hibernating murid rodent endemic to the sub-alpine and alpine regions of the southern African Drakensberg and Maluti mountains. The gut structure of O. s. robertsi is well adapted for a high fibre, herbivorous diet, as is the case with other members of its subfamily Otomyinae. Despite the broad similarity in gross gut morphology with mesic- and arid-occurring otomyines, O. s. robertsi has a larger small intestine, caecum, stomach volume and parts of the colon, which we suggest are adaptations for increased energy uptake and/or poor diet quality in alpine environments. However, O. s. robertsi has a smaller larger intestine than other otomyines, perhaps because it occupies a mesic habitat. Seasonal sexual differences occurred, with females increasing dimensions of the stomach, small intestine length, caecum, and large intestine in summer. Sexual asymmetry in gut morphology may be related to increased energy requirements of females during pregnancy and lactation, indicating phenotypic plasticity in response to poor quality vegetation and a shorter growing season in alpine habitats.

  6. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    EPA Science Inventory

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  7. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  8. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.

    PubMed

    Kimball, Kenneth D; Davis, Michael L; Weihrauch, Douglas M; Murray, Georgia L D; Rancourt, Kenneth

    2014-09-01

    • Most alpine plants in the Northeast United States are perennial and flower early in the growing season, extending their limited growing season. Concurrently, they risk the loss of reproductive efforts to late frosts. Quantifying long-term trends in northeastern alpine flower phenology and late-spring/early-summer frost risk is limited by a dearth of phenology and climate data, except for Mount Washington, New Hampshire (1916 m a.s.l.).• Logistic phenology models for three northeastern US alpine species (Diapensia lapponica, Carex bigelowii and Vaccinium vitis-idaea) were developed from 4 yr (2008-2011) of phenology and air temperature measurements from 12 plots proximate to Mount Washington's long-term summit meteorological station. Plot-level air temperature, the logistic phenology models, and Mount Washington's climate data were used to hindcast model yearly (1935-2011) floral phenology and frost damage risk for the focal species.• Day of year and air growing degree-days with threshold temperatures of -4°C (D. lapponica and C. bigelowii) and -2°C (V. vitis-idaea) best predicted flowering. Modeled historic flowering dates trended significantly earlier but the 77-yr change was small (1.2-2.1 d) and did not significantly increase early-flowering risk from late-spring/early-summer frost damage.• Modeled trends in phenological advancement and sensitivity for three northeastern alpine species are less pronounced compared with lower elevations in the region, and this small shift in flower timing did not increase risk of frost damage. Potential reasons for limited earlier phenological advancement at higher elevations include a slower warming trend and increased cloud exposure with elevation and/or inadequate chilling requirements. © 2014 Botanical Society of America, Inc.

  9. Natural flood risk management in flashy headwater catchments: managing runoff peaks, timing, water quality and sediment regimes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Kenyon, Wendy; Nicholson, Alex; Quinn, Paul; Stutter, Marc; Watson, Helen

    2013-04-01

    Over the past decade many European catchments have experienced an unusually high number of flood events. A large number of these events are the result of intense rainfall in small headwater catchments which are dominated by surface runoff generation, resulting in flash flooding of local communities. Soil erosion and related water quality issues, among others, are typically associated with such rapid runoff generation. The hazard of flooding is increasing owing to impacts of changing climatic patterns (including more intense summer storms), intensification of agriculture within rural catchments and continued pressure to build on floodplains. Concurrently, the cost of constructing and maintaining traditional flood defences in small communities outweigh the potential benefits. Hence, there is a growing interest in more cost effective natural approaches that also have multipurpose benefits in terms of sediment, water quality, and habitat creation. Many catchments in Europe are intensively farmed and there is great potential for agriculture to be part of the solution to flood risk management. Natural flood management (NFM) is the alteration, restoration or use of landscape features with the aim of reducing flood risk by slowing down, storing (and filtering) rapid surface runoff. NFM includes measures such as temporarily storing water in ponds/wetlands, increasing soil infiltration, planting trees on floodplains and within catchments, re-meandering and wood placements in streams/ditches. In this presentation we highlight case studies from densely instrumented research sites across the UK (which could be typical of many European catchments) where NFM measures have been installed in small scale flashy catchments. The presentation will give an overview of the function of these measures in these catchments and how other multiple benefits are being accrued. Study catchments include the headwater catchments of the Bowmont (3 to 8 km2) and Belford Burn (6 km2) catchments. These catchments are known for their rapid runoff generation and have downstream local communities at risk of flash flooding. In Bowmont, NFM measures are currently being put in place to restore river bars and to store water more effectively on the flood plains during these flashy events. For example, Apex engineered wood structure in the river channel and riparian zones are designed to trap sediment and log bank protection structures are being installed to stop bank erosion. Tree planting in the catchment is also taking place. In the Belford catchment storage ponds and woody debris have been installed over the past five years to help to reduce the flood risk to the village of Belford. A dense instrumentation network has provided data for analysis and modelling which shows evidence of local scale flood peak reductions along with the collection of large amounts of sediment. A modelling study carried out (using a pond network model) during an intense summer storm showed that 30 small scale pond features used in sequence could reduce the flood peak by ~35% at the local scale. Findings show that managing surface runoff and local ditch flow at local scale headwater catchments is a cost effective way of managing flashy catchment for flood risk and sediment control. Working with catchment stakeholders is vital. Information given by the local community post flooding has been useful in placing NFM measures throughout the catchments. Involving the local communities in these projects and giving them access to the data and model outputs has helped to develop these projects further.

  10. Simulating hydrological processes of a typical small mountainous catchment in Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, Y. P.; Bai, Z.; Fu, Q.; Pan, S.; Zhu, C.

    2017-12-01

    Water cycle of small watersheds with seasonal/permanent frozen soil and snow pack in Tibetan Plateau is seriously affected by climate change. The objective of this study is to find out how much and in what way the frozen soil and snow pack will influence the hydrology of small mountainous catchments in cold regions and how can the performance of simulation by a distributed hydrological model be improved. The Dong catchment, a small catchment located in Tibetan Plateau, is used as a case study. Two measurement stations are set up to collect basic meteorological and hydrological data for the modeling purpose. Annual and interannual variations of runoff indices are first analyzed based on historic data series. The sources of runoff in dry periods and wet periods are analyzed respectively. Then, a distributed hydrology soil vegetation model (DHSVM) is adopted to simulate the hydrological process of Dong catchment based on limited data set. Global sensitivity analysis is applied to help determine the important processes of the catchment. Based on sensitivity analysis results, the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) is finally added into the hydrological model to calibrate the hydrological model in a multi-objective way and analyze the performance of DHSVM model. The performance of simulation is evaluated with several evaluation indices. The final results show that frozen soil and snow pack do play an important role in hydrological processes in cold mountainous region, in particular in dry periods without precipitation, while in wet periods precipitation is often the main source of runoff. The results also show that although the DHSVM hydrological model has the potential to model the hydrology well in small mountainous catchments with very limited data in Tibetan Plateau, the simulation of hydrology in dry periods is not very satisfactory due to the model's insufficiency in simulating seasonal frozen soil.

  11. Estimation of the Relative Severity of Floods in Small Ungauged Catchments for Preliminary Observations on Flash Flood Preparedness: A Case Study in Korea

    PubMed Central

    Kim, Eung Seok; Choi, Hyun Il

    2012-01-01

    An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments. PMID:22690208

  12. Runoff production in a small agricultural catchment in Lao PDR : influence of slope, land-use and observation scale.

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2009-04-01

    We study the surface and sub-surface hydrology of a small agricultural catchment (60ha) located in the Luang Prabang province of Lao PDR. This catchment is representative of the rural mountainous south east Asia. It exhibits steep slopes (up to 100% and more) under a monsoon climate. After years of traditional slash and burn cultures, it is now under high land pressures due to population resettling and environment preservation policies. This evolution leads to rapid land-use changes such as shifting cultivation reduction or growing of teak forest instead of classical crops. This catchment is a benchmark site of the Managing Soil Erosion Consortium since 1998. The international consortium aims to understand the effects of agricultural changes on the catchment hydrology and soil erosion in south east Asia. The Huay Pano catchment is subdivided into small sub-catchments that are gauged and monitored. Differ- ent agricultural practices where tested along the years. At a smaller scale, plot of 1m2 are instrumented to follow runoff and detachment of soil under natural rainfall along the monsoon season. Our modeling work aims to develop a distributed hydrological model integrating experimental data at the different scales. One of the objective is to understand the impact of land-use, soil properties (slope, crust, etc) and rainfall (dry and wet seasons) on surface and subsurface flows. We present here modeling results of the runoff plot experiments (1m2 scale) performed from 2002 to 2007. The plots distribution among the catchment and over the years gives a good representativity of the different runoff responses. The role of crust, slope and land-use on runoff is examined. Finally we discuss how this plot scale will be integrated in a sub-catchment model, with a particular attention on the observed paradox: how to explain that runoff coefficients at the catchment scale are much slower than at the plot scale ?

  13. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado

    NASA Astrophysics Data System (ADS)

    Godt, Jonathan W.; Coe, Jeffrey A.

    2007-02-01

    On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43 mm of rain in 4 h, 35 mm of which fell in the first 2 h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30°) in catchments with small contributing areas (< 8000 m 2), however, shallow landslides occurred on slopes that were significantly less steep than either overland flow process. Based on field observations and examination of soils mapping of the northern part of the study area, we identified a relation between the degree of soil development and the process type that generated debris flows. In general, areas with greater soil development were less likely to generate runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these debris flows are potentially more hazardous than those initiated by shallow landslides, which tend to deposit material along their paths.

  14. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado

    USGS Publications Warehouse

    Godt, J.W.; Coe, J.A.

    2007-01-01

    On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43??mm of rain in 4??h, 35??mm of which fell in the first 2??h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30??) in catchments with small contributing areas (< 8000??m2), however, shallow landslides occurred on slopes that were significantly less steep than either overland flow process. Based on field observations and examination of soils mapping of the northern part of the study area, we identified a relation between the degree of soil development and the process type that generated debris flows. In general, areas with greater soil development were less likely to generate runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these debris flows are potentially more hazardous than those initiated by shallow landslides, which tend to deposit material along their paths. ?? 2006 Elsevier B.V. All rights reserved.

  15. A radar-based regional extreme rainfall analysis to derive the thresholds for a novel automatic alert system in Switzerland

    NASA Astrophysics Data System (ADS)

    Panziera, Luca; Gabella, Marco; Zanini, Stefano; Hering, Alessandro; Germann, Urs; Berne, Alexis

    2016-06-01

    This paper presents a regional extreme rainfall analysis based on 10 years of radar data for the 159 regions adopted for official natural hazard warnings in Switzerland. Moreover, a nowcasting tool aimed at issuing heavy precipitation regional alerts is introduced. The two topics are closely related, since the extreme rainfall analysis provides the thresholds used by the nowcasting system for the alerts. Warm and cold seasons' monthly maxima of several statistical quantities describing regional rainfall are fitted to a generalized extreme value distribution in order to derive the precipitation amounts corresponding to sub-annual return periods for durations of 1, 3, 6, 12, 24 and 48 h. It is shown that regional return levels exhibit a large spatial variability in Switzerland, and that their spatial distribution strongly depends on the duration of the aggregation period: for accumulations of 3 h and shorter, the largest return levels are found over the northerly alpine slopes, whereas for longer durations the southern Alps exhibit the largest values. The inner alpine chain shows the lowest values, in agreement with previous rainfall climatologies. The nowcasting system presented here is aimed to issue heavy rainfall alerts for a large variety of end users, who are interested in different precipitation characteristics and regions, such as, for example, small urban areas, remote alpine catchments or administrative districts. The alerts are issued not only if the rainfall measured in the immediate past or forecast in the near future exceeds some predefined thresholds but also as soon as the sum of past and forecast precipitation is larger than threshold values. This precipitation total, in fact, has primary importance in applications for which antecedent rainfall is as important as predicted one, such as urban floods early warning systems. The rainfall fields, the statistical quantity representing regional rainfall and the frequency of alerts issued in case of continuous threshold exceedance are some of the configurable parameters of the tool. The analysis of the urban flood which occurred in the city of Schaffhausen in May 2013 suggests that this alert tool might have complementary skill with respect to radar-based thunderstorm nowcasting systems for storms which do not show a clear convective signature.

  16. Repeated tracer tests in a karst system with concentrated allogenic recharge (Johnsbachtal, Austria)

    NASA Astrophysics Data System (ADS)

    Birk, Steffen; Wagner, Thomas; Pauritsch, Marcus; Winkler, Gerfried

    2015-04-01

    The Johnsbachtal (Austria) is a high Alpine headwater catchment covering an area of approximately 65 km², which is equipped with a hydrometeorological monitoring network (Strasser at al. 2013). The catchment is composed of carbonate rocks and crystalline rocks belonging to the Northern Calceraous Alps and the Greywacke Zone. The largest spring within the catchment, the Etzbach spring, is bound on karstified carbonate rocks of the Greywacke Zone. A stream sink located at a distance of approximately 1 km from the spring was used as injection point for repeated tracer tests in the years 2012, 2013, and 2014. In each case the tracer was recovered at the spring indicating an allogenic recharge component from the crystalline parts of the catchment. The spring discharge at the times of the three tracer tests varied between approximately 0.3 and 0.6 m³/s. Likewise the tracer travel times and thus the flow velocities were found to be different. Surprisingly, the largest tracer travel time (and thus lowest flow velocity) was obtained in 2013 when the spring discharge was highest (0.6 m³/s). In addition, the flow velocities in 2012 and 2014 were found to be clearly different, although the spring discharge was similar (roughly 0.3 m³/s) in both tests. Thus, the tracer velocity appears to be not correlated with the spring discharge. Field observations indicate that this finding can potentially be attributed to complexities at both the injection location (e.g., plugging of injection points and thus different flow paths) and the sampling point (i.e., the spring, which is composed of several outlet points representing different subcatchments). References: Strasser, U., Marke, T., Sass, O., Birk, S., Winkler, G. (2013): John's creek valley: a mountainous catchment for long-term interdisciplinary human-environment system research in Upper Styria (Austria). Environmental Earth Sciences, doi: 10.1007/s12665-013-2318-y

  17. A new approach for the description of discharge extremes in small catchments

    NASA Astrophysics Data System (ADS)

    Pavia Santolamazza, Daniela; Lebrenz, Henning; Bárdossy, András

    2017-04-01

    Small catchment basins in Northwestern Switzerland, characterized by small concentration times, are frequently targeted by floods. The peak and the volume of these floods are commonly estimated by a frequency analysis of occurrence and described by a random variable, assuming a uniform distributed probability and stationary input drivers (e.g. precipitation, temperature). For these small catchments, we attempt to describe and identify the underlying mechanisms and dynamics at the occurrence of extremes by means of available high temporal resolution (10 min) observations and to explore the possibilities to regionalize hydrological parameters for short intervals. Therefore, we investigate new concepts for the flood description such as entropy as a measure of disorder and dispersion of precipitation. First findings and conclusions of this ongoing research are presented.

  18. Interpretation of concentration‐discharge patterns in acid‐neutralizing capacity during storm flow in three small, forested catchments in Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Rice, Karen C.; Chanat, Jeffrey G.; Hornberger, George M.; Webb, James R.

    2004-01-01

    Episodic concentration‐discharge (c‐Q) plots are a popular tool for interpreting the hydrochemical response of small, forested catchments. Application of the method involves assuming an underlying conceptual model of runoff processes and comparing observed c‐Q looping patterns with those predicted by the model. We analyzed and interpreted c‐Q plots of acid‐neutralizing capacity (ANC) for 133 storms collected over a 7‐year period from three catchments in Shenandoah National Park, Virginia. Because of their underlying lithologies the catchments represent a gradient in both hydrologic and geochemical behavior, ranging from a flashy, acidic, poorly buffered catchment to a moderate, neutral, well‐buffered catchment. The relative frequency of observed anticlockwise c‐Q loops in each catchment decreased along this gradient. Discriminant function analysis indicated that prestorm base flow ANC was an important predictor of loop rotation direction; however, the strength of the predictive relationship decreased along the same gradient. The trends were consistent with several equally plausible three‐component mixing models. Uncertainty regarding end‐member timing and relative volume and possible time variation in end‐member concentrations were key factors precluding identification of a unique model. The inconclusive results obtained on this large data set suggest that identification of underlying runoff mechanisms on the basis of a small number of c‐Q plots without additional supporting evidence is likely to be misleading.

  19. Gravel bar thermal variability and its potential consequences for CO2 evasion from Alpine coldwater streams

    NASA Astrophysics Data System (ADS)

    Boodoo, Kyle; Battin, Tom; Schelker, Jakob

    2017-04-01

    Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. We extended our study to 13 other gravel bars of varying physical characteristics within the surrounding Ybbs and Erlauf catchments, conducting diurnal spot samplings in summer 2016. Temperatures within the observed permanently wetted hyporheic zone (-56 to -100cm depth below GB surface) of the OSB, were warmer than both end members, surface water and groundwater >18% of the year, particularly during summer. There was a general increase in exceedance within the periodically wetted gravel bar sediment toward the gravel bar surface, further evidencing downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB seasonal temperatures were associated with increased CO2 evasion fluxes within the OSB, particularly during summer. This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn, while downward heat transfer in summer may enhance GB metabolism and therefore CO2 evasion. Furthermore, catchment CO2 outgassing fluxes significantly exceeded that of the stream, with higher diurnal CO2 outgassing fluxes observed for all 13 GBs within the Ybbs and Erlauf catchments as compared to their respective streams. We found DOC concentration did not significantly correlate to CO2 outgassing. But, vertical temperature gradient as a measure of heat flux to the hyporheic zone explained 55% and 69% of the variability in observed CO2 efflux from the OSB gravel bar (seasonal samplings during summer 2015 - winter 2016) and 11 catchment gravel bars (2 GBs excluded due to equipment malfunction) respectively. These results highlight the effect of temperature on physical and biochemical stream processes, particularly in cold-water streams, due to the occurrence of more frequent and intense warm temperature events, as well as altered flow regimes, likely consequences of climatic change.

  20. Concentration-Discharge Relationships, Nested Reaction Fronts, and the Balance of Oxidative and Acid-Base Weathering Fluxes in an Alpine Catchment, East River, Colorado

    NASA Astrophysics Data System (ADS)

    Winnick, M.; Carroll, R. W. H.; Williams, K. H.; Maxwell, R. M.; Maher, K.

    2016-12-01

    Although important for solute production and transport, the varied interactions between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the headwaters of the East River, CO, a high-elevation shale-dominated catchment system in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with well-defined clockwise hysteresis, indicating the mobilization and depletion of DOC in the upper soil horizons and highlighting the importance of shallow flowpaths through the snowmelt period. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both carbonic acid and sulfuric acid derived from oxidation of pyrite in the shale bedrock. Sulfuric acid weathering in the deep subsurface dominates during base flow conditions when waters have infiltrated below the hypothesized pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during the snowmelt period as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This increase in CO2(aq) at the expense of HCO3- results in outgassing of CO2 when waters equilibrate to surface conditions, and reduces the export of carbon and alkalinity from the East River by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering therefore have the capacity to substantially alter the cycling of carbon in the East River catchment. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.

  1. Insights into streamflow generation mechanisms using high-frequency analysis of isotopes and water quality in streamflow and precipitation

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Kirchner, James W.

    2017-04-01

    In the pre-Alpine Alptal catchment in central Switzerland, snowmelt and rainfall events cause rapid changes not only in hydrological conditions, but also in water quality. A flood forecasting model for such a mountainous catchment thus requires process understanding that is informed by high-frequency monitoring of hydrological and hydrochemical parameters. Therefore, we installed a high-frequency sampling and analysis system near the outlet of the 0.7 km2 Erlenbach catchment, a headwater tributary of the Alp river. We measured stable water isotopes (δ18O, δ2H) in precipitation and streamwater using Picarro, Inc.'s (Santa Clara, CA, USA) newly developed Continuous Water Sampler Module (CWS) coupled to their L2130-i Cavity Ring-Down Spectrometer, at 30 min temporal resolution. Water quality was monitored with a dual-channel ion chomatograph (Metrohm AG, Herisau, Switzerland) for analysis of major cations and anions, as well as with a UV-Vis spectroscopy system and electrochemical probes (s::can Messtechnik GmbH, Vienna, Austria) for characterization of nutrients and basic water quality parameters. For quantification of trace elements and metals, we collected additional water samples for subsequent ICP-MS analysis in the laboratory. To illustrate the applicability of our newly developed automated analysis and sampling system under field conditions, we will present initial results from the 2016 fall and winter seasons at the Erlenbach catchment. During this period, river discharge was mainly fed by groundwater, as well as intermittent snowmelt and rain-on-snow events. Our high-frequency data set, along with spatially distributed sampling of snowmelt, enables a detailed analysis of source areas, flow pathways and biogeochemical processes that control chemical dynamics in streamflow and the discharge regime.

  2. Holocene Asian monsoon evolution revealed by a pollen record from an alpine lake on the southeastern margin of the Qinghai-Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, Enlou; Wang, Yongbo; Sun, Weiwei; Shen, Ji

    2016-02-01

    We present the results of pollen analyses from a 1105 cm long sediment core from Wuxu Lake in southwestern China, which depict the variations of the East Asian winter monsoon (EAWM) and the Indian summer monsoon (ISM) during the last 12.3 ka. During the period of 12.3 to 11.3 cal ka BP, the dominance of Betula forest and open alpine shrub and meadow around Wuxu Lake indicates a climate with relatively cold winters and dry summers, corresponding to the Younger Dryas event. Between 11.3 and 10.4 cal ka BP, further expansion of Betula forest and the retreat of alpine shrubs and meadows reflect a greater seasonality with cold winters and gradually increasing summer precipitation. From 10.4 to 4.9 cal ka BP, the dense forest understory, together with the gradual decrease in Betula forest and increase in Tsuga forest, suggest that the winters became warmer and summer precipitation was at a maximum, corresponding to the Holocene climatic optimum. Between 4.9 and 2.6 cal ka BP, Tsuga forest and alpine shrubs and meadows expanded significantly, reflecting relatively warm winters and decreased summer precipitation. Since 2.6 cal ka BP, reforestation around Wuxu Lake indicates a renewed humid period in the late Holocene; however, the vegetation in the catchment may also have been affected by grazing activity during this period. The results of our study are generally consistent with previous findings; however, the timing and duration of the Holocene climatic optimum from different records are inconsistent, reflecting real contrast in local rainfall response to the ISM. Overall, the EAWM is broadly in-phase with the ISM on the orbital timescale, and both monsoons exhibit a trend of decreasing strength from the early to late Holocene, reflecting the interplay of solar insolation receipt between the winter and summer seasons and El Niño-Southern Oscillation strength in the tropical Pacific.

  3. Holocene Asian monsoon evolution revealed by a pollen record from an alpine lake on the southeastern margin of the Qinghai-Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, E.; Wang, Y.; Sun, W.; Shen, J.

    2015-10-01

    We present the results of pollen analyses from a 1105-cm-long sediment core from Wuxu Lake in southwestern China, which depict the variations of the East Asian winter monsoon (EAWM) and the Indian summer monsoon (ISM) during the last 12.3 ka. During the period of 12.3 to 11.3 cal ka BP, the dominance of Betula forest and open alpine shrub and meadow around Wuxu Lake indicates a climate with relatively cold winters and dry summers, corresponding to the Younger Dryas event. Between 11.3 and 10.4 cal ka BP, further expansion of Betula forest and the retreat of alpine shrubs and meadows reflect a greater seasonality with cold winters and gradually increasing summer precipitation. From 10.4 to 4.9 cal ka BP, the dense forest understory, together with the gradual decrease in Betula forest and increase in Tsuga forest, suggest that the winters became warmer and summer precipitation was at a maximum, corresponding to the Holocene climatic optimum. Between 4.9 and 2.6 cal ka BP, Tsuga forest and alpine shrubs and meadows expanded significantly, reflecting relatively warm winters and decreased summer precipitation. Since 2.6 cal ka BP, reforestation around Wuxu Lake indicates a renewed strengthening of the ISM in the late Holocene; however, the vegetation in the catchment may also have been affected by grazing activity during this period. The results of our study are generally consistent with previous findings; however, the timing and duration of the Holocene climatic optimum from different records are inconsistent, reflecting real contrast in local rainfall response to the ISM. Overall, the EAWM is broadly in-phase with the ISM on the orbital timescale, and both monsoons exhibit a trend of decreasing strength from the early to late Holocene, reflecting the interplay of solar insolation receipt between the winter and summer seasons and El Niño Southern Oscillation strength in the tropical Pacific.

  4. Sensitivity of effective rainfall amount to land use description using GIS tool. Case of a small mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Payraudeau, S.; Tournoud, M. G.; Cernesson, F.

    Distributed modelling in hydrology assess catchment subdivision to take into account physic characteristics. In this paper, we test the effect of land use aggregation scheme on catchment hydrological response. Evolution of intra-subcatchment land use is studied using statistic and entropy methods. The SCS-CN method is used to calculate effective rainfall which is here assimilated to hydrological response. Our purpose is to determine the existence of a critical threshold-area appropriate for the application of hydrological modelling. Land use aggregation effects on effective rainfall is assessed on small mediterranean catchment. The results show that land use aggregation and land use classification type have significant effects on hydrological modelling and in particular on effective rainfall modelling.

  5. Spatial and temporal patterns in water chemistry of two high elevation lakes in southeast Wyoming

    Treesearch

    Robert C. Musselman

    1995-01-01

    The Glacier Lakes Ecosystem Experiments Site (GLEES) was established to examine the effects of atmospheric deposition and climate change on alpine and subalpine ecosystems. The site contains East Glacier Lake (3282 m elevation) and West Glacier Lake (3276 m elevation), and their watersheds. These two small lakes are located 120m from each other at the alpine/subalpine...

  6. Distinguishing spatiotemporal variability of sediment sources in small urbanized catchment as a response to urban expansion

    NASA Astrophysics Data System (ADS)

    Belyaev, Vladimir; Feoktistov, Artem; Huygens, Dries; Shamshurina, Eugenia; Golosov, Valentin

    2014-05-01

    Understanding hydrological response and geomorphic behavior of small catchments in urban environments, especially those experiencing urban expansion, represents serious and important problem which has not yet been given an adequate research attention. Urbanization exerts profound and diverse impacts on catchment characteristics, particularly by increasing surface runoff coefficients, peak flow discharges and rates of flash flood waves propagation as a result of widespread appearance of buildings and paved surfaces with practically zero infiltration capacities. Another essential influence of urbanization on small catchment hydrological regimes is associated with significant changes of natural topography (from relatively minor modifications such as grading of steeper slopes to complete transformations including total filling of gullies and small valleys, transfer of small streams from surface into underground pipes or collectors, etc.) combined with creation of systems of concrete-protected surface drainages and underground storm flow sewages. Such activities can result in substantial changes of runoff- and sediment-contributing areas for the remaining gullies and small valleys in comparison to the pre-urbanization conditions, causing dramatic increase of fluvial activity in some of those and much lower flow discharges in others. In addition, gullies and small valleys in urban settlements often become sites of dumping for both dry and liquid domestic and industrial wastes, thus being major pathways for dissolved and particle-bound pollutant transfer into perennial streams and rivers. All the problems listed require detailed hydrological and geomorphic investigations in order to provide sound basis for developing appropriate measures aimed to control and decrease urban erosion, sediment redistribution, pollution of water bodies, damage to constructions and communications. Recent advances in sediment tracing and fingerprinting techniques provide promising opportunities for distinguishing contributions of different sediment sources into catchment sediment budgets on a reliable quantitative basis. In combination with microstratigraphic differentiation and dating of sediment in continuous deposition zones by 137Cs depth distribution curves and available land use records, spatial and temporal variability of sediment sources and sinks can be reconstructed for the last several decades. That is especially important for catchments which experienced profound land use changes such as transition from pristine or agriculture-dominated to urbanized environment. The example presented here describes the results of reconstruction of changing sediment source types, contributions and spatial patterns for small reservoir catchment within the city of Kursk (Sredenerusskaya Upland, Central European Russia). Combination of compound specific stable isotopes, 137Cs, sediment grain size composition, land use information for several time intervals and daily rainfall record for the Kursk meteorological station (conveniently located within the study catchment) have been employed in order to evaluate major sediment sources within the catchment, their spatial pattern and temporal changes and compare those to history of reservoir sedimentation. The reservoir is situated on the Kur River - small river which gave its name to the city itself. The dam and reservoir were constructed and put into operation in 1969, thus the beginning of its infill is located stratigraphically later than the main peak of the global 137Cs fallout. It has been found that transition from dominantly agricultural land use to urbanized conditions caused decrease of contribution of soil erosion from cultivated land and increase of that of the active gullies into reservoir sedimentation. However, it is important to note that during extreme runoff events contribution of sediment originated from soil erosion on arable land still remains dominant, even though its area within the catchment recently became very limited.

  7. Flood Change Assessment and Attribution in Austrian alpine Basins

    NASA Astrophysics Data System (ADS)

    Claps, Pierluigi; Allamano, Paola; Como, Anastasia; Viglione, Alberto

    2016-04-01

    The present paper aims to investigate the sensitivity of flood peaks to global warming in the Austrian alpine basins. A group of 97 Austrian watersheds, with areas ranging from 14 to 6000 km2 and with average elevation ranging from 1000 to 2900 m a.s.l. have been considered. Annual maximum floods are available for the basins from 1890 to 2007 with two densities of observation. In a first period, until 1950, an average of 42 records of flood peaks are available. From 1951 to 2007 the density of observation increases to an average amount of contemporary peaks of 85. This information is very important with reference to the statistical tools used for the empirical assessment of change over time, that is linear quantile regressions. Application of this tool to the data set unveils trends in extreme events, confirmed by statistical testing, for the 0.75 and 0.95 empirical quantiles. All applications are made with specific (discharges/area) values . Similarly of what done in a previous approach, multiple quantile regressions have also been applied, confirming the presence of trends even when the possible interference of the specific discharge and morphoclimatic parameters (i.e. mean elevation and catchment area). Application of a geomorphoclimatic model by Allamano et al (2009) can allow to mimic to which extent the empirically available increase in air temperature and annual rainfall can justify the attribution of change derived by the empirical statistical tools. An comparison with data from Swiss alpine basins treated in a previous paper is finally undertaken.

  8. Hydrologic Response to Climatic and Vegetation Change in an Extreme Alpine Environment

    NASA Astrophysics Data System (ADS)

    Livneh, B.; Badger, A.; Molotch, N. P.; Bueno de Mesquita, C.; Suding, K.

    2016-12-01

    Mountain hydrology and ecology are uniquely sensitive to climate change. This presentation will examine how changes in climate have altered land cover and hydrology in the Green Lakes Valley, an alpine catchment for which approximately 80% of the annual precipitation ( 950 mm/yr) falls as snow. In these environments vegetation has two way interaction with hydrology: its distribution is driven by patterns of snowpack and water availability while it functions to modulate hydrologic responses by alterating land-atmosphere interaction. Long-term climate trends indicate warming, earlier snowmelt, and longer snow-free growing seasons. High-resolution aerial photography from 1972 and 2008 identified vegetation encroachment as shrubs and trees have increased in vigor and density in the tundra, while herbaceous tundra plants have colonized high-elevation bare ground. To understand modulations to physical hydrology from climate and biophysical responses, we apply a 20-m resolution fully-distributed hydrologic model. Through the use of observed meteorology (radiation, humidity, temperature and precipitation) an hourly climatology was created. Realizations from a stochastic ensemble of this climatology together with trends from long-term observations are used to characterize historical hydrologic response and project future changes. Through temperature and precipitation change experiments, alterations to the annual water cycle are presented—indicating the importance of annual snowpack evolution on both the surface and sub-surface hydrology, particularly through seasonal water storage. Probabilistic land cover change scenarios are developed that project how further vegetation encroachment modulates surface water fluxes and sediment yields. Lastly, the context of these results are compared with hydrometeorological research from other differing alpine and ecological regions.

  9. [Vegetation biomass distribution characteristics of alpine tundra ecosystem in Changbai Mountains].

    PubMed

    Wei, Jing; Wu, Gang; Deng, Hongbing

    2004-11-01

    Climate change is one of the hotspots in global environment concerns, while alpine tundra ecosystem is most sensitive to global climate change. Because of the relatively small area of tundra, researches on alpine tundra ecosystem were much less. Based on the measurement of species biomass, dominant species organ biomass and vegetation biomass, this paper discussed the biomass spatial variation in alpine tundra ecosystem of Changbai Mountains. The results showed that among 43 species investigated, the first five species in biomass were Rhododendron chrysanthum (159.01 kg x hm(-2)), Vaccinium uliginosum var. alpinum (137.52 kg x hm(-2)), Vaccinium uliginosum (134.7 kg x hm(-2)), Dryas octopetala var. asiatica (131.5 kg x hm(-2)) and Salix rotundifolia (128.4 kg x hm(-2)), which were the dominant species in the alpine tundra ecosystem of Changbai Mountains. Along with increasing altitude, the ratio of below-/above-ground biomass and below-ground/total biomass gradually increased, while the vegetation biomass gradually decreased. The vegetation biomass showed a significant correlation with altitude in typical alpine tundra ecosystem of Changbai Mountains, and the average vegetation biomass was 2.21 t x hm(-2). Alpine tundra ecosystem is very important for microclimate regulation, soil improvement, water-holding, soil conservation, nutrient cycling, carbon fixation and oxygen production, and currently, it is the CO2 sink of Changbai Mountains.

  10. Hydrologic response to modeled snowmelt input in alpine catchments in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Driscoll, J. M.; Molotch, N. P.; Jepsen, S. M.; Meixner, T.; Williams, M. W.; Sickman, J. O.

    2012-12-01

    Snowmelt from high elevation catchments is the primary source of water resources in the Southwestern United States. Timing and duration of snowmelt and resulting catchment response can show the physical and chemical importance of storage at the catchment scale. Storage of waters in subsurface materials provides a physical and chemical buffer to hydrologic input variability. We expect the hydrochemistry of catchments with less storage capacity will more closely reflect input waters than a catchment with more storage and therefore more geochemical evolution of waters. Two headwater catchments were compared for this study; Emerald Lake Watershed (ELW) in the southern Sierra Nevada and Green Lake 4 (GL4) in the Colorado Front Range. These sites have geochemically similar granitic terrane, and negligible evaporation and transpiration due to their high-elevation setting. Eleven years of data (1996-2006) from spatially-distributed snowmelt models were spatially and temporally aggregated to generate daily values of snowmelt volume for each catchment area. Daily storage flux was calculated as the difference between snowmelt input and catchment outflow at a daily timestep, normalized to the catchment area. Daily snowmelt values in GL4 are more consistent (the annual standard deviation ranged from 0.19 to 0.76 cm) than the daily snowmelt in ELW (0.60 to 1.04 cm). Outflow follows the same trend, with an even narrower range of standard deviations from GL4 (0.27 to 0.54 cm) compared to the standard deviation of outflow in ELW (0.38 to 0.98 cm). The dampening of the input variability could be due to storage in the catchment; the larger effect would mean a larger storage capacity in the catchment. Calculations of storage flux (the input snowmelt minus the output catchment discharge) show the annual sum of water into storage in ELW ranges from -0.9200 to 1.1124 meters, in GL4 the ranger is narrower, from -0.655 to 0.0992 meters. Cumulative storage for each year can be negative (more water leaving the system than entering; storage loss) or positive (more water coming into the system than leaving; storage gain). The cumulative storage for all years in GL4 show a similar positive trend from day of year 60 through 150, followed by a decrease to the end of the snowmelt season. Only two years (1997 and 2005) in GL4 were calculated to cumulatively gain storage water, the other nine years lost stored water to outflow. The cumulative storage annual data in ELW do not show as strong of a trend for all years. ELW also a different distribution of cumulative storage values; with four years showing a cumulative loss and seven years showing a gain in stored water. This could show a depletion of stored water, an underestimate of snowmelt or a connection to deeper flowpaths. Mass-balance inverse geochemical models will be used to determine the hydrochemical connectivity or lack of connectivity of snowmelt to outflow relative to the physical calculations. Initial hydrochemical results show generally higher concentrations of solutes from GL4 outflow, which may show more contribution from stored waters.

  11. Health at the Sub-catchment Scale: Typhoid and Its Environmental Determinants in Central Division, Fiji.

    PubMed

    Jenkins, Aaron Peter; Jupiter, Stacy; Mueller, Ute; Jenney, Adam; Vosaki, Gandercillar; Rosa, Varanisese; Naucukidi, Alanieta; Mulholland, Kim; Strugnell, Richard; Kama, Mike; Horwitz, Pierre

    2016-12-01

    The impact of environmental change on transmission patterns of waterborne enteric diseases is a major public health concern. This study concerns the burden and spatial nature of enteric fever, attributable to Salmonella Typhi infection in the Central Division, Republic of Fiji at a sub-catchment scale over 30-months (2013-2015). Quantitative spatial analysis suggested relationships between environmental conditions of sub-catchments and incidence and recurrence of typhoid fever. Average incidence per inhabited sub-catchment for the Central Division was high at 205.9/100,000, with cases recurring in each calendar year in 26% of sub-catchments. Although the numbers of cases were highest within dense, urban coastal sub-catchments, the incidence was highest in low-density mountainous rural areas. Significant environmental determinants at this scale suggest increased risk of exposure where sediment yields increase following runoff. The study suggests that populations living on large systems that broaden into meandering mid-reaches and floodplains with alluvial deposition are at a greater risk compared to small populations living near small, erosional, high-energy headwaters and small streams unconnected to large hydrological networks. This study suggests that anthropogenic alteration of land cover and hydrology (particularly via fragmentation of riparian forest and connectivity between road and river networks) facilitates increased transmission of typhoid fever and that environmental transmission of typhoid fever is important in Fiji.

  12. Catchment land use predicts benthic vegetation in small estuaries

    PubMed Central

    Warry, Fiona Y.; Reich, Paul; Mac Nally, Ralph; Woodland, Ryan J.

    2018-01-01

    Many estuaries are becoming increasingly eutrophic from human activities within their catchments. Nutrient loads often are used to assess risk of eutrophication to estuaries, but such data are expensive and time consuming to obtain. We compared the percent of fertilized land within a catchment, dissolved inorganic nitrogen loads, catchment to estuary area ratio and flushing time as predictors of the proportion of macroalgae to total vegetation within 14 estuaries in south-eastern Australia. The percent of fertilized land within the catchment was the best predictor of the proportion of macroalgae within the estuaries studied. There was a transition to a dominance of macroalgae once the proportion of fertilized land in the catchment exceeded 24%, highlighting the sensitivity of estuaries to catchment land use. PMID:29473004

  13. Do we need a dynamic snow depth threshold when comparing hydrological models with remote sensing products in mountain catchments?

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Bertoldi, Giacomo; Notarnicola, Claudia; Comiti, Francesco

    2017-04-01

    To assess the performance of simulated snow cover of hydrological models, it is common practice to compare simulated data with observed ones derived from satellite images such as MODIS. However, technical and methodological limitations such as data availability of MODIS products, its spatial resolution or difficulties in finding appropriate parameterisations of the model need to be solved previously. Another important assumption usually made is the threshold of minimum simulated snow depth, generally set to 10 mm of snow depth, to respect the MODIS detection thresholds for snow cover. But is such a constant threshold appropriate for complex alpine terrain? How important is the impact of different snow depth thresholds on the spatial and temporal distribution of the pixel-based overall accuracy (OA)? To address this aspect, we compared the snow covered area (SCA) simulated by the GEOtop 2.0 snow model to the daily composite 250 m EURAC MODIS SCA in the upper Saldur basin (61 km2, Eastern Italian Alps) during the period October 2011 - October 2013. Initially, we calibrated the snow model against snow depths and snow water equivalents at point scale, taken from measurements at different meteorological stations. We applied different snow depth thresholds (0 mm, 10 mm, 50 mm, and 100 mm) to obtain the simulated snow cover and assessed the changes in OA both in time (during the entire evaluation period, accumulation and melting season) and space (entire catchment and specific areas of topographic characteristics such as elevation, slope, aspect, landcover, and roughness). Results show remarkable spatial and temporal differences in OA with respect to different snow depth thresholds. Inaccuracies of simulated and observed SCA during the accumulation season September to November 2012 were located in areas with north-west aspect, slopes of 30° or little elevation differences at sub-pixel scale (-0.25 to 0 m). We obtained best agreements with MODIS SCA for a snow depth threshold of 100 mm, leading to increased OA (> 0.8) in 13‰ of the catchment area. SCA agreement in January 2012 and 2013 was slightly limited by MODIS sensor detection due to shading effects and low illumination in areas exposed north-west to north. On the contrary, during the melting season in April 2013 and after the September 2013 snowfall event seemed to depend more on parameterisation than on snow depth thresholds. In contrast, inaccuracies during the melting season March to June 2013 could hardly be attributed to topographic characteristics and different snow depth thresholds but rather on model parameterisation. We identified specific conditions (p.e. specific snowfall events in autumn 2012 and spring 2013) when either MODIS data or the hydrological model was less accurate, thus justifying the need for improvements of precision in the snow cover detection algorithms or in the model's process description. In consequence, our study observations could support future snow cover evaluations in mountain areas, where spatially and temporally dynamic snow depth thresholds are transferred from the catchment scale to the regional scale. Keywords: snow cover, snow modelling, MODIS, snow depth sensitivity, alpine catchment

  14. An Eco-hydrologic Assessment of Small Experimental Catchments with Various Land Uses within the Panama Canal Watershed: Agua Salud Project

    NASA Astrophysics Data System (ADS)

    Crouch, T. D.; Ogden, F. L.; Stallard, R. F.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project

    2010-12-01

    Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to water management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and uses across the Panama Canal Watershed. One of the project’s main objectives is to understand how reforestation effects seasonal stream flows. To meet this objective, a baseline characterization of hydrology on the small catchment scale is being assessed across different land uses typical in rural Panama. The small experimental catchments are found within Panama’s protected Soberania National Park and the adjacent headwaters of the Agua Salud and Mendoza Rivers, all of which are part of the greater Panama Canal Watershed. The land uses being monitored include a variety of control catchments as well as treated pasture sites. The catchments used for this study include a mature old regrowth forest, a 50% deforested or mosaic regrowth site, an active pasture and a monoculture invasive grass site (saccharum spontaneum) as experimental controls and two treated catchments that were recently abandoned pastures converted to teak and native species timber plantations. Installed instrumentation includes a network of rain gauges, v-notched weirs, atmometers, an eddy covariance system and an assortment of meteorological and automated geochemical sampling systems. Spatial, rainfall, runoff and ET data across these six geologically and topographically similar catchments are available from 2009 and 2010. Classic water balance and paired catchment techniques were used to compare the catchments on an annual, seasonal, and event basis. This study sets the stage for hydrologic modeling and for better understanding the effects of vegetation and land-use history on rainfall-runoff processes for the Agua Salud Project and Panama Canal Watershed Experiment.

  15. Comparing hydrological signatures of small agricultural catchments using uncertain data provided by a soft hydrological monitoring

    NASA Astrophysics Data System (ADS)

    Crabit, Armand; Colin, François

    2016-04-01

    Discharge estimation is one of the greatest challenge for every hydrologist as it is the most classical hydrological variable used in hydrological studies. The key lies in the rating curves and the way they were built: based on field measurements or using physical equations as the Manning-Strickler relation… However, as we all know, data and associated uncertainty deeply impact the veracity of such rating curves that could have serious consequences on data interpretation. And, of all things, this affects every catchment in the world, not only the gauged catchments but also and especially the poorly gauged ones that account for the larger part of the catchment of the world. This study investigates how to compare hydrological behaviour of 11 small (0.1 to 0.6 km2) poorly gauged catchments considering uncertainty associated to their rating curves. It shows how important the uncertainty can be using Manning equation and focus on its parameter: the roughness coefficient. Innovative work has been performed under controlled experimental conditions to estimate the Manning coefficient values for the different cover types observed in studied streams: non-aquatic vegetations. The results show that estimated flow rates using suitable roughness coefficients highly differ from those we should have obtained if we only considered the common values given in the literature. Moreover, it highlights how it could also affect all derived hydrological indicators commonly used to compare hydrological behaviour. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008-2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was then estimated using Manning's equation and channel cross-section measurements. Even if discharge uncertainty is high, the results show significant variability between catchment's responses that allows for catchment classification. It also provides significant insight into the hydrological processes operating in small ephemeral stream systems and highlights similarities/dissimilarities between catchments.

  16. Soil moisture controlled runoff mechanisms in a small agricultural catchment in Austria.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Szeles, Borbala; Silasari, Rasmiaditya; Hogan, Patrick; Oismueller, Markus; Strauss, Peter; Wagner, Wolfgang; Bloeschl, Guenter

    2017-04-01

    Understanding runoff generation mechanisms is pivotal for improved estimation of floods in small catchments. However, this requires in situ measurements with a high spatial and temporal resolution of different land surface parameters, which are rarely available distributed over the catchment scale and for a long period. The Hydrological Open Air Laboratory (HOAL) is a hydrological observatory which comprises a complex agricultural catchment, covering 66 ha. Due to the agricultural land use and low permeability of the soil part of the catchment was tile drained in the 1940s. The HOAL is equipped with an extensive soil moisture network measuring at 31 locations, 4 rain gauges and 12 stream gauges. By measuring with so many sensors in a complex catchment, the collected data enables the investigation of multiple runoff mechanisms which can be observed simultaneously in different parts of the catchment. The aim of this study is to identify and characterize different runoff mechanisms and the control soil moisture dynamics exert on them. As a first step 72 rainfall events were identified within the period 2014-2015. By analyzing event discharge response, measured at the different stream gauges, and root zone soil moisture, four different runoff mechanisms are identified. The four mechanisms exhibit contrasting soil moisture-discharge relationships. In the presented study we characterize the runoff response types by curve-fitting the discharge response to the soil moisture state. The analysis provides insights in the main runoff processes occurring in agricultural catchments. The results of this study a can be of assistance in other catchments to identify catchment hydrologic response.

  17. Runoff Response to Rainfall in Small Catchments Burned by the 2015 Valley Fire

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, J. W.; Coe, D. B. R.; Lindsay, D.

    2016-12-01

    Burned areas often produce runoff volumes and peak flows much larger than unburned forests. However, very few studies demonstrate the effect of burn severity on runoff responses, and post-fire data are especially sparse in California. We measured the effects of different degrees of burn severity on rainfall-runoff responses in six small catchments (0.15-0.65 ha) in the Northern Coast Ranges. Weirs and tipping bucket rain gages were installed after the 2015 Valley Fire and prior to any substantial rainfall. In the first wet season (Nov 2015-May 2016), one runoff event was recorded in the catchment with the lowest burn severity (42% bare soil), while 13 runoff events occurred in the catchment with the highest burn severity (68% bare soil). Preliminary results indicate the thirty minute maximum rainfall intensity that generated runoff ranged from 27 mm hr-1 in the lowest severity catchment to only 8.6 mm hr-1 in the highest severity catchment. Peak flow rates for the most intense event (27 mm hr-1), a two-year, 30-min storm, were 1.1 m3 s-1 km-2 in the lowest severity catchment and 17 m3 s-1 km-2 in the highest severity catchment. Longer duration, moderate intensity rain events produced runoff in the highest severity catchments but not the lowest severity catchments. These results are on the high end of the range of post-fire peak flow rates reported in the western US and provide an idea of potential post-fire flood potential to land and emergency management agencies.

  18. Repeated fault rupture recorded by paleoenvironmental changes in a wetland sedimentary sequence ponded against the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Clark, K.; Berryman, K. R.; Cochran, U. A.; Bartholomew, T.; Turner, G. M.

    2010-12-01

    At Hokuri Creek, in south Westland, New Zealand, an 18 m thickness of Holocene sediments has accumulated against the upthrown side of the Alpine Fault. Recent fluvial incision has created numerous exposures of this sedimentary sequence. At a decimetre to metre scale there are two dominant types of sedimentary units: clastic-dominated, grey silt packages, and organic-dominated, light brown peaty-silt units. These units represent repeated alternations of the paleoenvironment due to fault rupture over the past 7000 years. We have located the event horizons within the sedimentary sequence, and identified evidence to support earthquake-driven paleoenvironmental change (rather than climatic variability), and developed a model of paleoenvironmental changes over a typical seismic cycle. To quantitatively characterise the sediments we use high resolution photography, x-ray imaging, magnetic-susceptibility and total carbon analysis. To understand the depositional environment we used diatom and pollen studies. The organic-rich units have very low magnetic susceptibility and density values, with high greyscale and high total carbon values. Diatoms indicate these units represent stable wetland environments with standing water and predominantly in-situ organic material deposition. The clastic-rich units are characterised by higher magnetic susceptibility and density values, with low greyscale and total carbon. The clastic-rich units represent environments of flowing water and deep pond settings that received predominantly catchment-derived silt and sand. The event horizon is located at the upper contact of the organic-rich horizons. The event horizon contact marks a drastic change in hydrologic regime as fault rupture changed the stream base level and there was a synchronous influx of clastic sediment as the catchment responded to earthquake shaking. During the interseismic period the flowing-water environment gradually stabilised and returned to an organic-rich wetland. Such cycles were repeated 18 times at Hokuri Creek. Evidence that fault rupture was responsible for the cyclical paleoenvironmental changes at Hokuri Creek include: the average time period for each organic- and clastic-rich couplet to be deposited approximately equals the long-term average Alpine Fault recurrence interval, and the most recent events recorded at Hokuri correlate to an earthquake dated in paleoseismic trenches 100 km along strike; fault rupture is the only mechanism that can create accommodation space for 18 m of sediment to accumulate, and the sedimentary units can be traced from the outcrop to the fault trace and show tectonic deformation. The record of 18 fault rupture events at Hokuri Creek is one of the longest records of surface ruptures on a major plate boundary fault. High-resolution dating and statistical treatment of the radiocarbon data (Biasi et al., this meeting) has resulted in major advances in understanding the long-term behaviour of the Alpine Fault (Berryman et al., this meeting).

  19. The role of land use and soils in regulating water flow in small headwater catchments of the Andes

    NASA Astrophysics Data System (ADS)

    Roa-GarcíA, M. C.; Brown, S.; Schreier, H.; Lavkulich, L. M.

    2011-05-01

    Land use changes can have a significant impact on the terrestrial component of the water cycle. This study provides a comparison of three small headwater catchments in the Andean mountains of Colombia with different composition of land use. Several methods were used to quantify differences in the hydrological behavior of these catchments such as flow duration curves, stormflow analysis, and the linear reservoir concept. They were combined with an analysis of the characteristics of soils that contribute to understanding the aggregate catchment hydrological behavior. Andisols, which are soils formed in volcanic areas and with a large capacity to hold water, amplify differences in land use and limit the potential impact of land use management activities (conservation or restoration) on the water regulation function of catchments. Of the three studied catchments, less variability of flows was observed from the catchment with a larger percentage of area in forest, and a slower decrease of flows in the dry season was observed for the catchment with a relatively higher percentage of area in wetlands. Evidence is provided for the infiltration trade-off hypothesis for tropical environments, which states that after forest removal, soil infiltration rates are smaller and the water losses through quick flow are larger than the gains by reduced evapotranspiration; this is compatible with the results of the application of the linear reservoir concept showing a faster release of water for the least forested catchment.

  20. Stormflow generation in a small rainforest catchment in the Luquillo Experimental Forest, Puerto Rico.

    Treesearch

    J. Schellekens; F. N. Scatena; L.A. Bruijnzee; A. I. J. M. van Dijk; M. M. A. Groen; R. J. P. van Hogezand

    2004-01-01

    Various complementary techniques were used to investigate the stormflow generating processes in a small headwater catchment in northeastern Puerto Rico. Over 100 samples were taken of soil matrix water, macropore flow, streamflow and precipitation, mainly during two storms of contrasting magnitude, for the analysis of calcium, magnesium, silicon, potassium, sodium and...

  1. A Functional Approach to Zooplankton Communities in Mountain Lakes Stocked With Non-Native Sportfish Under a Changing Climate

    NASA Astrophysics Data System (ADS)

    Redmond, Laura E.; Loewen, Charlie J. G.; Vinebrooke, Rolf D.

    2018-03-01

    Cumulative impacts of multiple stressors on freshwater biodiversity and ecosystem function likely increase with elevation, thereby possibly placing alpine communities at greatest risk. Here, consideration of species traits enables stressor effects on taxonomic composition to be translated into potential functional impacts. We analyzed data for 47 taxa across 137 mountain lakes and ponds spanning large latitudinal (491 km) and elevational (1,399 m) gradients in western Canada, to assess regional and local factors of the taxonomic composition and functional structure of zooplankton communities. Multivariate community analyses revealed that small body size, clonal reproduction via parthenogenesis, and lack of pigmentation were species traits associated with both introduced non-native sportfish and also environmental conditions reflecting a warmer and drier climate—namely higher water temperatures, shallower water depths, and more chemically concentrated water. Thus, historical introductions of sportfish appear to have potentially induced greater tolerance in zooplankton communities of future climatic warming, especially in previously fishless alpine lakes. Although alpine lake communities occupied a relatively small functional space (i.e., low functional diversity), they were contained within the broader regional functional structure. Therefore, our findings point to the importance of dispersal by lower montane species to the future functional stability of alpine communities.

  2. A Temperate Alpine Glacier as a Reservoir of Polychlorinated Biphenyls: Model Results of Incorporation, Transport, and Release.

    PubMed

    Steinlin, Christine; Bogdal, Christian; Lüthi, Martin P; Pavlova, Pavlina A; Schwikowski, Margit; Zennegg, Markus; Schmid, Peter; Scheringer, Martin; Hungerbühler, Konrad

    2016-06-07

    In previous studies, the incorporation of polychlorinated biphenyls (PCBs) has been quantified in the accumulation areas of Alpine glaciers. Here, we introduce a model framework that quantifies mass fluxes of PCBs in glaciers and apply it to the Silvretta glacier (Switzerland). The models include PCB incorporation into the entire surface of the glacier, downhill transport with the flow of the glacier ice, and chemical fate in the glacial lake. The models are run for the years 1900-2100 and validated by comparing modeled and measured PCB concentrations in an ice core, a lake sediment core, and the glacial streamwater. The incorporation and release fluxes, as well as the storage of PCBs in the glacier increase until the 1980s and decrease thereafter. After a temporary increase in the 2000s, the future PCB release and the PCB concentrations in the glacial stream are estimated to be small but persistent throughout the 21st century. This study quantifies all relevant PCB fluxes in and from a temperate Alpine glacier over two centuries, and concludes that Alpine glaciers are a small secondary source of PCBs, but that the aftermath of environmental pollution by persistent and toxic chemicals can endure for decades.

  3. Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany

    NASA Astrophysics Data System (ADS)

    Schrott, Lothar; Hufschmidt, Gabi; Hankammer, Martin; Hoffmann, Thomas; Dikau, Richard

    2003-09-01

    Spatial patterns of sediment storage types and associated volumes using a novel approach for quantifying valley fill deposits are presented for a small alpine catchment (17 km 2) in the Bavarian Alps. The different sediment storage types were analysed with respect to geomorphic coupling and sediment flux activity. The most landforms in the valley in terms of surface area were found to be talus slopes (sheets and cones) followed by rockfall deposits and alluvial fans and plains. More than two-thirds of the talus slopes are relict landforms, completely decoupled from the geomorphic system. Notable sediment transport is limited to avalanche tracks, debris flows, and along floodplains. Sediment volumes were calculated using a combination of polynomial functions of cross sections, seismic refraction, and GIS modelling. A total of, 66 seismic refraction profiles were carried out throughout the valley for a more precise determination of sediment thicknesses and to check the bedrock data generated from geomorphometric analysis. We calculated the overall sediment volume of the valley fill deposits to be 0.07 km 3. This corresponds to a mean sediment thickness of 23.3 m. The seismic refraction data showed that large floodplains and sedimentation areas, which have been developed through damming effects from large rockfalls, are in general characterised by shallow sediment thicknesses (<20 m). By contrast, the thickness of several talus slopes is more than twice as much. For some locations (e.g., narrow sections of valley), the polynomial-generated cross sections resulted in overestimations of up to one order of magnitude; whereas in sections with a moderate valley shape, the modelled cross sections are in good accordance with the obtained seismic data. For the quantification of valley fill deposits, a combined application of bedrock data derived from polynomials and geophysical prospecting is highly recommended.

  4. How much can we save? Impact of different emission scenarios on future snow cover in the Alps

    NASA Astrophysics Data System (ADS)

    Marty, Christoph; Schlögl, Sebastian; Bavay, Mathias; Lehning, Michael

    2017-02-01

    This study focuses on an assessment of the future snow depth for two larger Alpine catchments. Automatic weather station data from two diverse regions in the Swiss Alps have been used as input for the Alpine3D surface process model to compute the snow cover at a 200 m horizontal resolution for the reference period (1999-2012). Future temperature and precipitation changes have been computed from 20 downscaled GCM-RCM chains for three different emission scenarios, including one intervention scenario (2 °C target) and for three future time periods (2020-2049, 2045-2074, 2070-2099). By applying simple daily change values to measured time series of temperature and precipitation, small-scale climate scenarios have been calculated for the median estimate and extreme changes. The projections reveal a decrease in snow depth for all elevations, time periods and emission scenarios. The non-intervention scenarios demonstrate a decrease of about 50 % even for elevations above 3000 m. The most affected elevation zone for climate change is located below 1200 m, where the simulations show almost no snow towards the end of the century. Depending on the emission scenario and elevation zone the winter season starts half a month to 1 month later and ends 1 to 3 months earlier in this last scenario period. The resulting snow cover changes may be roughly equivalent to an elevation shift of 500-800 or 700-1000 m for the two non-intervention emission scenarios. At the end of the century the number of snow days may be more than halved at an elevation of around 1500 m and only 0-2 snow days are predicted in the lowlands. The results for the intervention scenario reveal no differences for the first scenario period but clearly demonstrate a stabilization thereafter, comprising much lower snow cover reductions towards the end of the century (ca. 30 % instead of 70 %).

  5. A new hydrological model for estimating extreme floods in the Alps

    NASA Astrophysics Data System (ADS)

    Receanu, R. G.; Hertig, J.-A.; Fallot, J.-M.

    2012-04-01

    Protection against flooding is very important for a country like Switzerland with a varied topography and many rivers and lakes. Because of the potential danger caused by extreme precipitation, structural and functional safety of large dams must be guaranteed to withstand the passage of an extreme flood. We introduce a new distributed hydrological model to calculate the PMF from a PMP which is spatially and temporally distributed using clouds. This model has permitted the estimation of extreme floods based on the distributed PMP and the taking into account of the specifics of alpine catchments, in particular the small size of the basins, the complex topography, the large lakes, snowmelt and glaciers. This is an important evolution compared to other models described in the literature, as they mainly use a uniform distribution of extreme precipitation all over the watershed. This paper presents the results of calculation with the developed rainfall-runoff model, taking into account measured rainfall and comparing results to observed flood events. This model includes three parts: surface runoff, underground flow and melting snow. Two Swiss watersheds are studied, for which rainfall data and flow rates are available for a considerably long period, including several episodes of heavy rainfall with high flow events. From these events, several simulations are performed to estimate the input model parameters such as soil roughness and average width of rivers in case of surface runoff. Following the same procedure, the parameters used in the underground flow simulation are also estimated indirectly, since direct underground flow and exfiltration measurements are difficult to obtain. A sensitivity analysis of the parameters is performed at the first step to define more precisely the boundary and initial conditions. The results for the two alpine basins, validated with the Nash equation, show a good correlation between the simulated and observed flows. This good correlation shows that the model is valid and gives us the confidence that the results can be extrapolated to phenomena of extreme rainfall of PMP type.

  6. Contemporary gene flow and mating system of Arabis alpina in a Central European alpine landscape

    PubMed Central

    Buehler, D.; Graf, R.; Holderegger, R.; Gugerli, F.

    2012-01-01

    Background and Aims Gene flow is important in counteracting the divergence of populations but also in spreading genes among populations. However, contemporary gene flow is not well understood across alpine landscapes. The aim of this study was to estimate contemporary gene flow through pollen and to examine the realized mating system in the alpine perennial plant, Arabis alpina (Brassicaceae). Methods An entire sub-alpine to alpine landscape of 2 km2 was exhaustively sampled in the Swiss Alps. Eighteen nuclear microsatellite loci were used to genotype 595 individuals and 499 offspring from 49 maternal plants. Contemporary gene flow by pollen was estimated from paternity analysis, matching the genotypes of maternal plants and offspring to the pool of likely father plants. Realized mating patterns and genetic structure were also estimated. Key Results Paternity analysis revealed several long-distance gene flow events (≤1 km). However, most outcrossing pollen was dispersed close to the mother plants, and 84 % of all offspring were selfed. Individuals that were spatially close were more related than by chance and were also more likely to be connected by pollen dispersal. Conclusions In the alpine landscape studied, genetic structure occurred on small spatial scales as expected for alpine plants. However, gene flow also covered large distances. This makes it plausible for alpine plants to spread beneficial alleles at least via pollen across landscapes at a short time scale. Thus, gene flow potentially facilitates rapid adaptation in A. alpina likely to be required under ongoing climate change. PMID:22492332

  7. Performance of a coupled lagged ensemble weather and river runoff prediction model system for the Alpine Ammer River catchment

    NASA Astrophysics Data System (ADS)

    Smiatek, G.; Kunstmann, H.; Werhahn, J.

    2012-04-01

    The Ammer River catchment located in the Bavarian Ammergau Alps and alpine forelands, Germany, represents with elevations reaching 2185 m and annual mean precipitation between1100 and 2000 mm a very demanding test ground for a river runoff prediction system. Large flooding events in 1999 and 2005 motivated the development of a physically based prediction tool in this area. Such a tool is the coupled high resolution numerical weather and river runoff forecasting system AM-POE that is being studied in several configurations in various experiments starting from the year 2005. Corner stones of the coupled system are the hydrological water balance model WaSiM-ETH run at 100 m grid resolution, the numerical weather prediction model (NWP) MM5 driven at 3.5 km grid cell resolution and the Perl Object Environment (POE) framework. POE implements the input data download from various sources, the input data provision via SOAP based WEB services as well as the runs of the hydrology model both with observed and with NWP predicted meteorology input. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. Results obtained in the years 2005-2011 reveal that river runoff simulations depict high correlation with observed runoff when driven with monitored observations in hindcast experiments. The ability to runoff forecasts is depending on lead times in the lagged ensemble prediction and shows still limitations resulting from errors in timing and total amount of the predicted precipitation in the complex mountainous area. The presentation describes the system implementation, and demonstrates the application of the POE framework in networking, distributed computing and in the setup of various experiments as well as long term results of the system application in the years 2005 - 2011.

  8. Impact of climate change on groundwater resources in Southern Austria

    NASA Astrophysics Data System (ADS)

    Reszler, C.; Harum, T.; Poltnig, W.; Saccon, P.; Reichl, P.; Ruch, C.; Kopeinig, C.; Freundl, G.; Schlamberger, J.; Zessar, H.; Suette, G.

    2012-04-01

    Groundwater is the most important source for drinking water in Austria. In some parts of Southern Austria water resources already are very vulnerable to unfavourable climate conditions. This paper summarizes case studies of estimating the impact of climate change on groundwater recharge and groundwater flow in Southern Austria in the frame of the ETC-Alpine Space project ALP-WATER-SCARCE. In several pilot regions a distributed hydrological model was set up to simulate groundwater recharge and groundwater flow for a period of 10 to 30 years. The pilot sites range from mountainous catchments with steep hillslopes to Alpine valleys and flatlands with pore aquifers. In the model period comprehensive land data and meteorological data were used, and the models were calibrated to available stream gauge data. Additional low flow monitoring in the frame of the project also allowed for a more detailed regional analysis in some catchments. The simulations were firstly used to extend runoff and groundwater recharge depths on an annual basis up to 200 years into the past by regression analysis with long time meteorological parameters (HISTALP). The historical view shows that groundwater flow and recharge in most of the pilot regions decreased since the beginning of the 20th century, which is mainly the effect of climate change. Changes of land use are of minor relevance in most of the regions. Second, by the calibrated model scenarios were simulated to quantify the impact of a possible future change in the climatic conditions on water resources. The scenarios were generated by altering the model input by a "Delta-Change", under consideration of the historical development. These scenarios can be interpreted as "what if"-scenarios to quantify the sensitivity of the hydrological systems on these climatic variables. The results are compared with actual and projected water uses as a basis for regional water resources management.

  9. Mapping snow depth in open alpine terrain from stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Marti, R.; Gascoin, S.; Berthier, E.; de Pinel, M.; Houet, T.; Laffly, D.

    2016-07-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km2) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km2). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available.

  10. Seasonal isotope hydrology of Appalachian forest catchments

    Treesearch

    D. R. DeWalle; P. J. Edwards; B. R. Swistock; R. J. Drimmie; R. Aravena

    1995-01-01

    Seasonal hydrologic behavior of small forested catchments in the Appalachians was studied using oxygen-18 as a tracer. Oxygen-18 in samples of precipitation and streamflow were used to determine seasonal variations of subsurface water recharge and movement within two 30-40 ha forest catchments (Watershed 3 and 4) at the Fernow Experimental Forest in northcentral West...

  11. Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Parkin, G.; O'Donnell, G.; Ewen, J.; Bathurst, J. C.; O'Connell, P. E.; Lavabre, J.

    1996-02-01

    Validation methods commonly used to test catchment models are not capable of demonstrating a model's fitness for making predictions for catchments where the catchment response is not known (including hypothetical catchments, and future conditions of existing catchments which are subject to land-use or climate change). This paper describes the first use of a new method of validation (Ewen and Parkin, 1996. J. Hydrol., 175: 583-594) designed to address these types of application; the method involves making 'blind' predictions of selected hydrological responses which are considered important for a particular application. SHETRAN (a physically based, distributed catchment modelling system) is tested on a small Mediterranean catchment. The test involves quantification of the uncertainty in four predicted features of the catchment response (continuous hydrograph, peak discharge rates, monthly runoff, and total runoff), and comparison of observations with the predicted ranges for these features. The results of this test are considered encouraging.

  12. A detailed model for simulation of catchment scale subsurface hydrologic processes

    NASA Technical Reports Server (NTRS)

    Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    A catchment scale numerical model is developed based on the three-dimensional transient Richards equation describing fluid flow in variably saturated porous media. The model is designed to take advantage of digital elevation data bases and of information extracted from these data bases by topographic analysis. The practical application of the model is demonstrated in simulations of a small subcatchment of the Konza Prairie reserve near Manhattan, Kansas. In a preliminary investigation of computational issues related to model resolution, we obtain satisfactory numerical results using large aspect ratios, suggesting that horizontal grid dimensions may not be unreasonably constrained by the typically much smaller vertical length scale of a catchment and by vertical discretization requirements. Additional tests are needed to examine the effects of numerical constraints and parameter heterogeneity in determining acceptable grid aspect ratios. In other simulations we attempt to match the observed streamflow response of the catchment, and we point out the small contribution of the streamflow component to the overall water balance of the catchment.

  13. Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia

    NASA Astrophysics Data System (ADS)

    Mackay, Anson W.; Bezrukova, Elena V.; Leng, Melanie J.; Meaney, Miriam; Nunes, Ana; Piotrowska, Natalia; Self, Angela; Shchetnikov, Alexander; Shilland, Ewan; Tarasov, Pavel; Wang, Luo; White, Dustin

    2012-05-01

    Boreal ecosystems are highly vulnerable to climate change, and severe ecological impacts in the near future are virtually certain to occur. We undertook a multiproxy study on an alpine lake (ESM-1) at the modern tree-line in boreal, southern Siberia. Steppe and tundra biomes were extensive in eastern Sayan landscapes during the early Holocene. Boreal forest quickly expanded by 9.1 ka BP, and dominated the landscape until c 0.7 ka BP, when the greatest period of compositional turnover occurred. At this time, alpine meadow landscape expanded and Picea obovata colonised new habitats along river valleys and lake shorelines, because of prevailing cool, moist conditions. During the early Holocene, chironomid assemblages were dominated by cold stenotherms. Diatoms for much of the Holocene were dominated by alkaliphilous, fragilarioid taxa, up until 0.2 ka BP, when epiphytic species expanded, indicative of increased habitat availability. C/N mass ratios ranged between 9.5 and 13.5 (11.1-15.8 C/N atomic ratios), indicative of algal communities dominating organic matter contributions to bottom sediments with small, persistent contributions from vascular plants. However, δ13C values increased steadily from -34.9‰ during the early Holocene (9.3 ka BP) to -24.8‰ by 0.6 ka BP. This large shift in magnitude may be due to a number of factors, including increasing within-lake productivity, increasing disequilibrium between the isotopic balance of the lake with the atmosphere as the lake became isotopically ‘mature’, and declining soil respiration linked to small, but distinct retreat in forest biomes. The influence of climatic variables on landscape vegetation was assessed using redundancy analysis (RDA), a linear, direct ordination technique. Changes in July insolation at 60 °N significantly explained over one-fifth of the variation in species composition, while changes in estimates of northern hemisphere temperature and ice-rafted debris events in the North Atlantic were also significant, but considerably less important. The potential importance of climate and biome development (tundra, steppe, cold deciduous forest and taiga) on different trophic levels (i.e. chironomid and diatom communities) in lake ESM-1 was also assessed using RDA. Climate predictors had a more significant influence on Holocene chironomid assemblages, especially July insolation at 60 °N, estimates of regional precipitation and estimates of northern hemisphere temperature, while only the development of the taiga biome had a significant impact on these primary consumers. Diatom communities also had a small, but significant influence on Holocene chironomid populations, perhaps linked to variation in faunal feeding strategies. In contrast, climatic and biome predictors explained similar amounts of variation in the Holocene diatom assemblage (approximately 20% each), while chironomids themselves as predictors explained just under 7% of diatom variation. Lake acidity was inferred using a diatom inference model. Results suggest that after deglaciation, the lake did not undergo a process of gradual acidification, most likely due to the presence of continuous permafrost and low levels of precipitation, preventing base cations and dissolved organic carbon entering the lake (except for the period between 1.7 and 0.7 ka BP). We conclude that lakes in continental, boreal regions undergo different models of lake ontogeny than oceanic boreal regions. Unlike other regions discussed, climate is a more important driver of ecosystem change than catchment changes. We also demonstrate that the start of the period coincident with the onset of the Little Ice Age resulted in important thresholds crossed in catchment vegetation and aquatic communities.

  14. Influencing factors on the cooling effect of coarse blocky top-layers on relict rock glaciers

    NASA Astrophysics Data System (ADS)

    Pauritsch, Marcus; Wagner, Thomas; Mayaud, Cyril; Thalheim, Felix; Kellerer-Pirklbauer, Andreas; Winkler, Gerfried

    2017-04-01

    Coarse blocky material widely occurs in alpine landscapes particularly at the surface of bouldery rock glaciers. Such blocky layers are known to have a cooling effect on the subjacent material because of the enhanced non-conductive heat exchange with the atmosphere. This effect is used for instance by the construction of blocky embankments in the building of railways and roads in permafrost regions to prevent thawing processes. In alpine regions, this cooling effect may have a strong influence on the distribution and conservation of permafrost related to climate warming. The thermal regimes of the blocky surface layers of two comparable - in terms of size, elevation and geology - relict rock glaciers with opposing slope aspects are investigated. Therefore, the influence of the slope aspect-related climatic conditions (mainly the incident solar radiation, wind conditions and snow cover) on the cooling effect of the blocky layers is investigated. Air temperature, ground surface temperature and ground temperature at one meter depth were continuously measured over a period of four years at several locations at the NE-oriented Schöneben Rock Glacier and the adjacent SW-oriented Dürrtal Rock Glacier. At the former, additional data about wind speed and wind direction as well as precipitation are available, which are used to take wind-forced convection and snow cover into consideration. Statistical analyses of the data reveal that the blocky top layer of the Dürrtal Rock Glacier generally exhibits lower temperatures compared to the Schöneben Rock Glacier despite the more radiation-exposed aspect and the related higher solar radiation. However, the data show that the thermal regimes of the surface layers are highly heterogeneous and that data from the individual measurement sites have to be interpreted with caution. High Rayleigh numbers at both rock glaciers show that free convection occurs particularly during winter. Furthermore, wind-forced convection has a high impact on the thermal regime of the Schöneben Rock Glacier and, as the major wind direction, especially for higher wind speeds, is from west towards east, it is suspected that wind-forced convection is even more important at the Dürrtal Rock Glacier. The limited incident solar radiation at the Schöneben Rock Glacier results in a longer seasonal snow cover that appears earlier in autumn and can persist longer during the melting season. Moreover, with the predominant westerly wind, snow is supposedly transported from neighboring catchments (i.a. the Dürrtal Rock Glacier catchment) towards the Schöneben Rock Glacier catchment. Thus, in times with relatively cold air temperatures the coarse blocky surface at the Dürrtal Rock Glacier is better connected to the atmosphere than the more northern exposed Schöneben rock glacier because of the missing or only partial snow cover, which results in an enhanced cooling effect. It can be concluded that the cooling effect of coarse blocky debris is highly variable in alpine environments and can show considerable variations, depending on the heterogeneous structure of the layer itself and a complex interplay of slope aspect-related microclimatic effects such as incident solar radiation, predominant wind direction and snow cover dynamics.

  15. Urbanisation impacts on storm runoff along a rural-urban gradient

    NASA Astrophysics Data System (ADS)

    Miller, James David; Hess, Tim

    2017-09-01

    Urbanisation alters the hydrological response of catchments to storm events and spatial measures of urban extent and imperviousness are routinely used in hydrological modelling and attribution of runoff response to land use changes. This study evaluates whether a measure of catchment urban extent can account for differences in runoff generation from storm events along an rural-urban gradient. We employed a high-resolution monitoring network across 8 catchments in the south of the UK - ranging from predominantly rural to heavily urbanised - over a four year period, and from this selected 336 storm events. Hydrological response was compared using volume- and scaled time-based hydrograph metrics within a statistical framework that considered the effect of antecedent soil moisture. Clear differences were found between rural and urban catchments, however above a certain threshold of urban extent runoff volume was relatively unaffected by changes and runoff response times were highly variable between catchments due to additional hydraulic controls. Results indicate a spatial measure of urbanisation can generally explain differences in the hydrological response between rural and urban catchments but is insufficient to explain differences between urban catchments along an urban gradient. Antecedent soil moisture alters the volume and timing of runoff generated in catchments with large rural areas, but was not found to affect the runoff response where developed areas are much greater. The results of this study suggest some generalised relationships between urbanisation and storm runoff are not represented in observed storm events and point to limitations in using a simplified representations of the urban environment for attribution of storm runoff in small urban catchments. The study points to the need for enhanced hydrologically relevant catchment descriptors specific to small urban catchments and more focused research on the role of urban soils and soil moisture in storm runoff generation in mixed land-use catchments.

  16. The application of a Web-geographic information system for improving urban water cycle modelling.

    PubMed

    Mair, M; Mikovits, C; Sengthaler, M; Schöpf, M; Kinzel, H; Urich, C; Kleidorfer, M; Sitzenfrei, R; Rauch, W

    2014-01-01

    Research in urban water management has experienced a transition from traditional model applications to modelling water cycles as an integrated part of urban areas. This includes the interlinking of models of many research areas (e.g. urban development, socio-economy, urban water management). The integration and simulation is realized in newly developed frameworks (e.g. DynaMind and OpenMI) and often assumes a high knowledge in programming. This work presents a Web based urban water management modelling platform which simplifies the setup and usage of complex integrated models. The platform is demonstrated with a small application example on a case study within the Alpine region. The used model is a DynaMind model benchmarking the impact of newly connected catchments on the flooding behaviour of an existing combined sewer system. As a result the workflow of the user within a Web browser is demonstrated and benchmark results are shown. The presented platform hides implementation specific aspects behind Web services based technologies such that the user can focus on his main aim, which is urban water management modelling and benchmarking. Moreover, this platform offers a centralized data management, automatic software updates and access to high performance computers accessible with desktop computers and mobile devices.

  17. Morphological expression of active tectonics in the Southern Alps

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Heberer, Bianca; Neubauer, Franz; Hergarten, Stefan

    2015-04-01

    Evolving drainage pattern and corresponding metrics of the channels (e.g. normalized steepness index) are sensitive indicators for tectonic or climatic events punctuating the evolution of mountain belts and their associated foreland basins. The analysis of drainage systems and their characteristic properties represents a well-established approach to constrain the impact of tectonic and climatic drivers on mountainous landscapes in the recent past. The Southern Alps (SA) are one of the seismically most active zones in the periphery of northern Adria. Recent deformation is caused by the ongoing convergence of the Adriatic and European plate and is recorded by numerous earthquakes in the domain of the SA. Deformation in the SA is characterized by back-thrusting causing crustal thickening and should therefore result in uplift and topography formation. The vertical velocity field determined by GPS-data clearly indicates a belt of significant uplift in the south South alpine indenter between Lake Garda in the west and the Triglav in the east and strong subsidence of the foreland basin surrounding the Mediterranean Sea near Venice, although subsidence is often related to ongoing subduction of the Adriatic microplate underneath Appennines. Despite of these short term time series, timing, rates and drivers of alpine landscape evolution are not well constrained and the linkage between crustal deformation and topographic evolution of this highly active alpine segment remains unclear for the following reasons: (1) The eastern Southern Alps were heavily overprinted by the Pleistocene glaciations and tectonic signals in the alpine landscape are blurred. Only the transition zone to the southern foreland basin remained unaffected and allows an analysis of a glacially undisturbed topography. (2) The major part of this domain is covered by lithology (carbonatic rocks) which is unsuitable for low temperature geochronology and cosmogenic isotope dating so that exhumation and erosion rates are not well constrained for the entire domain. Despite of that, extensive karstification in some areas limits the validity of a morphometric analysis in particular of the upper reaches of the drainage system and leads to a long term persistence of landforms (e.g. plateaus). In this study we focus on the drainage pattern of the eastern Southern Alps and the adjacent southern foreland basin. We use a high-resolution digital elevation model and a novel numerical approach to extract characteristic parameters of the morphology for the entire eastern Southern Alps with a high spatial resolution. We explore deviations in the steepness of channels from an equilibrium state and knick-points in longitudinal channel profiles and interpret these features in terms of (a) active tectonics, and variable uplift rates, (b) lithological effects like erodibility contrasts and karstification, and (c) base level lowering caused by glacial erosion and Messinian preconditioning. The drainage system of the Adige shows the most significant deviations from a fluvial equilibrium. This is documented in the normalized steepness index of the main channel and all tributaries as well as in the longitudinal channel profile. The main channel shows several sections of downstream steepening and extremely low channel gradients in the lower reach. Similar deviations are also observed in the Brenta catchment situated east of the Adige drainage system. In contrast to the two large western catchments of the study region, the Piave and particularly the Tagliamento catchment show well graded channel profiles and uniform normalized steepness indices despite of the glacial history. This clear west to east trend from highly disturbed to overall well graded channels has never been documented before and may be explained in the light of increased uplift rates in the east and differences in onset and timing of topography formation between the western and eastern sector of the study region.

  18. Global-scale regionalization of hydrological model parameters using streamflow data from many small catchments

    NASA Astrophysics Data System (ADS)

    Beck, Hylke; de Roo, Ad; van Dijk, Albert; McVicar, Tim; Miralles, Diego; Schellekens, Jaap; Bruijnzeel, Sampurno; de Jeu, Richard

    2015-04-01

    Motivated by the lack of large-scale model parameter regionalization studies, a large set of 3328 small catchments (< 10000 km2) around the globe was used to set up and evaluate five model parameterization schemes at global scale. The HBV-light model was chosen because of its parsimony and flexibility to test the schemes. The catchments were calibrated against observed streamflow (Q) using an objective function incorporating both behavioral and goodness-of-fit measures, after which the catchment set was split into subsets of 1215 donor and 2113 evaluation catchments based on the calibration performance. The donor catchments were subsequently used to derive parameter sets that were transferred to similar grid cells based on a similarity measure incorporating climatic and physiographic characteristics, thereby producing parameter maps with global coverage. Overall, there was a lack of suitable donor catchments for mountainous and tropical environments. The schemes with spatially-uniform parameter sets (EXP2 and EXP3) achieved the worst Q estimation performance in the evaluation catchments, emphasizing the importance of parameter regionalization. The direct transfer of calibrated parameter sets from donor catchments to similar grid cells (scheme EXP1) performed best, although there was still a large performance gap between EXP1 and HBV-light calibrated against observed Q. The schemes with parameter sets obtained by simultaneously calibrating clusters of similar donor catchments (NC10 and NC58) performed worse than EXP1. The relatively poor Q estimation performance achieved by two (uncalibrated) macro-scale hydrological models suggests there is considerable merit in regionalizing the parameters of such models. The global HBV-light parameter maps and ancillary data are freely available via http://water.jrc.ec.europa.eu.

  19. Determination of Sr and Ca sources in small tropical catchments (La Selva, Costa Rica) - A comparison of Sr and Ca isotopes

    NASA Astrophysics Data System (ADS)

    Wiegand, B. A.; Schwendenmann, L.

    2013-04-01

    SummaryA comparative study of Sr and Ca isotopes was conducted to assess solute sources and effects of biogeochemical processes on surface water and groundwater in four small tropical catchments located at La Selva Biological Station, Costa Rica. Variable concentrations of dissolved Sr2+ and Ca2+ in the catchments are related to mixing of waters from different origin. Three catchments are influenced by high-solute bedrock groundwater, while another catchment is primarily supplied by local recharge. 87Sr/86Sr ratios were employed to discriminate contributions from mineral weathering and atmospheric sources. Solutes in bedrock groundwater have a predominant geogenic origin, whereas local recharge is characterized by low-solute inputs from rainwater and minor in situ weathering releases from nutrient-depleted soils. Bedrock groundwater contributes more than 60% of dissolved Sr2+ to surface discharge in the Salto, Saltito, and Arboleda catchments, whereas the Taconazo catchment receives more than 95% of dissolved Sr2+ from rainwater. δ44/40Ca values of dissolved Ca2+ vary greatly in the catchments, mainly as a result of heterogeneous Ca isotope compositions of the contributing sources. Based on differences in δ44/40Ca values, two distinct bedrock groundwaters discharging at the Salto and the Arboleda catchments are suggested. Effects of biological processes in the plant-soil system on solute generation in the catchments are indicated by variable Ca/Sr ratios. However, these effects cannot clearly be assessed by Ca isotopes due to the strong heterogeneity of δ44/40Ca values of Ca2+ sources and high Ca2+ concentrations in bedrock groundwater.

  20. Phosphorus and dissolved organic carbon export during peak flow periods in three small homogenous catchments in eastern Germany

    NASA Astrophysics Data System (ADS)

    Benning, R.; Schwärzel, K.; Feger, K. H.

    2012-04-01

    Regional climate change scenarios for Central Europe predict both an overall increase in temperature and alterations in annual precipitation regimes. For large parts of Central Europe, climate change is expected to result in an increase in winter precipitation and a decrease in summer precipitation. In addition, an increase in extreme conditions, such as heat waves, prolonged drought periods, and heavy rainfall events are predicted. This research examines the potential impacts of increased heavy rainfall events on matter export from small catchment areas, and how different vegetation cover and land management options effects these exports. In order to evaluate the export of matter from different land-use types in the Eastern Ore Mountains (Saxony, NE Germany, 50° 48'18.06" North, 13° 36'24.54" East), study sites were established in three small catchments with homogeneous land-use. These study areas are each sub-catchments of the Ammelsdorf catchment, which provides inflow to the Lehnmühle reservoir (a major water supply for the city of Dresden). Each sub catchment represents one of the three main land-use types in the catchment area of the reservoir: crops (winter oilseed rape, winter wheat), grasslands, and forests (primarily spruce). Since November 2009 the discharge from these sub catchments has been continuously measured and water quality was analyzed on a weekly basis. During peak flow events, discharge was collected using automatic water samplers, which allowed for high temporal resolution analysis of matter export during these periods to be made. During the 2010 and 2011 hydrological years, several heavy rainfall events occurred which have been evaluated. During a 110-hour long precipitation event (P = 170 mm) between 37 and 81 water samples per sub catchment were collected and analyzed. The resulting export of dissolved phosphorus (ortho-PO4-) and dissolved organic carbon (DOC) from the sub catchments during this event is provided in the results. In addition, the matter export resulting from a 59-hour precipitation event (P = 39 mm, between 31 and 48 analyzed water samples per sub catchment) is presented. The contribution of these two events to the annual export of ortho-PO4- and DOC will be discussed.

  1. Organic and inorganic nitrogen pools in talus fields and subtalus water, Green Lakes Valley, Colorado front range

    USGS Publications Warehouse

    Williams, M.W.; Davinroy, T.; Brooks, P.D.

    1997-01-01

    Organic and inorganic pools of nitrogen (N) were measured in talus fines or 'soils' and subtalus water during the summer of 1995 in the alpine Green Lakes Valley catchment of the Colorado Front Range. Nineteen talus soil samples were divided into four classes: subtalus dry, subtalus wet, surface vegetated and surface bare. The size of the individual talus soil patches ranged from 0.5 to 12.0 m2 in area, with bulk density ranging from 0-98 to 1-71 kg m-3 and soil texture ranging from sandy gravel in the subsurface talus to a loam in the vegetated surface. All samples contained KCl-extractable NH4+ and NO3-, organic N and carbon (C), and 17 of 19 samples contained microbial biomass. The mean subtalus values for KCl-extractable NH4-, of 3.2 mg N kg-1, and NO3-, of 1.0 mg N kg-1, were comparable with developed alpine soils on Niwot Ridge. Average microbial biomass in subtalus soils of 5.4 mg N kg-1 and total N of 1000 mg N kg-1 were about an order of magnitude lower than alpine tundra soils, reflecting the reduced amount of vegetation in talus areas. However, these measurements in surface-vegetated patches of talus were comparable with the well-developed soils on Niwot Ridge. These measurements in talus of microbial biomass, total N and KCl-extractable NH4+ and NO3-, show that there is sufficient biotically conditioned 'soil' within talus fields to influence the solute content of interstitial waters. Mean NO3- concentrations of 20 ??eq 1-1 from 29 samples of subtalus water were significantly higher than the 6-7 ??eq 1-1 in snow, while NH4+ concentrations in subtalus water of 0??7 ??eq 1-1 was significantly lower than in snow at 5??2 ??eq 1-1 (p = 0??001). Nitrate concentrations in subtalus water were significantly (p < 0??0001) correlated with concentrations of geochemica??l weathering products such as Ca2+ (r2 = 0??84) and silica (r2 = 0??49). The correlation of NO3- in subtalus water with geochemical weathering products suggests that NO3- concentrations in subtalus water increased with increased residence time, consistent with a biological source for this subtalus water NO3-. The high NO3- concentrations in subtalus water compared with atmospheric deposition of NO3- suggests that NO3- in talus fields may contribute to NO3- in stream waters of high-elevation catchments. ?? 1997 John Wiley & Sons, Ltd.

  2. Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization

    NASA Astrophysics Data System (ADS)

    Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.

    2017-12-01

    Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. Since sub-daily streamflow information is unavailable for most small basins in China, one of the main challenges is finding appropriate parameter values for simulating flash floods in ungauged catchments. In this study, we use decision tree learning to explore parameter set transferability between different catchments. For this purpose, the physically-based, semi-distributed rainfall-runoff model PRMS-OMS is set up for 35 catchments in ten Chinese provinces. Hourly data from more than 800 storm runoff events are used to calibrate the model and evaluate the performance of parameter set transfers between catchments. For each catchment, 58 catchment attributes are extracted from several data sets available for whole China. We then use a data mining technique (decision tree learning) to identify catchment similarities that can be related to good transfer performance. Finally, we use the splitting rules of decision trees for finding suitable donor catchments for ungauged target catchments. We show that decision tree learning allows to optimally utilize the information content of available catchment descriptors and outperforms regionalization based on a conventional measure of physiographic-climatic similarity by 15%-20%. Similar performance can be achieved with a regionalization method based on spatial proximity, but decision trees offer flexible rules for selecting suitable donor catchments, not relying on the vicinity of gauged catchments. This flexibility makes the method particularly suitable for implementation in sparsely gauged environments. We evaluate the probability to detect flood events exceeding a given return period, considering measured discharge and PRMS-OMS simulated flows with regionalized parameters. Overall, the probability of detection of an event with a return period of 10 years is 62%. 44% of all 10-year flood peaks can be detected with a timing error of 2 hours or less. These results indicate that the modeling system can provide useful information about the timing and magnitude of flood events at ungauged sites.

  3. A mechanistic assessment of nutrient flushing at the catchment scale

    Treesearch

    Willem J. van Verseveld; Jeffrey J. McDonnell; Kate Lajtha

    2008-01-01

    This paper mechanistically assesses the flushing mechanism of DOC, DON, and DIN at the hillslope and catchment scales during two storm events, in a small catchment (WS10), H.J. Andrews Experimental Forest in the western Cascade Mountains of Oregon. Using a combination of natural tracer and hydrometric data, and end-member mixing analysis, we were able to describe the...

  4. Nitrogen budgets on Appalachian forest catchments

    Treesearch

    David R. DeWalle

    1997-01-01

    Variations in nitrogen losses in streamflow on catchments in the Appalachians suggests that the level of nitrogen retention in hardwood forests varies widely. Stream losses of dissolved nitrate-N on several small experimental forested catchments range from about 0.2 to 8.5 kg ha-1 y-1. This wide range of losses is equivalent to less than 10% to nearly 100% of measured...

  5. Simulation of the hydrologic effects of afforestation in the tacuarembo river basin, Uruguay

    Treesearch

    N.O. von Stackelberg; G.M. Chescheir; R.W. Skaggs; D.M. Amatya

    2007-01-01

    The Soil and Water Assessment Tool (SWAT) was used to simulate the hydrology of two small paired catchments in northern Uruguay. The control and treatment catchments (69 and 108 ha, respectively) were monitored for a three-year pretreatment period during which the land use was grassland with livestock grazing. Subsequently, the treatment catchment was planted (57%...

  6. Stream Nitrate Concentrations in a Small Catchment in South West England over a Period of 35 Years (1970-2005)

    NASA Astrophysics Data System (ADS)

    Burt, T.; Worrall, F.

    2008-12-01

    A 35-year record of nitrate concentration for the Slapton Wood stream, a small agricultural catchment in south west England, is presented. The study reconsiders earlier work in order to assess whether upward trends have been maintained and how controls on catchment nitrate processes have altered. The study has shown that: (i) the catchment has reached a new position of equilibrium and increases in nitrate concentration have levelled off; (ii) the occurrence of severe droughts means that records of less than a decade are misleading and only longer records can illustrate changes of system state; (iii) the change of state observed in the catchment is illustrated in the switching of long-term memory effects from a negative to a positive annual memory; (iv) a significant long-term impulsivity relationship with rainfall becomes insignificant over the course of the study period. The study shows the importance of long records in exposing changes in state in catchment systems and understanding the time constants of a range of driving processes. The study by its very nature also demonstrates the importance of maintaining long-term monitoring programmes.

  7. Streamflow variation of forest covered catchments

    NASA Astrophysics Data System (ADS)

    Gribovszki, Z.; Kalicz, P.; Kucsara, M.

    2003-04-01

    Rainfall concentration and runoff, otherwise rainfall-runoff processes, which cause river water discharge fluctuation, is one of the basic questions of hydrology. Several social-economy demands have a strong connection with small or bigger rivers from the point of view both quantity and quality of the water. Gratification or consideration of these demands is complicated substantially that we have still poor knowledge about our stream-flow regime. Water resources mainly stem from upper watersheds. These upper watersheds are the basis of the water concentration process; therefore we have to improve our knowledge about hydrological processes coming up in these territories. In this article we present runoff regime of two small catchments on the basis of one year data. Both catchments have a similar magnitude 0.6 and 0.9 km^2. We have been analyzed in detail some hydrological elements: features of rainfall, discharge, rainfall induced flooding waves and basic discharge in rainless periods. Variances of these parameters have been analyzed in relation to catchments surface, vegetation coverage and forest management. Result data set well enforce our knowledge about small catchments hydrological processes. On the basis of these fundamentals we can plan more established the management of these lands (forest practices, civil engineering works, and usage of natural water resources).

  8. Sensitivity of a high-elevation Rocky Mountain watershed to altered climate and CO2

    USGS Publications Warehouse

    Baron, Jill S.; Hartman, Melannie D.; Band, L.E.; Lammers, R.B.

    2000-01-01

    We explored the hydrologic and ecological responses of a headwater mountain catchment, Loch Vale watershed, to climate change and doubling of atmospheric CO2 scenarios using the Regional Hydro-Ecological Simulation System (RHESSys). A slight (2°C) cooling, comparable to conditions observed over the past 40 years, led to greater snowpack and slightly less runoff, evaporation, transpiration, and plant productivity. An increase of 2°C yielded the opposite response, but model output for an increase of 4°C showed dramatic changes in timing of hydrologic responses. The snowpack was reduced by 50%, and runoff and soil water increased and occurred 4–5 weeks earlier with 4°C warming. Alpine tundra photosynthetic rates responded more to warmer and wetter conditions than subalpine forest, but subalpine forest showed a greater response to doubling of atmospheric CO2 than tundra. Even though water use efficiency increased with the double CO2 scenario, this had little effect on basin-wide runoff because the catchment is largely unvegetated. Changes in winter and spring climate conditions were more important to hydrologic and vegetation dynamics than changes that occurred during summer.

  9. Understanding and Predicting the Fate of Semivolatile Organic Pesticides in a Glacier-Fed Lake Using a Multimedia Chemical Fate Model.

    PubMed

    Wu, Xiaolin; Davie-Martin, Cleo L; Steinlin, Christine; Hageman, Kimberly J; Cullen, Nicolas J; Bogdal, Christian

    2017-10-17

    Melting glaciers release previously ice-entrapped chemicals to the surrounding environment. As glacier melting accelerates under future climate warming, chemical release may also increase. This study investigated the behavior of semivolatile pesticides over the course of one year and predicted their behavior under two future climate change scenarios. Pesticides were quantified in air, lake water, glacial meltwater, and streamwater in the catchment of Lake Brewster, an alpine glacier-fed lake located in the Southern Alps of New Zealand. Two historic-use pesticides (endosulfan I and hexachlorobenzene) and three current-use pesticides (dacthal, triallate, and chlorpyrifos) were frequently found in both air and water samples from the catchment. Regression analysis indicated that the pesticide concentrations in glacial meltwater and lake water were strongly correlated. A multimedia environmental fate model was developed for these five chemicals in Brewster Lake. Modeling results indicated that seasonal lake ice cover melt, and varying contributions of input from glacial melt and streamwater, created pulses in pesticide concentrations in lake water. Under future climate scenarios, the concentration pulse was altered and glacial melt made a greater contribution (as mass flux) to pesticide input in the lake water.

  10. Using graph theory to quantify coarse sediment connectivity in alpine geosystems

    NASA Astrophysics Data System (ADS)

    Heckmann, Tobias; Thiel, Markus; Schwanghart, Wolfgang; Haas, Florian; Becht, Michael

    2010-05-01

    Networks are a common object of study in various disciplines. Among others, informatics, sociology, transportation science, economics and ecology frequently deal with objects which are linked with other objects to form a network. Despite this wide thematic range, a coherent formal basis to represent, measure and model the relational structure of models exists. The mathematical model for networks of all kinds is a graph which can be analysed using the tools of mathematical graph theory. In a graph model of a generic system, system components are represented by graph nodes, and the linkages between them are formed by graph edges. The latter may represent all kinds of linkages, from matter or energy fluxes to functional relations. To some extent, graph theory has been used in geosciences and related disciplines; in hydrology and fluvial geomorphology, for example, river networks have been modeled and analysed as graphs. An important issue in hydrology is the hydrological connectivity which determines if runoff generated on some area reaches the channel network. In ecology, a number of graph-theoretical indices is applicable to describing the influence of habitat distribution and landscape fragmentation on population structure and species mobility. In these examples, the mobility of matter (water, sediment, animals) through a system is an important consequence of system structure, i.e. the location and topology of its components as well as of properties of linkages between them. In geomorphology, sediment connectivity relates to the potential of sediment particles to move through the catchment. As a system property, connectivity depends, for example, on the degree to which hillslopes within a catchment are coupled to the channel system (lateral coupling), and to which channel reaches are coupled to each other (longitudinal coupling). In the present study, numerical GIS-based models are used to investigate the coupling of geomorphic process units by delineating the process domains of important geomorphic processes in a high-mountain environment (rockfall, slope-type debris flows, slope aquatic and fluvial processes). The results are validated by field mapping; they show that only small parts of a catchment are actually coupled to its outlet with respect to coarse (bedload) sediment. The models not only generate maps of the spatial extent and geomorphic activity of the aforementioned processes, they also output so-called edge lists that can be converted to adjacency matrices and graphs. Graph theory is then employed to explore ‘local' (i.e. referring to single nodes or edges) and ‘global' (i.e. system-wide, referring to the whole graph) measures that can be used to quantify coarse sediment connectivity. Such a quantification will complement the mainly qualitative appraisal of coupling and connectivity; the effect of connectivity on catchment properties such as specific sediment yield and catchment sensitivity will then be studied on the basis of quantitative measures.

  11. Frost resistance in alpine woody plants.

    PubMed

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  12. Frost resistance in alpine woody plants

    PubMed Central

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone. PMID:25520725

  13. Non-native salmonids affect amphibian occupancy at multiple spatial scales

    USGS Publications Warehouse

    Pilliod, David S.; Hossack, Blake R.; Bahls, Peter F.; Bull, Evelyn L.; Corn, Paul Stephen; Hokit, Grant; Maxell, Bryce A.; Munger, James C.; Wyrick, Aimee

    2010-01-01

    Aim The introduction of non-native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non-native salmonids on the occupancy of two native amphibians, the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales: water bodies, small catchments and large catchments. Location Mountain lakes at ≥ 1500 m elevation were surveyed across the northern Rocky Mountains, USA. Methods We surveyed 2267 water bodies for amphibian occupancy (based on evidence of reproduction) and fish presence between 1986 and 2002 and modelled the probability of amphibian occupancy at each spatial scale in relation to habitat availability and quality and fish presence. Results After accounting for habitat features, we estimated that A. macrodactylum was 2.3 times more likely to breed in fishless water bodies than in water bodies with fish. Ambystoma macrodactylum also was more likely to occupy small catchments where none of the water bodies contained fish than in catchments where at least one water body contained fish. However, the probability of salamander occupancy in small catchments was also influenced by habitat availability (i.e. the number of water bodies within a catchment) and suitability of remaining fishless water bodies. We found no relationship between fish presence and salamander occupancy at the large-catchment scale, probably because of increased habitat availability. In contrast to A. macrodactylum, we found no relationship between fish presence and R. luteiventris occupancy at any scale. Main conclusions Our results suggest that the negative effects of non-native salmonids can extend beyond the boundaries of individual water bodies and increase A. macrodactylum extinction risk at landscape scales. We suspect that niche overlap between non-native fish and A. macrodactylum at higher elevations in the northern Rocky Mountains may lead to extinction in catchments with limited suitable habitat.

  14. Geomorphic characterization of hilly relief in the north alpine foreland basin: The Hausruck- and Kobernaußerwald region

    NASA Astrophysics Data System (ADS)

    Baumann, Sebastian; Robl, Jörg; Keil, Melanie; Salcher, Bernhard

    2014-05-01

    The area of the Hausruck and Kobernaußerwald represents the highest relief of the Molasse Basin in Upper Austria. The region is characterized by a dissected landscape with elevation differences of 400 m and peaks reaching up to 800 m. The latest marine influence of this realm is dated to 11 Ma before present and constrains the onset of the inversion of the peripheral alpine foreland basin. Since that time the relief evolution is controlled by surface uplift and fluvial erosion. The Hausruck-Kobernaußerwald region forms a local watershed and is drained by three drainage systems that are tributaries of the Inn River, the Traun River and the Trattnach River. The Danube River represents the base level for all these streams. In contrary to the nearby Eastern Alps the study area shows no evidence for local deformation or glacial overprint. Therefore, the Hausruck- Kobernaußerwald region represents a perfect testing ground to explore the evolution of relief in a setting of regional uplift and relative base level lowering. This is done by characterizing the fluvial and hillslope system and exploring the effect of contrasting lithology and different base levels. We further give constraints on the geomorphological state of equilibrium and provide a discussion about the spatial position of the highest relief within the Molasse Basin in Upper Austria. Therefore, we have performed a series of morphometric analyses on a high resolution LiDAR digital elevation model. This includes longitudinal channel profiles, the best fit concavity index, the steepness and the normalized steepness index, the slope-area relationship, the slope elevation distribution and hypsometric curves of all individual catchments. All longitudinal channel profiles are graded and show a concave form without any natural knickpoints with best fit concavity indices in the range of 0.35 and 0.55. All observed knick points in the channel profiles could be traced back to an anthropogenic impact like bridges or culverts. Interestingly, the transition from one lithological unit to another does not influence the channel slopes in the profiles suggesting that the erodibility of different rock types is in the same order of magnitude. The contributing drainage area and channel slope for all catchments of the study area follow a power law relationship as proposed by Hack. The transition from hillslope- to fluvial processes is observed in channel slope-drainage area plots and is consistently identified in longitudinal channel profiles at very small drainage areas (A < 0.05 km²). Hypsometric curves commonly show a S-shaped form with hypsometric integrals close to 0.5 suggesting a topographic steady-state of the study area.

  15. Future of Alpine Water Resources : Uncertainty from Trees and Glaciers

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Beria, H.; Michelon, A.; Schaefli, B.

    2016-12-01

    Alpine water resources are particularly susceptible to climate change, which presents a high risk to many of the ecologic and economic roles played by mountain environments. In Switzerland, water from glacier-fed catchments provides a large portion of hydroelectric power and water supply as well as a multitude of services including the creation and maintenance of biological communities and the physical landscape. Loss of glaciers will also pose indirect consequences, such as changing the hydrologic, biologic, and physical environment, for example opening up new surfaces for vegetation growth and forestation. Hydrologic models are a primary tool to predict these consequences. Quantifying evaporation is an on-going challenge for modeling, and changes in the partition between transpiration and evaporation from bare ground or sublimation from glaciers is a larve source of uncertainty in the alpine water balance. We just began an intensive monitoring program of hydrological processes in the Vallon de Nant, Switzerland (area of 14 km², altitude ranging from 1200 to 3051 m). This site is both a karst system and a protected area, making it a particularly interesting site to study eco-hydrologic processes. Monitoring of stable isotopes (δO18 and δD) in water combines with measurements of climate and hydrologic parameters to quantify flows through the components of the water balance and assess their certainty. Additionally, we are observing water use by trees at the upper limit of their habitat range. Our presentation will highlight the importance of in situ measurements to quantify the spatial and temporal variations in the water balance. We will discuss the innovative measurement techniques that we are deploying, the uncertainty from each component, and show the first results of our work.

  16. Executive summary - Assessing the response of Emerald Lake, an alpine watershed in Sequoia National Park, California, to acidification during snowmelt using a simple hydrochemical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, R.P.; West, C.T.; Peters, N.E.

    1990-01-01

    A simple process-oriented model, called the Alpine Lake Forecaster (ALF), was constructed using data collected from the Integrated Watershed Study of Emerald Lake, Sequoia National Park, California. ALF is able to capture the basic solute patterns during snowmelt in this alpine catchment where groundwater is a minor contributor to streamflow. It includes an empirical representation of primary mineral weathering as the only alkalinity generating mechanism. During a heavy snow year, such as the one used for calibrating the model, the model accurately simulated the surface water chemical change in response to the initial ionic pulse from the snowpack and tomore » the dilution that occurs at peak snowmelt. Because the model does not consider cation exchange, it over-predicts the acidification during the initial period of snowmelt, and therefore is a conservative predictor. However, the minimum alkalinity observed in the main inflows to Emerald Lake and in the lake outflow is accurately simulated by the model. The representation of the lake as simply a missing volume with no additional chemical reactions is supported by the observation. The model predicts a change of 2 to 5 microequiv/L in the minimum alkalinity of the lake outflow during snowmelt if the deposition would have to increase between two and 18 times the current load-alkalinity of the lake; the precise increase depends on hydrologic conditions and on the pattern of solute release from the snowpack. An acidic rainstorm that exhausted the alkalinity of the lake was observed during summer 1984 after the lake had stratified, and is the likely cause of the acidification of Emerald Lake.« less

  17. The spectral absorption coefficient at 254 nm as a real-time early warning proxy for detecting faecal pollution events at alpine karst water resources.

    PubMed

    Stadler, H; Klock, E; Skritek, P; Mach, R L; Zerobin, W; Farnleitner, A H

    2010-01-01

    Because spring water quality from alpine karst aquifers can change very rapidly during event situations, water abstraction management has to be performed in near real-time. Four summer events (2005-2008) at alpine karst springs were investigated in detail in order to evaluate the spectral absorption coefficient at 254 nm (SAC254) as a real-time early warning proxy for faecal pollution. For the investigation Low-Earth-Orbit (LEO) Satellite-based data communication between portable hydrometeorological measuring stations and an automated microbiological sampling device was used. The method for event triggered microbial sampling and analyzing was already established and described in a previous paper. Data analysis including on-line event characterisation (i.e. precipitation, discharge, turbidity, SAC254) and comprehensive E. coli determination (n>800) indicated that SAC254 is a useful early warning proxy. Irrespective of the studied event situations SAC254 always increased 3 to 6 hours earlier than the onset of faecal pollution, featuring different correlation phases. Furthermore, it seems also possible to use SAC254 as a real-time proxy parameter for estimating the extent of faecal pollution after establishing specific spring and event-type calibrations that take into consideration the variability of the occurrence and the transferability of faecal material It should be highlighted that diffuse faecal pollution from wildlife and live stock sources was responsible for spring water contamination at the investigated catchments. In this respect, the SAC254 can also provide useful information to support microbial source tracking efforts where different situations of infiltration have to be investigated.

  18. Signatures of Late Pleistocene fluvial incision in an Alpine landscape

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matthew; Moore, Jeffrey R.

    2018-02-01

    Uncertainty regarding the relative efficacy of fluvial and glacial erosion has hindered attempts to quantitatively analyse the Pleistocene evolution of alpine landscapes. Here we show that the morphology of major tributaries of the Rhone River, Switzerland, is consistent with that predicted for a landscape shaped primarily by multiple phases of fluvial incision following a period of intense glacial erosion after the mid-Pleistocene transition (∼0.7 Ma). This is despite major ice sheets reoccupying the region during cold intervals since the mid-Pleistocene. We use high-resolution LiDAR data to identify a series of convex reaches within the long-profiles of 18 tributary channels. We propose these reaches represent knickpoints, which developed as regional uplift raised tributary bedrock channels above the local fluvial baselevel during glacial intervals, and migrated upstream as the fluvial system was re-established during interglacial periods. Using a combination of integral long-profile analysis and stream-power modelling, we find that the locations of ∼80% of knickpoints in our study region are consistent with that predicted for a fluvial origin, while the mean residual error over ∼100 km of modelled channels is just 26.3 m. Breaks in cross-valley profiles project toward the elevation of former end-of-interglacial channel elevations, supporting our model results. Calculated long-term uplift rates are within ∼15% of present-day measurements, while modelled rates of bedrock incision range from ∼1 mm/yr for low gradient reaches between knickpoints to ∼6-10 mm/yr close to retreating knickpoints, typical of observed rates in alpine settings. Together, our results reveal approximately 800 m of regional uplift, river incision, and hillslope erosion in the lower half of each tributary catchment since 0.7 Ma.

  19. Strategies for estimating the water budget at different scales using the JGrass-NewAGE system

    NASA Astrophysics Data System (ADS)

    Bancheri, M.; Rigon, R.; Serafin, F.; Abera, W.; Bottazzi, M.

    2017-12-01

    Recently we presented two papers one dedicated to the estimation of the water budget components in a small, basin, the Posina catchment [Abera et al., 2017], and the other in a large basin, the Blue Nile [Abera et al., 2017b]. At the smallest scale the ground measurements available do not guarantee the closure of the budget without making additional hypothesis. The large scale case, instead, was largely supported by remote sensing data either for calibration and/or validation. This contribution explains how we actually did it, clarifies some aspects of the informatics and openly discusses the issues risen in our work. We also consider varying configuration of the water budget schemes at the subbasin level, and how this affects the estimates.Finally we analyse the problem of travel times [Rigon et al., 2016a, Rigon et al, 2016b] as it comes out from considering the multiple fluxes and storages. All considerations and simulations are based on the JGrass-NewAGE system [Formetta et al., 2014] and its evolution (Bancheri [2017]).ReferencesAbera, W., Formetta, G., Borga, M., & Rigon, R. (2017a). Estimating the water budget components and their variability in a pre-alpine basin with JGrass-NewAGE. Advances in Water Resources, http://doi.org/10.1016/j.advwatres.2017.03.010Abera, W., Formetta, G., Brocca, L., & Rigon, R. (2017b). Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data. Hydrology and Earth System Sciences. http://doi.org/10.5194/hess-21-3145-2017Bancheri, M., A travel time model for water budget of complex catchments, ph.D Thesis, 2017Formetta, G., Antonello, A., Franceschi, S., David, O., & Rigon, R. (2014). Hydrological modelling with components: A GIS-based open-source framework. Environmental Modelling and Software,. http://doi.org/10.1016/j.envsoft.2014.01.019Rigon, R., Bancheri, M., Formetta, G., & de Lavenne, A. (2016). The geomorphological unit hydrograph from a historical-critical perspective. Earth Surface Processes and Landform. http://doi.org/10.1002/esp.3855Rigon, R., Bancheri, M., & Green, T. R. (2016). Age-ranked hydrological budgets and a travel time description of catchment hydrology. Hydrology and Earth System Sciences. http://doi.org/10.5194/hess-20-4929-2016

  20. Controls of streamflow generation in small catchments across the snow-rain transition in the southern Sierra Nevada, California

    Treesearch

    Fengjing Liu; Carolyn Hunsaker; Roger C. Bales

    2012-01-01

    Processes controlling streamflow generation were determined using geochemical tracers for water years 2004–2007 at eight headwater catchments at the Kings River Experimental Watersheds in southern Sierra Nevada. Four catchments are snowdominated, and four receive a mix of rain and snow. Results of diagnostic tools of mixing models indicate that Ca2+...

  1. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles

    2016-03-01

    Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent catchment buffering capacity and the probability of human disturbance provides a useful perspective for evaluating vulnerability of aquatic ecosystems and for managing systems to maintain agricultural production while minimizing leakage of nutrients.

  2. Environmental effects of hydrothermal alteration and historical mining on water and sediment quality in Central Colorado

    USGS Publications Warehouse

    Church, S.E.; Fey, D. L.; Klein, T.L.; Schmidt, T.S.; Wanty, R.B.; deWitt, E.H.; Rockwell, B.W.; San, Juan C.A.

    2009-01-01

    The U.S. Geological Survey conducted an environmental assessment of 198 catchments in a 54,000-km2 area of central Colorado, much of which is on Federal land. The Colorado Mineral Belt, a northeast-trending zone of historical base- and precious-metal mining, cuts diagonally across the study area. The investigation was intended to test the hypothesis that degraded water and sediment quality are restricted to catchments in which historical mining has occurred. Water, streambed sediment, and aquatic insects were collected from (1) catchments underlain by single lithogeochemical units, some of which were hydrothermally altered, that had not been prospected or mined; (2) catchments that contained evidence of prospecting, most of which contain hydrothermally altered rock, but no historical mining; and (3) catchments, all of which contain hydrothermally altered rock, where historical but now inactive mines occur. Geochemical data determined from catchments that did not contain hydrothermal alteration or historical mines met water quality criteria and sediment quality guidelines. Base-metal concentrations from these types of catchments showed small geochemical variations that reflect host lithology. Hydrothermal alteration and mineralization typically are associated with igneous rocks that have intruded older bedrock in a catchment. This alteration was regionally mapped and characterized primarily through the analysis of remote sensing data acquired by the ASTER satellite sensor. Base-metal concentrations among unaltered rock types showed small geochemical variations that reflect host lithology. Base-metal concentrations were elevated in sediment from catchments underlain by hydrothermally altered rock. Classification of catchments on the basis of mineral deposit types proved to be an efficient and accurate method for discriminating catchments that have degraded water and sediment quality. Only about 4.5 percent of the study area has been affected by historical mining, whereas a larger part of the study area is underlain by hydrothermally altered rock that has weathered to produce water and sediment with naturally elevated geochemical baselines. 

  3. A half century of change in alpine treeline patterns at Glacier National Park, Montana, U.S.A.

    USGS Publications Warehouse

    Klasner, F.L.; Fagre, D.B.

    2002-01-01

    Using sequential aerial photography, we identified changes in the spatial distribution of subalpine fir (Abies lasiocarpa) habitat at the alpine treeline ecotone. Six 40-ha study sites in the McDonald Creek drainage of Glacier National Park contained subalpine fir forests that graded into alpine tundra. Over a 46-yr period, altitudinal changes in the location of alpine treeline ecotone were not observed. However, over this 46-yr period the area of krummholz, patch-forest, and continuous canopy forest increased by 3.4%, and tree density increased within existing patches of krummholz and patch-forest. Change in subalpine fir vegetation patterns within 100 m of trails was also compared to areas without trails. Within 100 m of trails, the number of small, discrete krummholz stands increased compared to areas without trails, but there was no significant change in total krummholz area. We used historical terrestrial photography to expand the period (to 70 yr) considered. This photography supported the conclusions that a more abrupt ecotone transition developed from forest to tundra at alpine treeline, that tree density within forested areas increased, and that krummholz became fragmented along trails. This local assessment of fine-grained change in the alpine treeline ecotone provides a comparative base for looking at ecotone change in other mountain regions throughout the world.

  4. East African wetland-catchment data base for sustainable wetland management

    NASA Astrophysics Data System (ADS)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  5. Should we trust build-up/wash-off water quality models at the scale of urban catchments?

    PubMed

    Bonhomme, Céline; Petrucci, Guido

    2017-01-01

    Models of runoff water quality at the scale of an urban catchment usually rely on build-up/wash-off formulations obtained through small-scale experiments. Often, the physical interpretation of the model parameters, valid at the small-scale, is transposed to large-scale applications. Testing different levels of spatial variability, the parameter distributions of a water quality model are obtained in this paper through a Monte Carlo Markov Chain algorithm and analyzed. The simulated variable is the total suspended solid concentration at the outlet of a periurban catchment in the Paris region (2.3 km 2 ), for which high-frequency turbidity measurements are available. This application suggests that build-up/wash-off models applied at the catchment-scale do not maintain their physical meaning, but should be considered as "black-box" models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Adjustment of spatio-temporal precipitation patterns in a high Alpine environment

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Senoner, Tobias; Nachtnebel, Hans-Peter

    2018-01-01

    This contribution presents a method for correcting the spatial and temporal distribution of precipitation fields in a mountainous environment. The approach is applied within a flood forecasting model in the Upper Enns catchment in the Central Austrian Alps. Precipitation exhibits a large spatio-temporal variability in Alpine areas. Additionally the density of the monitoring network is low and measurements are subjected to major errors. This can lead to significant deficits in water balance estimation and stream flow simulations, e.g. for flood forecasting models. Therefore precipitation correction factors are frequently applied. For the presented study a multiplicative, stepwise linear correction model is implemented in the rainfall-runoff model COSERO to adjust the precipitation pattern as a function of elevation. To account for the local meteorological conditions, the correction model is derived for two elevation zones: (1) Valley floors to 2000 m a.s.l. and (2) above 2000 m a.s.l. to mountain peaks. Measurement errors also depend on the precipitation type, with higher magnitudes in winter months during snow fall. Therefore, additionally, separate correction factors for winter and summer months are estimated. Significant improvements in the runoff simulations could be achieved, not only in the long-term water balance simulation and the overall model performance, but also in the simulation of flood peaks.

  7. Coupling hydrological modeling and support vector regression to model hydropeaking in alpine catchments.

    PubMed

    Chiogna, Gabriele; Marcolini, Giorgia; Liu, Wanying; Pérez Ciria, Teresa; Tuo, Ye

    2018-08-15

    Water management in the alpine region has an important impact on streamflow. In particular, hydropower production is known to cause hydropeaking i.e., sudden fluctuations in river stage caused by the release or storage of water in artificial reservoirs. Modeling hydropeaking with hydrological models, such as the Soil Water Assessment Tool (SWAT), requires knowledge of reservoir management rules. These data are often not available since they are sensitive information belonging to hydropower production companies. In this short communication, we propose to couple the results of a calibrated hydrological model with a machine learning method to reproduce hydropeaking without requiring the knowledge of the actual reservoir management operation. We trained a support vector machine (SVM) with SWAT model outputs, the day of the week and the energy price. We tested the model for the Upper Adige river basin in North-East Italy. A wavelet analysis showed that energy price has a significant influence on river discharge, and a wavelet coherence analysis demonstrated the improved performance of the SVM model in comparison to the SWAT model alone. The SVM model was also able to capture the fluctuations in streamflow caused by hydropeaking when both energy price and river discharge displayed a complex temporal dynamic. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Using hacked point and shoot cameras for time-lapse snow cover monitoring in an Alpine valley

    NASA Astrophysics Data System (ADS)

    Weijs, S. V.; Diebold, M.; Mutzner, R.; Golay, J. R.; Parlange, M. B.

    2012-04-01

    In Alpine environments, monitoring snow cover is essential get insight in the hydrological processes and water balance. Although measurement techniques based on LIDAR are available, their cost is often a restricting factor. In this research, an experiment was done using a distributed array of cheap consumer cameras to get insight in the spatio-temporal evolution of snowpack. Two experiments are planned. The first involves the measurement of eolic snow transport around a hill, to validate a snow saltation model. The second monitors the snowmelt during the melting season, which can then be combined with data from a wireless network of meteorological stations and discharge measurements at the outlet of the catchment. The poster describes the hardware and software setup, based on an external timer circuit and CHDK, the Canon Hack Development Kit. This latter is a flexible and developing software package, released under a GPL license. It was developed by hackers that reverse engineered the firmware of the camera and added extra functionality such as raw image output, more full control of the camera, external trigger and motion detection, and scripting. These features make it a great tool for geosciences. Possible other applications involve aerial stereo photography, monitoring vegetation response. We are interested in sharing experiences and brainstorming about new applications. Bring your camera!

  9. Non-linearities in Holocene floodplain sediment storage

    NASA Astrophysics Data System (ADS)

    Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten

    2013-04-01

    Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows that a strong multifractality is present in the scaling relationship between sediment storage and catchment area, depending on geomorphic landscape properties. Extrapolation of data from one spatial scale to another inevitably leads to large errors: when only the data of the upper floodplains are considered, a regression analysis results in an overestimation of total floodplain deposition for the entire catchment of circa 115%. This example demonstrates multifractality and related non-linearity in scaling relationships, which influences extrapolations beyond the initial range of measurements. These different examples indicate how traditional extrapolation techniques and assumptions in sediment budget studies can be challenged by field data, further complicating our understanding of these systems. Although simplifications are often necessary when working on large spatial scale, such non-linearities may form challenges for a better understanding of system behavior.

  10. From hydro-geomorphological mapping to sediment transfer evaluation in the Upper Guil Catchment (Queyras, French Alps)

    NASA Astrophysics Data System (ADS)

    Lissak, Candide; Fort, Monique; Arnaud-Fassetta, Gilles; Mathieu, Alexandre; Malet, Jean-Philippe; Carlier, Benoit; Betard, François; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charney, Bérengère; Bletterie, Xavier

    2014-05-01

    The Guil River catchment (Queyras, Southern French Alps) is prone to hydro-geomorphic hazards related to catastrophic floods, with an amplification of their impacts due to strong hillslope-channel connectivity such as in 1957 (> R.I. 100 yr), and more recently in 2000 (R.I. 30 yr). In both cases, the rainfall intensity, aggravated by pre-existing saturated soils, explained the immediate response of the fluvial system and the subsequent destabilisation of slopes. This resulted in serious damages to infrastructure and buildings in the valley bottom, mostly along some specific reaches and confluences with debris flow prone tributaries. After each event, new protective structures are built. One of the purposes of this study, undertaken in the frame of the SAMCO (ANR) project, was to understand the hydro-geomorphological functioning of this upper Alpine catchment in a context of hazards mitigation and sustainable management of sediment yield, transfer and deposition. To determine the main sediment storages that could be mobilised during the next major hydro-meteorological events, the first step of our study consists in the identification and characterisation of areas that play a role into the sediment transfer processing. From environmental characteristics (channel geometric, vegetation cover…) and anthropogenic factors (hydraulic infrastructures, urban development…), a semi-automatic method provides a typology of contribution areas with sediment storages sensitive to erosion, or areas that will be prone to deposition of sediments during the next flooding event. The second step of the study is focused on the sediment storages with their characterisation and connectivity to the trunk channel. Taking into account the entire catchment and including the torrential system, this phase analyses the sedimentary transfers from the identification and classification of sediment storages to the evaluation of the degree of connectivity with the main or secondary channels. The proposed methodology is based on data directly derived from GIS analysis using interpretation of aerial photographs, regional scale Digital Elevation Model (DEM), high-resolution DEM derived from airborne-based LiDAR, and field survey. The data thus obtained can be used in the final geomorphological map. Future investigations will quantify the contribution of each sub-catchment in the global sediment budget of the Guil catchment. For a better assessment of sediment fluxes and sediment delivery into the main channel network, tracers (pit-tags) and diachronic Terrestrial Laser Scanning will be performed in selected sub-catchments in order to measure erosion rates and contribution to the sediment yield in the valley bottoms during the floods, avalanches and rainfall seasonal events.

  11. Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology

    NASA Astrophysics Data System (ADS)

    Malusà, Marco G.; Wang, Jiangang; Garzanti, Eduardo; Liu, Zhi-Chao; Villa, Igor M.; Wittmann, Hella

    2017-10-01

    Detrital thermochronology is often employed to assess the evolutionary stage of an entire orogenic belt using the lag-time approach, i.e., the difference between the cooling and depositional ages of detrital mineral grains preserved in a stratigraphic succession. The impact of different eroding sources to the final sediment sink is controlled by several factors, including the short-term erosion rate and the mineral fertility of eroded bedrock. Here, we use apatite fertility data and cosmogenic-derived erosion rates in the Po river catchment (Alps-Apennines) to calculate the expected percentage of apatite grains supplied to the modern Po delta from the major Alpine and Apenninic eroding sources. We test these predictions by using a cutting-edge dataset of trace-element and Nd-isotope signatures on 871 apatite grains from 14 modern sand samples, and we use apatite fission-track data to validate our geochemical approach to provenance discrimination. We found that apatite grains shed from different sources are geochemically distinct. Apatites from the Lepontine dome in the Central Alps show relative HREE enrichment, lower concentrations in Ce and U, and higher 147Sm/144Nd ratios compared to apatites derived from the External Massifs. Derived provenance budgets point to a dominant apatite contribution to the Po delta from the high-fertility Lepontine dome, consistent with the range independently predicted from cosmonuclide and mineral-fertility data. Our results demonstrate that the single-mineral record in the final sediment sink can be largely determined by high-fertility source rocks exposed in rapidly eroding areas within the drainage. This implies that the detrital thermochronology record may reflect processes affecting relatively small parts of the orogenic system under consideration. A reliable approach to lag-time analysis would thus benefit from an independent provenance discrimination of dated mineral grains, which may allow to proficiently reconsider many previous interpretations of detrital thermochronology datasets in terms of orogenic-wide steady state.

  12. Determining hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests.

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Temme, Arnaud; Giménez, Rafael; Casalí, Javier; Keesstra, Saskia

    2017-04-01

    Soil erosion from agricultural areas is a large problem, because of off-site effects like the rapid filling of reservoirs. To mitigate the problem of sediments from agricultural areas reaching the channel, reservoirs and other surface waters, it is important to understand hillslope-channel connectivity and catchment connectivity. To determine the functioning of hillslope-channel connectivity and the continuation of transport of these sediments in the channel, it is necessary to obtain data on sediment transport from the hillslopes to the channels. Simultaneously, the factors that influence sediment export out of the catchment need to be studied. For measuring hillslope-channel sediment connectivity, Rare-Earth Oxide (REO) tracers were applied to a hillslope in an agricultural catchment in Navarre, Spain, preceding the winter of 2014-2015. The results showed that during the winter there was no sediment transport from the hillslope to the channel. Analysis of precipitation data showed that total precipitation quantities did not differ much from the mean. However, precipitation intensities were low, causing little sediment mobilisation. To test the implication of the REO results at the catchment scale, two conceptual models for sediment connectivity were assessed using a Random Forest (RF) machine learning method. One model proposes that small events provide sediment for large events, while the other proposes that only large events cause sediment detachment and small events subsequently remove these sediments from near and in the channel. The RF method was applied to a daily dataset of sediment yield from the catchment (N=2451 days), and two subsets of the whole dataset: small events (N=2319) and large events (N=132). For sediment yield prediction of small events, variables related to large preceding events were the most important. The model for large events underperformed and, therefore, we could not draw any immediate conclusions whether small events influence the amount of sediment exported during large events. Both REO tracers and RF method showed that low intensity events do not contribute any sediments to the channel in the Latxaga catchment (cf. Masselink et al., 2016). Sediment dynamics are dominated by sediment mobilisation during large (high intensity) events. Sediments are for a large part exported during those events, but large amount of sediments are deposited in and near the channel after these events. These sediments are gradually removed by small events. To better understand the delivery of sediments to the channel and how large and small events influence each other more field data on hillslope-channel connectivity and within-channel sediment dynamics is necessary. Reference: Masselink, R.J.H., Keesstra, S.D., Temme, A.J.A.M., Seeger, M., Giménez, R., Casalí, J., 2016. Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components. Land Degrad. Dev. 27, 933-945. doi:10.1002/ldr.2512

  13. Hydrological Regimes of Small Catchments in the High Tatra Mountains Before and After Extraordinary Wind-Induced Deforestation

    NASA Technical Reports Server (NTRS)

    Holko, Ladislav; Hlavata, Helena; Kostka, Zdenek; Novak, Jan

    2009-01-01

    The paper presents the results of rainfall-runoff data analysis for small catchments of the upper Poprad River affected by wind-induced deforestation in November 2004. Before-event and afterevent measured data were compared in order to assess the impact of deforestation on hydrological regimes. Several characteristics were used including water balance, minimum and maximum runoff, runoff thresholds, number of runoff events, selected characteristics of events, runoff coefficients, and flashiness indices. Despite increased spring runoff minima, which in one catchment (Velick Creek) exceeded previously observed values after deforestation took place, it can be generally concluded that the impact of the deforestation was not clearly manifested in the analyzed hydrological data.

  14. Catchment-scale evaluation of pollution potential of urban snow at two residential catchments in southern Finland.

    PubMed

    Sillanpää, Nora; Koivusalo, Harri

    2013-01-01

    Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.

  15. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques

    NASA Astrophysics Data System (ADS)

    Bellos, Vasilis; Tsakiris, George

    2016-09-01

    The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.

  16. Coupling a glacier evolution model and a hydrological model to simulate future runoff scenarios in the Oetztal Alps, Austria

    NASA Astrophysics Data System (ADS)

    Stoll, Elena; Oesterle, Felix; Hanzer, Florian; Nemec, Johanna; Berlin, Stefan; Schöber, Johannes; Huttenlau, Matthias; Strasser, Ulrich; Achleitner, Stefan; Förster, Kristian

    2017-04-01

    Fluctuations of glacier and snow runoff play a key role in water management of alpine catchments. Consequently, the catchment water balance is strongly influenced by the variability of the seasonal snow cover and the glacier melt. The huge water storages enable a shift of the hydrological response of glaciers across time scales, leading to response times in the range of decades. In the future, an initial increase of water availability connected to higher temperatures and respective melt rates is expected to turn into a decrease as the glaciers dwindle. One key question is to predict the "moment of peak discharge" when water availability will start to decrease as a consequence of the reduction of glacierized areas. To assess the influence of a warming climate on runoff regimes of glaciated catchments, we couple a simple glacier evolution model (GEM), based on a statistical approach, with a semi-distributed hydrological model (HQsim). Climate scenarios are taken from downscaled EURO-CORDEX data for the scenarios RCP2.6, RCP4.5, and RCP8.5, respectively. The results indicate that the impact of the glaciers on runoff regimes will very likely change towards the second half of the 21st century. Given the scenarios in which most glaciers will attain their minimum extent and sustain only at high elevation levels, the resulting runoff regime is dominated by precipitation and seasonal snow cover, since the "moment of peak discharge" is assumed to occur in the first half of the 21st century.

  17. The effects of lithology and base level on topography in the northern alpine foreland

    NASA Astrophysics Data System (ADS)

    Baumann, Sebastian; Robl, Jörg; Prasicek, Günther; Salcher, Bernhard; Keil, Melanie

    2018-07-01

    The evolution of topography is driven by climate and tectonics, and strongly influenced by substrate properties and different base levels. The contributions of these factors may vary in space and time and are thus difficult to disentangle. Our study area, the Hausruck-Kobernaußerwald range, has a rather uniform climatic and tectonic history but is drained by rivers with different base levels and consists of contrasting sedimentary rocks, mainly due to different sedimentation environments. This makes them an ideal location to study the effects of lithology and base level on topography. To decipher the roles of these influences, we used a high-resolution digital elevation model and performed a series of morphometric analyses. Longitudinal river profiles indicate that all channels in the study area, independent from base level, bed rock and overall morphological expression, are well graded. Hypsometry shows no evidence for base level effects on the present topography, while variations in the hypsometric curves coincide with lithological differences. This is also reflected in contrasts of mean elevation and slope distributions. Lithology-dependent variations in channel concavity and catchment-wide hypsometric integrals show that lithology controls both channel incision and hillslope processes in the study area. Our results further indicate that variations in channel and catchment metrics are not linked to the prevalence of different rock types alone, but to different successions of lithological units along the channels and within the catchments. Variations in channel slope and geomorphological mapping suggest that lithology-dependent landsliding is the dominant process causing the observed large-scale landscape diversity in the Hausruck-Kobernaußerwald range.

  18. Use of a geomorphological transfer function to model design floods in small hillside catchments in semiarid Tunisia

    NASA Astrophysics Data System (ADS)

    Nasri, S.; Cudennec, C.; Albergel, J.; Berndtsson, R.

    2004-02-01

    In the beginning of the 1990s, the Tunisian Ministry of Agriculture launched an ambitious program for constructing small hillside reservoirs in the northern and central region of the country. At present, more than 720 reservoirs have been created. They consist of small compacted earth dams supplied with a horizontal overflow weir. Due to lack of hydrological data and the area's extreme floods, however, it is very difficult to design the overflow weirs. Also, catchments are very sensitive to erosion and the reservoirs are rapidly silted up. Consequently, prediction of flood volumes for important rainfall events becomes crucial. Few hydrological observations, however, exist for the catchment areas. For this purpose a geomorphological model methodology is presented to predict shape and volume of hydrographs for important floods. This model is built around a production function that defines the net storm rainfall (portion of rainfall during a storm which reaches a stream channel as direct runoff) from the total rainfall (observed rainfall in the catchment) and a transfer function based on the most complete possible definition of the surface drainage system. Observed rainfall during 5-min time steps was used in the model. The model runoff generation is based on surface drainage characteristics which can be easily extracted from maps. The model was applied to two representative experimental catchments in central Tunisia. The conceptual rainfall-runoff model based on surface topography and drainage network was seen to reproduce observed runoff satisfactory. The calibrated model was used to estimate runoff from 5, 10, 20, and 50 year rainfall return periods regarding runoff volume, maximum runoff, as well as the general shape of the runoff hydrograph. Practical conclusions to design hill reservoirs and to extrapolate results using this model methodology for ungauged small catchments in semiarid Tunisia are made.

  19. A novel integrated modelling framework to assess the impacts of climate and socio-economic drivers on land use and water quality.

    PubMed

    Zessner, Matthias; Schönhart, Martin; Parajka, Juraj; Trautvetter, Helene; Mitter, Hermine; Kirchner, Mathias; Hepp, Gerold; Blaschke, Alfred Paul; Strenn, Birgit; Schmid, Erwin

    2017-02-01

    Changes in climatic conditions will directly affect the quality and quantity of water resources. Further on, they will affect them indirectly through adaptation in land use which ultimately influences diffuse nutrient emissions to rivers and therefore potentially the compliance with good ecological status according to the EU Water Framework Directive (WFD). We present an integrated impact modelling framework (IIMF) to track and quantify direct and indirect pollution impacts along policy-economy-climate-agriculture-water interfaces. The IIMF is applied to assess impacts of climatic and socio-economic drivers on agricultural land use (crop choices, farming practices and fertilization levels), river flows and the risk for exceedance of environmental quality standards for determination of the ecological water quality status in Austria. This article also presents model interfaces as well as validation procedures and results of single models and the IIMF with respect to observed state variables such as land use, river flow and nutrient river loads. The performance of the IIMF for calculations of river nutrient loads (120 monitoring stations) shows a Nash-Sutcliffe Efficiency of 0.73 for nitrogen and 0.51 for phosphorus. Most problematic is the modelling of phosphorus loads in the alpine catchments dominated by forests and mountainous landscape. About 63% of these catchments show a deviation between modelled and observed loads of 30% and more. In catchments dominated by agricultural production, the performance of the IIMF is much better as only 30% of cropland and 23% of permanent grassland dominated areas have a deviation of >30% between modelled and observed loads. As risk of exceedance of environmental quality standards is mainly recognized in catchments dominated by cropland, the IIMF is well suited for assessing the nutrient component of the WFD ecological status. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  20. Invertebrate Metacommunity Structure and Dynamics in an Andean Glacial Stream Network Facing Climate Change

    PubMed Central

    Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio; Jacobsen, Dean; Dangles, Olivier

    2015-01-01

    Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we expect a reduction in both environmental filtering and dispersal limitation, inducing a taxonomic homogenization of the aquatic fauna in glacierized catchments as well as the extinction of specialized species in headwater groundwater and glacier-fed streams, and consequently an irreversible reduction in regional diversity. PMID:26308853

  1. Within-season variability of fighting behaviour in an Australian alpine grasshopper

    PubMed Central

    Muschett, Giselle; Umbers, Kate D. L.; Herberstein, Marie E.

    2017-01-01

    Throughout the breeding season, changing environmental and biological conditions can lead to variation in the reproductive landscape of many species. In alpine environments temperature is a key driver of behaviour for small ectotherms such as insects, but variable biotic factors such as mate quality and availability can also influence behaviour. Kosicuscola tristis is a small semelparous grasshopper of the Australian alpine region. In a rare behaviour among grasshoppers, K. tristis males engage in vigorous fights over access to females, involving mandible displays, kicking, biting and grappling. In this study we describe the variation in fighting behaviour of K. tristis throughout the breeding season and test several hypotheses related to temperature, body size, mating behaviour, and female quality. We show that K. tristis males are more aggressive toward each other at the end of the breeding season than at the beginning. This increased aggression is associated with decreased daily average temperatures (from ~20°C to ~9°C), decreased mating activity, increased female fecundity, and an unexpected trend toward an increase in female-to-male aggression. These results suggest that K. tristis is likely under increased selective pressure to time key life cycle events with favourable biological and climatic conditions. The stochastic nature of alpine environments combined with a relatively short life span and breeding season, as well as limited mating opportunities toward the end of the season may have contributed to the evolution of this extraordinary mating system. PMID:28403243

  2. [Impacts of Ochotona pallasi disturbance on alpine grassland community characteristics].

    PubMed

    Zhao, Guo-qin; Li, Guang-yong; Ma, Wen-hu; Zhao, Dian-zhi; Li, Xiao-yan

    2013-08-01

    Plateau pika is the main fossorial mammal in the alpine grassland in Qinghai Lake Watershed of Northwest China. Based on the field investigation data from 18 alpine grassland quadrats in the Watershed, and by using redundancy analysis (RDA) and the surface fitting offered by 'R-Vegan' , the disturbance intensity of plateau pika (Ochotona pallasi) was classified as four levels. In order to explore the impacts of plateau pika disturbance on the alpine grassland ecosystem and its grazing quality, the community characteristics under different disturbance intensities by plateau pika were analyzed, and a conceptual model about the alpine grassland community succession was proposed. The results showed that with the increase of the disturbance intensity, the dominant species changed from Juncus roemerianus to Poa pratensis and Laux maritima. When the disturbance was small, the community had high quantitative values of coverage, aboveground biomass, biodiversity, and species richness, but the proportion of weeds was also high. When the disturbance was large, the quantitative values were the lowest, while the proportion of weeds was the highest. When the disturbance was moderate, the community had relatively high quantitative values, and the proportion of grasses and sedges was the highest. It was concluded that the community' s characteristic values under low plateau pika disturbance intensity were high but the grazing quality was low, while high disturbance intensity resulted in the grassland degradation. Therefore, the disturbance intensity in the threshold could maintain the stability of alpine grassland ecosystem and improve its grazing quality.

  3. Model-based coefficient method for calculation of N leaching from agricultural fields applied to small catchments and the effects of leaching reducing measures

    NASA Astrophysics Data System (ADS)

    Kyllmar, K.; Mårtensson, K.; Johnsson, H.

    2005-03-01

    A method to calculate N leaching from arable fields using model-calculated N leaching coefficients (NLCs) was developed. Using the process-based modelling system SOILNDB, leaching of N was simulated for four leaching regions in southern Sweden with 20-year climate series and a large number of randomised crop sequences based on regional agricultural statistics. To obtain N leaching coefficients, mean values of annual N leaching were calculated for each combination of main crop, following crop and fertilisation regime for each leaching region and soil type. The field-NLC method developed could be useful for following up water quality goals in e.g. small monitoring catchments, since it allows normal leaching from actual crop rotations and fertilisation to be determined regardless of the weather. The method was tested using field data from nine small intensively monitored agricultural catchments. The agreement between calculated field N leaching and measured N transport in catchment stream outlets, 19-47 and 8-38 kg ha -1 yr -1, respectively, was satisfactory in most catchments when contributions from land uses other than arable land and uncertainties in groundwater flows were considered. The possibility of calculating effects of crop combinations (crop and following crop) is of considerable value since changes in crop rotation constitute a large potential for reducing N leaching. When the effect of a number of potential measures to reduce N leaching (i.e. applying manure in spring instead of autumn; postponing ploughing-in of ley and green fallow in autumn; undersowing a catch crop in cereals and oilseeds; and increasing the area of catch crops by substituting winter cereals and winter oilseeds with corresponding spring crops) was calculated for the arable fields in the catchments using field-NLCs, N leaching was reduced by between 34 and 54% for the separate catchments when the best possible effect on the entire potential area was assumed.

  4. Use of reservoir deposits to reconstruct the recent changes in sediment yields from a small granite catchment in the Yimeng Mountain region, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yunqi; Long, Yi; Li, Bao; Xu, Shujian; Wang, Xiaoli; Liao, Jia

    2017-09-01

    Information on recent changes in sediment yields from small catchments provides a better understanding of temporal trends in soil loss from certain physical and human-influenced landscapes that have been subjected to recent environmental changes, and will help bridge the current knowledge gap that exists between hillslope erosion and sediment transport in rivers. The Yimeng Mountain region, characterized by alternating granite and limestone, is one of the most susceptible regions to soil erosion in northern China, and has been subjected to intensive anthropogenic activity in recent years. Soil loss from areas underlain by granite is particularly obvious, and is the main sediment source for the Yihe River. In this study, we used reservoir deposits to estimate the changes in sediment yields over the past 50 years from a small catchment underlain by granite, namely the Jiangzhuang catchment in the Yimeng Mountain region. Three cores were collected from the Jiangzhuang Reservoir in the catchment. The activities of 137Cs and 210Pbex at different depths, clay (grain size < 5 μm) contents, and sedimentary organic carbon (SOC) contents in the cores were analysed with reference to human activity and environmental change in the catchment. The chronologies of the cores were established by 137Cs and 210Pbex dating. The area-specific sediment yield (SSY) for different time periods since dam construction was estimated from each core by referring to the original capacity curve of the reservoir. The results indicate that the depth profiles of 137Cs, 210Pbex, clay, and SOC contents in cores from the Jiangzhuang Reservoir reflect the general history of human disturbances on the catchment over the past 50 years. The estimated SSY value from each core for each period ranged from 7.2 ± 2.7 to 23.7 ± 8.3 t ha- 1 y- 1, with a mean of 12.5 ± 4.6 t ha- 1 y- 1. SSY decreased during 1954-1972, and then showed a general tendency to increase. The temporal pattern of the sediment yield largely reflects the history of environmental change influenced by human activity in the catchment.

  5. Research on Multi Hydrological Models Applicability and Modelling Data Uncertainty Analysis for Flash Flood Simulation in Hilly Area

    NASA Astrophysics Data System (ADS)

    Ye, L.; Wu, J.; Wang, L.; Song, T.; Ji, R.

    2017-12-01

    Flooding in small-scale watershed in hilly area is characterized by short time periods and rapid rise and recession due to the complex underlying surfaces, various climate type and strong effect of human activities. It is almost impossible for a single hydrological model to describe the variation of flooding in both time and space accurately for all the catchments in hilly area because the hydrological characteristics can vary significantly among different catchments. In this study, we compare the performance of 5 hydrological models with varying degrees of complexity for simulation of flash flood for 14 small-scale watershed in China in order to find the relationship between the applicability of the hydrological models and the catchments characteristics. Meanwhile, given the fact that the hydrological data is sparse in hilly area, the effect of precipitation data, DEM resolution and their interference on the uncertainty of flood simulation is also illustrated. In general, the results showed that the distributed hydrological model (HEC-HMS in this study) performed better than the lumped hydrological models. Xinajiang and API models had good simulation for the humid catchments when long-term and continuous rainfall data is provided. Dahuofang model can simulate the flood peak well while the runoff generation module is relatively poor. In addition, the effect of diverse modelling data on the simulations is not simply superposed, and there is a complex interaction effect among different modelling data. Overall, both the catchment hydrological characteristics and modelling data situation should be taken into consideration in order to choose the suitable hydrological model for flood simulation for small-scale catchment in hilly area.

  6. Bovine viral diarrhea virus in free-ranging wild ruminants in Switzerland: low prevalence of infection despite regular interactions with domestic livestock

    PubMed Central

    2012-01-01

    Background In the frame of an eradication program for bovine viral diarrhea (BVD) in Swiss livestock, the question was raised whether free-ranging wildlife could threaten the success of this sanitary measure. Therefore, we conducted serological and virological investigations on BVD virus (BVDV) infections in the four indigenous wild ruminant species (roe deer, red deer, Alpine chamois and Alpine ibex) from 2009 to 2011, and gathered information on interactions between wild and domestic ruminants in an alpine environment by questionnaire survey. Results Thirty-two sera out of 1’877 (1.7%, 95% confidence interval [CI] 1.2-2.4) were seropositive for BVDV, and a BVDV1 sub genotype h virus was found in a seropositive chamois (0.05%, 95% CI 0.001-0.3). The seropositive animals originated from sub-alpine or alpine regions and significantly more seropositive red deer, chamois and ibex than roe deer were found. There were no statistically significant differences between sampling units, age classes, genders, and sampling years. The obtained prevalences were significantly lower than those documented in livestock, and most positive wild ruminants were found in proximity of domestic outbreaks. Additionally, BVDV seroprevalence in ibex was significantly lower than previously reported from Switzerland. The survey on interspecific interactions revealed that interactions expected to allow BVDV transmission, from physical contacts to non-simultaneous use of the same areas, regularly occur on pastures among all investigated ruminant species. Interactions involving cervids were more often observed with cattle than with small ruminants, chamois were observed with all three domestic species, and ibex interacted mostly with small ruminants. Interactions related to the use of anthropogenic food sources were frequently observed, especially between red deer and cattle in wintertime. Conclusions To our knowledge, this is the first report of BVDV RNA isolated from an Alpine chamois. Nevertheless, our results suggest that BVDV infections are only sporadic in Swiss wild ruminants, despite regular occurrence of interactions with potentially infected livestock. Overall, serological, virological and ethological data indicate that wildlife is currently an incidental spill-over host and not a reservoir for BVDV in Switzerland. PMID:23107231

  7. Bovine viral diarrhea virus in free-ranging wild ruminants in Switzerland: low prevalence of infection despite regular interactions with domestic livestock.

    PubMed

    Casaubon, Julien; Vogt, Hans-Rudolf; Stalder, Hanspeter; Hug, Corinne; Ryser-Degiorgis, Marie-Pierre

    2012-10-29

    In the frame of an eradication program for bovine viral diarrhea (BVD) in Swiss livestock, the question was raised whether free-ranging wildlife could threaten the success of this sanitary measure. Therefore, we conducted serological and virological investigations on BVD virus (BVDV) infections in the four indigenous wild ruminant species (roe deer, red deer, Alpine chamois and Alpine ibex) from 2009 to 2011, and gathered information on interactions between wild and domestic ruminants in an alpine environment by questionnaire survey. Thirty-two sera out of 1'877 (1.7%, 95% confidence interval [CI] 1.2-2.4) were seropositive for BVDV, and a BVDV1 sub genotype h virus was found in a seropositive chamois (0.05%, 95% CI 0.001-0.3). The seropositive animals originated from sub-alpine or alpine regions and significantly more seropositive red deer, chamois and ibex than roe deer were found. There were no statistically significant differences between sampling units, age classes, genders, and sampling years. The obtained prevalences were significantly lower than those documented in livestock, and most positive wild ruminants were found in proximity of domestic outbreaks. Additionally, BVDV seroprevalence in ibex was significantly lower than previously reported from Switzerland. The survey on interspecific interactions revealed that interactions expected to allow BVDV transmission, from physical contacts to non-simultaneous use of the same areas, regularly occur on pastures among all investigated ruminant species. Interactions involving cervids were more often observed with cattle than with small ruminants, chamois were observed with all three domestic species, and ibex interacted mostly with small ruminants. Interactions related to the use of anthropogenic food sources were frequently observed, especially between red deer and cattle in wintertime. To our knowledge, this is the first report of BVDV RNA isolated from an Alpine chamois. Nevertheless, our results suggest that BVDV infections are only sporadic in Swiss wild ruminants, despite regular occurrence of interactions with potentially infected livestock. Overall, serological, virological and ethological data indicate that wildlife is currently an incidental spill-over host and not a reservoir for BVDV in Switzerland.

  8. Water yield issues in the jarrah forest of south-western Australia

    NASA Astrophysics Data System (ADS)

    Ruprecht, J. K.; Stoneman, G. L.

    1993-10-01

    The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12-15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge this complexity and evaluate forest management strategies both at the large catchment scale and at long time-scales. The extensive network of small catchment experiments, regional studies, process studies and catchment modelling at both the small and large scale, which are carried out in the jarrah forest, are all considered as integral components of the research to develop these management strategies to optimise water yield from the jarrah forest, without forfeiting other forest values.

  9. Monitoring of fluvial transport in small upland catchments - methods and preliminary results

    NASA Astrophysics Data System (ADS)

    Janicki, Grzegorz; Rodzik, Jan; Chabudziński, Łukasz; Franczak, Łukasz; Siłuch, Marcin; Stępniewski, Krzysztof; Dyer, Jamie L.; Kołodziej, Grzegorz; Maciejewska, Ewa

    2014-06-01

    In April 2011 a study was initiated, financed from resources of the Polish National Science Centre, entitled: ‘Rainstorm prediction and mathematic modelling of their environmental and social-economical effects’ (No. NN/306571640). The study, implemented by a Polish-American team, covers meteorological research, including: (1) monitoring of single cell storms developing in various synoptic situations, (2) detection of their movement courses, and (3) estimation of parameters of their rain field. Empirical studies, including hydrological and geomorphological measurements, are conducted in objects researched thoroughly in physiographic terms (experimental catchments) in the Lublin region (SE Poland), distinguished by high frequency of occurrence of the events described. For comparative purposes, studies are also carried out on selected model areas in the lower course of the Mississippi River valley (USA), in a region with high frequency of summer rainstorms. For detailed studies on sediment transport processes during rainstorm events, catchments of low hydrological rank and their sub-catchments in a cascade system were selected. For the basic, relatively uniform geomorpho logical units distinguished this way, erosion and deposition balance of material transported was determined. The aim of work was to determine influence of weather condition on fluvial transport rate in small catchment with low hydrological order

  10. Stormflow generation: a meta-analysis of field studies and research catchments

    NASA Astrophysics Data System (ADS)

    Barthold, Frauke; Elsenbeer, Helmut

    2014-05-01

    Runoff characteristics are expressions of runoff generation mechanisms. In this study, we want to test the hypothesis if storm hydrographs of catchments with prevailing near-surface flow paths are dominated by new water. We aim to test this hypothesis using published data from the scientific literature. We developed a classification system based on three runoff characteristics: (1) hydrograph response (HR: slowly or quickly), (2) the temporal source of water that dominates the hydrograph (TS: pre-event vs. event water) and (3) the flow paths that the water takes until it is released to the stream (FP: subsurface vs. surface flow paths). We then performed a literature survey to collect information on these runoff characteristics for small, forested headwater catchments that served as study areas in runoff generation studies and assigned each study catchment to one of the 8 classes. For this purpose, we designed a procedure to objectively diagnose the predominant conceptual model of storm flow generation in each catchment and assess its temporal and spatial relevance for the catchment. Finally, we performed an explorative analysis of the classified research catchments and summarized field evidence. Our literature survey yielded a sample of 22 research catchments that fell within our defined criteria (small, naturally forested catchments which served as study areas in stormflow generation studies). We applied our classification procedure to all of these catchments. Among them were 14 catchments for which our meta-analysis yielded a complete set of stormflow characteristics resulting in one of the 8 model concepts and were assigned into our classification scheme. Of the 14 classified research catchments, 10 were dominated by subsurface flow paths while 4 were dominated by overland flow. The data also indicate that the spatial and temporal relevance is high for catchments with subsurface flow paths while often weak for surface flow paths dominated catchments. The catalogue of catchments supports our hypothesis; however, it is afflicted with a relative high degree of uncertainty. Two theories exist that may explain the imbalance between surface and subsurface dominated catchments: (1) the selection of research sites for stormflow generation studies was guided by the leading research question in hydrology, i.e. to address the "old water paradox", and (2) catchments with prevailing subsurface flow paths are much more common in nature. In a next step, the proposed catalogue of research catchments allows correlation of environmental characteristics with runoff characteristics to address questions of catchment organization and similarity. However, the successful application and relevance of such an approach depends on the range of conceptual models for which field support exist. Our results prompt us to highlight future research needs: (1) in order to cover a broader range of combinations of runoff characteristics a careful selection of research sites is necessary and (2) propose guidelines for field studies in order achieve higher comparability of resulting conceptual models of research sites and increase the spatial and temporal relevance of the dominant conceptual model.

  11. A Molecular Investigation of Soil Organic Carbon Composition, Variability, and Spatial Distribution Across an Alpine Catchment

    NASA Astrophysics Data System (ADS)

    Hsu, H. T.; Lawrence, C. R.; Winnick, M.; Druhan, J. L.; Williams, K. H.; Maher, K.; Rainaldi, G. R.; McCormick, M. E.

    2016-12-01

    The cycling of carbon through soils is one of the least understood aspects of the global carbon cycle and represents a key uncertainty in the prediction of land-surface response to global warming. Thus, there is an urgent need for advanced characterization of soil organic carbon (SOC) to develop and evaluate a new generation of soil carbon models. We hypothesize that shifts in SOC composition and spatial distribution as a function of soil depth can be used to constrain rates of transformation between the litter layer and the deeper subsoil (extending to a depth of approximately 1 m). To evaluate the composition and distribution of SOC, we collected soil samples from East River, a shale-dominated watershed near Crested Butte, CO, and characterized relative changes in SOC species as a function of depth using elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR) and bulk C X-ray absorption spectroscopy (XAS). Our results show that total organic carbon (TOC) decreases with depth, and high total inorganic carbon (TIC) content was found in deeper soils (after 75 cm), a characteristic of the bedrock (shale). The distribution of aliphatic C relative to the parent material generally decreases with depth and that polysaccharide can be a substantial component of SOC at various depths. On the other hand, the relative distribution of aromatic C, traditionally viewed as recalcitrant, only makes up a very small part of SOC regardless of depth. These observations confirm that molecular structure is not the only determinant of SOC turnover rate. To study other contributors to SOC decomposition, we studied changes in the spatial correlation of SOC and minerals using X-ray fluorescence spectroscopy (XRF) and scanning transmission X-ray microscopy (STXM). We found that aromatics mostly locate on the surface of small soil aggregates (1-10 μm). Polysaccharides and proteins, both viewed as labile traditionally, are more evenly distributed over the interior of the particles, which could limit microbial access and thus decrease decomposition rate. The speciation and spatial distribution results can be compared to field-measured CO2-fluxes, soil moisture, and radiocarbon data to assess the factors that control SOC turnover rates in different environments across the catchment and enhance the development of SOC models.

  12. Spatial contexts for temporal variability in alpine vegetation under ongoing climate change

    USGS Publications Warehouse

    Fagre, Daniel B.; ,; George P. Malanson,

    2013-01-01

    A framework to monitor mountain summit vegetation (The Global Observation Research Initiative in Alpine Environments, GLORIA) was initiated in 1997. GLORIA results should be taken within a regional context of the spatial variability of alpine tundra. Changes observed at GLORIA sites in Glacier National Park, Montana, USA are quantified within the context of the range of variability observed in alpine tundra across much of western North America. Dissimilarity is calculated and used in nonmetric multidimensional scaling for repeated measures of vascular species cover at 14 GLORIA sites with 525 nearby sites and with 436 sites in western North America. The lengths of the trajectories of the GLORIA sites in ordination space are compared to the dimensions of the space created by the larger datasets. The absolute amount of change on the GLORIA summits over 5 years is high, but the degree of change is small relative to the geographical context. The GLORIA sites are on the margin of the ordination volumes with the large datasets. The GLORIA summit vegetation appears to be specialized, arguing for the intrinsic value of early observed change in limited niche space.

  13. Density and Habitat Relationships of the Endemic White Mountain Fritillary (Boloria chariclea montinus) (Lepidoptera: Nymphalidae).

    PubMed

    McFarland, Kent P; Lloyd, John D; Hardy, Spencer P

    2017-06-04

    We conducted point counts in the alpine zone of the Presidential Range of the White Mountains, New Hampshire, USA, to estimate the distribution and density of the rare endemic White Mountain Fritillary ( Boloria chariclea montinus ). Incidence of occurrence and density of the endemic White Mountain Fritillary during surveys in 2012 and 2013 were greatest in the herbaceous-snowbank plant community. Densities at points in the heath-shrub-rush plant community were lower, but because this plant community is more widespread in the alpine zone, it likely supports the bulk of adult fritillaries. White Mountain Fritillary used cushion-tussock, the other alpine plant community suspected of providing habitat, only sparingly. Detectability of White Mountain Fritillaries varied as a consequence of weather conditions during the survey and among observers, suggesting that raw counts yield biased estimates of density and abundance. Point counts, commonly used to study and monitor populations of birds, were an effective means of sampling White Mountain Fritillary in the alpine environment where patches of habitat are small, irregularly shaped, and widely spaced, rendering line-transect methods inefficient and difficult to implement.

  14. Geological controls on isotopic signatures of streamflow: results from a nested catchment experiment in Luxembourg (Europe)

    NASA Astrophysics Data System (ADS)

    Pfister, Laurent; McDonnell, Jeffrey J.; Hissler, Christophe; Martinez-Carreras, Nuria; Gourdol, Laurent; Klaus, Julian; François Iffly, Jean; Barnich, François; Stewart, Mike K.

    2014-05-01

    Controls of geology and topography on hydrological metrics, like summer low flow (Grant and Tague, 2004) or dynamic storage (Sayama et al., 2011), have been identified in nested catchment experiments. However, most tracer-based studies on streamflow generation have been carried out in small (10 km2) homogenous catchments (Klaus and McDonnell, 2013). The controlling effects of catchment physiography on how catchments store and release water, and how this eventually controls stream isotope behaviour over a large range of scale are poorly understood. Here, we present results from a nested catchment analysis in the Alzette River basin (Luxembourg, Europe). Our hydro-climatological network consists of 16 recording streamgauges and 21 pluviographs. Catchment areas range from 0.47 to 285 km2, with clean and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Our objective was to identify geological controls on (i) winter runoff ratios, (ii) maximum storage and (iii) isotopic signatures in streamflow. For each catchment we determined average runoff ratios from winter season precipitation-discharge double-mass curves. Maximum catchment storage was based on the dynamic storage change approach of Sayama et al. (2011). Changes in isotopic signatures of streamflow were documented along individual catchment flow duration curves. We found strong correlations between average winter runoff ratios, maximum storage and the prevailing geological settings. Catchments with impermeable bedrock (e.g. marls or schists) were characterised by small storage potential and high average filling ratios. As a consequence, these catchments also exhibited the highest average runoff ratios. In catchments underlain by permeable bedrock (e.g. sandstone), storage potential was significantly higher and runoff ratios were considerably smaller. The isotopic signatures of streamflow showed large differences between catchments. In catchments dominated by permeable bedrock, isotopic signatures of streamflow remained stable throughout the entire flow duration curve consistent with a large storage and mixing potential. On less permeable bedrock substrate, we have observed that isotopic signatures in streamflow were much more variable, due to reduced storage volume and comparatively smaller mixing potential. Other metrics such as catchment size and flowpath length exerted a smaller secondary control on isotopic signatures of streamflow in the Alzette River sub-basins. Tague, C., Grant, G.E., 2004. A geological framework for interpreting the low-flow regimes of Cascade streams, Willamette River Basin, Oregon. Water Resources Research, 40(4), doi:10.1029/2003WR002629 Sayama, T., McDonnell, J.J., Dhakal, A., Sullivan, K., 2011. How much water can a watershed store ? Hydrological Processes 25, 3899-3908. Klaus, J., McDonnell, J.J., 2013. Hydrograph separation using stable isotopes: Review and evaluation. Journal of Hydrology 505, 47-64.

  15. Spatial and temporal patterns of pesticide losses in a small Swedish agricultural catchment

    NASA Astrophysics Data System (ADS)

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2017-04-01

    Research at catchment and regional scales shows that losses of pesticides to surface water often originate from a relatively small fraction of the agricultural landscape. These 'hydrologic source areas' represent areas of land that are highly susceptible to fast transport processes, primarily surface runoff or rapid subsurface flows through soil macropores, either to subsurface field drainage systems or as shallow interflow on more strongly sloping land. A good understanding of the nature of transport pathways for pesticides to surface water in agricultural landscapes is essential for cost-effective identification and implementation of mitigation measures. However, the relative importance of surface and subsurface flows for transport of pesticides to surface waters in Sweden remains largely unknown, since very few studies have been performed under Swedish agro-environmental conditions. We conducted a monitoring study in a small sub-surface drained agricultural catchment in one of the main crop production regions in Sweden. Three small sub-catchments were selected for water sampling based on a high-resolution soil map developed from proximal sensing data; one sub-catchment was dominated by clay soils, another by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. LC-MS/MS analyses of more than 100 compounds, covering the majority of the polar and semi-polar pesticides most frequently used in Swedish agriculture, were performed on all samples using accredited methods. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide losses between the three sub-catchments, with the largest losses occurring in the area with clay soils, and negligible losses from the sandy sub-catchment. This suggests that transport of pesticides to the stream is almost entirely occurring along fast flow paths such as macropore flow to drains or surface runoff. Only a very small proportion of fields are directly connected to the stream by overland pathways, which suggests that macropore flow to drains was the dominant loss pathway in the studied area. Data on pesticide use patterns revealed that compounds were detected in drainage and stream water samples that had not been applied for several years. This suggests that despite the predominant role of fast flow paths in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil where degradation is slow.

  16. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments - a review

    NASA Astrophysics Data System (ADS)

    Fiener, P.; Auerswald, K.; van Oost, K.

    2009-04-01

    In many landscapes, land use creates a complex pattern in addition to the patterns resulting from soil, topography and rain. Despite the static layout of fields, a spatio-temporally highly variable situation regarding the surface runoff and erosion processes results from the asynchronous seasonal variation associated with different land uses. While the behaviour of individual land-uses and their seasonal variation is analyzed in many studies, the spatio-temporal interaction related to this pattern is rarely studied despite its crucial influence on hydrological and geomorphic response of catchments. The difficulty in studying such interactions mainly results from the fact that it is impossible to set up a replicated experiment on the landscape scale. The purpose of this review is to present the advances made thus far in quantifying the effects of patchiness of land use and management on surface runoff response in agricultural catchments. We will focus on the effects of spatio-temporal patterns in land use patches on hydraulic connectivity between patches and within catchments. This will include the temporal patterns in land management affecting infiltration, surface roughness and hence runoff concentration within single fields or land use patches insofar as these effects must be known to evaluate the combined effect of patch behaviour in space and time on catchment connectivity and surface runoff. Surface runoff effects of patchiness and connectivity between patches or within a catchment, can either be addressed by modelling studies or by comprehensive catchment field measurements, e.g. paired-watershed experiments or landscape scale studies on different scales. This limits our review to studies at the scale of small catchments < 10 km², where the time constant of the network (i.e. travel time through it) is smaller than the infiltration phase. Despite this limitation, these small catchments are important as they constitute 2/3 of the total surface of large water drainage networks.

  17. On the measure of large woody debris in an alpine catchment

    NASA Astrophysics Data System (ADS)

    D'Agostino, V.; Bertoldi, G.; Rigon, E.

    2012-04-01

    The management of large woody debris (LWD) in Alpine torrents is a complex and ambiguous task. On one side the presence of LWD contributes to in-channel and floodplain morphological processes and plays an important role in landscape ecology and biodiversity. On the other side LWD increases considerably flood hazards when some river cross-sections result critical for the human interface (e.g. culverts, bridges, artificial channels). Only few studies provide quantitative data of LWD volumes in Alpine torrents. Research is needed both at basin scale processes (LWD recruiting from hillslopes) and at channel scale processes (feeding from river bank, storage/transport/deposition of LWD along the river bed). Our study proposes an integrate field survey methodology to assess the overall LWD amount which can be entrained by a flood. This knowledge is mandatory for the scientific research, for the implementation of LWD transport models, and for a complete hazard management in mountain basins. The study site is the high-relief basin of the Cordevole torrent (Belluno Province, Central Alps, Italy) whose outlet is located at the Saviner village (basin area of 109 square kilometers). In the November 1966 an extreme flood event occurred and some torrent reaches were heavily congested by LWD enhancing the overall damages due to long-duration overflows. Currently, the LWD recruitment seems to be strictly correlated with bank erosion and hillslope instability and the conditions of forest stand suggest LWD hazard is still high. Previous studies on sub-catchments of the Cordevole torrent have also shown an inverse relation between the drainage area and the LWD storage in the river-bed. Present contribution analyzes and quantifies the presence of LWD in the main valley channel of the Cordevole basin. A new sampling methodology was applied to integrate surveys of riparian vegetation and LWD storage. Data inventory confirms the previous relationship between LWD volumes and drainage area and indicates the floating as primary origin of LWD presence in the river bed. The total amount of LWD at the basin outlet resulted 1300 cubic meters corresponding to about 12 cubic meters per square kilometer of drainage area. Additional data about in-channel dynamics and threshold discharges to move LWD are in progress. These will be obtained through an innovative monitoring approach based on active transponders (RFID, Radio Frequency Identification). 70 transponder have been inserted in selected LWD samples and 70 transponders will be inserted in standardized artificial LWD to carry out experiments during the snowmelt season. A fixed antenna is located at the outlet section on a check-dam together with a video-camera and a hydrometer. The overall arrangement of the LWD monitoring system under test is then presented.

  18. Impact of climate change on low flow characteristics in a small catchment of central Poland

    NASA Astrophysics Data System (ADS)

    Banasik, K.; Kaznowska, E.

    2016-12-01

    The Zagozdzonka catchment (left tributary of Vistula River) is a small lowland agricultural catchment, located in central Poland, about 100 km south of Warsaw. Hydrological investigations of the Zagozdzonka River at Plachty (N51°26'43.8''; E21°27'35.6''), have been carried out by the Department of River Engineering of Warsaw University of Life Science (WULS) since 1962. The catchment area is 82.4 km2 at the Plachty river gauging station. Annual data of temperature, annual and seasonal rainfall and runoff characteristics, as well as annual N-day (1-, 2-, 3-, 7-, 14- and 30-day) low flow from the catchment of the period of 53-year (1963-2015) were analysed. Mann-Kendall test was used for trend analysis. Analysis has revealed a long term decrease in annual discharge and in all of the analysed N-day low flows from the catchment, as well as a corresponding increase in annul temperature (1.61ºC/50 years) for this area of Poland. No trend was detected for annual precipitation nor summer/winter half year precipitation. There was little land use change in the catchment but remarkable increase of crop yields from the arable land in this region of Poland in the last 50 years, due to fertilisation. So the long term decrease of annual discharge and N-day low flows is assumed to be effect of higher evapotranspiration. The decrease of water resources in summer periods may cause problems when more intensive agriculture practice is planned (and water for irrigation is needed).

  19. Sediment Concentration and Its Relation to Catchment Characteristics in Forested Headwater Streams of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, J.; Safeeq, M.; Hunsaker, C. T.

    2017-12-01

    Sediment yields are highly variable and controlled by multiple topographic, geomorphic, and hydrologic factors that make its generalization or prediction challenging. We examined the characteristics of sediment concentration across ten headwater catchments located in the Kings River Experimental Watersheds, Sierra Nevada, California. Study catchments ranged from 50 to 475 ha and spanned from 1,782 to 2,373 m in elevation in the rain-snow transition zone. Mean annual streamflow ranged from 281 to 408 mm in the low elevation Providence and 436 to 656 mm in the high elevation Bull catchments. We measured suspended sediment concentration (SSC) and bedload sediment yield from 2004-2016. We related these outputs to catchment mean elevation, relief, slope, and drainage density as natural controls and runoff ratio, baseflow index, recession constant, and slope of the flow duration curve as hydrologic controls. The SSC were higher in the high elevation Bull catchments (64 ± 34 mg L-1) as compared to low elevation Providence catchments (30 ± 17 mg L-1). Measured SSC in both Bull and Providence declined with increasing catchment mean elevation (R > - 0.5). We found slope of the flow duration curve (R = 0.85) and recession constant (R = -0.91) as the two of best predictors of SSC in Providence. In Bull, drainage area (R = 0.87) and baseflow index (R = -0.78) were the two best predictors of SSC. The intercept and slope of the suspended sediment yield - discharge rating curve (SSY-Q) in Providence was positively related to catchment relief. In contrast, the SSY-Q intercept increased and SSY-Q slope declined with increasing relief in Bull. The mean annual bedload sediment yield varied between 0.4 Mg km-2 and 4.2 Mg km-2 across the ten watersheds, and bedload contributed a relatively small fraction to the total sediment load. Mean bedload sediment yields across the catchments were most associated with catchment slope and relief. These preliminary results provide insight on the dynamics of sediment yield and the natural range of variability in small headwater Sierra Nevada streams. These results can guide selection of appropriate predictor variables for catchment-scale sediment yield models that inform forest management.

  20. Influence of vegetation on water isotope partitioning across different northern headwater catchments

    NASA Astrophysics Data System (ADS)

    Gabor, R. S.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; Mitchell, C. P. J.; McNamara, J. P.; Soulsby, C.

    2014-12-01

    The hydrology of high latitude catchments is sensitive to small changes in temperature, and likely to be impacted by changes in climate. Vegetation water usage can play a large role in catchment hydrologic pathways, affecting how water is stored, released, and partitioned within a landscape. Thus a better understanding of how vegetation impacts water partitioning in northern catchments can help us understand how climate change will impact high-latitude hydrology. As part of the VeWa project, five catchments were chosen between 44oN and 64oN in Europe and North America, to compare the role of vegetation in the movement of water across northern landscapes. These catchments vary in aspect as well as extent of snowpack and their vegetative landscapes include heather moorland, coniferous and deciduous forests, mixed grass, and tundra landscapes. Importantly, all the catchments have records of stable isotopes in different waters of the system. An initial comparison of the water isotopes in these catchments demonstrates variation between the catchments, with the lower latitude sites showing more fractionation suggestive of evapotranspiration. While all catchments show a depletion of heavy isotopes in the spring, the depletion is most evident in catchments with a heavier snowpack. The vegetative growing season during the summer months shows the greatest impact of evapotranspiration on isotopes, indicating that an increased summer in a warmer climate would likely alter water partitioning and storage dynamics in these regions.

  1. Towards Mountains without Permanent Snow and Ice - Impacts and Challenges for Adaptation

    NASA Astrophysics Data System (ADS)

    Vuille, M. F.; Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R. S.; Clague, J. J.; Buytaert, W.; Carey, M.; Rabatel, A.; Cayan, D. R.; Greenwood, G. B.; Milner, A.; Mark, B. G.; Weingartner, R.; Winder, M.

    2017-12-01

    Mountain glaciers throughout the world are retreating; a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. In some places glaciers are projected to completely disappear, while the area of frozen ground will diminish and the ratio of snow to rainfall will decrease. These changes will also affect the surrounding lowlands in a cascade of effects, with ramifications for human livelihoods that include ecosystem services, natural hazards, tourism and recreation, energy production, agriculture, local economies and many other sectors. Glacier shrinkage and changes in snow cover will affect timing and magnitude of both maximum and minimum streamflow. In glacier-dominated catchments a temporary increase in dry season water supply will give way to a long-term reduction in river discharge. Populations living downstream of glacier- and snow-dominated catchments who depend on meltwater for drinking water supplies, sanitation, irrigation, mining, hydropower and recreation will therefore need to adapt to changes in runoff seasonality. Social and political problems surrounding water allocation may be exacerbated in regions where adequate water governance is lacking. These changes in runoff characteristics will also affect erosion rates, sediment, and nutrient flux, temperature and biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat and biotic communities. In some mountain regions slope failures due to thawing alpine permafrost, and outburst floods from glacier- and moraine-dammed lakes will pose an increased threat to downstream populations and will require enhanced monitoring or preventive measures. Comprehensive adaptation strategies, that aim to address all these challenges, will need to focus not only on the scientific aspects, but also consider cultural and societal needs of affected populations as well as the local economic and political agendas. Here we will review the impacts of anticipated climate change on the alpine environment. We will consider the implications for adaptation to a future of mountains without permanent snow and ice, with a special focus on the tropical Andes, where many adaptation projects are faced with significant challenges and constraints.

  2. Synergistic soil moisture observation - an interdisciplinary multi-sensor approach to yield improved estimates across scales

    NASA Astrophysics Data System (ADS)

    Schrön, M.; Fersch, B.; Jagdhuber, T.

    2017-12-01

    The representative determination of soil moisture across different spatial ranges and scales is still an important challenge in hydrology. While in situ measurements are trusted methods at the profile- or point-scale, cosmic-ray neutron sensors (CRNS) are renowned for providing volume averages for several hectares and tens of decimeters depth. On the other hand, airborne remote-sensing enables the coverage of regional scales, however limited to the top few centimeters of the soil.Common to all of these methods is a challenging data processing part, often requiring calibration with independent data. We investigated the performance and potential of three complementary observational methods for the determination of soil moisture below grassland in an alpine front-range river catchment (Rott, 55 km2) of southern Germany.We employ the TERENO preAlpine soil moisture monitoring network, along with additional soil samples taken throughout the catchment. Spatial soil moisture products have been generated using surveys of a car-mounted mobile CRNS (rover), and an aerial acquisition of the polarimetric synthetic aperture radar (F-SAR) of DLR.The study assesses (1) the viability of the different methods to estimate soil moisture for their respective scales and extents, and (2) how either method could support an improvement of the others. We found that in situ data can provide valuable information to calibrate the CRNS rover and to train the vegetation removal part of the polarimetric SAR (PolSAR) retrieval algorithm. Vegetation correction is mandatory to obtain the sub-canopy soil moisture patterns. While CRNS rover surveys can be used to evaluate the F-SAR product across scales, vegetation-related PolSAR products in turn can support the spatial correction of CRNS products for biomass water. Despite the different physical principles, the synthesis of the methods can provide reasonable soil moisture information by integrating from the plot to the landscape scale. The combination of in situ, CRNS, and remote-sensing data leads to substantial improvement, especially for the latter two. The study shows how interdisciplinary research can greatly advance the methodology and processing algorithms for individual geoscientific instruments and their hydrologically relevant products.

  3. SIMULATED IMPACTS OF SMALL-SCALE SPATIAL DISTRIBUTION OF IMPERVIOUS AREA ON RUNOFF RESPONSE OF FIELD-SCALE CATCHMENTS

    EPA Science Inventory

    Impervious surface is known to negatively affect catchment hydrology through both its extent and spatial distribution. In this study, we empirically quantify via model simulations the impacts of different configurations of impervious surface on watershed response to rainfall. An ...

  4. The Comparative Accuracy of Two Hydrologic Models in Simulating Warm-Season Runoff for Two Small, Hillslope Catchments

    EPA Science Inventory

    Runoff prediction is a cornerstone of water resources planning, and therefore modeling performance is a key issue. This paper investigates the comparative advantages of conceptual versus process- based models in predicting warm season runoff for upland, low-yield micro-catchments...

  5. Elevational variation in body-temperature response to immune challenge in a lizard

    PubMed Central

    Reguera, Senda; Moreno-Rueda, Gregorio

    2016-01-01

    Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2) fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain), by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment. PMID:27168981

  6. Elevational variation in body-temperature response to immune challenge in a lizard.

    PubMed

    Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio

    2016-01-01

    Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2) fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain), by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment.

  7. Relationships between stream nitrate concentration and spatially distributed snowmelt in high-elevation catchments of the western U.S.

    NASA Astrophysics Data System (ADS)

    Perrot, Danielle; Molotch, Noah P.; Williams, Mark W.; Jepsen, Steven M.; Sickman, James O.

    2014-11-01

    This study compares stream nitrate (NO3-) concentrations to spatially distributed snowmelt in two alpine catchments, the Green Lakes Valley, Colorado (GLV4) and Tokopah Basin, California (TOK). A snow water equivalent reconstruction model and Landsat 5 and 7 snow cover data were used to estimate daily snowmelt at 30 m spatial resolution in order to derive indices of new snowmelt areas (NSAs). Estimates of NSA were then used to explain the NO3- flushing behavior for each basin over a 12 year period (1996-2007). To identify the optimal method for defining NSAs and elucidate mechanisms underlying catchment NO3- flushing, we conducted a series of regression analyses using multiple thresholds of snowmelt based on temporal and volumetric metrics. NSA indices defined by volume of snowmelt (e.g., snowmelt ≤ 30 cm) rather than snowmelt duration (e.g., snowmelt ≤ 9 days) were the best predictors of stream NO3- concentrations. The NSA indices were better correlated with stream NO3- concentration in TOK (average R2= 0.68) versus GLV4 (average R2= 0.44). Positive relationships between NSA and stream NO3- concentration were observed in TOK with peak stream NO3- concentration occurring on the rising limb of snowmelt. Positive and negative relationships between NSA and stream NO3- concentration were found in GLV4 with peak stream NO3- concentration occurring as NSA expands. Consistent with previous works, the contrasting NO3- flushing behavior suggests that streamflow in TOK was primarily influenced by overland flow and shallow subsurface flow, whereas GLV4 appeared to be more strongly influenced by deeper subsurface flow paths.

  8. Snowmelt controls on concentration-discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado: ACID-BASE VERSUS OXIDATIVE WEATHERING FLUXES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnick, Matthew J.; Carroll, Rosemary W. H.; Williams, Kenneth H.

    Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high-elevation shale-dominated catchment in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flowpaths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyritemore » oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during baseflow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO 2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. In conclusion, future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.« less

  9. Mechanisms for chemostatic behavior in catchments: implications for CO2 consumption by mineral weathering

    USGS Publications Warehouse

    Clow, David W.; Mast, M. Alisa

    2010-01-01

    Concentrations of weathering products in streams often show relatively little variation compared to changes in discharge, both at event and annual scales. In this study, several hypothesized mechanisms for this “chemostatic behavior” were evaluated, and the potential for those mechanisms to influence relations between climate, weathering fluxes, and CO2 consumption via mineral weathering was assessed. Data from Loch Vale, an alpine catchment in the Colorado Rocky Mountains, indicates that cation exchange and seasonal precipitation and dissolution of amorphous or poorly crystalline aluminosilicates are important processes that help regulate solute concentrations in the stream; however, those processes have no direct effect on CO2 consumption in catchments. Hydrograph separation analyses indicate that old water stored in the subsurface over the winter accounts for about one-quarter of annual streamflow, and almost one-half of annual fluxes of Na and SiO2 in the stream; thus, flushing of old water by new water (snowmelt) is an important component of chemostatic behavior. Hydrologic flushing of subsurface materials further induces chemostatic behavior by reducing mineral saturation indices and increasing reactive mineral surface area, which stimulate mineral weathering rates. CO2 consumption by carbonic acid mediated mineral weathering was quantified using mass-balance calculations; results indicated that silicate mineral weathering was responsible for approximately two-thirds of annual CO2 consumption, and carbonate weathering was responsible for the remaining one-third. CO2 consumption was strongly dependent on annual precipitation and temperature; these relations were captured in a simple statistical model that accounted for 71% of the annual variation in CO2 consumption via mineral weathering in Loch Vale.

  10. Direct and indirect climatic drivers of biotic interactions: ice-cover and carbon runoff shaping Arctic char Salvelinus alpinus and brown trout Salmo trutta competitive asymmetries.

    PubMed

    Ulvan, Eva M; Finstad, Anders G; Ugedal, Ola; Berg, Ole Kristian

    2012-01-01

    One of the major challenges in ecological climate change impact science is to untangle the climatic effects on biological interactions and indirect cascading effects through different ecosystems. Here, we test for direct and indirect climatic drivers on competitive impact of Arctic char (Salvelinus alpinus L.) on brown trout (Salmo trutta L.) along a climate gradient in central Scandinavia, spanning from coastal to high-alpine environments. As a measure of competitive impact, trout food consumption was measured using (137)Cs tracer methodology both during the ice-covered and ice-free periods, and contrasted between lakes with or without char coexistence along the climate gradient. Variation in food consumption between lakes was best described by a linear mixed effect model including a three-way interaction between the presence/absence of Arctic char, season and Secchi depth. The latter is proxy for terrestrial dissolved organic carbon run-off, strongly governed by climatic properties of the catchment. The presence of Arctic char had a negative impact on trout food consumption. However, this effect was stronger during ice-cover and in lakes receiving high carbon load from the catchment, whereas no effect of water temperature was evident. In conclusion, the length of the ice-covered period and the export of allochthonous material from the catchment are likely major, but contrasting, climatic drivers of the competitive interaction between two freshwater lake top predators. While future climatic scenarios predict shorter ice-cover duration, they also predict increased carbon run-off. The present study therefore emphasizes the complexity of cascading ecosystem effects in future effects of climate change on freshwater ecosystems.

  11. Snowmelt controls on concentration-discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado: ACID-BASE VERSUS OXIDATIVE WEATHERING FLUXES

    DOE PAGES

    Winnick, Matthew J.; Carroll, Rosemary W. H.; Williams, Kenneth H.; ...

    2017-03-01

    Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high-elevation shale-dominated catchment in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flowpaths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyritemore » oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during baseflow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO 2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. In conclusion, future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.« less

  12. Storylines of combined land use and climatic drivers and their hydrological impacts in an alpine catchment (Brixental/Austria)

    NASA Astrophysics Data System (ADS)

    Strasser, Ulrich; Förster, Kristian; Meissl, Gertraud; Marke, Thomas; Schermer, Markus; Stotten, Rike; Formayer, Herbert; Themessl, Matthias

    2017-04-01

    We present a numerical modelling experiment with storylines of coupled land use and climate evolution as input in the physically-based, distributed water balance model WaSiM. The aim is to quantify the effects of these two framing components on the future water cycle. The test site for the simulations is the catchment of the Brixentaler Ache in Tyrol/Austria (47.5°N, 322 km2). The climatic background is defined by simulations for the A1B and RCP 8.5 emission scenarios until 2050. These two climate projections were combined with three future land use developments for forest management, developed in an inter- and transdisciplinary assessment with local actors using plausible and consisent projections for forest management, policy, social cooperation, tourism and economy: (i) Ecological adaptation: The forest management consequently applies the political guidelines, and the forest cover is dominated by an ecological, place-adapted mixed cultivation with a harmonious age structure. (ii) Economical overexploitation and wildness: The increase in efficiency, cost reduction and short term results are in focus of the forest management. (iii) Withdrawal and wildness: Cultivation in general is decreasing, and the forest becomes vulnerable against natural hazards. A new module for snow-canopy interaction simulation, providing explicit rates of intercepted and sublimated snow from the trees and stems of the different forest stands, has been implemented in WaSiM. The new version of the model is used to model the coupled future climate/land use storylines for the Brixental. Results show the effects of climate change and land use on the water balance and streamflow in the catchment.

  13. Geochemistry and source waters of rock glacier outflow, Colorado Front Range

    USGS Publications Warehouse

    Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L.

    2006-01-01

    We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine ecosystem at this time of year there does not appear to be large differences in water quality among rock glacier outflow, glacier and blockslope discharge, and discharge from small alpine catchments. However, in September concentrations of Mg2+ in the outflow of the rock glacier increased to more than 900 ??eq L-1 compared to values of less than 40 ??eq L-1 at all the other sites, concentrations of Ca2+ were greater than 4,000 ??eq L-1 compared to maximum values of less than 200 ??eq L-1 at all other sites, and concentrations of SO42- reached 7,000 ??eq L-1, compared to maximum concentrations below 120 ??eq L-1 at the other sites. Inverse geochemical modelling suggests that dissolution of pyrite, epidote, chlorite and minor calcite as well as the precipitation of silica and goethite best explain these elevated concentrations of solutes in the outflow of the rock glacier. Three component hydrograph separation using end-member mixing analysis shows that melted snow comprised an average of 30% of RG5 outflow, soil water 32%, and base flow 38%. Snow was the dominant source water in June, soil water was the dominant water source in July, and base flow was the dominant source in September. Enrichment of ?? 18O from - 10??? in the outflow of the rock glacier compared to -20??? in snow and enrichment of deuterium excess from +17.5??? in rock glacier outflow compared to +11??? in snow, suggests that melt of internal ice that had undergone multiple melt/freeze episodes was the dominant source of base flow. Copyright ?? 2005 John Wiley & Sons, Ltd.

  14. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow

    USGS Publications Warehouse

    Brown, V.A.; McDonnell, Jeffery J.; Burns, Douglas A.; Kendall, C.

    1999-01-01

    Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from two-tracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size.Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from two-tracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size.

  15. Assessing Receiving Water Quality Impacts due to Flow Path Alteration in Residential Catchments, using the Stormwater and Wastewater Management Model

    NASA Astrophysics Data System (ADS)

    Wolosoff, S. E.; Duncan, J.; Endreny, T.

    2001-05-01

    The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.

  16. Influence of hydroclimatic variations on solute concentration dynamics in nested subtropical catchments with heterogeneous landscapes.

    PubMed

    Piazza, Gustavo Antonio; Dupas, Rémi; Gascuel-Odoux, Chantal; Grimaldi, Catherine; Pinheiro, Adilson; Kaufmann, Vander

    2018-04-20

    Despite global efforts to monitor water quality in catchments worldwide, tropical and subtropical zones still lack data to study the influence of human activities and climate variations on solute dynamics. In this study, we monitored ten solutes every two weeks for six years (2010-2015) in three nested catchments (2 to30 km 2 ), which contained heterogeneous landscapes composed of forests and agricultural land, and one small neighboring forested catchment (0.4 km 2 ). Data analysis revealed that i) rainfall, discharge and solute concentrations displayed no clear seasonal patterns, unlike many catchments of the temperate zone; ii) solute concentrations in the agricultural area were higher than those in the forested area, but both areas displayed similar temporal patterns due to a common hydroclimatic driver; iii) all four catchments displayed a chemostatic export regime for most of the solutes, similar to catchments of the temperate zone; and iv) a positive correlation was observed between anion concentrations and ENSO (El Niño-Southern Oscillation) index. ENSO appeared to influence both hydroclimatic and anion dynamics in these subtropical catchments. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effects of model structure and catchment discretization on discharge simulation in a small forest catchment

    NASA Astrophysics Data System (ADS)

    Spieler, Diana; Schwarze, Robert; Schütze, Niels

    2017-04-01

    In the past a variety of different modeling approaches has been developed in catchment hydrology. Even though there is no argument on the relevant processes taking place, there is no unified theory on how best to represent them computationally. Thus a vast number of models has been developed, varying from lumped models to physically based models. Most of them have a more or less fixed model structure and follow the "one fits all" paradigm. However, a more flexible approach could improve model realism by designing catchment specific model structures based on data availability. This study focuses on applying the flexible hydrological modelling framework RAVEN (Craig et al., 2013), to systematically test several conceptual model structures on the 19 km2 Große Ohe Catchment in the Bavarian Forest (Germany). By combining RAVEN with the DREAM algorithm (Vrugt et al., 2009), the relationship between catchment characteristics, model structure, parameter uncertainty and data availability are analyzed. The model structure is progressively developed based on the available data of the well observed forested catchment area. In a second step, the impact of the catchment discretization is analyzed by testing different spatial resolutions of topographic input data.

  18. Examining the effects of forest thinning on runoff responses at different catchments scales in forested headwaters

    NASA Astrophysics Data System (ADS)

    Dung, B. X.; Gomi, T.; Onda, Y.; Kato, H.; Hiraoka, M.

    2012-12-01

    We conducted field observation in nested headwater catchments draining Japanese cypress (Chamaecyparis obtusa) and cedar (Cryptomeria japonica) forests at Tochigi prefectures for examining the effects of forest thinning on runoff generation at different catchment scales. 50% of the stems was removed with line thinning in catchment K2 (treatment catchment), while catchment K3 remained untreated as a control. We also monitored nested catchments within K2-1 (17.1 ha) as K2-2 (10.2 ha), K2-3 (3.7 ha) and K2-4 (5.1 ha), and within K3-1 (8.9 ha) as K3-2 (3.0 ha). Runoff from the catchments was monitored during the pre-thinning (from April, 2010 to May 2011), and the post-thinning periods (from June 2011 to July 2012). Paired-catchment and hydrograph separation analysis were used to evaluate the effects of forest thinning on runoff generation at different catchment scales. We developed the pre-thinning calibration equation for predicting post-thinning responses. Paired-catchment analysis revealed that annual catchment runoff increased 648 mm in K2-1, 414 mm in K2-2, 517 mm in K2-3 and 487 mm in K2-4 after the thinning. Both quick and delayed runoff components only increased significantly in the larger catchments of K2-1 and K2-2, while only delayed runoff components of smaller catchments (K2-3 and K2-4) increased significantly during the post-thinning period. Increases of quick runoff in large catchments could be associated with quick runoff response to soil surface compaction by line thinning and skid trail installation. Increases of delayed runoff in small catchment may be associated with increase in net precipitation and decrease in evapotranspiration. Our finding showed that changes in internal hydrological flow pathways and associated changes in runoff components due to forest harvesting differ depending on the catchment sizes.

  19. Process-based interpretation of conceptual hydrological model performance using a multinational catchment set

    NASA Astrophysics Data System (ADS)

    Poncelet, Carine; Merz, Ralf; Merz, Bruno; Parajka, Juraj; Oudin, Ludovic; Andréassian, Vazken; Perrin, Charles

    2017-08-01

    Most of previous assessments of hydrologic model performance are fragmented, based on small number of catchments, different methods or time periods and do not link the results to landscape or climate characteristics. This study uses large-sample hydrology to identify major catchment controls on daily runoff simulations. It is based on a conceptual lumped hydrological model (GR6J), a collection of 29 catchment characteristics, a multinational set of 1103 catchments located in Austria, France, and Germany and four runoff model efficiency criteria. Two analyses are conducted to assess how features and criteria are linked: (i) a one-dimensional analysis based on the Kruskal-Wallis test and (ii) a multidimensional analysis based on regression trees and investigating the interplay between features. The catchment features most affecting model performance are the flashiness of precipitation and streamflow (computed as the ratio of absolute day-to-day fluctuations by the total amount in a year), the seasonality of evaporation, the catchment area, and the catchment aridity. Nonflashy, nonseasonal, large, and nonarid catchments show the best performance for all the tested criteria. We argue that this higher performance is due to fewer nonlinear responses (higher correlation between precipitation and streamflow) and lower input and output variability for such catchments. Finally, we show that, compared to national sets, multinational sets increase results transferability because they explore a wider range of hydroclimatic conditions.

  20. The spatial structure and temporal synchrony of water quality in stream networks

    NASA Astrophysics Data System (ADS)

    Abbott, Benjamin; Gruau, Gerard; Zarneske, Jay; Barbe, Lou; Gu, Sen; Kolbe, Tamara; Thomas, Zahra; Jaffrezic, Anne; Moatar, Florentina; Pinay, Gilles

    2017-04-01

    To feed nine billion people in 2050 while maintaining viable aquatic ecosystems will require an understanding of nutrient pollution dynamics throughout stream networks. Most regulatory frameworks such as the European Water Framework Directive and U.S. Clean Water Act, focus on nutrient concentrations in medium to large rivers. This strategy is appealing because large rivers integrate many small catchments and total nutrient loads drive eutrophication in estuarine and oceanic ecosystems. However, there is growing evidence that to understand and reduce downstream nutrient fluxes we need to look upstream. While headwater streams receive the bulk of nutrients in river networks, the relationship between land cover and nutrient flux often breaks down for small catchments, representing an important ecological unknown since 90% of global stream length occurs in catchments smaller than 15 km2. Though continuous monitoring of thousands of small streams is not feasible, what if we could learn what we needed about where and when to implement monitoring and conservation efforts with periodic sampling of headwater catchments? To address this question we performed repeat synoptic sampling of 56 nested catchments ranging in size from 1 to 370 km2 in western France. Spatial variability in carbon and nutrient concentrations decreased non-linearly as catchment size increased, with thresholds in variance for organic carbon and nutrients occurring between 36 and 68 km2. While it is widely held that temporal variance is higher in smaller streams, we observed consistent temporal variance across spatial scales and the ranking of catchments based on water quality showed strong synchrony in the water chemistry response to seasonal variation and hydrological events. We used these observations to develop two simple management frameworks. The subcatchment leverage concept proposes that mitigation and restoration efforts are more likely to succeed when implemented at spatial scales expressing high variability in the target parameter, which indicates decreased system inertia and demonstrates that alternative system responses are possible. The subcatchment synchrony concept suggests that periodic sampling of headwaters can provide valuable information about pollutant sources and inherent resilience in subcatchments and that if agricultural activity were redistributed based on this assessment of catchment vulnerability to nutrient loading, water quality could be improved while maintaining crop yields.

  1. Assessing water resources under climate change in high-altitude catchments: a methodology and an application in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Aili, T.; Soncini, A.; Bianchi, A.; Diolaiuti, G.; D'Agata, C.; Bocchiola, D.

    2018-01-01

    Assessment of the future water resources in the Italian Alps under climate change is required, but the hydrological cycle of the high-altitude catchments therein is poorly studied and little understood. Hydrological monitoring and modeling in the Alps is difficult, given the lack of first hand, site specific data. Here, we present a method to model the hydrological cycle of poorly monitored high-altitude catchments in the Alps, and to project forward water resources availability under climate change. Our method builds on extensive experience recently and includes (i) gathering data of climate, of cryospheric variables, and of hydrological fluxes sparsely available; (ii) robust physically based glacio-hydrological modeling; and (iii) using glacio-hydrological projections from GCM models. We apply the method in the Mallero River, in the central (Retiche) Alps of Italy. The Mallero river covers 321 km2, with altitude between 310 and 4015 m a.s.l., and it has 27 km2 of ice cover. The glaciers included in the catchment underwent large mass loss recently, thus Mallero is largely paradigmatic of the present situation of Alpine rivers. We set up a spatially explicit glacio-hydrological model, describing the cryospheric evolution and the hydrology of the area during a control run CR, from 1981 to 2007. We then gather climate projections until 2100 from three Global Climate Models of the IPCC AR5 under RCP2.6, RCP4.5, and RCP8.5. We project forward flow statistics, flow components (rainfall, snow melt, ice melt), ice cover, and volume for two reference decades, namely 2045-2054 and 2090-2099. We foresee reduction of the ice bodies from - 62 to - 98% in volume (year 2100 vs year 1981), and subsequent large reduction of ice melt contribution to stream flows (from - 61 to - 88%, 2100 vs CR). Snow melt, now covering 47% of the stream flows yearly, would also be largely reduced (from - 19 to - 56%, 2100 vs CR). The stream flows will decrease on average at 2100 (from + 1 to - 25%, with - 7%), with potential for increased flows during fall, and winter, and large decrease in summer. Our results provide a tool for consistent modeling of the cryospheric, and hydrologic behavior, and can be used for further investigation of the high-altitude catchments in the Alps.

  2. Preferential flow paths in paraglacial catchments: first order controls on the long-term stability of 'biodiversity hotspots' in a changing climate

    NASA Astrophysics Data System (ADS)

    Grocott, Michael; Kettridge, Nick; Bradley, Chris; Milner, Alexander

    2016-04-01

    Groundwater (GW) -fed streams within paraglacial floodplains are considered 'biodiversity hotspots', given their importance as an aquatic ecosystem and role in supporting valuable riverine habitat patches within paraglacial environments. However, it is anticipated that throughout the 21st Century hydrologic regimes of paraglacial systems in arctic, sub-arctic, and alpine regions globally will experience substantial changes, as a consequence of anthropogenic climate change. Declining glacial coverage, shrinking winter snowpack, earlier spring melt, rising permafrost melt and increasing relative importance of groundwater will all cause major changes in the water balance of paraglacial catchments. This research explored the importance of preferential flow pathways (PFPs) as conduits of subsurface flow across paraglacial floodplains, and their role in sustaining 'biodiversity hotspots'. Furthermore, it considered the role of PFPs in hillslope-floodplain connectivity within paraglacial systems and the significance of colluvial deposits as a key water source to GW-fed streams on paraglacial floodplains. An intra-catchment scale field study within ungauged catchments was conducted in Denali National Park & Preserve, Alaska, during 2013 and 2014. The research utilised hydrogeomorphic and hydrochemical field techniques to address the aims outlined above. Surface infiltration and slug tests identified significant spatial heterogeneity in hydraulic conductivity (K) across the surface and subsurface of paraglacial floodplains, indicating the presence of PFPs. Furthermore, spatiotemporal variation in geochemical tracers (major ions) within surface and subsurface flow paths established the role of multiple, discrete flow paths (PFPs) in sustaining GW-fed streamflow on floodplains. Finally, hydrograph separations confirmed the significant contribution made by colluvial deposits (e.g. talus slopes) to sustaining GW-fed streamflow on paraglacial research. This research suggests PFPs are a fundamental first order control upon the occurrence of 'biodiversity hotspots' within paraglacial floodplains, and highlights their role as an important conduit for hillslope-floodplain connectivity. Given the expected changes in the hydrological dynamics of paraglacial catchments this research raises questions about the long-term stability of GW-fed streams, and whether the increasing relative importance of groundwater sources (e.g. from colluvium) can sustain flow of GW-fed streams. In addition glacial retreat and associated long-term declines in sediment yields could have negative implications for the development and renewal of PFPs across paraglacial floodplains, which would be detrimental to the persistence of 'biodiversity hotspots'.

  3. Water balance and soil losses in an irrigated catchment under conservation tillage in Southern Spain

    NASA Astrophysics Data System (ADS)

    Cid, Patricio; Mateos, Luciano; Taguas, Encarnación V.; Gómez-Macpherson, Helena

    2013-04-01

    Conservation tillage based on permanent beds with crop-residue retention and controlled traffic has been recently introduced in irrigated annual crops in Southern Spain as one way to improve water infiltration, reduce soil losses, and save energy. The water balance and soil losses in water runoff have been monitored during 4 years in a 28-ha catchment within a production farm where this kind of soil conservation practice was established in 2004 for a maize-cotton-wheat rotation. The catchment average slope is 6 %. Soils are Typic Calcixerept and Typic Haploxerert. The water balance components that were measured include: applied irrigation water, rainfall, and runoff. Runoff was measured at the outlet of the catchment by means of a hydrological station that consisted of long-throated flume, ultrasonic water level sensor, automatic water sampler, data logger and transmission system, weather station, and ancillary equipment. We present here results from three hydrological seasons (October to September): 2009-10, 2010-11, and 2011-12. The first season the catchment was grown with wheat, thus the irrigation depth was small (25 mm); rainfall above average, 1103 mm; and the runoff coefficient was 26 %. In the season 2010-11, the catchment was grown with cotton, the irrigation depth was 503 mm, rainfall was 999 mm, and the seasonal runoff coefficient was 7 %. The last season, the crop was maize, rainfall was below average (368 mm), irrigation 590 mm, and the runoff coefficient as the previous year, 7 %. Soil losses were very small: 0.05, 1.26, and 1.33 t per ha and year, the first, second, and third monitored seasons, respectively. A simple water balance model allowed simulating evapotranspiration, deep percolation and runoff. The Curve Number for the catchment was calibrated using the balance model.

  4. Clonal plasticity and diversity facilitates the adaptation of Rhododendron aureum Georgi to alpine environment

    PubMed Central

    Wang, Xiaolong; Zhao, Wei; Li, Lin; You, Jian; Ni, Biao

    2018-01-01

    Four small oval populations and five large intensive populations of Rhododendron aureum growing at the alpine in Changbai Mountain (China) were studied in two types of habitat (in the tundra and in Betula ermanii forest). Identification and delimitation of genets were inferred from excavation in small populations and from amplified fragment length polymorphism (AFLP) markers by the standardized sampling design in large populations. Clonal architecture and clonal diversity were then estimated. For the four small populations, they were monoclonal, the spacer length (18.6 ± 5.6 in tundra, 29.7 ± 9.7 in Betula ermanii forest, P < 0.05) was shorter and branching intensity (136.7 ± 32.9 in tundra, 43.4 ± 12.3 in Betula ermanii forest, P < 0.05) was higher in the tundra than that in Betula ermanii forest. For the five large populations, they were composed of multiple genets with high level of clonal diversity (Simpson’s index D = 0.84, clonal richness R = 0.25, Fager's evenness E = 0.85); the spatial distribution of genets showed that the clonal growth strategy of R. aureum exhibits both guerilla and phalanx. Our results indicate that the clonal plasticity of R. aureum could enhance exploitation of resource heterogeneity and in turn greatly contribute to maintenance or improvement of fitness and the high clonal diversity of R. aureum increase the evolutionary rates to adapt the harsh alpine environment in Changbai Mountain. PMID:29746526

  5. [Comparison of nitrogen loss via surface runoff from two agricultural catchments in semi-arid North China].

    PubMed

    Lu, Hai-Ming; Yin, Cheng-Qing; Wang, Xia-Hui; Zou, Ying

    2008-10-01

    Nitrogen loss characteristics via surface runoff from two typical agricultural catchments into Yuqiao Reservoir--the important drinking water source area for Tianjin city in semi-arid North China were investigated through two-year in-situ monitoring and indoor chemical analysis. The results showed that annual nitrogen export mainly concentrated in the rainy period between June to September. About 41% of the annual water output and 52% of the annual total nitrogen output took place in two rainfall events with rainfall> 60 mm in Taohuasi catchment (T catchment), while the distribution of water and nitrogen export among various rainfalls in Caogezhuang catchment (C catchment) was smooth. The rainfall thresholds for the appearance of water and nitrogen export from the outlet of T catchment and C catchment were 20 mm and 10 mm. The mean annual runoff coefficients of C and T catchments were 0.013 2 and 0.001 6, respectively. The mean annual total nitrogen exports from C catchment and T catchment were 1.048 kg x (hm2 x a)(-1) and 0.158 kg x (hm2 x a)(-1) respectively. The difference of micro-topography, landscape pattern and hydrological pathway between two catchments could explain the nitrogen export gap. Micro-topographical features created by long-term anthropological disturbance decrease the runoff generation ability. The distance between nitrogen source area and the outlet in T catchment was around 1 500 m, while such distance in C catchment was just around 200 m. The short distance added the nitrogen export risk via surface runoff. Road-type hydrological pathway in C catchment could transfer nitrogen into the receiving water via surface runoff directly, while nitrogen could be detained within the pathway by many sink structures such as small stones, vegetated buffer strip and dry ponds in T catchment.

  6. Rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity.

    PubMed

    Terêncio, D P S; Sanches Fernandes, L F; Cortes, R M V; Moura, J P; Pacheco, F A L

    2018-02-01

    Rainwater harvesting (RWH) is used to support small-scale agriculture and handle seasonal water availability, especially in regions where populations are scattered or the costs to develop surface or groundwater resources are high. However, questions may arise as whether this technique can support larger-scale irrigation projects and in complement help the struggle against wildfires in agro-forested watersheds. The issue is relevant because harvested rainwater in catchments is usually accumulated in small-capacity reservoirs created by small-height dams. In this study, a RWH site allocation method was improved from a previous model, by introducing the dam wall height as evaluation parameter. The studied watershed (Sabor River basin) is mostly located in the Northeast of Portugal. This is a rural watershed where agriculture and forestry uses are dominant and where ecologically relevant regions (e.g., Montezinho natural park) need to be protected from wildfires. The study aimed at ranking 384 rainfall collection sub-catchments as regards installation of RWH sites for crop irrigation and forest fire combat. The height parameter was set to 3m because this value is a reference to detention basins that hold sustainability values (e.g., landscape integration, environmental protection), but the irrigation capacity under these settings was smaller than 10ha in 50% of cases, while continuous arable lands in the Sabor basin cover on average 222ha. Besides, the number of sub-catchments capable to irrigate the average arable land was solely 7. When the dam wall height increased to 6 and 12m, the irrigation capacity increased to 46 and 124 sub-catchments, respectively, meaning that more engineered dams may not always ensure all sustainability values but warrant much better storage. The limiting parameter was the dam wall height because 217 sub-catchments were found to drain enough water for irrigation and capable to store it if proper dam wall heights were used. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Modelling Pesticide Leaching At Column, Field and Catchment Scales I. Analysis of Soil Variability At Field and Catchment Scales

    NASA Astrophysics Data System (ADS)

    Gärdenäs, A.; Jarvis, N.; Alavi, G.

    The spatial variability of soil characteristics was studied in a small agricultural catch- ment (Vemmenhög, 9 km2) at the field and catchment scales. This analysis serves as a basis for assumptions concerning upscaling approaches used to model pesticide leaching from the catchment with the MACRO model (Jarvis et al., this meeting). The work focused on the spatial variability of two key soil properties for pesticide fate in soil, organic carbon and clay content. The Vemmenhög catchment (9 km2) is formed in a glacial till deposit in southernmost Sweden. The landscape is undulating (30 - 65 m a.s.l.) and 95 % of the area is used for crop production (winter rape, winter wheat, sugar beet and spring barley). The climate is warm temperate. Soil samples for or- ganic C and texture were taken on a small regular grid at Näsby Farm, (144 m x 144 m, sampling distance: 6-24 m, 77 points) and on an irregular large grid covering the whole catchment (sampling distance: 333 m, 46 points). At the field scale, it could be shown that the organic C content was strongly related to landscape position and height (R2= 73 %, p < 0.001, n=50). The organic C content of hollows in the landscape is so high that they contribute little to the total loss of pesticides (Jarvis et al., this meeting). Clay content is also related to landscape position, being larger at the hilltop locations resulting in lower near-saturated hydraulic conductivity. Hence, macropore flow can be expected to be more pronounced (see also Roulier & Jarvis, this meeting). The variability in organic C was similar for the field and catchment grids, which made it possible to krige the organic C content of the whole catchment using data from both grids and an uneven lag distance.

  8. Exploring the long-term response of undisturbed Mediterranean catchments to changes in atmospheric inputs through time series analysis.

    PubMed

    Bernal, S; Belillas, C; Ibáñez, J J; Àvila, A

    2013-08-01

    The aim of this study was to gain insights on the potential hydrological and biogeochemical mechanisms controlling the response of two nested Mediterranean catchments to long-term changes in atmospheric inorganic nitrogen and sulphate deposition. One catchment was steep and fully forested (TM9, 5.9 ha) and the other one had gentler slopes and heathlands in the upper part while side slopes were steep and forested (TM0, 205 ha). Both catchments were highly responsive to the 45% decline in sulphate concentration measured in atmospheric deposition during the 1980s and 1990s, with stream concentrations decreasing by 1.4 to 3.4 μeq L(-1) y(-1). Long-term changes in inorganic nitrogen in both, atmospheric deposition and stream water were small compared to sulphate. The quick response to changes in atmospheric inputs could be explained by the small residence time of water (4-5 months) in these catchments (inferred from chloride time series variance analysis), which was attributed to steep slopes and the role of macropore flow bypassing the soil matrix during wet periods. The estimated residence time for sulphate (1.5-3 months) was substantially lower than for chloride suggesting unaccounted sources of sulphate (i.e., dry deposition, or depletion of soil adsorbed sulphate). In both catchments, inorganic nitrogen concentration in stream water was strongly damped compared to precipitation and its residence time was of the order of decades, indicating that this essential nutrient was strongly retained in these catchments. Inorganic nitrogen concentration tended to be higher at TM0 than at TM9 which was attributed to the presence of nitrogen fixing species in the heathlands. Our results indicate that these Mediterranean catchments react rapidly to environmental changes, which make them especially vulnerable to changes in atmospheric deposition. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Prevalence and Molecular Identification of Nematode and Dipteran Parasites in an Australian Alpine Grasshopper (Kosciuscola tristis)

    PubMed Central

    Umbers, Kate D. L.; Byatt, Lachlan J.; Hill, Nichola J.; Bartolini, Remo J.; Hose, Grant C.; Herberstein, Marie E.; Power, Michelle L

    2015-01-01

    In alpine Australia, Orthoptera are abundant, dominant herbivores, important prey species, and hosts for parasites and parasitoids. Despite the central role of orthopterans in alpine ecosystems, the impact of parasites on orthopteran populations is under-explored. In this study we describe the relationship between parasite prevalence and host sex, body size and year of collection. We accessed an existing, preserved collection of 640 Kosciuscola tristis collected from across its range between 2007 and 2011. Upon dissection we collected juvenile parasites and used molecular tools to identify them to three families (Nematoda; Mermithidae, and Arthropoda: Diptera: Tachinidae and Sarcophagidae). The prevalence of nematodes ranged from 3.5% to 25.0% and dipterans from 2.4% to 20.0%. Contrary to predictions, we found no associations between parasite prevalence and grasshopper sex or size. Although there was an association between prevalence of both nematodes and dipterans with year of collection, this is likely driven by a small sample size in the first year. Our results provide a foundation for future studies into parasite prevalence within the alpine environment and the abiotic factors that might influence these associations. PMID:25919745

  10. From "E-flows" to "Sed-flows": Managing the Problem of Sediment in High Altitude Hydropower Systems

    NASA Astrophysics Data System (ADS)

    Gabbud, C.; Lane, S. N.

    2017-12-01

    The connections between stream hydraulics, geomorphology and ecosystems in mountain rivers have been substantially perturbed by humans, for example through flow regulation related to hydropower activities. It is well known that the ecosystem impacts downstream of hydropower dams may be managed by a properly designed compensation release or environmental flows ("e-flows"), and such flows may also include sediment considerations (e.g. to break up bed armor). However, there has been much less attention given to the ecosystem impacts of water intakes (where water is extracted and transferred for storage and/or power production), even though in many mountain systems such intakes may be prevalent. Flow intakes tend to be smaller than dams and because they fill quickly in the presence of sediment delivery, they often need to be flushed, many times within a day in Alpine glaciated catchments with high sediment yields. The associated short duration "flood" flow is characterised by very high sediment concentrations, which may drastically modify downstream habitat, both during the floods but also due to subsequent accumulation of "legacy" sediment. The impacts on flora and fauna of these systems have not been well studied. In addition, there are no guidelines established that might allow the design of "e-flows" that also treat this sediment problem, something we call "sed-flows". Through an Alpine field example, we quantify the hydrological, geomorphological, and ecosystem impacts of Alpine water transfer systems. The high sediment concentrations of these flushing flows lead to very high rates of channel disturbance downstream, superimposed upon long-term and progressive bed sediment accumulation. Monthly macroinvertebrate surveys over almost a two-year period showed that reductions in the flushing rate reduced rates of disturbance substantially, and led to rapid macroinvertebrate recovery, even in the seasons (autumn and winter) when biological activity should be reduced. The results suggest the need to redesign e-flows to take into account these sediment impacts if the objectives of e-flows are to be realised.

  11. Experimental Demonstration of 3-Dimensional Flow Structures and Depositional Features in a Lateral Recirculation Zone

    NASA Astrophysics Data System (ADS)

    Grams, P. E.; Schmeeckle, M. W.; Mueller, E. R.; Buscombe, D.; Kasprak, A.; Leary, K. P.

    2016-12-01

    The connections between stream hydraulics, geomorphology and ecosystems in mountain rivers have been substantially perturbed by humans, for example through flow regulation related to hydropower activities. It is well known that the ecosystem impacts downstream of hydropower dams may be managed by a properly designed compensation release or environmental flows ("e-flows"), and such flows may also include sediment considerations (e.g. to break up bed armor). However, there has been much less attention given to the ecosystem impacts of water intakes (where water is extracted and transferred for storage and/or power production), even though in many mountain systems such intakes may be prevalent. Flow intakes tend to be smaller than dams and because they fill quickly in the presence of sediment delivery, they often need to be flushed, many times within a day in Alpine glaciated catchments with high sediment yields. The associated short duration "flood" flow is characterised by very high sediment concentrations, which may drastically modify downstream habitat, both during the floods but also due to subsequent accumulation of "legacy" sediment. The impacts on flora and fauna of these systems have not been well studied. In addition, there are no guidelines established that might allow the design of "e-flows" that also treat this sediment problem, something we call "sed-flows". Through an Alpine field example, we quantify the hydrological, geomorphological, and ecosystem impacts of Alpine water transfer systems. The high sediment concentrations of these flushing flows lead to very high rates of channel disturbance downstream, superimposed upon long-term and progressive bed sediment accumulation. Monthly macroinvertebrate surveys over almost a two-year period showed that reductions in the flushing rate reduced rates of disturbance substantially, and led to rapid macroinvertebrate recovery, even in the seasons (autumn and winter) when biological activity should be reduced. The results suggest the need to redesign e-flows to take into account these sediment impacts if the objectives of e-flows are to be realised.

  12. Comparing data of terrestrial LiDAR and UAV (photogrammetric) in the context of the project "SedAlp"

    NASA Astrophysics Data System (ADS)

    Abel, Judith; Wegner, Kerstin; Haas, Florian; Heckmann, Tobias; Becht, Michael

    2014-05-01

    The project "SedAlp" (Sediment management in Alpine basins: integrating sediment continuum, risk mitigation and hydropower) concentrates on problems and approaches related to sediment transfer in the alpine region and is embedded in the European transnational cooperation program "Alpine Space". The catholic University Eichstätt-Ingolstadt contributes the German part to this project on behalf of the Bavarian Environment Agency and in collaboration with the Authority of Water Resources Weilheim. The area of interest is the river Isar between the Sylvenstein reservoir and the city of Bad Tölz, Bavaria, Germany. The main aim of the activities is to quantify the transfer of sediments from the tributary catchments to the river Isar, specifically in light of the fact that the construction of the Sylvenstein reservoir in the mid 1950ies has created a barrier to longitudinal sediment transfer, thus heavily impacting the sediment budget and morphodynamics of the Isar reaches downstream. Moreover, the further development of artificially inserted gravel deposits and the effect of dismantling reinforcement structures at the river banks need investigation. Therefore, the dynamics of alluvial fans and gravel bars in the areas of confluence of tributary torrents are monitored using multitemporal surveys with terrestrial laserscanners and drone-based imagery. The latter is used both for the generation of high-resolution digital elevation models and for the mapping of changes in comparison to historical aerial photos. This study focuses on a comparison of TLS and UAV-based photogrammetric digital elevation models in order to highlight advantages and disadvantages of the two methods in relation to the SedAlp-specific research problems. It is shown that UAV-based elevation models are highly accurate alternatives to TLS-based models; due to their favourable acquisition geometry with respect to the topography in floodplain areas, and their large areal coverage, their use is seen as advantageous.

  13. Integrating Multiple Geophysical Methods to Quantify Alpine Groundwater- Surface Water Interactions: Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Baker, E. A.; Somers, L. D.; Aubry-Wake, C.; Wigmore, O.; Mark, B. G.; Moucha, R.

    2016-12-01

    Groundwater- surface water interactions in alpine catchments are often poorly understood as groundwater and hydrologic data are difficult to acquire in these remote areas. The Cordillera Blanca of Peru is a region where dry-season water supply is increasingly stressed due to the accelerated melting of glaciers throughout the range, affecting millions of people country-wide. The alpine valleys of the Cordillera Blanca have shown potential for significant groundwater storage and discharge to valley streams, which could buffer the dry-season variability of streamflow throughout the watershed as glaciers continue to recede. Known as pampas, the clay-rich, low-relief valley bottoms are interfingered with talus deposits, providing a likely pathway for groundwater recharged at the valley edges to be stored and slowly released to the stream throughout the year by springs. Multiple geophysical methods were used to determine areas of groundwater recharge and discharge as well as aquifer geometry of the pampa system. Seismic refraction tomography, vertical electrical sounding (VES), electrical resistivity tomography (ERT), and horizontal-to-vertical spectral ratio (HVSR) seismic methods were used to determine the physical properties of the unconsolidated valley sediments, the depth to saturation, and the depth to bedrock for a representative section of the Quilcayhuanca Valley in the Cordillera Blanca. Depth to saturation and lithological boundaries were constrained by comparing geophysical results to continuous records of water levels and sediment core logs from a network of seven piezometers installed to depths of up to 6 m. Preliminary results show an average depth to bedrock for the study area of 25 m, which varies spatially along with water table depths across the valley. The conceptual model of groundwater flow and storage derived from these geophysical data will be used to inform future groundwater flow models of the area, allowing for the prediction of groundwater resources for the region in the absence of glacial meltwater.

  14. Nitrogen deposition but not climate warming promotes Deyeuxia angustifolia encroachment in alpine tundra of the Changbai Mountains, Northeast China.

    PubMed

    Zong, Shengwei; Jin, Yinghua; Xu, Jiawei; Wu, Zhengfang; He, Hongshi; Du, Haibo; Wang, Lei

    2016-02-15

    Vegetation in the alpine tundra area of the Changbai Mountains, one of two alpine tundra areas in China, has undergone great changes in recent decades. The aggressive herb species Deyeuxia angustifolia (Komarov) Y. L. Chang, a narrow-leaf small reed, was currently encroaching upon the alpine landscape and threatening tundra biota. The alpine tundra of the Changbai Mountains has been experiencing a warmer climate and receiving a high load of atmospheric nitrogen deposition. In this study, we aimed to assess the respective roles of climate warming and atmospheric nitrogen deposition in promoting the upward encroachment of D. angustifolia. We conducted experiments for three years to examine the response of D. angustifolia and a native alpine shrub, Rhododendron chrysanthum, to the conditions in which temperature and nitrogen were increased. Treatments consisting of temperature increase, nitrogen addition, temperature increase combined with nitrogen addition, and controls were conducted on the D. angustifolia communities with three encroachment levels (low, medium, and high levels). Results showed that 1) D. angustifolia grew in response to added nutrients but did not grow well when temperature increased. R. chrysanthum showed negligible responses to the simulated environmental changes. 2) Compared to R. chrysanthum, D. angustifolia could effectively occupy the above-ground space by increasing tillers and growing rapidly by efficiently using nitrogen. The difference in nitrogen uptake abilities between the two species contributed to expansion of D. angustifolia. 3) D. angustifolia encroachment could deeply change the biodiversity of tundra vegetation and may eventually result in the replacement of native biota, especially with nitrogen addition. Our research indicated that nutrient perturbation may be more important than temperature perturbation in promoting D. angustifolia encroachment upon the nutrient- and species-poor alpine tundra ecosystem in the Changbai Mountains. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Comparative phylogeography highlights the double-edged sword of climate change faced by arctic- and alpine-adapted mammals.

    PubMed

    Lanier, Hayley C; Gunderson, Aren M; Weksler, Marcelo; Fedorov, Vadim B; Olson, Link E

    2015-01-01

    Recent studies suggest that alpine and arctic organisms may have distinctly different phylogeographic histories from temperate or tropical taxa, with recent range contraction into interglacial refugia as opposed to post-glacial expansion out of refugia. We use a combination of phylogeographic inference, demographic reconstructions, and hierarchical Approximate Bayesian Computation to test for phylodemographic concordance among five species of alpine-adapted small mammals in eastern Beringia. These species (Collared Pikas, Hoary Marmots, Brown Lemmings, Arctic Ground Squirrels, and Singing Voles) vary in specificity to alpine and boreal-tundra habitat but share commonalities (e.g., cold tolerance and nunatak survival) that might result in concordant responses to Pleistocene glaciations. All five species contain a similar phylogeographic disjunction separating eastern and Beringian lineages, which we show to be the result of simultaneous divergence. Genetic diversity is similar within each haplogroup for each species, and there is no support for a post-Pleistocene population expansion in eastern lineages relative to those from Beringia. Bayesian skyline plots for four of the five species do not support Pleistocene population contraction. Brown Lemmings show evidence of late Quaternary demographic expansion without subsequent population decline. The Wrangell-St. Elias region of eastern Alaska appears to be an important zone of recent secondary contact for nearctic alpine mammals. Despite differences in natural history and ecology, similar phylogeographic histories are supported for all species, suggesting that these, and likely other, alpine- and arctic-adapted taxa are already experiencing population and/or range declines that are likely to synergistically accelerate in the face of rapid climate change. Climate change may therefore be acting as a double-edged sword that erodes genetic diversity within populations but promotes divergence and the generation of biodiversity.

  16. Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibetan Plateau.

    PubMed

    Liang, Eryuan; Eckstein, Dieter

    2009-09-01

    Shrubs and dwarf shrubs are wider spread on the Tibetan Plateau than trees and hence offer a unique opportunity to expand the present dendrochronological network into extreme environments beyond the survival limit of trees. Alpine shrublands on the Tibetan Plateau are characterized by rhododendron species. The dendrochronological potential of one alpine rhododendron species and its growth response to the extreme environment on the south-east Tibetan Plateau were investigated. Twenty stem discs of the alpine snowy rhododendron (Rhododendron nivale) were collected close to the tongue of the Zuoqiupu Glacier in south-east Tibet, China. The skeleton plot technique was used for inter-comparison between samples to detect the growth pattern of each stem section. The ring-width chronology was developed by fitting a negative exponential function or a straight line of any slope. Bootstrapping correlations were calculated between the standard chronology and monthly climate data. The wood of snowy rhododendron is diffuse-porous with evenly distributed small-diameter vessels. It has well-defined growth rings. Most stem sections can be visually and statistically cross-dated. The resulting 75-year-long standard ring-width chronology is highly correlated with a timberline fir chronology about 200 km apart, providing a high degree of confidence in the cross-dating. The climate/growth association of alpine snowy rhododendron and of this timberline fir is similar, reflecting an impact of monthly mean minimum temperatures in November of the previous year and in July during the year of ring formation. The alpine snowy rhododendron offers new research directions to investigate the environmental history of the Tibetan Plateau in those regions where up to now there was no chance of applying dendrochronology.

  17. Comparative Phylogeography Highlights the Double-Edged Sword of Climate Change Faced by Arctic- and Alpine-Adapted Mammals

    PubMed Central

    Lanier, Hayley C.; Gunderson, Aren M.; Weksler, Marcelo; Fedorov, Vadim B.; Olson, Link E.

    2015-01-01

    Recent studies suggest that alpine and arctic organisms may have distinctly different phylogeographic histories from temperate or tropical taxa, with recent range contraction into interglacial refugia as opposed to post-glacial expansion out of refugia. We use a combination of phylogeographic inference, demographic reconstructions, and hierarchical Approximate Bayesian Computation to test for phylodemographic concordance among five species of alpine-adapted small mammals in eastern Beringia. These species (Collared Pikas, Hoary Marmots, Brown Lemmings, Arctic Ground Squirrels, and Singing Voles) vary in specificity to alpine and boreal-tundra habitat but share commonalities (e.g., cold tolerance and nunatak survival) that might result in concordant responses to Pleistocene glaciations. All five species contain a similar phylogeographic disjunction separating eastern and Beringian lineages, which we show to be the result of simultaneous divergence. Genetic diversity is similar within each haplogroup for each species, and there is no support for a post-Pleistocene population expansion in eastern lineages relative to those from Beringia. Bayesian skyline plots for four of the five species do not support Pleistocene population contraction. Brown Lemmings show evidence of late Quaternary demographic expansion without subsequent population decline. The Wrangell-St. Elias region of eastern Alaska appears to be an important zone of recent secondary contact for nearctic alpine mammals. Despite differences in natural history and ecology, similar phylogeographic histories are supported for all species, suggesting that these, and likely other, alpine- and arctic-adapted taxa are already experiencing population and/or range declines that are likely to synergistically accelerate in the face of rapid climate change. Climate change may therefore be acting as a double-edged sword that erodes genetic diversity within populations but promotes divergence and the generation of biodiversity. PMID:25734275

  18. Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources

    NASA Astrophysics Data System (ADS)

    Zhou, Huiping; Chang, Weina; Zhang, Longjiang

    2016-08-01

    Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other uncertainty factors.

  19. Operational validation of a multi-period and multi-criteria model conditioning approach for the prediction of rainfall-runoff processes in small forest catchments

    NASA Astrophysics Data System (ADS)

    Choi, H.; Kim, S.

    2012-12-01

    Most of hydrologic models have generally been used to describe and represent the spatio-temporal variability of hydrological processes in the watershed scale. Though it is an obvious fact that hydrological responses have the time varying nature, optimal values of model parameters were normally considered as time invariants or constants in most cases. The recent paper of Choi and Beven (2007) presents a multi-period and multi-criteria model conditioning approach. The approach is based on the equifinality thesis within the Generalised Likelihood Uncertainty Estimation (GLUE) framework. In their application, the behavioural TOPMODEL parameter sets are determined by several performance measures for global (annual) and short (30-days) periods, clustered using a Fuzzy C-means algorithm, into 15 types representing different hydrological conditions. Their study shows a good performance on the calibration of a rainfall-runoff model in a forest catchment, and also gives strong indications that it is uncommon to find model realizations that were behavioural over all multi-periods and all performance measures, and multi-period model conditioning approach may become new effective tool for predictions of hydrological processes in ungauged catchments. This study is a follow-up study on the Choi and Beven's (2007) model conditioning approach to test how the approach is effective for the prediction of rainfall-runoff responses in ungauged catchments. To achieve this purpose, 6 small forest catchments are selected among the several hydrological experimental catchments operated by Korea Forest Research Institute. In each catchment, long-term hydrological time series data varying from 10 to 30 years were available. The areas of the selected catchments range from 13.6 to 37.8 ha, and all areas are covered by coniferous or broad-leaves forests. The selected catchments locate in the southern coastal area to the northern part of South Korea. The bed rocks are Granite gneiss, Granite or Limestone. The study is progressed based on the followings. Firstly, hydrological time series of each catchment are sampled and clustered into multi-period having distinctly different temporal characteristics, and secondly, behavioural parameter distributions are determined in each multi-period based on the specification of multi-criteria model performance measures. Finally, behavioural parameter sets of each multi-period of single catchment are applied on the corresponding period of other catchments, and the cross-validations are conducted in this manner for all catchments The multi-period model conditioning approach is clearly effective to reduce the width of prediction limits, giving better model performance against the temporal variability of hydrological characteristics, and has enough potential to be the effective prediction tool for ungauged catchments. However, more advanced and continuous studies are needed to expand the application of this approach in prediction of hydrological responses in ungauged catchments,

  20. Radar-rain-gauge rainfall estimation for hydrological applications in small catchments

    NASA Astrophysics Data System (ADS)

    Gabriele, Salvatore; Chiaravalloti, Francesco; Procopio, Antonio

    2017-07-01

    The accurate evaluation of the precipitation's time-spatial structure is a critical step for rainfall-runoff modelling. Particularly for small catchments, the variability of rainfall can lead to mismatched results. Large errors in flow evaluation may occur during convective storms, responsible for most of the flash floods in small catchments in the Mediterranean area. During such events, we may expect large spatial and temporal variability. Therefore, using rain-gauge measurements only can be insufficient in order to adequately depict extreme rainfall events. In this work, a double-level information approach, based on rain gauges and weather radar measurements, is used to improve areal rainfall estimations for hydrological applications. In order to highlight the effect that precipitation fields with different level of spatial details have on hydrological modelling, two kinds of spatial rainfall fields were computed for precipitation data collected during 2015, considering both rain gauges only and their merging with radar information. The differences produced by these two precipitation fields in the computation of the areal mean rainfall accumulation were evaluated considering 999 basins of the region Calabria, southern Italy. Moreover, both of the two precipitation fields were used to carry out rainfall-runoff simulations at catchment scale for main precipitation events that occurred during 2015 and the differences between the scenarios obtained in the two cases were analysed. A representative case study is presented in detail.

  1. Inter-comparison of hydro-climatic regimes across northern catchments: snychronicity, resistance and resilience

    Treesearch

    Sean K. Carey; Doerthe Tetzlaff; Jan Seibert; Chris Soulsby; Jim Buttle; Hjalmar Laudon; Jeff McDonnell; Kevin McGuire; Daniel Caissie; Jamie Shanley; Mike Kennedy; Kevin Devito; John W. Pomeroy

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of...

  2. Vulnerability and adaptation to water scarcity in the European Alps

    NASA Astrophysics Data System (ADS)

    Isoard, S.; McCallum, S.; Prutsch, A.; Benno Hain, B.; Schauser, I.

    2009-04-01

    The European Environment Agency (EEA) has recently undertaken a project addressing vulnerability and adaptation to water availability in the European Alps. Mountains are indeed one of the most vulnerable regions to climate change in Europe (EEA 2008, IPCC 2007).The Alps, in particular, can be presented as the ‘water towers' of Europe (the amount of water delivered by the Alps allocates 40% of EU consumption) where changes in water availability affect all socio-economical sectors. This therefore makes adaptation actions a regional topic with an outstanding European dimension. The specific objectives of the study were to highlight the importance of the Alps in their function as ‘water towers' for Europe and analyse the vulnerability of the Alpine Region with regard to impacts of climate change (but also to global change as a whole) focussing on water availability. Given the EU and regional policy background with regard to adaptation and water issues, the study assessed the possible needs, constraints and opportunities for adaptation to the adverse impacts for various sectors pending on water resources. Findings of this activity expanded the knowledge base, fed into the preparation of European Commission's 2009 White Paper and the Alpine Convention 2009 Report on the State of the Alps, and complemented other recent studies (e.g. OECD 2007, European Parliament Committee on Agriculture & Rural Development 2008). The method used for the study relied on the one hand on findings from recent key publications on climate change impacts (EEA 2008, IPCC 2007) and EU research projects (e.g. ClimChAlp, ProClim); on the other side it was based on selected case studies chosen within the four climatic regions of the eight Alpine countries for which an extensive series of interviews with local and regional stakeholders and decision makers has been undertaken. The interviewees had been directly involved in designing and implementing water availability-related adaptation measures relating to the respective case studies. The analysis of the case studies highlighted key drivers of adaptation measures, the multi-level governance surrounding this type of policy actions, success factors and barriers (e.g. lack of knowledge, governance shortcomings, coordination issues, spatial and temporal distribution, and competition for resources) that prevent more extensive adaptation actions. Examples of good practices were given as well as further adaptation needs in view of future climate change. Since the study relied mainly on stakeholders' interviews, the major focus lies on building local/regional adaptive capacity that effectively supports adaptation as a social and institutional process. It also provided a synthesis of key vulnerabilities and adaptation options across Europe/Alpine river catchments and recommendations on how to transfer experiences and knowledge in practical implementation of adaptation measures, in particular to other mountain regions (e.g. Carpathian). In this context the study supports regional and local administrations in making informed decisions to better develop and implement adaptation strategies. This EEA study was conducted by the European Topic Centre on Air and Climate Change (UBA Germany, UBA Austria, Potsdam Institute for Climate Impact Research) in cooperation with the Permanent Secretariat of the Alpine Convention (Innsbruck), the European Academy (Bolzano) and the Environment Protection Agency of Slovenia. The study will be published in the first half of 2009 as an EEA Technical Report and will be actively disseminated to stakeholders and decision-makers in the Alpine region through best suited events in collaboration with the Alpine Convention.

  3. Runoff production in a small agricultural catchment in Lao PDR: influence of slope, land-use and observation scale

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2010-12-01

    After years of traditional slash and burn cultures, the Houay Pano catchment is now under high land pressures due to population resettling and environmental preservation policies. This evolution leads to rapid land-use changes in the uplands, such as fallow time reductions and growing of cash crops as teaks or banana. The catchment is located in the Luang Prabang province, in the north of Lao PDR and was selected in late 1998 as a benchmark site for the Managing Soil Erosion Consortium (MSEC). It is a small (60ha) agricultural catchment representative of the rural mountainous South East Asia : it exhibits steep cultivated slopes (from 2% to more than 110%) under a wet-dry monsoon climate. To understand the partition between runoff and infiltration, data from runoff on 20 plot experiments (1m2) under natural rainfall and with representative slopes and land uses is collected from 2003 to 2009. A simulated rainfall experiment was conducted in 2002 on bare soil plots (1m2) with different antecedent cultures. We investigate the role of crust, slope and land-use on runoff production at different scales. A model accounting for small scale variability is applied to compute the time and space variations of soil infiltrability at the plot scale (1m2) and sub-catchment scale (0.6ha). From the hypothesis of exponentially distributed infiltrabilities at the centimeter scale, we found that infiltration is log-normaly distributed over time for a given land use. The median infiltrability vary from 10mm/h under teak cultures to 150mm/h on plots with fallow. Variations along a year are tribute to many meteorological and human factors.

  4. Exploring the Dynamics of Transit Times and Subsurface Mixing in a Small Agricultural Catchment

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Heidbüchel, Ingo; Musolff, Andreas; Reinstorf, Frido; Fleckenstein, Jan H.

    2018-03-01

    The analysis of transit/residence time distributions (TTDs and RTDs) provides important insights into the dynamics of stream-water ages and subsurface mixing. These insights have significant implications for water quality. For a small agricultural catchment in central Germany, we use a 3D fully coupled surface-subsurface hydrological model to simulate water flow and perform particle tracking to determine flow paths and transit times. The TTDs of discharge, RTDs of storage and fractional StorAge Selection (fSAS) functions are computed and analyzed on daily basis for a period of 10 years. Results show strong seasonal fluctuations of the median transit time of discharge and the median residence time, with the former being strongly related to the catchment wetness. Computed fSAS functions suggest systematic shifts of the discharge selection preference over four main periods: In the wet period, the youngest water in storage is preferentially selected, and this preference shifts gradually toward older ages of stored water when the catchment transitions into the drying, dry and wetting periods. These changes are driven by distinct shifts in the dominance of deeper flow paths and fast shallow flow paths. Changes in the shape of the fSAS functions can be captured by changes in the two parameters of the approximating Beta distributions, allowing the generation of continuous fSAS functions representing the general catchment behavior. These results improve our understanding of the seasonal dynamics of TTDs and fSAS functions for a complex real-world catchment and are important for interpreting solute export to the stream in a spatially implicit manner.

  5. Geomorphic determinants of species composition of alpine tundra, Glacier National Park, U.S.A.

    USGS Publications Warehouse

    George P. Malanson,; Bengtson, Lindsey E.; Fagre, Daniel B.

    2012-01-01

    Because the distribution of alpine tundra is associated with spatially limited cold climates, global warming may threaten its local extent or existence. This notion has been challenged, however, based on observations of the diversity of alpine tundra in small areas primarily due to topographic variation. The importance of diversity in temperature or moisture conditions caused by topographic variation is an open question, and we extend this to geomorphology more generally. The extent to which geomorphic variation per se, based on relatively easily assessed indicators, can account for the variation in alpine tundra community composition is analyzed versus the inclusion of broad indicators of regional climate variation. Visual assessments of topography are quantified and reduced using principal components analysis (PCA). Observations of species cover are reduced using detrended correspondence analysis (DCA). A “best subsets” regression approach using the Akaike Information Criterion for selection of variables is compared to a simple stepwise regression with DCA scores as the dependent variable and scores on significant PCA axes plus more direct measures of topography as independent variables. Models with geographic coordinates (representing regional climate gradients) excluded explain almost as much variation in community composition as models with them included, although they are important contributors to the latter. The geomorphic variables in the model are those associated with local moisture differences such as snowbeds. The potential local variability of alpine tundra can be a buffer against climate change, but change in precipitation may be as important as change in temperature.

  6. Quantifying, Analysing and Modeling Rockfall Activity in two Different Alpine Catchments using Terrestrial Laserscanning

    NASA Astrophysics Data System (ADS)

    Haas, F.; Heckmann, T.; Wichmann, V.; Becht, M.

    2011-12-01

    Rockfall processes play a major role as a natural hazard, especially if the rock faces are located close to infrastructure. However these processes cause also the retreat of the steep rock faces by weathering and the growth of the corresponding talus cones by routing debris down the talus cones. That's why this process plays also an important role for the geomorphic system and the sediment budget of high mountain catchments. The presented investigation deals with the use of TLS for quantification and for analysis of rockfall activity in two study areas located in the Alps. The rockfaces of both catchments and the corresponding talus cones were scanned twice a year from different distances. Figure 1 shows an example for the spatial distribution of surface changes at a rockface in the Northern Dolomites between 2008 and 2010. The measured surface changes at this location yields to a mean rockwall retreat of 0.04 cm/a. But high resolution TLS data are not only applicable to quantify rockfall activity they can also be used to characterize the surface properties of the corresponding talus cones and the runout distances of bigger boulders and this can lead to a better process understanding. Therefore the surface roughness of talus cones in both catchments was characterized from the TLS point clouds by a GIS approach. The resulting detailed maps of the surface conditions on the talus cones were used to improve an existing process model which is able to model runout distances on the talus cones using distributed friction parameters. Beside this the investigations showed, that also the shape of the boulders has an influence on the runout distance. That's why the interrelationships between rock fragment morphology and runout distance of over 600 single boulders were analysed at the site of a large rockfall event. The submitted poster will show the results of the quantification of the rockfall activity and additionally it will show the results of the analyses of the talus cones and of the large rockfall event and applying these results to an existing rockfall model.

  7. Patterns and predictability in the intra-annual organic carbon variability across the boreal and hemiboreal landscape

    USGS Publications Warehouse

    Hytteborn, Julia K.; Temnerud, Johan; Alexander, Richard B.; Boyer, Elizabeth W.; Futter, Martyn N.; Fröberg, Mats; Dahné, Joel; Bishop, Kevin H.

    2015-01-01

    Factors affecting total organic carbon (TOC) concentrations in 215 watercourses across Sweden were investigated using parameter parsimonious regression approaches to explain spatial and temporal variabilities of the TOC water quality responses. We systematically quantified the effects of discharge, seasonality, and long-term trend as factors controlling intra-annual (among year) and inter-annual (within year) variabilities of TOC by evaluating the spatial variability in model coefficients and catchment characteristics (e.g. land cover, retention time, soil type).Catchment area (0.18–47,000 km2) and land cover types (forests, agriculture and alpine terrain) are typical for the boreal and hemiboreal zones across Fennoscandia. Watercourses had at least 6 years of monthly water quality observations between 1990 and 2010. Statistically significant models (p < 0.05) describing variation of TOC in streamflow were identified in 209 of 215 watercourses with a mean Nash-Sutcliffe efficiency index of 0.44. Increasing long-term trends were observed in 149 (70%) of the watercourses, and intra-annual variation in TOC far exceeded inter-annual variation. The average influences of the discharge and seasonality terms on intra-annual variations in daily TOC concentration were 1.4 and 1.3 mg l− 1 (13 and 12% of the mean annual TOC), respectively. The average increase in TOC was 0.17 mg l− 1 year− 1 (1.6% year− 1).Multivariate regression with over 90 different catchment characteristics explained 21% of the spatial variation in the linear trend coefficient, less than 20% of the variation in the discharge coefficient and 73% of the spatial variation in mean TOC. Specific discharge, water residence time, the variance of daily precipitation, and lake area, explained 45% of the spatial variation in the amplitude of the TOC seasonality.Because the main drivers of temporal variability in TOC are seasonality and discharge, first-order estimates of the influences of climatic variability and change on TOC concentration should be predictable if the studied catchments continue to respond similarly.

  8. Modeling sediment yield in small catchments at event scale: Model comparison, development and evaluation

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Leung, L. R.; Li, H. Y.; Tesfa, T. K.

    2017-12-01

    Sediment yield (SY) has significant impacts on river biogeochemistry and aquatic ecosystems but it is rarely represented in Earth System Models (ESMs). Existing SY models focus on estimating SY from large river basins or individual catchments so it is not clear how well they simulate SY in ESMs at larger spatial scales and globally. In this study, we compare the strengths and weaknesses of eight well-known SY models in simulating annual mean SY at about 400 small catchments ranging in size from 0.22 to 200 km2 in the US, Canada and Puerto Rico. In addition, we also investigate the performance of these models in simulating event-scale SY at six catchments in the US using high-quality hydrological inputs. The model comparison shows that none of the models can reproduce the SY at large spatial scales but the Morgan model performs the better than others despite its simplicity. In all model simulations, large underestimates occur in catchments with very high SY. A possible pathway to reduce the discrepancies is to incorporate sediment detachment by landsliding, which is currently not included in the models being evaluated. We propose a new SY model that is based on the Morgan model but including a landsliding soil detachment scheme that is being developed. Along with the results of the model comparison and evaluation, preliminary findings from the revised Morgan model will be presented.

  9. Global Maps of Temporal Streamflow Characteristics Based on Observations from Many Small Catchments

    NASA Astrophysics Data System (ADS)

    Beck, H.; van Dijk, A.; de Roo, A.

    2014-12-01

    Streamflow (Q) estimation in ungauged catchments is one of the greatest challenges facing hydrologists. We used observed Q from approximately 7500 small catchments (<10,000 km2) around the globe to train neural network ensembles to estimate temporal Q distribution characteristics from climate and physiographic characteristics of the catchments. In total 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Training coefficients of determination for the estimation of the Q characteristics ranged from 0.56 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were the least important, perhaps due to data quality. The trained neural network ensembles were subsequently applied spatially over the ice-free land surface including ungauged regions, resulting in global maps of the Q characteristics (0.125° spatial resolution). These maps possess several unique features: 1) they represent purely observation-driven estimates; 2) are based on an unprecedentedly large set of catchments; and 3) have associated uncertainty estimates. The maps can be used for various hydrological applications, including the diagnosis of macro-scale hydrological models. To demonstrate this, the produced maps were compared to equivalent maps derived from the simulated daily Q of five macro-scale hydrological models, highlighting various opportunities for improvement in model Q behavior. The produced dataset is available for download.

  10. On the use of three hydrological models as hypotheses to investigate the behaviour of a small Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ruiz Pérez, Guiomar; Latron, Jérôme; Llorens, Pilar; Gallart, Francesc; Francés, Félix

    2017-04-01

    Selecting an adequate hydrological model is the first step to carry out a rainfall-runoff modelling exercise. A hydrological model is a hypothesis of catchment functioning, encompassing a description of dominant hydrological processes and predicting how these processes interact to produce the catchment's response to external forcing. Current research lines emphasize the importance of multiple working hypotheses for hydrological modelling instead of only using a single model. In line with this philosophy, here different hypotheses were considered and analysed to simulate the nonlinear response of a small Mediterranean catchment and to progress in the analysis of its hydrological behaviour. In particular, three hydrological models were considered representing different potential hypotheses: two lumped models called LU3 and LU4, and one distributed model called TETIS. To determine how well each specific model performed and to assess whether a model was more adequate than another, we raised three complementary tests: one based on the analysis of residual errors series, another based on a sensitivity analysis and the last one based on using multiple evaluation criteria associated to the concept of Pareto frontier. This modelling approach, based on multiple working hypotheses, helped to improve our perceptual model of the catchment behaviour and, furthermore, could be used as a guidance to improve the performance of other environmental models.

  11. Effects of snowmelt on watershed transit time distributions

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Carroll, R. W. H.; Harman, C. J.; Wilusz, D. C.; Schumer, R.

    2017-12-01

    Snowmelt is the principal control of the timing and magnitude of water flow through alpine watersheds, but the streamflow generated may be displaced groundwater. To quantify this effect, we use a rank StorAge Selection (rSAS) model to estimate time-dependent travel time distributions (TTDs) for the East River Catchment (ERC, 84 km2) - a headwater basin of the Colorado River, and newly designated as the Lawrence Berkeley National Laboratory's Watershed Function Science Focus Area (SFA). Through the SFA, observational networks related to precipitation and stream fluxes have been established with a focus on environmental tracers and stable isotopes. The United Stated Geological Survey Precipitation Runoff Modeling System (PRMS) was used to estimate spatially- and temporally-variable boundary fluxes of effective precipitation (snowmelt & rain), evapotranspiration, and subsurface storage. The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm was used to calibrate the rSAS model to observed stream isotopic concentration data and quantify uncertainty. The sensitivity of the simulated TTDs to systematic changes in the boundary fluxes was explored. Different PRMS and rSAS model parameters setup were tested to explore how they affect the relationship between input precipitation, especially snowmelt, and the estimated TTDs. Wavelet Coherence Analysis (WCA) was applied to investigate the seasonality of TTD simulations. Our ultimate goal is insight into how the Colorado River headwater catchments store and route water, and how sensitive flow paths and transit times are to climatic changes.

  12. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed

    USGS Publications Warehouse

    Borrok, D.M.; Wanty, R.B.; Ian, Ridley W.; Lamothe, P.J.; Kimball, B.A.; Verplanck, P.L.; Runkel, R.L.

    2009-01-01

    Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, ??56Fe and ??66Zn isotopic signatures of filtered stream water samples varied by ???3.5??? and 0.4???, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in ??56Fe were linked to redox and precipitation reactions occurring in the stream, while changes in ??66Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (<-2.0???) and isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4???). Acidic drainage from mine wastes contributed heavier dissolved Fe (???+0.5???) and lighter Zn (???+0.2???) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe (??56Fe ??? 0???) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds. ?? 2009 Elsevier Ltd.

  13. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau.

    PubMed

    Ma, Xiaoliang; Liu, Guimin; Wu, Xiaodong; Smoak, Joseph M; Ye, Linlin; Xu, Haiyan; Zhao, Lin; Ding, Yongjian

    2018-07-15

    The Qinghai-Tibetan plateau (QTP) stores a large amount of soil organic carbon and is the headwater region for several large rivers in Asia. Therefore, it is important to understand the influence of environmental factors on river water quality and the dissolved organic carbon (DOC) export in this region. We examined the water physico-chemical characteristics, DOC concentrations and export rates of 7 rivers under typical land cover types in the Three Rivers Headwater Region during August 2016. The results showed that the highest DOC concentrations were recorded in the rivers within the catchment of alpine wet meadow and meadow. These same rivers had the lowest total suspended solids (TSS) concentrations. The rivers within steppe and desert had the lowest DOC concentrations and highest TSS concentrations. The discharge rates and catchment areas were negatively correlated with DOC concentrations. The SUVA 254 values were significantly negatively correlated with DOC concentrations. The results suggest that the vegetation degradation, which may represent permafrost degradation, can lead to a decrease in DOC concentration, but increasing DOC export and soil erosion. In addition, some of the exported DOC will rapidly decompose in the river, and therefore affect the regional carbon cycle, as well as the water quality in the source water of many large Asian rivers. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Quantitative Generalizations for Catchment Sediment Yield Following Plantation Logging

    NASA Astrophysics Data System (ADS)

    Bathurst, James; Iroume, Andres

    2014-05-01

    While there is a reasonably clear qualitative understanding of the impact of forest plantations on sediment yield, there is a lack of quantitative generalizations. Such generalizations would be helpful for estimating the impacts of proposed forestry operations and would aid the spread of knowledge amongst both relevant professionals and new students. This study therefore analyzed data from the literature to determine the extent to which quantitative statements can be established. The research was restricted to the impact of plantation logging on catchment sediment yield as a function of ground disturbance in the years immediately following logging, in temperate countries, and does not consider landslides consequent upon tree root decay. Twelve paired catchment studies incorporating pre- and post-logging measurements of sediment yield were identified, resulting in forty-three test catchments (including 14 control catchments). Analysis yielded the following principal conclusions: 1) Logging generally provokes maximum annual sediment yields of less than a few hundred t km-2 yr-1; best management practice can reduce this below 100 t km-2 yr-1. 2) At both the annual and event scales, the sediment yield excess of a logged catchment over a control catchment is within one order of magnitude, except with severe ground disturbance. 3) There is no apparent relationship between sediment yield impact and the proportion of catchment logged. The effect depends on which part of the catchment is altered and on its connectivity to the stream network. 4) The majority of catchments delivered their maximum sediment yield in the first two years after logging. The logging impacts were classified in terms of the absolute values of specific sediment yield, the values relative to those in the control catchments for the same period and the values relative both to the control catchment and the pre-logging period. Most studies have been for small catchments (< 10 km2) and temperate regions; the impact at large catchment scales and in tropical regions requires further research.

  15. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.

    2017-06-01

    Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore indicates that detectability of Illgraben debris flows of this size is unaffected by changing environmental and anthropogenic seismic noise and that false detections can be greatly reduced with simple processing steps.

  16. Soil Moisture Estimation Across Scales with Mobile Sensors for Cosmic-Ray Neutrons from the Ground and Air

    NASA Astrophysics Data System (ADS)

    Schrön, Martin; Köhler, Mandy; Bannehr, Lutz; Köhli, Markus; Fersch, Benjamin; Rebmann, Corinna; Mai, Juliane; Cuntz, Matthias; Kögler, Simon; Schröter, Ingmar; Wollschläger, Ute; Oswald, Sascha; Dietrich, Peter; Zacharias, Steffen

    2016-04-01

    Soil moisture is a key variable for environmental sciences, but its determination at various scales and depths is still an open challenge. Cosmic-ray neutron sensing has become a well accepted and unique method to monitor an effective soil water content, covering tens of hectares in area and tens of centimeters in depth. The technology is famous for its low maintanance, non-invasiveness, continous measurement, and most importantly its large footprint and penetration depth. Beeing more representative than point data, and finer resolved plus deeper penetrating than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for agriculture, regional hydrologic and land surface models. The method takes advantage of omnipresent neutrons which are extraordinarily sensitive to hydrogen in soil, plants, snow and air. Unwanted hydrogen sources in the footprint can be excluded by local calibration to extract the pure soil water information. However, this procedure is not feasible for mobile measurements, where neutron detectors are mounted on a car to do catchment-scale surveys. As a solution to that problem, we suggest strategies to correct spatial neutron data with the help of available spatial data of soil type, landuse and vegetation. We further present results of mobile rover campaigns at various scales and conditions, covering small sites from 0.2 km2 to catchments of 100 km2 area, and complex terrain from agricultural fields, urban areas, forests, to snowy alpine sites. As the rover is limited to accessible roads, we further investigated the applicability of airborne measurements. First tests with a gyrocopter at 150 to 200m heights proofed the concept of airborne neutron detection for environmental sciences. Moreover, neutron transport simulations confirm an improved areal coverage during these campaigns. Mobile neutron measurements at the ground or air are a promising tool for the detection of water sources across many scales. The method has a great potential to improve spatial performance of hydrological models, and help to assess regional soil moisture states for agriculture and flood risk management.

  17. Topographical controls on soil moisture distribution and runoff response in a first order alpine catchment

    NASA Astrophysics Data System (ADS)

    Penna, Daniele; Gobbi, Alberto; Mantese, Nicola; Borga, Marco

    2010-05-01

    Hydrological processes driving runoff generation in mountain basins depend on a wide number of factors which are often strictly interconnected. Among them, topography is widely recognized as one of the dominant controls influencing soil moisture distribution in the root zone, depth to water table and location and extent of saturated areas possibly prone to runoff production. Morphological properties of catchments are responsible for the alternation between steep slopes and relatively flat areas which have the potentials to control the storage/release of water and hence the hydrological response of the whole watershed. This work aims to: i) identify the role of topography as the main factor controlling the spatial distribution of near-surface soil moisture; ii) evaluate the possible switch in soil moisture spatial organization between wet and relatively dry periods and the stability of patterns during triggering of surface/subsurface runoff; iii) assess the possible connection between the develop of an ephemeral river network and the groundwater variations, examining the influence of the catchment topographical properties on the hydrological response. Hydro-meteorological data were collected in a small subcatchment (Larch Creek Catchment, 0.033 km²) of Rio Vauz basin (1.9 km²), in the eastern Italian Alps. Precipitation, discharge, water table level over a net of 14 piezometric wells and volumetric soil moisture at 0-30 cm depth were monitored continuously during the late spring-early autumn months in 2007 and 2008. Soil water content at 0-6 and 0-20 cm depth was measured manually during 22 field surveys in summer 2007 over a 44-sampling point experimental plot (approximately 3000 m²). In summer 2008 the sampling grid was extended to 64 points (approximately 4500 m²) and 28 field surveys were carried out. The length of the ephemeral stream network developed during rainfall events was assessed by a net of 24 Overland Flow Detectors (OFDs), which are able to detect the presence/absence of surface runoff. Results show a significant correlation between plot-averaged soil moisture at 0-20 cm depth, local slope and local curvature, while poor correlations were found with aspect and solar radiation: this suggests a sharp control of the catchment topological architecture (likely coupled with soil properties) on soil moisture distribution. This was also confirmed by the visual inspection of interpolated maps which reveal the persistence of high values of soil moisture in hollow areas and, conversely, of low values over the hillslopes. Moreover, a strong correlation between plot-averaged soil moisture patterns over time, with no decline after rainfall events, indicates a good temporal stability of water content distribution and its independence from the triggering of surface flow and transient lateral subsurface flow during wet conditions. The analysis of the time lag between storm centroid and piezometric peak shows an increasing delay of water table reaction with increasing distance from the stream, revealing different groundwater dynamics between the near-stream and the hillslope zone. Furthermore, the significant correlation between groundwater time lag monitored for the net of piezometers and the local slope suggests a topographical influence on the temporal and spatial variability of subsurface runoff. Finally, the extent of the ephemeral stream network was clearly dependent on the amount of precipitation but a different percentage of active OFDs and piezometers for the same rainfall event suggests a decoupling between patterns of surface and subsurface flows in the study area. Key words: topographical controls, soil moisture patterns, groundwater level, overland flow.

  18. [Nitrogen Losses Under the Action of Different Land Use Types of Small Catchment in Three Gorges Region].

    PubMed

    Chen, Cheng-long; Gao, Ming; Ni, Jiu-pai; Xie, De-ti; Deng, Hua

    2016-05-15

    As an independent water-collecting area, small catchment is the source of non-point source pollution in Three Gorges Region. Choosing 3 kinds of the most representative land-use types and using them to lay monitoring points of overland runoff within the small catchment of Wangjiagou in Fuling of Three Gorges Region, the author used the samples of surface runoff collected through the twelve natural rainfalls from May to December to analyze the feature of spatial-temporal change of Nitrogen's losses concentrations under the influence of different land use types and the hillslopes and small catchments composed by those land use types, revealing the relation between different land-use types and Nitrogen's losses of small catchments in Three Gorges Region. The result showed: the average losses concentration of TN showed the biggest difference for different land use types during the period of spring crops, and the average value of dry land was 1. 61 times and 6.73 times of the values of interplanting field of mulberry and paddy field, respectively; the change of the losses concentration of TN was most conspicuous in the 3 periods of paddy field. The main element was NO₃⁻-N, and the relation between TN and NO₃⁻-N showed a significant linear correlation. TN's and NO₃⁻-N's losses concentrations were significantly and positively correlated with the area ratio of corn and mustard, but got a significant negative correlation with the area ratio of paddy and mulberry; NH₄⁺-N's losses concentrations got a significant positive correlation with the area ratio of mustard. Among all the hillslopes composed by different land use types, TN's average losses concentration of surface runoff of the hillslope composed by interplantating field of mulberry and paddy land during the three periods was the lowest, and the values were 2.55, 11.52, 8.58 mg · L⁻¹, respectively; the hillslope of rotation plough land of corn and mustard had the maximum value, and the values were 27.51, 25.11, 27.11 mg · L⁻¹, respectively; different land use types and spatial combination ways of subcatchment had a greater influence on TN's losses concentrations, so using a reasonable way to adjust land use structure and spatial arrangement of whole catchment was an effective measure to control the source of non-point source pollution of Three Gorges Region.

  19. Managing runoff and flow pathways in a small rural catchment to reduce flood risk with other multi-purpose benefits

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Welton, Phil; Kerr, Peter; Quinn, Paul; Jonczyk, Jennine

    2010-05-01

    From 2000 to 2009 there have been a high number of flood events throughout Northern Europe. Meanwhile, there is a demand for land in which to construct homes and businesses on, which is encroaching on land which is prone to flooding. Nevertheless, flood defences usually protect us from this hazard. However, the severity of floods and this demand for land has increased the number of homes which have been flooded in the past ten years. Public spending on flood defences can only go so far which targets the large populations first. Small villages and communities, where in many cases normal flood defences are not cost effective, tend to wait longer for flood mitigation strategies. The Belford Burn (Northumberland, UK) catchment is a small rural catchment that drains an area of 6 km2. It flows through the village of Belford. There is a history of flooding in Belford, with records of flood events dating back to 1877. Normal flood defences are not suitable for this catchment as it failed the Environment Agency (EA) cost benefit criteria for support. There was a desire by the local EA Flood Levy Team and the Northumbria Regional Flood Defence Committee at the Environment Agency to deliver an alternative catchment-based solution to the problem. The EA North East Flood Levy team and Newcastle University have created a partnership to address the flood problem using soft engineered runoff management features. Farm Integrated Runoff Management (FIRM) plans manage flow paths directly by storing slowing and filtering runoff at source on farms. The features are multipurpose addressing water quality, trapping sediment, creating new habitats and storing and attenuating flood flow. Background rainfall and stream stage data have been collected since November 2007. Work on the first mitigation features commenced in July 2008. Since that date five flood events have occurred in the catchment. Two of these flood events caused widespread damage in other areas of the county. However, in Belford only two houses were flooded. Data from the catchment and mitigation features showed that the defence measures resulted in an increase in travel time of the peak and attenuated high flows which would have usually travelled quickly down the channel to the village. For example, the pilot feature appears to have increased the travel time of a flood peak at the top of the catchment from 20 minutes to 35 minutes over a 1 km stretch of channel. There are currently ten active mitigation features present in the catchment. More features are planned for construction this year. Early data from the catchment indicates that the runoff attenuation features are having an impact on reducing flood flows in the channel and also slowing down the flood peak. At the same time the multi-purpose aspects of the features are apparent.

  20. Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning

    NASA Astrophysics Data System (ADS)

    Talei, Amin; Chua, Lloyd Hock Chye; Quek, Chai; Jansson, Per-Erik

    2013-04-01

    SummaryA study using local learning Neuro-Fuzzy System (NFS) was undertaken for a rainfall-runoff modeling application. The local learning model was first tested on three different catchments: an outdoor experimental catchment measuring 25 m2 (Catchment 1), a small urban catchment 5.6 km2 in size (Catchment 2), and a large rural watershed with area of 241.3 km2 (Catchment 3). The results obtained from the local learning model were comparable or better than results obtained from physically-based, i.e. Kinematic Wave Model (KWM), Storm Water Management Model (SWMM), and Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The local learning algorithm also required a shorter training time compared to a global learning NFS model. The local learning model was next tested in real-time mode, where the model was continuously adapted when presented with current information in real time. The real-time implementation of the local learning model gave better results, without the need for retraining, when compared to a batch NFS model, where it was found that the batch model had to be retrained periodically in order to achieve similar results.

  1. Runoff processes in catchments with a small scale topography

    NASA Astrophysics Data System (ADS)

    Feyen, H.; Leuenberger, J.; Papritz, A.; Gysi, M.; Flühler, H.; Schleppi, P.

    1996-05-01

    How do runoff processes influence nitrogen export from forested catchments? To support nitrogen balance studies for three experimental catchments (1500m 2) in the Northern Swiss prealps water flow processes in the two dominating soil types are monitored. Here we present the results for an experimental wetland catchment (1500m 2) and for a delineated sloped soil plot (10m 2), both with a muck humus topsoil. Runoff measurements on both the catchment and the soil plot showed fast reactions of surface and subsurface runoff to rainfall inputs, indicating the dominance of fast-flow paths such as cracks and fissures. Three quarters of the runoff from the soil plot can be attributed to water flow in the gleyic, clayey subsoil, 20% to flow in the humic A horizon and only 5% to surface runoff. The water balance for the wetland catchment was closed. The water balance of the soil plot did not close. Due to vertical upward flow from the saturated subsoil into the upper layers, the surface runoff plus subsurface runoff exceeded the input (precipitation) to the plot.

  2. Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams

    PubMed Central

    Venkiteswaran, Jason J.; Schiff, Sherry L.; Wallin, Marcus B.

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape. PMID:25058488

  3. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    PubMed

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  4. Catchment scale controls the temporal connection of transpiration and diel fluctuations in streamflow

    Treesearch

    C.B. Graham; H.R. Barnard; K.L. Kavanagh; J.P. McNamara

    2012-01-01

    Diel fluctuations can comprise a significant portion of summer discharge in small to medium catchments. The source of these signals and the manner in which they are propagated to stream gauging sites is poorly understood. In this work, we analysed stream discharge from 15 subcatchments in Dry Creek, Idaho, Reynolds Creek, Idaho, and HJ Andrews, Oregon. We identified...

  5. Simulations of snow distribution and hydrology in a mountain basin

    USGS Publications Warehouse

    Hartman, Melannie D.; Baron, Jill S.; Lammers, Richard B.; Cline, Donald W.; Band, Larry E.; Liston, Glen E.; Tague, Christina L.

    1999-01-01

    We applied a version of the Regional Hydro-Ecologic Simulation System (RHESSys) that implements snow redistribution, elevation partitioning, and wind-driven sublimation to Loch Vale Watershed (LVWS), an alpine-subalpine Rocky Mountain catchment where snow accumulation and ablation dominate the hydrologic cycle. We compared simulated discharge to measured discharge and the simulated snow distribution to photogrammetrically rectified aerial (remotely sensed) images. Snow redistribution was governed by a topographic similarity index. We subdivided each hillslope into elevation bands that had homogeneous climate extrapolated from observed climate. We created a distributed wind speed field that was used in conjunction with daily measured wind speeds to estimate sublimation. Modeling snow redistribution was critical to estimating the timing and magnitude of discharge. Incorporating elevation partitioning improved estimated timing of discharge but did not improve patterns of snow cover since wind was the dominant controller of areal snow patterns. Simulating wind-driven sublimation was necessary to predict moisture losses.

  6. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Kaňa, Jiří; Norton, Stephen A; Stuchlík, Evžen

    2015-03-03

    Lake water concentrations of phosphorus (P) recently increased in some mountain areas due to elevated atmospheric input of P rich dust. We show that increasing P concentrations also occur during stable atmospheric P inputs in central European alpine lakes recovering from atmospheric acidification. The elevated P availability in the lakes results from (1) increasing terrestrial export of P accompanying elevated leaching of dissolved organic carbon and decreasing phosphate-adsorption ability of soils due to their increasing pH, and (2) decreasing in-lake P immobilization by aluminum (Al) hydroxide due to decreasing leaching of ionic Al from the recovering soils. The P availability in the recovering lakes is modified by the extent of soil acidification, soil composition, and proportion of till and meadow soils in the catchment. These mechanisms explain several conflicting observations of the acid rain effects on surface water P concentrations.

  7. POP bioaccumulation in macroinvertebrates of alpine freshwater systems.

    PubMed

    Bizzotto, E C; Villa, S; Vighi, M

    2009-12-01

    This study serves to investigate the uptake of POPs in the different trophic levels (scrapers, collectors, predators, shredders) of macroinvertebrate communities sampled from a glacial and a non-glacial stream in the Italian Alps. The presented results show that the contaminant concentrations in glacial communities are generally higher compared to those from non-glacial catchments, highlighting the importance of glaciers as temporary sinks of atmospherically transported pollutants. Moreover, the data also suggests that in mountain systems snow plays an important role in influencing macroinvertebrate contamination. The main chemical uptake process to the macroinvertebrates is considered to be bioconcentration from water, as similar contaminant profiles were observed between the different trophic levels. The role of biomagnification/bioaccumulation is thought to be absent or negligible. The enrichment of chemicals observed in the predators is likely to be related to their greater lipid content compared to that of other feeding groups.

  8. Groundwater-surface water interactions in a glacierized catchment and their influence on proglacial water supply

    NASA Astrophysics Data System (ADS)

    Gordon, R. P.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.

    2012-12-01

    The tropical glaciers of the Cordillera Blanca of Peru are retreating rapidly due to climate change, which threatens water resources for the quarter-million inhabitants of the upper Rio Santa river valley and many more downstream. Recent studies have shown that glacial melt supplies approximately half of dry season stream discharge in Cordillera Blanca valleys. The remainder of streamflow is supplied by groundwater stored in alpine meadows, moraines and talus slopes. In the future, when glacier loss has reduced the influence of melt water on streams, groundwater discharge will be the primary dry-season source of stream water for irrigation, municipalities, and hydropower in the Santa watershed. A better understanding of the dynamics of alpine groundwater, including sources and exchange fluxes, is therefore important for future planning in this region. Understanding these groundwater-surface water interactions is necessary for making accurate estimates of meltwater contributions to the hydrologic budget, and for our ability to make predictions about future water resources under deglaciating conditions. We combined measurements of groundwater-surface water exchange during the dry season with synoptic sampling of stream water and end-members in order to quantify the groundwater contributions to streamflow from an alpine meadow, debris fan, and moraine complex in a glacierized valley of the Cordillera Blanca. Using stream tracer-dilution techniques, we calculated channel water balances for 9 stream reaches of 100-200 m throughout the meadow and measured the discharge of glacial meltwater into debris fan and moraine units. We used vertical heat tracing to measure stream-groundwater exchange at 2-hour increments over 2 weeks in 13 stream locations in the meadow, debris fan, and moraine units. Channel water balance and heat tracing results show that, during the studied portion of the dry season, the stream loses water (2.5 l/s or ~25% of flow) to the subsurface in the upstream half of the meadow, and gains water (7 l/s or ~6% of flow) in the lower half. The debris fan adjacent to the meadow received 22 l/s of surficial melt water from a glacial lake but contributed ~100 l/s of streamflow to the meadow, mostly through springs at the fan-meadow interface. In contrast, the terminal moraine complex at the head of the meadow received 36 l/s of glacial lake discharge but only contributed 5 l/s of streamflow to the meadow; the remainder of stream discharge over the moraine was apparently lost to an underlying aquifer. Results show that gains and losses of stream water are unequally distributed across the landscape in the dry season, with the debris fan and meadow being net sources of streamflow, and the moraine a net sink. Almost all of the stream water exiting the catchment (115 l/s) spent some time in the subsurface, with approximately half originating as groundwater within the studied watershed.

  9. Using hydrological modelling for a preliminary assessment of under-catch of precipitation in some Alpine Catchments of Sierra Nevada (Spain). Sensitivity to different conceptual approaches and spatio-temporal scale

    NASA Astrophysics Data System (ADS)

    Jimeno-Saez, Patricia; Pulido-Velazquez, David; Pegalajar-Cuellar, Manuel; Collados-Lara, Antonio-Juan; Pardo-Iguzquiza, Eulogio

    2017-04-01

    Precipitation (P) measurements show important biases due to under-catch, especially in windy conditions. Gauges modify the wind fields, producing important under-catch in solid P. In this work we intent to perform a global assessment of the under-catch phenomenon in some alpine catchments of Sierra Nevada Mountain Range (Spain) by using different conceptual hydrological models. They are based on the available information about daily natural streamflow and daily fields of P and temperature (T) in each catchment. We want to analyse long time periods (more than 20 years at daily scale) in order to obtain conclusions taking into account the stochastic behaviour of the natural streamflow and P and T variables. The natural streamflowin each basin has been obtained from the streamflow measurements in the gauges by making some simple mathematical operations to eliminate the anthropic influences. The daily climatic fieldswere estimated with spatial resolution of 1kmx1km by applying geostatistic techniques using data coming from 119climatic gauges existing in the area.We have considered to model options: Monthly and yearly variogram to characterize the spatial data correlation. The Elevation has been considered as secondary variable for the estimation. The analysis of the experimental data showed a linear relationhip between mean T and elevation. Therefore, we decided to apply a kriging with linear external drift to estimate the P and T fields. The mean daily P data show a quadratic relationship with the elevation. Different hypothesis have been considered to approach these P fields by applying kriging with linear drift, with quadratic drift, and regression kriging. A cross-validation analysis showed that the best approximation to the data is obtained with the kriging with linear drift. The P and T fields obtained with this technique were employed to feed different hydrological models in which different conceptual approaches of the hydrological processes related with the snow are considered. Correction factors of the solid & liquid P fields have been included in the formulation. We intend to perform an automatic calibration of the parameters of these models. A detailed analysis of global optimization techniques has been performed in order to identify the best possible optimization algorithm (Classic Informed Local Search, Simulated Annealing, Genetic Algorithm and Memetic algorithm) which is important due to the high computational cost of our optimization problems with many parameters and noisy inputs and outputs. Finally with the best calibration algorithm we have performed different optimization experiments (20 realizations). It allows us to obtain a distribution function of the correction factor for the solid and liquid P for each catchment, which can be useful as a preliminary assessment of the global under-catch in the basins. We have also analysed the sensitivity of the results to the spatio-temporal scale (grid with cells of 1x1 kms or 12.5x12.5 Kms; daily or monthly approaches) employed to approach different hydrological processes. We are also working in the analysis of these issues considering multi-objective evolutionary optimization approaches for calibration using multiple target criteria in which the transient calibration try to minimize differences with both, stream flow and snow cover area observations. This research has been partially supported by the CGL2013-48424-C2-2-R (MINECO) and the PMAFI/06/14 (UCAM) projects.

  10. Genome-wide SNPs reveal fine-scale differentiation among wingless alpine stonefly populations and introgression between winged and wingless forms.

    PubMed

    Dussex, Nicolas; Chuah, Aaron; Waters, Jonathan M

    2016-01-01

    Insect flight loss is a repeated phenomenon in alpine habitats, where wing reduction is thought to enhance local recruitment and increase fecundity. One predicted consequence of flight loss is reduced dispersal ability, which should lead to population genetic differentiation and perhaps ultimately to speciation. Using a dataset of 15,123 SNP loci, we present comparative analyses of fine-scale population structure in codistributed Zelandoperla stonefly species, across three parallel altitudinal transects in New Zealand's Rock and Pillar mountain range. We find that winged populations (altitude 200-500 m; Zelandoperla decorata) show no genetic structuring within or among streams, suggesting substantial dispersal mediated by flight. By contrast, wingless populations (Zelandoperla fenestrata; altitude 200-1100 m) exhibit distinct genetic clusters associated with each stream, and additional evidence of isolation by distance within streams. Our data support the hypothesis that wing-loss can initiate diversification in alpine insect populations over small spatial scales. The often deep phylogenetic placement of lowland Z. fenestrata within their stream-specific clades suggests the possibility of independent alpine colonization events for each stream. Additionally, the detection of winged, interspecific hybrid individuals raises the intriguing possibility that a previously flightless lineage could reacquire flight via introgression. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  11. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities.

    PubMed

    Alatalo, Juha M; Jägerbrand, Annika K; Juhanson, Jaanis; Michelsen, Anders; Ľuptáčik, Peter

    2017-03-15

    High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from the mineral soil layer in mesic meadow, but not in wet meadow or heath or from the organic soil layer. There was a significant site effect on the density of one mite species, Oppiella neerlandica, and all soil parameters. A significant plot-scale impact on mites suggests that small-scale heterogeneity may be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects may differ at local scale.

  12. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities

    NASA Astrophysics Data System (ADS)

    Alatalo, Juha M.; Jägerbrand, Annika K.; Juhanson, Jaanis; Michelsen, Anders; Ľuptáčik, Peter

    2017-03-01

    High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from the mineral soil layer in mesic meadow, but not in wet meadow or heath or from the organic soil layer. There was a significant site effect on the density of one mite species, Oppiella neerlandica, and all soil parameters. A significant plot-scale impact on mites suggests that small-scale heterogeneity may be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects may differ at local scale.

  13. Nutrient and energy content, in vitro ruminal fermentation characteristics and methanogenic potential of alpine forage plant species during early summer.

    PubMed

    Jayanegara, Anuraga; Marquardt, Svenja; Kreuzer, Michael; Leiber, Florian

    2011-08-15

    Plants growing on alpine meadows are reported to be rich in phenols. Such compounds may affect ruminal fermentation and reduce the plants' methanogenic potential, making alpine grazing advantageous in this respect. The objective of this study was to quantify nutrients and phenols in Alpine forage grasses, herbs and trees collected over 2 years and, in a 24 h in vitro incubation, their effects on ruminal fermentation parameters. The highest in vitro gas production, resulting in metabolisable energy values around 10 MJ kg⁻¹, were found with Alchemilla xanthochlora and Crepis aurea (herbaceous species) and with Sambucus nigra leaves and flowers (tree species). Related to the amount of total gas production, methane formation was highest with Nardus stricta, and lowest with S. nigra and A. xanthochlora. In addition, Castanea sativa leaves led to an exceptional low methane production, but this was accompanied by severely impaired ruminal fermentation. When the data were analysed by principal component analysis, phenol concentrations were negatively related with methane proportion in total gas. Variation in methane production potential across the investigated forages was small. The two goals of limited methane production potential and high nutritive value for ruminants were met best by A. xanthochlora and S. nigra. Copyright © 2011 Society of Chemical Industry.

  14. Osmoregulatory traits of broad-toothed field mouse (Apodemus mystacinus) populations from different habitats.

    PubMed

    Scantlebury, Michael; Shanas, Uri; Or-Chen, Keren; Haim, Abraham

    2009-12-01

    One mechanism for physiological adjustment of small mammals to different habitats and different seasons is by seasonal acclimatization of their osmoregulatory system. We examined the abilities of broad-toothed field mice (Apodemus mystacinus) from different ecosystems ('sub-alpine' and 'Mediterranean') to cope with salinity stress under short day (SD) and long day (LD) photoperiod regimes. We compared urine volume, osmolarity, urea and electrolyte (sodium, potassium and chloride) concentrations. Significant differences were noted in the abilities of mice from the two ecosystems to deal with salinity load; in particular sub-alpine mice produced less concentrated urine than Mediterranean mice with SD- sub-alpine mice seeming to produce particularly dilute urine. Urea concentration generally decreased with increasing salinity, whereas sodium and potassium levels increased, however SD- sub-alpine mice behaved differently and appeared not to be able to excrete electrolytes as effectively as the other groups of mice. Differences observed provide an insight into the kinds of variability that are present within populations inhabiting different ecosystems, thus how populations may be able to respond to potential changes in their environment. Physiological data pertaining to adaptation to increased xeric conditions, as modelled by A. mystacinus, provides valuable information as to how other species may cope with potential climatic challenges.

  15. Assessment of interbreeding and introgression of farm genes into a small Scottish Atlantic salmon Salmo salar stock: ad hoc samples - ad hoc results?

    PubMed

    Verspoor, E; Knox, D; Marshall, S

    2016-12-01

    An eclectic set of tissues and existing data, including purposely collected samples, spanning 1997-2006, was used in an ad hoc assessment of hybridization and introgression of farmed wild Atlantic salmon Salmo salar in the small Loch na Thull (LnT) catchment in north-west Scotland. The catchment is in an area of marine farm production and contains freshwater smolt rearing cages. The LnT S. salar stock was found to be genetically distinctive from stocks in neighbouring rivers and, despite regular reports of feral farm S. salar, there was no evidence of physical or genetic mixing. This cannot be completely ruled out, however, and low level mixing with other local wild stocks has been suggested. The LnT population appeared underpinned by relatively smaller effective number of breeders (N eb ) and showed relatively low levels of genetic diversity, consistent with a small effective population size. Small sample sizes, an incomplete farm baseline and the use of non-diagnostic molecular markers, constrain the power of the analysis but the findings strongly support the LnT catchment having a genetically distinct wild S. salar population little affected by interbreeding with feral farm escapes. © 2016 The Fisheries Society of the British Isles.

  16. Characterizing the Alpine Fault Strike Slip System Using a Novel Method for Analyzing GPS Data

    NASA Astrophysics Data System (ADS)

    Haines, A. J.; Dimitrova, L. L.; Wallace, L. M.; Williams, C. A.

    2013-12-01

    Plate motion across the South Island is dominated by right-lateral strike-slip (38-39 mm/yr total in the direction parallel to the Alpine Fault), with a small convergent component (8-10 mm/yr). The Alpine Fault is the most active fault in the region taking up 27×5 mm/yr in right-lateral strike-slip and ~10 mm/yr in dip-slip. It fails in large >=7 Mw earthquakes with recurrence time of 200-400 years and last ruptured around 1717. A significant component of the plate motion budget must occur on faults other than the Alpine Fault, but this is not fully accounted for in catalogues of known active faults. In the central part of the South Island, low slip rate active faults are not well-expressed due to the rapid erosion of the Southern Alps and deposition of these sediments onto the Canterbury plains; the devastating 2010 Darfield earthquake sequence occurred on such previously unknown faults. We apply a novel inversion technique (Dimitrova et al. 2012, 2013) to dense campaign GPS velocities in the region to solve for the vertical derivatives of horizontal stress (VDoHS) rates which are a substantially higher resolution expression of subsurface sources of ongoing deformation than the GPS velocities or GPS derived strain rates. Integrating the VDoHS rates gives us strain rates. Relationships between the VDoHS and strain rates allow us to calculate the variation in fault slip rate and locking depth for the identified faults; e.g., we estimate along fault variations for locking depth and slip rate for the Alpine Fault in the South Island in good agreement with previous estimates, and provide first estimates for those properties on the smaller, previously-uncharacterized faults which account for as much as 50% of the plate motion depending on location. For the first time, we note that the area between the Alpine Fault and the Main Divide of the Southern Alps is undergoing extensional areal strain, potentially indicative of gravitational collapse of the Southern Alps. The Arthur's Pass section of the Alpine Fault exhibits no shear component in the spatial derivatives of the VDoHS rates, in marked contrast to the Alpine Fault segments just northeast and southwest, suggesting that post-seismic deformation related to the 1994 Arthur's Pass earthquake is masking the signal from the Alpine Fault beneath. We characterize in detail the transfer of slip further north into the Marlborough Fault System, where we find much of the slip on the Alpine Fault passes onto the Kelly and Hope Faults, in accord with previous geological studies.

  17. The hydrological response of a small catchment after the abandonment of terrace cultivation. A study case in northwestern Spain

    NASA Astrophysics Data System (ADS)

    Llorente-Adán, Jose A.; Lana-Renault, Noemí; Galilea, Ianire; Ruiz-Flaño, Purificacion

    2015-04-01

    Terrace construction for cultivation results in a complete transformation of the hillslopes to a series of flat sectors and almost vertical steps. This strategy, which involves a redistribution of soils and a re-organization of the drainage network, provides fertile soil over steep slopes, improves infiltration and controls overland flow under conditions of intense rainstorms. In Camero Viejo (north-western Iberian ranges) most of the hillslopes are occupied by terraced fields. During the XXth century, rural population declined and agricultural practices were abandoned. In this area, a small catchment (1.9 km2) was monitored in 2012 for studying how the abandonment of agricultural terraces affect water and sediment transfer from the hillslopes to the channels. Terraces occupy 40% of the catchment and are covered by sparse grass and shrubs. The equipment installed in the catchment registers continuously meteorological data, discharge and water table fluctuations. Data on suspended sediment transport is obtained by means of a rising-stage sampler. Here we present the hydrological results corresponding to the years 2012-13 and 2013-14. The hydrological response of the catchment was moderate (annual runoff coefficient < 0.20), which could be in part explained by the high evapotranspiration rates reported in the area. Lows flows were recorded in summer and autumn, when the water reserves of the catchment were dry, and high flows occurred from January, when the catchment became wetter. The shape of the hydrographs, with slow response times, moderate peakflows and long recession limbs suggested a large contribution of subsurface flow, probably favored by deep and well structured soils in the bench terraces. Soil saturation areas were not observed during the study period, suggesting that soil infiltration processes and subsurface flow are important, and that the drainage system of the terraces is probably well maintained. No suspended sediment has been collected so far, confirming the hypothesis that subsurface flow might be a dominant runoff generation process.

  18. Integrated hydro-environmental impact assessment and alternative selection of low impact development practices in small urban catchments.

    PubMed

    Yang, Yang; Chui, Ting Fong May

    2018-06-20

    Attention is increasingly being paid to low impact development (LID) practices in urban stormwater management. Because LID practices offer a wide variety of hydro-environmental benefits, it is often necessary to account for these benefits collectively in cost-benefit analysis and LID alternative selection. The conventional methods of quantifying these benefits, however, can hardly incorporate the preferences of decision makers, and commonly involve tedious parameter estimations. To address these shortcomings, this study adopts a relative performance evaluation method to assess the various hydro-environmental impacts of LID alternatives in small urban catchments. This study considers several categories of hydro-environmental impacts, including water balance impact, surface pollutant load abatement, and combined sewer overflow and flood risk mitigation. Several performance indicators are used for each impact category. The system-wide effectiveness of an LID alternative is then derived by the weighted aggregation of its indicator scores, which are obtained by comparing its performance with that of all of the other alternatives. The hydro-environmental impact of green roofs and bioretention cells of varying areas in New York City, U.S. are investigated in detail. The results suggest that a green roof that covers the whole catchment is as effective as a bioretention cell that covers 3%-5% of the catchment in terms of stormwater management, and that the effectiveness of a bioretention cell doubles when its surface area increases from 2% to 10% of the catchment area. These assessment results are influenced by catchment-specific assessment criteria (e.g., the high flow threshold) and management interests, which suggests that design guidelines for different catchments should be tailored to their natural and drainage characteristics. The framework used in this study allows stakeholders' interests to be reflected in LID alternative selections and the implications of different design guidelines to be thoroughly investigated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Vegetation, climate and lake changes over the last 7000 years at the boreal treeline in north-central Siberia

    NASA Astrophysics Data System (ADS)

    Klemm, Juliane; Herzschuh, Ulrike; Pestryakova, Luidmila A.

    2016-09-01

    Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a small lake (radius ∼100 m), was used to reconstruct the development of the lake and its catchment as well as vegetation and summer temperatures over the last 7100 calibrated years. A multi-proxy approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of the lake. An overall trend of cooling summer temperature from a ∼2 °C warmer-than-present mid-Holocene summer temperatures until the establishment of modern conditions around 3000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional vegetation changes was compared to local changes in the lake's catchment. An initial small water depression occurred from 7100 to 6500 cal years BP. Afterwards, a small lake formed and deepened, probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.

  20. Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM-IECM model.

    PubMed

    Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing

    2017-05-01

    Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.

  1. Fluvial dissolved organic carbon composition varies spatially and seasonally in a small catchment draining a wind farm and felled forestry.

    PubMed

    Zheng, Ying; Waldron, Susan; Flowers, Hugh

    2018-06-01

    Assessing whether land use, from activities such as wind farm construction and tree-felling, impacts on terrestrial C delivery to rivers has focused on quantifying the loss of dissolved organic carbon (DOC), and not the composition changes. Here we explore how land use influences DOC composition by considering fluvial DOC concentration, [DOC], and spectrophotometric composition of a river draining a peat-rich catchment. We find that in this 5.7km 2 catchment differences occur in both the concentration and composition of the DOC in its sub-catchments. This is attributed to differences in how land was used: one tributary (D-WF) drains an area with wind farm construction and forestry in the headwaters, and one tributary (D-FF) drains an area with felled plantation trees. Generally, [DOC] in both streams showed similar seasonal variation, and autumn maxima. However, the felled catchment had greater mean [DOC] than the wind farm catchment. The SUVA 254 and E 4 /E 6 indicated DOC in both streams had similar aromaticity and fulvic:humic acid for most of the time, but SUVA 410 and E 2 /E 4 indicated less DOC humification in the felled catchment. This may be due to young DOC from the breakdown of residual branches and roots, or more humification in soils in the wind farm area. During the dry months, DOC composition showed more spatial variation: the D-WF DOC had smaller SUVA 254 (less total aromatic material) and SUVA 410 (fewer humic substances). The decreased E 2 /E 4 in both streams indicated the total aromatic carbon decreased more than humic substances content. Moreover, the larger E 4 /E 6 for D-WF in summer indicated that the humic substances were richer in fulvic acids than humic acids. Soil disturbance associated with forestry-felling likely contributed to the higher [DOC] and release of less-humified material in D-FF. This research indicates drivers of different DOC concentration and composition can exist even in small catchments. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Land-cover impacts on streamflow: a change-detection modelling approach that incorporates parameter uncertainty

    Treesearch

    Jan Seibert; Jeffrey J. McDonnell

    2010-01-01

    The effect of land-use or land-cover change on stream runoff dynamics is not fully understood. In many parts of the world, forest management is the major land-cover change agent. While the paired catchment approach has been the primary methodology used to quantify such effects, it is only possible for small headwater catchments where there is uniformity in...

  3. Post-fire mulching for runoff and erosion mitigation; Part II: Effectiveness in reducing runoff and sediment yields from small catchments

    Treesearch

    Peter R. Robichaud; Joseph W. Wagenbrenner; Sarah A. Lewis; Louise E. Ashmun; Robert E. Brown; Peter M. Wohlgemuth

    2013-01-01

    Agricultural straw, hydromulch, and wood shred or wood strand mulches increasingly are being used as post-fire hillslope treatments, but the differences in effectiveness among these mulch treatments are not fully understood. Following the 2002 Hayman fire in central Colorado and the 2003 Cedar fire in southern California, matched catchments were monitored for five to...

  4. High resolution modeling of a small urban catchment

    NASA Astrophysics Data System (ADS)

    Skouri-Plakali, Ilektra; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    Flooding is one of the most complex issues that urban environments have to deal with. In France, flooding remains the first natural risk with 72% of decrees state of natural disaster issued between October 1982 and mid-November 2014. Flooding is a result of meteorological extremes that are usually aggravated by the hydrological behavior of urban catchments and human factors. The continuing urbanization process is indeed changing the whole urban water cycle by limiting the infiltration and promoting runoff. Urban environments are very complex systems due to their extreme variability, the interference between human activities and natural processes but also the effect of the ongoing urbanization process that changes the landscape and hardly influences their hydrologic behavior. Moreover, many recent works highlight the need to simulate all urban water processes at their specific temporal and spatial scales. However, considering urban catchments heterogeneity still challenging for urban hydrology, even after advances noticed in term of high-resolution data collection and computational resources. This issue is more to be related to the architecture of urban models being used and how far these models are ready to take into account the extreme variability of urban catchments. In this work, high spatio-temporal resolution modeling is performed for a small and well-equipped urban catchment. The aim of this work is to identify urban modeling needs in terms of spatial and temporal resolution especially for a very small urban area (3.7 ha urban catchment located in the Perreux-sur-Marne city at the southeast of Paris) MultiHydro model was selected to carry out this work, it is a physical based and fully distributed model that interacts four existing modules each of them representing a portion of the water cycle in urban environments. MultiHydro was implemented at 10m, 5m and 2m resolution. Simulations were performed at different spatio-temporal resolutions and analyzed with respect to real flow measurements. First Results coming out show improvements obtained in terms of the model performance at high spatio-temporal resolution.

  5. Small-scale drivers: the importance of nutrient availability and snowmelt timing on performance of the alpine shrub Salix herbacea.

    PubMed

    Little, Chelsea J; Wheeler, Julia A; Sedlacek, Janosch; Cortés, Andrés J; Rixen, Christian

    2016-04-01

    Alpine plant communities are predicted to face range shifts and possibly extinctions with climate change. Fine-scale environmental variation such as nutrient availability or snowmelt timing may contribute to the ability of plant species to persist locally; however, variation in nutrient availability in alpine landscapes is largely unmeasured. On three mountains around Davos, Switzerland, we deployed Plant Root Simulator probes around 58 Salix herbacea plants along an elevational and microhabitat gradient to measure nutrient availability during the first 5 weeks of the summer growing season, and used in situ temperature loggers and observational data to determine date of spring snowmelt. We also visited the plants weekly to assess performance, as measured by stem number, fruiting, and herbivory damage. We found a wide snowmelt gradient which determined growing season length, as well as variations of an order of magnitude or more in the accumulation of 12 nutrients between different microhabitats. Higher nutrient availability had negative effects on most shrub performance metrics, for instance decreasing stem number and the proportion of stems producing fruits. High nutrient availability was associated with increased herbivory damage in early-melting microhabitats, but among late-emerging plants this pattern was reversed. We demonstrate that nutrient availability is highly variable in alpine settings, and that it strongly influences performance in an alpine dwarf shrub, sometimes modifying the response of shrubs to snowmelt timing. As the climate warms and human-induced nitrogen deposition continues in the Alps, these factors may contribute to patterns of local plants persistence.

  6. Mapping topographic plant location properties using a dense matching approach

    NASA Astrophysics Data System (ADS)

    Niederheiser, Robert; Rutzinger, Martin; Lamprecht, Andrea; Bardy-Durchhalter, Manfred; Pauli, Harald; Winkler, Manuela

    2017-04-01

    Within the project MEDIALPS (Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains) six regions in Alpine and in Mediterranean mountain regions are investigated to assess how plant species respond to climate change. The project is embedded in the Global Observation Research Initiative in Alpine Environments (GLORIA), which is a well-established global monitoring initiative for systematic observation of changes in the plant species composition and soil temperature on mountain summits worldwide to discern accelerating climate change pressures on these fragile alpine ecosystems. Close-range sensing techniques such as terrestrial photogrammetry are well suited for mapping terrain topography of small areas with high resolution. Lightweight equipment, flexible positioning for image acquisition in the field, and independence on weather conditions (i.e. wind) make this a feasible method for in-situ data collection. New developments of dense matching approaches allow high quality 3D terrain mapping with less requirements for field set-up. However, challenges occur in post-processing and required data storage if many sites have to be mapped. Within MEDIALPS dense matching is used for mapping high resolution topography for 284 3x3 meter plots deriving information on vegetation coverage, roughness, slope, aspect and modelled solar radiation. This information helps identifying types of topography-dependent ecological growing conditions and evaluating the potential for existing refugial locations for specific plant species under climate change. This research is conducted within the project MEDIALPS - Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains funded by the Earth System Sciences Programme of the Austrian Academy of Sciences.

  7. A simple distributed sediment delivery approach for rural catchments

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Scherer, Ulrike

    2014-05-01

    The transfer of sediments from source areas to surface waters is a complex process. In process based erosion models sediment input is thus quantified by representing all relevant sub processes such as detachment, transport and deposition of sediment particles along the flow path to the river. A successful application of these models requires, however, a large amount of spatially highly resolved data on physical catchment characteristics, which is only available for a few, well examined small catchments. For the lack of appropriate models, the empirical Universal Soil Loss Equation (USLE) is widely applied to quantify the sediment production in meso to large scale basins. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). In these models, the SDR is related to data on morphological characteristics of the catchment such as average local relief, drainage density, proportion of depressions or soil texture. Some approaches include the relative distance between sediment source areas and the river channels. However, several studies showed that spatially lumped parameters describing the morphological characteristics are only of limited value to represent the factors of influence on sediment transport at the catchment scale. Sediment delivery is controlled by the location of the sediment source areas in the catchment and the morphology along the flow path to the surface water bodies. This complex interaction of spatially varied physiographic characteristics cannot be adequately represented by lumped morphological parameters. The objective of this study is to develop a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in a catchment. We selected a small catchment located in in an intensively cultivated loess region in Southwest Germany as study area for the development of the SDR approach. The flow pathways were extracted in a geographic information system. Then the sediment delivery ratio for each source area was determined using an empirical approach considering the slope, morphology and land use properties along the flow path. As a benchmark for the calibration of the model parameters we used results of a detailed process based erosion model available for the study area. Afterwards the approach was tested in larger catchments located in the same loess region.

  8. Development and validation of a runoff and erosion model for lowland drained catchments

    NASA Astrophysics Data System (ADS)

    Grangeon, Thomas; Cerdan, Olivier; Vandromme, Rosalie; Landemaine, Valentin; Manière, Louis; Salvador-Blanes, Sébastien; Foucher, Anthony; Evrard, Olivier

    2017-04-01

    Modelling water and sediment transfer in lowland catchments is complex as both hortonian and saturation excess-flow occur in these environments. Moreover, their dynamics was complexified by the installation of tile drainage networks or stream redesign. To the best of our knowledge, few models are able to simulate saturation runoff as well as hortonian runoff in tile-drained catchments. Most of the time, they are used for small scale applications due to their high degree of complexity. In this context, a model of intermediate complexity was developed to simulate the hydrological and erosion processes at the catchment scale in lowland environments. This GIS-based, spatially distributed and lumped model at the event scale uses a theoretical hydrograph to approximate within-event temporal variations. It comprises two layers used to represent surface and subsurface transfers. Observations of soil surface characteristics (i.e. vegetation density, soil crusting and roughness) were used to document spatial variations of physical soil characteristics (e.g. infiltration capacity). Flow was routed depending on the local slope, using LIDAR elevation data. Both the diffuse and the gully erosion are explicitly described. The model ability to simulate water and sediment dynamics at the catchment scale was evaluated using the monitoring of a selection of flood events in a small, extensively cultivated catchment (the Louroux catchment, Loire River basin, central France; 25 km2). In this catchment, five monitoring stations were equipped with water level sensors, turbidity probes, and automatic samplers. Discharge and suspended sediment concentration were deduced from field measurements. One station was installed at the outlet of a tile drain and was used to parameterize fluxes supplied by the drainage network. The selected floods were representative of various rainfall and soil surface conditions (e.g. low-intensity rainfall occurring on saturated soils as well as intense rainfall occurring on dry soils in spring). The model was able to reproduce the runoff volumes for these different situations, and performed well, especially in winter (the relationship between observed and modeled values has R2=0.72) when most of the sediment are transferred. Therefore, future work will evaluate the model ability to reproduce the erosion and sediment dynamics in this catchment in order to provide a tool for sediment management in these lowland environments draining agricultural land where river siltation is problematic.

  9. Quantifying the present-day human influence on temperature, precipitation, and runoff in an pre-Alpine Swiss catchment

    NASA Astrophysics Data System (ADS)

    Mülchi, Regula; Rössler, Ole; Romppainen-Martius, Olivia; Pall, Pardeep; Weingartner, Rolf

    2017-04-01

    Understanding the influence of anthropogenic greenhouse gas (GHG) emissions on climate and environmental variables is still a challenge in science. Many detection and attribution studies have been carried out focusing on global and regional scales or on single events. However, the influence of anthropogenic greenhouse gas emission on both, runoff regime and driving meteorological characteristics is still an open question. This study assesses the influence of anthropogenic GHG emissions on temperature, precipitation, and river runoff in a pre-Alpine catchment in Switzerland. For this purpose, thousands of one-year (April 2000-March 2001) simulations representing both, a present-day climate with actual anthropogenic GHG concentrations (A2000), and a climate with pre-industrial GHG concentrations (A2000N) were bias-corrected and used to analyze changes in temperature and precipitation. The two variables were then used to drive the hydrological model GR4J including the snow module Cemaneige for the river Thur (1700 km2). Comparing the runoff of the two scenarios and calculating the fraction of attributable risk (FAR) as well as the change in probability of occurrence (PR) for specific runoff thresholds enabled the assessment of the influence of anthropogenic GHG emissions. We found higher mean runoff in winter and spring in the A2000 scenario compared to the A2000N scenario. This is mainly caused by the combination of higher precipitation and higher temperatures in winter resulting in less snow accumulation in the A2000 scenario. Therefore, more liquid water is available in the hydrological model leading to enhanced runoff. In contrast, the A2000 simulations exhibit lower runoff in summer and autumn than the A2000N simulations. We relate this to higher temperatures in the A2000 scenario enhancing evapotranspiration and lower precipitation amounts. The calculation of FAR and PR for different runoff thresholds indicates that the FAR and PR increase with higher thresholds suggesting stronger influence of anthropogenic GHG emissions on the very high river flows. The bias-correction led to a reduction of FAR and PR and to an increase in the corresponding uncertainty ranges. This study demonstrates that temperature and precipitation in Switzerland as well as the runoff regime and runoff extremes have changed due to the emission of anthropogenic GHGs. It also highlights the influence of bias-correction on the estimation of FAR and PR.

  10. Estimating effectiveness of crop management for reduction of soil erosion and runoff

    NASA Astrophysics Data System (ADS)

    Hlavcova, K.; Studvova, Z.; Kohnova, S.; Szolgay, J.

    2017-10-01

    The paper focuses on erosion processes in the Svacenický Creek catchment which is a small sub-catchment of the Myjava River basin. To simulate soil loss and sediment transport the USLE/SDR and WaTEM/SEDEM models were applied. The models were validated by comparing the simulated results with the actual bathymetry of a polder at the catchment outlet. Methods of crop management based on rotation and strip cropping were applied for the reduction of soil loss and sediment transport. The comparison shows that the greatest intensities of soil loss were achieved by the bare soil without vegetation and from the planting of maize for corn. The lowest values were achieved from the planting of winter wheat. At the end the effectiveness of row crops and strip cropping for decreasing design floods from the catchment was estimated.

  11. Runoff scenarios of the Ötz catchment (Tyrol, Austria) considering climate change driven changes of the cryosphere

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Schneeberger, Klaus; Welebil, Irene; Schöber, Johannes; Huss, Matthias; Formayer, Herbert; Huttenlau, Matthias; Schneider, Katrin

    2014-05-01

    The seasonal distribution of runoff in alpine catchments is markedly influenced by the cryospheric contribution (snow and ice). Long-term climate change will alter these reservoirs and consequently have an impact on the water balance. Glacierized catchments like the Ötztal (Tyrol, Austria) are particularly sensitive to changes in the cryosphere and the hydrological changes related to them. The Ötztal possesses an outstanding role in Austrian and international cryospheric research and reacts sensitive to changes in hydrology due to its socio-economic structure (e.g. importance of tourism, hydro-power). In this study future glacier scenarios for the runoff calculations in the Ötztal catchment are developed. In addition to climatological scenario data, glacier scenarios were established for the hydrological simulation of future runoff. Glacier outlines and glacier surface elevation changes of the Austrian Glacier Inventory were used to derive present ice thickness distribution and scenarios of glacier area distribution. Direct effects of climate change (i.e. temperature and precipitation change) and indirect effects in terms of variations in the cryosphere were considered for the analysis of the mean runoff and particularly flood frequencies. Runoff was modelled with the hydrological model HQSim, which was calibrated for the runoff gauges at Brunau, Obergurgl and Vent. For a sensitivity study, the model was driven by separate glacier scenarios. Keeping glacier area constant, variable climate input was used to separate the effect of climate sensitivity. Results of the combination of changed glacier areas and changed climate input were subsequently analysed. Glacier scenarios show first a decrease in volume, before glacier area shrinks. The applied method indicates a 50% ice volume loss by 2050 relative to today. Further, model results show a reduction in glacier volume and area to less than 20% of the current ice cover towards the end of the 21st century. The effect of reduced glacier areas can be seen in a reduction of runoff particularly in summer. Maintaining the glacier areas constant, runoff would increase in summer month caused by higher ice melt under climate change conditions. Also runoff increases in spring and fall is expected due to a shift from solid to liquid precipitation in the mountain catchments. The simulation of the combination of glacier change and climate change scenarios results in an increase in runoff in spring due to a shift in the snowline and a decrease in runoff in summer caused by reduced glacier area.

  12. Soil water dynamics of lateritic catchments as affected by forest clearing for pasture

    NASA Astrophysics Data System (ADS)

    Sharma, M. L.; Barron, R. J. W.; Williamson, D. R.

    1987-10-01

    Aspects of soil water dynamics as affected by land use changes were examined over a period of five years (1974-1979) in two groups of adjacent catchments located in 1200 mm yr -1 and 800 mm yr -1 rainfall zones near Collie, Western Australia. In the summer of 1976/1977, after three years of calibration, 100% of one high rainfall catchment, Wights, and 53% of one lower rainfall catchment, Lemon, was cleared of native eucalyptus forest and replaced with pasture. The soil water storage down to 6m was measured in-situ using a neutron probe in fifteen access tubes located at five stratified sites in each catchment. Considerable spatial variability in soil water storage was encountered within a site, between sites within a catchment, and between paired catchments; the dominant variability being between sites. Comparisons between the pre- and postclearing states within a catchment and between the cleared and uncleared control catchments were used to evaluate the effect of change in land use on soil water dynamics. Within two years of the change from forest to pasture, a significant increase in soil water storage had occurred in the profiles in both cleared catchments. Concurrently, there was a small decrease in the uncleared control catchments. The increases following clearing were greater in the higher than in the lower rainfall catchment, more pronounced in the first year than in the second year, and occurred mostly at depths greater than 2m. In Wights catchment, the increase in summer minimum soil water storage in the first and second years amounted to 220 and 58 mm respectively, whilst for Lemon catchment the increase for the first year was < 50 mm. This increased soil water storage was due to a substantially lower evapotranspiration from the shallow-rooted, seasonally active pasture which extracts water from the top 1 m or so, compared with the perennial native eucalyptus forest which extracts water from depths down to 6 m and beyond. Due to the relatively low water holding capacity of the surface lateritic soils, the drainage beyond 1 m is substantially increased under pasture, and this results in an increased recharge to the underlying aquifer.

  13. Effect of Land Use, Seasonality, and Hydrometeorological Conditions on the K+ Concentration-Discharge Relationship During Different Types of Floods in Carpathian Foothills Catchments (Poland).

    PubMed

    Siwek, Joanna P; Żelazny, Mirosław; Siwek, Janusz; Szymański, Wojciech

    2017-01-01

    The purpose of the study was to determine the role of land use, seasonality, and hydrometeorological conditions on the relationship between stream water potassium (K + ) concentration and discharge during different types of floods-short- and long-duration rainfall floods as well as snowmelt floods on frozen and thawed soils. The research was conducted in small catchments (agricultural, woodland, mixed-use) in the Carpathian Foothills (Poland). In the woodland catchment, lower K + concentrations were noted for each given specific runoff value for summer rainfall floods versus snowmelt floods (seasonal effect). In the agricultural and mixed-use catchments, the opposite was true due to their greater ability to flush K + out of the soil in the summer. In the stream draining woodland catchment, higher K + concentrations occurred during the rising limb than during the falling limb of the hydrograph (clockwise hysteresis) for all flood types, except for snowmelt floods with the ground not frozen. In the agricultural catchment, clockwise hystereses were produced for short- and long-duration rainfall floods caused by high-intensity, high-volume rainfall, while anticlockwise hystereses were produced for short- and long-duration rainfall floods caused by low-intensity, low-volume rainfall as well as during snowmelt floods with the soil frozen and not frozen. In the mixed-use catchment, the hysteresis direction was also affected by different lag times for water reaching stream channels from areas with different land use. K + hystereses for the woodland catchment were more narrow than those for the agricultural and mixed-use catchments due to a smaller pool of K + in the woodland catchment. In all streams, the widest hystereses were produced for rainfall floods preceded by a long period without rainfall.

  14. Defining the sources of low-flow phosphorus transfers in complex catchments.

    PubMed

    Arnscheidt, J; Jordan, P; Li, S; McCormick, S; McFaul, R; McGrogan, H J; Neal, M; Sims, J T

    2007-08-15

    Nutrient transfers from the land to rivers have the potential to cause persistent eutrophic impacts at low flows even though the transfers may constitute a minor percentage of total annual fluxes. In rural catchments, the contribution from agricultural soils during storm events can be particularly large and untangling the relative contributions from multiple sources that vary in time and space is especially problematic. In this study, the potential for domestic septic tank system pollution during low flows was investigated in 3 small catchments (3 to 5 km(2)) using an integrated series of methods. These included septic system surveys, continuous (10 min) total phosphorus (TP) monitoring at the outlet of each catchment, repeated low-flow water quality surveys in sub-catchments upstream of the catchment outlets and single day river-walk water quality surveys. A series of faecal matter and grey-water fingerprinting techniques were also employed. These included determining sterol ratios in stream sediments, monitoring the presence of proteins, E. coli and enterococci bacterial signatures and boron. The total density and density of poorly maintained septic systems mirrored the magnitude of frequent TP concentrations in the catchments although this relationship was less apparent in the nested sub-catchments. The exception was possibly related to the simple hydraulics in one particular catchment and indicated temporary effluent attenuation in the other catchments. Repeated low-flow and river-walk water quality surveys highlighted discrete areas and reaches where stepped changes in nutrient concentration occurred. Bio-chemical fingerprinting showed that between 7% and 27% of sediments were contaminated with human faecal material and correlation matrices indicated that, at least during low flows, P fractions were positively correlated with some markers of faecal and grey-water contamination.

  15. Focal mechanisms and inter-event times of low-frequency earthquakes reveal quasi-continuous deformation and triggered slow slip on the deep Alpine Fault

    NASA Astrophysics Data System (ADS)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.

    2018-02-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the stresses acting on a major transpressive margin prior to an anticipated great (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault late in its typical ∼300-yr seismic cycle. We analyse a continuous seismic dataset recorded between 2009 and 2016 using a network of 10-13 short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine, allowing the detection of similar signals corresponding to LFE families sharing common locations. This yields an 8-yr catalogue containing 10,000 LFEs that are combined for each of the 14 LFE families using phase-weighted stacking to produce signals with the highest possible signal-to-noise ratios. We show that LFEs occur almost continuously during the 8-yr study period and highlight two types of LFE distributions: (1) discrete behaviour with an inter-event time exceeding 2 min; (2) burst-like behaviour with an inter-event time below 2 min. We interpret the discrete events as small-scale frequent deformation on the deep extent of the Alpine Fault and LFE bursts (corresponding in most cases to known episodes of tremor or large regional earthquakes) as brief periods of increased slip activity indicative of slow slip. We compute improved non-linear earthquake locations using a 3-D velocity model. LFEs occur below the seismogenic zone at depths of 17-42 km, on or near the hypothesised deep extent of the Alpine Fault. The first estimates of LFE focal mechanisms associated with continental faulting, in conjunction with recurrence intervals, are consistent with quasi-continuous shear faulting on the deep extent of the Alpine Fault.

  16. Application of quantitative composite fingerprinting technique to identify the main sediment sources in two small catchments of Iran

    NASA Astrophysics Data System (ADS)

    Kouhpeima, A.; Feiznia, S.; Ahmadi, H.; Hashemi, S. A.; Zareiee, A. R.

    2010-09-01

    The targeting of sediment management strategies is a key requirement in developing countries including Iran because of the limited resources available. These targeting is, however hampered by the lack of reliable information on catchment sediment sources. This paper reports the results of using a quantitative composite fingerprinting technique to estimate the relative importance of the primary potential sources within the Amrovan and Royan catchments in Semnan Province, Iran. Fifteen tracers were first selected for tracing and samples were analyzed in the laboratory for these parameters. Statistical methods were applied to the data including nonparametric Kruskal-Wallis test and Differentiation Function Analysis (DFA). For Amrovan catchment three parameters (N, Cr and Co) were found to be not significant in making the discrimination. The optimum fingerprint, comprising Oc, PH, Kaolinite and K was able to distinguish correctly 100% of the source material samples. For the Royan catchment, all of the 15 properties were able to distinguish between the six source types and the optimum fingerprint provided by stepwise DFA (Cholorite, XFD, N and C) correctly classifies 92.9% of the source material samples. The mean contributions from each sediment source obtained by multivariate mixing model varied at two catchments. For Amrovan catchment Upper Red formation is the main sediment sources as this sediment source approximately supplies 36% of the reservoir sediment whereas the dominant sediment source for the Royan catchment is from Karaj formation that supplies 33% of the reservoir sediments. Results indicate that the source fingerprinting approach appears to work well in the study catchments and to generate reliable results.

  17. Using hydrochemical tracers to conceptualise hydrological function in a larger scale catchment draining contrasting geologic provinces

    NASA Astrophysics Data System (ADS)

    Capell, R.; Tetzlaff, D.; Malcolm, I. A.; Hartley, A. J.; Soulsby, C.

    2011-09-01

    SummaryA year-long multivariate tracer study in the 749 km 2 catchment of the North-Esk in north east Scotland was carried out to infer the dominant runoff generation processes in two markedly different geologic provinces. The upper 60% of the catchment has montane headwaters dominated by impermeable metamorphic rocks, steep topography, peaty soils and a sub-arctic climate with over 1400 mm of precipitation. The lowlands of the catchment are underlain by a major sandstone aquifer, and mainly have freely draining, fertile soils that support intensive arable farming under a drier climate with around 800 mm of precipitation. Storm runoff in the uplands is dominated by near-surface processes in soils and sedimentary layers which generate around 60% of annual stream flows with water of low alkalinity and ionic strength. In contrast, tributaries in the lower parts of the catchment are dominated by groundwater-fed base flows which account for 75% of annual runoff and are characterised by alkaline waters with high concentrations of base cations and high levels of nitrate. Multivariate statistical methods were used to derive a generic typology of catchment source waters, their spatial and temporal dynamics and particularly, how they integrate together at the larger catchment scale. The uplands dominate the winter high flow response of the whole catchment. The influence of lowland groundwater from major aquifers becomes more apparent under low flows. However, groundwater from small upland aquifers plays a critical role for ecosystem service in dry periods providing baseflows which dilute pollutant inputs from lowland areas at the large catchment scale.

  18. Modeling nonlinear responses of DOC transport in boreal catchments in Sweden

    NASA Astrophysics Data System (ADS)

    Kasurinen, Ville; Alfredsen, Knut; Ojala, Anne; Pumpanen, Jukka; Weyhenmeyer, Gesa A.; Futter, Martyn N.; Laudon, Hjalmar; Berninger, Frank

    2016-07-01

    Stream water dissolved organic carbon (DOC) concentrations display high spatial and temporal variation in boreal catchments. Understanding and predicting these patterns is a challenge with great implications for water quality projections and carbon balance estimates. Although several biogeochemical models have been used to estimate stream water DOC dynamics, model biases common during both rain and snow melt-driven events. The parsimonious DOC-model, K-DOC, with 10 calibrated parameters, uses a nonlinear discharge and catchment water storage relationship including soil temperature dependencies of DOC release and consumption. K-DOC was used to estimate the stream water DOC concentrations over 5 years for eighteen nested boreal catchments having total area of 68 km2 (varying from 0.04 to 67.9 km2). The model successfully simulated DOC concentrations during base flow conditions, as well as, hydrological events in catchments dominated by organic and mineral soils reaching NSEs from 0.46 to 0.76. Our semimechanistic model was parsimonious enough to have all parameters estimated using statistical methods. We did not find any clear differences between forest and mire-dominated catchments that could be explained by soil type or tree species composition. However, parameters controlling slow release and consumption of DOC from soil water behaved differently for small headwater catchments (less than 2 km2) than for those that integrate larger areas of different ecosystem types (10-68 km2). Our results emphasize that it is important to account for nonlinear dependencies of both, soil temperature, and catchment water storage, when simulating DOC dynamics of boreal catchments.

  19. Glacial flour in lacustrine sediments: Records of alpine glaciation in the western U.S.A. during the last glacial interval

    NASA Astrophysics Data System (ADS)

    Rosenbaum, J. G.; Reynolds, R. L.

    2010-12-01

    Sediments in Bear Lake (UT/ID) and Upper Klamath Lake (OR) contain glacial flour derived during the last glacial interval from the Uinta Mountains and the southern Cascade Range, respectively. Magnetic properties provide measures of glacial-flour content and, in concert with elemental and grain-size analyses, yield high-resolution records of glacial growth and decay. Creation and preservation of such records requires that (1) properties of glacial flour contrast with those of other sedimentary components and (2) magnetic minerals are neither formed nor destroyed after deposition. In the Bear Lake watershed, glaciers were confined to a small headwater area of the Bear River underlain by hematite-rich rocks of the Uinta Mountain Group (UMG), which are not exposed elsewhere in the catchment. Because UMG detritus is abundant only in Bear Lake sediments of glacial age, hard isothermal remanent magnetization (a measure of hematite content) provides a proxy for glacial flour. In contrast, the entire Upper Klamath Lake catchment, which lies to the east of the Cascade Range in southern Oregon, is underlain largely by basalt and basaltic andesite. Magnetic properties of fresh titanomagnetite-rich rock flour from glaciers on a composite volcano contrast sharply with those of detritus from unglaciated areas in which weathering destroyed some of the titanomagnetite. Ideally, well-dated records of the flux of glacial flour can be compared to ages of glacial features (e.g., moraines). For Upper Klamath Lake, quantitative measures of rock-flour content (from magnetic properties) and excellent chronology allow accurate calculation of flux. However, ages of glacial features are lacking and mafic volcanic rocks, which weather rapidly in this environment, are not well suited for cosmogenic exposure dating. At Bear Lake, estimates of glacial-flour content are less quantitative and chronology within the glacial interval must be interpolated from radiocarbon ages above and below the glacial-age sediments, but cosmogenic dating (by Laabs et al.) of highly resistant quartzite boulders provide ages from terminal moraines in the Bear River drainage. Glacial flour appears abruptly at ~26 cal ka in Bear Lake, whereas it is present at the base of the Upper Klamath Lake core (~37 cal ka). Both glacial flour records (1) contain millennial-scale variations (uncertainties in chronology prevent precise correlation of these features), (2) attain maxima circa 19 cal ka, and (3) rapidly decline beginning prior to 18 cal ka. At Bear Lake the age of the decline in glacial flour coincides with cosmogenic exposure ages (18.1 - 18.7 ka) of terminal moraines in the upper Bear River valley. This concurrence supports the interpretation that the maximum amount and subsequent decrease in glacial flour are indicative of maximum glacial extent and glacial retreat, respectively, and more generally that increases and decreases in rock flour in these lake sediments represent waxing and waning of glaciers. Laabs, B,J.C., et al., 2007, Chronology of the last glacial maximum in the upper Bear River basin, Utah, Arctic and Alpine Research, v. 39, p. 537 - 548.

  20. Cumulative effects analysis of the water quality risk of herbicides used for site preparation in the Central North Island, New Zealand

    Treesearch

    Dan Neary; Brenda R. Baillie

    2016-01-01

    Herbicide use varies both spatially and temporally within managed forests. While information exists on the effects of herbicide use on water quality at the site and small catchment scale, little is known about the cumulative effects of herbicide use at the landscape scale. A cumulative effects analysis was conducted in the upper Rangitaiki catchment (118,345...

  1. Comparison of Multi-Scale Digital Elevation Models for Defining Waterways and Catchments Over Large Areas

    NASA Astrophysics Data System (ADS)

    Harris, B.; McDougall, K.; Barry, M.

    2012-07-01

    Digital Elevation Models (DEMs) allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS) techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment) including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas) are adequate for the creation of waterways and catchments at a regional scale.

  2. Spatial characterization of catchment dispersion mechanisms in an urban context

    NASA Astrophysics Data System (ADS)

    Rossel, Florian; Gironás, Jorge; Mejía, Alfonso; Rinaldo, Andrea; Rodriguez, Fabrice

    2014-12-01

    Previous studies have examined in-depth the dispersion mechanisms in natural catchments. In contrast, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. This has the ability to modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. The U-McIUH computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment in France as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion in the catchment, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further study with other catchments is needed to asses if the latter is a general feature of urban drainage networks.

  3. Elucidating Critical Zone Process Interactions with an Integrated Hydrology Model in a Headwaters Research Catchment

    NASA Astrophysics Data System (ADS)

    Collins, C.; Maxwell, R. M.

    2017-12-01

    Providence Creek (P300) watershed is an alpine headwaters catchment located at the Southern Sierra Critical Zone Observatory (SSCZO). Evidence of groundwater-dependent vegetation and drought-induced tree mortality at P300 along with the effect of subsurface characterization on mountain ecohydrology motivates this study. A hyper resolution integrated hydrology model of this site, along with extensive instrumentation, provides an opportunity to study the effects of lateral groundwater flow on vegetation's tolerance to drought. ParFlow-CLM is a fully integrated surface-subsurface model that is driven with reconstructed meteorology, such as the North American Land Data Assimilation System project phase 2 (NLDAS-2) dataset. However, large-scale data products mute orographic effects on climate at smaller scales. Climate variables often do not behave uniformly in highly heterogeneous mountain regions. Therefore, forcing physically-based integrated hydrologic models—especially of mountain headwaters catchments—with a large-scale data product is a major challenge. Obtaining reliable observations in complex terrain is challenging and while climate data products introduce uncertainties likewise, documented discrepancies between several data products and P300 observations suggest these data products may suffice. To tackle these issues, a suite of simulations was run to parse out (1) the effects of climate data source (data products versus observations) and (2) the effects of climate data spatial variability. One tool for evaluating the effect of climate data on model outputs is the relationship between latent head flux (LH) and evapotranspiration (ET) partitioning with water table depth (WTD). This zone of LH sensitivity to WTD is referred to as the "critical zone." Preliminary results suggest that these critical zone relationships are preserved despite forcing albeit significant shifts in magnitude. These results demonstrate that integrated hydrology models are sensitive to climate data thereby impacting the accuracy of hydrologic modeling of headwaters catchments used for water management and planning purposes and exploring the effects of climate change perturbations.

  4. Multi-approach quantification of denudation rates in the Gulf of Lion source-to-sink system (SE France)

    NASA Astrophysics Data System (ADS)

    Molliex, S.; Rabineau, M.; Leroux, E.; Bourlès, D. L.; Authemayou, C.; Aslanian, D.; Chauvet, F.; Civet, F.; Jouët, G.

    2016-06-01

    During the Pliocene and the Quaternary, the Gulf of Lion, the northern passive margin of the Liguro-Provençal basin in the western Mediterranean Sea, received sediments from a 120 000 km2 drainage area constituted by several structural domains. The denudation of mountainous areas, source of this sedimentary supply, results from complex interactions between tectonics, climate, morphology, and rock erodibility. In this study, denudation rates from the present-day and ranging back to the Quaternary and the Pliocene are quantified using four independent methods allowing an investigation over different time scales: 1) compilation of present-day measured sediment fluxes, 2) determination of catchment-scale cosmogenic denudation rates through measurements of in situ-produced 10Be concentrations in sands sampled at the outlet of present-day rivers, 3) estimation of eroded volumes within catchments using a DEM to quantify long-term averaged Quaternary denudation rates, and 4) quantification of sediment volumes deposited within the marine realm of the Gulf of Lion. The results obtained by these four methods are in agreement within the range of uncertainties. The internal part of the Alps exhibits significantly higher denudation rates (∼700 mm ka-1) than those estimated in the other structural domains: 150-250 mm ka-1 in the foreland Alps, ∼100 mm ka-1 in the Pyrenees, and 55-75 mm ka-1 in the Massif Central. The Alpine domain provides at least 80% of the total eroded volume supplied towards the Gulf of Lion. A quantitative geomorphological approach shows that denudation rates are controlled at the first order by catchment morphologies (slope, relief) over different time scales, suggesting glacial conditioning to be the main driver on denudation from the Quaternary to present-day. Throughout the Pliocene-Quaternary, a doubling of denudation rates related to the mid-Pleistocene Revolution (∼0.9 Ma) is highlighted.

  5. Variability in snow-depth time series within the Adige catchment

    NASA Astrophysics Data System (ADS)

    Marcolini, Giorgia; Bellin, Alberto; Disse, Markus; Gabriele, Chiogna

    2017-04-01

    Snow cover extension and duration is particularly sensitive to climate change because strongly influenced by changes in temperature and precipitation. It affects the hydrological cycle of Alpine catchments as well as many other aspects of life in mountainous regions, such as ecosystem functioning and economy. Despite its relevance, variability in snow related parameters has not been investigated in the Southern side of the Alps as extensively as in the Northern side of the Alps. In this work, we investigate the temporal variability of mean seasonal snow depth (computed by averaging the daily snow depth in the period 1 November-30 April between two following years) and of snow cover duration (defined, similarly, as the number of days in the period 1 November-30 April with snow depth higher than 30 cm) for the homogeneous stations within the Adige catchment (North-East Italy) by using wavelets transform. We focus our analysis on the period 1980-2010, which with 37 time series is the richest of data and we group the stations in four elevation classes (below 1350 m a.s.l., between 1350 m a.s.l. and 1650 m a.s.l., between 1650 m a.s.l. and 2000 m a.s.l. and above 2000 m a.s.l.). Stations located above and below 1650 m a.s.l. show different behaviors, with the latter showing in the last decades a larger reduction of mean seasonal snow depth and snow cover duration, than the former. We also observe that starting from the late '80s snow cover duration and mean seasonal snow depth display values below the average in the study area, confirming the observations performed in other regions of the Alps. We also find an elevation-dependent correlation between the increase in winter teperature and snow cover extension and duration.

  6. Significant or negligible sediment and nutrient losses after fire? Pre- and post-fire comparisons

    NASA Astrophysics Data System (ADS)

    Shakesby, R. A.; Ferreira, A. J. D.; Ferreira, C. S. S.; Stoof, C. R.; Urbanek, E.; Walsh, R. P. D.

    2009-04-01

    Prescribed fire (or a controlled burn) is a management tool used in wildfire-prone areas to reduce the fuel load of living and dead biomass, while attempting to keep disturbance of the ground surface and soil to a minimum. We know that wildfire, particularly of moderate or extreme severity, can cause important changes to the chemical and physical properties of soil, typically leading to a reduction in aggregate stability, surface roughness and water storage capacity, and an increase in overland flow. It has also been shown that wildfire disturbance can cause major loss of soil, particularly at plot and hillslope scales. There is less information on soil losses at catchment scales, but it is known that losses particularly of organic-rich fine sediment and nutrients can undergo hillslope to channel transfer, where they can affect water quality. Far less research has been carried out into the effects of prescribed fire on soil and nutrient losses at all scales, but particularly at catchment scales. This paper considers the impact of an experimental fire (equivalent to a severe prescribed fire) on soil and nutrient losses. These losses have been monitored at a range of scales (small rainfall simulation plots, long-term erosion plot, erosion plot, hillslope sediment traps (sediment fences) and catchment) before and after the fire in a 10-ha catchment near Góis, central Portugal, which forms part of the 5-year DESIRE research programme concerning desertification and its mitigation at a range of study sites worldwide. The catchment has steep slopes covered mainly with scrub vegetation ranging from c. 0.15 to 2m in height. The soil is thin, stony and highly water repellent. Long-term pre-burn erosion rates are known from a c. 10-year record of soil losses from a small erosion plot (8 x 2m in size) and sediment accumulation in the weir pool of a subcatchment gauging station. Rainfall simulations carried out under dry and wet antecedent conditions before and after the fire, eroded soil collected in sediment fences installed in strategic locations on the catchment slopes and suspended sediment and bedload determinations at the catchment gauging station provide the evidence for pre- and post-fire erosional losses. Comparison with wildfire effects is provided by instrumented scrub-covered hillslopes burnt in early summer 2008 in the same area. In addition to monitoring soil losses in the small catchment, losses of selected nutrients in eroded soil and runoff together with determinations of pre- and post-fire vegetation cover, fuel loads and soil water repellency have been determined. The soil degradational implications are discussed and placed in the context of the literature on prescribed fire and wildfire impacts from elsewhere in the Mediterranean and from further afield.

  7. Lessons learned for applying a paired-catchment approach in drought analysis

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Rangecroft, Sally; Coxon, Gemma; Agustín Breña Naranjo, José; Van Ogtrop, Floris; Croghan, Danny; Van Lanen, Henny

    2017-04-01

    Ongoing research is looking to quantify the human impact on hydrological drought using observed data. One potentially suitable method is the paired-catchment approach. Paired catchments have been successfully used for quantifying the impact of human actions (e.g. forest treatment and wildfires) on various components of a catchment's water balance. However, it is unclear whether this method could successfully be applied to drought. In this study, we used a paired-catchment approach to quantify the effects of reservoirs, groundwater abstraction and urbanisation on hydrological drought in the UK, Mexico, and Australia. Following recommendations in literature, we undertook a thorough catchment selection and identified catchments of similar size, climate, geology, and topography. One catchment of the pair was affected by either reservoirs, groundwater abstraction or urbanisation. For the selected catchment pairs, we standardised streamflow time series to catchment area, calculated a drought threshold from the natural catchment and applied it to the human-influenced catchment. The underlying assumption being that the differences in drought severity between catchments can then be attributed to the anthropogenic activity. In some catchments we had local knowledge about human influences, and therefore we could compare our paired-catchment results with hydrological model scenarios. However, we experienced that detailed data on human influences usually are not well recorded. The results showed us that it is important to account for variation in average annual precipitation between the paired catchments to be able to transfer the drought threshold of the natural catchment to the human-influenced catchment. This can be achieved by scaling the discharge by the difference in annual average precipitation. We also found that the temporal distribution of precipitation is important, because if meteorological droughts differ between the paired catchments, this may mask changes caused by human activities. This issue can generally be overcome by selecting adjacent or nearby catchments. Finally, we found that geology is much more important for paired-catchment analysis of drought than we anticipated based upon the experiences in flood research. For example, in two of the UK pairs, we could not use the results due to differences in geology overruling the human influence. We learned that in the selection of catchments for drought analysis, (hydro)geology should be considered in even more detail. Taking these aspects into account, we concluded that the paired-catchment approach works for evaluating the effects of reservoirs and groundwater abstraction on streamflow drought, but is more challenging for urbanisation. The reasons are more problems in catchment selection, lack of results, and complexity of processes making attribution more difficult. Urbanisation is not a simple land cover change influencing only infiltration and runoff, but it involves all kinds of indirect effects, such as artificial inputs (drainage, sewage return flows) that are very important during low flow periods. For this we would suggest starting in small, well-measured urban catchments, of which all artificial inputs are known. We believe that with the careful selection criteria and accounting for variations in climate and landscape, there is scope for using a paired-catchment approach in hydrological drought research.

  8. Mercury bioaccumulation in fishes from subalpine lakes of the Wallowa-Whitman National Forest, northeastern Oregon and western Idaho

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2013-01-01

    Mercury (Hg) is a globally distributed pollutant that poses considerable risks to human and wildlife health. Over the past 150 years since the advent of the industrial revolution, approximately 80 percent of global emissions have come from anthropogenic sources, largely fossil fuel combustion. As a result, atmospheric deposition of Hg has increased by up to 4-fold above pre-industrial times. Because of their isolation, remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited Hg through freshwater food webs, as well as for evaluating the relative importance of Hg loading versus landscape influences on Hg bioaccumulation. The increase in Hg deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in Hg emissions may propagate to changes in Hg bioaccumulation and ecological risk. In this study, we evaluated Hg concentrations in fishes of high-elevation, sub-alpine lakes in the Wallowa-Whitman National Forest in northeastern Oregon and western Idaho. Our goals were to (1) assess the magnitude of Hg contamination in small-catchment lakes to evaluate the risk of atmospheric Hg to human and wildlife health, (2) quantify the spatial variability in fish Hg concentrations, and (3) determine the ecological, limnological, and landscape factors that are best correlated with fish total mercury (THg) concentrations in these systems. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. Importantly, our top statistical model explained 87 percent of the variability in fish THg concentrations among lakes with four key landscape and limnological variables— catchment conifer density (basal area of conifers within a lake’s catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. The basal area of conifers within a lake’s catchment was by far the most important variable explaining fish THg concentrations, with an increase in THg concentrations of more than 400 percent across the forest density spectrum. Across all study lakes, fish THg concentrations ranged from 0.004 to 0.438 milligrams per kilogram wet weight (mg/kg ww). Only a single individual fish sample exceeded the U.S. Environmental Protection Agency’s (USEPA) human health tissue residue criteria of 0.3 mg/kg ww. However, 54 percent of fish (N=177) exceeded the more stringent tissue residue criteria (0.04 mg/kg ww) adopted by the Oregon Department of Environmental Quality to better protect subsistence fishers. Additionally, 2 and 10 percent of fish exceeded levels associated with reduced common loon reproduction and behavior, respectively. Whereas 25 and 68 percent of fish sampled exceeded concentrations deemed protective of mink and kingfisher, respectively. These results suggest that THg concentrations may be present in these lakes at levels associated with ecological risk. It is important to note however, that accurate inference on potential impairment cannot be made within the context of this study design and further research is needed to better quantify these risks.

  9. Hydrological impact of high-density small dams in a humid catchment, Southeast China

    NASA Astrophysics Data System (ADS)

    Lu, W.; Lei, H.; Yang, D.

    2017-12-01

    The Jiulong River basin is a humid catchment with a drainage area of 14,741 km2; however, it has over 1000 hydropower stations within it. Such catchment with high-density small dams is scarce in China. Yet few is known about the impact of high-density small dams on streamflow changes. To what extent the large number of dams alters the hydrologic patterns is a fundamental scientific issue for water resources management, flood control, and aquatic ecological environment protection. Firstly, trend and change point analyses are applied to determine the characteristics of inter-annual streamflow. Based on the detected change point, the study period is divided into two study periods, the ``natural'' and ``disturbed'' periods. Then, a geomorphology-based hydrological model (GBHM) and the fixing-changing method are adopted to evaluate the relative contributions of climate variations and damming to the changes in streamflow at each temporal scale (i.e., from daily, monthly to annual). Based on the simulated natural streamflow, the impact of dam construction on hydrologic alteration and aquatic ecological environment will be evaluated. The hydrologic signatures that will be investigated include flood peak, seasonality of streamflow, and the inter-annual variability of streamflow. In particular, the impacts of damming on aquatic ecological environment will be investigated using eco-flow metrics and indicators of hydrologic alteration (IHA) which contains 33 individual streamflow statistics that are closely related to aquatic ecosystem. The results of this study expect to provide a reference for reservoir operation considering both ecological and economic benefits of such operations in the catchment with high-density dams.

  10. Runoff simulation sensitivity to remotely sensed initial soil water content

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Schmugge, T. J.; Jackson, T. J.; Unkrich, C. L.; Keefer, T. O.; Parry, R.; Bach, L. B.; Amer, S. A.

    1994-05-01

    A variety of aircraft remotely sensed and conventional ground-based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground-based point methods were used to define prestorm initial SW for a distributed rainfall-runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km2) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin-wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite-based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.

  11. Snowmelt in a High Latitude Mountain Catchment: Effect of Vegetation Cover and Elevation

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Essery, R. L.; Ellis, C. R.; Hedstrom, N. R.; Janowicz, R.; Granger, R. J.

    2004-12-01

    The energetics and mass balance of snowpacks in the premelt and melt period were compared from three elevation bands in a high latitude mountain catchment, Wolf Creek Research Basin, Yukon. Elevation is strongly correlated with vegetation cover and in this case the three elevation bands (low, middle, high) correspond to mature spruce forest, dense shrub tundra and sparse tundra (alpine). Measurements of radiation, ground heat flux, snow depth, snowfall, air temperature, wind speed were made on a half-hourly basis at the three elevations for a 10 year period. Sondes provided vertical gradients of air temperature, humidity, wind speed and air pressure. Snow depth and density surveys were conducted monthly. Comparisons of wind speed, air temperature and humidity at three elevations show that the expected elevational gradients in the free atmosphere were slightly enhanced just above the surface canopies, but that the climate at the snow surface was further influenced by complex canopy effects. Premelt snow accumulation was strongly affected by intercepted snow in the forest and blowing snow sublimation in the sparse tundra but not by the small elevational gradients in snowfall. As a result the maximum premelt SWE was found in the mid-elevation shrub tundra and was roughly double that of the sparse tundra or forest. Minimum variability of SWE was observed in the forest and shrub tundra (CV=0.25) while in the sparse tundra variability doubled (CV=0.5). Snowmelt was influenced by differences in premelt accumulation as well as differences in the net energy fluxes to snow. Elevation had a strong effect on the initiation of melt with the forest melt starting on average 16 days before the shrub tundra and 19 days before the sparse tundra. Mean melt rates showed a maximum in middle elevations and increased from 860 kJ/day in the forest to 1460 kJ/day in the sparse tundra and 2730 kJ/day in the shrub tundra. The forest canopy reduced melt while the shrub canopy enhanced it relative to the sparsely vegetated tundra. Duration of melt was similar in the forest and shrub tundra at 20 days while the sparse tundra was shorter at 13 days; the differences due to differing snow accumulation and melt rates. The greatest variability in the timing and rate of melt was found in the shrub tundra, where the effect of the shrub canopy over snow depends on snow depth and insolation and is reduced in years with high snow accumulation or extensive cloudy periods in spring. The results show that it is necessary to consider the combination of elevation and vegetation effects on snow microclimate and melt processes in high latitude mountain catchments, but that weather patterns induce substantial variability on the effect these factors.

  12. Using damage data to estimate the risk from summer convective precipitation extremes

    NASA Astrophysics Data System (ADS)

    Schroeer, Katharina; Tye, Mari

    2017-04-01

    This study explores the potential added value from including loss and damage data to understand the risks from high-intensity short-duration convective precipitation events. Projected increases in these events are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows, and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to this, not only are extreme events rare, but such small-scale events are likely to be underreported where they do not coincide with the observation network. Reports of private loss and damage on a local administrative unit scale (LAU 2 level) are used to explore the relationship between observed rainfall events and damages reportedly related to hydro-meteorological processes. With 480 Austrian municipalities located within our south-eastern Alpine study region, the damage data are available on a much smaller scale than the available rainfall data. Precipitation is recorded daily at 185 gauges and 52% of these stations additionally deliver sub-hourly rainfall information. To obtain physically plausible information, damage and rainfall data are grouped and analyzed on a catchment scale. The data indicate that rainfall intensities are higher on days that coincide with a damage claim than on days for which no damage was reported. However, approximately one third of the damages related to hydro-meteorological hazards were claimed on days for which no rainfall was recorded at any gauge in the respective catchment. Our goal is to assess whether these events indicate potential extreme events missing in the observations. Damage always is a consequence of an asset being exposed and susceptible to a hazardous process, and naturally, many factors influence whether an extreme rainfall event causes damage. We set up a statistical model to test whether the relationship between extreme rainfall events and damages is robust enough to estimate a potential underrepresentation of high intensity rainfall events in ungauged areas. Risk-relevant factors of socio-economic vulnerability, land cover, streamflow data, and weather type information are included to improve and sharpen the analysis. Within this study, we first aim to identify which rainfall events are most damaging and which factors affect the damages - seen as a proxy for the vulnerability - related to summer convective rainfall extremes in different catchment types. Secondly, we aim to detect potentially unreported damaging rainfall events and estimate the likelihood of such cases. We anticipate this damage perspective on summertime extreme convective precipitation to be beneficial for risk assessment, uncertainty management, and decision making with respect to weather and climate extremes on the regional-to-local level.

  13. Geochemistry of surface-waters in mineralized and non-mineralized areas of the Yukon-Tanana Uplands

    USGS Publications Warehouse

    Wang, B.; Wanty, R.B.; Vohden, J.

    2005-01-01

    The U.S. Geological Survey (USGS) and Alaska Department of Natural Resources (ADNR) are continuing investigations on element mobility in mineralized and non-mineralized areas of the Yukon-Tanana Upland in east-central Alaska. The chemistry of stream water is evaluated in the context of regional bedrock geology and geologic structure. Sampling sites were located in the Big Delta B2 quadrangle, which includes the mineralized areas of the Pogo claim block. The area is typified by steep, subarctic-alpine, boreal forest catchment basins. Samples were collected from catchments that either cross structural features and lithologic contacts, or are underlain by a single lithology. Waters are generally dilute (< 213 mg/L TDS), and are classified as Ca2+ and Mg2+-HCO3- to Ca2+ and Mg2+-SO42- waters. Gneissic lithologies are more SO42- dominated than the intrusive units. The major-ion chemistry of the waters reflects a rock-dominated aqueous system. Trace-element concentrations in water are generally low; however, As and Sb are detected near mineralized areas but in most cases rapidly attenuated downstream and processes other than simple dilution are controlling the concentrations of these trace elements. There is a tendency toward increasing SO42- concentrations downstream in waters both proximal and distal to mineralized areas. More work is necessary to determine what proportion of the increase in SO42- could be derived from the oxidation of sulfide minerals as opposed to water influenced by the underlying gneissic units.

  14. Water chemistry in the rives of the permafrost regions on the eastern Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wu, X.; Ma, X.; Ye, L.; Liu, G.

    2017-12-01

    Qinghai-Tibetan is the largest middle-low latitude permafrost areas on the world. There are several large rivers in the plateau, and the changes of the water resources of these rivers are associated with the water resource security of more than 1.35 billion people. Due to the high gradients, these rivers have a tremendous amount of potential energy for electricity output. To promote economic and social development and provide clean energy, hydropower development has taken place on several rivers which originate on the Qinghai-Tibetan Plateau. Since dam construction affect the flow velocity, water temperature, sediments delivery as well as organic matter and nitrogen, it is important to investigate the river chemistry in the head rivers of the reservoirs. We examined the water physio-chemical characteristics in the rivers under the typical vegetation types in the eastern Qinghai-Tibetan Plateau, and further analyzed their relationship to vegetation. The results showed that the total suspended sediment in the rivers were higher within the catchment of alpine steppe, with the lowest dissolved organic carbon content. In contrast, the rivers within the meadow had the highest dissolved organic carbon and lowest total suspension sediment. The dissolved organic carbon significantly positively correlated with the proportions of the meadow and wet meadow in the catchment. The pH, turbidity, and SUVA254 and dissolved organic carbon also correlated with each other. The results suggest that the vegetation type strongly affect the water chemistry in the permafrost regions on the Qinghai-Tibetan Plateau.

  15. The burying and grazing effects of plateau pika on alpine grassland are small: a pilot study in a semiarid basin on the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Yi, Shuhua; Chen, Jianjun; Qin, Yu; Xu, Gaowei

    2016-11-01

    There is considerable controversy about the effects of plateau pika (Ochotona curzoniae, hereafter pika) on alpine grassland on the Qinghai-Tibet Plateau (QTP). On the one hand, pika is considered a keystone species. On the other hand, it is being poisoned. Although significant efforts have been made to study the effects of pika at a quadrat scale ( ˜ m2), our knowledge about its distribution and effects at a larger scale is very limited. In this study, we investigated the direct effects, i.e., burying and grazing, of pika by upscaling field sampling at a quadrat scale to a plot scale ( ˜ 1000 m2) by aerial photographing. Altogether 168 plots were set on four different types of alpine grassland in a semiarid basin on the QTP. Results showed that (1) the effects of pika pile burying on the reduction of vegetation cover, biomass, soil carbon, and nitrogen were less than 10 %, which was much smaller than the effects of bald patches; and (2) pika consumed 8-21 % of annual net primary production of grassland. We concluded that the direct burying and grazing effects of pika on alpine grassland were minor in this region. The quadcopter is an efficient and economic tool for long-term repeated monitoring over large regions for further understanding the role of pika.

  16. Climate Change in Alpine Regions - Regional Characteristics of a Global Phenomenon by the Example of Air Temperature

    NASA Astrophysics Data System (ADS)

    Lang, Erich; Stary, Ulrike

    2017-04-01

    For nearly 50 years the Austrian Research Centre for Forests (BFW) has been engaged in research in the Alpine region recording measuring data at extreme sites. Data series of this duration provide already a good insight into the evolution of climate parameters. Extrapolations derived from it are suitable for comparison with results from climate change models or supplement them with regard to their informative value. This is useful because climate change models describe a simplified picture of reality based on the size of the data grid they use. Analysis of time series of two air temperature measuring stations in different torrent catchment areas indicate that 1) predictions of temperature rise for the Alpine region in Austria will have to be revised upwards, and 2) only looking at the data of seasons (or shorter time periods), reveals the real dramatic effect of climate change. Considering e.g. the annual average data of air temperature of the years 1969-2016 at the climate station "Fleissner" (altitude 1210m a.s.l; Upper Mölltal, Carinthia) a significant upward trend is visible. Using a linear smoothing function an increase of the average annual air temperature of about 2.2°C within 50 years emerges. The calculated temperature rise thus confirms the general fear of an increase of more than 2.0°C till the middle of the 21st century. Looking at the seasonal change of air temperature, significant positive trends are shown in all four seasons. But the level of the respective temperature increase varies considerably and indicates the highest increase in spring (+3.3°C), and the lowest one in autumn (+1.3°C, extrapolated for a time period of 50 years). The maximum increase of air temperature at the measuring station "Pumpenhaus" (altitude 980m a.s.l), which is situated in the "Karnische Alpen" in the south of Austria, is even stronger. From a time series of 28 years (with data recording starting in 1989) the maximum rise of temperature was 5.4°C detected for the summer (calculated over a period of 50 years). The predicted overall rise in the annual average temperature within 50 years is +3.9°C, whereas the rise of temperature at the station "Fleissner", located in the "Hohen Tauern", is +2.3°C; both based on determined linear smoothing functions and for the same measuring period (1989-2016). As the effects of the calculated changes of air temperature on the alpine habitat (the entire ecosystem, natural hazards and tourism) and the characteristics of climate change vary strongly from a geographical point of view (as shown by the two examples of air temperature data), a comprehensive analysis of data series from climatic measurement stations (including precipitation, snow covering, radiation…) in the Alpine region is urgently necessary, to be able to work on targeted climate adaptation strategies for these sensitive areas.

  17. Quantifying hydrological responses of small Mediterranean catchments under climate change projections.

    PubMed

    Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Vanclooster, Marnik

    2016-02-01

    Catchment flow regimes alteration is likely to be a prominent consequence of climate change projections in the Mediterranean. Here we explore the potential effects of climatic change on the flow regime of the Thau and the Chiba catchments which are located in Southern France and Northeastern Tunisia, respectively. The Soil and Water Assessment Tool (SWAT) hydrological model is forced with projections from an ensemble of 4 climate model (CM) to assess changes and uncertainty in relevant hydrological indicators related to water balance, magnitude, frequency and timing of the flow between a reference (1971-2000) and future (2041-2071) periods. Results indicate that both catchments are likely to experience a decrease in precipitation and increase in temperature in the future. Consequently, runoff and soil water content are projected to decrease whereas potential evapotranspiration is likely to increase in both catchments. Yet uncertain, the projected magnitudes of these changes are higher in the wet period than in the dry period. Analyses of extreme flow show similar trend in both catchments, projecting a decrease in both high flow and low flow magnitudes for various time durations. Further, significant increase in low flow frequency as a proxy for hydrological droughts is projected for both catchments but with higher uncertainty in the wet period than in the dry period. Although no changes in the average timing of maximum and minimum flow events for different flow durations are projected, substantial uncertainty remains in the hydrological projections. While the results in both catchments show consistent trend of change for most of the hydrologic indicators, the overall degree of alteration on the flow regime of the Chiba catchment is projected to be higher than that of the Thau catchment. The projected magnitudes of alteration as well as their associated uncertainty vary depending on the catchment characteristics and flow seasonality. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization

    NASA Astrophysics Data System (ADS)

    Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.; Guo, L.

    2017-12-01

    Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. One of the main challenges of setting up such a system is finding appropriate model parameter values for ungauged catchments. Previous studies have shown that the transfer of parameter sets from hydrologically similar gauged catchments is one of the best performing regionalization methods. However, a remaining key issue is the identification of suitable descriptors of similarity. In this study, we use decision tree learning to explore parameter set transferability in the full space of catchment descriptors. For this purpose, a semi-distributed rainfall-runoff model is set up for 35 catchments in ten Chinese provinces. Hourly runoff data from in total 858 storm events are used to calibrate the model and to evaluate the performance of parameter set transfers between catchments. We then present a novel technique that uses the splitting rules of classification and regression trees (CART) for finding suitable donor catchments for ungauged target catchments. The ability of the model to detect flood events in assumed ungauged catchments is evaluated in series of leave-one-out tests. We show that CART analysis increases the probability of detection of 10-year flood events in comparison to a conventional measure of physiographic-climatic similarity by up to 20%. Decision tree learning can outperform other regionalization approaches because it generates rules that optimally consider spatial proximity and physical similarity. Spatial proximity can be used as a selection criteria but is skipped in the case where no similar gauged catchments are in the vicinity. We conclude that the CART regionalization concept is particularly suitable for implementation in sparsely gauged and topographically complex environments where a proximity-based regionalization concept is not applicable.

  19. Nitrogen Concentrations and Exports in Baseflow and Stormflow from Three Small Urban Catchments in Central Florida

    NASA Astrophysics Data System (ADS)

    Luo, J.; Hochmuth, G.; Clark, M. W.

    2014-12-01

    Export of nitrogen from different watersheds across the United States is receiving increasing attention due to the impairment of water quality in receiving water bodies. Researchers have indicated that different land uses exerted a substantial influence on the water quality. Nitrogen loadings on the watershed scale are being studied in many large ecosystems, such as the Baltimore Ecosystem and Arizona Ecosystem, but only a few focuses in a smaller scale such as catchment scale. Characterization of the land use in catchment scale can better explain the observed environmental phenomena under the watershed scale and enrich the related watershed studies. Nitrogen fluxes have been studied at Lake Alice watershed in Gainesville, Florida with a focus on the rarely studied catchments such as sports fields with intensive fertilization management (SFC), urban area with reclaimed water irrigation (RWC) and urban area without irrigation (CC). The entire study started from May 2013. Discharge was monitored in the three catchments by transducers every 5 minutes. Regular biweekly grab samples in the three catchments were used to estimate the baseflow N loads, composite samples in 13 storms were collected to estimate the stormflow N loads. The results showed that in the baseflow, the average NO3-N concentration in SFC was 12.19 mg/l, which was significantly different from the urban catchments. Also there was a significant difference between the NO3-N concentrations in RWC (1.17 mg/l on average) and CC (0.60 mg/l on average). A separate log-log relationship was developed between discharge and N loads to estimate the baseflow N loads and stormflow N loads. It showed that baseflow contributed more N loads than stormflow in the three catchments in the annual N load. In conclusion, the recreational catchment received the greatest N load compared to the other catchments, so it should be the priority catchment when it comes to adopting nutrient management practices in the Lake Alice watershed.

  20. Hydrogeologic controls on nitrate transport in a small agricultural catchment, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Tomer, M.D.; Zhang, Y.-K.; Weisbrod, T.; Jacobson, P.; Cambardella, C.A.

    2007-01-01

    Effects of subsurface deposits on nitrate loss in stream riparian zones are recognized, but little attention has been focused on similar processes occurring in upland agricultural settings. In this paper, we evaluated hydrogeologic controls on nitrate transport processes occurring in a small 7.6 ha Iowa catchment. Subsurface deposits in the catchment consisted of upland areas of loess overlying weathered pre-Illinoian till, drained by two ephemeral drainageways that consisted of Holocene-age silty and organic rich alluvium. Water tables in upland areas fluctuated more than 4 m per year compared to less than 0.3 m in the drainageway. Water quality patterns showed a distinct spatial pattern, with groundwater in the drainageways having lower nitrate concentrations (10 mg L-1) as wells as lower pH, dissolved oxygen and redox, and higher ammonium and dissolved organic carbon levels. Several lines of evidence suggested that conditions are conducive for denitrification of groundwater flowing from uplands through the drainageways. Field-measured nitrate decay rates in the drainageways (???0.02 day-1) were consistent with other laboratory studies and regional patterns. Results from MODFLOW and MT3DMS simulations indicated that soils in the ephemeral drainageways could process all upland groundwater nitrate flowing through them. However, model-simulated tile drainage increased both water flux and nitrate loss from the upland catchment. Study results suggest that ephemeral drainageways can provide a natural nitrate treatment system in our upland glaciated catchments, offering management opportunities to reduce nitrate delivery to streams. Copyright 2007 by the American Geophysical Union.

  1. Groundwater recharge from point to catchment scale

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Di Ciacca, Antoine; Laloy, Eric; Jacques, Diederik

    2016-04-01

    Accurate estimation of groundwater recharge is a challenging task as only a few devices (if any) can measure it directly. In this study, we discuss how groundwater recharge can be calculated at different temporal and spatial scales in the Kleine Nete catchment (Belgium). A small monitoring network is being installed, that is aimed to monitor the changes in dominant processes and to address data availability as one goes from the point to the catchment scale. At the point scale, groundwater recharge is estimated using inversion of soil moisture and/or water potential data and stable isotope concentrations (Koeniger et al. 2015). At the plot scale, it is proposed to monitor the discharge of a small drainage ditch in order to calculate the field groundwater recharge. Electrical conductivity measurements are necessary to separate shallow from deeper groundwater contribution to the ditch discharge (see Di Ciacca et al. poster in session HS8.3.4). At this scale, two or three-dimensional process-based vadose zone models will be used to model subsurface flow. At the catchment scale though, using a mechanistic, process-based model to estimate groundwater recharge is debatable (because of, e.g., the presence of numerous drainage ditches, mixed land use pixels, etc.). We therefore investigate to which extent various types of surrogate models can be used to make the necessary upscaling from the plot scale to the scale of the whole Kleine Nete catchment. Ref. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2015) Review on soil water isotope based groundwater recharge estimations. Hydrological Processes, DOI: 10.1002/hyp.10775

  2. Ensemble flood simulation for a small dam catchment in Japan using 10 and 2 km resolution nonhydrostatic model rainfalls

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo

    2016-08-01

    This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.

  3. Flash-Flood hydrological simulations at regional scale. Scale signature on road flooding vulnerability

    NASA Astrophysics Data System (ADS)

    Anquetin, Sandrine; Vannier, Olivier; Ollagnier, Mélody; Braud, Isabelle

    2015-04-01

    This work contributes to the evaluation of the dynamics of the human exposure during flash-flood events in the Mediterranean region. Understanding why and how the commuters modify their daily mobility in the Cévennes - Vivarais area (France) is the long-term objective of the study. To reach this objective, the methodology relies on three steps: i) evaluation of daily travel patterns, ii) reconstitution of road flooding events in the region based on hydrological simulation at regional scale in order to capture the time evolution and the intensity of flood and iii) identification of the daily fluctuation of the exposition according to road flooding scenarios and the time evolution of mobility patterns. This work deals with the second step. To do that, the physically based and non-calibrated hydrological model CVN (Vannier, 2013) is implemented to retrieve the hydrological signature of past flash-flood events in Southern France. Four past events are analyzed (September 2002; September 2005 (split in 2 different events); October 2008). Since the regional scale is investigated, the scales of the studied catchments range from few km2 to few hundreds of km2 where many catchments are ungauged. The evaluation is based on a multi-scale approach using complementary observations coming from post-flood experiments (for small and/or ungaugged catchments) and operational hydrological network (for larger catchments). The scales of risk (time and location of the road flooding) are also compared to observed data of road cuts. The discussion aims at improving our understanding on the hydrological processes associated with road flooding vulnerability. We specifically analyze runoff coefficient and the ratio between surface and groundwater flows at regional scale. The results show that on the overall, the three regional simulations provide good scores for the probability of detection and false alarms concerning road flooding (1600 points are analyzed for the whole region). Our evaluation procedure provides new insights on the active hydrological processes at small scales (catchments area < 10 km²) since these small scales, distributed over the whole region, are analyzed through road cuts data and post-flood field investigations. As shown in Vannier (2013), the signature of the altered geological layer is significant on the simulated discharges. For catchments under schisty geology, the simulated discharge, whatever the catchment size, is usually overestimated. Vannier, O, 2013, Apport de la modélisation hydrologique régionale à la compréhension des processus de crue en zone méditerranéenne, PhD-Thesis (in French), Grenoble University.

  4. Effects of a network of sand-storage dams on the hydrology on catchment scale

    NASA Astrophysics Data System (ADS)

    Ertsen, Maurits; Strohschein, Paul; Onencan, Abby; van de Giesen, Nick

    2015-04-01

    Water conservation is a high priority in the drier areas of sub-Saharan Africa. Storage of water from the rainy season to the dry season, or even from wet years to dry years is highly important. Small multi-purpose sub-surface water reservoirs recharged through infiltration are used to provide water for humans, livestock and crops in the Kitui region in Kenya. The groundwater dams obstruct the natural flow of water in wet seasons or periods, and provide storage of water during dry seasons or periods. This paper links the hydrology of the sand-storage dams to human agency. When is a dam a success in hydrological terms? When it provides water every year? Every two years? How many months? What happens in very dry years? Obviously, water use will decrease the water volume and thus the water level upstream of the dam, but to what extent typically depends on the amounts used compared to the size of the dam and the water use itself. Longer-term effects on groundwater levels to be expected depend strongly on the way the water is used. Household water use and river banks infiltration increasing seasonal storage can go hand in hand. However, when water in dams is used for higher water demanding activities such as (motorized) irrigation, the infiltration effect into banks may be minimal. A dam can also be "too effective" and decrease water availability for water users further downstream. It is unlikely, however, that an individual farmer will effect on the downstream users of the resources he/she is tapping, but a network of dams as in Kitui may have considerable effect. Measurements indicate that only about 2% to 3% of the total yearly runoff within the catchment directly associated with a single dam is stored in its reservoir. Therefore only this small percentage of the total flow of a seasonal river with dams is blocked. The paper will detail these general concepts with a case study of the Kiindu catchment. The hydrology of the Kiindu catchment is dependent on different aspects which influence each other. The physical environment determines the living conditions of the people directly and indirectly through the availability of water. The society on the other hand changes the physical environment directly by building sand dams or digging terraces directly and by the water use indirectly. Within the catchment, different sub-catchments show specific outcomes of this interaction. This means that even on a small scale of a catchment of some 20 kilometres, significant differences in water availability and quality can be found.

  5. Snow multivariable data assimilation for hydrological predictions in Alpine sites

    NASA Astrophysics Data System (ADS)

    Piazzi, Gaia; Thirel, Guillaume; Campo, Lorenzo; Gabellani, Simone; Stevenin, Hervè

    2017-04-01

    Snowpack dynamics (snow accumulation and ablation) strongly impacts on hydrological processes in Alpine areas. During the winter season the presence of snow cover (snow accumulation) reduces the drainage in the basin with a resulting lower watershed time of concentration in case of possible rainfall events. Moreover, the release of the significant water volume stored in winter (snowmelt) considerably contributes to the total discharge during the melting period. Therefore when modeling hydrological processes in snow-dominated catchments the quality of predictions deeply depends on how the model succeeds in catching snowpack dynamics. The integration of a hydrological model with a snow module allows improving predictions of river discharges. Besides the well-known modeling limitations (uncertainty in parameterizations; possible errors affecting both meteorological forcing data and initial conditions; approximations in boundary conditions), there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine several independent snow-related data sources (model simulations, ground-based measurements and remote sensed observations) in order to obtain the most likely estimate of snowpack state. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model strengthened by a multivariable DA framework for hydrological purposes. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of a DA scheme enables to assimilate simultaneously ground-based observations of different snow-related variables (snow depth, snow density, surface temperature and albedo). SMASH performances are evaluated by using observed data supplied by meteorological stations located in three experimental Alpine sites: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). A comparison analysis between the resulting performaces of Particle Filter and Ensemble Kalman Filter schemes is shown.

  6. Combining sediment fingerprinting and a conceptual model for erosion and sediment transfer to explore sediment sources in an Alpine catchment

    NASA Astrophysics Data System (ADS)

    Costa, A.; Stutenbecker, L.; Anghileri, D.; Bakker, M.; Lane, S. N.; Molnar, P.; Schlunegger, F.

    2017-12-01

    In Alpine basins, sediment production and transfer is increasingly affected by climate change and human activities, specifically hydropower exploitation. Changes in sediment sources and pathways significantly influence basin management, biodiversity and landscape evolution. We explore the dynamics of sediment sources in a partially glaciated and highly regulated Alpine basin, the Borgne basin, by combining geochemical fingerprinting with the modelling of erosion and sediment transfer. The Borgne basin in southwest Switzerland is composed of three main litho-tectonic units, which we characterised following a tributary-sampling approach from lithologically characteristic sub-basins. We analysed bulk geochemistry using lithium borate fusion coupled with ICP-ES, and we used it to discriminate the three lithologic sources using statistical methods. Finally, we applied a mixing model to estimate the relative contributions of the three sources to the sediment sampled at the outlet. We combine results of the sediment fingerprinting with simulations of a spatially distributed conceptual model for erosion and transport of fine sediment. The model expresses sediment erosion by differentiating the contributions of erosional processes driven by erosive rainfall, snowmelt, and icemelt. Soil erodibility is accounted for as function of land-use and sediment fluxes are linearly convoluted to the outlet by sediment transfer rates for hillslope and river cells, which are a function of sediment connectivity. Sediment connectivity is estimated on the basis of topographic-hydraulic connectivity, flow duration associated with hydropower flow abstraction and permanent storage in hydropower reservoirs. Sediment fingerprinting at the outlet of the Borgne shows a consistent dominance (68-89%) of material derived from the uppermost, highly glaciated reaches, while contributions of the lower part (10-25%) and middle part (1-16%), where rainfall erosion is predominant, are minor. This result is confirmed by the model simulation which shows that, despite the large flow abstraction (about 90%), the upstream reaches contribute the most of the sediments. This study shows how combining geochemical techniques and sediment erosion models provides insight in the dynamics of sediment sources.

  7. Coupled lagged ensemble weather- and river runoff prediction in complex Alpine terrain

    NASA Astrophysics Data System (ADS)

    Smiatek, Gerhard; Kunstmann, Harald; Werhahn, Johannes

    2013-04-01

    It is still a challenge to predict fast reacting streamflow precipitation response in Alpine terrain. Civil protection measures require flood prediction in 24 - 48 lead time. This holds particularly true for the Ammer River region which was affected by century floods in 1999, 2003 and 2005. Since 2005 a coupled NWP/Hydrology model system is operated in simulating and predicting the Ammer River discharges. The Ammer River catchment is located in the Bavarian Ammergau Alps and alpine forelands, Germany. With elevations reaching 2185 m and annual mean precipitation between 1100 and 2000 mm it represents very demanding test ground for a river runoff prediction system. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. The major components of the system are the MM5 NWP model run at 3.5 km resolution and initialized twice a day, the hydrology model WaSiM-ETH run at 100 m resolution and Perl object environment (POE) implementing the networking and the system operation. Results obtained in the years 2005-2012 reveal that river runoff simulations depict already high correlation (NSC in range 0.53 and 0.95) with observed runoff in retrospective runs with monitored meteorology data, but suffer from errors in quantitative precipitation forecast (QPF) from the employed numerical weather prediction model. We evaluate the NWP model accuracy, especially the precipitation intensity, frequency and location and put a focus on the performance gain of bias adjustment procedures. We show how this enhanced QFP data help to reduce the uncertainty in the discharge prediction. In addition to the HND (Hochwassernachrichtendienst, Bayern) observations TERENO Longterm Observatory hydrometeorological observation data are available since 2011. They are used to evaluate the NWP performance and setup of a bias correction procedure based on ensemble postprocessing applying Bayesian (BMA) model averaging. We first present briefly the technical setup of the operational coupled lagged NWP/Hydrology model system and then focus on the evaluation of the NWP model, the BMA enhanced QPF and its application within the Ammer simulation system in the period 2011 - 2012

  8. Multi-scale streamflow variability responses to precipitation over the headwater catchments in southern China

    NASA Astrophysics Data System (ADS)

    Niu, Jun; Chen, Ji; Wang, Keyi; Sivakumar, Bellie

    2017-08-01

    This paper examines the multi-scale streamflow variability responses to precipitation over 16 headwater catchments in the Pearl River basin, South China. The long-term daily streamflow data (1952-2000), obtained using a macro-scale hydrological model, the Variable Infiltration Capacity (VIC) model, and a routing scheme, are studied. Temporal features of streamflow variability at 10 different timescales, ranging from 6 days to 8.4 years, are revealed with the Haar wavelet transform. The principal component analysis (PCA) is performed to categorize the headwater catchments with the coherent modes of multi-scale wavelet spectra. The results indicate that three distinct modes, with different variability distributions at small timescales and seasonal scales, can explain 95% of the streamflow variability. A large majority of the catchments (i.e. 12 out of 16) exhibit consistent mode feature on multi-scale variability throughout three sub-periods (1952-1968, 1969-1984, and 1985-2000). The multi-scale streamflow variability responses to precipitation are identified to be associated with the regional flood and drought tendency over the headwater catchments in southern China.

  9. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change.

    PubMed

    Silva, Lucas C R; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R

    2016-08-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems.

  10. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change

    PubMed Central

    Silva, Lucas C. R.; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R.

    2016-01-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems. PMID:27652334

  11. 78 FR 28273 - Alpine Investors IV SBIC, LP; Notice Seeking Exemption Under Section 312 of the Small Business...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    .... The financing is contemplated for the purchase of 100 percent of the stock of Great Bay Software, Inc... defined in Sec. 105.50 of the regulations, has an ownership interest in GrowthFire, LLC of 10 percent...

  12. Factors influencing stream baseflow transit times in tropical montane watersheds

    NASA Astrophysics Data System (ADS)

    Muñoz-Villers, Lyssette E.; Geissert, Daniel R.; Holwerda, Friso; McDonnell, Jeffrey J.

    2016-04-01

    Stream water mean transit time (MTT) is a fundamental hydrologic parameter that integrates the distribution of sources, flow paths, and storages present in catchments. However, in the tropics little MTT work has been carried out, despite its usefulness for providing important information on watershed functioning at different spatial scales in (largely) ungauged basins. In particular, very few studies have quantified stream MTTs or have related these to catchment characteristics in tropical montane regions. Here we examined topographic, land use/cover and soil hydraulic controls on baseflow transit times for nested catchments (0.1-34 km2) within a humid mountainous region, underlain by volcanic soil (Andisols) in central Veracruz (eastern Mexico). We used a 2-year record of bi-weekly isotopic composition of precipitation and stream baseflow data to estimate MTT. Land use/cover and topographic parameters (catchment area and form, drainage density, slope gradient and length) were derived from geographic information system (GIS) analysis. Soil water retention characteristics, and depth and permeability of the soil-bedrock interface were obtained from intensive field measurements and laboratory analysis. Results showed that baseflow MTTs ranged between 1.2 and 2.7 years across the 12 study catchments. Overall, MTTs across scales were mainly controlled by catchment slope and the permeability observed at the soil-bedrock interface. In association with topography, catchment form and the depth to the soil-bedrock interface were also identified as important features influencing baseflow MTTs. The greatest differences in MTTs were found both within groups of small (0.1-1.5 km2) and large (14-34 km2) catchments. Interestingly, the longest stream MTTs were found in the headwater cloud forest catchments.

  13. Prediction of hydrographs and flow-duration curves in almost ungauged catchments: Which runoff measurements are most informative for model calibration?

    NASA Astrophysics Data System (ADS)

    Pool, Sandra; Viviroli, Daniel; Seibert, Jan

    2017-11-01

    Applications of runoff models usually rely on long and continuous runoff time series for model calibration. However, many catchments around the world are ungauged and estimating runoff for these catchments is challenging. One approach is to perform a few runoff measurements in a previously fully ungauged catchment and to constrain a runoff model by these measurements. In this study we investigated the value of such individual runoff measurements when taken at strategic points in time for applying a bucket-type runoff model (HBV) in ungauged catchments. Based on the assumption that a limited number of runoff measurements can be taken, we sought the optimal sampling strategy (i.e. when to measure the streamflow) to obtain the most informative data for constraining the runoff model. We used twenty gauged catchments across the eastern US, made the assumption that these catchments were ungauged, and applied different runoff sampling strategies. All tested strategies consisted of twelve runoff measurements within one year and ranged from simply using monthly flow maxima to a more complex selection of observation times. In each case the twelve runoff measurements were used to select 100 best parameter sets using a Monte Carlo calibration approach. Runoff simulations using these 'informed' parameter sets were then evaluated for an independent validation period in terms of the Nash-Sutcliffe efficiency of the hydrograph and the mean absolute relative error of the flow-duration curve. Model performance measures were normalized by relating them to an upper and a lower benchmark representing a well-informed and an uninformed model calibration. The hydrographs were best simulated with strategies including high runoff magnitudes as opposed to the flow-duration curves that were generally better estimated with strategies that captured low and mean flows. The choice of a sampling strategy covering the full range of runoff magnitudes enabled hydrograph and flow-duration curve simulations close to a well-informed model calibration. The differences among such strategies covering the full range of runoff magnitudes were small indicating that the exact choice of a strategy might be less crucial. Our study corroborates the information value of a small number of strategically selected runoff measurements for simulating runoff with a bucket-type runoff model in almost ungauged catchments.

  14. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow.

    PubMed

    Zhang, Yuguang; Liu, Xiao; Cong, Jing; Lu, Hui; Sheng, Yuyu; Wang, Xiulei; Li, Diqiang; Liu, Xueduan; Yin, Huaqun; Zhou, Jizhong; Deng, Ye

    2017-07-01

    Land-cover change has long been recognized as having marked effect on the amount of soil organic carbon (SOC). However, the microbially mediated processes and mechanisms on SOC are still unclear. In this study, the soil samples in a degenerative succession from alpine meadow to alpine steppe meadow in the Qinghai-Tibetan Plateau were analysed using high-throughput technologies, including Illumina sequencing and geochip functional gene arrays. The soil microbial community structure and diversity were significantly (p < .05) different between alpine meadow and alpine steppe meadow; the microbial ɑ-diversity in alpine steppe meadow was significantly (p < .01) higher than in alpine meadow. Molecular ecological network analysis indicated that the microbial community structure in alpine steppe meadow was more complex and tighter than in the alpine meadow. The relative abundance of soil microbial labile carbon degradation genes (e.g., pectin and hemicellulose) was significantly higher in alpine steppe meadow than in alpine meadow, but the relative abundance of soil recalcitrant carbon degradation genes (e.g., chitin and lignin) showed the opposite tendency. The Biolog Ecoplate experiment showed that microbially mediated soil carbon utilization was more active in alpine steppe meadow than in alpine meadow. Consequently, more soil labile carbon might be decomposed in alpine steppe meadow than in alpine meadow. Therefore, the degenerative succession of alpine meadow because of climate change or anthropogenic activities would most likely decrease SOC and nutrients medicated by changing soil microbial community structure and their functional potentials for carbon decomposition. © 2017 John Wiley & Sons Ltd.

  15. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    NASA Astrophysics Data System (ADS)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff contributed about 40%, 20% in subsurface while there is about 13% in the base flow. For better understanding and interpretation of the area there is still need of further coherent research and analysis for land use change and future climate change impact in the glaciered alpine catchment of Himalayan region.

  16. The effectiveness and resilience of phosphorus management practices in the Lake Simcoe watershed, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Crossman, J.; Futter, M. N.; Palmer, M.; Whitehead, P. G.; Baulch, H. M.; Woods, D.; Jin, L.; Oni, S. K.; Dillon, P. J.

    2016-09-01

    Uncertainty surrounding future climate makes it difficult to have confidence that current nutrient management strategies will remain effective. This study used monitoring and modeling to assess current effectiveness (% phosphorus reduction) and resilience (defined as continued effectiveness under a changing climate) of best management practices (BMPs) within five catchments of the Lake Simcoe watershed, Ontario. The Integrated Catchment Phosphorus model (INCA-P) was used, and monitoring data were used to calibrate and validate a series of management scenarios. To assess current BMP effectiveness, models were run over a baseline period 1985-2014 with and without management scenarios. Climate simulations were run (2070-2099), and BMP resilience was calculated as the percent change in effectiveness between the baseline and future period. Results demonstrated that livestock removal from water courses was the most effective BMP, while manure storage adjustments were the least. Effectiveness varied between catchments, influenced by the dominant hydrological and nutrient transport pathways. Resilience of individual BMPs was associated with catchment sensitivity to climate change. BMPs were most resilient in catchments with high soil water storage capacity and small projected changes in frozen-water availability and in soil moisture deficits. Conversely, BMPs were less resilient in catchments with larger changes in spring melt magnitude and in overland flow proportions. Results indicated that BMPs implemented are not always those most suited to catchment flow pathways, and a more site-specific approach would enhance prospects for maintaining P reduction targets. Furthermore, BMP resilience to climate change can be predicted from catchment physical properties and present-day hydrochemical sensitivity to climate forcing.

  17. Application of the SPARROW model to assess surface-water nutrient conditions and sources in the United States Pacific Northwest

    USGS Publications Warehouse

    Wise, Daniel R.; Johnson, Henry M.

    2013-01-01

    The watershed model SPARROW (Spatially Referenced Regressions on Watershed attributes) was used to estimate mean annual surface-water nutrient conditions (total nitrogen and total phosphorus) and to identify important nutrient sources in catchments of the Pacific Northwest region of the United States for 2002. Model-estimated nutrient yields were generally higher in catchments on the wetter, western side of the Cascade Range than in catchments on the drier, eastern side. The largest source of locally generated total nitrogen stream load in most catchments was runoff from forestland, whereas the largest source of locally generated total phosphorus stream load in most catchments was either geologic material or livestock manure (primarily from grazing livestock). However, the highest total nitrogen and total phosphorus yields were predicted in the relatively small number of catchments where urban sources were the largest contributor to local stream load. Two examples are presented that show how SPARROW results can be applied to large rivers—the relative contribution of different nutrient sources to the total nitrogen load in the Willamette River and the total phosphorus load in the Snake River. The results from this study provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to researchers and water-quality managers performing local nutrient assessments.

  18. Prediction of storm transfers and annual loads with data-based mechanistic models using high-frequency data

    NASA Astrophysics Data System (ADS)

    Ockenden, Mary C.; Tych, Wlodek; Beven, Keith J.; Collins, Adrian L.; Evans, Robert; Falloon, Peter D.; Forber, Kirsty J.; Hiscock, Kevin M.; Hollaway, Michael J.; Kahana, Ron; Macleod, Christopher J. A.; Villamizar, Martha L.; Wearing, Catherine; Withers, Paul J. A.; Zhou, Jian G.; Benskin, Clare McW. H.; Burke, Sean; Cooper, Richard J.; Freer, Jim E.; Haygarth, Philip M.

    2017-12-01

    Excess nutrients in surface waters, such as phosphorus (P) from agriculture, result in poor water quality, with adverse effects on ecological health and costs for remediation. However, understanding and prediction of P transfers in catchments have been limited by inadequate data and over-parameterised models with high uncertainty. We show that, with high temporal resolution data, we are able to identify simple dynamic models that capture the P load dynamics in three contrasting agricultural catchments in the UK. For a flashy catchment, a linear, second-order (two pathways) model for discharge gave high simulation efficiencies for short-term storm sequences and was useful in highlighting uncertainties in out-of-bank flows. A model with non-linear rainfall input was appropriate for predicting seasonal or annual cumulative P loads where antecedent conditions affected the catchment response. For second-order models, the time constant for the fast pathway varied between 2 and 15 h for all three catchments and for both discharge and P, confirming that high temporal resolution data are necessary to capture the dynamic responses in small catchments (10-50 km2). The models led to a better understanding of the dominant nutrient transfer modes, which will be helpful in determining phosphorus transfers following changes in precipitation patterns in the future.

  19. Surficial redistribution of fallout 131iodine in a small temperate catchment

    NASA Astrophysics Data System (ADS)

    Landis, Joshua D.; Hamm, Nathan T.; Renshaw, Carl E.; Dade, W. Brian; Magilligan, Francis J.; Gartner, John D.

    2012-03-01

    Isotopes of iodine play significant environmental roles, including a limiting micronutrient (127I), an acute radiotoxin (131I), and a geochemical tracer (129I). But the cycling of iodine through terrestrial ecosystems is poorly understood, due to its complex environmental chemistry and low natural abundance. To better understand iodine transport and fate in a terrestrial ecosystem, we traced fallout 131iodine throughout a small temperate catchment following contamination by the 11 March 2011 failure of the Fukushima Daiichi nuclear power facility. We find that radioiodine fallout is actively and efficiently scavenged by the soil system, where it is continuously focused to surface soils over a period of weeks following deposition. Mobilization of historic (pre-Fukushima) 137cesium observed concurrently in these soils suggests that the focusing of iodine to surface soils may be biologically mediated. Atmospherically deposited iodine is subsequently redistributed from the soil system via fluvial processes in a manner analogous to that of the particle-reactive tracer 7beryllium, a consequence of the radionuclides' shared sorption affinity for fine, particulate organic matter. These processes of surficial redistribution create iodine hotspots in the terrestrial environment where fine, particulate organic matter accumulates, and in this manner regulate the delivery of iodine nutrients and toxins alike from small catchments to larger river systems, lakes and estuaries.

  20. Surficial redistribution of fallout 131iodine in a small temperate catchment

    PubMed Central

    Landis, Joshua D.; Hamm, Nathan T.; Renshaw, Carl E.; Dade, W. Brian; Magilligan, Francis J.; Gartner, John D.

    2012-01-01

    Isotopes of iodine play significant environmental roles, including a limiting micronutrient (127I), an acute radiotoxin (131I), and a geochemical tracer (129I). But the cycling of iodine through terrestrial ecosystems is poorly understood, due to its complex environmental chemistry and low natural abundance. To better understand iodine transport and fate in a terrestrial ecosystem, we traced fallout 131iodine throughout a small temperate catchment following contamination by the 11 March 2011 failure of the Fukushima Daiichi nuclear power facility. We find that radioiodine fallout is actively and efficiently scavenged by the soil system, where it is continuously focused to surface soils over a period of weeks following deposition. Mobilization of historic (pre-Fukushima) 137cesium observed concurrently in these soils suggests that the focusing of iodine to surface soils may be biologically mediated. Atmospherically deposited iodine is subsequently redistributed from the soil system via fluvial processes in a manner analogous to that of the particle-reactive tracer 7beryllium, a consequence of the radionuclides’ shared sorption affinity for fine, particulate organic matter. These processes of surficial redistribution create iodine hotspots in the terrestrial environment where fine, particulate organic matter accumulates, and in this manner regulate the delivery of iodine nutrients and toxins alike from small catchments to larger river systems, lakes and estuaries. PMID:22378648

  1. Spatial and temporal patterns of pesticide concentrations in streamflow, drainage and runoff in a small Swedish agricultural catchment.

    PubMed

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2018-01-01

    A better understanding of the dominant source areas and transport pathways of pesticide losses to surface water is needed for targeting mitigation efforts in a more cost-effective way. To this end, we monitored pesticides in surface water in an agricultural catchment typical of one of the main crop production regions in Sweden. Three small sub-catchments (88-242ha) were selected for water sampling based on a high-resolution digital soil map developed from proximal sensing methods and soil sampling; one sub-catchment had a high proportion of clay soils, another was dominated by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. These samples were analyzed by LC-MS/MS for 99 compounds, including most of the polar and semi-polar pesticides frequently used in Swedish agriculture. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide occurrence in the stream between the three sub-catchments, with both the numbers of detected compounds and concentrations being the largest in the area with a high proportion of clay soils and with very few detections in the sandy sub-catchment. Macropore flow to drains was most likely the dominant loss pathway in the studied area. Many of the compounds that were detected in drainage and stream water samples had not been applied for several years. This suggests that despite the predominant role of fast flow pathways in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil horizons where degradation is slow. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Landuse legacies and small streams: Identifying relationships between historical land use and contemporary stream conditions

    USGS Publications Warehouse

    Maloney, K.O.; Feminella, J.W.; Mitchell, R.M.; Miller, S.A.; Mulholland, P.J.; Houser, J.N.

    2008-01-01

    The concept of landscape legacies has been examined extensively in terrestrial ecosystems and has led to a greater understanding of contemporary ecosystem processes. However, although stream ecosystems are tightly coupled with their catchments and, thus, probably are affected strongly by historical catchment conditions, few studies have directly examined the importance of landuse legacies on streams. We examined relationships between historical land use (1944) and contemporary (2000-2003) stream physical, chemical, and biological conditions after accounting for the influences of contemporary land use (1999) and natural landscape (catchment size) variation in 12 small streams at Fort Benning, Georgia, USA. Most stream variables showed strong relationships with contemporary land use and catchment size; however, after accounting for these factors, residual variation in many variables remained significantly related to historical land use. Residual variation in benthic particulate organic matter, diatom density, % of diatoms in Eunotia spp., fish density in runs, and whole-stream gross primary productivity correlated negatively, whereas streamwater pH correlated positively, with residual variation in fraction of disturbed land in catchments in 1944 (i.e., bare ground and unpaved road cover). Residual variation in % recovering land (i.e., early successional vegetation) in 1944 was correlated positively with residual variation in streambed instability, a macroinvertebrate biotic index, and fish richness, but correlated negatively with residual variation in most benthic macroinvertebrate metrics examined (e.g., Chironomidae and total richness, Shannon diversity). In contrast, residual variation in whole-stream respiration rates was not explained by historical land use. Our results suggest that historical land use continues to influence important physical and chemical variables in these streams, and in turn, probably influences associated biota. Beyond providing insight into biotic interactions and their associations with environmental conditions, identification of landuse legacies also will improve understanding of stream impairment in contemporary minimally disturbed catchments, enabling more accurate assessment of reference conditions in studies of biotic integrity and restoration. ?? 2008 by The North American Benthological Society.

  3. DOM in stream water and soil solution in two small, bordering catchments in central Sweden

    NASA Astrophysics Data System (ADS)

    Norström, Sara H.; Bylund, Dan

    2013-04-01

    Seasonal variations in dissolved organic matter (DOM) and the influence of wood ash application on DOM were studied in two first order streams draining two small, bordering forested catchments. The catchments, 40 and 50 h respectively, were situated in Bispgården (63°07N, 16°70E), central Sweden with forest consisting of mainly 50 to 80 year-old Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Seasonal variations in the stream water were measured during 2003-2007, and wood ash was applied in one of the catchments in the fall of 2004. In addition to stream water samples, sampling of soil solution in the riparian zone was made in one of the catchments during 2003-2006. The quantity of DOM differed between the streams, but the seasonal patterns for the two streams were correlated during 2003 and 2004. After wood ash treatment, dissolved organic carbon (DOC) increased significantly in the stream draining the treated catchment. 17 different low molecular mass organic acids (LMMOAs) were measured in the stream water during the whole study period. The most abundant LMMOAs were oxalic- and lactic acid, of which peak concentrations of oxalic acid coincided with those of DOC, while no such relation between the concentrations of DOC and lactic acid could be seen in either of the streams. Some of the most common acids in the soil solution, shikimic acid, citric acid and malic acid were rarely found in the stream water and only then in very low concentrations, thus appearing not to have made the transition from soil to stream water in the same manner as oxalic acid. The wood ash application did not affect the total LMMOA concentration and there was no difference during the investigated period. Of the 17 analysed LMMOAs, only malonic acid appeared affected by wood ash application, with a significant increase during both 2005 and 2006.

  4. Sediment yield during typhoon events in relation to landslides, rainfall, and catchment areas in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Wen; Oguchi, Takashi; Hayakawa, Yuichi S.; Saito, Hitoshi; Chen, Hongey; Lin, Guan-Wei; Wei, Lun-Wei; Chao, Yi-Chiung

    2018-02-01

    Debris sourced from landslides will result in environmental problems such as increased sediment discharge in rivers. This study analyzed the sediment discharge of 17 main rivers in Taiwan during 14 typhoon events, selected from the catchment area and river length, that caused landslides according to government reports. The measured suspended sediment and water discharge, collected from hydrometric stations of the Water Resources Agency of Taiwan, were used to establish rating-curve relationships, a power-law relation between them. Then sediment discharge during typhoon events was estimated using the rating-curve method and the measured data of daily water discharge. Positive correlations between sediment discharge and rainfall conditions for each river indicate that sediment discharge increases when a greater amount of rainfall or a higher intensity of rainfall falls during a typhoon event. In addition, the amount of sediment discharge during a typhoon event is mainly controlled by the total amount of rainfall, not by peak rainfall. Differences in correlation equations among the rivers suggest that catchments with larger areas produce more sediment. Catchments with relatively low sediment discharge show more distinct increases in sediment discharge in response to increases in rainfall, owing to the little opportunity for deposition in small catchments with high connectivity to rivers and the transportation of the majority of landslide debris to rivers during typhoon events. Also, differences in geomorphic and geologic conditions among catchments around Taiwan lead to a variety of suspended sediment dynamics and the sediment budget. Positive correlation between average sediment discharge and average area of landslides during typhoon events indicates that when larger landslides are caused by heavier rainfall during a typhoon event, more loose materials from the most recent landslide debris are flushed into rivers, resulting in higher sediment discharge. The high proportion of large landslides in Taiwan contributes significantly to the high annual sediment yield, which is among the world's highest despite the small area of Taiwan.

  5. Stacking and metamorphism of continuous segments of subducted lithosphere in a high-pressure wedge: The example of Alpine Corsica (France)

    NASA Astrophysics Data System (ADS)

    Vitale Brovarone, Alberto; Beyssac, Olivier; Malavieille, Jacques; Molli, Giancarlo; Beltrando, Marco; Compagnoni, Roberto

    2013-01-01

    Alpine Corsica consists of a stack of variably metamorphosed units of continental and Tethys-derived rocks. It represents an excellent example of high-pressure (HP) orogenic belt, such as the Western Alps, exposed over a small and accessible area. Compared to the Western Alps, the geology of Alpine Corsica is poorly unraveled. During the 1970s-80s, based on either lithostratigraphic or metamorphic field observations, various classifications of the belt have been proposed, but these classifications have been rarely matched together. Furthermore, through time, the internal complexity of large domains has been progressively left aside in the frame of large-scale geodynamic reconstructions. As a consequence, major open questions on the internal structure of the belt have remained unsolved. Apart from a few local studies, Alpine Corsica has not benefited of modern developments in petrology and basin research. This feature results in several uncertainties when combining lithostratigraphic and metamorphic patterns and, consequently, in the definition of an exhaustive architecture of the belt. In this paper we provide a review on the geology of Alpine Corsica, paying particular attention to the available lithostratigraphic and metamorphic classifications of the metamorphic terranes. These data are completed by a new and exhaustive metamorphic dataset obtained by means of thermometry based on Raman Spectroscopy of Carbonaceous Material (RSCM). This technique provides reliable insights on the peak temperature of the metamorphic history for CM-bearing metasediments. A detailed metamorphic characterization of metasediments, which have been previously largely ignored due to retrogression or to the lack of diagnostic mineralogy, is thus obtained and fruitfully coupled with the available lithostratigraphic data. Nine main tectono-metamorphic units are defined, from subgreenschist (ca. 280-300 °C) to the lawsonite-eclogite-facies (ca. 500-550 °C) condition. These units are homogeneous in metamorphism, laterally continuous and have characteristic lithostratigraphic features. This study also suggests a direct link between the pre-orogenic extensional setting and the present-day compressional structure of Alpine Corsica, indicating that large sections of subducted lithosphere were subducted and exhumed as coherent domains. These features provide important insight on the mechanism of stacking and exhumation of HP rocks, and make Alpine Corsica a unique reference for mountain-building processes in Tethyan-type orogens.

  6. Climate, not atmospheric deposition, drives the biogeochemical mass-balance of a mountain watershed

    USGS Publications Warehouse

    Baron, Jill S.; Heath, Jared

    2014-01-01

    Watershed mass-balance methods are valuable tools for demonstrating impacts to water quality from atmospheric deposition and chemical weathering. Owen Bricker, a pioneer of the mass-balance method, began applying mass-balance modeling to small watersheds in the late 1960s and dedicated his career to expanding the literature and knowledge of complex watershed processes. We evaluated long-term trends in surface-water chemistry in the Loch Vale watershed, a 660-ha. alpine/subalpine catchment located in Rocky Mountain National Park, CO, USA. Many changes in surface-water chemistry correlated with multiple drivers, including summer or monthly temperature, snow water equivalent, and the runoff-to-precipitation ratio. Atmospheric deposition was not a significant causal agent for surface-water chemistry trends. We observed statistically significant increases in both concentrations and fluxes of weathering products including cations, SiO2, SO4 2−, and ANC, and in inorganic N, with inorganic N being primarily of atmospheric origin. These changes are evident in the individual months June, July, and August, and also in the combined June, July, and August summer season. Increasingly warm summer temperatures are melting what was once permanent ice and this may release elements entrained in the ice, stimulate chemical weathering with enhanced moisture availability, and stimulate microbial nitrification. Weathering rates may also be enhanced by sustained water availability in high snowpack years. Rapid change in the flux of weathering products and inorganic N is the direct and indirect result of a changing climate from warming temperatures and thawing cryosphere.

  7. Temporal Variability of Suspended Sediment Load, Dissolved Load, and Bedload for Two Small Oak Forested Catchments with Contrasting Disturbance Levels in the Lesser Himalaya of North-West India

    NASA Astrophysics Data System (ADS)

    Qazi, N. U. Q.; Rai, S. P.; Bruijnzeel, L. A.

    2014-12-01

    Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bed load) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and stream flow and showed a 23-fold range between wet and dry years. Of the annual load, some 92% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 2.6-fold (suspended sediment) to 5.9-fold (bed load) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.2 times and 4.7 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.59 and 1.05 mm per 1000 years, respectively.

  8. Restoration of active gully systems following the implementation of bioengineering techniques.

    NASA Astrophysics Data System (ADS)

    Borja, Pablo; Vanacker, Veerle; Govers, Gerard

    2015-04-01

    Intensive land use in the central parts of the Andean basin has led to widespread land degradation. The formation of badlands dates back from the 1950s and 1960s. Several studies indicate that human activities have accelerated mountain erosion rates by up to 100 times. In this study, we have evaluated the effects of bio-engineering works aiming to stabilize degraded catchments. Five micro-catchments (0.2 up to 5 ha) have been selected within a 3 km2 area in the lower part of the Loreto catchment (Southern Ecuadorian Andes). The five micro-catchments differ in vegetation cover and implementation of bio-engineering works. The experimental design consisted of three micro-catchments: (1) DI with conservation works, (2) DF with reforestation by Eucalyptus sp and (3) DT with no conservation works. Two micro-catchments have been monitored in an agricultural area: with (AI) and without (AT) bio-engineering works in the active gullies. Small checkdams were constructed in the gully floors of two of the micro-catchments in the badland area (DI) and the agricultural area (AI). The checkdams are made of wood and tires. Water flow has been measured in every micro-catchment, while sediment traps were constructed to monitor sediment transport. Results show that bio-engineering techniques are effective to stabilize active gullies. Deposition of sediments in manmade dams is strongly dependent on previous rainfall events, as well as gully channel slope, and its vegetation cover. From the experimental data, an I30 max threshold value was determined. Above this threshold value, all micro-catchments are actively contributing sediment to the main river system. The checkdams built with wood and tires have an efficiency of 70%, and were shown to be very effective to stabilize active gullies in bad lands through significant reduction (about 62%) of the amount of sediment exported from the micro-catchments. Key words: degraded soils, erosion, sediment, restoration, reforestation

  9. Inter-comparison of hydro-climatic regimes across northern catchments: Synchronicity, resistance and resilience

    USGS Publications Warehouse

    Carey, S.K.; Tetzlaff, D.; Seibert, J.; Soulsby, C.; Buttle, J.; Laudon, H.; McDonnell, J.; McGuire, K.; Caissie, D.; Shanley, J.; Kennedy, M.; Devito, K.; Pomeroy, J.W.

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North-Watch program, which focuses on how these catchments collect, store and release water and identify 'types' of hydro-climatic catchment response. At most sites, a 10-year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter-annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual-scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall-runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. ?? 2010 John Wiley & Sons, Ltd.

  10. Probability based hydrologic catchments of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  11. Sediment Budget Analysis and Hazard Assessment in the Peynin, a Small Alpine Catchment (Upper Guil River, Southern Alps, France)

    NASA Astrophysics Data System (ADS)

    Carlier, Benoit; Arnaud-Fassetta, Gilles; Fort, Monique; Bouccara, Fanny; Sourdot, Grégoire; Tassel, Adrien; Lissak, Candide; Betard, François; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier

    2014-05-01

    The upper Guil catchment (Southern Alps) is prone to hydro-geomorphic hazards. Major hazards are related to catastrophic floods, with an amplification of their impacts due to strong hillslope-channel connectivity as observed in 1957 and 2000. In both cases, the rainfall intensity, aggravated by the pre-existing saturated soils, explained the instantaneous response of the fluvial system, such as destabilisation of slopes, high sediment discharge, and subsequent damages to exposed structures and settlements present in the floodplain and at confluence sites. The Peynin junction with the Guil River is one of these sites, where significant land-use change during the last decades in relation to the development of handicraft and tourism economy has increased debris flow threat to population. Here, we adopt a sediment budget analysis aimed at better understanding the functioning of this small subcatchment. This latter offers a combination of factors that favour torrential and gravitational activity. It receives abundant and intense rainfall during "Lombarde" events (moist air mass from Mediterranean Sea). Its elongated shape and small surface area (15 km²) together with asymmetric slopes (counter dip slope on the left bank) accelerate runoff on a short response time. In addition highly tectonised shaly schists supply a large volume of debris (mostly platy clasts and fine, micaceous sediment). The objectives of this study, carried out in the frame of SAMCO (ANR) project, are threefold: Identify the different sediment storages; Characterise the processes that put sediment into motion; Quantify volumes of sediment storages. We produced a geomorphic map using topographic surveys and aerial photos in order to locate the different sediment storage types and associated processes. This analysis was made with respect to geomorphic coupling and sediment flux activity. In terms of surface area, the dominant landforms in the valley were found to be mass wasting, talus slopes and alluvial fans and plains. Most of these forms are relict landforms, decoupled from the present geomorphic system. Notable sediment transport is limited to avalanche tracks, debris flows, and along floodplains. Sediment volumes were calculated using a combination of polynomial functions of cross sections and GIS modelling. We calculated the overall sediment volume of the valley fill deposits to be 1.05 km3. This corresponds to a mean sediment thickness of 90.2 m. Landslides appear as the major sediment storage, representing more than 35% of the sediment volume stored in the Peynin subcatchment. For some locations, the polynomial-generated cross sections resulted in overestimations of sediment thickness, therefore, these results have to be considered as an order of magnitude. Future investigations will include seismic refraction profiles that may provide bedrock depth, hence a better control on sediment thickness (estimates generated thanks to GIS). Eventually, we expect our results to be used to better model, hence prevent future debris-flow events at the confluence of Peynin stream with the Guil River.

  12. Stream Width Dynamics in a Small Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  13. Spatial structures of stream and hillslope drainage networks following gully erosion after wildfire

    USGS Publications Warehouse

    Moody, J.A.; Kinner, D.A.

    2006-01-01

    The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1-1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1-1000 km2), representative of perennial stream networks, was derived from a 30-m digital elevation model and analysed by computer analysis. Scaling laws used to describe large-scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second-order effect that reduces the number of order 1 and order 2 streams predicted by the large-scale channel structure. This network comprises two spatial patterns of rills with width-to-depth ratios typically less than 10. One pattern is parallel rills draining nearly planar hillslope surfaces, and the other pattern is three to six converging rills draining the critical source area uphill from an order 1 channel head. The magnitude of this critical area depends on infiltration, hillslope roughness and critical shear stress for erosion of sediment, all of which can be substantially altered by wildfire. Order 1 and 2 streams were found to constitute the interface region, which is altered by a disturbance, like wildfire, from subtle unchannelized drainages in unburned catchments to incised drainages. These drainages are characterized by gullies also with width-to-depth ratios typically less than 10 in burned catchments. The regions (hillslope, interface and chanel) had different drainage network structures to collect and transfer water and sediment. Copyright ?? 2005 John Wiley & Sons, Ltd.

  14. Expression of Geochemical Controls on Water Quality in Loch Vale, Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Podzorski, H.; Navarre-Sitchler, A.; Stets, E.; Clow, D. W.

    2017-12-01

    Relationships between concentrations of rock weathering products and discharge provide insight into the interactions between climate and solute dynamics. This concentration-discharge (C-Q) relationship is especially interesting in high alpine regions, due to their susceptibility to changes in the timing and magnitude of snowmelt. Previous studies looking at C-Q relationships have concluded that concentrations of conservative solutes remain relatively constant as discharge varies; however, these results may be due to relatively small sample sizes, especially at higher discharge values. Using water chemistry data collected regularly by the U.S. Geological Survey from Loch Vale, a high-elevation catchment in Rocky Mountain National Park, C-Q relationships were examined to determine possible geochemical controls on stream solute concentrations. A record of over 20 years of C-Q data resulted in a pattern that shows little variation in conservative solute concentrations during base flow and larger variations in concentrations around peak discharge. This observed pattern is consistent with accumulation of solutes in pore water during base flow, which are then flushed out and diluted by snowmelt. Further evidence of this flushing out mechanism is found in patterns of hysteresis that are present in annual C-Q relationships. Before peak discharge, concentrations of weathering products are higher than after peak discharge at similar values of discharge. Based on these observations, we hypothesize that the geochemical processes controlling stream chemistry vary by season. During the winter, solute concentrations are transport-limited due to slow subsurface flushing resulting in concentrations that are effectively constant and close to equilibrium. During the spring and summer, concentrations drop sharply after peak discharge due to a combination of dilution and reaction-limited processes under conditions with faster subsurface flow and continued snowmelt. This study provides insight into seasonal geochemical controls on conservative solute concentrations that can be overlooked with small, or seasonally biased, data sets.

  15. Catchment Dispersion Mechanisms in an Urban Context

    NASA Astrophysics Data System (ADS)

    Gironas, J. A.; Mejia, A.; Rossel, F.; Rinaldo, A.; Rodriguez, F.

    2014-12-01

    Dispersion mechanisms have been examined in-depth in natural catchments in previous studies. However, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. Thus, these features can modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. This model computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment (France) as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further studies with other catchments are needed to assess whether the latter is a general feature of urban drainage networks.

  16. Influence of urbanization pattern on stream flow of a peri-urban catchment under Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.

    2015-04-01

    The demand for better life quality and lower living costs created a great pressure on peri-urban areas, leading to significant land-use changes. The complexity of mixed land-use patterns, however, presents a challenge to understand the hydrological pathways and streamflow response involved in such changes. This study assesses the impact of a actively changing Portuguese peri-urban area on catchment hydrology. It focuses on quantifying streamflow delivery from contributing areas, of different land-use arrangement and the seasonal influence of the Mediterranean climate on stream discharge. The study focuses on Ribeira dos Covões a small (6 km2) peri-urban catchment on the outskirts of Coimbra, one of the main cities in central Portugal. Between 1958 and 2012 the urban area of the catchment expanded from 8% to 40%, mostly at the expense of agriculture (down from 48% to 4%), with woodland now accounting for the remaining 56% of the catchment area. The urban area comprises contrasting urban settings, associated with older discontinuous arrangement of buildings and urban structures and low population density (<25 inhabitants/km), and recent well-defined urban cores dominated by apartment blocks and high population density (9900 inhabitants/km). The hydrological response of the catchment has been monitored since 2007 by a flume installed at the outlet. In 2009, five rainfall gauges and eight additional water level recorders were installed upstream, to assess the hydrological response of different sub-catchments, characterized by distinct urban patterns and either limestone or sandstone lithologies. Annual runoff coefficients range between 14% and 22%. Changes in annual baseflow index (36-39% of annual rainfall) have been small with urbanization (from 34% to 40%) during the monitoring period itself. Annual runoff coefficients were lowest (14-7%) on catchments >80% woodland and highest (29% on sandstone; 18% on limestone) in the most urbanized (49-53% urban) sub-catchments. Percentage impermeable surface seems to control streamflow particularly during dry periods. Winter runoff was 2-4 times higher than total river flow in the summer dry season in highly urbanized areas, but was 21-fold higher in winter in the least urbanized sub-catchment, denoting greater flow connectivity enhanced by increased soil moisture. Although impermeable surfaces are prone to generate overland flow, the proximity to the stream network is an important parameter determining their hydrological impacts. During the monitoring period, the enlargement of 2% of the urban area at downslope locations in the Covões sub-catchment, led to a 6% increase in the runoff coefficient. In contrast, the urban area increase from 9 to 25% mainly in upslope parts of the Quinta sub-catchment did not increase the peak streamflow due to downslope infiltration and surface retention opportunities. Despite impermeable surfaces enhance overland flow, some urban features (e.g. walls and road embankments) promote surface water retention. The presence of artificial drainage systems, on the other hand, enhances flow connectivity, leading to increasing peak flow and quicker response times (~10 minutes versus 40-50 minutes) as in the Covões sub-catchment. Urbanization impact on streamflow responses may be minimized through planning the land-use mosaic so as to maximize infiltration opportunities. Knowledge of the influence of distinct urban mosaics on flow connectivity and stream discharge is therefore important to landscape managers and should guide urban planning in order to minimize flood hazards.

  17. Water quality modelling of an impacted semi-arid catchment using flow data from the WEAP model

    NASA Astrophysics Data System (ADS)

    Slaughter, Andrew R.; Mantel, Sukhmani K.

    2018-04-01

    The continuous decline in water quality in many regions is forcing a shift from quantity-based water resources management to a greater emphasis on water quality management. Water quality models can act as invaluable tools as they facilitate a conceptual understanding of processes affecting water quality and can be used to investigate the water quality consequences of management scenarios. In South Africa, the Water Quality Systems Assessment Model (WQSAM) was developed as a management-focussed water quality model that is relatively simple to be able to utilise the small amount of available observed data. Importantly, WQSAM explicitly links to systems (yield) models routinely used in water resources management in South Africa by using their flow output to drive water quality simulations. Although WQSAM has been shown to be able to represent the variability of water quality in South African rivers, its focus on management from a South African perspective limits its use to within southern African regions for which specific systems model setups exist. Facilitating the use of WQSAM within catchments outside of southern Africa and within catchments for which these systems model setups to not exist would require WQSAM to be able to link to a simple-to-use and internationally-applied systems model. One such systems model is the Water Evaluation and Planning (WEAP) model, which incorporates a rainfall-runoff component (natural hydrology), and reservoir storage, return flows and abstractions (systems modelling), but within which water quality modelling facilities are rudimentary. The aims of the current study were therefore to: (1) adapt the WQSAM model to be able to use as input the flow outputs of the WEAP model and; (2) provide an initial assessment of how successful this linkage was by application of the WEAP and WQSAM models to the Buffalo River for historical conditions; a small, semi-arid and impacted catchment in the Eastern Cape of South Africa. The simulations of the two models were compared to the available observed data, with the initial focus within WQSAM on a simulation of instream total dissolved solids (TDS) and nutrient concentrations. The WEAP model was able to adequately simulate flow in the Buffalo River catchment, with consideration of human inputs and outputs. WQSAM was adapted to successfully take as input the flow output of the WEAP model, and the simulations of nutrients by WQSAM provided a good representation of the variability of observed nutrient concentrations in the catchment. This study showed that the WQSAM model is able to accept flow inputs from the WEAP model, and that this approach is able to provide satisfactory estimates of both flow and water quality for a small, semi-arid and impacted catchment. It is hoped that this research will encourage the application of WQSAM to an increased number of catchments within southern Africa and beyond.

  18. Evaluation of fluxes of suspended matters and bedload in the small granitic Strengbach catchment (Vosges massif, France)

    NASA Astrophysics Data System (ADS)

    Cotel, Solenn; Viville, Daniel; Pierret, Marie Claire; Benarioumlil, Sylvain; Chabaux, François

    2016-04-01

    Transport of suspended matters (SM) and bedload in river controls the erosion process and elements export of a catchment. Furthermore, the SM are heavily involved in the migration of organic matter, metals and pollutants. The knowledge of the dynamics of the SM export is also essential to better understand the hydrogeochemical functioning of natural ecosystem. We investigated this question at the scale of a catchment; the Strengbach basin (site of OHGE - Observatoire Hydro-Géochimique de l'Environnement) where meteorological and hydrological data are monitored since 30 years. This small granitic basin (0,8km²) is located in the Vosges massif at altitudes between 883m and 1146m with 1400mm mean annual precipitations. A first evaluation of the solid fluxes exported at the Strengbach catchment was carried out on the basis of fortnightly sampling and measurement (Viville et al., 2012). Two automatic water samplers have been set up at the outlet of the basin in december 2012, in order to 1) evaluate the potential bias generated by the sampling frequency and 2) improve the SM flux calculation accuracy especially by taking into account the high flow events. These two samplers allowed regular sampling at 16h time step as well as high flow events sampling. At the same time, the bedload flux was estimated fortnightly by measuring the volume of sediments accumulated in a flume. However, the characteristics of the small Strengbach catchment (low water level, low SM concentration and mountainous winter climatic conditions) required to adapt the conventionally used systems. In this way, the SM annual flux estimated with the data from the two samplers varied between 7,5T and 8,8T during the three years of the study. By comparison, the SM annual flux obtained with previous method (only fortnightly sampling) was significantly different with values ranging from 2,8T to 16,6T. The contribution from each sampler and thus each sampling strategy to the improvement of the SM flux estimation has been calculated and is discussed below. When the SM flux due to high flow events is added to the SM flux based on 16h time step samples, the annual SM flux was improved of only 3% to 12% depending on the year, which can be surprising. During the three years of the study, the annual bedload flux was estimated between 1,3T and 5,0T, indicating that the solid export is dominated by SM transport in this catchment. Between 2004 and 2010, the mean weathering net flux (exports at the outlet corrected by atmospheric inputs) was of 1,6T/yr for the basic cations and of 2,3T/yr for the silica (Viville et al., 2012). Thus, in the Strengbach catchment, the SM and bedload exports represent a significant portion of the global chemical elements export. In such catchments, theses solid fluxes can not be neglected.

  19. Nutrient and Suspended-Sediment Transport and Trends in the Columbia River and Puget Sound Basins, 1993-2003

    USGS Publications Warehouse

    Wise, Daniel R.; Rinella, Frank A.; Rinella, Joseph F.; Fuhrer, Greg J.; Embrey, Sandra S.; Clark, Gregory M.; Schwarz, Gregory E.; Sobieszczyk, Steven

    2007-01-01

    This study focused on three areas that might be of interest to water-quality managers in the Pacific Northwest: (1) annual loads of total nitrogen (TN), total phosphorus (TP) and suspended sediment (SS) transported through the Columbia River and Puget Sound Basins, (2) annual yields of TN, TP, and SS relative to differences in landscape and climatic conditions between subbasin catchments (drainage basins), and (3) trends in TN, TP, and SS concentrations and loads in comparison to changes in landscape and climatic conditions in the catchments. During water year 2000, an average streamflow year in the Pacific Northwest, the Columbia River discharged about 570,000 pounds per day of TN, about 55,000 pounds per day of TP, and about 14,000 tons per day of SS to the Pacific Ocean. The Snake, Yakima, Deschutes, and Willamette Rivers contributed most of the load discharged to the Columbia River. Point-source nutrient loads to the catchments (almost exclusively from municipal wastewater treatment plants) generally were a small percentage of the total in-stream nutrient loads; however, in some reaches of the Spokane, Boise, Walla Walla, and Willamette River Basins, point sources were responsible for much of the annual in-stream nutrient load. Point-source nutrient loads generally were a small percentage of the total catchment nutrient loads compared to nonpoint sources, except for a few catchments where point-source loads comprised as much as 30 percent of the TN load and as much as 80 percent of the TP load. The annual TN and TP loads from point sources discharging directly to the Puget Sound were about equal to the annual loads from eight major tributaries. Yields of TN, TP, and SS generally were greater in catchments west of the Cascade Range. A multiple linear regression analysis showed that TN yields were significantly (p < 0.05) and positively related to precipitation, atmospheric nitrogen load, fertilizer and manure load, and point-source load, and were negatively related to average slope. TP yields were significantly related positively to precipitation, and point-source load and SS yields were significantly related positively to precipitation. Forty-eight percent of the available monitoring sites for TN had significant trends in concentration (2 increasing, 19 decreasing), 32 percent of the available sites for TP had significant trends in concentration (7 increasing, 9 decreasing), and 40 percent of the available sites for SS had significant trends in concentration (4 increasing, 15 decreasing). The trends in load followed a similar pattern, but with fewer sites showing significant trends. The results from this study indicate that inputs from nonpoint sources of nutrients probably have decreased over time in many of the catchments. Despite the generally small contribution of point-source nutrient loads, they still may have been partially responsible for the significant decreasing trends for nutrients at sites where the total point-source nutrient loads to the catchments equaled a substantial proportion of the in-stream load.

  20. Potenziale der Nutzung organischer Spurenstoffe als Indikatoren in Grundwasserleitern

    NASA Astrophysics Data System (ADS)

    Reh, Roland; Nödler, Karsten; Hillebrand, Olav; Licha, Tobias

    2016-11-01

    Risk assessment for drinking water requires a conceptual hydrogeological model of the catchment as well as an understanding of flow pathways, residence times and processes on the catchment scale. In fractured and karst aquifers, this is a challenging task, in part because the application of artificial tracers, environmental tracers or stable isotopes for understanding processes on the catchment scale is limited. Recently, a large number of organic compounds with different properties in very small concentrations have been detected in groundwater, including pesticides, pharmaceuticals, corrosion inhibitors and caffeine. In this article, we use a case study to demonstrate the potential of employing these compounds as indicators to reflect selected aquifer characteristics and properties, and to answer specific questions on the hydrogeological system.

  1. Estimating the SCS runoff curve number in forest catchments of Korea

    NASA Astrophysics Data System (ADS)

    Choi, Hyung Tae; Kim, Jaehoon; Lim, Hong-geun

    2016-04-01

    To estimate flood runoff discharge is a very important work in design for many hydraulic structures in streams, rivers and lakes such as dams, bridges, culverts, and so on. So, many researchers have tried to develop better methods for estimating flood runoff discharge. The SCS runoff curve number is an empirical parameter determined by empirical analysis of runoff from small catchments and hillslope plots monitored by the USDA. This method is an efficient method for determining the approximate amount of runoff from a rainfall even in a particular area, and is very widely used all around the world. However, there is a quite difference between the conditions of Korea and USA in topography, geology and land use. Therefore, examinations in adaptability of the SCS runoff curve number need to raise the accuracy of runoff prediction using SCS runoff curve number method. The purpose of this study is to find the SCS runoff curve number based on the analysis of observed data from several experimental forest catchments monitored by the National Institute of Forest Science (NIFOS), as a pilot study to modify SCS runoff curve number for forest lands in Korea. Rainfall and runoff records observed in Gwangneung coniferous and broad leaves forests, Sinwol, Hwasoon, Gongju and Gyeongsan catchments were selected to analyze the variability of flood runoff coefficients during the last 5 years. This study shows that runoff curve numbers of the experimental forest catchments range from 55 to 65. SCS Runoff Curve number method is a widely used method for estimating design discharge for small ungauged watersheds. Therefore, this study can be helpful technically to estimate the discharge for forest watersheds in Korea with more accuracy.

  2. Validating a mass balance accounting approach to using 7Be measurements to estimate event-based erosion rates over an extended period at the catchment scale

    NASA Astrophysics Data System (ADS)

    Porto, Paolo; Walling, Des E.; Cogliandro, Vanessa; Callegari, Giovanni

    2016-07-01

    Use of the fallout radionuclides cesium-137 and excess lead-210 offers important advantages over traditional methods of quantifying erosion and soil redistribution rates. However, both radionuclides provide information on longer-term (i.e., 50-100 years) average rates of soil redistribution. Beryllium-7, with its half-life of 53 days, can provide a basis for documenting short-term soil redistribution and it has been successfully employed in several studies. However, the approach commonly used introduces several important constraints related to the timing and duration of the study period. A new approach proposed by the authors that overcomes these constraints has been successfully validated using an erosion plot experiment undertaken in southern Italy. Here, a further validation exercise undertaken in a small (1.38 ha) catchment is reported. The catchment was instrumented to measure event sediment yields and beryllium-7 measurements were employed to document the net soil loss for a series of 13 events that occurred between November 2013 and June 2015. In the absence of significant sediment storage within the catchment's ephemeral channel system and of a significant contribution from channel erosion to the measured sediment yield, the estimates of net soil loss for the individual events could be directly compared with the measured sediment yields to validate the former. The close agreement of the two sets of values is seen as successfully validating the use of beryllium-7 measurements and the new approach to obtain estimates of net soil loss for a sequence of individual events occurring over an extended period at the scale of a small catchment.

  3. Climate change impacts on hydropower in the Swiss and Italian Alps.

    PubMed

    Gaudard, Ludovic; Romerio, Franco; Dalla Valle, Francesco; Gorret, Roberta; Maran, Stefano; Ravazzani, Giovanni; Stoffel, Markus; Volonterio, Michela

    2014-09-15

    This paper provides a synthesis and comparison of methodologies and results obtained in several studies devoted to the impact of climate change on hydropower. By putting into perspective various case studies, we provide a broader context and improved understanding of climate changes on energy production. We also underline the strengths and weaknesses of the approaches used as far as technical, physical and economical aspects are concerned. Although the catchments under investigation are located close to each other in geographic terms (Swiss and Italian Alps), they represent a wide variety of situations which may be affected by differing evolutions for instance in terms of annual runoff. In this study, we also differentiate between run-of-river, storage and pumping-storage power plants. By integrating and comparing various analyses carried out in the framework of the EU-FP7 ACQWA project, this paper discusses the complexity as well as current and future issues of hydropower management in the entire Alpine region. © 2013 Elsevier B.V. All rights reserved.

  4. N fluxes in two nitrogen saturated forested catchments in Germany: dynamics and modelling with INCA

    NASA Astrophysics Data System (ADS)

    Langusch, J.-J.; Matzner, E.

    The N cycle in forests of the temperate zone in Europe has been changed substantially by the impact of atmospheric N deposition. Here, the fluxes and concentrations of mineral N in throughfall, soil solution and runoff in two German catchments, receiving high N inputs are investigated to test the applicability of an Integrated Nitrogen Model for European Catchments (INCA) to small forested catchments. The Lehstenbach catchment (419 ha) is located in the German Fichtelgebirge (NO Bavaria, 690-871 m asl.) and is stocked with Norway spruce (Picea abies (L.) Karst.) of different ages. The Steinkreuz catchment (55 ha) with European beech (Fagus sylvatica L.) as the dominant tree species is located in the Steigerwald (NW Bavaria, 400-460 m asl.). The mean annual N fluxes with throughfall were slightly higher at the Lehstenbach (24.6 kg N ha-1) than at the Steinkreuz (20.4 kg N ha-1). In both catchments the N fluxes in the soil are dominated by NO3. At Lehstenbach, the N output with seepage at 90 cm soil depth was similar to the N flux with throughfall. At Steinkreuz more than 50 % of the N deposited was retained in the upper soil horizons. In both catchments, the NO3 fluxes with runoff were lower than those with seepage. The average annual NO3 concentrations in runoff in both catchments were between 0.7 to 1.4 mg NO3-N L-1 and no temporal trend was observed. The N budgets at the catchment scale indicated similar amounts of N retention (Lehstenbach: 19 kg N ha-1yr-1 ; Steinkreuz: 17 kg N ha-1yr-1). The parameter settings of the INCA model were simplified to reduce the model complexity. In both catchments, the NO3 concentrations and fluxes in runoff were matched well by the model. The seasonal patterns with lower NO3 runoff concentrations in summer at the Lehstenbach catchment were replicated. INCA underestimated the increased N3 concentrations during short periods of rewetting in late autumn at the Steinkreuz catchment. The model will be a helpful tool for the calculation of "critical loads"? for the N deposition in Central European forests including different hydrological regimes.

  5. Acquision of Geometrical Data of Small Rivers with AN Unmanned Water Vehicle

    NASA Astrophysics Data System (ADS)

    Sardemann, H.; Eltner, A.; Maas, H.-G.

    2018-05-01

    Rivers with small- and medium-scaled catchments have been increasingly affected by extreme events, i.e. flash floods, in the last years. New methods to describe and predict these events are developed in the interdisciplinary research project EXTRUSO. Flash flood events happen on small temporal and spatial scales, stressing the necessity of high-resolution input data for hydrological and hydrodynamic modelling. Among others, the benefit of high-resolution digital terrain models (DTMs) will be evaluated in the project. This article introduces a boat-based approach for the acquisition of geometrical and morphological data of small rivers and their banks. An unmanned water vehicle (UWV) is used as a multi-sensor platform to collect 3D-point clouds of the riverbanks, as well as bathymetric measurements of water depth and river morphology. The UWV is equipped with a mobile Lidar, a panorama camera, an echo sounder and a positioning unit. Whole (sub-) catchments of small rivers can be digitalized and provided for hydrological modelling when UWV-based and UAV (unmanned aerial vehicle) based point clouds are fused.

  6. Limited genetic divergence among Australian alpine Poa tussock grasses coupled with regional structuring points to ongoing gene flow and taxonomic challenges

    PubMed Central

    Griffin, Philippa C.; Hoffmann, Ary A.

    2014-01-01

    Background and Aims While molecular approaches can often accurately reconstruct species relationships, taxa that are incompletely differentiated pose a challenge even with extensive data. Such taxa are functionally differentiated, but may be genetically differentiated only at small and/or patchy regions of the genome. This issue is considered here in Poa tussock grass species that dominate grassland and herbfields in the Australian alpine zone. Methods Previously reported tetraploidy was confirmed in all species by sequencing seven nuclear regions and five microsatellite markers. A Bayesian approach was used to co-estimate nuclear and chloroplast gene trees with an overall dated species tree. The resulting species tree was used to examine species structure and recent hybridization, and intertaxon fertility was tested by experimental crosses. Key Results Species tree estimation revealed Poa gunnii, a Tasmanian endemic species, as sister to the rest of the Australian alpine Poa. The taxa have radiated in the last 0·5–1·2 million years and the non-gunnii taxa are not supported as genetically distinct. Recent hybridization following past species divergence was also not supported. Ongoing gene flow is suggested, with some broad-scale geographic structure within the group. Conclusions The Australian alpine Poa species are not genetically distinct despite being distinguishable phenotypically, suggesting recent adaptive divergence with ongoing intertaxon gene flow. This highlights challenges in using conventional molecular taxonomy to infer species relationships in recent, rapid radiations. PMID:24607721

  7. Small catchments DEM creation using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Gafurov, A. M.

    2018-01-01

    Digital elevation models (DEM) are an important source of information on the terrain, allowing researchers to evaluate various exogenous processes. The higher the accuracy of DEM the better the level of the work possible. An important source of data for the construction of DEMs are point clouds obtained with terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAV). In this paper, we present the results of constructing a DEM on small catchments using UAVs. Estimation of the UAV DEM showed comparable accuracy with the TLS if real time kinematic Global Positioning System (RTK-GPS) ground control points (GCPs) and check points (CPs) were used. In this case, the main source of errors in the construction of DEMs are the errors in the referencing of survey results.

  8. [Spatial patterns of dominant tree species in sub-alpine Betula-Abies forest in West Sichuan of China].

    PubMed

    Miao, Ning; Liu, Shi-Rong; Shi, Zuo-Min; Yu, Hong; Liu, Xing-Liang

    2009-06-01

    Based on the investigation in a 4 hm2 Betula-Abies forest plot in sub-alpine area in West Sichuan of China, and by using point pattern analysis method in terms of O-ring statistics, the spatial patterns of dominant species Betula albo-sinensis and Abies faxoniana in different age classes in study area were analyzed, and the intra- and inter-species associations between these age classes were studied. B. albo-sinensis had a unimodal distribution of its DBH frequency, indicating a declining population, while A. faxoniana had a reverse J-shaped pattern, showing an increasing population. All the big trees of B. albo-sinensis and A. faxoniana were spatially in random at all scales, while the medium age and small trees were spatially clumped at small scales and tended to be randomly or evenly distributed with increasing spatial scale. The maximum aggregation degree decreased with increasing age class. Spatial association mainly occurred at small scales. A. faxoniana generally showed positive intra-specific association, while B. albo-sinensis generally showed negative intra-specific association. For the two populations, big and small trees had no significant spatial association, but middle age trees had negative spatial association. Negative inter-specific associations of the two populations were commonly found in different age classes. The larger the difference of age class, the stronger the negative inter-specific association.

  9. Geo-PUMMA: Urban and Periurban Landscape Representation Toolbox for Hydrological Distributed Modeling

    NASA Astrophysics Data System (ADS)

    Sanzana, Pedro; Gironas, Jorge; Braud, Isabelle; Branger, Flora; Rodriguez, Fabrice; Vargas, Ximena; Hitschfeld, Nancy; Francisco Munoz, Jose

    2016-04-01

    In addition to land use changes, the process of urbanization can modify the direction of the surface and sub-surface flows, generating complex environments and increasing the types of connectivity between pervious and impervious areas. Thus, hydrological pathways in urban and periurban areas are significantly affected by artificial elements like channels, pipes, streets and other elements of storm water systems. This work presents Geo-PUMMA, a new GIS toolbox to generate vectorial meshes for distributed hydrological modeling and extract the drainage network in urban and periurban terrain. Geo-PUMMA gathers spatial information maps (e.g. cadastral, soil types, geology and digital elevation models) to produce Hydrological Response Units (HRU) and Urban Hydrological Elements (UHE). Geo-PUMMA includes tools to improve the initial mesh derived from GIS layers intersection in order to respect geometrical constraints, which ensures numerical stability while preserving the shape of the initial HRUs and minimizing the small elements to lower computing times. The geometrical constraints taken into account include: elements convexity, limitation of the number of sliver elements (e.g. roads) and of very small or very large elements. This toolbox allows the representation of basins at small scales (0.1-10km2), as it takes into account the hydrological connectivity of the main elements explicitly, and improves the representation of water pathways compared with classical raster approaches. Geo-PUMMA also allows the extraction of basin morphologic properties such as the width function, the area function and the imperviousness function. We applied this new toolbox to two periurban catchments: the Mercier catchment located near Lyon, France, and the Estero El Guindo catchment located in the Andean piedmont in the Maipo River, Chile. We use the capability of Geo-PUMMA to generate three different meshes. The first one is the initial mesh derived from the direct intersection of GIS layers. The second one is based on fine triangulation of HRUs and is considered the best one we can obtain (reference mesh). The third one is the recommended mesh, preserving the shape of the initial HRUs and limiting the number of elements. The representation of the drainage network and its morphological properties is compared between the three meshes. This comparison shows that the drainage network representation is particularly improved at small to medium spatial scales when using the recommended meshes (i.e. 120-150 m for the El Guindo catchment and 80-150 m for the Mercier catchment). The results also show that the recommended mesh correctly represents the main features of the drainage network as compared to the reference mesh. KEYWORDS: GRASS-GIS, Computer-assisted mesh generation, periurban catchments

  10. Advanced inflow forecasting for a hydropower plant in an Alpine hydropower regulated catchment - coupling of operational and hydrological forecasts

    NASA Astrophysics Data System (ADS)

    Tilg, Anna-Maria; Schöber, Johannes; Huttenlau, Matthias; Messner, Jakob; Achleitner, Stefan

    2017-04-01

    Hydropower is a renewable energy source which can help to stabilize fluctuations in the volatile energy market. Especially pumped-storage infrastructures in the European Alps play an important role within the European energy grid system. Today, the runoff of rivers in the Alps is often influenced by cascades of hydropower infrastructures where the operational procedures are triggered by energy market demands, water deliveries and flood control aspects rather than by hydro-meteorological variables. An example for such a highly hydropower regulated river is the catchment of the river Inn in the Eastern European Alps, originating in the Engadin (Switzerland). A new hydropower plant is going to be built as transboundary project at the boarder of Switzerland and Austria using the water of the Inn River. For the operation, a runoff forecast to the plant is required. The challenge in this case is that a high proportion of runoff is turbine water from an upstream situated hydropower cascade. The newly developed physically based hydrological forecasting system is mainly capable to cover natural hydrological runoff processes caused by storms and snow melt but can model only a small degree of human impact. These discontinuous parts of the runoff downstream of the pumped storage are described by means of an additional statistical model which has been developed. The main goal of the statistical model is to forecast the turbine water up to five days in advance. The lead time of the data driven model exceeds the lead time of the used energy production forecast. Additionally, the amount of turbine water is linked to the need of electricity production and the electricity price. It has been shown that especially the parameters day-ahead prognosis of the energy production and turbine inflow of the previous week are good predictors and are therefore used as input parameters for the model. As the data is restricted due to technical conditions, so-called Tobit models have been used to develop a linear regression for the runoff forecast. Although the day-ahead prognosis cannot always be kept, the regression model delivers, especially during office hours, very reasonable results. In the remaining hours the error between measurement and the forecast increases. Overall, the inflow forecast can be substantially improved by the implementation of the developed regression in the hydrological modelling system.

  11. Hydro-geomorphic connectivity and landslide features extraction to identifying potential threats and hazardous areas

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Fuller, Ian C.; Basso, Federica; Cavalli, Marco; Sofia, Giulia

    2017-04-01

    Hydro-geomorphic connectivity has significantly emerged as a new concept to understand the transfer of surface water and sediment through landscapes. A further scientific challenge is determining how the concept can be used to enable sustainable land and water management. This research proposes an interesting approach to integrating remote sensing techniques, connectivity theory, and geomorphometry based on high-resolution digital terrain model (HR-DTMs) to automatically extract landslides crowns and gully erosion, to determine the different rate of connectivity among the main extracted features and the river network, and thus determine a possible categorization of hazardous areas. The study takes place in two mountainous regions in the Wellington Region (New Zealand). The methodology is a three step approach. Firstly, we performed an automatic detection of the likely landslides crowns through the use of thresholds obtained by the statistical analysis of the variability of landform curvature. After that, the research considered the Connectivity Index to analyse how a complex and rugged topography induces large variations in erosion and sediment delivery in the two catchments. Lastly, the two methods have been integrated to create a unique procedure able to classify the different rate of connectivity among the main features and the river network and thus identifying potential threats and hazardous areas. The methodology is fast, and it can produce a detailed and updated inventory map that could be a key tool for erosional and sediment delivery hazard mitigation. This fast and simple method can be a useful tool to manage emergencies giving priorities to more failure-prone zones. Furthermore, it could be considered to do a preliminary interpretations of geomorphological phenomena and more in general, it could be the base to develop inventory maps. References Cavalli M, Trevisani S, Comiti F, Marchi L. 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188: 31-41 DOI: 10.1016/j.geomorph.2012.05.007 Sofia G, Dalla Fontana G, Tarolli P. 2014. High-resolution topography and anthropogenic feature extraction: testing geomorphometric parameters in floodplains. Hydrological Processes 28 (4): 2046-2061 DOI: 10.1002/hyp.9727 Tarolli P, Sofia G, Dalla Fontana G. 2012. Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Natural Hazards 61 (1): 65-83 DOI: 10.1007/s11069-010-9695-2

  12. Determining health-care facility catchment areas in Uganda using data on malaria-related visits

    PubMed Central

    Charland, Katia; Kigozi, Ruth; Dorsey, Grant; Kamya, Moses R; Buckeridge, David L

    2014-01-01

    Abstract Objective To illustrate the use of a new method for defining the catchment areas of health-care facilities based on their utilization. Methods The catchment areas of six health-care facilities in Uganda were determined using the cumulative case ratio: the ratio of the observed to expected utilization of a facility for a particular condition by patients from small administrative areas. The cumulative case ratio for malaria-related visits to these facilities was determined using data from the Uganda Malaria Surveillance Project. Catchment areas were also derived using various straight line and road network distances from the facility. Subsequently, the 1-year cumulative malaria case rate was calculated for each catchment area, as determined using the three methods. Findings The 1-year cumulative malaria case rate varied considerably with the method used to define the catchment areas. With the cumulative case ratio approach, the catchment area could include noncontiguous areas. With the distance approaches, the denominator increased substantially with distance, whereas the numerator increased only slightly. The largest cumulative case rate per 1000 population was for the Kamwezi facility: 234.9 (95% confidence interval, CI: 226.2–243.8) for a straight-line distance of 5 km, 193.1 (95% CI: 186.8–199.6) for the cumulative case ratio approach and 156.1 (95% CI: 150.9–161.4) for a road network distance of 5 km. Conclusion Use of the cumulative case ratio for malaria-related visits to determine health-care facility catchment areas was feasible. Moreover, this approach took into account patients’ actual addresses, whereas using distance from the facility did not. PMID:24700977

  13. Inferring Soil Moisture Memory from Streamflow Observations Using a Simple Water Balance Model

    NASA Technical Reports Server (NTRS)

    Orth, Rene; Koster, Randal Dean; Seneviratne, Sonia I.

    2013-01-01

    Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. We investigate in this study whether such streamflow measurements can be used to infer and characterize soil moisture memory in respective catchments. Our approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of soil moisture; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on soil moisture memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of soil moisture memory and to show how memory varies, for example, with altitude and topography.

  14. Similarity and scale in catchment storm response

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Sivapalan, Murugesu; Beven, Keith

    1993-01-01

    Until recently, very little progress had been made in understanding the relationship between small-scale variability of topography, soil, and rainfalls and the storm response seen at the catchment scale. The work reviewed here represents the first attempt at a systematic theoretical framework for such understanding in the context of surface runoff generation by different processes. The parameterization of hydrological processes over a range of scales is examined, and the concept of the 'representative elementary area' (REA) is introduced. The REA is a fundamental scale for catchment modeling at which continuum assumptions can be applied for the spatially variable controls and parameters, and spatial patterns no longer have to be considered explicitly. The investigation of scale leads into the concept of hydrologic similarity in which the effects of the environmental controls on runoff generation and flood frequency response be investigated independently of catchment scale. The paper reviews the authors' initial results and hopefully will motivate others to also investigate the issues of hydrologic scale and similarity.

  15. Development and application of a catchment scale pesticide fate and transport model for use in drinking water risk assessment.

    PubMed

    Pullan, S P; Whelan, M J; Rettino, J; Filby, K; Eyre, S; Holman, I P

    2016-09-01

    This paper describes the development and application of IMPT (Integrated Model for Pesticide Transport), a parameter-efficient tool for predicting diffuse-source pesticide concentrations in surface waters used for drinking water supply. The model was applied to a small UK headwater catchment with high frequency (8h) pesticide monitoring data and to five larger catchments (479-1653km(2)) with sampling approximately every 14days. Model performance was good for predictions of both flow (Nash Sutcliffe Efficiency generally >0.59 and PBIAS <10%) and pesticide concentrations, although low sampling frequency in the larger catchments is likely to mask the true episodic nature of exposure. The computational efficiency of the model, along with the fact that most of its parameters can be derived from existing national soil property data mean that it can be used to rapidly predict pesticide exposure in multiple surface water resources to support operational and strategic risk assessments. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Watershed scale spatial variability in dissolved and total organic and inorganic carbon in contrasting UK catchments

    NASA Astrophysics Data System (ADS)

    Cumberland, S.; Baker, A.; Hudson, N. J.

    2006-12-01

    Approximately 800 organic and inorganic carbon analyses have been undertaken from watershed scale and regional scale spatial surveys in various British catchments. These include (1) a small (<100 sq-km) urban catchment (Ouseburn, N England); (2) a headwater, lowland agricultural catchment (River Tern, C England) (3) a large UK catchment (River Tyne, ~3000 sq-km) and (4) a spatial survey of ~300 analyses from rivers from SW England (~1700 sq-km). Results demonstrate that: (1) the majority of organic and inorganic carbon is in the dissolved (DOC and DIC) fractions; (2) that with the exception of peat rich headwaters, DIC concentration is always greater than DOC; (3) In the rural River Tern, riverine DOC and DIC are shown to follow a simple end- member mixing between DIC (DOC) rich (poor) ground waters and DOC (DIC) rich (poor) riparian wetlands for all sample sites. (4) In the urbanized Ouseburn catchment, although many sample sites also show this same mixing trend, some tributaries follow a pollutant trend of simultaneous increases in both DOC and DIC. The Ouseburn is part of the larger Tyne catchment: this larger catchment follows the simple groundwater DIC- soil water DOC end member mixing model, with the exception of the urban catchments which exhibit an elevated DIC compared to rural sites. (5) Urbanization is demonstrated to increase DIC compared to equivalent rural catchments; this DIC has potential sources including diffuse source inputs from the dissolution of concrete, point sources such as trade effluents and landfill leachates, and bedrock derived carbonates relocated to the soil dissolution zone by urban development. (6) DIC in rural SW England demonstrates that spatial variability in DIC can be attributed to variations in geology; but that DIC concentrations in the SW England rivers dataset are typically lower than the urbanized Tyne catchments despite the presence of carbonate bedrock in many of the sample catchments in the SW England dataset. (7) Recent investigations into carbon fluxes in British rivers have focused on long term increases in DOC in rural and predominantly upland catchments. Our results suggest that research is needed into understanding long term variations in inorganic carbon concentration, as well as total (organic and inorganic) carbon fluxes from British rivers, to obtain total carbon loads. In particular, we provide evidence that DIC concentrations may be greater in urbanized catchments compared to equivalent non-urban catchments, with the implication that increasing urbanization in the future will see increases in riverine DIC and a decrease in the strength of any DOC DIC anti correlation. Further studies of urban catchment DIC sources, within stream processing, long term trends, and potential ecological impacts, are required.

  17. Linking hydrology, morphodynamics and ecology to assess the restoration potential of the heavily regulated Sarca River, NE Italy

    NASA Astrophysics Data System (ADS)

    Carolli, Mauro; Zolezzi, Guido; Pellegrini, Stefano; Gelmini, Francesca; Deriu, Micaela

    2017-04-01

    We develop an integrated eco-hydro-morphological quantitative investigation of the upper course of the Alpine Sarca River (NE Italy), for the purpose of assessing its potential in terms of environmental restoration. The Sarca River has been subject to heavy exploitation for hydropower production since the 1950s through a complex infrastructural system. As for many regulated Alpine rivers, increasing local interest has recently been developing to design and implement river restoration measures to improve the environmental conditions and ecosystem services that the river can provide. The aim of the work is to develop and apply a quantitative approach for a preliminary assessment of the successful potential of different river restoration options in the light of the recent eco-hydro-morphological dynamics of the Sarca river system at the catchment scale. The proposed analysis consists of three main steps: (1) detection of the main drivers of flow and sediment supply regimes alteration and characterization of such alteration; (2) a quantification of the effects of those alterations on geomorphic processes and fish habitat conditions; (3) the analysis of the restoration potential in the light of the results of the previous assessment. The analysis is tailored to the existing data availability, which is relatively high as for most river systems of comparable size in Europe, but not as much as in the case of a targeted research project, thus providing a representative case for many other regulated river catchments. Hydrological alteration is quantified by comparing recent (20 years) streamflow time series with a reconstructed series of analogous length, using a hydrological model that has been run excluding any man-made water abstraction, release and artificial reservoirs. upstream and downstream a large dam in the middle course of the river. By choosing the adult marble trout as target (endemic) fish species, effects of the alterations on the temporal and spatial habitat suitability have been assessed by applying a hydraulic-habitat method combined with the streamflow time series. Geomorphological trajectories of the last decades have been reconstructed through the analysis of aerial photos, and the geomorphic effects of flow regime alteration have been assessed in terms of the changes in frequency and duration of gravel-transporting flood events. Results indicate hydropower as one of the drivers of hydro-morphological alteration, with widespread torrent control works in the catchment playing a relevant role in reducing sediment supply. Recent changes in flow management related to the imposition of a Minimum Environmental Flow correspond to significant increase in the continuous duration of suitable habitat events, despite representing only a first step towards a dynamic ecological flow regime. While floods able to drive morphological changes still occurred after regulation, their frequency and duration have dramatically decreased, contributing to channel narrowing and morphological simplification. Overall, the analysis suggests that: (i) morphological river restoration aimed at restoring self-formed morphodynamics can only be effective if designed together with a dynamic geomorphic flow regime, and (ii) dynamic ecological flows should designed with a twofold objective of improving habitat and spawning sites conditions together with recreational uses of the river.

  18. Evidence for enhanced debris flow activity in the Northern Calcareous Alps since the 1980s (Plansee, Austria)

    NASA Astrophysics Data System (ADS)

    Dietrich, Andreas; Krautblatter, Michael

    2016-04-01

    From 1950 to 2011 almost 80.000 people lost their lives through the occurrence of debris flow events (Dowling and Santi, 2014). Debris flows occur in all alpine regions due to intensive rainstorms and mobilisable loose debris. Due to their susceptible lithology, the Northern Calcareous Alps are affected by a double digit number of major hazard events per year. Some authors hypothesised a relation between an increasing frequency of heavy rainstorms and an increasing occurrence of landslides in general (Beniston and Douglas, 1996) and debris flows in special (Pelfini and Santilli, 2008), but yet there is only limited evidence. The Plansee catchment in the Ammergauer Alps consists of intensely jointed Upper Triassic Hauptdolomit lithology and therefore shows extreme debris flow activity. To investigate this activity in the last decades, the temporal and spatial development of eight active debris flow fans is examined with GIS and field mapping. The annual rates since the late 1940s are inferred accurately by using aerial photos from 1947, 1952, 1971, 1979, 1987, 2000 and 2010. These rates are compared to the mean Holocene/Lateglacial debris flow volume derived from the most prominent cone. The contact with the underlying till is revealed by electrical resistivity tomography (ERT). It shows that the mean annual debris flow volume has increased there by a factor of 10 from 1947-1952 (0.23 ± 0.07 10³m³/yr) to 1987-2000 (2.41 ± 0.66 10³m³/yr). A similar trend can be seen on all eight fans: mean post-1980 rates exceed pre-1980 rates by a factor of more than three. This increasing debris flow activity coincides with an enhanced rainstorm (def. 35 mm/d) frequency recorded at the nearest meteorological station. Since 1921 the frequency of heavy rainstorms has increased there on average by 10% per decade. Recent debris flow rates are also 2-3 times higher compared to mean Holocene/Lateglacial rates. Furthermore, we state a strong correlation between the non-vegetated catchment area and the annual debris flow volume. This might indicate a decadal positive feedback between enhanced rainstorm frequency and the occurrence of debris flows. The study contributes to a better understanding of the sensitivity of alpine catchments to heavy rainfall events in the context of climate change. Beniston, M., Douglas, G.F., 1996. Impacts of climate change on mountain regions. In: Watson, R.T., Zinyowera, M.C., Moss, R.H., Dokken, D.J. (Eds.), Climate Change 1995. Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis. Cambridge Univ. Press, Cambridge, pp. 191-213. Dowling, C.A., Santi, P.M., 2014. Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Nat. Hazards 71, 203-227. doi: 10.1007/s11069-013-0907-4 Pelfini, M., Santilli, M., 2008. Frequency of debris flows and their relation with precipitation: A case study in the Central Alps, Italy. Geomorphology 101, 721-730. doi:10.1016/j.geomorph.2008.04.002

  19. Community-specific hydraulic conductance potential of soil water decomposed for two Alpine grasslands by small-scale lysimetry

    NASA Astrophysics Data System (ADS)

    Frenck, Georg; Leitinger, Georg; Obojes, Nikolaus; Hofmann, Magdalena; Newesely, Christian; Deutschmann, Mario; Tappeiner, Ulrike; Tasser, Erich

    2018-02-01

    For central Europe in addition to rising temperatures an increasing variability in precipitation is predicted. This will increase the probability of drought periods in the Alps, where water supply has been sufficient in most areas so far. For Alpine grasslands, community-specific imprints on drought responses are poorly analyzed so far due to the sufficient natural water supply. In a replicated mesocosm experiment we compared evapotranspiration (ET) and biomass productivity of two differently drought-adapted Alpine grassland communities during two artificial drought periods divided by extreme precipitation events using high-precision small lysimeters. The drought-adapted vegetation type showed a high potential to utilize even scarce water resources. This is combined with a low potential to translate atmospheric deficits into higher water conductance and a lower biomass production as those measured for the non-drought-adapted type. The non-drought-adapted type, in contrast, showed high water conductance potential and a strong increase in ET rates when environmental conditions became less constraining. With high rates even at dry conditions, this community appears not to be optimized to save water and might experience drought effects earlier and probably more strongly. As a result, the water use efficiency of the drought-adapted plant community is with 2.6 gDW kg-1 of water much higher than that of the non-drought-adapted plant community (0.16 gDW kg-1). In summary, the vegetation's reaction to two covarying gradients of potential evapotranspiration and soil water content revealed a clear difference in vegetation development and between water-saving and water-spending strategies regarding evapotranspiration.

  20. Wetlands postcard

    USGS Publications Warehouse

    Ball, Lianne C.

    2016-05-25

    Research conducted by scientists at the U.S. Geological Survey provides reliable scientific information for the management of wetlands ranging from small freshwater alpine lakes in the Western United States to coastal wetlands of the Great Lakes and salt marshes along the Southeastern coast. Learn more about USGS wetlands research at: http://www.usgs.gov/ecosystems/environments/wetlands.html.

Top