Sample records for small angle x-ray

  1. Small-angle X-ray scattering (SAXS) studies of the structure of mesoporous silicas

    NASA Astrophysics Data System (ADS)

    Zienkiewicz-Strzałka, M.; Skibińska, M.; Pikus, S.

    2017-11-01

    Mesoporous ordered silica nanostructures show strong interaction with X-ray radiation in the range of small-angles. Small-angle X-ray scattering (SAXS) measurements based on the elastically scattered X-rays are important in analysis of condensed matter. In the case of mesoporous silica materials SAXS technique provides information on the distribution of electron density in the mesoporous material, in particular describing their structure and size of the unit cell as well as type of ordered structure and finally their parameters. The characterization of nanopowder materials, nanocomposites and porous materials by Small-Angle X-ray Scattering seems to be valuable and useful. In presented work, the SAXS investigation of structures from the group of mesoporous ordered silicates was performed. This work has an objective to prepare functional materials modified by noble metal ions and nanoparticles and using the small-angle X-ray scattering to illustrate their properties. We report the new procedure for describing mesoporous materials belonging to SBA-15 and MCM-41 family modified by platinum, palladium and silver nanoparticles, based on detailed analysis of characteristic peaks in the small-angle range of X-ray scattering. This procedure allows to obtained the most useful parameters for mesoporous materials characterization and their successfully compare with experimental measurements reducing the time and material consumption with good precision for particles and pores with a size below 10 nm.

  2. Pinhole-type two-dimensional ultra-small-angle X-ray scattering on the micrometer scale

    PubMed Central

    Kishimoto, Hiroyuki; Shinohara, Yuya; Suzuki, Yoshio; Takeuchi, Akihisa; Yagi, Naoto; Amemiya, Yoshiyuki

    2014-01-01

    A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm−1 was thereby achieved at an X-ray energy of 8 keV. PMID:24365910

  3. Micro X-ray diffraction analysis of thin films using grazing-exit conditions.

    PubMed

    Noma, T; Iida, A

    1998-05-01

    An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.

  4. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering

    DOE PAGES

    Allen, Andrew J.; Zhang, Fan; Kline, R. Joseph; ...

    2017-03-07

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å –1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments thatmore » employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. As a result, the validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.« less

  5. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Andrew J.; Zhang, Fan; Kline, R. Joseph

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å –1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments thatmore » employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. As a result, the validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.« less

  6. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering.

    PubMed

    Allen, Andrew J; Zhang, Fan; Kline, R Joseph; Guthrie, William F; Ilavsky, Jan

    2017-04-01

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008-0.25 Å -1 , together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments that employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. The validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.

  7. Probing the Complex Architecture of Multimodular Carbohydrate-Active Enzymes Using a Combination of Small Angle X-Ray Scattering and X-Ray Crystallography.

    PubMed

    Czjzek, Mirjam; Ficko-Blean, Elizabeth

    2017-01-01

    The various modules in multimodular carbohydrate-active enzymes (CAZymes) may function in catalysis, carbohydrate binding, protein-protein interactions or as linkers. Here, we describe how combining the biophysical techniques of Small Angle X-ray Scattering (SAXS) and macromolecular X-ray crystallography (XRC) provides a powerful tool for examination into questions related to overall structural organization of ultra multimodular CAZymes.

  8. Investigation of the structure of unilamellar dimyristoylphosphatidylcholine vesicles in aqueous sucrose solutions by small-angle neutron and X-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiselev, M. A., E-mail: elena@jinr.ru; Zemlyanaya, E. V.; Zhabitskaya, E. I.

    2015-01-15

    The structure of a polydispersed population of unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose solutions has been investigated by small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). Calculations within the model of separated form factors (SFF) show that the structure of the vesicle system depends strongly on the sucrose concentration.

  9. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  10. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  11. Anomalous small-angle scattering as a way to solve the Babinet principle problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiko, M. E., E-mail: m.e.boiko@mail.ioffe.ru; Sharkov, M. D.; Boiko, A. M.

    2013-12-15

    X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions.

  12. Anomalous small-angle scattering as a way to solve the Babinet principle problem

    NASA Astrophysics Data System (ADS)

    Boiko, M. E.; Sharkov, M. D.; Boiko, A. M.; Bobyl, A. V.

    2013-12-01

    X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions.

  13. Kinoform optics applied to X-ray photon correlation spectroscopy.

    PubMed

    Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A

    2010-05-01

    Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

  14. Complementary uses of small angle X-ray scattering and X-ray crystallography.

    PubMed

    Pillon, Monica C; Guarné, Alba

    2017-11-01

    Most proteins function within networks and, therefore, protein interactions are central to protein function. Although stable macromolecular machines have been extensively studied, dynamic protein interactions remain poorly understood. Small-angle X-ray scattering probes the size, shape and dynamics of proteins in solution at low resolution and can be used to study samples in a large range of molecular weights. Therefore, it has emerged as a powerful technique to study the structure and dynamics of biomolecular systems and bridge fragmented information obtained using high-resolution techniques. Here we review how small-angle X-ray scattering can be combined with other structural biology techniques to study protein dynamics. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Small-Angle X-ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles

    DTIC Science & Technology

    2016-12-01

    Intercalibration of small-angle X- Ray and neutron-scattering data. Journal of Applied Crystallography . 1988;21:629–638. 7. Zhang F, Ilavsky J, Long GG...Materials Transactions A. 2009;41:1151–1158. 8. Kusz J, Bohm H. Performance of a confocal multilayer X-ray optic. Journal of Applied Crystallography ...Journal of Applied Crystallography . 2004;37:369–380. 10. Orthaber D, Bergmann A, Glatter O. SAXS experiments on absolute scale with Kratky systems using

  16. Small Angle X ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles

    DTIC Science & Technology

    2016-12-01

    Intercalibration of small-angle X- Ray and neutron-scattering data. Journal of Applied Crystallography . 1988;21:629–638. 7. Zhang F, Ilavsky J, Long GG...Materials Transactions A. 2009;41:1151–1158. 8. Kusz J, Bohm H. Performance of a confocal multilayer X-ray optic. Journal of Applied Crystallography ...Journal of Applied Crystallography . 2004;37:369–380. 10. Orthaber D, Bergmann A, Glatter O. SAXS experiments on absolute scale with Kratky systems using

  17. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    NASA Astrophysics Data System (ADS)

    Yagi, N.; Ohta, N.; Matsuo, T.; Tanaka, T.; Terada, Y.; Kamasaka, H.; Kometani, T.

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6μm at BL40XU and 50μm at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  18. Small-angle x-ray scattering investigations of extrudates

    NASA Astrophysics Data System (ADS)

    Pikus, Stanislaw; Jamroz, Jerzy

    1997-02-01

    The small-angle X-ray scattering investigations of the extrudes are presented. The investigations of the different samples of starch by means of the SAXS indicate the new possibilities for using this method for extrudates examination. Results obtained by SAXS method of close dependance between intensity SAXS scattering and characteristic parameters of the extrudates were shown.

  19. A modified Rayleigh-Gans-Debye formula for small angle X-ray scattering by interstellar dust grains

    NASA Astrophysics Data System (ADS)

    Sharma, Subodh K.

    2015-05-01

    A widely used approximation in studies relating to small angle differential scattering cross-section of X-rays scattered by interstellar dust grains is the well known Rayleigh-Gans-Debye approximation (RGDA). The validity of this approximation, however, is limited only to X-ray energies greater than about 1 keV. At lower energies, this approximation overestimates the exact results. In this paper a modification to the RGDA is suggested. It is shown that a combination of the RGDA with Ramsauer approximation retains the formal simplicity of the RGDA and also yields good agreement with Mie computations at all X-ray energies.

  20. Polymer Based Molecular Composites. Volume 171. Materials Research Society Symposium Proceedings Held in Boston, Massachusetts on 27-30 November 1989

    DTIC Science & Technology

    1990-09-01

    231 Harry L. Frisch PART V: IONOMERS/STRUCTURE SMALL ANGLE X - RAY SCATTERING ON POLY(ETHYLENE-METHACRYLIC ACID) LEAD AND LEAD SULFIDE IONOMERS 237...E.J. Kramer, R.J. Composto, R.S. Stein, T.P. Russell, G.P. Felcher, A. Mansour, and A. Karim * td:tt Papet Vil X - RAY REFLECTIVITY AND FLUORESCENCE...Sammann DETERMINATION OF PARTICLE SIZE OF A DISPERSED PHASE BY SMALL-ANGLE X - RAY SCATTERING 413 Frank C. Wilson *Invited Paper ix SYNTHESIS AND

  1. Small-angle x-ray scattering measurement of a mist of ethanol nanodroplets: An approach to understanding ultrasonic separation of ethanol-water mixtures

    NASA Astrophysics Data System (ADS)

    Yano, Yohko F.; Matsuura, Kazuo; Fukazu, Tetsuo; Abe, Fusatsugu; Wakisaka, Akihiro; Kobara, Hitomi; Kaneko, Kazuyuki; Kumagai, Atsushi; Katsuya, Yoshio; Tanaka, Masahiko

    2007-07-01

    Small-angle x-ray scattering measurements using a brilliant x-ray source revealed nanometer sized liquid droplets in a mist formed by ultrasonic atomization. Ultrasonic atomization of ethanol-water mixtures produced a combination of water-rich droplets of micrometer order and ethanol-rich droplets as small as 1nm, which is 10-3 times smaller than the predicted size. These sizes were also obtained for mists generated from the pure liquids. These results will help to clarify the mechanism of "ultrasonic ethanol separation," which has the potential to become an alternative to distillation.

  2. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  3. Study of the gel films of Acetobacter Xylinum cellulose and its modified samples by {sup 1}H NMR cryoporometry and small-angle X-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babushkina, T. A.; Klimova, T. P.; Shtykova, E. V.

    2010-03-15

    Gel films of Acetobacter Xylinum cellulose and its modified samples have been investigated by 1H nuclear magnetic resonance (NMR) cryoporometry and small-angle X-ray scattering. The joint use of these two methods made it possible to characterize the sizes of aqueous pores in gel films and estimate the sizes of structural inhomogeneities before and after the sorption of polyvinylpyrrolidone and Se{sub 0} nanoparticles (stabilized by polyvinylpyrrolidone) into the films. According to small-angle X-ray scattering data, the sizes of inhomogeneities in a gel film change only slightly upon the sorption of polyvinylpyrrolidone and nanoparticles. The impregnated material is sorbed into water-filled cavitiesmore » that are present in the gel film. {sup 1}H NMR cryoporometry allowed us to reveal the details of changes in the sizes of small aqueous pores during modifications.« less

  4. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yennawar, Hemant; Møller, Magda; University of Copenhagen, DK-2100 Copenhagen

    The X-ray crystal structure and a small-angle X-ray scattering solution structure of sheep liver sorbitol dehydrogenase have been determined. The details of the interactions that enable the tetramer scaffold to be the functional biological unit have been analyzed. The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer that superposes well with that seen in hSDH (despite belonging to a different space group) and obeying the 222 crystalmore » symmetry is seen in slSDH. An acetate molecule is bound in the active site, coordinating to the active-site zinc through a water molecule. Glycerol, a substrate of slSDH, also occupies the substrate-binding pocket together with the acetate designed by nature to fit large polyol substrates. The substrate-binding pocket is seen to be in close proximity to the tetramer interface, which explains the need for the structural integrity of the tetramer for enzyme activity. Small-angle X-ray scattering was also used to identify the quaternary structure of the tetramer of slSDH in solution.« less

  5. Irena : tool suite for modeling and analysis of small-angle scattering.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilavsky, J.; Jemian, P.

    2009-04-01

    Irena, a tool suite for analysis of both X-ray and neutron small-angle scattering (SAS) data within the commercial Igor Pro application, brings together a comprehensive suite of tools useful for investigations in materials science, physics, chemistry, polymer science and other fields. In addition to Guinier and Porod fits, the suite combines a variety of advanced SAS data evaluation tools for the modeling of size distribution in the dilute limit using maximum entropy and other methods, dilute limit small-angle scattering from multiple non-interacting populations of scatterers, the pair-distance distribution function, a unified fit, the Debye-Bueche model, the reflectivity (X-ray and neutron)more » using Parratt's formalism, and small-angle diffraction. There are also a number of support tools, such as a data import/export tool supporting a broad sampling of common data formats, a data modification tool, a presentation-quality graphics tool optimized for small-angle scattering data, and a neutron and X-ray scattering contrast calculator. These tools are brought together into one suite with consistent interfaces and functionality. The suite allows robust automated note recording and saving of parameters during export.« less

  6. An upgrade beamline for combined wide, small and ultra small-angle x-ray scattering at the ESRF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vaerenbergh, Pierre; Léonardon, Joachim; Sztucki, Michael

    2016-07-27

    This contribution presents the main design features of the upgraded beamline ID02 (TRUSAXS). The beamline combines different small-angle X-ray scattering techniques in one unique instrument. The key component of this instrument is an evacuated (5×10{sup −3} mbar) stainless steel detector tube of length 34 m and diameter 2 m. Three different detectors (Rayonix MX170, Pilatus 300 K and FReLoN 4M) are housed inside a motorized wagon which travels along a rail system with very low parasitic lateral movements (± 0.3 mm). This system allows automatically changing the sample-to-detector distance from about 1 m to 31 m and selecting the desiredmore » detector. In addition, a wide angle detector (Rayonix LX170) is installed just above the entrance cone of the tube for optional wide-angle X-ray scattering measurements. The beamstop system enables monitoring of the X-ray beam intensity in addition to blocking the primary beam, and automated insertion of selected masks behind the primary beamstop. The focusing optics and collimation system permit to cover a scattering vector (q) range of 0.002 nm{sup −1} ≤ q ≤ 50 nm{sup −1} with one unique setting using 0.1 nm X-ray wavelength for moderate flux (5×10{sup 12} photons/sec). However, for higher flux (6x10{sup 13} photons/sec) or higher resolution (minimum q < 0.001 nm{sup −1}), focusing and collimation, respectively need to be varied. For a sample-to-detector distance of 31 m and 0.1 nm wavelength, two dimensional ultra small-angle X-ray scattering patterns can be recorded down to q≈0.001 nm{sup −1} with far superior quality as compared to one dimensional profiles obtained with a Bonse-Hart instrument.« less

  7. X-ray diffraction gratings: Precise control of ultra-low blaze angle via anisotropic wet etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, Dmitriy L.; Naulleau, Patrick; Gullikson, Eric M.

    2016-07-25

    Diffraction gratings are used from micron to nanometer wavelengths as dispersing elements in optical instruments. At shorter wavelengths, crystals can be used as diffracting elements, but due to the 3D nature of the interaction with light are wavelength selective rather than wavelength dispersing. There is an urgent need to extend grating technology into the x-ray domain of wavelengths from 1 to 0.1 nm, but this requires the use of gratings that have a faceted surface in which the facet angles are very small, typically less than 1°. Small facet angles are also required in the extreme ultra-violet and soft x-ray energymore » ranges in free electron laser applications, in order to reduce power density below a critical damage threshold. In this work, we demonstrate a technique based on anisotropic etching of silicon designed to produce very small angle facets with a high degree of perfection.« less

  8. Portable mini-chamber for temperature dependent studies using small angle and wide angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Dev, Arun Singh; Kumar, Dileep; Potdar, Satish; Pandit, Pallavi; Roth, Stephan V.; Gupta, Ajay

    2018-04-01

    The present work describes the design and performance of a vacuum compatible portable mini chamber for temperature dependent GISAXS and GIWAXS studies of thin films and multilayer structures. The water cooled body of the chamber allows sample annealing up to 900 K using ultra high vacuum compatible (UHV) pyrolytic boron nitride heater, thus making it possible to study the temperature dependent evolution of structure and morphology of two-dimensional nanostructured materials. Due to its light weight and small size, the chamber is portable and can be accommodated at synchrotron facilities worldwide. A systematic illustration of the versatility of the chamber has been demonstrated at beamline P03, PETRA-III, DESY, Hamburg, Germany. Temperature dependent grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) measurements were performed on oblique angle deposited Co/Ag multilayer structure, which jointly revealed that the surface diffusion in Co columns in Co/Ag multilayer enhances by increasing temperature from RT to ˜573 K. This results in a morphology change from columnar tilted structure to densely packed morphological isotropic multilayer.

  9. Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering

    NASA Astrophysics Data System (ADS)

    Accardo, Angelo; Tirinato, Luca; Altamura, Davide; Sibillano, Teresa; Giannini, Cinzia; Riekel, Christian; di Fabrizio, Enzo

    2013-02-01

    Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates.Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34032e

  10. Infrastructure development for radioactive materials at the NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  11. Infrastructure development for radioactive materials at the NSLS-II

    DOE PAGES

    Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...

    2017-11-04

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  12. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    NASA Astrophysics Data System (ADS)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  13. Synthesis and Small-Angle X-Ray Scattering Investigations of Ureido-Pyrimidone Hydrogen Bonding Star and Linear Poly(ethylene-co-propylene)s

    DTIC Science & Technology

    2006-02-01

    Synthesis and Small-Angle X-ray Scattering Investigations of Ureido- Pyrimidone Hydrogen Bonding Star and Linear Poly(ethylene-co-propylene)s...Scattering Investigations of Ureido- Pyrimidone Hydrogen Bonding Star and Linear Poly(ethylene-co-propylene)s Frederick L. Beyer Weapons and...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) February 2006 2 . REPORT TYPE Interim 3. DATES

  14. Small angle x-ray scattering study on the conformation of polystyrene in toluene during adding anti-solvent CO2

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Chen, Dong-Feng; Wang, Hong-Li; Chen, Na; Li, Dan; Han, Bu-Xing; Rong, Li-Xia; Zhao, Hui; Wang, Jun; Dong, Bao-Zhong

    2002-10-01

    The conformation of polystyrene in the anti-solvent process of supercritical fluids (compressed CO2 + polystyrene + toluene) has been studied by small angle x-ray scattering with synchrotron radiation as an x-ray source. Coil-to-globule transformation of the polystyrene chain was observed with the increase of the anti-solvent CO2 pressure; i.e. polystyrene coiled at a pressure lower than the cloud point pressure (Pc) and turned into a globule with a uniform density at pressures higher than Pc. Fractal behaviour was also found in the chain contraction and the mass fractal dimension increased with increasing CO2 pressure.

  15. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics.

    PubMed

    Chen, Sen; Luo, Sheng Nian

    2018-03-01

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10-100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are explored via Gaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  16. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Sen; Luo, Sheng-Nian

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamentalmore » harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.« less

  17. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments.

    PubMed

    Bras, Wim; Koizumi, Satoshi; Terrill, Nicholas J

    2014-11-01

    Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments.

  18. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments

    PubMed Central

    Bras, Wim; Koizumi, Satoshi; Terrill, Nicholas J

    2014-01-01

    Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments. PMID:25485128

  19. Performance analysis of a CsI-based flat panel detector in a cone beam variable resolution x-ray system

    NASA Astrophysics Data System (ADS)

    Dahi, Bahram; Keyes, Gary S.; Rendon, David A.; DiBianca, Frank A.

    2007-03-01

    A new Cone-Beam CT (CBCT) system is introduced that uses the concept of Variable Resolution X-ray (VRX) detection, which has previously been demonstrated to significantly increase spatial resolution for small objects. An amorphous silicon Flat Panel Detector (FPD) with a CsI scintillator (PaxScan 2020, Varian, Salt Lake City, UT) is coupled with a micro-focus x-ray tube (35 - 80 kVp, 10 - 250 μA) to form a CBCT. The FPD is installed on a rotating arm that can be adjusted to any angle θ, called the VRX angle, between 90° and 0° with respect to the x-ray direction. A VRX angle of 90° for the detector corresponds to a conventional CBCT whereas a VRX angle of 30° means that the detector is tilted 90° - 30° = 60° from its perpendicular position. Tilting the FPD in this manner reduces both the line-spread function width and the sampling distance by a factor of sin(θ), thereby increasing detector spatial resolution proportionately. An in-house phantom is used to measure the MTF of the reconstructed CT images using different VRX angles. An increase by a factor of 1.67 +/- 0.007 is observed in the MTF cutoff frequency at 30° compared to 90° in images acquired at 75 kVp. Expected theoretical value for this case is 2.0. The new Cone-Beam Variable Resolution X-ray (CB-VRX) CT system is expected to significantly improve the images acquired from small objects - such as small animals - while exploiting the opportunities offered by a conventional CBCT.

  20. SMALL ANGLE SCATTERING OF X-RAYS BY PLASTICALLY DEFORMED SINGLE CRYSTALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, W.H.; Smoluchowski, R.

    1959-05-01

    The small-angle scattering of x rays from single crystals of magnesium plastically deformed by simple shear was measured in the angular range of 4' to 5 deg . The crystals were subjected to both unidirectional and cyclic shear stresses applied along the STAl 1 2-bar 0! direction. Thin slices of the deformed single crystals were prepared using strainfree cutting and polishing techniques. The thin slices had orientations such that the slip direction was either parallel or perpendicular to the incident x-ray beam in order to observe any anisotropy in the scattering that might be due to dislocations. It was foundmore » that those samples which contained deformation twins within the irradiated volume produced rather large scattered intensity. This scattered intensity is interpreted as being due to double Bragg scattering. The scattered intensity from other specimens was attributed to surface scattering. No evidence for small angle scattering by dislocations was found. (auth)« less

  1. Long Periodic Structure of a Room-Temperature Ionic Liquid by High-Pressure Small-Angle X-Ray Scattering and Wide-Angle X-Ray Scattering: 1-Decyl-3-Methylimidazolium Chloride.

    PubMed

    Abe, Hiroshi; Hamaya, Nozomu; Koyama, Yoshihiro; Kishimura, Hiroaki; Takekiyo, Takahiro; Yoshimura, Yukihiro; Wakabayashi, Daisuke; Funamori, Nobumasa; Matsuishi, Kiyoto

    2018-04-23

    The Bragg reflections of 1-decyl-3-methylimidazolium chloride ([C 10 mim][Cl]), a room-temperature ionic liquid, are observed in a lowly scattered wavevector (q) region using high-pressure (HP) small-angle X-ray scattering methods. The HP crystal of [C 10 mim][Cl] was characterized by an extremely long periodic structure. The peak position at the lowest q (1.4 nm -1 ) was different from that of the prepeak observed in the liquid state (2.3 nm -1 ). Simultaneously, Bragg reflections at high-q were detected using HP wide-angle X-ray scattering. The longest lattice constant was estimated to be 4.3 nm using structural analysis. The crystal structure of HP differed from that of the low-temperature (LT) crystal and the LT liquid crystal. With increasing pressure, Bragg reflections in the high-q component became much broader, and were accompanied by phase transition, although those in the low-q component were observed to be relatively sharp. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Marchin, Stéphane; Putaux, Jean-Luc; Pignon, Frédéric; Léonil, Joëlle

    2007-01-01

    Casein micelles are colloidal protein-calcium-transport complexes whose structure has not been unequivocally elucidated. This study used small-angle x-ray scattering (SAXS) and ultrasmall angle x-ray scattering (USAXS) as well as cryo transmission electron microscopy (cryo-TEM) to provide fine structural details on their structure. Cryo-TEM observations of native casein micelles fractionated by differential centrifugation showed that colloidal calcium phosphate appeared as nanoclusters with a diameter of about 2.5nm. They were uniformly distributed in a homogeneous tangled web of caseins and were primarily responsible for the intensity distribution in the SAXS profiles at the highest q vectors corresponding to the internal structure of the casein micelles. A specific demineralization of casein micelles by decreasing the pH from 6.7 to 5.2 resulted in a reduced granular aspect of the micelles observed by cryo-TEM and the existence of a characteristic point of inflection in SAXS profiles. This supports the hypothesis that the smaller substructures detected by SAXS are colloidal calcium phosphate nanoclusters rather than putative submicelles.

  3. X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates

    DOE PAGES

    Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...

    2016-02-05

    A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less

  4. Structure of Carbon Nanotube Porins in Lipid Bilayers: An in Situ Small-Angle X-ray Scattering (SAXS) Study [Atomic-level structure of carbon nanotube porins in lipid bilayers: an in-situ small-angle x-ray scattering (SAXS) study

    DOE PAGES

    Tran, Ich C.; Tunuguntla, Ramya H.; Kim, Kyunghoon; ...

    2016-06-20

    Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. Furthermore, in order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers.more » These results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.« less

  5. Simultaneous small- and wide-angle scattering at high X-ray energies.

    PubMed

    Daniels, J E; Pontoni, D; Hoo, Rui Ping; Honkimäki, V

    2010-07-01

    Combined small- and wide-angle X-ray scattering (SAXS/WAXS) is a powerful technique for the study of materials at length scales ranging from atomic/molecular sizes (a few angstroms) to the mesoscopic regime ( approximately 1 nm to approximately 1 microm). A set-up to apply this technique at high X-ray energies (E > 50 keV) has been developed. Hard X-rays permit the execution of at least three classes of investigations that are significantly more difficult to perform at standard X-ray energies (8-20 keV): (i) in situ strain analysis revealing anisotropic strain behaviour both at the atomic (WAXS) as well as at the mesoscopic (SAXS) length scales, (ii) acquisition of WAXS patterns to very large q (>20 A(-1)) thus allowing atomic pair distribution function analysis (SAXS/PDF) of micro- and nano-structured materials, and (iii) utilization of complex sample environments involving thick X-ray windows and/or samples that can be penetrated only by high-energy X-rays. Using the reported set-up a time resolution of approximately two seconds was demonstrated. It is planned to further improve this time resolution in the near future.

  6. Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis.

    PubMed

    Xu, Yihui; Kuhlmann, Jan; Brennich, Martha; Komorowski, Karlo; Jahn, Reinhard; Steinem, Claudia; Salditt, Tim

    2018-02-01

    SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Resonance energy shifts during nuclear Bragg diffraction of x rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, J.; Brown, G.S.; Brown, D.E.

    1989-10-09

    We have observed dramatic changes in the time distribution of synchrotron x rays resonantly scattered from {sup 57}Fe nuclei in a crystal of yttrium iron garnet, which depend on the deviation angle of the incident radiation from the Bragg angle. These changes are caused by small shifts in the effective energies of the hyperfine-split nuclear resonances, an effect of dynamical diffraction for the coherently excited nuclei in the crystal. The very high brightness of the synchro- tron x-ray source allows this effect to be observed in a 15-min measurement.

  8. Time resolved small angle X-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the x-ray beam

    DOE PAGES

    Gustavsen, Richard L.; Dattelbaum, Dana Mcgraw; Watkins, Erik Benjamin; ...

    2017-03-10

    Time resolved Small Angle X-ray Scattering (SAXS) experiments on detonating explosives have been conducted at Argonne National Laboratory's Advanced Photon Source Dynamic Compression Sector. The purpose of the experiments is to measure the SAXS patterns at tens of ns to a few μs behind the detonation front. Corresponding positions behind the detonation front are of order 0.1–10 mm. From the scattering patterns, properties of the explosive products relative to the time behind the detonation front can be inferred. Lastly, this report describes how the time and distance from the x-ray probe location to the detonation front is calculated, as wellmore » as the uncertainties and sources of uncertainty associated with the calculated times and distances.« less

  9. Time resolved small angle X-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the x-ray beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, Richard L.; Dattelbaum, Dana Mcgraw; Watkins, Erik Benjamin

    Time resolved Small Angle X-ray Scattering (SAXS) experiments on detonating explosives have been conducted at Argonne National Laboratory's Advanced Photon Source Dynamic Compression Sector. The purpose of the experiments is to measure the SAXS patterns at tens of ns to a few μs behind the detonation front. Corresponding positions behind the detonation front are of order 0.1–10 mm. From the scattering patterns, properties of the explosive products relative to the time behind the detonation front can be inferred. Lastly, this report describes how the time and distance from the x-ray probe location to the detonation front is calculated, as wellmore » as the uncertainties and sources of uncertainty associated with the calculated times and distances.« less

  10. Small Angle X-ray Scattering for Nanoparticle Research

    DOE PAGES

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    2016-04-07

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  11. Small Angle X-ray Scattering for Nanoparticle Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  12. In-situ small-angle x-ray scattering study of nanoparticles in the plasma plume induced by pulsed laser irradiation of metallic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavisse, L.; Jouvard, J.-M.; Girault, M.

    2012-04-16

    Small angle x-ray scattering was used to probe in-situ the formation of nanoparticles in the plasma plume generated by pulsed laser irradiation of a titanium metal surface under atmospheric conditions. The size and morphology of the nanoparticles were characterized as function of laser irradiance. Two families of nanoparticles were identified with sizes on the order of 10 and 70 nm, respectively. These results were confirmed by ex-situ transmission electron microscopy experiments.

  13. Analysis of small-angle X-ray scattering data in the presence of significant instrumental smearing

    PubMed Central

    Bergenholtz, Johan; Ulama, Jeanette; Zackrisson Oskolkova, Malin

    2016-01-01

    A laboratory-scale small-angle X-ray scattering instrument with pinhole collimation has been used to assess smearing effects due to instrumental resolution. A new, numerically efficient method to smear ideal model intensities is developed and presented. It allows for directly using measured profiles of isotropic but otherwise arbitrary beams in smearing calculations. Samples of low-polydispersity polymer spheres have been used to show that scattering data can in this way be quantitatively modeled even when there is substantial distortion due to instrumental resolution. PMID:26937235

  14. Measuring helium bubble diameter distributions in tungsten with grazing incidence small angle x-ray scattering (GISAXS)

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.

    2016-02-01

    Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.

  15. Instrumentation on Multi-Scaled Scattering of Bio-Macromolecular Solutions

    PubMed Central

    Chu, Benjamin; Fang, Dufei; Mao, Yimin

    2015-01-01

    The design, construction and initial tests on a combined laser light scattering and synchrotron X-ray scattering instrument can cover studies of length scales from atomic sizes in Angstroms to microns and dynamics from microseconds to seconds are presented. In addition to static light scattering (SLS), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD), the light scattering instrument is being developed to carry out studies in mildly turbid solutions, in the presence of multiple scattering. Three-dimensional photon cross correlation function (3D-PCCF) measurements have been introduced to couple with synchrotron X-ray scattering to study the structure, size and dynamics of macromolecules in solution. PMID:25946340

  16. Development of an X-ray prism for a combined diffraction enhanced imaging and fluorescence imaging system

    NASA Astrophysics Data System (ADS)

    Bewer, Brian E.

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These X-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing a large change in intensity for a small angle change introduced by the X-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultra small angle X-ray scattering (USAXS) contrast thus improving visualization and extending the utility of X-ray imaging. To improve on the current DEI technique this body of work describes the design of an X-ray prism (XRP) included in the imaging system which allows the analyzer crystal to be aligned anywhere on the rocking curve without moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from muradians for direct mechanical movement of the analyzer crystal to milliradian control for movement the XRP angle. In addition to using an XRP for the traditional DEI acquisition method of two scans on opposite sides of the rocking curve preliminary tests will be presented showing the potential of using an XRP to scan quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single fast measurement thus removing the occurrence of motion artifacts for each point or line used during a scan. The XRP design is also intended to be compatible with combined imaging systems where more than one technique is used to investigate a sample. Candidates for complimentary techniques are investigated and measurements from a combined X-ray imaging system are presented.

  17. Development of an x-ray prism for analyzer based imaging systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewer, Brian; Chapman, Dean

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP)more » was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.« less

  18. Development of an x-ray prism for analyzer based imaging systems

    NASA Astrophysics Data System (ADS)

    Bewer, Brian; Chapman, Dean

    2010-08-01

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  19. Development of an x-ray prism for analyzer based imaging systems.

    PubMed

    Bewer, Brian; Chapman, Dean

    2010-08-01

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  20. Characterization of low thermal conductivity PAN-based carbon fibers

    NASA Technical Reports Server (NTRS)

    Katzman, Howard A.; Adams, P. M.; Le, T. D.; Hemminger, Carl S.

    1992-01-01

    The microstructure and surface chemistry of eight low thermal conductivity (LTC) PAN-based carbon fibers were determined and compared with PAN-based fibers heat treated to higher temperatures. Based on wide-angle x ray diffraction, the LTC PAN fibers all appear to have a similar turbostratic structure with large 002 d-spacings, small crystallite sizes, and moderate preferred orientation. Limited small-angle x ray scattering (SAXS) results indicate that, with the exception of LTC fibers made by BASF, the LTC fibers do not have well developed pores. Transmission electron microscopy shows that the texture of the two LTC PAN-based fibers studied (Amoco T350/23X and /25X) consists of multiple sets of parallel, wavy, bent layers that interweave with each other forming a complex three dimensional network oriented randomly around the fiber axis. X ray photoelectron spectroscopy (XPS) analysis finds correlations between heat treated temperatures and the surface composition chemistry of the carbon fiber samples.

  1. EUV-angle resolved scatter (EUV-ARS): a new tool for the characterization of nanometre structures

    NASA Astrophysics Data System (ADS)

    Fernández Herrero, Analía.; Mentzel, Heiko; Soltwisch, Victor; Jaroslawzew, Sina; Laubis, Christian; Scholze, Frank

    2018-03-01

    The advance of the semiconductor industry requires new metrology methods, which can deal with smaller and more complex nanostructures. Particularly for inline metrology a rapid, sensitive and non destructive method is needed. Small angle X-ray scattering under grazing incidence has already been investigated for this application and delivers significant statistical information which tracks the profile parameters as well as their variations, i.e. roughness. However, it suffers from the elongated footprint at the sample. The advantage of EUV radiation, with its longer wavelengths, is that larger incidence angles can be used, resulting in a significant reduction of the beam footprint. Targets with field sizes of 100 μm and smaller are accessible with our experimental set-up. We present a new experimental tool for the measurement of small structures based on the capabilities of soft X-ray and EUV scatterometry at the PTB soft X-ray beamline at the electron storage ring BESSY II. PTB's soft X-ray radiometry beamline uses a plane grating monochromator, which covers the spectral range from 0.7 nm to 25 nm and was especially designed to provide highly collimated radiation. An area detector covers the scattered radiation from a grazing exit angle up to an angle of 30° above the sample horizon and the fluorescence emission can be detected with an energy dispersive X-ray silicon drift detector. In addition, the sample can be rotated and linearly moved in vacuum. This new set-up will be used to explore the capabilities of EUV-scatterometry for the characterization of nanometre-sized structures.

  2. Microstructure of Amorphous and Semi-Crystalline Polymers.

    DTIC Science & Technology

    1981-06-07

    of these materials. Further, the occurrence of nodular structures is difficult to reconcile with the results of studies of small angle neutron ...scattering and small angle neutron scattering studies of the same materials. Based on the combined results of these studies , it is suggested that the nodular...relevance here were reviewed by Flory.’ In addition to these, the results of studies using small angle neutron scattering’ and wide angle X-ray scattering

  3. Synchrotron x-ray modification of nanoparticle superlattice formation

    NASA Astrophysics Data System (ADS)

    Lu, Chenguang; Akey, Austin J.; Herman, Irving P.

    2012-09-01

    The synchrotron x-ray radiation used to perform small angle x-ray scattering (SAXS) during the formation of three-dimensional nanoparticle superlattices by drop casting nanoparticle solutions affects the structure and the local crystalline order of the resulting films. The domain size decreases due to the real-time SAXS analysis during drying and more macroscopic changes are visible to the eye.

  4. A small-angle x-ray scattering system with a vertical layout.

    PubMed

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu; Cui, Kunpeng; Wu, Lihui; Li, Liangbin

    2014-12-01

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range. With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.

  5. Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering.

    PubMed

    Komorowski, Karlo; Salditt, Annalena; Xu, Yihui; Yavuz, Halenur; Brennich, Martha; Jahn, Reinhard; Salditt, Tim

    2018-04-24

    We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca 2+ or Mg 2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ∼1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Role of solution structure in self-assembly of conjugated block copolymer thin films

    DOE PAGES

    Brady, Michael A.; Ku, Sung -Yu; Perez, Louis A.; ...

    2016-10-24

    Conjugated block copolymers provide a pathway to achieve thermally stable nanostructured thin films for organic solar cells. We characterized the structural evolution of poly(3-hexylthiophene)- block-poly(diketopyrrolopyrrole–terthiophene) (P3HT- b-DPPT-T) from solution to nanostructured thin films. Aggregation of the DPPT-T block of P3HT- b-DPPT-T was found in solution by small-angle X-ray scattering with the P3HT block remaining well-solvated. The nanostructure in thin films was determined using a combination of wide and small-angle X-ray scattering techniques as a function of processing conditions. The structure in solution controlled the initial nanostructure in spin-cast thin films, allowing subsequent thermal annealing processes to further improve the ordering.more » In contrast to the results for thin films, nanostructural ordering was not observed in the bulk samples by small-angle X-ray scattering. Finally, these results suggest the importance of controlling solvent induced aggregation in forming nanostructured thin films of conjugated block copolymers.« less

  7. Role of solution structure in self-assembly of conjugated block copolymer thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Michael A.; Ku, Sung -Yu; Perez, Louis A.

    Conjugated block copolymers provide a pathway to achieve thermally stable nanostructured thin films for organic solar cells. We characterized the structural evolution of poly(3-hexylthiophene)- block-poly(diketopyrrolopyrrole–terthiophene) (P3HT- b-DPPT-T) from solution to nanostructured thin films. Aggregation of the DPPT-T block of P3HT- b-DPPT-T was found in solution by small-angle X-ray scattering with the P3HT block remaining well-solvated. The nanostructure in thin films was determined using a combination of wide and small-angle X-ray scattering techniques as a function of processing conditions. The structure in solution controlled the initial nanostructure in spin-cast thin films, allowing subsequent thermal annealing processes to further improve the ordering.more » In contrast to the results for thin films, nanostructural ordering was not observed in the bulk samples by small-angle X-ray scattering. Finally, these results suggest the importance of controlling solvent induced aggregation in forming nanostructured thin films of conjugated block copolymers.« less

  8. Multiple image x-radiography for functional lung imaging

    NASA Astrophysics Data System (ADS)

    Aulakh, G. K.; Mann, A.; Belev, G.; Wiebe, S.; Kuebler, W. M.; Singh, B.; Chapman, D.

    2018-01-01

    Detection and visualization of lung tissue structures is impaired by predominance of air. However, by using synchrotron x-rays, refraction of x-rays at the interface of tissue and air can be utilized to generate contrast which may in turn enable quantification of lung optical properties. We utilized multiple image radiography, a variant of diffraction enhanced imaging, at the Canadian light source to quantify changes in unique x-ray optical properties of lungs, namely attenuation, refraction and ultra small-angle scatter (USAXS or width) contrast ratios as a function of lung orientation in free-breathing or respiratory-gated mice before and after intra-nasal bacterial endotoxin (lipopolysaccharide) instillation. The lung ultra small-angle scatter and attenuation contrast ratios were significantly higher 9 h post lipopolysaccharide instillation compared to saline treatment whereas the refraction contrast decreased in magnitude. In ventilated mice, end-expiratory pressures result in an increase in ultra small-angle scatter contrast ratio when compared to end-inspiratory pressures. There were no detectable changes in lung attenuation or refraction contrast ratio with change in lung pressure alone. In effect, multiple image radiography can be applied towards following optical properties of lung air-tissue barrier over time during pathologies such as acute lung injury.

  9. The accurate assessment of small-angle X-ray scattering data

    DOE PAGES

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; ...

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targetsmore » for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.« less

  10. Assessment study of ion-exchange chromatography combined with solution X-ray scattering measurement for protein characterization.

    PubMed

    Watanabe, Yasushi

    2018-03-02

    The performance of ion-exchange chromatography combined with small-angle X-ray scattering measurement was evaluated by characterization of the hen egg white lysozyme as a model protein. The X-ray transmittance was estimated using a micro-ionization chamber equipped with a sample cell holder for the real-time monitoring of the X-ray beam strength through the salt gradient elution. The radius of gyration of the eluted protein was estimated to be 1.50 ± 0.06 (n = 3) nm and 1.4 ± 0.1 nm as the value at the zero protein concentration. By using the X-ray transmittance values for the scattering intensity correction, the molecular weight of the eluted protein was estimated to be 15,200 ± 500 (n = 3) and 14,400 ± 200 as the value at the zero protein concentration. These values are close to those of the monomer of this protein. The ion-exchange chromatography combined with the small-angle X-ray scattering measurement system equipped with the X-ray transmittance monitor is a reliable method for protein characterization in solution. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations

    DOE PAGES

    Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; ...

    2014-10-29

    We report that the detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density.

  12. In-situ small angle x-ray scattering investigation on nucleation and growth of silica colloids

    NASA Astrophysics Data System (ADS)

    Bahadur, J.; Tripathi, B. M.; Prakash, J.; Das, Avik; Sen, D.; Mazumder, S.

    2018-04-01

    The nucleation and growth of silica colloids has been studied using real time small-angle X-ray scattering measurements. The ammonium fluorosilicate was used as precursor and both weak (NH3) and strong base (NaOH) has been used as reducing agent for the precursor. It is observed that nucleation, growth and aggregation phenomenon occur simultaneously. The kinetics of the nucleation and growth of silica colloids depends on the strength of the reducing agent as well on its concentration. The kinetics is slow for NH3 but is very fast for higher concentration of NaOH.

  13. Structural analysis of polymer thin films using GISAXS in the tender X-ray region: Concept and design of GISAXS experiments using the tender X-ray energy at BL-15A2 at the Photon Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.

    If small angle X-ray scattering (SAXS) utilizing the soft X-ray region is available, advanced and unique experiments, which differ from traditional SAXS methods, can be realized. For example, grazing-incidence small angle X-ray scattering (GISAXS) using hard X-ray is a powerful tool for understanding the nanostructure in both vertical and lateral directions of thin films, while GISAXS utilizing the tender X-ray region (SX-GISAXS) enables depth-resolved analysis as well as a standard GISAXS analysis in thin films. Thus, at BL-15A2 at the Photon Factory, a dedicated diffractometer for SX-GISAXS (above 2.1 keV) was constructed. This diffractometer is composed of four vacuum chambers andmore » can be converted into the vacuum state from the sample chamber in front of the detector surface. Diffractions are clearly observed until 12th peak when measuring collagen by SAXS with an X-ray energy of 2.40 keV and a camera length of 825 mm. Additionally, we conducted the model experiment using SX-GISAXS with an X-ray energy of 2.40 keV to confirm that a poly(methyl methacrylate)-poly(n-butyl acrylate) block copolymer thin film has a microphase-separated structure in the thin film, which is composed of lamellae aligned both parallel and perpendicular to the substrate surface. Similarly, in a polystyrene-poly(methyl methacrylate) block copolymer thin film, SX-GISAXS with 3.60 keV and 5.73 keV revealed that hexagonally packed cylinders are aligned parallel to the substrate surface. The incident angle dependence of the first order peak position of the q{sub z} direction obtained from experiments at various incident X-ray energies agrees very well with the theoretical one calculated from the distorted wave Born approximation.« less

  14. Mechanical Properties versus Morphology of Ordered Polymers. Volume III. Part I

    DTIC Science & Technology

    1982-08-01

    measured by wide angle x-ray scattering and differential scanning calorimetry, is unrelated to the diffuse scattered intensity [62]. Cellulose acetate which...increasing void fraction, in air swollen cellulose . Comparison of the volume fraction of voids calculated from the SAXS integrated intensity with...1964). 63. P.H. Hermans, D. Heikens, and A. Weidinger, "A Quantitative Investigation on the X-Ray Small Angle Scattering of Cellulose Fibers. Part II

  15. Small angle x ray scattering studies of reverse micelles in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Pfund, D. M.; Fulton, J. L.

    1994-10-01

    The nature of aggregates formed in a supercritical fluid determines its solvent power and selectivity. Small angle X ray scattering (SAXS) is a powerful tool for studying the properties of aggregates with sizes in the 10(angstrom) to 200(angstrom) range. It is also useful in studying those interparticle interactions which operate over a similar distance. The authors have used SAXS to examine the aggregates formed in pure fluids, in mixtures and in fluid/surfactant/water systems. The scattered intensity as a function of angle depends on the geometry, polydispersity, X ray contrast, and interaction strength of the particles as well as on the phase behavior of the system. In this paper the authors present the results of modeling the X-ray scattering from AOT/water reverse micelles in supercritical propane and in propane/carbon dioxide mixtures. They examine the effect of dilution with CO2 anti-solvent on the phase behavior of the system and on the strength of intermicellar attractions. A better understanding of these systems must be obtained before the applications of supercritical reverse micelle systems to extractions, reactions, and enhanced oil recovery can be fully developed.

  16. Small angle x-ray scattering with edge-illumination

    NASA Astrophysics Data System (ADS)

    Modregger, Peter; Cremona, Tiziana P.; Benarafa, Charaf; Schittny, Johannes C.; Olivo, Alessandro; Endrizzi, Marco

    2016-08-01

    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond.

  17. Ultra-Small-Angle X-ray Scattering – X-ray Photon Correlation Spectroscopy Studies of Incipient Structural Changes in Amorphous Calcium Phosphate Based Dental Composites

    PubMed Central

    Zhang, F.; Allen, A.J.; Levine, L.E.; Espinal, L.; Antonucci, J.M.; Skrtic, D.; O’Donnell, J.N.R.; Ilavsky, J.

    2012-01-01

    The local structural changes in amorphous calcium phosphate (ACP) based dental composites were studied under isothermal conditions using both static, bulk measurement techniques and a recently developed methodology based on combined ultra-small angle X-ray scattering – X-ray photon correlation spectroscopy (USAXS-XPCS), which permits a dynamic approach. While results from conventional bulk measurements do not show clear signs of structural change, USAXS-XPCS results reveal unambiguous evidence for local structural variations on a similar time scale to that of water loss in the ACP fillers. A thermal-expansion based simulation indicates that thermal behavior alone does not account for the observed dynamics. Together, these results suggest that changes in the water content of ACP affect the composite morphology due to changes in ACP structure that occur without an amorphous-to-crystalline conversion. It is also noted that biomedical materials research could benefit greatly from USAXS-XPCS, a dynamic approach. PMID:22374649

  18. Geant4 simulations of soft proton scattering in X-ray optics. A tentative validation using laboratory measurements

    NASA Astrophysics Data System (ADS)

    Fioretti, Valentina; Mineo, Teresa; Bulgarelli, Andrea; Dondero, Paolo; Ivanchenko, Vladimir; Lei, Fan; Lotti, Simone; Macculi, Claudio; Mantero, Alfonso

    2017-12-01

    Low energy protons (< 300 keV) can enter the field of view of X-ray telescopes, scatter on their mirror surfaces at small incident angles, and deposit energy on the detector. This phenomenon can cause intense background flares at the focal plane decreasing the mission observing time (e.g. the XMM-Newton mission) or in the most extreme cases, damaging the X-ray detector. A correct modelization of the physics process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance (e.g. observation time, sensitivity) of future X-ray telescopes as the ESA ATHENA mission. The Remizovich model describes particles reflected by solids at glancing angles in terms of the Boltzmann transport equation using the diffuse approximation and the model of continuous slowing down in energy. For the first time this solution, in the approximation of no energy losses, is implemented, verified, and qualitatively validated on top of the Geant4 release 10.2, with the possibility to add a constant energy loss to each interaction. This implementation is verified by comparing the simulated proton distribution to both the theoretical probability distribution and with independent ray-tracing simulations. Both the new scattering physics and the Coulomb scattering already built in the official Geant4 distribution are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (< 200 keV) and small reflection angles, so we are not able to address any of the tested models as the one that can certainly reproduce the scattering behavior of low energy protons expected for the ATHENA mission. We can, however, discard multiple scattering as the model able to reproduce soft proton funnelling, and affirm that Coulomb single scattering can represent, until further measurements at lower energies are available, the best approximation of the proton scattered angular distribution at the exit of X-ray optics.

  19. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  20. Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team

    Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  1. Agglomeration dynamics of germanium islands on a silicon oxide substrate: A grazing incidence small-angle x-ray scattering study

    NASA Astrophysics Data System (ADS)

    Cheynis, F.; Leroy, F.; Passanante, T.; Müller, P.

    2013-04-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) and grazing-incidence X-ray diffraction techniques are used to characterise the thermally induced solid-state dewetting of Ge(001) thin films leading to the formation of 3D Ge islands. A quantitative analysis based on the Kolmogorov-Johnson-Mehl-Avrami model is derived. The main physical parameters controlling the dewetting (activation energy and kinetic pre-factors) are determined. Assuming that the dewetting is driven by surface/interface minimisation and limited by surface diffusion, the Ge surface self-diffusion reads as Ds ,0c0 e-Ea/(kBT) ˜3×1018 e-2.6±0.3eV/(kBT) nm2/s. GISAXS technique enables to reconstruct the mean Ge-island shape, including facets.

  2. X-ray studies of dynamic aging in an aluminum alloy subjected to severe plastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitdikov, V.D., E-mail: svil@mail.rb.ru; Laboratory for Mechanics of Bulk Nanomaterials, Saint Petersburg State University, 28 Universitetsky pr., Saint Petersburg 198504; Chizhov, P.S.

    In this work, X-ray scattering methods were applied for a quantitative characterization of the microstructure of an aluminum alloy of the Al–Mg–Si system during dynamic aging realized through the high pressure torsion technique. A qualitative and quantitative phase analysis of the alloy was performed, together with Al alloy lattice parameter determination. From the reflections broadening the effective size of the coherent scattering domains and the lattice microstrain were determined in the framework of the Halder–Wagner approach. Using the method of small-angle X-ray scattering, the quantitative characteristics of the size, shape and spatial distribution of the secondary phase particles formed inmore » the Al alloy during dynamic aging were established. In order to validate the obtained results, the method of small-angle X-ray scattering was preliminarily tested on similar samples after artificial aging and compared with the results from small-angle neutron diffraction widely known in literature. - Highlights: • Spherical fcc β-Mg2Si precipitates formed in Al 6201 alloy during dynamic aging in the course of severe plastic deformation. • The size, shape and distribution of the precipitates due to artificial and dynamic aging were revealed by SAXS method. • Monoclinic needle-like β' precipitates and Al5FeSi intermetallic phase were detected in 6201 alloy after T6 treatment.« less

  3. Nanospheres with a smectic hydrophobic core and an amorphous PEG hydrophilic shell: structural changes and implications for drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, N. Sanjeeva; Zhang, Zheng; Borsadia, Siddharth

    The structural changes in nanospheres with a crystalline core and an amorphous diffuse shell were investigated by small-angle neutron scattering (SANS), small-, medium-, and wide-angle X-ray scattering (SAXS, MAXS and WAXS), and differential scanning calorimetry (DSC).

  4. Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity

    PubMed Central

    Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe

    2013-01-01

    The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181

  5. Development of fast parallel multi-technique scanning X-ray imaging at Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Medjoubi, K.; Leclercq, N.; Langlois, F.; Buteau, A.; Lé, S.; Poirier, S.; Mercère, P.; Kewish, C. M.; Somogyi, A.

    2013-10-01

    A fast multimodal scanning X-ray imaging scheme is prototyped at Soleil Synchrotron. It permits the simultaneous acquisition of complementary information on the sample structure, composition and chemistry by measuring transmission, differential phase contrast, small-angle scattering, and X-ray fluorescence by dedicated detectors with ms dwell time per pixel. The results of the proof of principle experiments are presented in this paper.

  6. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4-5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies.

  7. Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty.

    PubMed

    Park, Sang Eun; Lee, Chun Taek

    2007-10-01

    This study was aimed to compare robotic-assisted implantation of a total knee arthroplasty with conventional manual implantation. We controlled, randomized, and reviewed 72 patients for total knee arthroplasty assigned to undergo either conventional manual implantation (excluding navigation-assisted implantation cases) of a Zimmer LPS prosthesis (Zimmer, Warsaw, Ind) (30 patients: group 1) or robotic-assisted implantation of such a prosthesis (32 patients: group 2). The femoral flexion angle (gamma angle) and tibial angle (delta angle) in the lateral x-ray of group 1 were 4.19 +/- 3.28 degrees and 89.7 +/- 1.7 degrees, and those of group 2 were 0.17 +/- 0.65 degrees and 85.5 +/- 0.92 degrees. The major complications were from improper small skin incision during a constraint attempt of minimally invasive surgery and during bulk fixation frame pins insertion. Robotic-assisted technology had definite advantages in terms of preoperative planning, accuracy of the intraoperative procedure, and postoperative follow-up, especially in the femoral flexion angle (gamma angle) and tibial flexion angle (delta angle) in the lateral x-ray, and in the femoral flexion angle (alpha angle) in the anteroposterior x-ray. But a disadvantage was the high complication rate in early stage.

  8. Local texture and strongly linked conduction in spray-pyrolyzed TlBa2Ca2Cu3O(8+x) deposits

    NASA Astrophysics Data System (ADS)

    Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.

    Local texture in polycrystalline TlBa2Ca2 Cu3O(8+x) deposits has been determined from transmission electron microscopy, electron backscatter diffraction patterns and x-ray diffraction. The small-grained deposits had excellent c-axis alignment and contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range conduction utilizes a percolative network of small angle grain boundaries at colony intersections.

  9. Scattering from fractals

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.

    The realization that structures in Nature often can be described by Mandelbrot's fractals has led to a revolution in many areas of physics. The interaction of waves with fractal systems has, understandably, become intensely studied since scattering is the method of choice to probe delicate fractal structures such as chainlike particle aggregates. Not all of these waves are electromagnetic. Neutron scattering, for example, is an important complementary tool to structural studies by X-ray and light scattering. Since the phenomenology of small-angle neutron scattering (SANS), as it is applied to fractal systems, is identical to that of small-angle X-ray scattering (SAXS), it falls within the scope of this paper.

  10. Use of dynamic light scattering and small-angle X-ray scattering to characterize new surfactants in solution conditions for membrane-protein crystallization

    PubMed Central

    Dahani, Mohamed; Barret, Laurie-Anne; Raynal, Simon; Jungas, Colette; Pernot, Pétra; Polidori, Ange; Bonneté, Françoise

    2015-01-01

    The structural and interactive properties of two novel hemifluorinated surfactants, F2H9-β-M and F4H5-β-M, the syntheses of which were based on the structure and hydrophobicity of the well known dodecyl-β-maltoside (DD-β-M), are described. The shape of their micellar assemblies was characterized by small-angle X-ray scattering and their intermicellar inter­actions in crystallizing conditions were measured by dynamic light scattering. Such information is essential for surfactant phase-diagram determination and membrane-protein crystallization. PMID:26144228

  11. Antibodies under pressure: A Small-Angle X-ray Scattering study of Immunoglobulin G under high hydrostatic pressure.

    PubMed

    König, Nico; Paulus, Michael; Julius, Karin; Schulze, Julian; Voetz, Matthias; Tolan, Metin

    2017-12-01

    In the present work two subclasses of the human antibody Immunoglobulin G (IgG) have been investigated by Small-Angle X-ray Scattering under high hydrostatic pressures up to 5kbar. It is shown that IgG adopts a symmetric T-shape in solution which differs significantly from available crystal structures. Moreover, high-pressure experiments verify the high stability of the IgG molecule. It is not unfolded by hydrostatic pressures of up to 5kbar but a slight increase of the radius of gyration was observed at elevated pressures. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Small-angle X-ray scattering probe of intermolecular interaction in red blood cells

    NASA Astrophysics Data System (ADS)

    Liu, Guan-Fen; Wang, We-Jia; Xu, Jia-Hua; Dong, Yu-Hui

    2015-03-01

    With high concentrations of hemoglobin (Hb) in red blood cells, self-interactions among these molecules could increase the propensities of their polymerization and aggregation. In the present work, high concentration Hb in solution and red blood cells were analyzed by small-angle X-ray scattering. Calculation of the effective structure factor indicates that the interaction of Hb molecules is the same when they are crowded together in both the cell and physiological saline. The Hb molecules stay individual without the formation of aggregates and clusters in cells. Supported by National Basic Research Program of China (2009CB918600) and National Natural Science Foundation of China (10979005)

  13. A small-angle x-ray scattering system with a vertical layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range.more » With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.« less

  14. Element-selective investigation of domain structure in CoPd and FePd alloys using small-angle soft X-ray scattering

    NASA Astrophysics Data System (ADS)

    Weier, C.; Adam, R.; Frömter, R.; Bach, J.; Winkler, G.; Kobs, A.; Oepen, H. P.; Grychtol, P.; Kapteyn, H. C.; Murnane, M. M.; Schneider, C. M.

    2014-03-01

    Recent optical pump-probe experiments on magnetic multilayers and alloys identified perpendicular spin superdiffusion as one of possible mechanisms responsible for femtosecond magnetization dynamics. On the other hand, no strong evidence for the ultrafast lateral spin transport has been reported, so far. To address this question, we studied magnetic domain structure of CoPd and FePd thin films using small-angle scattering of soft X-rays. By tuning the synchrotron-generated X-rays to the absorption edges of Fe or Co we recorded Fourier images of the magnetic domain structure corresponding to a chosen element. Applying in - situ magnetic fields resulted in pronounced rearrangement of domain structure that was clearly observed in scattering images. Our analysis of both the stand-alone, as well as magnetically coupled CoPd/FePd layers provides insight into the formation of domains under small magnetic field perturbations and pave the way to better understanding of transient changes expected in magneto-dynamic measurements.

  15. Dynamic and static structure studies of colloidal suspensions with XPCS, SAXS and XNFS

    NASA Astrophysics Data System (ADS)

    Lu, Xinhui

    In the first project, I studied the onset of structural arrest and glass formation in a suspension of silica nanoparticles in a water-lutidine binary mixture near its consolute point using X-ray Photon Correlation Spectroscopy (XPCS) and Small Angle X-ray Scattering (SAXS). I obtained the temperature evolution of the static and dynamic structure, revealing that glass transitions occur both on cooling and on heating, and an unusual logarithmic relaxation within the intermediate liquid between the two glasses, as predicted by mode-coupling theory. In another project, I implemented and exploited the recently-introduced, coherence-based technique of X-ray Near-Field Speckle (XNFS) to characterize the structure and dynamics of micrometer-sized particles. In XNFS, the measured speckles originate from the interference between the incident and scattered beams, and enable truly ultra-small angle x-ray scattering measurements with a simple setup. We built a micrometer-resolution XNFS detector with a high numerical aperture microscope objective and demonstrated its capability of studying static structures and dynamics in longer length scale than traditional far field x-ray techniques by measuring dilute silica and polystyrene samples. We also discussed the limitation of this technique.

  16. Structural dissection of human metapneumovirus phosphoprotein using small angle x-ray scattering.

    PubMed

    Renner, Max; Paesen, Guido C; Grison, Claire M; Granier, Sébastien; Grimes, Jonathan M; Leyrat, Cédric

    2017-11-01

    The phosphoprotein (P) is the main and essential cofactor of the RNA polymerase (L) of non-segmented, negative-strand RNA viruses. P positions the viral polymerase onto its nucleoprotein-RNA template and acts as a chaperone of the nucleoprotein (N), thereby preventing nonspecific encapsidation of cellular RNAs. The phosphoprotein of human metapneumovirus (HMPV) forms homotetramers composed of a stable oligomerization domain (P core ) flanked by large intrinsically disordered regions (IDRs). Here we combined x-ray crystallography of P core with small angle x-ray scattering (SAXS)-based ensemble modeling of the full-length P protein and several of its fragments to provide a structural description of P that captures its dynamic character, and highlights the presence of varyingly stable structural elements within the IDRs. We discuss the implications of the structural properties of HMPV P for the assembly and functioning of the viral transcription/replication machinery.

  17. Pair Production and Gamma-Ray Emission in the Outer Magnetospheres of Rapidly Spinning Young Pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin; Chen, Kaiyou

    1997-01-01

    Electron-positron pair production and acceleration in the outer magnetosphere may be crucial for a young rapidly spinning canonical pulsar to be a strong Gamma-ray emitter. Collision between curvature radiated GeV photons and soft X-ray photons seems to be the only efficient pair production mechanism. For Crib-like pulsars, the magnetic field near the light cylinder is so strong, such that the synchrotron radiation of secondary pairs will be in the needed X-ray range. However, for majority of the known Gamma-ray pulsars, surface emitted X-rays seem to work as the matches and fuels for a gamma-ray generation fireball in the outer magnetosphere. The needed X-rays could come from thermal emission of a cooling neutron star or could be the heat generated by bombardment of the polar cap by energetic particles generated in the outer magnetosphere. With detection of more Gamma-ray pulsars, it is becoming evident that the neutron star's intrisic geometry (the inclination angle between the rotation and magnetic axes) and observational geometry (the viewing angle with respect to the rotation axis) are crucial to the understanding of varieties of observational properties exhibited by these pulsars. Inclination angles for many known high energy Gamma-ray pulsars appear to be large and the distribution seems to be consistent with random orientation. However, all of them except Geminga are pre-selected from known radio pulsars. The viewing angles are thus limited to be around the respective inclination angles for beamed radio emission, which may induce strong selection effect. The viewing angles as well as the inclination angles of PSR 1509-58 and PSB 0656+14 may be small such that most of the high energy Gamma-rays produced in the outer accelerators may not reach the observer's direction. The observed Gamma-rays below 5 MeV from this pulsar may be synchrotron radiation of secondary electron-positron pairs produced outside the accelerating regions.

  18. Transmission-geometry electrochemical cell for in-situ scattering and spectroscopy investigations

    DOEpatents

    Chupas, Peter J.; Chapman, Karena W.; Kurtz, Charles A.; Borkiewicz, Olaf J.; Wiaderek, Kamila Magdelena; Shyam, Badri

    2015-05-05

    The present invention relates to a test chamber that can be used to perform a variety of X-ray and neutron spectroscopy experiments including powder diffraction, small-angle scattering, X-ray absorption spectroscopy, and pair distribution functions, such chamber comprising a first electrode with an X-ray transparent window; a second electrode with an X-ray transparent window; a plurality of insulating gaskets providing a hermetic seal around the sample and preventing contact between said first and second electrodes; and an insulating housing into which the first electrode is secured.

  19. Colliding Stellar Winds Structure and X-ray Emission

    NASA Astrophysics Data System (ADS)

    Pittard, J. M.; Dawson, B.

    2018-04-01

    We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.

  20. Difference structures from time-resolved small-angle and wide-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Nepal, Prakash; Saldin, D. K.

    2018-05-01

    Time-resolved small-angle x-ray scattering/wide-angle x-ray scattering (SAXS/WAXS) is capable of recovering difference structures directly from difference SAXS/WAXS curves. It does so by means of the theory described here because the structural changes in pump-probe detection in a typical time-resolved experiment are generally small enough to be confined to a single residue or group in close proximity which is identified by a method akin to the difference Fourier method of time-resolved crystallography. If it is assumed, as is usual with time-resolved structures, that the moved atoms lie within the residue, the 100-fold reduction in the search space (assuming a typical protein has about 100 residues) allows the exaction of the structure by a simulated annealing algorithm with a huge reduction in computing time and leads to a greater resolution by varying the positions of atoms only within that residue. This reduction in the number of potential moved atoms allows us to identify the actual motions of the individual atoms. In the case of a crystal, time-resolved calculations are normally performed using the difference Fourier method, which is, of course, not directly applicable to SAXS/WAXS. The method developed in this paper may be thought of as a substitute for that method which allows SAXS/WAXS (and hence disordered molecules) to also be used for time-resolved structural work.

  1. Improving packaged food quality and safety. Part 1: synchrotron X-ray analysis.

    PubMed

    López-Rubio, A; Hernandez-Muñoz, P; Catala, R; Gavara, R; Lagarón, J M

    2005-10-01

    The objective was to demonstrate, as an example of an application, the potential of synchrotron X-ray analysis to detect morphological alterations that can occur in barrier packaging materials and structures. These changes can affect the packaging barrier characteristics when conventional food preservation treatments are applied to packaged food. The paper presents the results of a number of experiments where time-resolved combined wide-angle X-ray scattering and small-angle X-ray scattering analysis as a function of temperature and humidity were applied to ethylene-vinyl alcohol co-polymers (EVOH), polypropylene (PP)/EVOH/PP structures, aliphatic polyketone terpolymer (PK) and amorphous polyamide (aPA) materials. A comparison between conventional retorting and high-pressure processing treatments in terms of morphologic alterations are also presented for EVOH. The impact of retorting on the EVOH structure contrasts with the good behaviour of the PK during this treatment and with that of aPA. However, no significant structural changes were observed by wide-angle X-ray scattering in the EVOH structures after high-pressure processing treatment. These structural observations have also been correlated with oxygen permeability measurements that are of importance when guaranteeing the intended levels of safety and quality of packaged food.

  2. In situ grazing incidence small-angle X-ray scattering investigation of polystyrene nanoparticle spray deposition onto silicon.

    PubMed

    Herzog, Gerd; Benecke, Gunthard; Buffet, Adeline; Heidmann, Berit; Perlich, Jan; Risch, Johannes F H; Santoro, Gonzalo; Schwartzkopf, Matthias; Yu, Shun; Wurth, Wilfried; Roth, Stephan V

    2013-09-10

    We investigated the spray deposition and subsequent self-assembly during drying of a polystyrene nanoparticle dispersion with in situ grazing incidence small-angle X-ray scattering at high time resolution. During the fast deposition of the dispersion and the subsequent evaporation of the solvent, different transient stages of nanoparticle assembly can be identified. In the first stage, the solvent starts to evaporate without ordering of the nanoparticles. During the second stage, large-scale structures imposed by the breakup of the liquid film are observable. In this stage, the solvent evaporates further and nanoparticle ordering starts. In the late third drying stage, the nanoparticles self-assemble into the final layer structure.

  3. Structure of disordered gold-polymer thin films using small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.

    2010-11-01

    We have investigated the structure of disordered gold-polymer thin films using small angle x-ray scattering and compared the results with the predictions of a theoretical model based on two approaches—a structure form factor approach and the generalized Porod law. The films are formed of polymer-embedded gold nanoclusters and were fabricated by very low energy gold ion implantation into polymethylmethacrylate (PMMA). The composite films span (with dose variation) the transition from electrically insulating to electrically conducting regimes, a range of interest fundamentally and technologically. We find excellent agreement with theory and show that the PMMA-Au films have monodispersive or polydispersive characteristics depending on the implanted ion dose.

  4. Grazing-incidence small angle x-ray scattering studies of nanoscale polymer gratings

    NASA Astrophysics Data System (ADS)

    Doxastakis, Manolis; Suh, Hyo Seon; Chen, Xuanxuan; Rincon Delgadillo, Paulina A.; Wan, Lingshu; Williamson, Lance; Jiang, Zhang; Strzalka, Joseph; Wang, Jin; Chen, Wei; Ferrier, Nicola; Ramirez-Hernandez, Abelardo; de Pablo, Juan J.; Gronheid, Roel; Nealey, Paul

    2015-03-01

    Grazing-Incidence Small Angle X-ray Scattering (GISAXS) offers the ability to probe large sample areas, providing three-dimensional structural information at high detail in a thin film geometry. In this study we exploit the application of GISAXS to structures formed at one step of the LiNe (Liu-Nealey) flow using chemical patterns for directed self-assembly of block copolymer films. Experiments conducted at the Argonne National Laboratory provided scattering patterns probing film characteristics at both parallel and normal directions to the surface. We demonstrate the application of new computational methods to construct models based on scattering measured. Such analysis allows for extraction of structural characteristics at unprecedented detail.

  5. Two hump-shaped angular distributions of neutrons and soft X-rays in a small plasma focus device.

    PubMed

    Habibi, Morteza

    2018-03-01

    Angular distributions of soft X-rays (SXRs) and neutrons emitted by a small plasma focus device (PFD) were investigated simultaneously using TLD-100 dosimeters and Geiger-Muller activation counters, respectively. The distributions represented two humps with a small dip at the angular position 0° and reduced from the angles of ± 15° and ± 30° for the neutrons and SXRs, respectively. The maximum yield of 2.98 × 10 8 neutrons per shot of the device was obtained at 13.5kV and 6.5mbar. A time of flight (TOF) of 75.2ns between the hard X-ray and the neutron peaks corresponds to neutrons with energy of 2.67MeV. A similar behavior was observed between the angular distributions of neutron and soft X-ray emissions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence.

    PubMed

    Abuillan, Wasim; Vorobiev, Alexei; Hartel, Andreas; Jones, Nicola G; Engstler, Markus; Tanaka, Motomu

    2012-11-28

    As a physical model of the surface of cells coated with densely packed, non-crystalline proteins coupled to lipid anchors, we functionalized the surface of phospholipid membranes by coupling of neutravidin to biotinylated lipid anchors. After the characterization of fine structures perpendicular to the plane of membrane using specular X-ray reflectivity, the same membrane was characterized by grazing incidence small angle X-ray scattering (GISAXS). Within the framework of distorted wave Born approximation and two-dimensional Percus-Yevick function, we can analyze the form and structure factors of the non-crystalline, membrane-anchored proteins for the first time. As a new experimental technique to quantify the surface density of proteins on the membrane surface, we utilized grazing incidence X-ray fluorescence (GIXF). Here, the mean intermolecular distance between proteins from the sulfur peak intensities can be calculated by applying Abelé's matrix formalism. The characteristic correlation distance between non-crystalline neutravidin obtained by the GISAXS analysis agrees well with the intermolecular distance calculated by GIXF, suggesting a large potential of the combination of GISAXS and GIXF in probing the lateral density and correlation of non-crystalline proteins displayed on the membrane surface.

  7. Nanoscale femtosecond imaging of transient hot solid density plasmas with elemental and charge state sensitivity using resonant coherent diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, T., E-mail: t.kluge@hzdr.de; Bussmann, M.; Huang, L. G., E-mail: lingen.huang@hzdr.de

    Here, we propose to exploit the low energy bandwidth, small wavelength, and penetration power of ultrashort pulses from XFELs for resonant Small Angle Scattering (SAXS) on plasma structures in laser excited plasmas. Small angle scattering allows to detect nanoscale density fluctuations in forward scattering direction. Typically, the SAXS signal from laser excited plasmas is expected to be dominated by the free electron distribution. We propose that the ionic scattering signal becomes visible when the X-ray energy is in resonance with an electron transition between two bound states (resonant coherent X-ray diffraction). In this case, the scattering cross-section dramatically increases somore » that the signal of X-ray scattering from ions silhouettes against the free electron scattering background which allows to measure the opacity and derived quantities with high spatial and temporal resolution, being fundamentally limited only by the X-ray wavelength and timing. Deriving quantities such as ion spatial distribution, charge state distribution, and plasma temperature with such high spatial and temporal resolution will make a vast number of processes in shortpulse laser-solid interaction accessible for direct experimental observation, e.g., hole-boring and shock propagation, filamentation and instability dynamics, electron transport, heating, and ultrafast ionization dynamics.« less

  8. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering

    PubMed Central

    Kehres, Jan; Pedersen, Thomas; Masini, Federico; Andreasen, Jens Wenzel; Nielsen, Martin Meedom; Diaz, Ana; Nielsen, Jane Hvolbæk; Hansen, Ole

    2016-01-01

    The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing-incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles. PMID:26917133

  9. High-energy synchrotron x-ray techniques for studying irradiated materials

    DOE PAGES

    Park, Jun-Sang; Zhang, Xuan; Sharma, Hemant; ...

    2015-03-20

    High performance materials that can withstand radiation, heat, multiaxial stresses, and corrosive environment are necessary for the deployment of advanced nuclear energy systems. Nondestructive in situ experimental techniques utilizing high energy x-rays from synchrotron sources can be an attractive set of tools for engineers and scientists to investigate the structure–processing–property relationship systematically at smaller length scales and help build better material models. In this paper, two unique and interconnected experimental techniques, namely, simultaneous small-angle/wide-angle x-ray scattering (SAXS/WAXS) and far-field high-energy diffraction microscopy (FF-HEDM) are presented. Finally, the changes in material state as Fe-based alloys are heated to high temperatures ormore » subject to irradiation are examined using these techniques.« less

  10. Small-angle x-ray scattering in amorphous silicon: A computational study

    NASA Astrophysics Data System (ADS)

    Paudel, Durga; Atta-Fynn, Raymond; Drabold, David A.; Elliott, Stephen R.; Biswas, Parthapratim

    2018-05-01

    We present a computational study of small-angle x-ray scattering (SAXS) in amorphous silicon (a -Si) with particular emphasis on the morphology and microstructure of voids. The relationship between the scattering intensity in SAXS and the three-dimensional structure of nanoscale inhomogeneities or voids is addressed by generating large high-quality a -Si networks with 0.1%-0.3% volume concentration of voids, as observed in experiments using SAXS and positron annihilation spectroscopy. A systematic study of the variation of the scattering intensity in the small-angle scattering region with the size, shape, number density, and the spatial distribution of the voids in the networks is presented. Our results suggest that the scattering intensity in the small-angle region is particularly sensitive to the size and the total volume fraction of the voids, but the effect of the geometry or shape of the voids is less pronounced in the intensity profiles. A comparison of the average size of the voids obtained from the simulated values of the intensity, using the Guinier approximation and Kratky plots, with that of the same from the spatial distribution of the atoms in the vicinity of void surfaces is presented.

  11. Understanding how the aggregation structure of starch affects its gastrointestinal digestion rate and extent.

    PubMed

    Chen, Pei; Wang, Kai; Kuang, Qirong; Zhou, Sumei; Wang, Dazheng; Liu, Xingxun

    2016-06-01

    Regulating the starch gastrointestinal digestion rate by control of its aggregation structure is an effective way, but the mechanism is still not clear. Multi-scale structure of waxy and normal wheat starches were studied by confocal laser scanning and scanning electron microscopes, as well as wide-angle and small-angle X-ray techniques in this study. In vitro digestion kinetics of those two starches and structure-digestion relationship were also discussed. Both waxy and normal starches show A-type diffraction pattern, but waxy variety shows a slightly higher crystallinity. Small-angle X-ray scattering results show that waxy wheat starch has higher scattering peak intensity (Imax) and a larger crystallinity lamellar repeat distance (Lp) compared with the normal wheat starch. We suggested that the higher digestion rate of waxy starch at initial stage is mainly due to more small-size particles, but the higher crystallinity and the larger crystalline lamellar size limit the digestion extent. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering

    NASA Astrophysics Data System (ADS)

    Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter

    2013-06-01

    Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.

  13. Manufacturing and characterization of Ni-free N-containing ODS austenitic alloy

    NASA Astrophysics Data System (ADS)

    Mori, A.; Mamiya, H.; Ohnuma, M.; Ilavsky, J.; Ohishi, K.; Woźniak, Jarosław; Olszyna, A.; Watanabe, N.; Suzuki, J.; Kitazawa, H.; Lewandowska, M.

    2018-04-01

    Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and alloy contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small-angle X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 °C. Sintering at 1000 °C for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128 nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.

  14. Purification, crystallization, small-angle X-ray scattering and preliminary X-ray diffraction analysis of the SH2 domain of the Csk-homologous kinase.

    PubMed

    Gunn, Natalie J; Gorman, Michael A; Dobson, Renwick C J; Parker, Michael W; Mulhern, Terrence D

    2011-03-01

    The C-terminal Src kinase (Csk) and Csk-homologous kinase (CHK) are endogenous inhibitors of the proto-oncogenic Src family of protein tyrosine kinases (SFKs). Phosphotyrosyl peptide binding to their Src-homology 2 (SH2) domains activates Csk and CHK, enhancing their ability to suppress SFK signalling; however, the detailed mechanistic basis of this activation event is unclear. The CHK SH2 was expressed in Escherichia coli and the purified protein was characterized as monomeric by synchrotron small-angle X-ray scattering in-line with size-exclusion chromatography. The CHK SH2 crystallized in 0.2 M sodium bromide, 0.1 M bis-Tris propane pH 6.5 and 20% polyethylene glycol 3350 and the best crystals diffracted to ∼1.6 Å resolution. The crystals belonged to space group P2, with unit-cell parameters a=25.8, b=34.6, c=63.2 Å, β=99.4°.

  15. Synthesis and synchrotron characterisation of novel dual-template of hydroxyapatite scaffolds with controlled size porous distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Thiago A. R. M.; Ilavsky, Jan; Hammons, Joshua

    Hydroxyapatite (HAP) scaffolds with a hierarchical porous architecture were prepared by a new dual-template (corn starch and cetyltrimethylammonium bromide (CTAB) surfactant) used to cast HAP nanoparticles and development scaffolds with size hierarchical porous distribution. The Powder X-Ray diffraction (XRD) results showed that only the HAP crystalline phase is present in the samples after calcination; the Scanning Electron Microscopy (SEM) combined with Small Angle (SAXS) and Ultra-Small Angle X-ray Scattering (USAXS) techniques showed that the porous arrangement is promoted by needle-like HAP nanoparticles, and that the pore size distributions depend on the drip-order of the calcium and the phosphate solutions duringmore » the template preparation stage.« less

  16. Transformation from Multilamellar to Unilamellar Vesicles by Addition of a Cationic Lipid to PEGylated Liposomes Explored with Synchrotron Small Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Sakuragi, Mina; Koiwai, Kazunori; Nakamura, Kouji; Masunaga, Hiroyasu; Ogawa, Hiroki; Sakurai, Kazuo

    2011-01-01

    PEGylated liposomes composed of a benzamidine derivative (TRX), hydrogenated soybean phosphatidylcholine (HSPC), and N-(monomethoxy-polyethyleneglycolcarbamyl) distearoyl phosphatidylethanolamine (PEG-PE) were examined in terms of how the addition of TRX affects their structures with small angle x-ray scattering (SAXS) as well as transmission electron microscopy (TEM). TEM images showed the presence of unilamella vesicles for both with and without TRX, though a small amount of multilamella vesicles were observed in absence of TRX. We analyzed SAXS profiles at contained TRX composition combined with contrast variation technique by adding PEG solution and unilamella vesicle model could be reproduced. Subsequently, we analyzed SAXS profiles at no TRX composition. The mixture model of unilamella and multilamella vesicle was reconstructed and we estimated about 10 % multilamella vesicles from a fitting parameter.

  17. The approach to reflection x-ray microscopy below the critical angles

    NASA Astrophysics Data System (ADS)

    Artyukov, Igor A.; Busarov, Alexander; Popov, Nikolay L.; Vinogradov, Alexander V.

    2017-05-01

    There is a quest for new knowledge and methods to study various materials and processes on surfaces and interfaces at the nanoscale. It concerns ablation, phase transitions, physical and chemical transformations, dissolution, selforganization etc. Obviously, to achieve an appropriate resolution it is necessary to use a corresponding wavelength . Higher resolution can be obtained with shorter wavelengths. On the other hand, in surface modification, ablation, study of buried interfaces etc. the penetration length of radiation into the materials, which depends on the wavelength and angle of incidence, plays important role... Considering these factors the experimental studies in nano-physics and nanotechnology are usually carried out using X-ray radiation with a photon energy of 0.1-10 keV. As far as surfaces and films are investigated, it is reasonable to use an X-ray microscope operating in the reflection mode. However, in this spectral range a substantial portion of the radiation is reflected only at small grazing angles (e.g. <= 10°). Thus, the idea of grazing incidence reflection-mode X-ray microscope has been developed. In this paper, we consider one of possible schemes of such an X-ray microscope. Our analysis and simulation is based on the extension of the Fresnel propagation theory to tilted object problems.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less

  19. New contrasts for x-ray imaging and synergy with optical imaging

    NASA Astrophysics Data System (ADS)

    Wang, Ge

    2017-02-01

    Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).

  20. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  1. Trajectories of high energy electrons in a plasma focus

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    Measurements are made of high-energy electron trajectories in a plasma focus as functions of position, time, energy, and angle of emission. The spatial resolution of the X-ray emission shows that low-energy X-rays are emitted from the anode surface. It is also suggested that the highest energy X-rays originate from a small region on the axis. The so-called shadow technique shows that the electron beam is perpendicular to the anode surface. Polar diagrams of medium and high-energy X-rays agree with the bremsstrahlung emission from a relativistic electron beam, the current of which is several 100 A.

  2. A KPC-scale X-ray jet in the BL LAC Source S5 2007+777

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita; Maraschi, Laura; Tavecchio, Fabrizio

    2008-01-01

    The BL Lac S3 2007++777, a classical radio-selected BL Lac from the sample of Stirkel et al. exhibiting an extended (19") radio jet. was observed with Chandra revealing an X-ray jet with simi1ar morphology. The hard X-ray spectrum and broad band SED is consistent with an IC/CMB origin for the X-ray emission, implying a highly relativistic flow at small angle to the line of sight with an unusually large deprojected length, 300 kpc. A structured jet consisting of a fast spine and slow wall is consistent with the observations.

  3. Small-angle solution scattering using the mixed-mode pixel array detector.

    PubMed

    Koerner, Lucas J; Gillilan, Richard E; Green, Katherine S; Wang, Suntao; Gruner, Sol M

    2011-03-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 10(7) 10 keV X-rays, a maximum flux rate of 10(8) X-rays pixel(-1) s(-1), and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements.

  4. Small-angle solution scattering using the mixed-mode pixel array detector

    PubMed Central

    Koerner, Lucas J.; Gillilan, Richard E.; Green, Katherine S.; Wang, Suntao; Gruner, Sol M.

    2011-01-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 107 10 keV X-rays, a maximum flux rate of 108 X-rays pixel−1 s−1, and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements. PMID:21335900

  5. A Compact X-Ray System for Support of High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.

  6. Using acoustic levitation in synchrotron based laser pump hard x-ray probe experiments

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Lerch, Jason; Suthar, Kamlesh; Dichiara, Anthony

    Acoustic levitation provides a platform to trap and hold a small amount of material by using standing pressure waves without a container. The technique has a potential to be used for laser pump x-ray probe experiments; x-ray scattering and laser distortion from the container can be avoided, sample consumption can be minimized, and unwanted chemistry that may occur at the container interface can be avoided. The method has been used at synchrotron sources for studying protein and pharmaceutical solutions using x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). However, pump-probe experiments require homogeneously excited samples, smaller than the absorption depth of the material that must be held stably at the intersection of both the laser and x-ray beams. We discuss 1) the role of oscillations in acoustic levitation and the optimal acoustic trapping conditions for x-ray/laser experiments, 2) opportunities to automate acoustic levitation for fast sample loading and manipulation, and 3) our experimental results using SAXS to monitor laser induced thermal expansion in gold nanoparticles solution. We also performed Finite Element Analysis to optimize the trapping performance and stability of droplets ranging from 0.4 mm to 2 mm. Our early x-ray/laser demonstrated the potential of the technique for time-resolved X-ray science.

  7. The measurement capabilities of cross-sectional profile of Nanoimprint template pattern using small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya

    2016-05-01

    Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this report, we will report the measurement capabilities of GI-SAXS technique as a cross-sectional profile measurement tool of NIL quartz template pattern.

  8. Measurement of illite particle thickness using a direct Fourier transform of small-angle X-ray scattering data

    USGS Publications Warehouse

    Shang, Chao; Rice, James A.; Eberl, Dennis D.; Lin, Jar-Shyong

    2003-01-01

    It has been suggested that interstratified illite-smectite (I-S) minerals are composed of aggregates of fundamental particles. Many attempts have been made to measure the thickness of such fundamental particles, but each of the methods used suffers from its own limitations and uncertainties. Small-angle X-ray scattering (SAXS) can be used to measure the thickness of particles that scatter X-rays coherently. We used SAXS to study suspensions of Na-rectorite and other illites with varying proportions of smectite. The scattering intensity (I) was recorded as a function of the scattering vector, q = (4 /) sin(/2), where  is the X-ray wavelength and  is the scattering angle. The experimental data were treated with a direct Fourier transform to obtain the pair distance distribution function (PDDF) that was then used to determine the thickness of illite particles. The Guinier and Porod extrapolations were used to obtain the scattering intensity beyond the experimental q, and the effects of such extrapolations on the PDDF were examined. The thickness of independent rectorite particles (used as a reference mineral) is 18.3 Å. The SAXS results are compared with those obtained by X-ray diffraction peak broadening methods. It was found that the power-law exponent (α) obtained by fitting the data in the region of q = 0.1-0.6 nm-1 to the power law (I = I0q-α) is a linear function of illite particle thickness. Therefore, illite particle thickness could be predicted by the linear relationship as long as the thickness is within the limit where α <4.0.

  9. Planar small-angle x-ray scattering imaging of phantoms and biological samples

    NASA Astrophysics Data System (ADS)

    Choi, M.; Badano, A.

    2017-04-01

    Coherent small-angle x-ray scattering (SAXS) provides molecular and nanometer-scale structural information. By capturing SAXS data at multiple locations across a sample, we obtained planar images and observed improved contrast given by the difference in the material scattering cross sections. We use phantoms made with 3D printing techniques, with tissue-mimicking plastic (PMMA), and with a highly scattering reference material (AgBe), which were chosen because of their well characterized scattering cross section to demonstrate and characterize the planar imaging of a laboratory SAXS system. We measure 1.07 and 2.14 nm-1 angular intensity maps for AgBe, 9.5 nm-1 for PMMA, and 12.3 nm-1 for Veroclear. The planar SAXS images show material discrimination based on their cross sectional features. The image signal-to-noise ratio (SNR) of each q image was dependent on exposure time and x-ray flux. We observed a lower SNR (91 ± 48) at q angles where no characteristic peaks for either material exist. To improve the visualization of the acquired data by utilizing all q-binned data, we describe a weighted-sum presentation method with a priori knowledge of relevant cross sections to improve the SNR (10 000 ± 6400) over the SNR from a single q-image at 1.07 nm-1 (1100 ± 620). In addition, we describe planar SAXS imaging of a mouse brain slice showing differentiation of tissue types as compared to a conventional absorption-based x-ray imaging technique.

  10. The path for long range conduction in high J(sub c) TlBa2Ca2Cu3O(8+x) spray-pyrolyzed deposits

    NASA Astrophysics Data System (ADS)

    Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.

    Grain boundary misorientations and local texture in polycrystalline TlBa2Ca2Cu3O(8+x) deposits prepared by thallination of spray-pyrolyzed precursor deposits on yttria-stabilized zirconia have been determined from transmission electron microscopy, electron backscatter diffraction patterns, and x ray diffraction. The deposits were polycrystalline, had small grains, and excellent c-axis alignment. The deposits contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range current flow occurs through a percolative network of small angle grain boundaries at colony intersections.

  11. Talbot-Lau x-ray interferometry for high energy density plasma diagnostic.

    PubMed

    Stutman, D; Finkenthal, M

    2011-11-01

    High resolution density diagnostics are difficult in high energy density laboratory plasmas (HEDLP) experiments due to the scarcity of probes that can penetrate above solid density plasmas. Hard x-rays are one possible probe for such dense plasmas. We study the possibility of applying an x-ray method recently developed for medical imaging, differential phase-contrast with Talbot-Lau interferometers, for the diagnostic of electron density and small-scale hydrodynamic instabilities in HEDLP experiments. The Talbot method uses micro-periodic gratings to measure the refraction and ultra-small angle scatter of x-rays through an object and is attractive for HEDLP diagnostic due to its capability to work with incoherent and polychromatic x-ray sources such as the laser driven backlighters used for HEDLP radiography. Our paper studies the potential of the Talbot method for HEDLP diagnostic, its adaptation to the HEDLP environment, and its extension of high x-ray energy using micro-periodic mirrors. The analysis is illustrated with experimental results obtained using a laboratory Talbot interferometer. © 2011 American Institute of Physics

  12. Dispersed SiC nanoparticles in Ni observed by ultra-small-angle X-ray scattering

    DOE PAGES

    Xie, R.; Ilavsky, J.; Huang, H. F.; ...

    2016-11-24

    In this paper, a metal-ceramic composite, nickel reinforced with SiC nanoparticles, was synthesized and characterized for its potential application in next-generation molten salt nuclear reactors. Synchrotron ultra-small-angle X-ray scattering (USAXS) measurements were conducted on the composite. The size distribution and number density of the SiC nanoparticles in the material were obtained through data modelling. Scanning and transmission electron microscopy characterization were performed to substantiate the results of the USAXS measurements. Tensile tests were performed on the samples to measure the change in their yield strength after doping with the nanoparticles. Finally, the average interparticle distance was calculated from the USAXSmore » results and is related to the increased yield strength of the composite.« less

  13. Small-angle x-ray scattering study of polymer structure: Carbosilane dendrimers in hexane solution

    NASA Astrophysics Data System (ADS)

    Shtykova, E. V.; Feigin, L. A.; Volkov, V. V.; Malakhova, Yu. N.; Streltsov, D. R.; Buzin, A. I.; Chvalun, S. N.; Katarzhanova, E. Yu.; Ignatieva, G. M.; Muzafarov, A. M.

    2016-09-01

    The three-dimensional organization of monodisperse hyper-branched macromolecules of regular structure—carbosilane dendrimers of zero, third, and sixth generations—has been studied by small-angle X-ray scattering (SAXS) in solution. The use of modern methods of SAXS data interpretation, including ab initio modeling, has made it possible to determine the internal architecture of the dendrimers in dependence of the generation number and the number of cyclosiloxane end groups (forming the shell of dendritic macromolecules) and show dendrimers to be spherical. The structural results give grounds to consider carbosilane dendrimers promising objects for forming crystals with subsequent structural analysis and determining their structure with high resolution, as well as for designing new materials to be used in various dendrimer-based technological applications.

  14. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes formore » 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.« less

  15. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  16. Small-Angle Neutron Scattering on Crosslink Distribution of Epoxy Networks.

    DTIC Science & Technology

    1985-10-01

    distinct second phase or heterogeneity has been detected. Small- angle X-ray scattering (SAXS), 1 nuclear magnetic resonance (NMR) ,2 electron ... paramagnetic resonance (EPR),3 and glass transition 4temperature (Tg) measurements reveal a second phase which is attri- . buted to a heterogeneous...FUNDING/SPONSORING lab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER * ORGANIZATION I (If applticable)j F3361 5-84-C-5020 * Bc ADDRESS

  17. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung T.; Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois; Case, David A.

    2014-12-01

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb+ and Sr2+) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein-Zernike equations, with results from the Kovalenko-Hirata closure being closest to experiment for the cases studied here.

  18. Determination of line profiles on nano-structured surfaces using EUV and x-ray scattering

    NASA Astrophysics Data System (ADS)

    Soltwisch, Victor; Wernecke, Jan; Haase, Anton; Probst, Jürgen; Schoengen, Max; Krumrey, Michael; Scholze, Frank; Pomplun, Jan; Burger, Sven

    2014-09-01

    Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. Grazing Incidence Small Angle X-ray Scattering (GISAXS) provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range, EUV small angle scattering (EUVSAS), which allows for much steeper angles of incidence but preserves the range of momentum transfer that can be observed. Generally, the potentially higher momentum transfer at shorter wavelengths is counterbalanced by decreasing diffraction efficiency. This results in a practical limit of about 10 nm pitch for which it is possible to observe at least the +/- 1st diffraction orders with reasonable efficiency. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, based on a finite element method (FEM) Maxwell solver and a particle swarm based least-squares optimization yielded consistent results for EUV-SAS and GISAXS. In this contribution we present scatterometry data for line gratings and consistent reconstruction results of the line geometry for EUV-SAS and GISAXS.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, S., E-mail: syunji.kishimoto@kek.jp; Haruki, R.; Mitsui, T.

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector to be used for time-resolved X-ray scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and a depletion depth of 10 μm. The multichannel scaler counted X-ray pulses over continuous 2046 time bins for every 0.5 ns and recorded a time spectrum at each pixel with a time resolution of 0.5 ns (FWHM) for 8.0 keV X-rays. Using the detector system, we were able to observe X-ray peaks clearly separated with 2 nsmore » interval in the multibunch-mode operation of the Photon Factory ring. The small-angle X-ray scattering for polyvinylidene fluoride film was also observed with the detector.« less

  20. Orbital Verification of the CXO High-Resolution Mirror Assembly Alignment and Vignetting

    NASA Technical Reports Server (NTRS)

    Gaetz, T. J.; Jerius, D.; Edgar, R. J.; VanSpeybroeck, L. P.; Schwartz, D. A.; Markevitch, M.; Schulz, N. S.

    2000-01-01

    Prior to launch, the High Resolution Mirror Assembly (HRMA) of the Chandra X-ray Observatory underwent extensive ground testing at the X-ray Calibration Facility (XRCF) at the Marshall Space Flight Center in Huntsville. Observations made during the post-launch Orbital Activation and Calibration period, allow the on-orbit condition of the X-ray optics to be assessed. Based on these ground-based and on-orbit data, we examine the alignment of the x-ray optics based on the PSF, and the boresight and alignment of the optical axis alignment relative to the detectors. We examine the vignetting and the single reflection ghost suppression properties of the telescope. Slight imperfections in alignment lead to a small azimuthal dependence of the off-axis area; the morphology of off-axis images also shows an additional small azimuthal dependence varying as 1/2 the off-axis azimuth angle.

  1. Dark-field phase retrieval under the constraint of the Friedel symmetry in coherent X-ray diffraction imaging.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2014-11-17

    Coherent X-ray diffraction imaging (CXDI) is a lensless imaging technique that is suitable for visualizing the structures of non-crystalline particles with micrometer to sub-micrometer dimensions from material science and biology. One of the difficulties inherent to CXDI structural analyses is the reconstruction of electron density maps of specimen particles from diffraction patterns because saturated detector pixels and a beam stopper result in missing data in small-angle regions. To overcome this difficulty, the dark-field phase-retrieval (DFPR) method has been proposed. The DFPR method reconstructs electron density maps from diffraction data, which are modified by multiplying Gaussian masks with an observed diffraction pattern in the high-angle regions. In this paper, we incorporated Friedel centrosymmetry for diffraction patterns into the DFPR method to provide a constraint for the phase-retrieval calculation. A set of model simulations demonstrated that this constraint dramatically improved the probability of reconstructing correct electron density maps from diffraction patterns that were missing data in the small-angle region. In addition, the DFPR method with the constraint was applied successfully to experimentally obtained diffraction patterns with significant quantities of missing data. We also discuss this method's limitations with respect to the level of Poisson noise in X-ray detection.

  2. Thorough small-angle X-ray scattering analysis of the instability of liquid micro-jets in air.

    PubMed

    Marmiroli, Benedetta; Cacho-Nerin, Fernando; Sartori, Barbara; Pérez, Javier; Amenitsch, Heinz

    2014-01-01

    Liquid jets are of interest, both for their industrial relevance and for scientific applications (more important, in particular for X-rays, after the advent of free-electron lasers that require liquid jets as sample carrier). Instability mechanisms have been described theoretically and by numerical simulation, but confirmed by few experimental techniques. In fact, these are mainly based on cameras, which is limited by the imaging resolution, and on light scattering, which is hindered by absorption, reflection, Mie scattering and multiple scattering due to complex air/liquid interfaces during jet break-up. In this communication it is demonstrated that synchrotron small-angle X-ray scattering (SAXS) can give quantitative information on liquid jet dynamics at the nanoscale, by detecting time-dependent morphology and break-up length. Jets ejected from circular tubes of different diameters (100-450 µm) and speeds (0.7-21 m s(-1)) have been explored to cover the Rayleigh and first wind-induced regimes. Various solvents (water, ethanol, 2-propanol) and their mixtures have been examined. The determination of the liquid jet behaviour becomes essential, as it provides background data in subsequent studies of chemical and biological reactions using SAXS or X-ray diffraction based on synchrotron radiation and free-electron lasers.

  3. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  4. Absolute Intra-Molecular Distance Measurements with Ångström-Resolution using Anomalous Small-Angle X-ray Scattering

    DOE PAGES

    Zettl, Thomas; Mathew, Rebecca S.; Seifert, Sönke; ...

    2016-05-31

    Accurate determination of molecular distances is fundamental to understanding the structure, dynamics, and conformational ensembles of biological macromolecules. Here we present a method to determine the full,distance,distribution between small (~7 Å) gold labels attached to macromolecules with very high-precision(≤1 Å) and on an absolute distance scale. Our method uses anomalous small-angle X-ray scattering close to a gold absorption edge to separate the gold-gold interference pattern from other scattering contributions. Results for 10-30 bp DNA constructs achieve excellent signal-to-noise and are in good agreement with previous results obtained by single-energy,SAXS measurements without requiring the preparation and measurement of single labeled andmore » unlabeled samples. Finally, the use of small gold labels in combination with ASAXS read out provides an attractive approach to determining molecular distance distributions that will be applicable to a broad range of macromolecular systems.« less

  5. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter

    NASA Astrophysics Data System (ADS)

    Sibillano, T.; de Caro, L.; Altamura, D.; Siliqi, D.; Ramella, M.; Boccafoschi, F.; Ciasca, G.; Campi, G.; Tirinato, L.; di Fabrizio, E.; Giannini, C.

    2014-11-01

    The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.

  6. Small Angle X-Ray Scattering from Lipid-Bound Myelin Basic Protein in Solution

    PubMed Central

    Haas, H.; Oliveira, C. L. P.; Torriani, I. L.; Polverini, E.; Fasano, A.; Carlone, G.; Cavatorta, P.; Riccio, P.

    2004-01-01

    The structure of myelin basic protein (MBP), purified from the myelin sheath in both lipid-free (LF-MBP) and lipid-bound (LB-MBP) forms, was investigated in solution by small angle x-ray scattering. The water-soluble LF-MBP, extracted at pH < 3.0 from defatted brain, is the classical preparation of MBP, commonly regarded as an intrinsically unfolded protein. LB-MBP is a lipoprotein-detergent complex extracted from myelin with its native lipidic environment at pH > 7.0. Under all conditions, the scattering from the two protein forms was different, indicating different molecular shapes. For the LB-MBP, well-defined scattering curves were obtained, suggesting that the protein had a unique, compact (but not globular) structure. Furthermore, these data were compatible with earlier results from molecular modeling calculations on the MBP structure which have been refined by us. In contrast, the LF-MBP data were in accordance with the expected open-coil conformation. The results represent the first direct structural information from x-ray scattering measurements on MBP in its native lipidic environment in solution. PMID:14695288

  7. Analysis of RNA structure using small-angle X-ray scattering

    PubMed Central

    Cantara, William A.; Olson, Erik D.; Musier-Forsyth, Karin

    2016-01-01

    In addition to their role in correctly attaching specific amino acids to cognate tRNAs, aminoacyl-tRNA synthetases (aaRS) have been found to possess many alternative functions and often bind to and act on other nucleic acids. In contrast to the well-defined 3D structure of tRNA, the structures of many of the other RNAs recognized by aaRSs have not been solved. Despite advances in the use of X-ray crystallography (XRC), nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) for structural characterization of biomolecules, significant challenges to solving RNA structures still exist. Recently, small-angle X-ray scattering (SAXS) has been increasingly employed to characterize the 3D structures of RNAs and RNA-protein complexes. SAXS is capable of providing low-resolution tertiary structure information under physiological conditions and with less intensive sample preparation and data analysis requirements than XRC, NMR and cryo-EM. In this article, we describe best practices involved in the process of RNA and RNA-protein sample preparation, SAXS data collection, data analysis, and structural model building. PMID:27777026

  8. Time-resolved Small Angle X-ray Scattering During the Formation of Detonation Nano-Carbon Condensates

    NASA Astrophysics Data System (ADS)

    Bagge-Hansen, Michael; Hammons, Josh; Nielsen, Mike; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; van Buuren, Tony; Pagoria, Phil; May, Chadd; Jensen, Brian; Gustavsen, Rick; Watkins, Erik; Firestone, Millie; Dattelbaum, Dana; Fried, Larry; Cowan, Matt; Willey, Trevor

    2017-06-01

    Carbon nanomaterials are spontaneously generated under high pressure and temperature conditions present during the detonation of many high explosive (HE) materials. Thermochemical modeling suggests that the phase, size, and morphology of carbon condensates are strongly dependent on the type of HE used and associated evolution of temperature and pressure during the very early stages of detonation. Experimental validation of carbon condensation under these extreme conditions has been technically challenging. Here, we present synchrotron-based, time-resolved small-angle x-ray scattering (TR-SAXS) measurements collected during HE detonations, acquired from discrete sub-100 ps x-ray pulses, every 153.4 ns. We select from various HE materials and geometries to explore a range of achievable pressures and temperatures that span detonation conditions and, correspondingly, generate an array of nano-carbon products, including nano-diamonds and nano-onions. The TR-SAXS patterns evolve rapidly over the first few hundred nanoseconds. Comparing the results with modeling offers significant progress towards a general carbon equation of state. Prepared by LLNL under Contract DE-AC52-07NA27344.

  9. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  10. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    PubMed

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  11. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at amore » range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.« less

  12. Potentiality of a small and fast dense plasma focus as hard x-ray source for radiographic applications

    NASA Astrophysics Data System (ADS)

    Pavez, Cristian; Pedreros, José; Zambra, Marcelo; Veloso, Felipe; Moreno, José; Ariel, Tarifeño-Saldivia; Soto, Leopoldo

    2012-10-01

    Currently, a new generation of small plasma foci devices is being developed and researched, motivated by its potential use as portable sources of x-ray and neutron pulsed radiation for several applications. In this work, experimental results of the accumulated x-ray dose angular distribution and characterization of the x-ray source size are presented for a small and fast plasma focus device, ‘PF-400J’ (880 nF, 40 nH, 27-29 kV, ˜350 J, T/4 ˜ 300 ns). The experimental device is operated using hydrogen as the filling gas in a discharge region limited by a volume of around 80 cm3. The x-ray radiation is monitored, shot by shot, using a scintillator-photomultiplier system located outside the vacuum chamber at 2.3 m far away from the radiation emission region. The angular x-ray dose distribution measurement shows a well-defined emission cone, with an expansion angle of 5°, which is observed around the plasma focus device symmetry axis using TLD-100 crystals. The x-ray source size measurements are obtained using two image-forming aperture techniques: for both cases, one small (pinhole) and one large for the penumbral imaging. These results are in agreement with the drilling made by the energetic electron beam coming from the pinch region. Additionally, some examples of image radiographic applications are shown in order to highlight the real possibilities of the plasma focus device as a portable x-ray source. In the light of the obtained results and the scaling laws observed in plasma foci devices, we present a discussion on the potentiality and advantages of these devices as pulsed and safe sources of x-radiation for applications.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.

    BL-6A has been operational since 2011 as a small angle X-ray scattering (SAXS) beamline at the Photon Factory (PF), and beginning in 2013 its old components and systems, which were mainly inside the experimental hutch, have been extensively updated. Both the vacuum-passes located between the sample stage and the detector and the fixed surface plate have been replaced by a new semi-automatic diffractometer. These upgrades allow simultaneous SAXS/WAXS experiments and grazing-incidence small angle X-ray scattering (GISAXS) measurements to be conducted. The hybrid pixel detector PILATUS3 1M is installed for SAXS, and PILATUS 100K is available as a WAXS detector. Additionally,more » a pinhole equipped with a micro-ion chamber is available to realize a lower-background and higher-resolution of low angles. Moreover, in a simultaneous SAXS/WAXS experiment, we developed a new beam stop with an embedded photodiode. Thus, BL-6A has evolved into a multipurpose beamline capable of dealing with various types of samples and experimental techniques.« less

  14. Better Ceramics Through Chemistry IV. Materials Research Society Sumposium Proceedings. Volume 180

    DTIC Science & Technology

    1991-03-31

    GELS 117 L.F. Nazar, D.G. Napier, D. Lapham, and E. Epperson SMALL ANGLE X - RAY SCATTERING STUDIES Or POLYMERIC ZIRCONIUM SPECIES IN AQUEOUS SOLUTION...recently obtained the first X - ray crystallographic data on bismuth alkoxides, Bi(OR) 3 (R = C(CH3) 3 and C6 H4 (CH 3 )2 -2,6) [8]. These data showed that...d8, ppm): 12.5 (O2CMe), 9.6 (OCMe3). The complex was identified by X - ray crystallography. 1 crystallizes in space group P21/n with a = 13.149(2) A, b

  15. Effect of calcium concentration on the structure of casein micelles in thin films.

    PubMed

    Müller-Buschbaum, P; Gebhardt, R; Roth, S V; Metwalli, E; Doster, W

    2007-08-01

    The structure of thin casein films prepared with spin-coating is investigated as a function of the calcium concentration. Grazing incidence small-angle x-ray scattering and atomic force microscopy are used to probe the micelle structure. For comparison, the corresponding casein solutions are investigated with dynamic light-scattering experiments. In the thin films with added calcium three types of casein structures, aggregates, micelles, and mini-micelles, are observed in coexistence with atomic force microscopy and grazing incidence small-angle x-ray scattering. With increasing calcium concentration, the size of the aggregates strongly increases, while the size of micelles slightly decreases and the size of the mini-micelles increases. This effect is explained in the framework of the particle-stabilizing properties of the hairy layer of kappa-casein surrounding the casein micelles.

  16. Effect of Calcium Concentration on the Structure of Casein Micelles in Thin Films

    PubMed Central

    Müller-Buschbaum, P.; Gebhardt, R.; Roth, S. V.; Metwalli, E.; Doster, W.

    2007-01-01

    The structure of thin casein films prepared with spin-coating is investigated as a function of the calcium concentration. Grazing incidence small-angle x-ray scattering and atomic force microscopy are used to probe the micelle structure. For comparison, the corresponding casein solutions are investigated with dynamic light-scattering experiments. In the thin films with added calcium three types of casein structures, aggregates, micelles, and mini-micelles, are observed in coexistence with atomic force microscopy and grazing incidence small-angle x-ray scattering. With increasing calcium concentration, the size of the aggregates strongly increases, while the size of micelles slightly decreases and the size of the mini-micelles increases. This effect is explained in the framework of the particle-stabilizing properties of the hairy layer of κ-casein surrounding the casein micelles. PMID:17496032

  17. High-throughput and automated SAXS/USAXS experiment for industrial use at BL19B2 in SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osaka, Keiichi, E-mail: k-osaka@spring8.or.jp; Inoue, Daisuke; Sato, Masugu

    A highly automated system combining a sample transfer robot with focused SR beam has been established for small-angle and ultra small-angle X-ray scattering (SAXS/USAXS) measurement at BL19B2 for industrial use of SPring-8. High-throughput data collection system can be realized by means of X-ray beam of high photon flux density concentrated by a cylindrical mirror, and a two-dimensional pixel detector PILATUS-2M. For SAXS measurement, we can obtain high-quality data within 1 minute for one exposure using this system. The sample transfer robot has a capacity of 90 samples with a large variety of shapes. The fusion of high-throughput and robotic systemmore » has enhanced the usability of SAXS/USAXS capability for industrial application.« less

  18. Mapping the structural order of laser-induced periodic surface structures in thin polymer films by microfocus beam grazing incidence small-angle X-ray scattering.

    PubMed

    Martín-Fabiani, Ignacio; Rebollar, Esther; García-Gutiérrez, Mari Cruz; Rueda, Daniel R; Castillejo, Marta; Ezquerra, Tiberio A

    2015-02-11

    In this work we present an accurate mapping of the structural order of laser-induced periodic surface structures (LIPSS) in spin-coated thin polymer films, via a microfocus beam grazing incidence small-angle X-ray scattering (μGISAXS) scan, GISAXS modeling, and atomic force microscopy imaging all along the scanned area. This combined study has allowed the evaluation of the effects on LIPSS formation due to nonhomogeneous spatial distribution of the laser pulse energy, mapping with micrometric resolution the evolution of the period and degree of structural order of LIPSS across the laser beam diameter in a direction perpendicular to the polarization vector. The experiments presented go one step further toward controlling nanostructure formation in LIPSS through a deep understanding of the parameters that influence this process.

  19. Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.

    PubMed

    Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon

    2007-11-01

    Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.

  20. Pressure-jump small-angle x-ray scattering detected kinetics of staphylococcal nuclease folding.

    PubMed Central

    Woenckhaus, J; Köhling, R; Thiyagarajan, P; Littrell, K C; Seifert, S; Royer, C A; Winter, R

    2001-01-01

    The kinetics of chain disruption and collapse of staphylococcal nuclease after positive or negative pressure jumps was monitored by real-time small-angle x-ray scattering under pressure. We used this method to probe the overall conformation of the protein by measuring its radius of gyration and pair-distance-distribution function p(r) which are sensitive to the spatial extent and shape of the particle. At all pressures and temperatures tested, the relaxation profiles were well described by a single exponential function. No fast collapse was observed, indicating that the rate limiting step for chain collapse is the same as that for secondary and tertiary structure formation. Whereas refolding at low pressures occurred in a few seconds, at high pressures the relaxation was quite slow, approximately 1 h, due to a large positive activation volume for the rate-limiting step for chain collapse. A large increase in the system volume upon folding implies significant dehydration of the transition state and a high degree of similarity in terms of the packing density between the native and transition states in this system. This study of the time-dependence of the tertiary structure in pressure-induced folding/unfolding reactions demonstrates that novel information about the nature of protein folding transitions and transition states can be obtained from a combination of small-angle x-ray scattering using high intensity synchrotron radiation with the high pressure perturbation technique. PMID:11222312

  1. Explosive vessel for coupling dynamic experiments to the X-ray beam at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Owens, Charles; Sanchez, Nathaniel; Sorensen, Christian; Jensen, Brian

    2017-06-01

    Recent experiments at the Advanced Photon Source have been successful in coupling gun systems to the synchrotron to take advantage of the advanced X-ray diagnostics available including X-ray diffraction and X-ray phase contrast imaging (PCI) to examine matter at extreme conditions. There are many experiments that require explosive loading capabilities, e.g. detonator and initiator dynamics, small angle X-ray scattering (SAXS), ejecta formation, and explosively driven flyer experiments. The current work highlights a new explosive vessel that was designed specifically for use at a synchrotron facility with requirements to confine up to 15 grams of explosives (TNT equivalent), couple the vessel to the X-ray beam line, and reliably position samples remotely. A description of the system and capability will be provided along with the results from qualification testing to bring the system into service (LA-UR-17-21381).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butt, Y M; Romero, G E; Torres, D F

    We suggest that ultraluminous X-ray sources (ULXs) and some of the variable low latitude EGRET gamma-ray sources may be two different manifestations of the same underlying phenomena: high-mass microquasars with relativistic jets forming a small angle with the line of sight (i.e. microblazars). Microblazars with jets formed by relatively cool plasma (Lorentz factors for the leptons up to a few hundreds) naturally lead to ULXs. If the jet contains very energetic particles (high-energy cutoff above Lorentz factors of several thousands) the result is a relatively strong gamma-ray source. As pointed out by Kaufman Bernads, Romero & Mirabel (2002), a gamma-raymore » microblazar will always have an X-ray counterpart (although it might be relatively weak), whereas X-ray microblazars might have no gamma-ray counterparts.« less

  3. The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies.

    PubMed

    Hawelek, L; Brodka, A; Dore, J C; Honkimaki, V; Burian, A

    2013-11-13

    The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp(3) defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered.

  4. Method to fabricate a tilted logpile photonic crystal

    DOEpatents

    Williams, John D.; Sweatt, William C.

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  5. Stoichiometry of Cd(S,Se) nanocrystals by anomalous small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Ramos, Aline; Lyon, Olivier; Levelut, Claire

    1995-12-01

    In Cd(S,Se)-doped glasses the optical properties are strongly dependent on the size of the nanocrystals, but can be also largely modified by changes in the crystal stoichiometry; however, the information on both stoichiometry and size is difficult to obtain in crystals smaller than 10 nm. The intensity scattered at small angles is classically used to get information about nanoparticles sizes. Moreover the variation of amplitude of this intensity with the energy of the x ray—``the anomalous effect''—near the selenium edge is related to stoichiometry. Anomalous small-angle x-ray scattering has been used as a tentative method to get information about stoichiometry in nanocrystals with size lower than 10 nm. Experiments have been performed on samples treated for 2 days at temperatures in the range 540-650 °C. The samples treated at temperatures above 580 °C contain crystals with size larger than 4 nm. For all these samples the anomalous effect has nearly the same amplitude, and we found the stoichiometry x=0.4 for the CdSxSe1-x nanocrystals. This agrees with the previous results obtained by scanning electron microscopy and Raman spectroscopy. The results are also confirmed by measurements of the position of the optical absorption edge and by wide-angle x-ray scattering experiments. For the sample treated at 560 °C, the nanocrystal size is 3 nm and the stoichiometry x=0.6 is deduced from the anomalous effect. For samples treated at lower temperatures the anomalous effect is not observable, indicating an even lower selenium content in the nanocrystals (x≳0.7). We observed differences in the Se content of nanocrystals for different heat treatments of the same initial glass. These results may be very helpful to interpret the change in the optical properties when the temperature of the treatments decreases in the range 560-590 °C. In this temperature range, compositional effects seem to be of the same order of magnitude as the effects of the quantum confinement.

  6. Grating-based holographic diffraction methods for X-rays and neutrons: phase object approximation and dynamical theory

    DOE PAGES

    Feng, Hao; Ashkar, Rana; Steinke, Nina; ...

    2018-02-01

    A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less

  7. Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering

    PubMed Central

    Anfinrud, Philip

    2010-01-01

    We have developed a time-resolved x-ray scattering diffractometer capable of probing structural dynamics of proteins in solution with 100-ps time resolution. This diffractometer, developed on the ID14B BioCARS (Consortium for Advanced Radiation Sources) beamline at the Advanced Photon Source, records x-ray scattering snapshots over a broad range of q spanning 0.02–2.5 Å-1, thereby providing simultaneous coverage of the small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) regions. To demonstrate its capabilities, we have tracked structural changes in myoglobin as it undergoes a photolysis-induced transition from its carbon monoxy form (MbCO) to its deoxy form (Mb). Though the differences between the MbCO and Mb crystal structures are small (rmsd < 0.2 Å), time-resolved x-ray scattering differences recorded over 8 decades of time from 100 ps to 10 ms are rich in structure, illustrating the sensitivity of this technique. A strong, negative-going feature in the SAXS region appears promptly and corresponds to a sudden > 22 Å3 volume expansion of the protein. The ensuing conformational relaxation causes the protein to contract to a volume ∼2 Å3 larger than MbCO within ∼10 ns. On the timescale for CO escape from the primary docking site, another change in the SAXS/WAXS fingerprint appears, demonstrating sensitivity to the location of the dissociated CO. Global analysis of the SAXS/WAXS patterns recovered time-independent scattering fingerprints for four intermediate states of Mb. These SAXS/WAXS fingerprints provide stringent constraints for putative models of conformational states and structural transitions between them. PMID:20406909

  8. Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering.

    PubMed

    Cho, Hyun Sun; Dashdorj, Naranbaatar; Schotte, Friedrich; Graber, Timothy; Henning, Robert; Anfinrud, Philip

    2010-04-20

    We have developed a time-resolved x-ray scattering diffractometer capable of probing structural dynamics of proteins in solution with 100-ps time resolution. This diffractometer, developed on the ID14B BioCARS (Consortium for Advanced Radiation Sources) beamline at the Advanced Photon Source, records x-ray scattering snapshots over a broad range of q spanning 0.02-2.5 A(-1), thereby providing simultaneous coverage of the small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) regions. To demonstrate its capabilities, we have tracked structural changes in myoglobin as it undergoes a photolysis-induced transition from its carbon monoxy form (MbCO) to its deoxy form (Mb). Though the differences between the MbCO and Mb crystal structures are small (rmsd < 0.2 A), time-resolved x-ray scattering differences recorded over 8 decades of time from 100 ps to 10 ms are rich in structure, illustrating the sensitivity of this technique. A strong, negative-going feature in the SAXS region appears promptly and corresponds to a sudden > 22 A(3) volume expansion of the protein. The ensuing conformational relaxation causes the protein to contract to a volume approximately 2 A(3) larger than MbCO within approximately 10 ns. On the timescale for CO escape from the primary docking site, another change in the SAXS/WAXS fingerprint appears, demonstrating sensitivity to the location of the dissociated CO. Global analysis of the SAXS/WAXS patterns recovered time-independent scattering fingerprints for four intermediate states of Mb. These SAXS/WAXS fingerprints provide stringent constraints for putative models of conformational states and structural transitions between them.

  9. The Discovery of an Evolving Dust Scattered X-ray Halo Around GRB 031203

    NASA Technical Reports Server (NTRS)

    Vaughan, S.; Willingale, R.; OBrien, P. T.; Osborne, J. P.; Reeves, J. N.; Levan, A. J.; Watson, M. G.; Tedds, J. A.; Watson, D.; Santos-Lleo, M.

    2003-01-01

    We report the first detection of a time-dependent, dust-scattered X-ray halo around a gamma-ray burst. GRB3 031203 was observed by XMM-Newton starting six hours after the burst. The halo appeared as concentric ring-like structures centered on the GRB location. The radii of these structures increased with time as t(sup 1/2), consistent with small-angle X-ray scattering caused by a large column of dust along the line of sight to a cosmologically distant GRB. The rings are due to dust concentrated in two distinct slabs in the Galaxy located at distances of 880 and 1390 pc, consistent with known Galactic features. The halo brightness implies an initial soft X-ray pulse consistent with the observed GRB.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Hao; Ashkar, Rana; Steinke, Nina

    A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less

  11. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  12. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    DOE PAGES

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less

  13. A study of X-ray multiple diffraction by means of section topography.

    PubMed

    Kohn, V G; Smirnova, I A

    2015-09-01

    The results of theoretical and experimental study are presented for the question of how the X-ray multiple diffraction in a silicon single crystal influences the interference fringes of section topography for the 400 reflection in the Laue case. Two different cases of multiple diffraction are discovered for zero and very small values of the azimuthal angle for the sample in the form of a plate with the surface normal to the 001 direction. The cases are seen on the same topogram without rotation of the crystal. Accurate computer simulations of the section topogram for the case of X-ray multiple diffraction are performed for the first time. It is shown that the structure of interference fringes on the section topogram in the region of multiple diffraction becomes more complicated. It has a very sharp dependence on the azimuthal angle. The experiment is carried out using a laboratory source under conditions of low resolution over the azimuthal angle. Nevertheless, the characteristic inclination of the interference fringes on the tails of the multiple diffraction region is easily seen. This phenomenon corresponds completely to the computer simulations.

  14. Accounting for observed small angle X-ray scattering profile in the protein-protein docking server ClusPro.

    PubMed

    Xia, Bing; Mamonov, Artem; Leysen, Seppe; Allen, Karen N; Strelkov, Sergei V; Paschalidis, Ioannis Ch; Vajda, Sandor; Kozakov, Dima

    2015-07-30

    The protein-protein docking server ClusPro is used by thousands of laboratories, and models built by the server have been reported in over 300 publications. Although the structures generated by the docking include near-native ones for many proteins, selecting the best model is difficult due to the uncertainty in scoring. Small angle X-ray scattering (SAXS) is an experimental technique for obtaining low resolution structural information in solution. While not sufficient on its own to uniquely predict complex structures, accounting for SAXS data improves the ranking of models and facilitates the identification of the most accurate structure. Although SAXS profiles are currently available only for a small number of complexes, due to its simplicity the method is becoming increasingly popular. Since combining docking with SAXS experiments will provide a viable strategy for fairly high-throughput determination of protein complex structures, the option of using SAXS restraints is added to the ClusPro server. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Imaging method based on attenuation, refraction and ultra-small-angle-scattering of x-rays

    DOEpatents

    Wernick, Miles N.; Chapman, Leroy Dean; Oltulu, Oral; Zhong, Zhong

    2005-09-20

    A method for detecting an image of an object by measuring the intensity at a plurality of positions of a transmitted beam of x-ray radiation emitted from the object as a function of angle within the transmitted beam. The intensity measurements of the transmitted beam are obtained by a crystal analyzer positioned at a plurality of angular positions. The plurality of intensity measurements are used to determine the angular intensity spectrum of the transmitted beam. One or more parameters, such as an attenuation property, a refraction property and a scatter property, can be obtained from the angular intensity spectrum and used to display an image of the object.

  16. X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.

    2012-12-01

    X-ray fluorescence from the surface of airless bodies has been studied since the Apollo X-ray fluorescence experiment mapped parts of the lunar surface in 1971-1972. That experiment used a collimated proportional counter with a resolving power of ~1 and a beam size of ~1degree. Filters separated only Mg, Al and SI lines. We review progress in X-ray detectors and imaging for astrophysics and show how these advances enable much more powerful use of X-ray fluorescence for the study of airless bodies. Astrophysics X-ray instrumentation has developed enormously since 1972. Low noise, high quantum efficiency, X-ray CCDs have flown on ASCA, XMM-Newton, the Chandra X-ray Observatory, Swift and Suzaku, and are the workhorses of X-ray astronomy. They normally span 0.5 to ~8 keV with an energy resolution of ~100 eV. New developments in silicon based detectors, especially individual pixel addressable devices, such as CMOS detectors, can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs mean near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines.such as CMOS detectors, promise advances. X-ray imaging has advanced similarly far. Two types of imager are now available: specular reflection and coded apertures. X-ray mirrors have been flown on the Einstein Observatory, XMM-Newton, Chandra and others. However, as X-ray reflection only occurs at small (~1degree) incidence angles, which then requires long focal lengths (meters), mirrors are not usually practical for planetary missions. Moreover the field of view of X-ray mirrors is comparable to the incident angle, so can only image relatively small regions. More useful are coded-aperture imagers, which have flown on ART-P, Integral, and Swift. The shadow pattern from a 50% full mask allows the distribution of X-rays from a wide (10s of degrees) field of view to be imaged, but uniform emission presents difficulties. A version of a coded-aperture plus CCD detector for airless bodies study is being built for OSIRIS-REx as the student experiment REXIS. We will show the quality of the spectra that can be expected from this class of instrument.

  17. Modular structure of the full-length DNA gyrase B subunit revealed by small-angle X-ray scattering.

    PubMed

    Costenaro, Lionel; Grossmann, J Günter; Ebel, Christine; Maxwell, Anthony

    2007-03-01

    DNA gyrase, the only topoisomerase able to introduce negative supercoils into DNA, is essential for bacterial transcription and replication; absent from humans, it is a successful target for antibacterials. From biophysical experiments in solution, we report a structural model at approximately 12-15 A resolution of the full-length B subunit (GyrB). Analytical ultracentrifugation shows that GyrB is mainly a nonglobular monomer. Ab initio modeling of small-angle X-ray scattering data for GyrB consistently yields a "tadpole"-like envelope. It allows us to propose an organization of GyrB into three domains-ATPase, Toprim, and Tail-based on their crystallographic and modeled structures. Our study reveals the modular organization of GyrB and points out its potential flexibility, needed during the gyrase catalytic cycle. It provides important insights into the supercoiling mechanism by gyrase and suggests new lines of research.

  18. In Situ μGISAXS: II. Thaumatin Crystal Growth Kinetic

    PubMed Central

    Gebhardt, Ronald; Pechkova, Eugenia; Riekel, Christian; Nicolini, Claudio

    2010-01-01

    The formation of thaumatin crystals by Langmuir-Blodgett (LB) film nanotemplates was studied by the hanging-drop technique in a flow-through cell by synchrotron radiation micrograzing-incidence small-angle x-ray scattering. The kinetics of crystallization was measured directly on the interface of the LB film crystallization nanotemplate. The evolution of the micrograzing-incidence small-angle x-ray scattering patterns suggests that the increase in intensity in the Yoneda region is due to protein incorporation into the LB film. The intensity variation suggests several steps, which were modeled by system dynamics based on first-order differential equations. The kinetic data can be described by two processes that take place on the LB film, a first, fast, process, attributed to the crystal growth and its detachment from the LB film, and a second, slower process, attributed to an unordered association and conversion of protein on the LB film. PMID:20713011

  19. Using small angle x-ray scattering to measure the homogeneous nucleation rates of n-propanol, n-butanol, and n-pentanol in supersonic nozzle expansions

    NASA Astrophysics Data System (ADS)

    Ghosh, David; Manka, Alexandra; Strey, Reinhard; Seifert, Soenke; Winans, Randall E.; Wyslouzil, Barbara E.

    2008-09-01

    In our earlier publication [M. Gharibeh et al., J. Chem. Phys. 122, 094512 (2005)] we determined the temperatures and partial pressures corresponding to the maximum nucleation rate for a series n-alcohols (CiH2i+lOH; i =3-5) during condensation in a supersonic nozzle. Although we were able to determine the characteristic time ΔtJmax corresponding to the peak nucleation rate, we were unable to measure the number density of the aerosol and, thus, unable to directly quantify the nucleation rate J. In this paper we report the results of our pioneering small angle x-ray scattering (SAXS) experiments of n-alcohol droplets formed in a supersonic nozzle together with a new series of complementary pressure trace measurements. By combining the SAXS and pressure trace measurement data we determine the nucleation rates as a function of temperature and supersaturation.

  20. An investigation of the effect of processing conditions on the lamellar and spherulitic morphology of polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Xie, Yuping; Akpalu, Yvonne A.

    2007-03-01

    Polyhydroxyalkanoates (PHAs) have recently attracted much interest because of their biodegradability and biocompatibility. Since the ultimate properties of polymers can be controlled by processing conditions, particularly cooling rates, the systematic and thorough understanding of the effects of cooling rates on the final morphology and the resulting mechanical properties of PHAs is necessary and important. In this presentation, the lamellar (tens of nanometers), fibrillar (several hundred nanometers) and spherulitic (˜μm) morphologies of poly (3-hydroxybutyric acid) (PHB) and the copolymer poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) crystallized under different cooling rates were studied using small angle X-ray scattering, ultra small angle X-ray scattering, and polarized optical microscopy, respectively. The morphology was observed to depend strongly on cooling rate. The influence of cooling rate on the morphology and mechanical properties such as toughness, tensile strength and overall stress-strain behavior will be discussed.

  1. Modeling the Hydration Layer around Proteins: Applications to Small- and Wide-Angle X-Ray Scattering

    PubMed Central

    Virtanen, Jouko Juhani; Makowski, Lee; Sosnick, Tobin R.; Freed, Karl F.

    2011-01-01

    Small-/wide-angle x-ray scattering (SWAXS) experiments can aid in determining the structures of proteins and protein complexes, but success requires accurate computational treatment of solvation. We compare two methods by which to calculate SWAXS patterns. The first approach uses all-atom explicit-solvent molecular dynamics (MD) simulations. The second, far less computationally expensive method involves prediction of the hydration density around a protein using our new HyPred solvation model, which is applied without the need for additional MD simulations. The SWAXS patterns obtained from the HyPred model compare well to both experimental data and the patterns predicted by the MD simulations. Both approaches exhibit advantages over existing methods for analyzing SWAXS data. The close correspondence between calculated and observed SWAXS patterns provides strong experimental support for the description of hydration implicit in the HyPred model. PMID:22004761

  2. Small-angle X-Ray analysis of macromolecular structure: the structure of protein NS2 (NEP) in solution

    NASA Astrophysics Data System (ADS)

    Shtykova, E. V.; Bogacheva, E. N.; Dadinova, L. A.; Jeffries, C. M.; Fedorova, N. V.; Golovko, A. O.; Baratova, L. A.; Batishchev, O. V.

    2017-11-01

    A complex structural analysis of nuclear export protein NS2 (NEP) of influenza virus A has been performed using bioinformatics predictive methods and small-angle X-ray scattering data. The behavior of NEP molecules in a solution (their aggregation, oligomerization, and dissociation, depending on the buffer composition) has been investigated. It was shown that stable associates are formed even in a conventional aqueous salt solution at physiological pH value. For the first time we have managed to get NEP dimers in solution, to analyze their structure, and to compare the models obtained using the method of the molecular tectonics with the spatial protein structure predicted by us using the bioinformatics methods. The results of the study provide a new insight into the structural features of nuclear export protein NS2 (NEP) of the influenza virus A, which is very important for viral infection development.

  3. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.

    2009-03-15

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that largemore » particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.« less

  4. Note: Comparison of grazing incidence small angle x-ray scattering of a titania sponge structure at the beamlines BW4 (DORIS III) and P03 (PETRA III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawolle, M.; Koerstgens, V.; Ruderer, M. A.

    2012-10-15

    Grazing incidence small angle x-ray scattering (GISAXS) is a powerful technique for morphology investigation of nanostructured thin films. GISAXS measurements at the newly installed P03 beamline at the storage ring PETRA III in Hamburg, Germany, are compared to the GISAXS data from the beamline BW4 at the storage ring DORIS III, which had been used extensively for GISAXS investigations in the past. As an example, a titania thin film sponge structure is investigated. Compared to BW4, at beamline P03 the resolution of larger structures is slightly improved and a higher incident flux leads to a factor of 750 in scatteredmore » intensity. Therefore, the acquisition time in GISAXS geometry is reduced significantly at beamline P03.« less

  5. Characterization of Protein Flexibility Using Small-Angle X-Ray Scattering and Amplified Collective Motion Simulations

    PubMed Central

    Wen, Bin; Peng, Junhui; Zuo, Xiaobing; Gong, Qingguo; Zhang, Zhiyong

    2014-01-01

    Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins, bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore, conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations. PMID:25140431

  6. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlak, Steffen M.; Bruetzel, Linda K.; Lipfert, Jan

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ 2(q) = [I(q) + const.]/(kq), whereI(q) is the scattering intensity as a function of the momentum transferq;kand const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurementmore » errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.« less

  7. The applications of small-angle X-ray scattering in studying nano-scaled polyoxometalate clusters in solutions

    NASA Astrophysics Data System (ADS)

    Li, Mu; Zhang, Mingxin; Wang, Weiyu; Cheng, Stephen Z. D.; Yin, Panchao

    2018-05-01

    Nano-scaled polyoxometalates (POMs) clusters with sizes ranging from 1 to 10 nm attract tremendous attention and have been extensively studied due to POMs' fascinating structural characteristics and prospects for wide-ranging applications. As a unique class of nanoparticles with well-defined structural topologies and monodispersed masses, the structures and properties of POMs in both bulk state and solutions have been explored with several well-developed protocols. Small-angle X-ray scattering (SAXS) technique, as a powerful tool for studying polymers and nanoparticles, has been recently extended to the investigating of solution behaviors of POMs. In this mini-review, the general principle and typical experimental procedures of SAXS are illustrated first. The applications of SAXS in characterizing POMs' morphology, counterion distribution around POMs, and short-range interactions among POMs in solutions are highlighted. [Figure not available: see fulltext.

  8. Small-angle X-ray scattering tensor tomography: model of the three-dimensional reciprocal-space map, reconstruction algorithm and angular sampling requirements.

    PubMed

    Liebi, Marianne; Georgiadis, Marios; Kohlbrecher, Joachim; Holler, Mirko; Raabe, Jörg; Usov, Ivan; Menzel, Andreas; Schneider, Philipp; Bunk, Oliver; Guizar-Sicairos, Manuel

    2018-01-01

    Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data. The method enables the determination of nanostructure orientation and degree of orientation as demonstrated previously in a single momentum transfer q range. This article presents a reconstruction of the complete reciprocal-space map for the case of bone over extended ranges of q. In addition, it is shown that uniform angular sampling and advanced regularization strategies help to reduce the amount of data required.

  9. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    DOE PAGES

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; ...

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  10. Silicon saw-tooth refractive lens for high-energy x-rays made using a diamond saw.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Said, A. H.; Shastri, S. D.; X-Ray Science Division

    2010-01-01

    Silicon is a material well suited for refractive lenses operating at high X-ray energies (>50 keV), particularly if implemented in a single-crystal form to minimize small-angle scattering. A single-crystal silicon saw-tooth refractive lens, fabricated by a dicing process using a thin diamond wheel, was tested with 115 keV X-rays, giving an ideal 17 {mu}m line focus width in a long focal length, 2:1 ratio demagnification geometry, with a source-to-focus distance of 58.5 m. The fabrication is simple, using resources typically available at any synchrotron facility's optics shop.

  11. X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy

    NASA Technical Reports Server (NTRS)

    Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.

    2010-01-01

    A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.

  12. From a structural average to the conformational ensemble of a DNA bulge

    PubMed Central

    Shi, Xuesong; Beauchamp, Kyle A.; Harbury, Pehr B.; Herschlag, Daniel

    2014-01-01

    Direct experimental measurements of conformational ensembles are critical for understanding macromolecular function, but traditional biophysical methods do not directly report the solution ensemble of a macromolecule. Small-angle X-ray scattering interferometry has the potential to overcome this limitation by providing the instantaneous distance distribution between pairs of gold-nanocrystal probes conjugated to a macromolecule in solution. Our X-ray interferometry experiments reveal an increasing bend angle of DNA duplexes with bulges of one, three, and five adenosine residues, consistent with previous FRET measurements, and further reveal an increasingly broad conformational ensemble with increasing bulge length. The distance distributions for the AAA bulge duplex (3A-DNA) with six different Au-Au pairs provide strong evidence against a simple elastic model in which fluctuations occur about a single conformational state. Instead, the measured distance distributions suggest a 3A-DNA ensemble with multiple conformational states predominantly across a region of conformational space with bend angles between 24 and 85 degrees and characteristic bend directions and helical twists and displacements. Additional X-ray interferometry experiments revealed perturbations to the ensemble from changes in ionic conditions and the bulge sequence, effects that can be understood in terms of electrostatic and stacking contributions to the ensemble and that demonstrate the sensitivity of X-ray interferometry. Combining X-ray interferometry ensemble data with molecular dynamics simulations gave atomic-level models of representative conformational states and of the molecular interactions that may shape the ensemble, and fluorescence measurements with 2-aminopurine-substituted 3A-DNA provided initial tests of these atomistic models. More generally, X-ray interferometry will provide powerful benchmarks for testing and developing computational methods. PMID:24706812

  13. Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo

    Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less

  14. Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

    DOE PAGES

    Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo; ...

    2017-03-16

    Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less

  15. Microstructure evolution, thermal stability and fractal behavior of water vapor flow assisted in situ growth poly(vinylcarbazole)-titania quantum dots nanocomposites

    NASA Astrophysics Data System (ADS)

    Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Mombrú, Alvaro W.

    2017-12-01

    Here, we report a novel strategy for the preparation of TiO2 quantum dots fillers prepared from alkoxide precursor via in situ water vapor flow diffusion into poly(N-vinylcarbazole) host. A detailed characterization by means of infrared and Raman spectroscopy, X-ray powder diffraction, small angle X-ray scattering and differential scanning calorimetry is reported. The growth mechanism of both crystallites and particles was mostly governed by the classical coarsening reaction limited growth and the polymer host showed no detectable chemical modifications at the interface or active participation in the growing process. The main relevance of our strategy respect to the typical sol-gel growth in solution is the possibility of the interruption of the reaction by simple stopping the water vapor flow diffusion into the polymer host thus achieving good control in the nanoparticles size. The thermal stability and fractal behavior of our nanocomposites were also studied by differential scanning calorimetry and in situ small angle X-ray scattering versus temperature. Strong correlations between modifications in the fractal behavior and glass transition or fusion processes were observed for these nanocomposites.

  16. Study of particle evolution from Composition B-3 detonation by time-resolved small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Huber, R.; Podlesak, D.; Dattelbaum, D.; Firestone, M.; Gustavsen, R.; Jensen, B.; Ringstrand, B.; Watkins, E.; Bagge-Hansen, M.; Hodgin, R.; Lauderbach, L.; Willey, T.; van Buuren, T.; Graber, T.; Rigg, P.; Sinclair, N.; Seifert, S.

    2017-06-01

    High explosive (HE) detonations produce an assortment of gases (CO, CO2, N2) and solid carbon products (nanodiamond, graphite). The evolution of solid carbon particles, within the chemical reaction zone, help to propel the detonation wave forward. Due to the violent nature and short reaction times during HE detonations, experimental observation are limited. Through time-resolved small angle x-ray scattering (TRSAXS) we are able to observed nanocarbon formation on nanosecond time scales. This TRSAXS setup is the first of its kind in the United States at Argonne National Laboratory at the Advanced Photon Source in the Dynamic Compression Sector. From the empirical and analytical analysis of the x-ray scattering of an in-line detonation we are able to temporally follow morphology and size. Two detonation geometries were studied for the HE Comp B-3 (40% TNT/60% RDX), producing steady and overdriven conditions. Steady wave particle evolution plateaued by 2 microseconds, where overdriven condition particle size decreases at the collision of the two shock fronts then plateaus. Post detonation soot is also analyzed to confirm size and shape of nanocarbon formation from Comp B-3 detonations. LA-UR-17-21443.

  17. Experimental set-up for time resolved small angle X-ray scattering studies of nanoparticles formation using a free-jet micromixer

    NASA Astrophysics Data System (ADS)

    Marmiroli, Benedetta; Grenci, Gianluca; Cacho-Nerin, Fernando; Sartori, Barbara; Laggner, Peter; Businaro, Luca; Amenitsch, Heinz

    2010-02-01

    Recently, we have designed, fabricated and tested a free-jet micromixer for time resolved small angle X-ray scattering (SAXS) studies of nanoparticles formation in the <100 μs time range. The microjet has a diameter of 25 μm and a time of first accessible measurement of 75 μs has been obtained. This result can still be improved. In this communication, we present a method to estimate whether a given chemical or biological reaction can be investigated with the micromixer, and to optimize the beam size for the measurement at the chosen SAXS beamline. Moreover, we describe a system based on stereoscopic imaging which allows the alignment of the jet with the X-ray beam with a precision of 20 μm. The proposed experimental procedures have been successfully employed to observe the formation of calcium carbonate (CaCO 3) nanoparticles from the reaction of sodium carbonate (Na 2CO 3) and calcium chloride (CaCl 2). The induction time has been estimated in the order of 200 μs and the determined radius of the particles is about 14 nm.

  18. Conformational analysis of the Streptococcus pneumoniae hyaluronate lyase and characterization of its hyaluronan-specific carbohydrate-binding module.

    PubMed

    Suits, Michael D L; Pluvinage, Benjamin; Law, Adrienne; Liu, Yan; Palma, Angelina S; Chai, Wengang; Feizi, Ten; Boraston, Alisdair B

    2014-09-26

    For a subset of pathogenic microorganisms, including Streptococcus pneumoniae, the recognition and degradation of host hyaluronan contributes to bacterial spreading through the extracellular matrix and enhancing access to host cell surfaces. The hyaluronate lyase (Hyl) presented on the surface of S. pneumoniae performs this role. Using glycan microarray screening, affinity electrophoresis, and isothermal titration calorimetry we show that the N-terminal module of Hyl is a hyaluronan-specific carbohydrate-binding module (CBM) and the founding member of CBM family 70. The 1.2 Å resolution x-ray crystal structure of CBM70 revealed it to have a β-sandwich fold, similar to other CBMs. The electrostatic properties of the binding site, which was identified by site-directed mutagenesis, are distinct from other CBMs and complementary to its acidic ligand, hyaluronan. Dynamic light scattering and solution small angle x-ray scattering revealed the full-length Hyl protein to exist as a monomer/dimer mixture in solution. Through a detailed analysis of the small angle x-ray scattering data, we report the pseudoatomic solution structures of the monomer and dimer forms of the full-length multimodular Hyl. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    NASA Astrophysics Data System (ADS)

    Shiryaev, A. A.; Voloshchuk, A. M.; Volkov, V. V.; Averin, A. A.; Artamonova, S. D.

    2017-05-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with SBET values obtained from N2 adsorption.

  20. Micellar Surfactant Association in the Presence of a Glucoside-based Amphiphile Detected via High-Throughput Small Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanic, Vesna; Broadbent, Charlotte; DiMasi, Elaine

    2016-11-14

    The interactions of mixtures of anionic and amphoteric surfactants with sugar amphiphiles were studied via high throughput small angle x-ray scattering (SAXS). The sugar amphiphile was composed of Caprate, Caprylate, and Oleate mixed ester of methyl glucoside, MeGCCO. Optimal surfactant interactions are sought which have desirable physical properties, which must be identified in a cost effective manner that can access the large phase space of possible molecular combinations. X-ray scattering patterns obtained via high throughput SAXS can probe a combinatorial sample space and reveal the incorporation of MeGCCO into the micelles and the molecular associations between surfactant molecules. Such datamore » make it possible to efficiently assess the effects of the new amphiphiles in the formulation. A specific finding of this study is that formulations containing comparatively monodisperse and homogeneous surfactant mixtures can be reliably tuned by addition of NaCl, which swells the surfactant micelles with a monotonic dependence on salt concentration. In contrast, the presence of multiple different surfactants destroys clear correlations with NaCl concentration, even in otherwise similar series of formulations.« less

  1. Changes in small angle X-ray scattering parameters observed upon ligand binding to rabbit muscle pyruvate kinase are not correlated with allosteric transitions†

    PubMed Central

    Fenton, Aron W.; Williams, Rachel; Trewhella, Jill

    2010-01-01

    Protein fluorescence and small-angle X-ray scattering (SAXS) have been used to monitor effector affinity and conformational changes previously associated with allosteric regulation in rabbit muscle pyruvate kinase (M1-PYK). In the absence of substrate (phosphoenolpyruvate; PEP), SAXS-monitored conformational changes in M1-PYK elicited by the binding of phenylalanine (an allosteric inhibitor that reduces the affinity of M1-PYK for PEP) are similar to those observed upon binding of alanine or 2-aminobutyric acid. Under the current assay conditions, these small amino acids bind to the protein, but elicit a minimal change in the affinity of the protein for PEP. Therefore, if changes in scattering signatures represent cleft closure via domain rotation as previously interpreted, it can be concluded that these motions are not sufficient to elicit allosteric inhibition. Additionally, although PEP has similar affinities for the free enzyme and the M1-PYK/small-amino-acid complexes (i.e. the small amino acids have minimal allosteric effects), PEP binding elicits different changes in the SAXS signature of the free enzyme vs. the M1-PYK/small-amino-acid complexes. PMID:20712377

  2. An improved hydrothermal diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Li, Jiankang; Bassett, W. A.; Chou, I.-Ming; Ding, Xin; Li, Shenghu; Wang, Xinyan

    2016-05-01

    A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces. The HDAC-VT having three driver screws offers the advantage of greater control and stability even though it sacrifices some of the size of solid angle. The greater control allows better sealing of samples, while greater stability results in longer survival for anvils and ceramic parts. This improved design retains several beneficial features of the original HDAC-V as well. These include the small collar that surrounds the heater and sample chamber forming an Ar + H2 gas chamber to protect diamonds and their heating parts from being oxidized. Three linear ball bearings, when used, fit to the three posts prevent seizing that can result from deterioration of lubricant at high temperatures. Positioning the posts and bearings outside of the gas chamber as in HDAC-V also prevents seizing and possible deformation due to overheating. In order to control the heating rate precisely with computer software, we use Linkam T95 and have replaced the Linkam 1400XY heating stage with the HDAC-VT allowing the HDAC to be heated to 950 °C at a rate from 0.01 °C/min to 50 °C/min. We have used the HDAC-VT and Linkam T95 to observe in situ nucleation and growth of zabuyelite in aqueous fluid and to homogenize melt inclusions in quartz from three porphyry deposits in Shanxi, China.

  3. Grazing-incidence small-angle X-ray scattering (GISAXS) on small periodic targets using large beams

    PubMed Central

    Soltwisch, Victor; Probst, Jürgen; Scholze, Frank; Krumrey, Michael

    2017-01-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nano­structured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all litho­graphically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications, e.g. for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint. PMID:28875030

  4. Grazing-incidence small-angle X-ray scattering (GISAXS) on small periodic targets using large beams.

    PubMed

    Pflüger, Mika; Soltwisch, Victor; Probst, Jürgen; Scholze, Frank; Krumrey, Michael

    2017-07-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nano-structured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all litho-graphically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications, e.g.  for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint.

  5. Suzaku View of the Swift/BAT Active Galactic Nuclei (I): Spectral Analysis of Six AGNs and Evidence for Two Types of Obscured Population

    NASA Technical Reports Server (NTRS)

    Eguchi, Satoshi; Ueda, Yoshihiro; Terashima, Yuichi; Mushotzky, Richard F.; Tueller, Jack

    2009-01-01

    We present a systematic spectral analysis with Suzaku of six AGNs detected in the Swift/BAT hard X-ray (15-200 keV) survey, Swift J0138.6-4001, J0255.2-0011, J0350.1-5019, J0505.7-2348, J0601.9-8636, and J1628.1-5145. This is considered to be a representative sample of new AGNs without X-ray spectral information before the BAT survey. We find that the 0.5-200 keV spectra of these sources can be uniformly fit with a base model consisting of heavily absorbed (log NH >23.5/sq cm) transmitted components, scattered lights, a reflection component, and an iron-K emission line. There are two distinct groups, three "new type" AGNs (including the two sources reported by Ueda et al. 2007) with an extremely small scattered fraction (f(sub scat) < 0:5%) and strong reflection component (R = omega/2pi > or equal to 0.8 where omega is the solid angle of the reflector), and three "classical type" ones with f(sub scat > 0.5% and R < or approx. 0.8. The spectral parameters suggest that the new type has an optically thick torus for Thomson scattering (N(sub H) approx. 10(exp 25)/sq cm) with a small opening angle theta approx. 20deg viewed in a rather face-on geometry, while the classical type has a thin torus (N(sub H) approx. 10(exp 23-24)/sq cm) with theta > or approx. 30deg. We infer that a significant number of new type AGNs with an edge-on view is missing in the current all-sky hard X-ray surveys. Subject headings: galaxies: active . gamma rays: observations . X-rays: galaxies . X-rays: general

  6. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A.; Chabior, M.; Zanette, I.

    2014-10-15

    Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between amore » monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.« less

  7. Hard X-ray dosimetry of a plasma focus suitable for industrial radiography

    NASA Astrophysics Data System (ADS)

    Knoblauch, P.; Raspa, V.; Di Lorenzo, F.; Clausse, A.; Moreno, C.

    2018-04-01

    Dosimetric measurements of the hard X-ray emission by a small-chamber 4.7 kJ Mather-type plasma focus device capable of producing neat radiographs of metallic objects, were carried out with a set of thermoluminescent detectors TLD 700 (LiF:Mg,Ti). Measurements of the hard X-ray dose dependence with the angular position relative to the electrodes axis, are presented. The source-detector distance was changed in the range from 50 to 100 cm, and the angular positions were explored between ± 70°, relative to the symmetry axis of the electrodes. On-axis measurements show that the X-ray intensity is uniform within a half aperture angle of 6°, in which the source delivers an average dose of (1.5 ± 0.1) mGy/sr per shot. Monte Carlo calculations suggest that the energy of the electron beam responsible for the X-ray emission ranges 100-600 keV.

  8. Asymmetric masks for laboratory-based X-ray phase-contrast imaging with edge illumination.

    PubMed

    Endrizzi, Marco; Astolfo, Alberto; Vittoria, Fabio A; Millard, Thomas P; Olivo, Alessandro

    2016-05-05

    We report on an asymmetric mask concept that enables X-ray phase-contrast imaging without requiring any movement in the system during data acquisition. The method is compatible with laboratory equipment, namely a commercial detector and a rotating anode tube. The only motion required is that of the object under investigation which is scanned through the imaging system. Two proof-of-principle optical elements were designed, fabricated and experimentally tested. Quantitative measurements on samples of known shape and composition were compared to theory with good agreement. The method is capable of measuring the attenuation, refraction and (ultra-small-angle) X-ray scattering, does not have coherence requirements and naturally adapts to all those situations in which the X-ray image is obtained by scanning a sample through the imaging system.

  9. Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya; Travesset, Alex; Vaknin, David

    2017-12-01

    In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol-capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs2SO4 ) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. By taking advantage of element specificity with the GIXFS method, we find that the cation Cs+ concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film compared with that in the bulk.

  10. Ab initio studies of ultrafast x-ray scattering of the photodissociation of iodine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnarova, Andrea; Techert, Simone; Schmatz, Stefan

    2010-09-28

    We computationally examine various aspects of the reaction dynamics of the photodissociation and recombination of molecular iodine. We use our recently proposed formalism to calculate time-dependent x-ray scattering signal changes from first principles. Different aspects of the dynamics of this prototypical reaction are studied, such as coherent and noncoherent processes, features of structural relaxation that are periodic in time versus nonperiodic dissociative processes, as well as small electron density changes caused by electronic excitation, all with respect to x-ray scattering. We can demonstrate that wide-angle x-ray scattering offers a possibility to study the changes in electron densities in nonperiodic systems,more » which render it a suitable technique for the investigation of chemical reactions from a structural dynamics point of view.« less

  11. A potential for overestimating the absolute magnitudes of second virial coefficients by small-angle X-ray scattering.

    PubMed

    Scott, David J; Patel, Trushar R; Winzor, Donald J

    2013-04-15

    Theoretical consideration is given to the effect of cosolutes (including buffer and electrolyte components) on the determination of second virial coefficients for proteins by small-angle X-ray scattering (SAXS)-a factor overlooked in current analyses in terms of expressions for a two-component system. A potential deficiency of existing practices is illustrated by reassessment of published results on the effect of polyethylene glycol concentration on the second virial coefficient for urate oxidase. This error reflects the substitution of I(0,c3,0), the scattering intensity in the limit of zero scattering angle and solute concentration, for I(0,0,0), the corresponding parameter in the limit of zero cosolute concentration (c3) as well. Published static light scattering results on the dependence of the apparent molecular weight of ovalbumin on buffer concentration are extrapolated to zero concentration to obtain the true value (M2) and thereby establish the feasibility of obtaining the analogous SAXS parameter, I(0,0,0), experimentally. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. The Small-Angle Neutron Scattering Data Analysis of the Phospholipid Transport Nanosystem Structure

    NASA Astrophysics Data System (ADS)

    Zemlyanaya, E. V.; Kiselev, M. A.; Zhabitskaya, E. I.; Aksenov, V. L.; Ipatova, O. M.; Ivankov, O. I.

    2018-05-01

    The small-angle neutron scattering technique (SANS) is employed for investigation of structure of the phospholipid transport nanosystem (PTNS) elaborated in the V.N.Orekhovich Institute of Biomedical Chemistry (Moscow, Russia). The SANS spectra have been measured at the YuMO small-angle spectrometer of IBR-2 reactor (Joint Institute of Nuclear Research, Dubna, Russia). Basic characteristics of polydispersed population of PTNS unilamellar vesicles (average radius of vesicles, polydispersity, thickness of membrane, etc.) have been determined in three cases of the PTNS concentrations in D2O: 5%, 10%, and 25%. Numerical analysis is based on the separated form factors method (SFF). The results are discussed in comparison with the results of analysis of the small-angle X-ray scattering spectra collected at the Kurchatov Synchrotron Radiation Source of the National Research Center “Kurchatov Institute” (Moscow, Russia).

  13. Performance of the PRAXyS X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Iwakiri, W. B.; Black, J. K.; Cole, R.; Enoto, T.; Hayato, A.; Hill, J. E.; Jahoda, Keith M.; Kaaret, P.; Kitaguchi, T.; Kubota, M.

    2016-01-01

    The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2-10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.

  14. Performance of the PRAXyS X-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Iwakiri, W. B.; Black, J. K.; Cole, R.; Enoto, T.; Hayato, A.; Hill, J. E.; Jahoda, K.; Kaaret, P.; Kitaguchi, T.; Kubota, M.; Marlowe, H.; McCurdy, R.; Takeuchi, Y.; Tamagawa, T.

    2016-12-01

    The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2-10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.

  15. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2012-12-01

    The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.

  16. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    PubMed

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. © IMechE 2015.

  17. High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage

    DTIC Science & Technology

    2012-08-28

    diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with

  18. Characterization of biogenic ferrihydrite nanoparticles by means of SAXS, SRD and IBA methods

    NASA Astrophysics Data System (ADS)

    Balasoiu, M.; Kichanov, S.; Pantelica, A.; Pantelica, D.; Stolyar, S.; Iskhakov, R.; Aranghel, D.; Ionescu, P.; Badita, C. R.; Kurkin, S.; Orelovich, O.; Tiutiunikov, S.

    2018-03-01

    Investigations of biogenic ferrihydrite nanoparticles produced by bacteria Klebsiella oxytoca by applying small angle X-ray scattering, synchrotron radiation diffraction and ion beam analysis methods are reviewed. Different experimental data processing methods are used and analyzed.

  19. Improving small-angle X-ray scattering data for structural analyses of the RNA world

    PubMed Central

    Rambo, Robert P.; Tainer, John A.

    2010-01-01

    Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNAval, and yeast tRNAphe that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways. PMID:20106957

  20. Surface morphology of vacuum-evaporated pentacene film on Si substrate studied by in situ grazing-incidence small-angle X-ray scattering: I. The initial stage of formation of pentacene film

    NASA Astrophysics Data System (ADS)

    Hirosawa, Ichiro; Watanabe, Takeshi; Koganezawa, Tomoyuki; Kikuchi, Mamoru; Yoshimoto, Noriyuki

    2018-03-01

    The progress of the surface morphology of a growing sub-monolayered pentacene film on a Si substrate was studied by in situ grazing-incidence small angle X-ray scattering (GISAXS). The observed GISAXS profiles did not show sizes of pentacene islands but mainly protuberances on the boundaries around pentacene film. Scattering of X-ray by residual pits in the pentacene film was also detected in the GISAXS profiles of an almost fully covered film. The average radius of pentacene protuberances increased from 13 to 24 nm as the coverage increased to 0.83 monolayer, and the most frequent radius was almost constant at approximately 9 nm. This result suggests that the population of larger protuberances increase with increasing lengths of boundaries of the pentacene film. It can also be considered that the detected protuberances were crystallites of pentacene, since the average size of protuberances was nearly equal to crystallite sizes of pentacene films. The almost constant characteristic distance of 610 nm and amplitudes of pair correlation functions at low coverages suggest that the growth of pentacene films obeyed the diffusion-limited aggregation (DLA) model, as previously reported. It is also considered that the sites of islands show a triangular distribution for small variations of estimated correlation distances.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco

    HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less

  2. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaway, Sarang M.; Qiang, Zhe; Xia, Yanfeng

    Emergent lithium-ion (Li +) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li +, but in many cases these nanostructures evolve during electrochemical charging–discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporousmore » NiCo 2O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge–discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Anodes with larger ordered mesopores (17–28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. Furthermore, this preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; but, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge–discharge cycles leads to capacity decay in battery performance. We translate these multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge–discharge cycles.« less

  3. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes

    DOE PAGES

    Bhaway, Sarang M.; Qiang, Zhe; Xia, Yanfeng; ...

    2017-02-07

    Emergent lithium-ion (Li +) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li +, but in many cases these nanostructures evolve during electrochemical charging–discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporousmore » NiCo 2O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge–discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Anodes with larger ordered mesopores (17–28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. Furthermore, this preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; but, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge–discharge cycles leads to capacity decay in battery performance. We translate these multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge–discharge cycles.« less

  4. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes.

    PubMed

    Bhaway, Sarang M; Qiang, Zhe; Xia, Yanfeng; Xia, Xuhui; Lee, Byeongdu; Yager, Kevin G; Zhang, Lihua; Kisslinger, Kim; Chen, Yu-Ming; Liu, Kewei; Zhu, Yu; Vogt, Bryan D

    2017-02-28

    Emergent lithium-ion (Li + ) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li + , but in many cases these nanostructures evolve during electrochemical charging-discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporous NiCo 2 O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge-discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Conversely, anodes with larger ordered mesopores (17-28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. This preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; however, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge-discharge cycles leads to capacity decay in battery performance. These multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) are translated to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge-discharge cycles.

  5. Healing X-ray scattering images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiliang; Lhermitte, Julien; Tian, Ye

    X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. Here, we present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structuresmore » present in the image, including the identification of diffuseversussharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS) data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.« less

  6. Healing X-ray scattering images

    DOE PAGES

    Liu, Jiliang; Lhermitte, Julien; Tian, Ye; ...

    2017-05-24

    X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. Here, we present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structuresmore » present in the image, including the identification of diffuseversussharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS) data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.« less

  7. Performance verification of the Gravity and Extreme Magnetism Small explorer (GEMS) x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kaneko, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; Marlowe, Hannah; Griffiths, Scott; Kaaret, Philip E.; Kenward, David; Khalid, Syed

    2014-07-01

    Polarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor >=35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, ~20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  8. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors.

    PubMed

    Russ, M; Shankar, A; Setlur Nagesh, S V; Ionita, C N; Bednarek, D R; Rudin, S

    2017-02-11

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  9. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  10. X-ray measurements of the strain and shape of dielectric/metallic wrap-gated InAs nanowires

    NASA Astrophysics Data System (ADS)

    Eymery, J.; Favre-Nicolin, V.; Fröberg, L.; Samuelson, L.

    2009-03-01

    Wrap-gate (111) InAs nanowires (NWs) were studied after HfO2 dielectric coating and Cr metallic deposition by a combination of grazing incidence x-ray techniques. In-plane and out-of-plane x-ray diffraction (crystal truncation rod analysis) allow determining the strain tensor. The longitudinal contraction, increasing with HfO2 and Cr deposition, is significantly larger than the radial dilatation. For the Cr coating, the contraction along the growth axis is quite large (-0.95%), and the longitudinal/radial deformation ratio is >10, which may play a role on the NW transport properties. Small angle x-ray scattering shows a smoothening of the initial hexagonal bare InAs NW shape and gives the respective core/shell thicknesses, which are compared to flat surface values.

  11. Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya

    In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol–capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs 2SO 4) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. In conclusion, by taking advantage of element specificity with the GIXFS method, we find that the cation Cs + concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film comparedmore » with that in the bulk.« less

  12. Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces

    DOE PAGES

    Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya; ...

    2017-12-14

    In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol–capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs 2SO 4) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. In conclusion, by taking advantage of element specificity with the GIXFS method, we find that the cation Cs + concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film comparedmore » with that in the bulk.« less

  13. Effects of macromolecular crowding on the structure of a protein complex: A small-angle scattering study of superoxide dismutase

    DOE PAGES

    Rajapaksha, Ajith; Stanley, Christopher B.; Todd, Brian A.

    2015-02-17

    Macromolecular crowding can alter the structure and function of biological macromolecules. We used small angle scattering (SAS) to measure the change in size of a protein complex, superoxide dismutase (SOD), induced by macromolecular crowding. Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl- -glucoside ( -MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%.more » Considering the osmotic pressure due to PEG, this deformation corresponds to a highly compressible structure. SAXS done in the presence of TEG suggests that for further deformation beyond a 9% decrease in volume the resistance to deformation may increase dramatically.« less

  14. Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method

    PubMed Central

    Bender, P.; Bogart, L. K.; Posth, O.; Szczerba, W.; Rogers, S. E.; Castro, A.; Nilsson, L.; Zeng, L. J.; Sugunan, A.; Sommertune, J.; Fornara, A.; González-Alonso, D.; Barquín, L. Fernández; Johansson, C.

    2017-01-01

    The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions. PMID:28397851

  15. Structure and dynamics of water in nonionic reverse micelles: a combined time-resolved infrared and small angle x-ray scattering study.

    PubMed

    van der Loop, Tibert H; Panman, Matthijs R; Lotze, Stephan; Zhang, Jing; Vad, Thomas; Bakker, Huib J; Sager, Wiebke F C; Woutersen, Sander

    2012-07-28

    We study the structure and reorientation dynamics of nanometer-sized water droplets inside nonionic reverse micelles (water/Igepal-CO-520/cyclohexane) with time-resolved mid-infrared pump-probe spectroscopy and small angle x-ray scattering. In the time-resolved experiments, we probe the vibrational and orientational dynamics of the O-D bonds of dilute HDO:H(2)O mixtures in Igepal reverse micelles as a function of temperature and micelle size. We find that even small micelles contain a large fraction of water that reorients at the same rate as water in the bulk, which indicates that the polyethylene oxide chains of the surfactant do not penetrate into the water volume. We also observe that the confinement affects the reorientation dynamics of only the first hydration layer. From the temperature dependent surface-water dynamics, we estimate an activation enthalpy for reorientation of 45 ± 9 kJ mol(-1) (11 ± 2 kcal mol(-1)), which is close to the activation energy of the reorientation of water molecules in ice.

  16. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizesmore » of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.« less

  17. Study on Iron Distribution and Electrical Activities at Grain Boundaries in Polycrystalline Silicon Substrate for Solar Cells

    NASA Astrophysics Data System (ADS)

    Arafune, Koji; Ohishi, Eichiro; Sai, Hitoshi; Terada, Yasuko; Ohshita, Yoshio; Yamaguchi, Masafumi

    2006-08-01

    To clarify the role of grain boundaries in iron sinks and carrier recombination centers, iron distributions and their chemical states were studied before and after gettering. They were measured by the X-ray microprobe fluorescence and the X-ray absorption in the near-edge structure using the beamline 37XU at the SPring-8 third-generation synchrotron facility. To determine the crystallographic orientation of the grain boundaries, electron backscatter diffraction measurements were performed. The distribution of electric active defects was characterized by electron-beam-induced current measurements. Before gettering, the iron was distributed in the small grain and its chemical state was similar to that of iron oxide. After gettering, the iron was redistributed along the small angle grain boundary, and its chemical state was similar to the iron silicide complexed with the iron oxide. Regarding the electrical activity, high carrier recombination was observed along the small-angle grain boundary. On the contrary, Σ 3 grain boundaries were relatively weak impurity sinks and showed low recombination activity.

  18. Selective molecular annealing: in situ small angle X-ray scattering study of microwave-assisted annealing of block copolymers.

    PubMed

    Toolan, Daniel T W; Adlington, Kevin; Isakova, Anna; Kalamiotis, Alexis; Mokarian-Tabari, Parvaneh; Dimitrakis, Georgios; Dodds, Christopher; Arnold, Thomas; Terrill, Nick J; Bras, Wim; Hermida Merino, Daniel; Topham, Paul D; Irvine, Derek J; Howse, Jonathan R

    2017-08-09

    Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≥6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies.

  19. Development of variable-magnification X-ray Bragg optics.

    PubMed

    Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi

    2015-07-01

    A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.

  20. Crystal Structures and Small-angle X-ray Scattering Analysis of UDP-galactopyranose Mutase from the Pathogenic Fungus Aspergillus fumigatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle

    2015-10-15

    UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM hasmore » several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 {angstrom} to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Levine, Lyle E.; Allen, Andrew J.

    The precipitate structure and precipitation kinetics in an Al-Cu-Mg alloy (AA2024) aged at 190 °C, 208 °C, and 226 °C have been studied using ex situ Transmission Electron Microscopy (TEM) and in situ synchrotron-based, combined ultra-small angle X-ray scattering, small angle X-ray scattering (SAXS), and wide angle X-ray scattering (WAXS) across a length scale from sub-Angstrom to several micrometers. TEM brings information concerning the nature, morphology, and size of the precipitates while SAXS and WAXS provide qualitative and quantitative information concerning the time-dependent size and volume fraction evolution of the precipitates at different stages of the precipitation sequence. Within themore » experimental time resolution, precipitation at these ageing temperatures involves dissolution of nanometer-sized small clusters and formation of the planar S phase precipitates. Using a three-parameter scattering model constructed on the basis of TEM results, we established the temperature-dependent kinetics for the cluster-dissolution and S-phase formation processes simultaneously. These two processes are shown to have different kinetic rates, with the cluster-dissolution rate approximately double the S-phase formation rate. We identified a dissolution activation energy at (149.5 ± 14.6) kJ mol-1, which translates to (1.55 ± 0.15) eV/atom, as well as an activation energy for the formation of S precipitates at (129.2 ± 5.4) kJ mol-1, i.e. (1.33 ± 0.06) eV/atom. Importantly, the SAXS/WAXS results show the absence of an intermediate Guinier-Preston Bagaryatsky 2 (GPB2)/S" phase in the samples under the experimental ageing conditions. These results are further validated by precipitation simulations that are based on Langer-Schwartz theory and a Kampmann-Wagner numerical method.« less

  2. Structure of the Circumnuclear Region of Seyfert 2 Galaxies Revealed by RXTE Hard X-Ray Observations of NGC 4945

    NASA Technical Reports Server (NTRS)

    Madejski, G.; Zycki, P.; Done, C.; Valinia, A.; Blanco, P.; Rothschild, R.; Turek, B.

    2000-01-01

    NGC 4945 is one of the brightest Se.yfert galaxies on the sky at 100 keV, but is completely absorbed below 10 keV, implying an optical depth of the absorber to electron scattering of a few; its absorption column is probably the largest which still allows a direct view of the nucleus at hard X-ray energies. Our observations of it with the Rossi X-ray Timing Explorer (RXTE) satellite confirm the large absorption, which for a simple phenomenological fit using an absorber with Solar abundances implies a column of 4.5(sup 0.4, sub -0.4) x 10(exp 24) /sq cm. Using a a more realistic scenario (requiring Monte Carlo modeling of the scattering), we infer the optical depth to Thomson scattering of approximately 2.4. If such a scattering medium were to subtend a large solid angle from the nucleus, it should smear out any intrinsic hard X-ray variability on time scales shorter than the light travel time through it. The rapid (with a time scale of approximately a day) hard X-ray variability of NGC 4945 we observed with the RXTE implies that the bulk of the extreme absorption in this object does not originate in a parsec-size, geometrically thick molecular torus. Limits on the amount of scattered flux require that the optically thick material on parsec scales must be rather geometrically thin, subtending a half-angle < 10 deg. This is only marginally consistent with the recent determinations of the obscuring column in hard X-rays, where only a quarter of Seyfert 2s have columns which are optically thick, and presents a problem in accounting for the Cosmic X-ray Background primarily with AGN possessing the geometry as that inferred by us. The small solid angle of the obscuring material, together with the black hole mass (of approximately 1.4 x 10(exp 6) solar mass) from megamaser measurements. allows a robust determination of the source luminosity, which in turn implies that the source radiates at approximately 10% of the Eddington limit.

  3. Spider Silk: From Protein-Rich Gland Fluids to Diverse Biopolymer Fibers

    DTIC Science & Technology

    2016-01-06

    characterize the protein-rich fluid in the various spider silk producing glands. We have been using a battery of magnetic resonance methods including...solution and solid-state nuclear magnetic resonance (NMR) and micro imaging (MRI) in combination with wide angle and small angle X-ray diffraction...range of magnetic resonance methods. We successfully developed magnetic resonance imaging (MRI) techniques with localized spectroscopy to probe the silk

  4. Measurement of carbon condensates using small-angle x-ray scattering during detonation of high explosives

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Hansen, D.; May, C.; van Buuren, T.; Dattelbaum, D. M.; Gustavsen, R. L.; Watkins, E. B.; Firestone, M. A.; Jensen, B. J.; Graber, T.; Bastea, S.; Fried, L.

    2017-01-01

    The lack of experimental validation for processes occurring at sub-micron length scales on time scales ranging from nanoseconds to microseconds hinders detonation model development. Particularly, quantification of late-time energy release requires measurement of carbon condensation kinetics behind detonation fronts. A new small-angle x-ray scattering (SAXS) endstation has been developed for use at The Dynamic Compression Sector to observe carbon condensation during detonation. The endstation and beamline demonstrate unprecedented fidelity; SAXS profiles can be acquired from single x-ray pulses, which in 24-bunch mode are about 80 ps in duration and arrive every 153.4 ns. This paper presents both the current temporal capabilities of this beamline, and the ability to distinguish different carbon condensate morphologies as they form behind detonation fronts. To demonstrate temporal capabilities, three shots acquired during detonation of hexanitrostilbene (HNS) are interleaved to show the evolution of the SAXS in about 50 ns steps. To show fidelity of the SAXS, the scattering from carbon condensates at several hundred nanoseconds varies with explosive: scattering from HNS is consistent with a complex morphology that we assert is associated with sp2 carbon., while Comp B scattering is consistent with soots containing three-dimensional diamond nanoparticles.

  5. Structural characterization of the RNA chaperone Hfq from the nitrogen-fixing bacterium Herbaspirillum seropedicae SmR1.

    PubMed

    Kadowaki, Marco Antonio Seiki; Iulek, Jorge; Barbosa, João Alexandre Ribeiro Gonçalves; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Chubatsu, Leda Satie; Monteiro, Rose Adele; de Oliveira, Marco Aurélio Schüler; Steffens, Maria Berenice Reynaud

    2012-02-01

    The RNA chaperone Hfq is a homohexamer protein identified as an E. coli host factor involved in phage Qβ replication and it is an important posttranscriptional regulator of several types of RNA, affecting a plethora of bacterial functions. Although twenty Hfq crystal structures have already been reported in the Protein Data Bank (PDB), new insights into these protein structures can still be discussed. In this work, the structure of Hfq from the β-proteobacterium Herbaspirillum seropedicae, a diazotroph associated with economically important agricultural crops, was determined by X-ray crystallography and small-angle X-ray scattering (SAXS). Biochemical assays such as exclusion chromatography and RNA-binding by the electrophoretic shift assay (EMSA) confirmed that the purified protein is homogeneous and active. The crystal structure revealed a conserved Sm topology, composed of one N-terminal α-helix followed by five twisted β-strands, and a novel π-π stacking intra-subunit interaction of two histidine residues, absent in other Hfq proteins. Moreover, the calculated ab initio envelope based on small-angle X-ray scattering (SAXS) data agreed with the Hfq crystal structure, suggesting that the protein has the same folding structure in solution. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Small angle X-ray scattering analysis of the effect of cold compaction of Al/MoO3 thermite composites.

    PubMed

    Hammons, Joshua A; Wang, Wei; Ilavsky, Jan; Pantoya, Michelle L; Weeks, Brandon L; Vaughn, Mark W

    2008-01-07

    Nanothermites composed of aluminum and molybdenum trioxide (MoO(3)) have a high energy density and are attractive energetic materials. To enhance the surface contact between the spherical Al nanoparticles and the sheet-like MoO(3) particles, the mixture can be cold-pressed into a pelleted composite. However, it was found that the burn rate of the pellets decreased as the density of the pellets increased, contrary to expectation. Ultra-small angle X-ray scattering (USAXS) data and scanning electron microscopy (SEM) were used to elucidate the internal structure of the Al nanoparticles, and nanoparticle aggregate in the composite. Results from both SEM imaging and USAXS analysis indicate that as the density of the pellet increased, a fraction of the Al nanoparticles are compressed into sintered aggregates. The sintered Al nanoparticles lost contrast after forming the larger aggregates and no longer scattered X-rays as individual particles. The sintered aggregates hinder the burn rate, since the Al nanoparticles that make them up can no longer diffuse freely as individual particles during combustion. Results suggest a qualitative relationship for the probability that nanoparticles will sinter, based on the particle sizes and the initial structure of their respective agglomerates, as characterized by the mass fractal dimension.

  7. The use of small angle X-ray scattering (SAXS) for the characterisation of lustre surfaces in Renaissance majolica

    NASA Astrophysics Data System (ADS)

    Fermo, P.; Cariati, F.; Cipriani, C.; Canetti, M.; Padeletti, G.; Brunetti, B.; Sgamellotti, A.

    2002-01-01

    In this work some Renaissance lustre decorated ceramics have been examined. Our attention was directed to lustre which is a thin decorative metallic film applied on the surfaces of previously glazed ancient pottery. Some 16th century lustre ceramics shards from Deruta, Umbria (Italy) have been analysed by small angle X-ray scattering (SAXS) in order to characterise the dimension of the metal nanocrystals forming the thin lustre layer. This technique appeared to be a powerful tool to characterise lustre films nanostructure and may be successfully used for this purpose together with transmission electron microscopy (TEM). Furthermore, SAXS measurements are extremely suitable for the determination of polydispersity and average interparticle distance. The lustre surfaces have been also analysed by scanning electron microscopy plus X-ray energy dispersive spectrometry (SEM-EDX) in order to identify the metals present (silver, copper or both of them) and to establish copper/silver ratios. From the comparison between SAXS results and compositional data, it was possible to conclude that copper particles are smaller than the silver ones. We have evidenced how the microtexture as well as the chemical composition of the lustre layers are responsible for the gold or red colour typical of the lustre films.

  8. Method for characterization of a spherically bent crystal for K.alpha. X-ray imaging of laser plasmas using a focusing monochromator geometry

    DOEpatents

    Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul

    2015-04-07

    A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.

  9. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis.

    PubMed

    Hopkins, Jesse Bennett; Gillilan, Richard E; Skou, Soren

    2017-10-01

    BioXTAS RAW is a graphical-user-interface-based free open-source Python program for reduction and analysis of small-angle X-ray solution scattering (SAXS) data. The software is designed for biological SAXS data and enables creation and plotting of one-dimensional scattering profiles from two-dimensional detector images, standard data operations such as averaging and subtraction and analysis of radius of gyration and molecular weight, and advanced analysis such as calculation of inverse Fourier transforms and envelopes. It also allows easy processing of inline size-exclusion chromatography coupled SAXS data and data deconvolution using the evolving factor analysis method. It provides an alternative to closed-source programs such as Primus and ScÅtter for primary data analysis. Because it can calibrate, mask and integrate images it also provides an alternative to synchrotron beamline pipelines that scientists can install on their own computers and use both at home and at the beamline.

  10. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE PAGES

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline; ...

    2017-01-03

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  11. Effect of annealing conditions on the microstructure and magnetic properties of sintered Nd-Fe-B magnets as seen by magnetic small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Périgo, Élio A.; Titov, Ivan; Weber, Raoul; Mettus, Denis; Peral, Inma; Vallcorba, Oriol; Honecker, Dirk; Feoktystov, Artem; Michels, Andreas

    2018-03-01

    We have investigated the effect of the annealing conditions (heating rate and temperature) on the magnetic microstructure of sintered Nd-Fe-B magnets by means of magnetometry, scanning electron microscopy, high-energy synchrotron x-ray diffraction, and small-angle neutron scattering (SANS). While the temperature treatment has a strong effect on the coercivity (reduction by about 50% on annealing), the associated changes in the microstructure do surprisingly not show up (or at best only very weakly) in the neutron-scattering signal, which probes a mesoscopic real-space length scale ranging between about 1–300 nm. On the other hand, the x-ray data reveal microstructural changes in the Nd-rich phases, presumably due to modifications in grain-boundary regions. Moreover, we observe an unusual diamond-shaped angular anisotropy in the SANS cross section, which strongly points towards the existence of texture in the nuclear microstructure.

  12. All-atom ensemble modeling to analyze small angle X-ray scattering of glycosylated proteins

    PubMed Central

    Guttman, Miklos; Weinkam, Patrick; Sali, Andrej; Lee, Kelly K.

    2013-01-01

    Summary The flexible and heterogeneous nature of carbohydrate chains often renders glycoproteins refractory to traditional structure determination methods. Small Angle X-ray scattering (SAXS) can be a useful tool for obtaining structural information of these systems. All-atom modeling of glycoproteins with flexible glycan chains was applied to interpret the solution SAXS data for a set of glycoproteins. For simpler systems (single glycan, with a well defined protein structure), all-atom modeling generates models in excellent agreement with the scattering pattern, and reveals the approximate spatial occupancy of the glycan chain in solution. For more complex systems (several glycan chains, or unknown protein substructure), the approach can still provide insightful models, though the orientations of glycans become poorly determined. Ab initio shape reconstructions appear to capture the global morphology of glycoproteins, but in most cases offer little information about glycan spatial occupancy. The all-atom modeling methodology is available as a webserver at http://modbase.compbio.ucsf.edu/allosmod-foxs. PMID:23473666

  13. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallen, Jamie R.; Zhang, Hao; Weis, Caroline

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less

  14. Probing He bubbles in naturally aged and annealed δ-Pu alloys using ultra-small-angle x-ray scattering

    DOE PAGES

    Jeffries, J. R.; Hammons, J. A.; Willey, T. M.; ...

    2017-10-31

    We report the self-irradiation of Pu alloys generates He that is trapped within the metal matrix in the form of He bubbles. The distribution of these He bubbles in δ-phase Pu-Ga alloys exhibits a peak near a radius of 0.7 nm, and this size is remarkably stable as function of time. When annealed, the He bubbles in δ-Pu alloys grow, coarsening the distribution. However, the magnitude of this coarsening is uncertain, as different experimental methods reveal bubbles that differ by at least one order of magnitude. Small-angle x-ray scattering results, which can probe a wide range of bubble sizes, implymore » only a mild coarsening of the He bubble distribution for an annealing treatment of 425 °C for 24 h, and analysis of the He bubble content suggests that He is actually lost from the bubbles with annealing.« less

  15. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying

    2017-08-31

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. Themore » structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.« less

  16. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying

    2017-08-16

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. Themore » structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.« less

  17. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Xueming; Duan, Yonghao; He, Lilin

    A systematic study was done to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110 °C for 3 h at biomass loadings of 5, 10, 15, 20 and 25 wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ~25 to 625 Å, enabling assessment of contributions of pores with different sizes to increased porositymore » after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role.« less

  18. Isolation and initial structural characterization of a 27 kDa protein from Zingiber officinale

    NASA Astrophysics Data System (ADS)

    Rasheed, Saima; Malik, Shoaib Ahmad; Falke, Sven; Arslan, Ali; Fazel, Ramin; Schlüter, Hartmut; Betzel, Christian; Choudhary, M. Iqbal

    2018-03-01

    Zingiber officinale Roscoe (Ginger) is a widely used traditional medicinal plant (for different ailments such as arthritis, constipation, and hypertension). This article describes the isolation and characterization of a so far unknown protein from ginger rhizomes applying ion exchange, affinity, size-exclusion chromatography, small angle X-ray scattering (SAXS), and mass spectrometry techniques. One-dimensional Coomassie-stained SDS-PAGE was performed under non-reducing conditions, showing one band corresponding to approx. 27 kDa. Dynamic light scattering (DLS) analysis of the protein solution revealed monodispersity and a monomeric state of the purified protein. Circular dichroism (CD) spectroscopy strongly indicated a β-sheet-rich protein, and disordered regions. MALDI-TOF-MS, and LC-MS/MS analysis resulted in the identification of 27.29 kDa protein, having 32.13% and 25.34% sequence coverage with Zingipain-1 and 2, respectively. The monomeric state and molecular weight were verified by small angle X-ray scattering (SAXS) studies. An elongated ab-initio model was calculated based on the scattering intensity distribution.

  19. Resolution of ab initio shapes determined from small-angle scattering.

    PubMed

    Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I

    2016-11-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.

  20. Resolution of ab initio shapes determined from small-angle scattering

    PubMed Central

    Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.

    2016-01-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683

  1. The small angle x-ray scattering of globular proteins in solution during heat denaturation

    NASA Astrophysics Data System (ADS)

    Banuelos, Jose; Urquidi, Jacob

    2008-10-01

    The ability of proteins to change their conformation in response to changes in their environment has consequences in biological processes like metabolism, chemical regulation in cells, and is believed to play a role in the onset of several neurodegenerative diseases. Factors such as a change in temperature, pressure, and the introduction of ions into the aqueous environment of a protein can give rise to the folding/unfolding of a protein. As a protein unfolds, the ratio of nonpolar to polar groups exposed to water changes, affecting a protein's thermodynamic properties. Using small angle x-ray scattering (SAXS), we are currently studying the intermediate protein conformations that arise during the folding/unfolding process as a function of temperature for five globular proteins. Trends in the observed intermediate structures of these globular proteins, along with correlations with data on protein thermodynamics may help elucidate shared characteristics between all proteins in the folding/unfolding process. Experimental design considerations will be discussed and preliminary results for some of these systems will be presented.

  2. An analysis of FtsZ assembly using small angle X-ray scattering and electron microscopy.

    PubMed

    Kuchibhatla, Anuradha; Abdul Rasheed, A S; Narayanan, Janaky; Bellare, Jayesh; Panda, Dulal

    2009-04-09

    Small angle X-ray scattering (SAXS) was used for the first time to study the self-assembly of the bacterial cell division protein, FtsZ, with three different additives: calcium chloride, monosodium glutamate and DEAE-dextran hydrochloride in solution. The SAXS data were analyzed assuming a model form factor and also by a model-independent analysis using the pair distance distribution function. Transmission electron microscopy (TEM) was used for direct observation of the FtsZ filaments. By sectioning and negative staining with glow discharged grids, very high bundling as well as low bundling polymers were observed under different assembly conditions. FtsZ polymers formed different structures in the presence of different additives and these additives were found to increase the bundling of FtsZ protofilaments by different mechanisms. The combined use of SAXS and TEM provided us a significant insight of the assembly of FtsZ and microstructures of the assembled FtsZ polymers.

  3. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering.

    PubMed

    Yuan, Xueming; Duan, Yonghao; He, Lilin; Singh, Seema; Simmons, Blake; Cheng, Gang

    2017-05-01

    A systematic study was performed to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110°C for 3h at biomass loadings of 5, 10, 15, 20 and 25wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ∼25 to 625Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impact of Interfacial Roughness on the Sorption Properties of Nanocast Polymers

    DOE PAGES

    Sridhar, Manasa; Gunugunuri, Krishna R.; Hu, Naiping; ...

    2016-03-16

    Nanocasting is an emerging method to prepare organic polymers with regular, nanometer pores using inorganic templates. This report assesses the impact of imperfect template replication on the sorption properties of such polymer castings. Existing X-ray diffraction data show that substantial diffuse scattering exists in the small-angle region even though TEM images show near perfect lattices of uniform pores. To assess the origin of the diffuse scattering, the morphology of the phenol - formaldehyde foams (PFF) was investigated by small-angle X-ray scattering (SAXS). The observed diffuse scattering is attributed to interfacial roughness due to fractal structures. Such roughness has a profoundmore » impact on the sorption properties. Conventional pore- filling models, for example, overestimate protein sorption capacity. A mathematical framework is presented to calculate sorption properties based on observed morphological parameters. The formalism uses the surface fractal dimension determined by SAXS in conjunction with nitrogen adsorption isotherms to predict lysozyme sorption. The results are consistent with measured lysozyme loading.« less

  5. Early nucleation events in the polymerization of actin, probed by time-resolved small-angle x-ray scattering

    PubMed Central

    Oda, Toshiro; Aihara, Tomoki; Wakabayashi, Katsuzo

    2016-01-01

    Nucleators generating new F-actin filaments play important roles in cell activities. Detailed information concerning the events involved in nucleation of actin alone in vitro is fundamental to understanding these processes, but such information has been hard to come by. We addressed the early process of salt-induced polymerization of actin using the time-resolved synchrotron small-angle X-ray scattering (SAXS). Actin molecules in low salt solution maintain a monomeric state by an electrostatic repulsive force between molecules. On mixing with salts, the repulsive force was rapidly screened, causing an immediate formation of many of non-polymerizable dimers. SAXS kinetic analysis revealed that tetramerization gives the highest energetic barrier to further polymerization, and the major nucleation is the formation of helical tetramers. Filaments start to grow rapidly with the formation of pentamers. These findings suggest an acceleration mechanism of actin assembly by a variety of nucleators in cells. PMID:27775032

  6. Effect of borax concentration on the structure of Poly(Vinyl Alcohol) gels

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2012-06-01

    Poly(Vinyl Alcohol) hydrogels cross-linked with varying concentrations of borax have been studied using Small-Angle Neutron Scattering and X-Ray Diffraction. The intensity of scattering increases with borax concentration from 1 mg/ml up to 2 mg/ml and falls thereafter for 4 mg/ml, increasing again for a concentration of 10 mg/ml. The mesoscopic structural changes that cause these trends in the SANS data are in keeping with the variations in the X-ray diffraction patterns pertaining to structures within the PVA chains.

  7. Corrosion and degradation of a polyurethane/Co-Ni-Cr-Mo pacemaker lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, P.; Fraker, A.C.

    1987-12-01

    An investigation to study changes in the metal surfaces and the polyurethane insulation of heart pacemaker leads under controlled in vitro conditions was conducted. A polyurethane (Pellethane 2363-80A)/Co-Ni-Cr-Mo (MP35N) wire lead was exposed in Hanks' physiological saline solution for 14 months and then analyzed using scanning electron microscopy, x-ray energy dispersive analysis, and small angle x-ray scattering. Results showed that some leakage of solution into the lead had occurred and changes were present on both the metal and the polyurethane surfaces.

  8. An Automated, High-Throughput System for GISAXS and GIWAXS Measurements of Thin Films

    NASA Astrophysics Data System (ADS)

    Schaible, Eric; Jimenez, Jessica; Church, Matthew; Lim, Eunhee; Stewart, Polite; Hexemer, Alexander

    Grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) are important techniques for characterizing thin films. In order to meet rapidly increasing demand, the SAXSWAXS beamline at the Advanced Light Source (beamline 7.3.3) has implemented a fully automated, high-throughput system to conduct SAXS, GISAXS and GIWAXS measurements. An automated robot arm transfers samples from a holding tray to a measurement stage. Intelligent software aligns each sample in turn, and measures each according to user-defined specifications. Users mail in trays of samples on individually barcoded pucks, and can download and view their data remotely. Data will be pipelined to the NERSC supercomputing facility, and will be available to users via a web portal that facilitates highly parallelized analysis.

  9. Two-dimensional time-resolved X-ray diffraction study of liquid/solid fraction and solid particle size in Fe-C binary system with an electrostatic levitator furnace

    NASA Astrophysics Data System (ADS)

    Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.

    2013-03-01

    Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.

  10. Direct measurement of the propagation velocity of defects using coherent X-rays

    DOE PAGES

    Ulbrandt, Jeffrey G.; Rainville, Meliha G.; Wagenbach, Christa; ...

    2016-03-28

    The properties of artificially grown thin films are often strongly affected by the dynamic relationships between surface growth processes and subsurface structure. Coherent mixing of X-ray signals promises to provide an approach to better understand such processes. Here, we demonstrate the continuously variable mixing of surface and bulk scattering signals during realtime studies of sputter deposition of a-Si and a-WSi2 films by controlling the X-ray penetration and escape depths in coherent grazing-incidence small-angle X-ray scattering. Under conditions where the X-ray signal comes from both the growth surface and the thin film bulk, oscillations in temporal correlations arise from coherent interferencemore » between scattering from stationary bulk features and from the advancing surface. We also observe evidence that elongated bulk features propagate upwards at the same velocity as the surface. Moreover, a highly surface-sensitive mode is demonstrated that can access the surface dynamics independently of the subsurface structure.« less

  11. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS

    DOE PAGES

    Lee, Sooheyong; Roseker, W.; Gutt, C.; ...

    2013-10-08

    The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse modemore » $$\\langle$$M s$$\\rangle$$ = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Lastly the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.« less

  12. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE PAGES

    Kluge, T.; Rödel, C.; Rödel, M.; ...

    2017-10-23

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  13. A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter

    DOE PAGES

    Allured, Ryan; Kaaret, Philip; Fernandez-Perea, Monica; ...

    2013-04-12

    A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90° angle to the BRP detector, and transmit 2–10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 μm thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developedmore » and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Furthermore, reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.« less

  14. A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allured, Ryan; Kaaret, Philip; Fernandez-Perea, Monica

    A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90° angle to the BRP detector, and transmit 2–10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 μm thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developedmore » and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Furthermore, reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.« less

  15. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, T.; Rödel, C.; Rödel, M.

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Sen; Luo, Sheng-Nian

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamentalmore » harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.« less

  17. X-ray imaging of aggregation in silica and zeolitic precursors

    NASA Astrophysics Data System (ADS)

    Morrison, Graeme R.; Browne, Michael T.; Beelen, Theo P. M.; van Garderen, Harold F.

    1993-01-01

    The resolution available in the King's College London scanning transmission x-ray microscope (STXM) can be exploited to study aggregate structures over a length scale from 100 nm to 10 micrometers that overlaps with and complements that available from small-angle x-ray scattering (SAXS) data. It is then possible to use these combined sets of data to test between different growth models for the aggregates, using the fractal dimension of the structures as a way of distinguishing the different models. In this paper we show some of the first transmission x-ray images taken of silica gels and zeolite precursors, materials that are of great practical and economic importance for certain selective catalytic processes in the chemical industry, and yet for which there is still only limited understanding of the complicated processes involved in their preparation. These images reveal clearly the fractal aggregates that are formed by the specimens.

  18. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinke, I.; Lehmkühler, F., E-mail: felix.lehmkuehler@desy.de; Schroer, M. A.

    2016-06-15

    In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less

  19. X-ray Generation in Strongly Nonlinear Plasma Waves

    NASA Astrophysics Data System (ADS)

    Kiselev, S.; Pukhov, A.; Kostyukov, I.

    2004-09-01

    We show that a laser wake field in the “bubble” regime [

    A. Pukhov and J. Meyer-ter-Vehn Appl. Phys. BAPBOEM0946-2171 74, 355 (2002)10.1007/s003400200795
    ], works as a compact high-brightness source of x-rays. The self-trapped relativistic electrons make betatron oscillations in the transverse fields of the bubble and emit a bright broadband x-ray radiation with a maximum about 50 keV. The emission is confined to a small angle of about 0.1 rad. In addition, we make simulations of x-ray generation by an external 28.5 GeV electron bunch injected into the bubble. γ quanta with up to GeV energies are observed in the simulation in good agreement with analytical results. The energy conversion is efficient, leading to a significant stopping of the electron bunch over 5 mm interaction distance.

  20. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    DOE PAGES

    Steinke, I.; Walther, M.; Lehmkühler, F.; ...

    2016-06-01

    In this study we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. Finally, as a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less

  1. Applications of condensed matter understanding to medical tissues and disease progression: Elemental analysis and structural integrity of tissue scaffolds

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Farquharson, M. J.; Gundogdu, O.; Al-Ebraheem, Alia; Che Ismail, Elna; Kaabar, W.; Bunk, O.; Pfeiffer, F.; Falkenberg, G.; Bailey, M.

    2010-02-01

    The investigations reported herein link tissue structure and elemental presence with issues of environmental health and disease, exemplified by uptake and storage of potentially toxic elements in the body, the osteoarthritic condition and malignancy in the breast and other soft tissues. Focus is placed on application of state-of-the-art ionizing radiation techniques, including, micro-synchrotron X-ray fluorescence (μ-SXRF) and particle-induced X-ray emission/Rutherford backscattering mapping (μ-PIXE/RBS), coherent small-angle X-ray scattering (cSAXS) and X-ray phase-contrast imaging, providing information on elemental make-up, the large-scale organisation of collagen and anatomical features of moderate and low atomic number media. For the particular situations under investigation, use of such facilities is allowing information to be obtained at an unprecedented level of detail, yielding new understanding of the affected tissues and the progression of disease.

  2. Freezing-induced self-assembly of amphiphilic molecules

    NASA Astrophysics Data System (ADS)

    Albouy, P. A.; Deville, S.; Fulkar, A.; Hakouk, K.; Impéror-Clerc, M.; Klotz, M.; Liu, Q.; Marcellini, M.; Perez, J.

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0{\\deg}C.

  3. Freezing-induced self-assembly of amphiphilic molecules.

    PubMed

    Albouy, P A; Deville, S; Fulkar, A; Hakouk, K; Impéror-Clerc, M; Klotz, M; Liu, Q; Marcellini, M; Perez, J

    2017-03-01

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0 °C.

  4. When will Low-Contrast Features be Visible in a STEM X-Ray Spectrum Image?

    PubMed

    Parish, Chad M

    2015-06-01

    When will a small or low-contrast feature, such as an embedded second-phase particle, be visible in a scanning transmission electron microscopy (STEM) X-ray map? This work illustrates a computationally inexpensive method to simulate X-ray maps and spectrum images (SIs), based upon the equations of X-ray generation and detection. To particularize the general procedure, an example of nanostructured ferritic alloy (NFA) containing nm-sized Y2Ti2O7 embedded precipitates in ferritic stainless steel matrix is chosen. The proposed model produces physically appearing simulated SI data sets, which can either be reduced to X-ray dot maps or analyzed via multivariate statistical analysis. Comparison to NFA X-ray maps acquired using three different STEM instruments match the generated simulations quite well, despite the large number of simplifying assumptions used. A figure of merit of electron dose multiplied by X-ray collection solid angle is proposed to compare feature detectability from one data set (simulated or experimental) to another. The proposed method can scope experiments that are feasible under specific analysis conditions on a given microscope. Future applications, such as spallation proton-neutron irradiations, core-shell nanoparticles, or dopants in polycrystalline photovoltaic solar cells, are proposed.

  5. Hard-X-ray dark-field imaging using a grating interferometer.

    PubMed

    Pfeiffer, F; Bech, M; Bunk, O; Kraft, P; Eikenberry, E F; Brönnimann, Ch; Grünzweig, C; David, C

    2008-02-01

    Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early stage with several techniques, dark-field imaging, or more generally scattering-based imaging, with hard X-rays and good signal-to-noise ratio, in practice still remains a challenging task even at highly brilliant synchrotron sources. In this letter, we report a new approach on the basis of a grating interferometer that can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources. Because the image contrast is formed through the mechanism of small-angle scattering, it provides complementary and otherwise inaccessible structural information about the specimen at the micrometre and submicrometre length scale. Our approach is fully compatible with conventional transmission radiography and a recently developed hard-X-ray phase-contrast imaging scheme. Applications to X-ray medical imaging, industrial non-destructive testing and security screening are discussed.

  6. Accurate determination of segmented X-ray detector geometry

    PubMed Central

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; White, Thomas A.; Chapman, Henry N.; Barty, Anton

    2015-01-01

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical for many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. We show that the refined detector geometry greatly improves the results of experiments. PMID:26561117

  7. Angular correlations of photons from solution diffraction at a free-electron laser encode molecular structure

    DOE PAGES

    Mendez, Derek; Watkins, Herschel; Qiao, Shenglan; ...

    2016-09-26

    During X-ray exposure of a molecular solution, photons scattered from the same molecule are correlated. If molecular motion is insignificant during exposure, then differences in momentum transfer between correlated photons are direct measurements of the molecular structure. In conventional small- and wide-angle solution scattering, photon correlations are ignored. This report presents advances in a new biomolecular structural analysis technique, correlated X-ray scattering (CXS), which uses angular intensity correlations to recover hidden structural details from molecules in solution. Due to its intense rapid pulses, an X-ray free electron laser (XFEL) is an excellent tool for CXS experiments. A protocol is outlinedmore » for analysis of a CXS data set comprising a total of half a million X-ray exposures of solutions of small gold nanoparticles recorded at the Spring-8 Ångström Compact XFEL facility (SACLA). From the scattered intensities and their correlations, two populations of nanoparticle domains within the solution are distinguished: small twinned, and large probably non-twinned domains. Finally, it is shown analytically how, in a solution measurement, twinning information is only accessible via intensity correlations, demonstrating how CXS reveals atomic-level information from a disordered solution of like molecules.« less

  8. Deformational characteristics of thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Indukuri, Kishore K.

    This thesis focuses primarily on the structure-property relationships of poly (styrene-ethylene-butylene-styrene) triblock copolymer TPEs. First evidence for strain-induced crystallization occurring in certain SEBS block copolymers has been established using unique techniques like deformation calorimetry, combined in-situ small angle X-ray and wide angle X-ray diffraction (SAXD/WAXD). Also the ramifications of such strain-induced crystallization on the mechanical properties like cyclic hysteresis, stress relaxation/creep retention of these SEBS systems have been studied. In addition, the structural changes in the morphology of these systems on deformation have been investigated using combined SAXD/WAXD setup. Small angle X-ray diffraction probed the changes at the nano-scale of polystyrene (PS) cylinders, while wide angle X-ray diffraction probed the changes at molecular length scales of the amorphous/crystalline domains of the elastomeric mid-block in these systems. New structural features at both these length scales have been observed and incorporated into the overall deformation mechanisms of the material. Continuous processing techniques like extrusion have been used to obtain ultra long-range order and orientation in these SEBS systems. Thus well ordered crystal like hexagonal packing of cylinders, where in each element in this hexagonal lattice can be individually addressed without any grain boundaries can be realized using these robust techniques. The effect of long-range order/orientation on the mechanical properties has been studied. In addition, these well ordered systems serve as model systems for evaluating deformation mechanisms of these SEBS systems, where the relative contributions of each of the phases can be estimated. EPDM/i-PP thermoplastic vulcanizates (TPVs) have micron size scale phase separated morphologies of EPDM rubber dispersed in a semicrystalline i-PP matrix as a result of the dynamic vulcanization process. Confocal microscopy studies, along with scanning electron microscopy (SEM) studies show that the morphology of these EPDM/i-PP systems resembles a microcellular "filled" foam in which i-PP occupies the strut regions and EPDM the inner core. Based on this, an analytical model has been developed that takes into account composition information, molecular weight, cure state and morphology into account.

  9. Model-based Approaches for the Determination of Lipid Bilayer Structure from Small-Angle Neutron and X-ray Scattering Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberle, Frederick A; Pan, Jianjun; Standaert, Robert F

    2012-01-01

    Some of our recent work has resulted in the detailed structures of fully hydrated, fluid phase phosphatidylcholine (PC) and phosphatidylglycerol (PG) bilayers. These structures were obtained from the joint refinement of small-angle neutron and X-ray data using the scattering density profile (SDP) models developed by Ku erka et al. (Ku erka et al. 2012; Ku erka et al. 2008). In this review, we first discuss models for the standalone analysis of neutron or X-ray scattering data from bilayers, and assess the strengths and weaknesses inherent in these models. In particular, it is recognized that standalone data do not contain enoughmore » information to fully resolve the structure of inherently disordered fluid bilayers, and therefore may not provide a robust determination of bilayer structural parameters, including the much sought after area per lipid. We then discuss the development of matter density-based models (including the SDP model) that allow for the joint refinement of different contrast neutron and X-ray data sets, as well as the implementation of local volume conservation in the unit cell (i.e., ideal packing). Such models provide natural definitions of bilayer thicknesses (most importantly the hydrophobic and Luzzati thicknesses) in terms of Gibbs dividing surfaces, and thus allow for the robust determination of lipid areas through equivalent slab relationships between bilayer thickness and lipid volume. In the final section of this review, we discuss some of the significant findings/features pertaining to structures of PC and PG bilayers as determined from SDP model analyses.« less

  10. Magnetic topology of Co-based inverse opal-like structures

    NASA Astrophysics Data System (ADS)

    Grigoryeva, N. A.; Mistonov, A. A.; Napolskii, K. S.; Sapoletova, N. A.; Eliseev, A. A.; Bouwman, W.; Byelov, D. V.; Petukhov, A. V.; Chernyshov, D. Yu.; Eckerlebe, H.; Vasilieva, A. V.; Grigoriev, S. V.

    2011-08-01

    The magnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle x-ray diffraction shows that the inverse opal-like structure (OLS) synthesized by the electrochemical method fully duplicates the three-dimensional net of voids of the template artificial opal. The inverse OLS has a face-centered cubic (fcc) structure with a lattice constant of 640±10 nm and with a clear tendency to a random hexagonal close-packed structure along the [111] axes. Wide-angle x-ray powder diffraction shows that the atomic cobalt structure is described by coexistence of 95% hexagonal close-packed and 5% fcc phases. The SQUID measurements demonstrate that the inverse OLS film possesses easy-plane magnetization geometry with a coercive field of 14.0 ± 0.5 mT at room temperature. The detailed picture of the transformation of the magnetic structure under an in-plane applied field was detected with the help of small-angle diffraction of polarized neutrons. In the demagnetized state the magnetic system consists of randomly oriented magnetic domains. A complex magnetic structure appears upon application of the magnetic field, with nonhomogeneous distribution of magnetization density within the unit element of the OLS. This distribution is determined by the combined effect of the easy-plane geometry of the film and the crystallographic geometry of the opal-like structure with respect to the applied field direction.

  11. Conformational variability of the stationary phase survival protein E from Xylella fastidiosa revealed by X-ray crystallography, small-angle X-ray scattering studies, and normal mode analysis.

    PubMed

    Machado, Agnes Thiane Pereira; Fonseca, Emanuella Maria Barreto; Reis, Marcelo Augusto Dos; Saraiva, Antonio Marcos; Santos, Clelton Aparecido Dos; de Toledo, Marcelo Augusto Szymanski; Polikarpov, Igor; de Souza, Anete Pereira; Aparicio, Ricardo; Iulek, Jorge

    2017-10-01

    Xylella fastidiosa is a xylem-limited bacterium that infects a wide variety of plants. Stationary phase survival protein E is classified as a nucleotidase, which is expressed when bacterial cells are in the stationary growth phase and subjected to environmental stresses. Here, we report four refined X-ray structures of this protein from X. fastidiosa in four different crystal forms in the presence and/or absence of the substrate 3'-AMP. In all chains, the conserved loop verified in family members assumes a closed conformation in either condition. Therefore, the enzymatic mechanism for the target protein might be different of its homologs. Two crystal forms exhibit two monomers whereas the other two show four monomers in the asymmetric unit. While the biological unit has been characterized as a tetramer, differences of their sizes and symmetry are remarkable. Four conformers identified by Small-Angle X-ray Scattering (SAXS) in a ligand-free solution are related to the low frequency normal modes of the crystallographic structures associated with rigid body-like protomer arrangements responsible for the longitudinal and symmetric adjustments between tetramers. When the substrate is present in solution, only two conformers are selected. The most prominent conformer for each case is associated to a normal mode able to elongate the protein by moving apart two dimers. To our knowledge, this work was the first investigation based on the normal modes that analyzed the quaternary structure variability for an enzyme of the SurE family followed by crystallography and SAXS validation. The combined results raise new directions to study allosteric features of XfSurE protein. © 2017 Wiley Periodicals, Inc.

  12. A Mo-anode-based in-house source for small-angle X-ray scattering measurements of biological macromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruetzel, Linda K.; Fischer, Stefan; Salditt, Annalena

    2016-02-15

    We demonstrate the use of a molybdenum-anode-based in-house small-angle X-ray scattering (SAXS) setup to study biological macromolecules in solution. Our system consists of a microfocus X-ray tube delivering a highly collimated flux of 2.5 × 10{sup 6} photons/s at a beam size of 1.2 × 1.2 mm{sup 2} at the collimation path exit and a maximum beam divergence of 0.16 mrad. The resulting observable scattering vectors q are in the range of 0.38 Å{sup −1} down to 0.009 Å{sup −1} in SAXS configuration and of 0.26 Å{sup −1} up to 5.7 Å{sup −1} in wide-angle X-ray scattering (WAXS) mode. Tomore » determine the capabilities of the instrument, we collected SAXS data on weakly scattering biological macromolecules including proteins and a nucleic acid sample with molecular weights varying from ∼12 to 69 kDa and concentrations of 1.5–24 mg/ml. The measured scattering data display a high signal-to-noise ratio up to q-values of ∼0.2 Å{sup −1} allowing for an accurate structural characterization of the samples. Moreover, the in-house source data are of sufficient quality to perform ab initio 3D structure reconstructions that are in excellent agreement with the available crystallographic structures. In addition, measurements for the detergent decyl-maltoside show that the setup can be used to determine the size, shape, and interactions (as characterized by the second virial coefficient) of detergent micelles. This demonstrates that the use of a Mo-anode based in-house source is sufficient to determine basic geometric parameters and 3D shapes of biomolecules and presents a viable alternative to valuable beam time at third generation synchrotron sources.« less

  13. Experimental and theoretical investigation of a mesoporous KxWO3 material having superior mechanical strength

    NASA Astrophysics Data System (ADS)

    Dey, Sonal; Anderson, Sean T.; Mayanovic, Robert A.; Sakidja, Ridwan; Landskron, Kai; Kokoszka, Berenika; Mandal, Manik; Wang, Zhongwu

    2016-01-01

    Mesoporous materials with tailored properties hold great promise for energy harvesting and industrial applications. We have synthesized a novel tungsten bronze mesoporous material (KxWO3; x ~ 0.07) having inverse FDU-12 type pore symmetry and a crystalline framework. In situ small angle X-ray scattering (SAXS) measurements of the mesoporous K0.07WO3 show persistence of a highly ordered meso-scale pore structure to high pressure conditions (~18.5 GPa) and a material with remarkable mechanical strength despite having ~35% porosity. Pressure dependent in situ SAXS measurements reveal a bulk modulus κ = 44 +/- 4 GPa for the mesoporous KxWO3 which is comparable to the corresponding value for the bulk monoclinic WO3 (γ-WO3). Evidence from middle angle (MAXS) and wide angle X-ray scattering (WAXS), high-resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy shows that the presence of potassium leads to the formation of a K-bearing orthorhombic tungsten bronze (OTB) phase within a monoclinic WO3 host structure. Our ab initio molecular dynamics calculations show that the formation of the OTB phase provides superior strength to the mesoporous K0.07WO3.Mesoporous materials with tailored properties hold great promise for energy harvesting and industrial applications. We have synthesized a novel tungsten bronze mesoporous material (KxWO3; x ~ 0.07) having inverse FDU-12 type pore symmetry and a crystalline framework. In situ small angle X-ray scattering (SAXS) measurements of the mesoporous K0.07WO3 show persistence of a highly ordered meso-scale pore structure to high pressure conditions (~18.5 GPa) and a material with remarkable mechanical strength despite having ~35% porosity. Pressure dependent in situ SAXS measurements reveal a bulk modulus κ = 44 +/- 4 GPa for the mesoporous KxWO3 which is comparable to the corresponding value for the bulk monoclinic WO3 (γ-WO3). Evidence from middle angle (MAXS) and wide angle X-ray scattering (WAXS), high-resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy shows that the presence of potassium leads to the formation of a K-bearing orthorhombic tungsten bronze (OTB) phase within a monoclinic WO3 host structure. Our ab initio molecular dynamics calculations show that the formation of the OTB phase provides superior strength to the mesoporous K0.07WO3. Electronic supplementary information (ESI) available: Experimental details of SEM and TEM measurements, SAXS data analysis, the procedure for Rietveld refinement, peak fitting for the Raman results, the modelling approach, UV-Vis and N2 sorption measurements. See DOI: 10.1039/c5nr07941a

  14. Unraveling double stranded alpha-helical coiled coils: an x-ray diffraction study on hard alpha-keratin fibers.

    PubMed

    Kreplak, L; Doucet, J; Briki, F

    2001-04-15

    Transformations of proteins secondary and tertiary structures are generally studied in globular proteins in solution. In fibrous proteins, such as hard alpha-keratin, that contain long and well-defined double stranded alpha-helical coiled coil domains, such study can be directly done on the native fibrous tissue. In order to assess the structural behavior of the coiled coil domains under an axial mechanical stress, wide angle x-ray scattering and small angle x-ray scattering experiments have been carried out on stretched horse hair fibers at relative humidity around 30%. Our observations of the three major axial spacings as a function of the applied macroscopic strain have shown two rates. Up to 4% macroscopic strain the coiled coils were slightly distorted but retained their overall conformation. Above 4% the proportion of coiled coil domains progressively decreased. The main and new result of our study is the observation of the transition from alpha-helical coiled coils to disordered chains instead of the alpha-helical coiled coil to beta-sheet transition that occurs in wet fibers.

  15. Peculiarities of section topograms for the multiple diffraction of X rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, V. G., E-mail: kohnvict@yandex.ru; Smirnova, I. A.

    The distortion of interference fringes on the section topograms of single crystal due to the multiple diffraction of X rays has been investigated. The cases of the 220 and 400 reflections in a silicon crystal in the form of a plate with a surface oriented normally to the [001] direction are considered both theoretically and experimentally. The same section topogram exhibits five cases of multiple diffraction at small azimuthal angles for the 400 reflection and MoK{sub α} radiation, while the topogram for the 220 reflection demonstrates two cases of multiple diffraction. All these cases correspond to different combinations of reciprocalmore » lattice vectors. Exact theoretical calculations of section topograms for the aforementioned cases of multiple diffraction have been performed for the first time. The section topograms exhibit two different distortion regions. The distortions in the central region of the structure are fairly complex and depend strongly on the azimuthal angle. In the tails of the multiple diffraction region, there is a shift of two-beam interference fringes, which can be observed even with a laboratory X-ray source.« less

  16. Structure and Phase Transitions of Poly (Hexamethylene p,p'-Bibenzoate) as Studied by DSC and Real-Time SAXS/WAXS Employing Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katerska, B.; Krasteva, M.; Perez, E.

    2007-04-23

    Real-time small and wide angle X-ray scattering as well as DSC studies were carried out in order to analyzes the structure and phase transitions of liquid crystalline thermotropic poly(methylene p,p' bibenzoat)

  17. Description of small-scale fluctuations in the diffuse X-ray background.

    NASA Technical Reports Server (NTRS)

    Cavaliere, A.; Friedland, A.; Gursky, H.; Spada, G.

    1973-01-01

    An analytical study of the fluctuations on a small angular scale expected in the diffuse X-ray background in the presence of unresolved sources is presented. The source population is described by a function N(S), giving the number of sources per unit solid angle and unit apparent flux S. The distribution of observed flux, s, in each angular resolution element of a complete sky survey is represented by a function Q(s). The analytical relation between the successive, higher-order moments of N(S) and Q(s) is described. The goal of reconstructing the source population from the study of the moments of Q(s) of order higher than the second (i.e., the rms fluctuations) is discussed.

  18. X-ray scattering study

    NASA Technical Reports Server (NTRS)

    Wriston, R. S.; Froechtenigt, J. F.

    1972-01-01

    A soft X-ray glancing incidence telescope mirror and a group of twelve optical flat samples were used to study the scattering of X-rays. The mirror was made of Kanigen coated beryllium and the images produced were severely limited by scattering of X-rays. The best resolution attained was about fifteen arc seconds. The telescope efficiency was found to be 0.0006. The X-ray beam reflected from the twelve optical flat samples was analyzed by means of a long vacuum system of special design for these tests. The scattering then decreased with increasing angle of incidence until a critical angle was passed. At larger angles the scattering increased again. The samples all scattered more at 44 A than at 8 A. Metal samples were found to have about the same scattering at 44 A but greater scattering at 8 A than glass samples.

  19. Manufacturing and characterization of Ni-free N-containing ODS austenitic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalska-Mori, A.; Mamiya, H.; Ohnuma, M.

    Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 ºC. Sintering at 1000 ºC for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128more » nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.« less

  20. Manufacturing and characterization of Ni-free N-containing ODS austenitic alloys

    DOE PAGES

    Kowalska-Mori, A.; Mamiya, H.; Ohnuma, M.; ...

    2018-01-17

    Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 ºC. Sintering at 1000 ºC for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128more » nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.« less

  1. Local texture and grain boundary misorientations in high H(C) oxide superconductors

    NASA Astrophysics Data System (ADS)

    Kroeger, D. M.; Goyal, A.; Specht, E. D.; Tkaczyk, J. E.; Sutliff, J.; Deluca, J. A.; Wang, Z. L.; Riley, G. N., Jr.

    The orientations of hundreds of contiguous grains in high J(C) TlBa2Ca2Cu3O(x) deposits and (Bi, Pb)2 Sr2Ca2Cu3O(y) powder-in-tube tapes have been determined from electron back scatter diffraction patterns (EBSP). The misorientation angles and axes of rotation (angle/axis pairs) for grain boundaries connecting these grains were calculated. For both materials the population of low angle boundaries was found to be much larger than expected from calculations based on the macroscopic texture. The TlBa2Ca2Cu3O(x) deposits exhibit pronounced local texture which has been defined by EBSP and x-ray diffraction. Locally grains show significant in-plane (a-axis) alignment even though macroscopically a-axes are random, indicating the presence of colonies of grains with similar a-axis orientations. In (Bi, Pb)2 Sr2Ca2Cu3O(x) tapes no local texture was observed. In both materials the existence of connected networks of small angle grain boundaries can be inferred. Coincident site lattice (CSL) grain boundaries are also present in higher than expected numbers. Grain boundary energy thus appears to play a significant role in enhancing the population of potentially strongly-linked boundaries. We propose that long range strongly-linked conduction occurs through a percolative network small angle (and perhaps CSL) grain boundaries.

  2. Inter- and intraobserver reliability of the vertebral, local and segmental kyphosis in 120 traumatic lumbar and thoracic burst fractures: evaluation in lateral X-rays and sagittal computed tomographies

    PubMed Central

    Brunner, Alexander; Gühring, Markus; Schmälzle, Traude; Weise, Kuno; Badke, Andreas

    2009-01-01

    Evaluation of the kyphosis angle in thoracic and lumbar burst fractures is often used to indicate surgical procedures. The kyphosis angle could be measured as vertebral, segmental and local kyphosis according to the method of Cobb. The vertebral, segmental and local kyphosis according to the method of Cobb were measured at 120 lateral X-rays and sagittal computed tomographies of 60 thoracic and 60 lumbar burst fractures by 3 independent observers on 2 separate occasions. Osteoporotic fractures were excluded. The intra- and interobserver reliability of these angles in X-ray and computed tomogram, using the intra class correlation coefficient (ICC) were evaluated. Highest reproducibility showed the segmental kyphosis followed by the vertebral kyphosis. For thoracic fractures segmental kyphosis shows in X-ray “excellent” inter- and intraobserver reliabilities (ICC 0.826, 0.802) and for lumbar fractures “good” to “excellent” inter- and intraobserver reliabilities (ICC = 0.790, 0.803). In computed tomography, the segmental kyphosis showed “excellent” inter- and intraobserver reliabilities (ICC = 0.824, 0.801) for thoracic and “excellent” inter- and intraobserver reliabilities (ICC = 0.874, 0.835) for the lumbar fractures. Regarding both diagnostic work ups (X-ray and computed tomography), significant differences were evaluated in interobserver reliabilities for vertebral kyphosis measured in lumbar fracture X-rays (p = 0.035) and interobserver reliabilities for local kyphosis, measured in thoracic fracture X-rays (p = 0.010). Regarding both fracture localizations (thoracic and lumbar fractures), significant differences could only be evaluated in interobserver reliabilities for the local kyphosis measured in computed tomographies (p = 0.045) and in intraobserver reliabilities for the vertebral kyphosis measured in X-rays (p = 0.024). “Good” to “excellent” inter- and intraobserver reliabilities for vertebral, segmental and local kyphosis in X-ray make these angles to a helpful tool, indicating surgical procedures. For the practical use in lateral X-ray, we emphasize the determination of the segmental kyphosis, because of the highest reproducibility of this angle. “Good” to “excellent” inter- and intraobserver reliabilities for these three angles could also be evaluated in computed tomographies. Therefore, also in computed tomography, the use of these three angles seems to be generally possible. For a direct correlation of the results in lateral X-ray and in computed tomography, further studies should be needed. PMID:19953277

  3. Solution Structures of 2 : 1 And 1 : 1 DNA Polymerase - DNA Complexes Probed By Ultracentrifugation And Small-Angle X-Ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, K.H.; /Ohio State U.; Niebuhr, M.

    2009-04-30

    We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase {beta} (Pol {beta}) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol {beta}-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol {beta}-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDamore » 5{prime}-dRP lyase domain of the second Pol {beta} molecule with the active site of the 1 : 1 Pol {beta}-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5{prime}-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5{prime}-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol {beta}-DNA complex enhances the function of Pol {beta}.« less

  4. Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments.

    PubMed

    Zhang, Yan; Inouye, Hideyo; Yang, Lin; Himmel, Michael E; Tucker, Melvin; Makowski, Lee

    Cellulose is an attractive candidate as a feedstock for sustainable bioenergy because of its global abundance. Pretreatment of biomass has significant influence on the chemical availability of cellulose locked in recalcitrant microfibrils. Optimizing pretreatment depends on an understanding of its impact on the microscale and nanoscale molecular architecture. X-ray scattering experiments have been performed on native and pre-treated maize stover and models of cellulose architecture have been derived from these data. Ultra small-angle, very small-angle and small-angle X-ray scattering (USAXS, VSAXS and SAXS) probe three different levels of architectural scale. USAXS and SAXS have been used to study cellulose at two distinct length scales, modeling the fibrils as ~30 Å diameter rods packed into ~0.14 μm diameter bundles. VSAXS is sensitive to structural features at length scales between these two extremes. Detailed analysis of diffraction patterns from untreated and pretreated maize using cylindrical Guinier plots and the derivatives of these plots reveals the presence of substructures within the ~0.14 μm diameter bundles that correspond to grouping of cellulose approximately 30 nm in diameter. These sub-structures are resilient to dilute acid pretreatments but are sensitive to pretreatment when iron sulfate is added. These results provide evidence of the hierarchical arrangement of cellulose at three length scales and the evolution of these arrangements during pre-treatments.

  5. Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yan; Inouye, Hideyo; Yang, Lin

    2015-02-28

    Cellulose can work as a feedstock for sustainable bioenergy because of its global abundance. Pretreatment of biomass has significant influence on the chemical availability of cellulose locked in recalcitrant microfibrils. Optimizing pretreatment depends on an understanding of its impact on the microscale and nanoscale molecular architecture. X-ray scattering experiments have been performed on native and pre-treated maize stover and models of cellulose architecture have been derived from these data. Ultra small-angle, very small-angle and small-angle X-ray scattering (USAXS, VSAXS and SAXS) probe three different levels of architectural scale. USAXS and SAXS have been used to study cellulose at two distinctmore » length scales, modeling the fibrils as ~30 Å diameter rods packed into ~0.14 μm diameter bundles. VSAXS is sensitive to structural features at length scales between these two extremes. Detailed analysis of diffraction patterns from untreated and pretreated maize using cylindrical Guinier plots and the derivatives of these plots reveals the presence of substructures within the ~0.14 μm diameter bundles that correspond to grouping of cellulose approximately 30 nm in diameter. These sub-structures are resilient to dilute acid pretreatments but are sensitive to pretreatment when iron sulfate is added. Our results provide evidence of the hierarchical arrangement of cellulose at three length scales and the evolution of these arrangements during pre-treatments.« less

  6. Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments

    DOE PAGES

    Zhang, Yan; Inouye, Hideyo; Yang, Lin; ...

    2015-02-28

    Cellulose is an attractive candidate as a feedstock for sustainable bioenergy because of its global abundance. Pretreatment of biomass has significant influence on the chemical availability of cellulose locked in recalcitrant microfibrils. Optimizing pretreatment depends on an understanding of its impact on the microscale and nanoscale molecular architecture. X-ray scattering experiments have been performed on native and pre-treated maize stover and models of cellulose architecture have been derived from these data. Ultra small-angle, very small-angle and small-angle X-ray scattering (USAXS, VSAXS and SAXS) probe three different levels of architectural scale. USAXS and SAXS have been used to study cellulose atmore » two distinct length scales, modeling the fibrils as ~30 Å diameter rods packed into ~0.14 μm diameter bundles. VSAXS is sensitive to structural features at length scales between these two extremes. Detailed analysis of diffraction patterns from untreated and pretreated maize using cylindrical Guinier plots and the derivatives of these plots reveals the presence of substructures within the ~0.14 μm diameter bundles that correspond to grouping of cellulose approximately 30 nm in diameter. These sub-structures are resilient to dilute acid pretreatments but are sensitive to pretreatment when iron sulfate is added. Lastly, these results provide evidence of the hierarchical arrangement of cellulose at three length scales and the evolution of these arrangements during pre-treatments.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checco, A.; Hofmann, T.; DiMasi, E.

    The details of air nanobubble trapping at the interface between water and a nanostructured hydrophobic silicon surface are investigated using X-ray scattering and contact angle measurements. Large-area silicon surfaces containing hexagonally packed, 20 nm wide hydrophobic cavities provide ideal model surfaces for studying the morphology of air nanobubbles trapped inside cavities and its dependence on the cavity depth. Transmission small-angle X-ray scattering measurements show stable trapping of air inside the cavities with a partial water penetration of 5-10 nm into the pores, independent of their large depth variation. This behavior is explained by consideration of capillary effects and the cavitymore » geometry. For parabolic cavities, the liquid can reach a thermodynamically stable configuration - a nearly planar nanobubble meniscus - by partially penetrating into the pores. This microscopic information correlates very well with the macroscopic surface wetting behavior.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    X Li; Y Mao; H Ma

    An ionic liquid (IL) 1-docosanyl-3-methylimidazolium bromide was incorporated into ultra-high molecular weight polyethylene (UHMWPE) and formed IL/UHMWPE blends by solution mixing. The structure evolution of these blends during uniaxial stretching was followed by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. During deformation at room temperature, deformation-induced phase transformation from orthorhombic to monoclinic phase was observed in both IL/UHMWPE blends and neat UHMWPE. The elongation-to-break ratios of IL/UHMWPE blends were found to increase by 2-3 times compared with that of pure UHMWPE, while the tensile strength remained about the same. In contrast, during deformation at highmore » temperature (120 C), no phase transformation was observed. However, the blend samples showed much better toughness, higher crystal orientation and higher tilting extent of lamellar structure at high strains.« less

  9. Large-angle x-ray scatter in Talbot-Lau interferometry for breast imaging

    PubMed Central

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew

    2014-01-01

    Monte Carlo simulations were used to investigate large-angle x-ray scatter at design energy of 25 keV during small field of view (9.6 cm × 5 cm) differential phase contrast imaging of the breast using Talbot-Lau interferometry. Homogenous, adipose and fibroglandular breasts of uniform thickness ranging from 2 to 8 cm encompassing the field of view were modeled. Theoretically determined transmission efficiencies of the gratings were used to validate the Monte Carlo simulations, followed by simulations to determine the x-ray scatter reaching the detector. The recorded x-ray scatter was classified into x-ray photons that underwent at least one Compton interaction (incoherent scatter) and Rayleigh interaction alone (coherent scatter) for further analysis. Monte Carlo based estimates of transmission efficiencies showed good correspondence (r2 > 0.99) with theoretical estimates. Scatter-to-primary ratio increased with increasing breast thickness, ranging from 0.11 to 0.22 for 2 to 8 cm thick adipose breasts and from 0.12 to 0.28 for 2 to 8 cm thick fibroglandular breasts. The analyzer grating reduced incoherent scatter by ~18% for 2 cm thick adipose breast and by ~35% for 8 cm thick fibroglandular breast. Coherent scatter was the dominant contributor to the total scatter. Coherent-to-incoherent scatter ratio ranged from 2.2 to 3.1 for 2 to 8 cm thick adipose breasts and from 2.7 to 3.4 for 2 to 8 cm thick fibroglandular breasts. PMID:25295630

  10. Inclination Angles of Black Hole X-Ray Binaries Manifest Strong Gravity around Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiao-Ling; Yao, Yangsen

    2002-01-01

    System inclination angles have been determined for about 15 X-ray binaries, in which stellar mass black holes are considered to exist. These inclination angles range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity. However, this peak is reproduced naturally if we model the observed X-ray radiations as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer. Therefore the peak of the inclination angle distribution provides evidence or strong gravity around stellar mass black holes.

  11. Graphene-Based Polymer Nanocomposites

    DTIC Science & Technology

    2015-03-31

    Raman band I(δ) X - ray scattering intensity in the azimuthal scan I(r) Raman band intensity within laser spot I(ω...Krenchel orientation factor Θ Angle between the incident and the scattering X - ray θ Angle between the surface normal of graphene and sample λ...Wavelength of laser or X - ray λ2/λ4 Parameter in orientation distribution function µ Molecular dipole moment

  12. Multifunctional Metallosupramolecular Materials

    DTIC Science & Technology

    2011-02-28

    supramolecular polymers based on 16 and Zn(NTf2)2 using small- angle X - ray scattering (SAXS) and transmission electron microscopy (TEM), carried out by...The SAXS data (Figure 13a) show multiple strong Bragg diffraction maxima at integer multiples of the scattering vector of the primary diffraction ...a minor amount of residual double bonds in the poly(ethylene-co-butylene) core. The metallopolymers 16·[Zn(NTf2)2] x exhibit similar traces, but do

  13. Surface topography of 1€ coin measured by stereo-PIXE

    NASA Astrophysics Data System (ADS)

    Gholami-Hatam, E.; Lamehi-Rachti, M.; Vavpetič, P.; Grlj, N.; Pelicon, P.

    2013-07-01

    We demonstrate the stereo-PIXE method by measurement of surface topography of the relief details on 1€ coin. Two X-ray elemental maps were simultaneously recorded by two X-ray detectors positioned at the left and the right side of the proton microbeam. The asymmetry of the yields in the pixels of the two X-ray maps occurs due to different photon attenuation on the exit travel path of the characteristic X-rays from the point of emission through the sample into the X-ray detectors. In order to calibrate the inclination angle with respect to the X-ray asymmetry, a flat inclined surface model was at first applied for the sample in which the matrix composition and the depth elemental concentration profile is known. After that, the yield asymmetry in each image pixel was transferred into corresponding local inclination angle using calculated dependence of the asymmetry on the surface inclination. Finally, the quantitative topography profile was revealed by integrating the local inclination angle over the lateral displacement of the probing beam.

  14. Computed tomographic images using tube source of x rays: interior properties of the material

    NASA Astrophysics Data System (ADS)

    Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.

    2002-01-01

    An image intensifier based computed tomography scanner and a tube source of x-rays are used to obtain the images of small objects, plastics, wood and soft materials in order to know the interior properties of the material. A new method is developed to estimate the degree of monochromacy, total solid angle, efficiency and geometrical effects of the measuring system and the way to produce monoenergetic radiation. The flux emitted by the x-ray tube is filtered using the appropriate filters at the chosen optimum energy and reasonable monochromacy is achieved and the images are acceptably distinct. Much attention has been focused on the imaging of small objects of weakly attenuating materials at optimum value. At optimum value it is possible to calculate the three-dimensional representation of inner and outer surfaces of the object. The image contrast between soft materials could be significantly enhanced by optimal selection of the energy of the x-rays by Monte Carlo methods. The imaging system is compact, reasonably economic, has a good contrast resolution, simple operation and routine availability and explores the use of optimizing tomography for various applications.

  15. The static structure and dynamics of cadmium sulfide nanoparticles within poly(styrene- block-isoprene) diblock copolymer melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Woo -Sik; Koo, Peter; Bryson, Kyle

    Here, the static structure and dynamic behavior of cadmium sulfide nanoparticles suspended in block copolymer matrix are investigated using transmission electron microscopy, small-angle X-ray scattering, and X-ray photon correlation spectroscopy. The transmission electron micro- scopy study shows that cadmium sulfide nanoparticles are preferentially segregated within the polyisoprene domain of a poly(styrene- block-isoprene) diblock copolymer. For the dynamics study, X-ray photon correlation spectroscopy captures the relaxation process of cadmium sulfide nanoparticles. The measured characteristic relaxation time reveals that the observed dynamics are hyperdiffusive. The characteristic velocity and corresponding activation energy, which are hallmarks of a hyperdiffusive system, are determined from themore » relationship between the characteristic relaxation time and the wavevector.« less

  16. The static structure and dynamics of cadmium sulfide nanoparticles within poly(styrene- block-isoprene) diblock copolymer melts

    DOE PAGES

    Jang, Woo -Sik; Koo, Peter; Bryson, Kyle; ...

    2015-12-20

    Here, the static structure and dynamic behavior of cadmium sulfide nanoparticles suspended in block copolymer matrix are investigated using transmission electron microscopy, small-angle X-ray scattering, and X-ray photon correlation spectroscopy. The transmission electron micro- scopy study shows that cadmium sulfide nanoparticles are preferentially segregated within the polyisoprene domain of a poly(styrene- block-isoprene) diblock copolymer. For the dynamics study, X-ray photon correlation spectroscopy captures the relaxation process of cadmium sulfide nanoparticles. The measured characteristic relaxation time reveals that the observed dynamics are hyperdiffusive. The characteristic velocity and corresponding activation energy, which are hallmarks of a hyperdiffusive system, are determined from themore » relationship between the characteristic relaxation time and the wavevector.« less

  17. How temperature determines formation of maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Girod, Matthias; Vogel, Stefanie; Szczerba, Wojciech; Thünemann, Andreas F.

    2015-04-01

    We report on the formation of polymer-stabilized superparamagnetic single-core and multi-core maghemite nanoparticles. The particle formation was carried out by coprecipitation of Fe(II) and Fe(III) sulfate in a continuous aqueous process using a micromixer system. Aggregates containing 50 primary particles with sizes of 2 nm were formed at a reaction temperature of 30 °C. These particles aggregated further with time and were not stable. In contrast, stable single-core particles with a diameter of 7 nm were formed at 80 °C as revealed by small-angle X-ray scattering (SAXS) coupled in-line with the micromixer for particle characterization. X-ray diffraction and TEM confirmed the SAXS results. X-ray absorption near-edge structure spectroscopy (XANES) identified the iron oxide phase as maghemite.

  18. Low energy X-ray grating interferometry at the Brazilian Synchrotron

    NASA Astrophysics Data System (ADS)

    Koch, F. J.; O'Dowd, F. P.; Cardoso, M. B.; Da Silva, R. R.; Cavicchioli, M.; Ribeiro, S. J. L.; Schröter, T. J.; Faisal, A.; Meyer, P.; Kunka, D.; Mohr, J.

    2017-06-01

    Grating based X-ray differential phase contrast imaging has found a large variety of applications in the last decade. Different types of samples call for different imaging energies, and efforts have been made to establish the technique all over the spectrum used for conventional X-ray imaging. Here we present a two-grating interferometer working at 8.3 keV, implemented at the bending magnet source of the IMX beamline of the Brazilian Synchrotron Light Laboratory. The low design energy is made possible by gratings fabricated on polymer substrates, and makes the interferometer mainly suited to the investigation of light and thin samples. We investigate polymer microspheres filled with Fe2O3 nanoparticles, and find that these particles give rise to a significant visibility reduction due to small angle scattering.

  19. Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net.

    PubMed

    Wu, Hongbo; Bailey, Chris; Rasoulinejad, Parham; Li, Shuo

    2018-05-18

    Automated quantitative estimation of spinal curvature is an important task for the ongoing evaluation and treatment planning of Adolescent Idiopathic Scoliosis (AIS). It solves the widely accepted disadvantage of manual Cobb angle measurement (time-consuming and unreliable) which is currently the gold standard for AIS assessment. Attempts have been made to improve the reliability of automated Cobb angle estimation. However, it is very challenging to achieve accurate and robust estimation of Cobb angles due to the need for correctly identifying all the required vertebrae in both Anterior-posterior (AP) and Lateral (LAT) view x-rays. The challenge is especially evident in LAT x-ray where occlusion of vertebrae by the ribcage occurs. We therefore propose a novel Multi-View Correlation Network (MVC-Net) architecture that can provide a fully automated end-to-end framework for spinal curvature estimation in multi-view (both AP and LAT) x-rays. The proposed MVC-Net uses our newly designed multi-view convolution layers to incorporate joint features of multi-view x-rays, which allows the network to mitigate the occlusion problem by utilizing the structural dependencies of the two views. The MVC-Net consists of three closely-linked components: (1) a series of X-modules for joint representation of spinal structure (2) a Spinal Landmark Estimator network for robust spinal landmark estimation, and (3) a Cobb Angle Estimator network for accurate Cobb Angles estimation. By utilizing an iterative multi-task training algorithm to train the Spinal Landmark Estimator and Cobb Angle Estimator in tandem, the MVC-Net leverages the multi-task relationship between landmark and angle estimation to reliably detect all the required vertebrae for accurate Cobb angles estimation. Experimental results on 526 x-ray images from 154 patients show an impressive 4.04° Circular Mean Absolute Error (CMAE) in AP Cobb angle and 4.07° CMAE in LAT Cobb angle estimation, which demonstrates the MVC-Net's capability of robust and accurate estimation of Cobb angles in multi-view x-rays. Our method therefore provides clinicians with a framework for efficient, accurate, and reliable estimation of spinal curvature for comprehensive AIS assessment. Copyright © 2018. Published by Elsevier B.V.

  20. Free jet micromixer to study fast chemical reactions by small angle X-ray scattering.

    PubMed

    Marmiroli, Benedetta; Grenci, Gianluca; Cacho-Nerin, Fernando; Sartori, Barbara; Ferrari, Enrico; Laggner, Peter; Businaro, Luca; Amenitsch, Heinz

    2009-07-21

    We present the design, fabrication process, and the first test results of a high aspect ratio micromixer combined with a free jet for under 100 micros time resolved studies of chemical reactions. The whole system has been optimized for synchrotron small angle X-ray scattering (SAXS) experiments. These studies are of particular interest to understand the early stages of chemical reactions, such as the kinetics of nanoparticle formation. The mixer is based on hydrodynamic focusing and works in the laminar regime. The use of a free jet overcomes the fouling of the channels and simultaneously circumvents background scattering from the walls. The geometrical parameters of the device have been optimized using finite element simulations, resulting in smallest features with radius <1 microm, and a channel depth of 60 microm, thus leading to an aspect ratio >60. To achieve the desired dimensions deep X-ray lithography (DXRL) has been employed. The device has been tested. First the focusing effect has been visualized using fluorescein. Then the evolution and stability of the jet, which exits the mixer nozzle at 13 m s(-1), have been characterized. Finally SAXS measurements have been conducted of the formation of calcium carbonate from calcium chloride and sodium carbonate. The fastest measurement is 75 micros after the beginning of the mixing of the reagents. The nanostructural evolution of chemical reactions is clearly discernible.

  1. Production of thick uniform-coating films containing rectorite on nanofibers through the use of an automated coating machine.

    PubMed

    Wu, Yang; Li, Xueyong; Shi, Xiaowen; Zhan, Yingfei; Tu, Hu; Du, Yumin; Deng, Hongbing; Jiang, Linbin

    2017-01-01

    When an efficient automated coating machine is used to process layer-by-layer (LBL) deposited nanofibrous mats, it causes an obvious planar effect on the surface of the mats, which can be eliminated through ultimate immersion. During this process, chitosan (CS) - rectorite (REC) intercalated composite films are built on the surface of cellulose acetate (CA) nanofibrous mats by a coating machine. Then, the immersion process is utilized to allow positively charged CS or CS-REC intercalated composites to uniformly assemble on the surface of negatively charged CA nanofibers. An investigation into the morphology of the resultant scaffolds confirms that the uniquely small pore size, high specific surface area and typically three-dimensional (3D) structure of nanofibrous mats remain present. The results of Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) indicate that it is feasible to assemble nanofibrous mats using a coating machine. The intercalated structure of CS-REC is confirmed by the results of small-angle X-ray diffraction (SAXRD) and wide-angle X-ray diffraction (WAXRD). The results of the cell experiment and antibacterial test demonstrate that the addition of REC not only has little impact on the cytocompatibility of the mats but also enhances their ability to inhibit bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nonuniformity in natural rubber as revealed by small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscopy.

    PubMed

    Karino, Takeshi; Ikeda, Yuko; Yasuda, Yoritaka; Kohjiya, Shinzo; Shibayama, Mitsuhiro

    2007-02-01

    The microscopic structures of natural rubber (NR) and deproteinized NR (DPNR) were investigated by means of small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and atomic force microscopy (AFM). They were compared to those of isoprene rubber (IR), which is a synthetic analogue of NR in terms of chemical structure without any non-rubber components like proteins. Comparisons of the structure and mechanical properties of NR, DPNR, and IR lead to the following conclusions. (i) The well-known facts, for example, the outstanding green strength of NR and strain-induced crystallization, are due not much to the presence of proteins but to other components such as the presence of phospholipids and/or the higher stereoregularity of NR. It also became clear the naturally residing proteins accelerate the upturn of stress at low strain. The protein phases work as cross-linking sites and reinforcing fillers in the rubbery matrix. (ii) The microscopic structures of NR were successfully reproduced by SANS intensity functions consisting of squared-Lorentz and Lorentz functions, indicating the presence of inhomogeneities in bulk and thermal concentration fluctuations in swollen state, respectively. On the other hand, IR rubbers were homogeneous in bulk. (iii) The inhomogeneities in NR are assigned to protein aggregates of the order of 200 A or larger. Although these aggregates are larger in size as well as in volume fraction than those of cross-link inhomogeneities introduced by cross-linking, they are removed by deproteinization. (iv) Swelling of both NR and IR networks introduces gel-like concentration fluctuations whose mesh size is of the order of 20 A.

  3. Biological Small Angle Scattering: Techniques, Strategies and Tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, Barnali; Muñoz, Inés G.; Urban, Volker S.

    This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins,more » and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications.The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS.The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for exploring the diversity of solution SAS methods and applications.« less

  4. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers.

    PubMed

    Vandavasi, Venu Gopal; Putnam, Daniel K; Zhang, Qiu; Petridis, Loukas; Heller, William T; Nixon, B Tracy; Haigler, Candace H; Kalluri, Udaya; Coates, Leighton; Langan, Paul; Smith, Jeremy C; Meiler, Jens; O'Neill, Hugh

    2016-01-01

    A cellulose synthesis complex with a "rosette" shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers1

    PubMed Central

    Zhang, Qiu; Petridis, Loukas; Nixon, B. Tracy; Haigler, Candace H.; Kalluri, Udaya; Coates, Leighton; Smith, Jeremy C.; Meiler, Jens

    2016-01-01

    A cellulose synthesis complex with a “rosette” shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the “hexamer of trimers” model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product. PMID:26556795

  6. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers

    DOE PAGES

    Vandavasi, Venu Gopal; Putnam, Daniel K.; Zhang, Qiu; ...

    2015-11-10

    In a cellulose synthesis complex a "rosette" shape is responsible for the synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. Our work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer inmore » solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. Moreover, the conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. Finally, this study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.« less

  7. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  8. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  9. RHEED-TRAXS as a tool for in-situ stoichiometry control.

    NASA Astrophysics Data System (ADS)

    Chandril, Sandeep; Keenan, Cameron; Myers, Thomas; Lederman, David

    2008-03-01

    RHEED-total reflection x-ray spectroscopy (-TRAXS) is an in-situ chemical and structural characterization technique which is highly surface sensitive. This consists of a grazing-angle electron beam from which characteristic x-rays from the sample are measured also at grazing angles. We have demonstrated that monolayer sensitivity in Y and Mn films on GaN can be achieved. We have also developed a theoretical model for the angular dependence of the x-ray Kα peaks for the thin films, based on Parratt's formalism for x-ray reflectivity and the electron trajectory simulation software CASINO, to correct for grazing angle electron beam as a source for x-rays. As the angular dependence is highly dependent upon the film thickness and the smoothness of the film, it can be used to determine the deposition rate of individual elements as well as the interface chemical roughness

  10. JMFA2—a graphically interactive Java program that fits microfibril angle X-ray diffraction data

    Treesearch

    Steve P. Verrill; David E. Kretschmann; Victoria L. Herian

    2006-01-01

    X-ray diffraction techniques have the potential to decrease the time required to determine microfibril angles dramatically. In this paper, we discuss the latest version of a curve-fitting toll that permits us to reduce the time required to evaluate MFA X-ray diffraction patterns. Further, because this tool reflects the underlying physics more accurately than existing...

  11. Method of Generating X-Ray Diffraction Data for Integral Detection of Twin Defects in Super-Hetero-Epitaxial Materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2009-01-01

    A method provides X-ray diffraction (XRD) data suitable for integral detection of a twin defect in a strained or lattice-matched epitaxial material made from components having crystal structures having symme try belonging to different space groups. The material is mounted in a n X-ray diffraction (XRD) system. In one embodiment, the XRD system's goniometer angle Omega is set equal to (Theta(sub B)-Beta) where The ta(sub B) is a Bragg angle for a designated crystal plane of the allo y that is disposed at a non-perpendicular orientation with respect to the {111) crystal plane, and Beta is the angle between the designate d crystal plane and a { 111 } crystal plane of one of the epitaxial components. The XRD system's detector angle is set equal to (Theta(su b B)+Beta). The material can be rotated through an angle of azimuthal rotation Phi about the axis aligned with the material. Using the det ector, the intensity of the X-ray diffraction is recorded at least at the angle at which the twin defect occurs.

  12. Probing multi-scale mechanical damage in connective tissues using X-ray diffraction.

    PubMed

    Bianchi, Fabio; Hofmann, Felix; Smith, Andrew J; Thompson, Mark S

    2016-11-01

    The accumulation of microstructural collagen damage following repetitive loading is linked to painful and debilitating tendon injuries. As a hierarchical, semi-crystalline material, collagen mechanics can be studied using X-ray diffraction. The aim of the study was to describe multi-structural changes in tendon collagen following controlled plastic damage (5% permanent strain). We used small angle X-ray scattering (SAXS) to interrogate the spacing of collagen molecules within a fibril, and wide angle X-ray scattering (WAXS) to measure molecular strains under macroscopic loading. Simultaneous recordings of SAXS and WAXS patterns, together with whole-tissue strain in physiologically hydrated rat-tail tendons were made during increments of in situ tensile loading. Results showed that while tissue level modulus was unchanged, fibril modulus decreased significantly, and molecular modulus significantly increased. Further, analysis of higher order SAXS peaks suggested structural changes in the gap and overlap regions, possibly localising the damage to molecular cross-links. Our results provide new insight into the fundamental damage processes at work in collagenous tissues and point to new directions for their mitigation and repair. This article reports the first in situ loading synchrotron studies on mechanical damage in collagenous tissues. We provide new insight into the nano- and micro-structural mechanisms of damage processes. Pre-damaged tendons showed differential alteration of moduli at macro, micro and nano-scales as measured using X-ray scattering techniques. Detailed analysis of higher order diffraction peaks suggested damage is localised to molecular cross-links. The results are consistent with previous X-ray scattering studies of tendons and also with recent thermal stability studies on damaged material. Detailed understanding of damage mechanisms is essential in the development of new therapies promoting tissue repair. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1 μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. Utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  14. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  15. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE PAGES

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas; ...

    2016-09-02

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  16. Anisotropic imaging performance in indirect x-ray imaging detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badano, Aldo; Kyprianou, Iacovos S.; Sempau, Josep

    We report on the variability in imaging system performance due to oblique x-ray incidence, and the associated transport of quanta (both x rays and optical photons) through the phosphor, in columnar indirect digital detectors. The analysis uses MANTIS, a combined x-ray, electron, and optical Monte Carlo transport code freely available. We describe the main features of the simulation method and provide some validation of the phosphor screen models considered in this work. We report x-ray and electron three-dimensional energy deposition distributions and point-response functions (PRFs), including optical spread in columnar phosphor screens of thickness 100 and 500 {mu}m, for 19,more » 39, 59, and 79 keV monoenergetic x-ray beams incident at 0 deg., 10 deg., and 15 deg. . In addition, we present pulse-height spectra for the same phosphor thickness, x-ray energies, and angles of incidence. Our results suggest that the PRF due to the phosphor blur is highly nonsymmetrical, and that the resolution properties of a columnar screen in a tomographic, or tomosynthetic imaging system varies significantly with the angle of x-ray incidence. Moreover, we find that the noise due to the variability in the number of light photons detected per primary x-ray interaction, summarized in the information or Swank factor, is somewhat independent of thickness and incidence angle of the x-ray beam. Our results also suggest that the anisotropy in the PRF is not less in screens with absorptive backings, while the noise introduced by variations in the gain and optical transport is larger. Predictions from MANTIS, after additional validation, can provide the needed understanding of the extent of such variations, and eventually, lead to the incorporation of the changes in imaging performance with incidence angle into the reconstruction algorithms for volumetric x-ray imaging systems.« less

  17. When will low-contrast features be visible in a STEM X-ray spectrum image?

    DOE PAGES

    Parish, Chad M.

    2015-04-01

    When will a small or low-contrast feature, such as an embedded second-phase particle, be visible in a scanning transmission electron microscopy (STEM) X-ray map? This work illustrates a computationally inexpensive method to simulate X-ray maps and spectrum images (SIs), based upon the equations of X-ray generation and detection. To particularize the general procedure, an example of nanostructured ferritic alloy (NFA) containing nm-sized Y 2Ti 2O 7 embedded precipitates in ferritic stainless steel matrix is chosen. The proposed model produces physically appearing simulated SI data sets, which can either be reduced to X-ray dot maps or analyzed via multivariate statistical analysis.more » Comparison to NFA X-ray maps acquired using three different STEM instruments match the generated simulations quite well, despite the large number of simplifying assumptions used. A figure of merit of electron dose multiplied by X-ray collection solid angle is proposed to compare feature detectability from one data set (simulated or experimental) to another. The proposed method can scope experiments that are feasible under specific analysis conditions on a given microscope. As a result, future applications, such as spallation proton–neutron irradiations, core-shell nanoparticles, or dopants in polycrystalline photovoltaic solar cells, are proposed.« less

  18. Introduction | Center for Cancer Research

    Cancer.gov

    Introduction In order to meet increasing demands from both NIH intramural and extramural communities for access to a small angle X-ray scattering (SAXS) resource, the Center for Cancer Research (CCR) under the leadership of Jeffrey Strathern and Bob Wiltrout established a partnership user program (PUP) with the Argonne National Laboratory Photon Source in October 2008.

  19. Small-angle X-ray scattering reveals the solution structure of the full-length DNA gyrase a subunit.

    PubMed

    Costenaro, Lionel; Grossmann, J Günter; Ebel, Christine; Maxwell, Anthony

    2005-02-01

    DNA gyrase is the topoisomerase uniquely able to actively introduce negative supercoils into DNA. Vital in all bacteria, but absent in humans, this enzyme is a successful target for antibacterial drugs. From biophysical experiments in solution, we report the low-resolution structure of the full-length A subunit (GyrA). Analytical ultracentrifugation shows that GyrA is dimeric, but nonglobular. Ab initio modeling from small-angle X-ray scattering allows us to retrieve the molecular envelope of GyrA and thereby the organization of its domains. The available crystallographic structure of the amino-terminal domain (GyrA59) forms a dimeric core, and two additional pear-shaped densities closely flank it in an unexpected position. Each accommodates very well a carboxyl-terminal domain (GyrA-CTD) built from a homologous crystallographic structure. The uniqueness of gyrase is due to the ability of the GyrA-CTDs to wrap DNA. Their position within the GyrA structure strongly suggests a large conformation change of the enzyme upon DNA binding.

  20. Real-Time Grazing Incidence Small Angle X-Ray Scattering Studies of the Growth Kinetics of Sputter-Deposited Silicon Thin Films

    NASA Astrophysics Data System (ADS)

    Demasi, Alexander; Erdem, Gozde; Chinta, Priya; Headrick, Randall; Ludwig, Karl

    2012-02-01

    The fundamental kinetics of thin film growth remains an active area of investigation. In this study, silicon thin films were grown at room temperature on silicon substrates via both on-axis and off-axis plasma sputter deposition, while the evolution of surface morphology was measured in real time with in-situ grazing incidence small angle x-ray scattering (GISAXS) at the National Synchrotron Light Source. GISAXS is a surface-sensitive, non-destructive technique, and is therefore ideally suited to a study of this nature. In addition to investigating the effect of on-axis versus off-axis bombardment, the effect of sputter gas partial pressure was examined. Post-facto, ex-situ atomic force microscopy (AFM) was used to measure the final surface morphology of the films, which could subsequently be compared with the surface morphology determined by GISAXS. Comparisons are made between the observed surface evolution during growth and theoretical predictions. This work was supported by the Department of Energy, Office of Basic Energy Sciences.

  1. Structure of Dimeric and Tetrameric Complexes of the BAR Domain Protein PICK1 Determined by Small-Angle X-Ray Scattering.

    PubMed

    Karlsen, Morten L; Thorsen, Thor S; Johner, Niklaus; Ammendrup-Johnsen, Ina; Erlendsson, Simon; Tian, Xinsheng; Simonsen, Jens B; Høiberg-Nielsen, Rasmus; Christensen, Nikolaj M; Khelashvili, George; Streicher, Werner; Teilum, Kaare; Vestergaard, Bente; Weinstein, Harel; Gether, Ulrik; Arleth, Lise; Madsen, Kenneth L

    2015-07-07

    PICK1 is a neuronal scaffolding protein containing a PDZ domain and an auto-inhibited BAR domain. BAR domains are membrane-sculpting protein modules generating membrane curvature and promoting membrane fission. Previous data suggest that BAR domains are organized in lattice-like arrangements when stabilizing membranes but little is known about structural organization of BAR domains in solution. Through a small-angle X-ray scattering (SAXS) analysis, we determine the structure of dimeric and tetrameric complexes of PICK1 in solution. SAXS and biochemical data reveal a strong propensity of PICK1 to form higher-order structures, and SAXS analysis suggests an offset, parallel mode of BAR-BAR oligomerization. Furthermore, unlike accessory domains in other BAR domain proteins, the positioning of the PDZ domains is flexible, enabling PICK1 to perform long-range, dynamic scaffolding of membrane-associated proteins. Together with functional data, these structural findings are compatible with a model in which oligomerization governs auto-inhibition of BAR domain function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes

    PubMed Central

    Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra

    2016-01-01

    Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users. PMID:27043614

  3. Structural features of Fab fragments of rheumatoid factor IgM-RF in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, V. V., E-mail: vvo@ns.crys.ras.ru; Lapuk, V. A.; Shtykova, E. V.

    The structural features of the Fab fragments of monoclonal (Waldenstroem's disease) immunoglobulin M (IgM) and rheumatoid immunoglobulin M (IgM-RF) were studied by a complex of methods, including small-angle X-ray scattering (SAXS), electron spin resonance (ESR), and mass spectrometry (MS). The Fab-RF fragment was demonstrated to be much more flexible in the region of interdomain contacts, the molecular weights and the shapes of the Fab and Fab-RF macromolecules in solution being only slightly different. According to the ESR data, the rotational correlation time for a spin label introduced into the peptide sequence for Fab is twice as large as that formore » Fab-RF (21{+-}2 and 11{+-}1 ns, respectively), whereas the molecular weights of these fragments differ by only 0.5% (mass-spectrometric data), which correlates with the results of molecular-shape modeling by small-angle X-ray scattering. The conclusion about the higher flexibility of the Fab-RF fragment contributes to an understanding of the specificity of interactions between the rheumatoid factor and the antigens of the own organism.« less

  4. Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.

    PubMed

    Bruetzel, Linda K; Walker, Philipp U; Gerling, Thomas; Dietz, Hendrik; Lipfert, Jan

    2018-04-11

    Self-assembled DNA structures enable creation of specific shapes at the nanometer-micrometer scale with molecular resolution. The construction of functional DNA assemblies will likely require dynamic structures that can undergo controllable conformational changes. DNA devices based on shape complementary stacking interactions have been demonstrated to undergo reversible conformational changes triggered by changes in ionic environment or temperature. An experimentally unexplored aspect is how quickly conformational transitions of large synthetic DNA origami structures can actually occur. Here, we use time-resolved small-angle X-ray scattering to monitor large-scale conformational transitions of a two-state DNA origami switch in free solution. We show that the DNA device switches from its open to its closed conformation upon addition of MgCl 2 in milliseconds, which is close to the theoretical diffusive speed limit. In contrast, measurements of the dimerization of DNA origami bricks reveal much slower and concentration-dependent assembly kinetics. DNA brick dimerization occurs on a time scale of minutes to hours suggesting that the kinetics depend on local concentration and molecular alignment.

  5. Characterization of surface modified carbon fibers and their epoxy composites by small angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoll, B.; Fellers, J.F.; Lin, J.S.

    1986-01-01

    This paper correlated the interlaminar shear strength of 7 different carbon fiber/epoxy composites with structural characteristics determined by Small Angle X-ray Scattering (SAXS) measurements. The carbon fibers were all of the same type but had different surface treatments. The SAXS patterns of the fibers and of the composites showed a highly nonlinear Guinier region which could not be approximated by traditional linear regression. A new approach to the Guinier approximation was developed to treat this nonlinear curve using a polynomial of second order. The radius of gyration (RG) of the fibers, as determined by this new method, correlated clearly withmore » both the extent of the surface treatment and the interlaminar shear strength of the composite. Also the difference in scattering between a dry fiber and a glycerine soaked fiber provides a way to characterize the changes obtained by surface treatments. These methods provide new ways to estimate the efficiency of a surface treatment and its effect on the interlaminar shear strength by analyzing the SAXS patterns of the fibers.« less

  6. Large scale structures in liquid crystal/clay colloids

    NASA Astrophysics Data System (ADS)

    van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.

    2005-04-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.

  7. Determination by Small-angle X-ray Scattering of Pore Size Distribution in Nanoporous Track-etched Polycarbonate Membranes

    NASA Astrophysics Data System (ADS)

    Jonas, A. M.; Legras, R.; Ferain, E.

    1998-03-01

    Nanoporous track-etched membranes with narrow pore size distributions and average pore size diameters tunable from 100 to 1000 Åare produced by the chemical etching of latent tracks in polymer films after irradiation by a beam of accelerated heavy ions. Nanoporous membranes are used for highly demanding filtration purposes, or as templates to obtain metallic or polymeric nanowires (L. Piraux et al., Nucl. Instr. Meth. Phys. Res. 1997, B131, 357). Such applications call for developments in nanopore size characterization techniques. In this respect, we report on the characterization by small-angle X-ray scattering (SAXS) of nanopore size distribution (nPSD) in polycarbonate track-etched membranes. The obtention of nPSD requires inverting an ill-conditioned inhomogeneous equation. We present different numerical routes to overcome the amplification of experimental errors in the resulting solutions, including a regularization technique allowing to obtain the nPSD without a priori knowledge of its shape. The effect of deviations from cylindrical pore shape on the resulting distributions are analyzed. Finally, SAXS results are compared to results obtained by electron microscopy and conductometry.

  8. Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eicher, Barbara; Heberle, Frederick A.; Marquardt, Drew T.

    2017-02-28

    Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effortmore » but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ~120 nm diameter palmitoyloleoyl phosphatidylcholine (POPC) vesicles, compared to the inner leaflet. Here, analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K, i.e.above the melting transition temperature of the two lipids.« less

  9. Comprehension of direct extraction of hydrophilic antioxidants using vegetable oils by polar paradox theory and small angle X-ray scattering analysis.

    PubMed

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Ruiz, Karine; Rossignol Castera, Anne; Bauduin, Pierre; Diat, Olivier; Chemat, Farid

    2015-04-15

    Since the polar paradox theory rationalised the fact that polar antioxidants are more effective in nonpolar media, extractions of phenolic compounds in vegetable oils were inspired and achieved in this study for obtaining oils enriched in phenolic compounds. Moreover, the influence of surfactants on the extractability of phenolic compounds was experimentally studied first, followed by the small angle X-ray scattering analysis for the oil structural observation before and after extraction so as to better understand the dissolving mechanism underpinning the extraction. The results showed a significant difference on the extraction yield of phenolic compounds among oils, which was mainly dependent on their composition instead of the unsaturation of fatty acids. Appropriate surfactant additions could significantly improve extraction yield for refined sunflower oils, which 1% w/w addition of glyceryl oleate was determined as the optimal. Besides, 5% w/w addition of lecithin performed the best in oil enrichments compared with mono- and di-glycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Accurate determination of segmented X-ray detector geometry

    DOE PAGES

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; ...

    2015-10-22

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical formore » many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. Furthermore, we show that the refined detector geometry greatly improves the results of experiments.« less

  11. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  12. Characterization of the shape and line-edge roughness of polymer gratings with grazing incidence small-angle X-ray scattering and atomic force microscopy

    DOE PAGES

    Suh, Hyo Seon; Chen, Xuanxuan; Rincon-Delgadillo, Paulina A.; ...

    2016-04-22

    Grazing-incidence small-angle X-ray scattering (GISAXS) is increasingly used for the metrology of substrate-supported nanoscale features and nanostructured films. In the case of line gratings, where long objects are arranged with a nanoscale periodicity perpendicular to the beam, a series of characteristic spots of high-intensity (grating truncation rods, GTRs) are recorded on a two-dimensional detector. The intensity of the GTRs is modulated by the three-dimensional shape and arrangement of the lines. Previous studies aimed to extract an average cross-sectional profile of the gratings, attributing intensity loss at GTRs to sample imperfections. Such imperfections are just as important as the average shapemore » when employing soft polymer gratings which display significant line-edge roughness. Herein are reported a series of GISAXS measurements of polymer line gratings over a range of incident angles. Both an average shape and fluctuations contributing to the intensity in between the GTRs are extracted. Lastly, the results are critically compared with atomic force microscopy (AFM) measurements, and it is found that the two methods are in good agreement if appropriate corrections for scattering from the substrate (GISAXS) and contributions from the probe shape (AFM) are accounted for.« less

  13. Microfocus/Polycapillary-Optic Crystallographic X-Ray System

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Gubarev, Mikhail; Ciszak, Ewa

    2005-01-01

    A system that generates an intense, nearly collimated, nearly monochromatic, small-diameter x-ray beam has been developed for use in macromolecular crystallography. A conventional x-ray system for macromolecular crystallography includes a rotating-anode x-ray source, which is massive (.500 kg), large (approximately 2 by 2 by 1 m), and power-hungry (between 2 and 18 kW). In contrast, the present system generates a beam of the required brightness from a microfocus source, which is small and light enough to be mounted on a laboratory bench, and operates at a power level of only tens of watts. The figure schematically depicts the system as configured for observing x-ray diffraction from a macromolecular crystal. In addition to the microfocus x-ray source, the system includes a polycapillary optic . a monolithic block (typically a bundle of fused glass tubes) that contains thousands of straight or gently curved capillary channels, along which x-rays propagate with multiple reflections. This particular polycapillary optic is configured to act as a collimator; the x-ray beam that emerges from its output face consists of quasi-parallel subbeams with a small angular divergence and a diameter comparable to the size of a crystal to be studied. The gap between the microfocus x-ray source and the input face of the polycapillary optic is chosen consistently with the focal length of the polycapillary optic and the need to maximize the solid angle subtended by the optic in order to maximize the collimated x-ray flux. The spectrum from the source contains a significant component of Cu K (photon energy is 8.08 keV) radiation. The beam is monochromatized (for Cu K ) by a nickel filter 10 m thick. In a test, this system was operated at a power of 40 W (current of 897 A at an accelerating potential of 45 kV), with an anode x-ray spot size of 41+/-2 microns. Also tested, in order to provide a standard for comparison, was a commercial rotating-anode x-ray crystallographic system with a pyrolytic graphite monochromator and a 250-micron pinhole collimator, operating at a power of 3.15 kW (current of 70 mA at an accelerating potential of 45 kV). The flux of collimated Cu K radiation in this system was found to be approximately 16 times that in the rotatinganode system. Data on x-ray diffraction from crystals of tetragonal form of lysozyme (protein) in this system were found to be of high quality and to be reducible by use of standard crystallographic software.

  14. X-ray scattering data and structural genomics

    NASA Astrophysics Data System (ADS)

    Doniach, Sebastian

    2003-03-01

    High throughput structural genomics has the ambitious goal of determining the structure of all, or a very large number of protein folds using the high-resolution techniques of protein crystallography and NMR. However, the program is facing significant bottlenecks in reaching this goal, which include problems of protein expression and crystallization. In this talk, some preliminary results on how the low-resolution technique of small-angle X-ray solution scattering (SAXS) can help ameliorate some of these bottlenecks will be presented. One of the most significant bottlenecks arises from the difficulty of crystallizing integral membrane proteins, where only a handful of structures are available compared to thousands of structures for soluble proteins. By 3-dimensional reconstruction from SAXS data, the size and shape of detergent-solubilized integral membrane proteins can be characterized. This information can then be used to classify membrane proteins which constitute some 25% of all genomes. SAXS may also be used to study the dependence of interparticle interference scattering on solvent conditions so that regions of the protein solution phase diagram which favor crystallization can be elucidated. As a further application, SAXS may be used to provide physical constraints on computational methods for protein structure prediction based on primary sequence information. This in turn can help in identifying structural homologs of a given protein, which can then give clues to its function. D. Walther, F. Cohen and S. Doniach. "Reconstruction of low resolution three-dimensional density maps from one-dimensional small angle x-ray scattering data for biomolecules." J. Appl. Cryst. 33(2):350-363 (2000). Protein structure prediction constrained by solution X-ray scattering data and structural homology identification Zheng WJ, Doniach S JOURNAL OF MOLECULAR BIOLOGY , v. 316(#1) pp. 173-187 FEB 8, 2002

  15. Insight into small molecule binding to the neonatal Fc receptor by X-ray crystallography and 100 kHz magic-angle-spinning NMR

    PubMed Central

    Macpherson, Alex; Smith-Penzel, Susanne; Basse, Nicolas; Lecomte, Fabien; Deboves, Hervé; Taylor, Richard D.; Norman, Tim; Porter, John; Waters, Lorna C.; Westwood, Marta; Cossins, Ben; Cain, Katharine; White, James; Griffin, Robert; Prosser, Christine; Kelm, Sebastian; Sullivan, Amy H.; Fox, David; Carr, Mark D.; Henry, Alistair; Taylor, Richard; Meier, Beat H.; Oschkinat, Hartmut; Lawson, Alastair D.

    2018-01-01

    Aiming at the design of an allosteric modulator of the neonatal Fc receptor (FcRn)–Immunoglobulin G (IgG) interaction, we developed a new methodology including NMR fragment screening, X-ray crystallography, and magic-angle-spinning (MAS) NMR at 100 kHz after sedimentation, exploiting very fast spinning of the nondeuterated soluble 42 kDa receptor construct to obtain resolved proton-detected 2D and 3D NMR spectra. FcRn plays a crucial role in regulation of IgG and serum albumin catabolism. It is a clinically validated drug target for the treatment of autoimmune diseases caused by pathogenic antibodies via the inhibition of its interaction with IgG. We herein present the discovery of a small molecule that binds into a conserved cavity of the heterodimeric, extracellular domain composed of an α-chain and β2-microglobulin (β2m) (FcRnECD, 373 residues). X-ray crystallography was used alongside NMR at 100 kHz MAS with sedimented soluble protein to explore possibilities for refining the compound as an allosteric modulator. Proton-detected MAS NMR experiments on fully protonated [13C,15N]-labeled FcRnECD yielded ligand-induced chemical-shift perturbations (CSPs) for residues in the binding pocket and allosteric changes close to the interface of the two receptor heterodimers present in the asymmetric unit as well as potentially in the albumin interaction site. X-ray structures with and without ligand suggest the need for an optimized ligand to displace the α-chain with respect to β2m, both of which participate in the FcRnECD–IgG interaction site. Our investigation establishes a method to characterize structurally small molecule binding to nondeuterated large proteins by NMR, even in their glycosylated form, which may prove highly valuable for structure-based drug discovery campaigns. PMID:29782488

  16. Insight into small molecule binding to the neonatal Fc receptor by X-ray crystallography and 100 kHz magic-angle-spinning NMR.

    PubMed

    Stöppler, Daniel; Macpherson, Alex; Smith-Penzel, Susanne; Basse, Nicolas; Lecomte, Fabien; Deboves, Hervé; Taylor, Richard D; Norman, Tim; Porter, John; Waters, Lorna C; Westwood, Marta; Cossins, Ben; Cain, Katharine; White, James; Griffin, Robert; Prosser, Christine; Kelm, Sebastian; Sullivan, Amy H; Fox, David; Carr, Mark D; Henry, Alistair; Taylor, Richard; Meier, Beat H; Oschkinat, Hartmut; Lawson, Alastair D

    2018-05-01

    Aiming at the design of an allosteric modulator of the neonatal Fc receptor (FcRn)-Immunoglobulin G (IgG) interaction, we developed a new methodology including NMR fragment screening, X-ray crystallography, and magic-angle-spinning (MAS) NMR at 100 kHz after sedimentation, exploiting very fast spinning of the nondeuterated soluble 42 kDa receptor construct to obtain resolved proton-detected 2D and 3D NMR spectra. FcRn plays a crucial role in regulation of IgG and serum albumin catabolism. It is a clinically validated drug target for the treatment of autoimmune diseases caused by pathogenic antibodies via the inhibition of its interaction with IgG. We herein present the discovery of a small molecule that binds into a conserved cavity of the heterodimeric, extracellular domain composed of an α-chain and β2-microglobulin (β2m) (FcRnECD, 373 residues). X-ray crystallography was used alongside NMR at 100 kHz MAS with sedimented soluble protein to explore possibilities for refining the compound as an allosteric modulator. Proton-detected MAS NMR experiments on fully protonated [13C,15N]-labeled FcRnECD yielded ligand-induced chemical-shift perturbations (CSPs) for residues in the binding pocket and allosteric changes close to the interface of the two receptor heterodimers present in the asymmetric unit as well as potentially in the albumin interaction site. X-ray structures with and without ligand suggest the need for an optimized ligand to displace the α-chain with respect to β2m, both of which participate in the FcRnECD-IgG interaction site. Our investigation establishes a method to characterize structurally small molecule binding to nondeuterated large proteins by NMR, even in their glycosylated form, which may prove highly valuable for structure-based drug discovery campaigns.

  17. Multiplexed high resolution soft x-ray RIXS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Y.-D.; Voronov, D.; Warwick, T.

    2016-07-27

    High-resolution Resonance Inelastic X-ray Scattering (RIXS) is a technique that allows us to probe the electronic excitations of complex materials with unprecedented precision. However, the RIXS process has a low cross section, compounded by the fact that the optical spectrometers used to analyze the scattered photons can only collect a small solid angle and overall have a small efficiency. Here we present a method to significantly increase the throughput of RIXS systems, by energy multiplexing, so that a complete RIXS map of scattered intensity versus photon energy in and photon energy out can be recorded simultaneously{sup 1}. This parallel acquisitionmore » scheme should provide a gain in throughput of over 100.. A system based on this principle, QERLIN, is under construction at the Advanced Light Source (ALS).« less

  18. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  19. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE PAGES

    Hammons, Joshua A.; Ilavsky, Jan

    2017-01-18

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  20. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, Joshua A.; Ilavsky, Jan

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  1. Nanostructural reorganization of bacterial cellulose by ultrasonic treatment.

    PubMed

    Tischer, Paula C S Faria; Sierakowski, Maria Rita; Westfahl, Harry; Tischer, Cesar Augusto

    2010-05-10

    In this work, bacterial cellulose was subjected to a high-power ultrasonic treatment for different time intervals. The morphological analysis, scanning electron microscopy, and atomic force microscopy revealed that this treatment changed the width and height of the microfibrillar ribbons and roughness of their surface, originating films with new nanostructures. Differential thermal analysis showed a higher thermal stability for ultrasonicated samples with a pyrolysis onset temperature of 208 degrees C for native bacterial cellulose and 250 and 268 degrees C for the modified samples. The small-angle X-ray scattering experiments demonstrated that the treatment with ultrasound increased the thickness of the ribbons, while wide-angle X-ray scattering experiments demonstrated that the average crystallite dimension and the degree of crystallinity also increased. A model is proposed where the thicker ribbons and crystallites result from the fusion of neighboring ribbons due to cavitation effects.

  2. Table-top phase-contrast imaging employing photon-counting detectors towards mammographic applications

    NASA Astrophysics Data System (ADS)

    Palma, K. D.; Pichotka, M.; Hasn, S.; Granja, C.

    2017-02-01

    In mammography the difficult task to detect microcalcifications (≈ 100 μm) and low contrast structures in the breast has been a topic of interest from its beginnings. The possibility to improve the image quality requires the effort to employ novel X-ray imaging techniques, such as phase-contrast, and high resolution detectors. Phase-contrast techniques are promising tools for medical diagnosis because they provide additional and complementary information to traditional absorption-based X-ray imaging methods. In this work a Hamamatsu microfocus X-ray source with tungsten anode and a photon counting detector (Timepix operated in Medipix mode) was used. A significant improvement in the detection of phase-effects using Medipix detector was observed in comparison to an standard flat-panel detector. An optimization of geometrical parameters reveals the dependency on the X-ray propagation path and the small angle deviation. The quantification of these effects was achieved taking into account the image noise, contrast, spatial resolution of the phase-enhancement, absorbed dose, and energy dependence.

  3. Focusing hard x rays beyond the critical angle of total reflection by adiabatically focusing lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patommel, Jens; Klare, Susanne; Hoppe, Robert

    In response to the conjecture that the numerical aperture of x-ray optics is fundamentally limited by the critical angle of total reflection, the concept of adiabatically focusing refractive lenses was proposed to overcome this limit. Here, we present an experimental realization of these optics made of silicon and demonstrate that they indeed focus 20 keV x rays to a 18.4 nm focus with a numerical aperture of 1.73(9) × 10 –3 that clearly exceeds the critical angle of total reflection of 1.55 mrad.

  4. Focusing hard x rays beyond the critical angle of total reflection by adiabatically focusing lenses

    DOE PAGES

    Patommel, Jens; Klare, Susanne; Hoppe, Robert; ...

    2017-03-06

    In response to the conjecture that the numerical aperture of x-ray optics is fundamentally limited by the critical angle of total reflection, the concept of adiabatically focusing refractive lenses was proposed to overcome this limit. Here, we present an experimental realization of these optics made of silicon and demonstrate that they indeed focus 20 keV x rays to a 18.4 nm focus with a numerical aperture of 1.73(9) × 10 –3 that clearly exceeds the critical angle of total reflection of 1.55 mrad.

  5. Observation of the strain field near the Si(111) 7 x 7 surface with a new X-ray diffraction technique.

    PubMed

    Emoto, T; Akimoto, K; Ichimiya, A

    1998-05-01

    A new X-ray diffraction technique has been developed in order to measure the strain field near a solid surface under ultrahigh vacuum (UHV) conditions. The X-ray optics use an extremely asymmetric Bragg-case bulk reflection. The glancing angle of the X-rays can be set near the critical angle of total reflection by tuning the X-ray energy. Using this technique, rocking curves for Si surfaces with different surface structures, i.e. a native oxide surface, a slightly oxide surface and an Si(111) 7 x 7 surface, were measured. It was found that the widths of the rocking curves depend on the surface structures. This technique is efficient in distinguishing the strain field corresponding to each surface structure.

  6. Ballistic Deposition of Nanoclusters.

    NASA Astrophysics Data System (ADS)

    Ulbrandt, Jeffrey; Li, Yang; Headrick, Randall

    Nanoporous thin-films are an important class of materials, possessing a large surface area to volume ratio, with applications ranging from thermoelectric and photovoltaic materials to supercapacitors. In-Situ X-ray Reflectivity and Grazing Incidence Small Angle X-Ray Scattering (GISAXS) were used to monitor thin-films grown from Tungsten Silicide (WSi2) and Copper (Cu) nanoclusters. The nanoclusters ranged in size from 2 nm to 6 nm diameter and were made by high-pressure magnetron sputtering via plasma gas condensation (PGC). X-Ray Reflectivity (XRR) measurements of the films at various stages of growth reveal that the resulting films exhibit very low density, approaching 15% of bulk density. This is consistent with a simple off-lattice ballistic deposition model where particles stick at the point of first contact without further restructuring. DOE Office of Basic Energy Sciences under contract DE-FG02-07ER46380.

  7. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willey, Trevor M., E-mail: willey1@llnl.gov; Lauderbach, Lisa; Gagliardi, Franco

    HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less

  8. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition

    DOE PAGES

    Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco; ...

    2015-08-07

    HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less

  9. Measurement of the noise components in the medical x-ray intensity pattern due to overlaying nonrecognizable structures

    NASA Astrophysics Data System (ADS)

    Tischenko, Oleg; Hoeschen, Christoph; Effenberger, Olaf; Reissberg, Steffen; Buhr, Egbert; Doehring, Wilfried

    2003-06-01

    There are many aspects that influence and deteriorate the detection of pathologies in X-ray images. Some of those are due to effects taking place in the stage of forming the X-ray intensity pattern in front of the x-ray detector. These can be described as motion blurring, depth blurring, anatomical background, scatter noise and structural noise. Structural noise results from an overlapping of fine irrelevant anatomical structures. A method for measuring the combined effect of structural noise and scatter noise was developed and will be presented in this paper. This method is based on the consideration that within a pair of projections created after rotation of the object with a small angle (which is within the typical uncertainty in positioning the patient) both images would show the same relevant structures whereas the projection of the fine overlapping structures will appear quite differently in the two images. To demonstrate the method two X-ray radiographs of a lung phantom were produced. The second radiograph was achieved after rotating the lung by an angle of about 3. Dyadic wavelet representations of both images were regarded. For each value of the wavelet scale parameter the corresponding pair of approximations was matched using the cross correlation matching technique. The homologous regions of approximations were extracted. The image containing only those structures that appear in both images simultaneously was then reconstructed from the wavelet coefficients corresponding to the homologous regions. The difference between one of the original images and the noise-reduced image contains the structural noise and the scatter noise.

  10. Tenth value layers for 60Co gamma rays and for 4, 6, 10, 15, and 18 MV x rays in concrete for beams of cone angles between 0 degrees and 14 degrees calculated by Monte Carlo simulation.

    PubMed

    Jaradat, Adnan K; Biggs, Peter J

    2007-05-01

    The calculation of shielding barrier thicknesses for radiation therapy facilities according to the NCRP formalism is based on the use of broad beams (that is, the maximum possible field sizes). However, in practice, treatment fields used in radiation therapy are, on average, less than half the maximum size. Indeed, many contemporary treatment techniques call for reduced field sizes to reduce co-morbidity and the risk of second cancers. Therefore, published tenth value layers (TVLs) for shielding materials do not apply to these very small fields. There is, hence, a need to determine the TVLs for various beam modalities as a function of field size. The attenuation of (60)Co gamma rays and photons of 4, 6, 10, 15, and 18 MV bremsstrahlung x ray beams by concrete has been studied using the Monte Carlo technique (MCNP version 4C2) for beams of half-opening angles of 0 degrees , 3 degrees , 6 degrees , 9 degrees , 12 degrees , and 14 degrees . The distance between the x-ray source and the distal surface of the shielding wall was fixed at 600 cm, a distance that is typical for modern radiation therapy rooms. The maximum concrete thickness varied between 76.5 cm and 151.5 cm for (60)Co and 18 MV x rays, respectively. Detectors were placed at 630 cm, 700 cm, and 800 cm from the source. TVLs have been determined down to the third TVL. Energy spectra for 4, 6, 10, 15, and 18 MV x rays for 10 x 10 cm(2) and 40 x 40 cm(2) field sizes were used to generate depth dose curves in water that were compared with experimentally measured values.

  11. AEGIS: An Astrophysics Experiment for Grating and Imaging Spectroscopy---a Soft X-ray, High-resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team

    2012-01-01

    AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI Instrumentation Development Fund.

  12. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  13. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  14. Probing Nucleation and Growth Behavior of Twisted Kebabs from Shish Scaffold in Sheared Polyethylene Melts by in situ X-ray Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keum,J.; Burger, C.; Zuo, F.

    2007-01-01

    By utilizing synchrotron rheo-WAXD (wide-angle X-ray diffraction) and rheo-SAXS (small-angle X-ray scattering) techniques, the nucleation and growth behavior of twisted kebabs from the shear-induced shish scaffold in entangled high-density polyethylene (HDPE) melts were investigated. The evolution of the (110) reflection intensity in WAXD at the early stages of crystallization could be described by a simplified Avrami equation, while the corresponding long period of kebabs determined by SAXS was found to decrease with time. The combined SAXS and WAXD results indicate that the kebab growth in sheared HDPE melts consists of two-dimensional geometry with thermal (sporadic) nucleation. The WAXD data clearlymore » exhibited the transformations of (110) reflection from equatorial 2-arc to off-axis 4-arc and of (200) reflection from off-axis 4-arc to meridional 2-arc, which can be explained by the rotation of crystallographic a-axis around the b-axis during twisted kebab growth. This observation is also consistent with the orientation mode changes from 'Keller/Machin II' to 'intermediate' and then to 'Keller/Machin I'.« less

  15. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    DOE PAGES

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; ...

    2016-04-19

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. Lastly, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  16. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. Lastly, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  17. Elemental and structural studies at the bone-cartilage interface

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Kaabar, W.; Gundogdu, O.

    2012-02-01

    The techniques μProton-Induced X-and γ-ray Emission, μ-PIXE and μ-PIGE, were used to investigate trace and essential element distributions in sections of normal and osteoarthritic (OA) human femoral head. μ-PIGE yielded 2-D mappings of Na and F while Ca, Z, P and S were mapped by μ-PIXE. The concentration of chondroitin sulphate supporting functionality in healthy cartilage is significantly reduced in OA samples. Localised Zn points to osteoblastic/osteoclastic activity at the bone-cartilage interface. Small-angle X-ray scattering applied to decalcified OA-affected tissue showed spatial alterations of collagen fibres of decreased axial periodicity compared to normal collagen type I.

  18. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time.

    PubMed

    Zhang, Qingteng; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W; Szczygiel, Robert; Sandy, Alec

    2016-05-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  19. The stopped-drop method: a novel setup for containment-free and time-resolved measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiener, Andreas; Seifert, Soenke; Magerl, Andreas

    2016-03-01

    A novel setup for containment-free time-resolved experiments at a free-hanging drop is reported. Within a dead-time of 100 ms a drop of mixed reactant solutions is formed and the time evolution of a reaction can be followed from thereon by various techniques. As an example, a small-angle X-ray scattering study on the formation mechanism of EDTA-stabilized CdS both at a synchrotron and a laboratory X-ray source is presented here. While the evolution can be followed with one drop only at a synchrotron source, a stroboscopic mode with many drops is preferable for the laboratory source.

  20. Concerns about a variance approach to the X-ray diffractometric estimation of microfibril angle in wood

    Treesearch

    Steve P. Verrill; David E. Kretschmann; Victoria L. Herian; Michael Wiemann; Harry A. Alden

    2010-01-01

    In this paper we raise three technical concerns about Evans’s 1999 Appita Journal “variance approach” to estimating microfibril angle. The first concern is associated with the approximation of the variance of an X-ray intensity half-profile by a function of the microfibril angle and the natural variability of the microfibril angle, S2...

  1. Geant4 simulations of a wide-angle x-ray focusing telescope

    NASA Astrophysics Data System (ADS)

    Zhao, Donghua; Zhang, Chen; Yuan, Weimin; Zhang, Shuangnan; Willingale, Richard; Ling, Zhixing

    2017-06-01

    The rapid development of X-ray astronomy has been made possible by widely deploying X-ray focusing telescopes on board many X-ray satellites. Geant4 is a very powerful toolkit for Monte Carlo simulations and has remarkable abilities to model complex geometrical configurations. However, the library of physical processes available in Geant4 lacks a description of the reflection of X-ray photons at a grazing incident angle which is the core physical process in the simulation of X-ray focusing telescopes. The scattering of low-energy charged particles from the mirror surfaces is another noteworthy process which is not yet incorporated into Geant4. Here we describe a Monte Carlo model of a simplified wide-angle X-ray focusing telescope adopting lobster-eye optics and a silicon detector using the Geant4 toolkit. With this model, we simulate the X-ray tracing, proton scattering and background detection. We find that: (1) the effective area obtained using Geant4 is in agreement with that obtained using Q software with an average difference of less than 3%; (2) X-rays are the dominant background source below 10 keV; (3) the sensitivity of the telescope is better by at least one order of magnitude than that of a coded mask telescope with the same physical dimensions; (4) the number of protons passing through the optics and reaching the detector by Firsov scattering is about 2.5 times that of multiple scattering for the lobster-eye telescope.

  2. Solution Structure of the 128 kDa Enzyme I Dimer from Escherichia coli and Its 146 kDa Complex with HPr Using Residual Dipolar Couplings and Small- and Wide-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwieters, Charles D.; Suh, Jeong-Yong; Grishaev, Alexander

    2010-09-17

    The solution structures of free Enzyme I (EI, {approx}128 kDa, 575 x 2 residues), the first enzyme in the bacterial phosphotransferase system, and its complex with HPr ({approx}146 kDa) have been solved using novel methodology that makes use of prior structural knowledge (namely, the structures of the dimeric EIC domain and the isolated EIN domain both free and complexed to HPr), combined with residual dipolar coupling (RDC), small- (SAXS) and wide- (WAXS) angle X-ray scattering and small-angle neutron scattering (SANS) data. The calculational strategy employs conjoined rigid body/torsion/Cartesian simulated annealing, and incorporates improvements in calculating and refining against SAXS/WAXS datamore » that take into account complex molecular shapes in the description of the solvent layer resulting in a better representation of the SAXS/WAXS data. The RDC data orient the symmetrically related EIN domains relative to the C{sub 2} symmetry axis of the EIC dimer, while translational, shape, and size information is provided by SAXS/WAXS. The resulting structures are independently validated by SANS. Comparison of the structures of the free EI and the EI-HPr complex with that of the crystal structure of a trapped phosphorylated EI intermediate reveals large ({approx}70-90{sup o}) hinge body rotations of the two subdomains comprising the EIN domain, as well as of the EIN domain relative to the dimeric EIC domain. These large-scale interdomain motions shed light on the structural transitions that accompany the catalytic cycle of EI.« less

  3. Si Lattice, Avogadro Constant, and X- and Gamma-Ray Measurements: Contributions by R.D. Deslattes

    NASA Astrophysics Data System (ADS)

    Kessler, Jr.

    2002-04-01

    The achievement of x-ray interferometry in 1965 opened the possibility of more accurately measuring the lattice spacing of a diffraction crystal on a scale directly tied to the SI system of units. The road from the possible to reality required moving objects and measuring translations with sub-atomic accuracy. The improved crystal lattice spacing determinations had a significant impact on two fundamental measurement areas: 1) the amount of substance (the mole and the associated Avogadro Constant), and 2) short wavelengths (the x- and gamma-ray regions). Progress in both areas required additional metrological advances: density and isotopic abundance measurements are needed for the Avogadro constant and small angle measurements are required for the determination of short wavelengths. The x- and gamma-ray measurements have led to more accurate wavelength standards and neutron binding energy measurements that connect gamma-ray measurements to precision atomic mass measurements, particularly the neutron mass. Richard D. Deslattes devoted much of his scientific career to this measurement program. His outstanding contributions and insights will be reviewed.

  4. The ASTRO-H SXT Performance to the Large Off-Set Angles

    NASA Technical Reports Server (NTRS)

    Sato, Toshiki; Iizuka, Ryo; Mori, Hideyuki; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Kikuchi, Naomichi; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi; hide

    2016-01-01

    The X-ray astronomy satellite ASTRO-H, which is the 6th Japanese X-ray astronomy satellite and is renamed Hitomi after launch, is designed to observe celestial X-ray objects in a wide energy band from a few hundred eV to 600 keV. The Soft X-ray Telescopes (SXTs) onboard ASTRO-H play a role of collecting and imaging X-rays up to approximately 12 keV. Although the field of view of the SXT is approximately 15' (FWHM), due to the thin-foil-nested Wolter-I type optics adopted in the SXTs, X-rays out of the field of view can reach the focal plane without experiencing a normal double reflection. This component is referred to as 'stray light'. Owing to investigation of the stray light so far, 'secondary reflection' is now identified as the main component of the stray light, which is composed of X-rays reflected only by secondary reflectors. In order to cut the secondary reflections, a 'pre-collimator' is equipped on top of the SXTs. However, we cannot cut all the stray lights with the pre-collimator in some off-axis angle domain. In this study, we measure the brightness of the stray light of the SXTs at some representative off-axis angles by using the ISAS X-ray beam line. ASTRO-H is equipped with two modules of the SXT; one is for the Soft X-ray Spectrometer (SXS), an X-ray calorimeter, and the other is for the Soft X-ray Imager (SXI), an X-ray CCD camera. These SXT modules are called SXT-S and SXT-I, respectively. Of the two detector systems, the SXI has a large field of view, a square with 38' on a side. To cope with this, we have made a mosaic mapping of the stray light at a representative off-axis angle of 30' in the X-ray beam line at the Institute of Space and Astronautical Science. The effective area of the brightest secondary reflection is found of order approximately 0.1% of the on-axis effective area at the energy of 1.49 keV. The other components are not so bright (less than 5 x 10(exp -4) times smaller than the on-axis effective area). On the other hand, we have found that the effective area of the stray light in the SXS field of view (approximately 3' x 3') at large off-axis angles (greater than 15') are approximately 1(exp -4) times smaller than the on-axis effective area (approximately 590 sq cm at 1.49 keV).

  5. THz-pump and X-ray-probe sources based on an electron linac

    NASA Astrophysics Data System (ADS)

    Setiniyaz, Sadiq; Park, Seong Hee; Kim, Hyun Woo; Vinokurov, Nikolay A.; Jang, Kyu-Ha; Lee, Kitae; Baek, In Hyung; Jeong, Young Uk

    2017-11-01

    We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 103 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 μm thick each) can generate close to 103 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 107 X-rays per 1 keV energy bin per second or 105 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.

  6. Rapid temporal evolution of radiation from non-thermal electrons in solar flares

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Petrosian, Vahe

    1987-01-01

    Solutions of the time dependent Fokker-Planck equation was found for accelerated electrons undergoing Coulomb collisions in a magnetized, fully ionized plasma. An exact solution was found for arbitrary pitch angle and energy distribution in a uniform background plasma. Then, for an inhomogeneous plasma, a solution was found for particles with small pitch angles. These solutions were used to calculate the temporal evolution of bremsstrahlung x-rays from short bursts of nonthermal electron beams, and these spectra were compared with observed high time resolution spectra of short timescale solar hard x-ray bursts. It is shown that the observed softening in time of the spectra rules out a homogeneous background and therefore the possibility of electrons being confined to the corona either because of converging magnetic field or high densities. The inhomogeneous solution was also applied to a model with constant coronal density and exponentially rising chromospheric density. The spectra are shown to be consistent with that produced by a collimated beam of electrons accelerated in the corona with certain given conditions. These conditions could be violated if large pitch angle electrons are present.

  7. Micromirror-based manipulation of synchrotron x-ray beams

    NASA Astrophysics Data System (ADS)

    Walko, D. A.; Chen, Pice; Jung, I. W.; Lopez, D.; Schwartz, C. P.; Shenoy, G. K.; Wang, Jin

    2017-08-01

    Synchrotron beamlines typically use macroscopic, quasi-static optics to manipulate x-ray beams. We present the use of dynamic microelectromechanical systems-based optics (MEMS) to temporally modulate synchrotron x-ray beams. We demonstrate this concept using single-crystal torsional MEMS micromirrors oscillating at frequencies of 75 kHz. Such a MEMS micromirror, with lateral dimensions of a few hundred micrometers, can interact with x rays by operating in grazing-incidence reflection geometry; x rays are deflected only when an x-ray pulse is incident on the rotating micromirror under appropriate conditions, i.e., at an angle less than the critical angle for reflectivity. The time window for such deflections depends on the frequency and amplitude of the MEMS rotation. We demonstrate that reflection geometry can produce a time window of a few microseconds. We further demonstrate that MEMS optics can isolate x rays from a selected synchrotron bunch or group of bunches. With ray-trace simulations we explain the currently achievable time windows and suggest a path toward improvements.

  8. Alzheimer's disease imaging biomarkers using small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Choi, Mina; Alam, Nadia; Dahal, Eshan; Ghammraoui, Bahaa; Badano, Aldo

    2016-03-01

    There is a need for novel imaging techniques for the earlier detection of Alzheimer's disease (AD). Two hallmarks of AD are amyloid beta (Aβ) plaques and tau tangles that are formed in the brain. Well-characterized x-ray cross sections of Aβ and tau proteins in a variety of structural states could potentially be used as AD biomarkers for small-angle x-ray scattering (SAXS) imaging without the need for injectable probes or contrast agents. First, however, the protein structures must be controlled and measured to determine accurate biomarkers for SAXS imaging. Here we report SAXS measurements of Aβ42 and tau352 in a 50% dimethyl sulfoxide (DMSO) solution in which these proteins are believed to remain monomeric because of the stabilizing interaction of DMSO solution. Our SAXS analysis showed the aggregation of both proteins. In particular, we found that the aggregation of Aβ42 slowly progresses with time in comparison to tau352 that aggregates at a faster rate and reaches a steady-state. Furthermore, the measured signals were compared to the theoretical SAXS profiles of Aβ42 monomer, Aβ42 fibril, and tau352 that were computed from their respective protein data bank structures. We have begun the work to systematically control the structural states of these proteins in vitro using various solvent conditions. Our future work is to utilize the distinct SAXS profiles of various structural states of Aβ and tau to build a library of signals of interest for SAXS imaging in brain tissue.

  9. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    PubMed Central

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  10. Intrinsic flexibility of West Nile virus protease in solution characterized using small-angle X-ray scattering.

    PubMed

    Garces, Andrea P; Watowich, Stanley J

    2013-10-01

    West Nile virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection can cause severe neurological disease and fatality in humans. Efforts are ongoing to develop antiviral drugs that inhibit the WNV protease, a viral enzyme required for polyprotein processing. Unfortunately, little is known about the solution structure of recombinant WNV protease (NS2B-NS3pro) used for antiviral drug discovery and development, although X-ray crystal structures and nuclear magnetic resonance (NMR) studies have provided valuable insights into the interactions between NS2B-NS3pro and peptide-based inhibitors. We completed small-angle X-ray scattering and Fourier transform infrared spectroscopy experiments to determine the solution structure and dynamics of WNV NS2B-NS3pro in the absence of a bound substrate or inhibitor. Importantly, these solution studies suggested that all or most of the NS2B cofactor was highly flexible and formed an ensemble of structures, in contrast to the NS2B tertiary structures observed in crystallographic and NMR studies. The secondary structure of NS2B-NS3pro in solution had high β-content, similar to the secondary structure observed in crystallographic studies. This work provided evidence of the intrinsic flexibility and conformational heterogeneity of the NS2B chain of the WNV protease in the absence of substratelike ligands, which should be considered during antiviral drug discovery and development efforts.

  11. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.

    PubMed

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-05-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.

  12. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source

    PubMed Central

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-01-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50–150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics. PMID:25931103

  13. Near-surface density profiling of Fe ion irradiated Si (100) using extremely asymmetric x-ray diffraction by variation of the wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Facsko, S.

    2014-10-20

    In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviationsmore » from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.« less

  14. A short working distance multiple crystal x-ray spectrometer

    USGS Publications Warehouse

    Dickinson, B.; Seidler, G.T.; Webb, Z.W.; Bradley, J.A.; Nagle, K.P.; Heald, S.M.; Gordon, R.A.; Chou, I.-Ming

    2008-01-01

    For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed ???1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.14 sr, comparable to that of 17 SBCA at 1 m working distance. We find good agreement with prior work for measurements of the Mn K?? x-ray emission and resonant inelastic x-ray scattering for MnO, and also for measurements of the x-ray absorption near-edge structure for Dy metal using L??2 partial-fluorescence yield detection. We discuss future applications at third- and fourth-generation light sources. For concentrated samples, the extremely large collection angle of SWD spectrometers will permit collection of high-resolution x-ray emission spectra with a single pulse of the Linac Coherent Light Source. The range of applications of SWD spectrometers and traditional multi-SBCA instruments has some overlap, but also is significantly complementary. ?? 2008 American Institute of Physics.

  15. Wettability measurement under high P-T conditions using X-ray imaging with application to the brine-supercritical CO 2 system: WETTABILITY MEASUREMENT USING X-RAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, Kuldeep; Guiltinan, Eric J.; Cardenas, M. Bayani

    2015-08-30

    We present a new method for measuring wettability or contact angle of minerals at reservoir pressure-temperature conditions using high-resolution X-ray computed tomography (HRXCT) and radiography. In this method, a capillary or a narrow slot is constructed from a mineral or a rock sample of interest wherein two fluids are allowed to form an interface that is imaged using X-rays. After some validation measurements at room pressure-temperature conditions, we illustrate this method by measuring the contact angle of CO 2-brine on quartz, muscovite, shale, borosilicate glass, polytetrafluoroethylene (PTFE or Teflon), and polyether ether ketone (PEEK) surfaces at 60–71°C and 13.8–22.8 MPa.more » At reservoir conditions, PTFE and PEEK surfaces were found to be CO 2-wet with contact angles of 140° and 127°, respectively. Quartz and muscovite were found to be water-wet with contact angles of 26° and 58°, respectively, under similar conditions. Borosilicate glass-air-brine at room conditions showed strong water-wet characteristics with a contact angle of 9°, whereas borosilicate glass-CO 2-brine at 13.8 MPa and 60°C showed a decrease in its water-wetness with contact angle of 54°. This method provides a new application for X-ray imaging and an alternative to other methods.« less

  16. Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Magee, Thomas C. (Inventor)

    2004-01-01

    Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.

  17. Influence of ceramide on the internal structure and hydration of the phospholipid bilayer studied by neutron and X-ray scattering

    NASA Astrophysics Data System (ADS)

    Kiselev, M. A.; Zemlyanaya, E. V.; Ryabova, N. Y.; Hauss, T.; Almasy, L.; Funari, S. S.; Zbytovska, J.; Lombardo, D.

    2014-07-01

    Small angle neutron scattering (SANS), neutron diffraction and X-ray powder diffraction were used to investigate influence of N-stearoyl phytosphingosine (CER[NP]) and α-hydroxy- N-stearoyl phytosphingosine (CER[AP]) on the internal structure and hydration of DMPC membrane in fully and partly hydrated states at T = 30 °C. Application of Fourier analysis for diffraction data and model calculations for the SANS data evidence that addition of both CER[NP] and CER[AP] in small concentrations promotes significant changes in the organization of DMPC bilayers, such as the increase of the hydrophobic core region. SANS data evidence a decrease in the average radius and polydispersity of the vesicles that can be ascribed to hydrogen bonds interactions that favor tight lipid packing with a compact, more rigid character.

  18. Characterization of X-ray Lobster Optics with a Hybrid CMOS sensor

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy; Falcone, Abraham; Burrows, David N.; Bray, Evan; McQuaide, Maria; Kern, Matthew; Wages, Mitchell; Hull, Samuel; Inneman, Adolf; Hudec, Rene; Stehlikova, Veronika

    2018-01-01

    X-ray lobster optics provide a unique way to focus X-rays onto a small focal plane imager with wide field of view imaging. Such an instrument with angular resolution of a few arcminutes can be used to study GRB afterglows, as well as the variability and spectroscopic characteristics for various astrophysical objects. At Penn State University, we have characterized a lobster optic with an H1RG X-Ray hybrid CMOS detector (100 μm thick Silicon with 18 μm pixel size). The light-weight compact lobster optic with a 25 cm focal length provides two dimensional imaging with ~25 cm2 effective area at 2 keV. We utilize a 47 meter long X-ray beam line at Penn state University to do our experiments where we characterize the overall effective area of the instrument at 1.5 - 8 keV for both on-axis and off-axis angles. In this presentation, we will describe the characterization test stand and methods, as well as the detailed results. While this is simply a proof-of-concept experiment, such an instrument with significant collecting area can be explored for future rocket or CubeSat experiments.

  19. Visualization of Individual Images in Patterned Organic-Inorganic Multilayers Using GISAXS-CT.

    PubMed

    Ogawa, Hiroki; Nishikawa, Yukihiro; Takenaka, Mikihito; Fujiwara, Akihiko; Nakanishi, Yohei; Tsujii, Yoshinobu; Takata, Masaki; Kanaya, Toshiji

    2017-05-16

    Using grazing-incidence small-angle scattering (GISAXS) with computed tomography (CT), we have individually reconstructed the spatial distribution of a thin gold (Au) layer buried under a thin poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) layer. Owing to the difference between total reflection angles of Au and PS-b-P2VP, the scattering profiles for Au nanoparticles and self-assembled nanostructures of PS-b-P2VP could be independently obtained by changing the X-ray angle of incidence. Reconstruction of scattering profiles allows one to separately characterize spatial distributions in Au and PS-b-P2VP nanostructures.

  20. Effects of Small Oscillations on the Effective Area

    NASA Astrophysics Data System (ADS)

    Cotroneo, V.; Conconi, P.; Cusumano, G.; Pareschi, G.; Spiga, D.; Tagliaferri, G.

    2009-05-01

    We analyze the effective area of the Simbol-X mirrors as a function of the off-axis angle for small oscillations. A reduction is expected due to: 1) geometrical effects, because some of the photons miss the secondary mirror surface; 2) reflectivity effects, caused by the variation of the coating reflectivity with the incidence angle. The former are related to the length of the two mirror surfaces, and can be reduced by making the secondary mirror longer. The second ones are energy-dependent, and strongly related to the characteristics of the reflecting coating. These effects are analyzed by means of ray-tracing simulations in order to optimize the mirror and coating design, aiming to improve the effective area stability.

  1. Development of Thin Films as Potential Structural Cathodes to Enable Multifunctional Energy-Storage Structural Composite Batteries for the U.S. Army’s Future Force

    DTIC Science & Technology

    2011-09-01

    glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,

  2. Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source

    PubMed Central

    Schleede, Simone; Meinel, Felix G.; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Potdevin, Guillaume; Malecki, Andreas; Adam-Neumair, Silvia; Thieme, Sven F.; Bamberg, Fabian; Nikolaou, Konstantin; Bohla, Alexander; Yildirim, Ali Ö.; Loewen, Roderick; Gifford, Martin; Ruth, Ronald; Eickelberg, Oliver; Reiser, Maximilian; Pfeiffer, Franz

    2012-01-01

    In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs. PMID:23074250

  3. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    DOE PAGES

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less

  4. Photoelectron diffraction from single oriented molecules: Towards ultrafast structure determination of molecules using x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Kazama, Misato; Fujikawa, Takashi; Kishimoto, Naoki; Mizuno, Tomoya; Adachi, Jun-ichi; Yagishita, Akira

    2013-06-01

    We provide a molecular structure determination method, based on multiple-scattering x-ray photoelectron diffraction (XPD) calculations. This method is applied to our XPD data on several molecules having different equilibrium geometries. Then it is confirmed that, by our method, bond lengths and bond angles can be determined with a resolution of less than 0.1 Å and 10∘, respectively. Differently from any other scenario of ultrafast structure determination, we measure the two- or three-dimensional XPD of aligned or oriented molecules in the energy range from 100 to 200 eV with a 4π detection velocity map imaging spectrometer. Thanks to the intense and ultrashort pulse properties of x-ray free-electron lasers, our approach exhibits the most probable method for obtaining ultrafast real-time structural information on small to medium-sized molecules consisting of light elements, i.e., a “molecular movie.”

  5. Advancing X-ray scattering metrology using inverse genetic algorithms.

    PubMed

    Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph

    2016-01-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  6. Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality.

    PubMed

    Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V

    2000-07-01

    A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.

  7. Structure of mono- and bimetallic heterogeneous catalysts based on noble metals obtained by means of fluid technology and metal-vapor synthesis

    NASA Astrophysics Data System (ADS)

    Said-Galiev, E. E.; Vasil'kov, A. Yu.; Nikolaev, A. Yu.; Lisitsyn, A. I.; Naumkin, A. V.; Volkov, I. O.; Abramchuk, S. S.; Lependina, O. L.; Khokhlov, A. R.; Shtykova, E. V.; Dembo, K. A.; Erkey, C.

    2012-10-01

    Monometallic nanocomposites are obtained with the use of supercritical carbon dioxide (fluid technique) and metal-vapor synthesis (MVS), while bimetallic nanocomposites of Pt and Au noble metals and γ-Al2O3 oxide matrix are synthesized by a combination of these two methods. The structures, concentrations, and chemical states of metal atoms in composites are studied by means of small-angle X-ray scattering (SAXS), transparent electron microscopy (TEM), X-ray fluorescent analysis (XFA), and X-ray photoelectron spectroscopy (XPS). The neutral state of metal atoms in clusters is shown by XPS and their size distribution is found according to SAXS; as is shown, it is determined by the pore sizes of the oxide matrices and lies in the range of 1 to 50 nm. The obtained composites manifest themselves as effective catalysts in the oxidation of CO to CO2.

  8. Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity

    NASA Astrophysics Data System (ADS)

    Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing

    2017-03-01

    Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.

  9. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    PubMed Central

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632

  10. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  11. Estimation of bearing contact angle in-situ by X-ray kinematography

    NASA Technical Reports Server (NTRS)

    Fowler, P. H.; Manders, F.

    1982-01-01

    The mounted, preloaded contact angle of the structural bearings in the assembled design mechanical assembly was measured. A modification of the Turns method is presented, based upon the clarity and definition of moving parts achieved with X-ray technique and cinematic display. Contact angle is estimated by counting the number of bearings passing a given point as a function of number of turns of the shaft. Ball and pitch diameter variations are discussed. Ball train and shaft angle uncertainties are also discussed.

  12. X-ray microscopy using reflection targets based on SEM with tungsten filament

    NASA Astrophysics Data System (ADS)

    Liu, Junbiao; Ma, Yutian; Zhao, Weixia; Niu, Geng; Chu, Mingzhang; Yin, Bohua; Han, Li; Liu, Baodong

    2016-10-01

    X-ray MicroandNano imaging is developed based on the conventional x-ray tomography, it can not only provide nondestructive testing with higher resolution measurement, but also be used to examine the material or the structure with low atomic number and low density. The source with micro-focal spot size is one of the key components of x-ray MicroandNano imaging. The focused electron beam from SEM bombarding the metal target can generate x-ray with ultra-small size. It is convenient to set up x-ray microscopy based on SEM for laboratory use. This paper describes a new x-ray microscopy using reflection targets based on FEI Quanta600 SEM with tungsten filament. The flat panel detector is placed outside of the vacuum chamber with 300μm thickness Be-window to isolate vacuum from the air. A stage with 3 DOFs is added to adjust the positions of the target, the SEM's sample stage is used to move sample. And the shape of target is designed as cone with 60° half cone angle to get the maximum x-ray dosage. The attenuation coefficient of Bewindow for x-ray is about 25%. Finally, the line pair card is used to evaluate the resolution and the result shows that the resolution of the system can receive less than 750nm, when the acceleration voltage is 30keV, the beam current is 160nA, the SEM working distance is 5mm and the acquisition time of the detector is 60s.

  13. Effect of high intensity ultrasound on the mesostructure of hydrated zirconia

    NASA Astrophysics Data System (ADS)

    Kopitsa, G. P.; Baranchikov, A. E.; Ivanova, O. S.; Yapryntsev, A. D.; Grigoriev, S. V.; Pranzas, P. Klaus; Ivanov, V. K.

    2012-02-01

    We report structural changes in amorphous hydrated zirconia caused by high intensity ultrasonic treatment studied by means of small-angle neutron scattering (SANS) and X-ray diffraction (XRD). It was established that sonication affects the mesostructure of ZrO2×xH2O gels (i.e. decreases their homogeneity, increases surface fractal dimension and the size of monomer particles). Ultrasound induced structural changes in hydrated zirconia governs its thermal behaviour, namely decreases the rate of tetragonal to monoclinic zirconia phase transition.

  14. A large scale membrane-binding protein conformational change that initiates at small length scales

    NASA Astrophysics Data System (ADS)

    Grandpre, Trevor; Andorf, Matthew; Chakravarthy, Srinivas; Lamb, Robert; Poor, Taylor; Landahl, Eric

    2013-03-01

    The fusion (F) protein of parainfluenza virus 5 (PIV5) is a membrane-bound, homotrimeric glycoprotein located on the surface of PIV5 viral envelopes. Upon being triggered by the receptor-binding protein (HN), F undergoes a greater than 100Å ATP-independent refolding event. This refolding event results in the insertion of a hydrophobic fusion peptide into the membrane of the target cell, followed by the desolvation and subsequent fusion event as the two membranes are brought together. Isothermal calorimetry and hydrophobic dye incorporation experiments indicate that the soluble construct of the F protein undergoes a conformational rearrangement event at around 55 deg C. We present the results of an initial Time-Resolved Small-Angle X-Ray Scattering (TR-SAXS) study of this large scale, entropically driven conformational change using a temperature jump. Although we the measured radius of gyration of this protein changes on a 110 second timescale, we find that the x-ray scattering intensity at higher angles (corresponding to smaller length scales in the protein) changes nearly an order of magnitude faster. We believe this may be a signature of entropically-driven conformational change. To whom correspondence should be addressed

  15. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Howell, Steven C.

    Chromatin conformation and dynamics remains unsolved despite the critical role of the chromatin in fundamental genetic functions such as transcription, replication, and repair. At the molecular level, chromatin can be viewed as a linear array of nucleosomes, each consisting of 147 base pairs (bp) of double-stranded DNA (dsDNA) wrapped around a protein core and connected by 10 to 90 bp of linker dsDNA. Using small-angle X-ray scattering (SAXS), we investigated how the conformations of model nucleosome arrays in solution are modulated by ionic condition as well as the effect of linker histone proteins. To facilitate ensemble modeling of these SAXS measurements, we developed a simulation method that treats coarse-grained DNA as a Markov chain, then explores possible DNA conformations using Metropolis Monte Carlo (MC) sampling. This algorithm extends the functionality of SASSIE, a program used to model intrinsically disordered biological molecules, adding to the previous methods for simulating protein, carbohydrates, and single-stranded DNA. Our SAXS measurements of various nucleosome arrays together with the MC generated models provide valuable solution structure information identifying specific differences from the structure of crystallized arrays.

  16. Location of cholesterol in liposomes by using small-angle X-ray scattering (SAXS) data and the generalized indirect Fourier transformation (GIFT) method.

    PubMed

    Aburai, Kenichi; Ogura, Taku; Hyodo, Ryo; Sakai, Hideki; Abe, Masahiko; Glatter, Otto

    2013-01-01

    We investigated the location of cholesterol (Chol) in liposomes and its interaction with phospholipids using small-angle x-ray scattering (SAXS) data and applying the generalized indirect Fourier transformation (GIFT) method. The GIFT method has been applied to lamellar liquid crystal systems and it gives quantitative data on bilayer thickness, electron density profile, and membrane flexibility (Caillé parameter). When the GIFT method is applied to the SAXS data of dipalmitoylphosphatidylcholine (DPPC) alone (Chol [-]) or a DPPC/Chol = 7/3 mixed system (Chol [+], molar ratio), change in the bilayer thickness was insignificant in both systems. However, the electron density for the Chol (+) system was higher than that for the Chol (-) system at the location of hydrophilic groups of phospholipids, and whereas Caillé parameter value increased with temperature for the Chol (-) system, no significant change with temperature was observed in the Caillé parameter for the Chol (+) system. These results indicated that Chol is located in the vicinity of the hydrophilic group of the phospholipids and constricts the packing of the acyl chain of phospholipids in the bilayer.

  17. Conventions and workflows for using Situs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wriggers, Willy, E-mail: wriggers@biomachina.org

    2012-04-01

    Recent developments of the Situs software suite for multi-scale modeling are reviewed. Typical workflows and conventions encountered during processing of biophysical data from electron microscopy, tomography or small-angle X-ray scattering are described. Situs is a modular program package for the multi-scale modeling of atomic resolution structures and low-resolution biophysical data from electron microscopy, tomography or small-angle X-ray scattering. This article provides an overview of recent developments in the Situs package, with an emphasis on workflows and conventions that are important for practical applications. The modular design of the programs facilitates scripting in the bash shell that allows specific programs tomore » be combined in creative ways that go beyond the original intent of the developers. Several scripting-enabled functionalities, such as flexible transformations of data type, the use of symmetry constraints or the creation of two-dimensional projection images, are described. The processing of low-resolution biophysical maps in such workflows follows not only first principles but often relies on implicit conventions. Situs conventions related to map formats, resolution, correlation functions and feature detection are reviewed and summarized. The compatibility of the Situs workflow with CCP4 conventions and programs is discussed.« less

  18. Architecture and Assembly of HIV Integrase Multimers in the Absence of DNA Substrates*

    PubMed Central

    Bojja, Ravi Shankar; Andrake, Mark D.; Merkel, George; Weigand, Steven; Dunbrack, Roland L.; Skalka, Anna Marie

    2013-01-01

    We have applied small angle x-ray scattering and protein cross-linking coupled with mass spectrometry to determine the architectures of full-length HIV integrase (IN) dimers in solution. By blocking interactions that stabilize either a core-core domain interface or N-terminal domain intermolecular contacts, we show that full-length HIV IN can form two dimer types. One is an expected dimer, characterized by interactions between two catalytic core domains. The other dimer is stabilized by interactions of the N-terminal domain of one monomer with the C-terminal domain and catalytic core domain of the second monomer as well as direct interactions between the two C-terminal domains. This organization is similar to the “reaching dimer” previously described for wild type ASV apoIN and resembles the inner, substrate binding dimer in the crystal structure of the PFV intasome. Results from our small angle x-ray scattering and modeling studies indicate that in the absence of its DNA substrate, the HIV IN tetramer assembles as two stacked reaching dimers that are stabilized by core-core interactions. These models of full-length HIV IN provide new insight into multimer assembly and suggest additional approaches for enzyme inhibition. PMID:23322775

  19. Unravelling the shape and structural assembly of the photosynthetic GAPDH-CP12-PRK complex from Arabidopsis thaliana by small-angle X-ray scattering analysis.

    PubMed

    Del Giudice, Alessandra; Pavel, Nicolae Viorel; Galantini, Luciano; Falini, Giuseppe; Trost, Paolo; Fermani, Simona; Sparla, Francesca

    2015-12-01

    Oxygenic photosynthetic organisms produce sugars through the Calvin-Benson cycle, a metabolism that is tightly linked to the light reactions of photosynthesis and is regulated by different mechanisms, including the formation of protein complexes. Two enzymes of the cycle, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), form a supramolecular complex with the regulatory protein CP12 with the formula (GAPDH-CP122-PRK)2, in which both enzyme activities are transiently inhibited during the night. Small-angle X-ray scattering analysis performed on both the GAPDH-CP12-PRK complex and its components, GAPDH-CP12 and PRK, from Arabidopsis thaliana showed that (i) PRK has an elongated, bent and screwed shape, (ii) the oxidized N-terminal region of CP12 that is not embedded in the GAPDH-CP12 complex prefers a compact conformation and (iii) the interaction of PRK with the N-terminal region of CP12 favours the approach of two GAPDH tetramers. The interaction between the GAPDH tetramers may contribute to the overall stabilization of the GAPDH-CP12-PRK complex, the structure of which is presented here for the first time.

  20. The Structure of Urease Activation Complexes Examined by Flexibility Analysis, Mutagenesis, and Small-Angle X-Ray Scattering

    PubMed Central

    Quiroz-Valenzuela, Soledad; Sukuru, Sai Chetan K.; Hausinger, Robert P.; Kuhn, Leslie A.; Heller, William T.

    2008-01-01

    Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC)3 induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle x-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complex that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD)3, and (UreABC-UreDF)3 confirm that UreD and UreF bind near UreB at the periphery of the (UreAC)3 structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF)3 allows CO2 and nickel ions to gain access to the nascent active site. PMID:18823937

  1. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography

    NASA Astrophysics Data System (ADS)

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-01

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres—for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  2. “Uncontrolled” Preparation of Disperse Poly(lactide)- block -poly(styrene)- block -poly(lactide) for Nanopatterning Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderlaan, Marie E.; Hillmyer, Marc A.

    We report the facile synthesis of well-defined ABA poly(lactide)-block-poly(styrene)-block-poly(lactide) (LSL) triblock copolymers having a disperse poly(styrene) midblock (Ð = 1.27–2.24). The direct synthesis of telechelic α,ω-hydroxypoly(styrene) (HO-PS-OH) midblocks was achieved using a commercially available difunctional free radical diazo initiator 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide]. Poly(lactide) (PLA) end blocks were subsequently grown from HO-PS-OH macroinitiators via ring-opening transesterification polymerization of (±)-lactide using the most common and prevalent catalyst system available, tin(II) 2-ethylhexanoate. Fourteen LSL triblock copolymers with total molar masses Mn,total = 24–181 kg/mol and PLA volume fractions fPLA = 0.15–0.68 were synthesized and thoroughly characterized. The self-assembly of symmetric triblocks was analyzed in themore » bulk using small-angle X-ray scattering and in thin films using grazing incidence small-angle X-ray scattering and atomic force microscopy. We demonstrate both the bulk and thin film self-assembly of LSL disperse triblocks gave well-organized nanostructures with uniform domain sizes suitable for nanopatterning applications.« less

  3. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.

    PubMed

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-19

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  4. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    PubMed

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Investigation of the Structural Stability of Ion-Implanted Gd 2Ti 2-xSn xO 7 Pyrochlore-Type Oxides by Glancing Angle X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aluri, Esther Rani; Hayes, John R.; Walker, James D.S.

    2016-03-24

    Rare-earth titanate and stannate pyrochlore-type oxides have been investigated in the past for the sequestration of nuclear waste elements because of their resistance to radiation-induced structural damage. In order to enhance this property, it is necessary to understand the effect of radioactive decay of the incorporated actinide elements on the local chemical environment. In this study, Gd 2Ti 2–xSn xO 7 materials have been implanted with Au– ions to simulate radiation-induced structural damage. Glancing angle X-ray absorption near-edge spectroscopy (GA-XANES), glancing angle X-ray absorption fine structure (GA-EXAFS) analysis, and powder X-ray diffraction have been used to investigate changes in themore » local coordination environment of the metal atoms in the damaged surface layer. Examination of GA-XANES/EXAFS spectra from the implanted Gd 2Ti 2–xSn xO 7 materials collected at various glancing angles allowed for an investigation of how the local coordination environment around the absorbing atoms changed at different depths in the damaged surface layer. This study has shown the usefulness of GA-XANES to the examination of ion-implanted materials and has suggested that Gd 2Ti 2–xSn xO 7 becomes more susceptible to ion-beam-induced structural damage with increasing Sn concentration.« less

  6. Spectral softening in the X-RAY afterglow of GRB 130925A as predicted by the dust scattering model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yi-Nan; Shao, Lang, E-mail: lshao@hebtu.edu.cn

    2014-07-01

    Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a ≤ 0.1 μm) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximationmore » may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.« less

  7. Spectral Softening in the X-Ray Afterglow of GRB 130925A as Predicted by the Dust Scattering Model

    NASA Astrophysics Data System (ADS)

    Zhao, Yi-Nan; Shao, Lang

    2014-07-01

    Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a <= 0.1 μm) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximation may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.

  8. The HELLAS2XMM survey. XI. Unveiling the nature of X-ray bright optically normal galaxies

    NASA Astrophysics Data System (ADS)

    Civano, F.; Mignoli, M.; Comastri, A.; Vignali, C.; Fiore, F.; Pozzetti, L.; Brusa, M.; La Franca, F.; Matt, G.; Puccetti, S.; Cocchia, F.

    2007-12-01

    Aims:X-ray bright optically normal galaxies (XBONGs) constitute a small but significant fraction of hard X-ray selected sources in recent Chandra and XMM-Newton surveys. Even though several possibilities were proposed to explain why a relatively luminous hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the nature of XBONGs is still subject of debate. We aim to better understand their nature by means of a multiwavelength and morphological analysis of a small sample of these sources. Methods: Good-quality photometric near-infrared data (ISAAC/VLT) of four low-redshift (z = 0.1{-}0.3) XBONGs, selected from the HELLAS2XMM survey, have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique through the least-squares fitting program GALFIT. Results: The surface brightness decomposition allows us to reveal a nuclear point-like source, likely to be responsible for the X-ray emission, in two out of the four sources. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4π) at the nuclear source, combined with the low nuclear activity, may explain the lack of optical emission lines. The third XBONG is associated with an X-ray extended source and no nuclear excess is detected in the near infrared at the limits of our observations. The last source is associated to a close (d≤ 1 arcsec) double system and the fitting procedure cannot achieve a firm conclusion. Based on observations made at the European Southern Observatory, Paranal, Chile (ESO Programme ID 69.A-0554).

  9. Characterization of MOSFET Dosimeter Angular Response Using a Spherical Phantom for Fluoroscopic Dosimetry.

    PubMed

    Wang, Chu; Hill, Kevin; Yoshizumi, Terry

    2016-01-01

    Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) dosimeters, placed in anthropomorphic phantoms, are a standard method for organ dosimetry in medical x-ray imaging applications. However, many x-ray applications, particularly fluoroscopy procedures, use variable projection angles. During dosimetry, the MOSFET detector active area may not always be perpendicular to the x-ray beam. The goal of this study was to characterize the dosimeter's angular response in the fluoroscopic irradiation involved in pediatric cardiac catheterization procedures, during which a considerable amount of fluoroscopic x-ray irradiation is often applied from various projection angles. A biological x-ray irradiator was used to simulate the beam quality of a biplane fluoroscopy imaging system. A custom-designed acrylic spherical scatter phantom was fabricated to measure dosimeter response (in mV) in two rotational axes, axial (ψ) and normal-to-axial (θ), in 30° increments, as well as four common oblique angles used in cardiac catheterization: a) 90° Left Anterior Oblique (LAO); b) 70° LAO/ 20° Cranial; c) 20° LAO/ 15° Cranial; and d) 30° Right Anterior Oblique (RAO). All results were normalized to the angle where the dosimeter epoxy is perpendicular to the beam or the Posterior-Anterior projection angle in the clinical setup. The relative response in the axial rotation was isotropic (within ± 10% deviation); that in the normal-to-axial rotation was isotropic in all angles except the ψ = 270° angle, where the relative response was 83 ± 9%. No significant deviation in detector response was observed in the four common oblique angles, with their relative responses being: a) 102 ± 3%; b) 90 ± 3%; c) 92 ± 3%; and d) 95 ± 3%, respectively. These angular correction factors will be used in future dosimetry studies for fluoroscopy. The spherical phantom may be useful for other applications, as it allows the measurement of dosimeter response in virtually all angles in the 3-dimensional spherical coordinates.

  10. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions.

    PubMed

    Cristiglio, Viviana; Grillo, Isabelle; Fomina, Margarita; Wien, Frank; Shalaev, Evgenyi; Novikov, Alexey; Brassamin, Séverine; Réfrégiers, Matthieu; Pérez, Javier; Hennet, Louis

    2017-01-01

    The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. The aggregation behavior of 45μl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, K.M.; Al-Jassim, M.M.; Williamson, D.L.

    Over the last two decades extensive studies on the optical and electrical properties of hydrogenated amorphous Si (a-Si:H) have been reported. However, less attention was given to the structural characterization of this material partly due to the insensitivity to hydrogen of structural probes such as x-rays and electron diffraction. From a recent set of experiments, results on the solubility limit of hydrogen in a special type of a-Si:H and the characterization of hydrogen induced complexes or nanobubbles has been reported. In this study, we report TEM observations of the structural morphology of hydrogen related defects that support these recent measurementsmore » obtained by secondary ion mass spectrometry (SIMS) and small-angle x-ray scattering (SAXS).« less

  12. Effect of interparticle interactions on size determination of zirconia and silica based systems – A comparison of SAXS, DLS, BET, XRD and TEM

    PubMed Central

    Pabisch, Silvia; Feichtenschlager, Bernhard; Kickelbick, Guido; Peterlik, Herwig

    2012-01-01

    The aim of this work is a systematic comparison of size characterisation methods for two completely different model systems of oxide nanoparticles, i.e. amorphous spherical silica and anisotropic facet-shaped crystalline zirconia. Size and/or size distribution were determined in a wide range from 5 to 70 nm using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), nitrogen sorption (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A nearly perfect coincidence was observed only for SAXS and TEM for both types of particles. For zirconia nanoparticles considerable differences between different measurement methods were observed. PMID:22347721

  13. High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Kraus, D.; Hartley, N. J.; Frydrych, S.; Schuster, A. K.; Rohatsch, K.; Rödel, M.; Cowan, T. E.; Brown, S.; Cunningham, E.; van Driel, T.; Fletcher, L. B.; Galtier, E.; Gamboa, E. J.; Laso Garcia, A.; Gericke, D. O.; Granados, E.; Heimann, P. A.; Lee, H. J.; MacDonald, M. J.; MacKinnon, A. J.; McBride, E. E.; Nam, I.; Neumayer, P.; Pak, A.; Pelka, A.; Prencipe, I.; Ravasio, A.; Redmer, R.; Saunders, A. M.; Schölmerich, M.; Schörner, M.; Sun, P.; Turner, S. J.; Zettl, A.; Falcone, R. W.; Glenzer, S. H.; Döppner, T.; Vorberger, J.

    2018-05-01

    Diamond formation in polystyrene (C8H8)n, which is laser-compressed and heated to conditions around 150 GPa and 5000 K, has recently been demonstrated in the laboratory [Kraus et al., Nat. Astron. 1, 606-611 (2017)]. Here, we show an extended analysis and comparison to first-principles simulations of the acquired data and their implications for planetary physics and inertial confinement fusion. Moreover, we discuss the advanced diagnostic capabilities of adding high-quality small angle X-ray scattering and spectrally resolved X-ray scattering to the platform, which shows great prospects of precisely studying the kinetics of chemical reactions in dense plasma environments at pressures exceeding 100 GPa.

  14. Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation

    DOE PAGES

    Sun, Cheng; Sprouster, David J.; Hattar, K.; ...

    2018-02-09

    In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, Kohki, E-mail: nagata.koki@iri-tokyo.jp; School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Ogura, Atsushi

    The effects of the fabrication process conditions on the microstructure of silicon dioxide thin films of <10 nm thickness are presented. The microstructure was investigated using grazing-incidence wide and small-angle X-ray scattering methods with synchrotron radiation. The combination of a high brilliance light source and grazing incident configuration enabled the observation of very weak diffuse X-ray scattering from SiO{sub 2} thin films. The results revealed different microstructures, which were dependent on oxidizing species or temperature. The micro-level properties differed from bulk properties reported in the previous literature. It was indicated that these differences originate from inner stress. The detailed structure inmore » an amorphous thin film was not revealed owing to detection difficulties.« less

  16. Correlative Light and Scanning X-Ray Scattering Microscopy of Healthy and Pathologic Human Bone Sections

    PubMed Central

    Giannini, C.; Siliqi, D.; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.

    2012-01-01

    Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon resolution. This favorable combination has been applied for the first time to biopsies of dwarfism syndrome and Paget's disease to shed light onto the cortical structure of natural bone in healthy and pathologic sections. PMID:22666538

  17. Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng; Sprouster, David J.; Hattar, K.

    In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuning; Roy, Amitava; Lichtenberg, Henning

    The micro-segmented flow technique was applied for continuous synthesis of ZnO micro- and nanoparticles with short residence times of 9.4 s and 21.4 s, respectively. The obtained particles were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Small angle X-ray scattering (SAXS) and photoluminescence spectroscopy were used to determine the size and optical properties of ZnO nanoparticles. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to investigate local structural properties. The EXAFS measurements reveal a larger degree of structural disorder in the nanoparticles than the microparticles. These structural changes should be taken into considerationmore » while evaluating the size-dependent visible emission of ZnO nanoparticles.« less

  19. A small protein inhibits proliferating cell nuclear antigen by breaking the DNA clamp

    DOE PAGES

    Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo; ...

    2016-05-03

    Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less

  20. Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental observablesa)

    NASA Astrophysics Data System (ADS)

    Spears, Brian K.; Munro, David H.; Sepke, Scott; Caggiano, Joseph; Clark, Daniel; Hatarik, Robert; Kritcher, Andrea; Sayre, Daniel; Yeamans, Charles; Knauer, James; Hilsabeck, Terry; Kilkenny, Joe

    2015-05-01

    We simulate in 3D both the hydrodynamics and, simultaneously, the X-ray and neutron diagnostic signatures of National Ignition Facility (NIF) implosions. We apply asymmetric radiation drive to study the impact of low mode asymmetry on diagnostic observables. We examine X-ray and neutron images as well as neutron spectra for these perturbed implosions. The X-ray images show hot spot evolution on small length scales and short time scales, reflecting the incomplete stagnation seen in the simulation. The neutron images show surprising differences from the X-ray images. The neutron spectra provide additional measures of implosion asymmetry. Flow in the hot spot alters the neutron spectral peak, namely, the peak location and width. The changes in the width lead to a variation in the apparent temperature with viewing angle that signals underlying hot spot asymmetry. We compare our new expectations based on the simulated data with NIF data. We find that some recent cryogenic layered experiments show appreciable temperature anisotropy indicating residual flow in the hot spot. We also find some trends in the data that do not reflect our simulation and theoretical understanding.

  1. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review.

    PubMed

    Dwivedi, D; Lepkova, K; Becker, T

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  2. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  3. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    PubMed Central

    Dwivedi, D.; Becker, T.

    2017-01-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed. PMID:28413351

  4. Grating-based X-ray Dark-field Computed Tomography of Living Mice.

    PubMed

    Velroyen, A; Yaroshenko, A; Hahn, D; Fehringer, A; Tapfer, A; Müller, M; Noël, P B; Pauwels, B; Sasov, A; Yildirim, A Ö; Eickelberg, O; Hellbach, K; Auweter, S D; Meinel, F G; Reiser, M F; Bech, M; Pfeiffer, F

    2015-10-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural - and thus indirectly functional - changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue.

  5. Grating-based X-ray Dark-field Computed Tomography of Living Mice

    PubMed Central

    Velroyen, A.; Yaroshenko, A.; Hahn, D.; Fehringer, A.; Tapfer, A.; Müller, M.; Noël, P.B.; Pauwels, B.; Sasov, A.; Yildirim, A.Ö.; Eickelberg, O.; Hellbach, K.; Auweter, S.D.; Meinel, F.G.; Reiser, M.F.; Bech, M.; Pfeiffer, F.

    2015-01-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural – and thus indirectly functional – changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue. PMID:26629545

  6. Final Report on Developing Microstructure-Property Correlation in Reactor Materials using in situ High-Energy X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Almer, Jonathan D.; Yang, Yong

    2016-01-01

    This report provides a summary of research activities on understanding microstructure – property correlation in reactor materials using in situ high-energy X-rays. The report is a Level 2 deliverable in FY16 (M2CA-13-IL-AN_-0403-0111), under the Work Package CA-13-IL-AN_- 0403-01, “Microstructure-Property Correlation in Reactor Materials using in situ High Energy Xrays”, as part of the DOE-NE NEET Program. The objective of this project is to demonstrate the application of in situ high energy X-ray measurements of nuclear reactor materials under thermal-mechanical loading, to understand their microstructure-property relationships. The gained knowledge is expected to enable accurate predictions of mechanical performance of these materialsmore » subjected to extreme environments, and to further facilitate development of advanced reactor materials. The report provides detailed description of the in situ X-ray Radiated Materials (iRadMat) apparatus designed to interface with a servo-hydraulic load frame at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermal-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. We conducted several case studies using the iRadMat to obtain a better understanding of deformation and fracture mechanisms of irradiated materials. In situ X-ray measurements on neutron-irradiated pure metal and model alloy and several representative reactor materials, e.g. pure Fe, Fe-9Cr model alloy, 316 SS, HT-UPS, and duplex cast austenitic stainless steels (CASS) CF-8 were performed under tensile loading at temperatures of 20-400°C in vacuum. A combination of wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and imaging techniques were utilized to interrogate microstructure at different length scales in real time while the specimen was subject to thermal-mechanical loading. In addition, in situ X-ray studies were complemented and benchmarked by ex situ characterization using advanced electron microscopy, atom probe tomography (APT) and micro/nano-indentation. The report presented in situ tensile test results on neutron-irradiated pure Fe, Fe-9Cr model alloy, 316 SS and CASS CF-8. These in situ experiments demonstrate the broad applications of the new capability in understanding several outstanding issues related to irradiated materials.« less

  7. Effective interactions and dynamics of small passive particles in an active bacterial medium

    NASA Astrophysics Data System (ADS)

    Semeraro, Enrico F.; Devos, Juliette M.; Narayanan, Theyencheri

    2018-05-01

    This article presents an investigation of the interparticle interactions and dynamics of submicron silica colloids suspended in a bath of motile Escherichia coli bacteria. The colloidal microstructure and dynamics were probed by ultra-small-angle x-ray scattering and multi-speckles x-ray photon correlation spectroscopy, respectively. Both static and hydrodynamic interactions were obtained for different colloid volume fractions and bacteria concentrations as well as when the interparticle interaction potential was modified by the motility buffer. Results suggest that motile bacteria reduce the effective attractive interactions between passive colloids and enhance their dynamics at high colloid volume fractions. The enhanced dynamics under different static interparticle interactions can be rationalized in terms of an effective viscosity of the medium and unified by means of an empirical effective temperature of the system. While the influence of swimming bacteria on the colloid dynamics is significantly lower for small particles, the role of motility buffer on the static and dynamic interactions becomes more pronounced.

  8. [Study on bamboo treated with gamma rays by X-ray diffraction].

    PubMed

    Sun, Feng-Bo; Fei, Ben-Hua; Jiang, Ze-Hui; Yu, Zi-Xuan; Tian, Gen-Lin; Yang, Quan-Wen

    2011-06-01

    The microfibril angle and crystallinity of bamboo treated with gamma rays were tested by X-ray diffraction (XRD). The result indicated that crystallinity in bamboo increased when irradiation dose was less than 100 kGy, while the irradiation dose was raised to about 100 kGy, crystallinity in bamboo reduced. But during the whole irradiation process, the influence on microfibril angle was not obvious, so it was not the dominant factors on variation in physical-mechanical properties of bamboo during the process of irradiation.

  9. Development of a fluorescent x-ray source for medical imaging

    NASA Astrophysics Data System (ADS)

    Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.

    1995-02-01

    A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.

  10. A method to improve observations of gamma-ray sources near 10 (15) eV

    NASA Technical Reports Server (NTRS)

    Sommers, P.; Elbert, J. W.

    1985-01-01

    Now that sources of gamma rays near 10 to the 15th power eV have been identified, there is a need for telescopes which can study in detail the high energy gamma ray emissions from these sources. The capabilities of a Cerenkov detector which can track a source at large zenith angle (small elevation angle) are analyzed. Because the observed showers must then develop far from the detector, the effective detection area is very large. During a single half-hour hot phase of Cygnus X-3, for example, it may be possible to detect 45 signal showers compared with 10 background showers. Time structure within the hot phase may then be discernible. The precise capabilities of the detector depend on its mirror size, angular acceptance, electronic speed, coincidence properties, etc. Calculations are presented for one feasible design using mirrors of an improved Fly's Eye type.

  11. Real-Time Probing of Nanowire Assembly Kinetics at the Air-Water Interface by In Situ Synchrotron X-Ray Scattering.

    PubMed

    He, Zhen; Jiang, Hui-Jun; Wu, Long-Long; Liu, Jian-Wei; Wang, Geng; Wang, Xiao; Wang, Jin-Long; Hou, Zhong-Huai; Chen, Gang; Yu, Shu-Hong

    2018-07-02

    Although many assembly strategies have been used to successfully construct well-aligned nanowire (NW) assemblies, the understanding of their assembly kinetics has remained elusive, which restricts the development of NW-based device and circuit fabrication. Now a versatile strategy that combines interfacial assembly and synchrotron-based grazing-incidence small-angle X-ray scattering (GISAXS) is presented to track the assembly evolution of the NWs in real time. During the interface assembly process, the randomly dispersed NWs gradually aggregate to form small ordered NW-blocks and finally are constructed into well-defined NW monolayer driven by the conformation entropy. The NW assembly mechanism can be well revealed by the thermodynamic analysis and large-scale molecular dynamics theoretical evaluation. These findings point to new opportunities for understanding NW assembly kinetics and manipulating NW assembled structures by bottom-up strategy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation

    PubMed Central

    Lawrence, Sara L.; Feil, Susanne C.; Morton, Craig J.; Farrand, Allison J.; Mulhern, Terrence D.; Gorman, Michael A.; Wade, Kristin R.; Tweten, Rodney K.; Parker, Michael W.

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  13. THz-pump and X-ray-probe sources based on an electron linac.

    PubMed

    Setiniyaz, Sadiq; Park, Seong Hee; Kim, Hyun Woo; Vinokurov, Nikolay A; Jang, Kyu-Ha; Lee, Kitae; Baek, In Hyung; Jeong, Young Uk

    2017-11-01

    We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 10 3 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 μm thick each) can generate close to 10 3 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 10 7 X-rays per 1 keV energy bin per second or 10 5 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.

  14. Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition

    NASA Astrophysics Data System (ADS)

    Ingram, Whitney; Larson, Steven; Carlson, Daniel; Zhao, Yiping

    2017-01-01

    By combining shadow nanosphere lithography with a glancing angle co-deposition technique, mixed-phase Ag-Cu triangular nanopatterns and films were fabricated. They were prepared at different compositions with respect to Ag from 100% to 0% by changing the relative deposition ratio of each metal. Characterizations by ellipsometry, energy dispersive x-ray spectroscopy, and x-ray diffraction revealed that the thin films and nanopatterns were composed of small, well-mixed Ag and Cu nano-grains with a diameter less than 20 nm, and their optical properties could be described by an effective medium theory. All compositions of the nanopattern had the same shape, but showed tunable localized surface plasmon resonance (LSPR) properties. In general, the LSPR of the nanopatterns redshifted with decreasing composition. Such a relation could be fitted by an empirical model based on the bulk theory of alloy plasmonics. By changing the colloidal template and the material deposited, this fabrication technique can be used to produce other alloy plasmonic nanostructures with predicted LSPR wavelengths.

  15. Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition.

    PubMed

    Ingram, Whitney; Larson, Steven; Carlson, Daniel; Zhao, Yiping

    2017-01-06

    By combining shadow nanosphere lithography with a glancing angle co-deposition technique, mixed-phase Ag-Cu triangular nanopatterns and films were fabricated. They were prepared at different compositions with respect to Ag from 100% to 0% by changing the relative deposition ratio of each metal. Characterizations by ellipsometry, energy dispersive x-ray spectroscopy, and x-ray diffraction revealed that the thin films and nanopatterns were composed of small, well-mixed Ag and Cu nano-grains with a diameter less than 20 nm, and their optical properties could be described by an effective medium theory. All compositions of the nanopattern had the same shape, but showed tunable localized surface plasmon resonance (LSPR) properties. In general, the LSPR of the nanopatterns redshifted with decreasing composition. Such a relation could be fitted by an empirical model based on the bulk theory of alloy plasmonics. By changing the colloidal template and the material deposited, this fabrication technique can be used to produce other alloy plasmonic nanostructures with predicted LSPR wavelengths.

  16. Modification of carbon nanotubes with fluorinated ionic liquid for improving processability of fluoro-ethylene-propylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hongyang; Chu, Benjamin; Hsiao, Benjamin S.

    Fluorinated ionic liquid (F-IL), 1-(3-perfluorooctylpropyl)-3-methylimidazolium bis(perfluoroethylsufonyl)amine, had been successfully prepared and employed to modify multi-wall carbon nanotubes (MWCNTs) for improving the processability of fluoro-ethylene-propylene (FEP). The thermally decomposed temperature of F-IL was higher than 350 °C measured by thermal gravimetric analysis (TGA) which indicated that the fluorinated ionic liquid could be suitable for melting blend with FEP (blending at 290 °C) by a twin-screw extruder. Through “cation-π” interaction between the imidazolium cation of F-IL and the graphene surface of MWCNTs, MWCNTs can be modified with F-IL and used as nanofillers to improve the dispersity of MWCNTs in fluorocopolymer FEP verifiedmore » by SEM images of the FEP nanocomposite. The structural characterization and mechanical property of FEP nanocomposite during the deformation were investigated by tensile experiments and simultaneous time-resolved wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques.« less

  17. X-ray spectrometer having 12 000 resolving power at 8 keV energy

    NASA Astrophysics Data System (ADS)

    Seely, John F.; Hudson, Lawrence T.; Henins, Albert; Feldman, Uri

    2017-10-01

    An x-ray spectrometer employing a thin (50 μm) silicon transmission crystal was used to record high-resolution Cu Kα spectra from a laboratory x-ray source. The diffraction was from the (331) planes that were at an angle of 13.26° to the crystal surface. The components of the spectral lines resulting from single-vacancy (1s) and double-vacancy (1s and 3d) transitions were observed. After accounting for the natural lifetime widths from reference double-crystal spectra and the spatial resolution of the image plate detector, the intrinsic broadening of the transmission crystal was measured to be as small as 0.67 eV and the resolving power 12 000, the highest resolving power achieved by a compact (0.5 m long) spectrometer employing a single transmission crystal operating in the hard x-ray region. By recording spectra with variable source-to-crystal distances and comparing to the calculated widths from various geometrical broadening mechanisms, the primary contributions to the intrinsic crystal broadening were found to be the source height at small distances and the crystal apertured height at large distances. By reducing these two effects, using a smaller source size and vignetting the crystal height, the intrinsic crystal broadening is then limited by the crystal thickness and the rocking curve width and would be 0.4 eV at 8 keV energy (20 000 resolving power).

  18. Analysis of axial spatial resolution in a variable resolution x-ray cone beam CT (VRX-CBCT) system

    NASA Astrophysics Data System (ADS)

    Dahi, Bahram; Keyes, Gary S.; Rendon, David A.; DiBianca, Frank A.

    2008-03-01

    The Variable Resolution X-ray (VRX) technique has been successfully used in a Cone-Beam CT (CBCT) system to increase the spatial resolution of CT images in the transverse plane. This was achieved by tilting the Flat Panel Detector (FPD) to smaller vrx y angles in a VRX Cone Beam CT (VRX-CBCT) system. In this paper, the effect on the axial spatial resolution of CT images created by the VRX-CBCT system is examined at different vrx x angles, where vrx x is the tilting angle of the FPD about its x-axis. An amorphous silicon FPD with a CsI scintillator is coupled with a micro-focus x-ray tube to form a CBCT. The FPD is installed on a rotating frame that allows rotation of up to 90° about x and y axes of the FPD. There is no rotation about the z-axis (i.e. normal to the imaging surface). Tilting the FPD about its x-axis (i.e. decreasing the vrx x angle) reduces both the width of the line-spread function and the sampling distance by a factor of sin vrx x, thereby increasing the theoretical detector pre-sampling spatial resolution proportionately. This results in thinner CT slices that in turn help increase the axial spatial resolution of the CT images. An in-house phantom is used to measure the MTF of the reconstructed CT images at different vrx x angles.

  19. Asymmetrically cut crystal pair as x-ray magnifier for imaging at high intensity laser facilitiesa)

    NASA Astrophysics Data System (ADS)

    Szabo, C. I.; Feldman, U.; Seely, J. F.; Curry, J. J.; Hudson, L. T.; Henins, A.

    2010-10-01

    The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.

  20. Micro-CT images reconstruction and 3D visualization for small animal studying

    NASA Astrophysics Data System (ADS)

    Gong, Hui; Liu, Qian; Zhong, Aijun; Ju, Shan; Fang, Quan; Fang, Zheng

    2005-01-01

    A small-animal x-ray micro computed tomography (micro-CT) system has been constructed to screen laboratory small animals and organs. The micro-CT system consists of dual fiber-optic taper-coupled CCD detectors with a field-of-view of 25x50 mm2, a microfocus x-ray source, a rotational subject holder. For accurate localization of rotation center, coincidence between the axis of rotation and centre of image was studied by calibration with a polymethylmethacrylate cylinder. Feldkamp"s filtered back-projection cone-beam algorithm is adopted for three-dimensional reconstruction on account of the effective corn-beam angle is 5.67° of the micro-CT system. 200x1024x1024 matrix data of micro-CT is obtained with the magnification of 1.77 and pixel size of 31x31μm2. In our reconstruction software, output image size of micro-CT slices data, magnification factor and rotation sample degree can be modified in the condition of different computational efficiency and reconstruction region. The reconstructed image matrix data is processed and visualization by Visualization Toolkit (VTK). Data parallelism of VTK is performed in surface rendering of reconstructed data in order to improve computing speed. Computing time of processing a 512x512x512 matrix datasets is about 1/20 compared with serial program when 30 CPU is used. The voxel size is 54x54x108 μm3. The reconstruction and 3-D visualization images of laboratory rat ear are presented.

  1. Destroying activity of magnetoferritin on lysozyme amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Kopcansky, Peter; Siposova, Katarina; Melnikova, Lucia; Bednarikova, Zuzana; Timko, Milan; Mitroova, Zuzana; Antosova, Andrea; Garamus, Vasil M.; Petrenko, Viktor I.; Avdeev, Mikhail V.; Gazova, Zuzana

    2015-03-01

    Presence of protein amyloid aggregates (oligomers, protofilaments, fibrils) is associated with many diseases as diabetes mellitus or Alzheimer's disease. The interaction between lysozyme amyloid fibrils and magnetoferritin loaded with different amount of iron atoms (168 or 532 atoms) has been investigated by small-angle X-rays scattering and thioflavin T fluorescence measurements. Results suggest that magnetoferritin caused an iron atom-concentration dependent reduction of lysozyme fibril size.

  2. The Importance of Protein-Protein Interactions on the pH-Induced Conformational Changes of Bovine Serum Albumin: A Small-Angle X-Ray Scattering Study

    PubMed Central

    Barbosa, Leandro R.S.; Ortore, Maria Grazia; Spinozzi, Francesco; Mariani, Paolo; Bernstorff, Sigrid; Itri, Rosangela

    2010-01-01

    Abstract The combined effects of concentration and pH on the conformational states of bovine serum albumin (BSA) are investigated by small-angle x-ray scattering. Serum albumins, at physiological conditions, are found at concentrations of ∼35–45 mg/mL (42 mg/mL in the case of humans). In this work, BSA at three different concentrations (10, 25, and 50 mg/mL) and pH values (2.0–9.0) have been studied. Data were analyzed by means of the Global Fitting procedure, with the protein form factor calculated from human serum albumin (HSA) crystallographic structure and the interference function described, considering repulsive and attractive interaction potentials within a random phase approximation. Small-angle x-ray scattering data show that BSA maintains its native state from pH 4.0 up to 9.0 at all investigated concentrations. A pH-dependence of the absolute net protein charge is shown and the charge number per BSA is quantified to 10(2), 8(1), 13(2), 20(2), and 26(2) for pH values 4.0, 5.4, 7.0, 8.0, and 9.0, respectively. The attractive potential diminishes as BSA concentration increases. The coexistence of monomers and dimers is observed at 50 mg/mL and pH 5.4, near the BSA isoelectric point. Samples at pH 2.0 show a different behavior, because BSA overall shape changes as a function of concentration. At 10 mg/mL, BSA is partially unfolded and a strong repulsive protein-protein interaction occurs due to the high amount of exposed charge. At 25 and 50 mg/mL, BSA undergoes some re-folding, which likely results in a molten-globule state. This work concludes by confirming that the protein concentration plays an important role on the pH-unfolded BSA state, due to a delicate compromise between interaction forces and crowding effects. PMID:20085727

  3. Using DTSA-II to simulate and interpret energy dispersive spectra from particles.

    PubMed

    Ritchie, Nicholas W M

    2010-06-01

    A high quality X-ray spectrum image of a 3.3 mum diameter sphere of K411 glass resting on a copper substrate was collected at 25 keV. The same sample configuration was modeled using the NISTMonte Monte Carlo simulation of electron and X-ray transport as is integrated into the quantitative X-ray microanalysis software package DTSA-II. The distribution of measured and simulated X-ray intensity compare favorably for all the major lines present in the spectra. The simulation is further examined to investigate the influence of angle-of-incidence, sample thickness, and sample diameter on the generated and measured X-ray intensity. The distribution of generated X-rays is seen to deviate significantly from a naive model which assumes that the distribution of generated X-rays is similar to bulk within the volume they share in common. It is demonstrated that the angle at which the electron beam strikes the sample has nonnegligible consequences. It is also demonstrated that within the volume that the bulk and particle share in common that electrons, which have exited and later reentered the particle volume, generate a significant fraction of the X-rays. Any general model of X-ray generation in particles must take into account the lateral spread of the scattered electron beam.

  4. Wettability measurement under high P-T conditions using X-ray imaging with application to the brine-supercritical CO2 system

    NASA Astrophysics Data System (ADS)

    Chaudhary, Kuldeep; Guiltinan, Eric J.; Cardenas, M. Bayani; Maisano, Jessica A.; Ketcham, Richard A.; Bennett, Philip C.

    2015-09-01

    We present a new method for measuring wettability or contact angle of minerals at reservoir pressure-temperature conditions using high-resolution X-ray computed tomography (HRXCT) and radiography. In this method, a capillary or a narrow slot is constructed from a mineral or a rock sample of interest wherein two fluids are allowed to form an interface that is imaged using X-rays. After some validation measurements at room pressure-temperature conditions, we illustrate this method by measuring the contact angle of CO2-brine on quartz, muscovite, shale, borosilicate glass, polytetrafluoroethylene (PTFE or Teflon), and polyether ether ketone (PEEK) surfaces at 60-71°C and 13.8-22.8 MPa. At reservoir conditions, PTFE and PEEK surfaces were found to be CO2-wet with contact angles of 140° and 127°, respectively. Quartz and muscovite were found to be water-wet with contact angles of 26° and 58°, respectively, under similar conditions. Borosilicate glass-air-brine at room conditions showed strong water-wet characteristics with a contact angle of 9°, whereas borosilicate glass-CO2-brine at 13.8 MPa and 60°C showed a decrease in its water-wetness with contact angle of 54°. This method provides a new application for X-ray imaging and an alternative to other methods.

  5. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Pt n/SiO 2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O 2 exposure and annealing in H 2. Here, the clusters are found tomore » be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L 3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo

    Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain a canonicalmore » PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo

    Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less

  8. Structural evolution of photocrosslinked silk fibroin and silk fibroin-based hybrid hydrogels: A small angle and ultra-small angle scattering investigation.

    PubMed

    Whittaker, Jasmin L; Balu, Rajkamal; Knott, Robert; de Campo, Liliana; Mata, Jitendra P; Rehm, Christine; Hill, Anita J; Dutta, Naba K; Roy Choudhury, Namita

    2018-07-15

    Regenerated Bombyx mori silk fibroin (RSF) is a widely recognized protein for biomedical applications; however, its hierarchical gel structure is poorly understood. In this paper, the hierarchical structure of photocrosslinked RSF and RSF-based hybrid hydrogel systems: (i) RSF/Rec1-resilin and (ii) RSF/poly(N-vinylcaprolactam (PVCL) is reported for the first time using small-angle scattering (SAS) techniques. The structure of RSF in dilute to concentrated solution to fabricated hydrogels were characterized using small angle X-ray scattering (SAXS), small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) techniques. The RSF hydrogel exhibited three distinctive structural characteristics: (i) a Porod region in the length scale of 2 to 3nm due to hydrophobic domains (containing β-sheets) which exhibits sharp interfaces with the amorphous matrix of the hydrogel and the solvent, (ii) a Guinier region in the length scale of 4 to 20nm due to hydrophilic domains (containing turns and random coil), and (iii) a Porod-like region in the length scale of few micrometers due to water pores/channels exhibiting fractal-like characteristics. Addition of Rec1-resilin or PVCL to RSF and subsequent crosslinking systematically increased the nanoscale size of hydrophobic and hydrophilic domains, whereas decreased the homogeneity of pore size distribution in the microscale. The presented results have implications on the fundamental understanding of the structure-property relationship of RSF-based hydrogels. Copyright © 2018. Published by Elsevier B.V.

  9. Small-scale screening method for low-viscosity antibody solutions using small-angle X-ray scattering.

    PubMed

    Fukuda, Masakazu; Watanabe, Atsushi; Hayasaka, Akira; Muraoka, Masaru; Hori, Yuji; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko

    2017-03-01

    In this study, we investigated the concentration range in which self-association starts to form in humanized IgG monoclonal antibody (mAb) solutions. Furthermore, on the basis of the results, we developed a practical method of screening for low-viscosity antibody solutions by using small-angle X-ray scattering (SAXS) measurements utilizing small quantities of samples. With lower-viscosity mAb3, self-association was not detected in the range of 1-80mg/mL. With higher-viscosity mAb1, on the other hand, self-association was detected in the range of 10-20mg/mL and was clearly enhanced by a decrease in temperature. The viscosities of mAb solutions at 160, 180, and 200mg/mL at 25°C quantitatively correlated very well with the particle size parameters obtained by SAXS measurements of mAb solutions at 15mg/mL at 5°C. The quantity of mAb sample required for the SAXS measurements was only 0.15mg, which is about one-hundredth of that required for actual viscosity measurements at a high concentration, and such quantities could be available even at an early stage of development. In conclusion, the SAXS analysis method proposed in this study is a valuable tool for the development of concentrated mAb therapeutics with high manufacturability and high usability for subcutaneous injection. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. EFFECTS OF X-RAY BEAM ANGLE AND GEOMETRIC DISTORTION ON WIDTH OF EQUINE THORACOLUMBAR INTERSPINOUS SPACES USING RADIOGRAPHY AND COMPUTED TOMOGRAPHY-A CADAVERIC STUDY.

    PubMed

    Djernaes, Julie D; Nielsen, Jon V; Berg, Lise C

    2017-03-01

    The widths of spaces between the thoracolumbar processi spinosi (interspinous spaces) are frequently assessed using radiography in sports horses; however effects of varying X-ray beam angles and geometric distortion have not been previously described. The aim of this prospective, observational study was to determine whether X-ray beam angle has an effect on apparent widths of interspinous spaces. Thoracolumbar spine specimens were collected from six equine cadavers and left-right lateral radiographs and sagittal and dorsal reconstructed computed tomographic (CT) images were acquired. Sequential radiographs were acquired with each interspinous space in focus. Measurements were performed for each interspinous space in the focus position and up to eight angled positions as the interspinous space moved away from focus (±). Focus position measurements were compared to matching sagittal CT measurements. Effect of geometric distortion was evaluated by comparing the interspinous space in radiographs with sagittal and dorsal reconstructed CT images. A total of 49 interspinous spaces were sampled, yielding 274 measurements. X-ray beam angle significantly affected measured width of interspinous spaces in position +3 (P = 0.038). Changes in width did not follow a consistent pattern. Interspinous space widths in focus position were significantly smaller in radiographs compared to matching reconstructed CT images for backs diagnosed with kissing spine syndrome (P < 0.001). Geometric distortion markedly affected appearance of interspinous space width between planes. In conclusion, X-ray beam angle and geometric distortion influence radiographically measured widths of interspinous spaces in the equine thoracolumbar spine, and this should be taken into consideration when evaluating sport horses. © 2016 American College of Veterinary Radiology.

  11. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review.

    PubMed

    Martínez-Sanz, Marta; Gidley, Michael J; Gilbert, Elliot P

    2015-07-10

    Plant cell walls present an extremely complex structure of hierarchically assembled cellulose microfibrils embedded in a multi-component matrix. The biosynthesis process determines the mechanism of cellulose crystallisation and assembly, as well as the interaction of cellulose with other cell wall components. Thus, a knowledge of cellulose microfibril and bundle architecture, and the structural role of matrix components, is crucial for understanding cell wall functional and technological roles. Small angle scattering techniques, combined with complementary methods, provide an efficient approach to characterise plant cell walls, covering a broad and relevant size range while minimising experimental artefacts derived from sample treatment. Given the system complexity, approaches such as component extraction and the use of plant cell wall analogues are typically employed to enable the interpretation of experimental results. This review summarises the current research status on the characterisation of the hierarchical structure of plant cell walls using small angle scattering techniques. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  12. Probing the Spatial Distribution of the Interstellar Dust Medium by High Angular Resolution X-ray Halos of Point Sources

    NASA Astrophysics Data System (ADS)

    Xiang, Jingen

    X-rays are absorbed and scattered by dust grains when they travel through the interstellar medium. The scattering within small angles results in an X-ray ``halo''. The halo properties are significantly affected by the energy of radiation, the optical depth of the scattering, the grain size distributions and compositions, and the spatial distribution of dust along the line of sight (LOS). Therefore analyzing the X-ray halo properties is an important tool to study the size distribution and spatial distribution of interstellar grains, which plays a central role in the astrophysical study of the interstellar medium, such as the thermodynamics and chemistry of the gas and the dynamics of star formation. With excellent angular resolution, good energy resolution and broad energy band, the Chandra ACIS is so far the best instrument for studying the X-ray halos. But the direct images of bright sources obtained with ACIS usually suffer from severe pileup which prevents us from obtaining the halos in small angles. We first improve the method proposed by Yao et al to resolve the X-ray dust scattering halos of point sources from the zeroth order data in CC-mode or the first order data in TE mode with Chandra HETG/ACIS. Using this method we re-analyze the Cygnus X-1 data observed with Chandra. Then we studied the X-ray dust scattering halos around 17 bright X-ray point sources using Chandra data. All sources were observed with the HETG/ACIS in CC-mode or TE-mode. Using the interstellar grain models of WD01 model and MRN model to fit the halo profiles, we get the hydrogen column densities and the spatial distributions of the scattering dust grains along the line of sights (LOS) to these sources. We find there is a good linear correlation not only between the scattering hydrogen column density from WD01 model and the one from MRN model, but also between N_{H} derived from spectral fits and the one derived from the grain models WD01 and MRN (except for GX 301-2 and Vela X-1): N_{H,WD01} = (0.720±0.009) × N_{H,abs} + (0.051±0.013) and N_{H, MRN} = (1.156±0.016) × N_{H,abs} + (0.062±0.024) in the units 10^{22} cm^{-2}. Then the correlation between FHI and N_{H} is obtained. Both WD01 model and MRN model fits show that the scattering dust density very close to these sources is much higher than the normal interstellar medium and we consider it is the evidence of molecular clouds around these X-ray binaries. We also find that there is the linear correlation between the effective distance through the galactic dust layer and hydrogen scattering olumn density N_{H} excluding the one in x=0.99-1.0 but the correlation does not exist between he effective distance and the N_{H} in x=0.99-1.0. It shows that the dust nearby the X-ray sources is not the dust from galactic disk. Then we estimate the structure and density of the stellar wind around the special X-ray pulsars Vela X-1 and GX 301-2. Finally we discuss the possibility of probing the three dimensional structure of the interstellar using the X-ray halos of the transient sources, probing the spatial distributions of interstellar dust medium nearby the point sources, even the structure of the stellar winds using higher angular resolution X-ray dust scattering halos and testing the model that the black hole can be formed from the direct collapse of a massive star without supernova using the statistical distribution of the dust density nearby the X-ray binaries.

  13. Measurements of Atomic Rayleigh Scattering Cross-Sections: A New Approach Based on Solid Angle Approximation and Geometrical Efficiency

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Seltzer, S. M.; Hubbell, J. H.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    Atomic Rayleigh scattering cross-sections for low, medium and high Z atoms are measured in vacuum using X-ray tube with a secondary target as an excitation source instead of radioisotopes. Monoenergetic Kα radiation emitted from the secondary target and monoenergetic radiation produced using two secondary targets with filters coupled to an X-ray tube are compared. The Kα radiation from the second target of the system is used to excite the sample. The background has been reduced considerably and the monochromacy is improved. Elastic scattering of Kα X-ray line energies of the secondary target by the sample is recorded with Hp Ge and Si (Li) detectors. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The efficiency is larger because the X-ray fluorescent source acts as a converter. Experimental results based on this system are compared with theoretical estimates and good agreement is observed in between them.

  14. From lows to highs: using low-resolution models to phase X-ray data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart, David I.; Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot; Abrescia, Nicola G. A., E-mail: nabrescia@cicbiogune.es

    2013-11-01

    An unusual example of how virus structure determination pushes the limits of the molecular replacement method is presented. The study of virus structures has contributed to methodological advances in structural biology that are generally applicable (molecular replacement and noncrystallographic symmetry are just two of the best known examples). Moreover, structural virology has been instrumental in forging the more general concept of exploiting phase information derived from multiple structural techniques. This hybridization of structural methods, primarily electron microscopy (EM) and X-ray crystallography, but also small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy, is central to integrative structural biology. Here,more » the interplay of X-ray crystallography and EM is illustrated through the example of the structural determination of the marine lipid-containing bacteriophage PM2. Molecular replacement starting from an ∼13 Å cryo-EM reconstruction, followed by cycling density averaging, phase extension and solvent flattening, gave the X-ray structure of the intact virus at 7 Å resolution This in turn served as a bridge to phase, to 2.5 Å resolution, data from twinned crystals of the major coat protein (P2), ultimately yielding a quasi-atomic model of the particle, which provided significant insights into virus evolution and viral membrane biogenesis.« less

  15. X-ray Photoelectron Spectroscopy (XPS), Rutherford Back Scattering (RBS) studies

    NASA Technical Reports Server (NTRS)

    Neely, W. C.; Bozak, M. J.; Williams, J. R.

    1993-01-01

    X-ray photoelectron spectroscopy (XPS), Rutherford Back Scattering (RBS) studies of each of sample received were completed. Since low angle X-ray could not be performed because of instrumentation problems, Auger spectrometry was employed instead. The results of these measurements for each of the samples is discussed in turn.

  16. Evolution of the characteristics of Parametric X-ray Radiation from textured polycrystals under different observation angles

    NASA Astrophysics Data System (ADS)

    Alekseev, V. I.; Eliseyev, A. N.; Irribarra, E.; Kishin, I. A.; Klyuev, A. S.; Kubankin, A. S.; Nazhmudinov, R. M.; Zhukova, P. N.

    2018-02-01

    The Parametric X-Ray radiation (PXR) spectra and yield dependencies on the orientation angle are measured during the interaction of 7 MeV electrons with a tungsten textured polycrystalline foil for different observation angles. The effects of PXR spectral density increase and PXR yield orientation dependence broadening in the backward direction is shown experimentally for the first time. The experimental results are compared with PXR kinematical theories for both mosaic crystals and polycrystals.

  17. Synthesis of Thermoresponsive Amphiphilic Polyurethane Gel as a New Cell Printing Material near Body Temperature.

    PubMed

    Tsai, Yi-Chun; Li, Suming; Hu, Shiaw-Guang; Chang, Wen-Chi; Jeng, U-Ser; Hsu, Shan-hui

    2015-12-23

    Waterborne polyurethane (PU) based on poly(ε-caprolactone) (PCL) diol and a second oligodiol containing amphiphilic blocks was synthesized in this study. The microstructure was characterized by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and rheological measurement of the PU dispersion. The surface hydrophilicity measurement, infrared spectroscopy, wide-angle X-ray diffraction, mechanical and thermal analyses were conducted in solid state. It was observed that the presence of a small amount of amphiphilic blocks in the soft segment resulted in significant changes in microstructure. When 90 mol % PCL diol and 10 mol % amphiphilic blocks of poly(l-lactide)-poly(ethylene oxide) (PLLA-PEO) diol were used as the soft segment, the synthesized PU had a water contact angle of ∼24° and degree of crystallinity of ∼14%. The dispersion had a low viscosity below room temperature. As the temperature was raised to body temperature (37 °C), the dispersion rapidly (∼170 s) underwent sol-gel transition with excellent gel modulus (G' ≈ 6.5 kPa) in 20 min. PU dispersions with a solid content of 25-30% could be easily mixed with cells in sol state, extruded by a 3D printer, and deposited layer by layer as a gel. Cells remained alive and proliferating in the printed hydrogel scaffold. We expect that the development of novel thermoresponsive PU system can be used as smart injectable hydrogel and applied as a new type of bio-3D printing ink.

  18. Spherical grating based x-ray Talbot interferometry.

    PubMed

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-11-01

    Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh-Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications.

  19. Spherical grating based x-ray Talbot interferometry

    PubMed Central

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications. PMID:26520741

  20. Spherical grating based x-ray Talbot interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme formore » a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications.« less

  1. Combining Electronic and Geometric Effects of ZnO-Promoted Pt Nanocatalysts for Aqueous Phase Reforming of 1-Propanol

    DOE PAGES

    Lei, Yu; Lee, Sungsik; Low, Ke -Bin; ...

    2016-04-26

    Compared with Pt/Al 2O 3, sintering-resistant Pt nanoparticle catalysts promoted by ZnO significantly improved the reactivity and selectivity toward hydrogen formation in the aqueous phase reforming (APR) of 1-propanol. The improved performance was found to benefit from both the electronic and geometric effects of ZnO thin films. In situ small-angle X-ray scattering and scanning transmission electron microscopy showed that ZnO-promoted Pt possessed promising thermal stability under APR reaction conditions. In situ X-ray absorption spectroscopy showed clear charge transfer between ZnO and Pt nanoparticles. The improved reactivity and selectivity seemed to benefit from having both Pt-ZnO and Pt-Al 2O 3 interfaces.

  2. Characterization of an in-vacuum PILATUS 1M detector.

    PubMed

    Wernecke, Jan; Gollwitzer, Christian; Müller, Peter; Krumrey, Michael

    2014-05-01

    A dedicated in-vacuum X-ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four-crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small-angle X-ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing-incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.

  3. Crystalline multiwall carbon nanotubes and their application as a field emission electron source.

    PubMed

    Liu, Peng; Zhou, Duanliang; Zhang, Chunhai; Wei, Haoming; Yang, Xinhe; Wu, Yang; Li, Qingwei; Liu, Changhong; Du, Bingchu; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2018-05-18

    Using super-aligned carbon nanotube (CNT) film, we have fabricated van der Waals crystalline multiwall CNTs (MWCNT) by adopting high pressure and high temperature processing. The CNTs keep parallel to each other and are distributed uniformly. X-ray diffraction characterization shows peaks at the small angle range, which can be assigned to the spacing of the MWCNT crystals. The mechanical, electrical and thermal properties are all greatly improved compared with the original CNT film. The field emission properties of van der Waals crystalline MWCNTs are tested and they show a better surface morphology stability for the large emission current. We have further fabricated a field emission x-ray tube and demonstrated a precise resolution imaging ability.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Veronica J.; ANU)

    An early diagnosis of malignancies correlates directly with a better prognosis. Yet for many malignancies there are no readily available, noninvasive, cost-effective diagnostic tests with patients often presenting too late for effective treatment. This article describes for the first time the use of fiber diffraction patterns of skin or fingernails, using X-ray sources, as a biometric diagnostic method for detecting neoplastic disorders including but not limited to melanoma, breast, colon and prostate cancers. With suitable further development, an early low-cost, totally noninvasive yet reliable diagnostic test could be conducted on a regular basis in local radiology facilities, as a confirmatorymore » test for other diagnostic procedures or as a mass screening test using suitable small angle X-ray beam-lines at synchrotrons.« less

  5. High resolution, monochromatic x-ray topography capability at CHESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z.

    2016-07-27

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities,more » and presents experimental results from several applications.« less

  6. Refusing to Twist: Demonstration of a Line Hexatic Phase in DNA Liquid Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strey, H. H.; NICHD/LPSB, National Institutes of Health, Building 12A/2041, Bethesda, Maryland 20892-5626; Wang, J.

    2000-04-03

    We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules. (c) 2000more » The American Physical Society.« less

  7. Synthesis and structural characterization of ZnO and CuO nanoparticles supported mesoporous silica SBA-15

    NASA Astrophysics Data System (ADS)

    El-Nahhal, Issa M.; Salem, Jamil K.; Selmane, Mohamed; Kodeh, Fawzi S.; Ebtihan, Heba A.

    2017-01-01

    Zinc oxide (ZnO) and copper oxide (CuO) nanoparticles were loaded into mesoporous silica SBA-15 by post-synthesis and direct methods. The structural properties were characterized using wide and small angle X-ray diffraction (WXRD & SXRD), X-ray photoelectron spectroscopy (XPS) and N2-adsorption desorption (BET). The WXRD showed that, the loaded zinc and copper oxides were present in crystalline forms (impregnation). The mesoporosity properties of SBA-15 silica were well maintained even after the introduction of metal oxide nanoparticles. BET analysis indicate that the impregnated and condensed ZnO and CuO supported SBA-15 nanocomposites have a lower surface area than that of its parent SBA-15.

  8. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation.

    PubMed

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F H; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  9. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F. H.; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V.

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  10. Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghuwanshi, Vikram Singh, E-mail: vikram.raghuwanshi@helmholtz-berlin.de; Harizanova, Ruzha; Tatchev, Dragomir

    2015-02-15

    Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na{sub 2}O–62.9SiO{sub 2}–8.5MnO–15.0Fe{sub 2}O{sub 3−x} (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enrichedmore » in SiO{sub 2}. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region.« less

  11. SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganezer, K; Krmar, M; Cvejic, Z

    2015-06-15

    Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profilemore » usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.« less

  12. Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures

    DOE PAGES

    LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.; ...

    2017-06-05

    The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.

  13. Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.

    The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.

  14. An X-ray survey of variable radio bright quasars

    NASA Technical Reports Server (NTRS)

    Henriksen, M. J.; Marshall, F. E.; Mushotzky, R. F.

    1984-01-01

    A sample consisting primarily of radio bright quasars was observed in X-rays with the Einstein Observatory for times ranging from 1500 to 5000 seconds. Detected sources had luminosities ranging from 0.2 to 41.0 x 10 to the 45th power ergs/sec in the 0.5 to 4.5 keV band. Three of the fourteen objects which were reobserved showed flux increases greater than a factor of two on a time scale greater than six months. No variability was detected during the individual observations. The optical and X-ray luminosities are correlated, which suggests a common origin. However, the relationship (L sub x is approximately L sub op to the (.89 + or - .15)) found for historic radio variables may be significantly different than that reported for other radio bright sources. Some of the observed X-ray fluxes were substantially below the predicted self-Compton flux, assuming incoherent synchrotron emission and using VLBI results to constrain the size of the emission region, which suggests relativistic expansion in these sources. Normal CIV emission in two of the sources with an overpredicted Compton component suggests that although they, like BL Lac objects, have highly relativistic material apparently moving at small angle to the line of sight, they have a smaller fraction of the continuum component in the beam.

  15. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions☆

    PubMed Central

    Ingerle, D.; Meirer, F.; Pepponi, G.; Demenev, E.; Giubertoni, D.; Wobrauschek, P.; Streli, C.

    2014-01-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted elements with drastically increased confidence level. Silicon wafers implanted with Arsenic at different implantation energies were measured by XRR and GIXRF using a combined, simultaneous measurement and data evaluation procedure. The data were processed using a self-developed software package (JGIXA), designed for simultaneous fitting of GIXRF and XRR data. The results were compared with depth profiles obtained by Secondary Ion Mass Spectrometry (SIMS). PMID:25202165

  16. Constrained Maximum Likelihood Estimation of Relative Abundances of Protein Conformation in a Heterogeneous Mixture from Small Angle X-Ray Scattering Intensity Measurements

    PubMed Central

    Onuk, A. Emre; Akcakaya, Murat; Bardhan, Jaydeep P.; Erdogmus, Deniz; Brooks, Dana H.; Makowski, Lee

    2015-01-01

    In this paper, we describe a model for maximum likelihood estimation (MLE) of the relative abundances of different conformations of a protein in a heterogeneous mixture from small angle X-ray scattering (SAXS) intensities. To consider cases where the solution includes intermediate or unknown conformations, we develop a subset selection method based on k-means clustering and the Cramér-Rao bound on the mixture coefficient estimation error to find a sparse basis set that represents the space spanned by the measured SAXS intensities of the known conformations of a protein. Then, using the selected basis set and the assumptions on the model for the intensity measurements, we show that the MLE model can be expressed as a constrained convex optimization problem. Employing the adenylate kinase (ADK) protein and its known conformations as an example, and using Monte Carlo simulations, we demonstrate the performance of the proposed estimation scheme. Here, although we use 45 crystallographically determined experimental structures and we could generate many more using, for instance, molecular dynamics calculations, the clustering technique indicates that the data cannot support the determination of relative abundances for more than 5 conformations. The estimation of this maximum number of conformations is intrinsic to the methodology we have used here. PMID:26924916

  17. Measuring the molecular dimensions of wine tannins: comparison of small-angle X-ray scattering, gel-permeation chromatography and mean degree of polymerization.

    PubMed

    McRae, Jacqui M; Kirby, Nigel; Mertens, Haydyn D T; Kassara, Stella; Smith, Paul A

    2014-07-23

    The molecular size of wine tannins can influence astringency, and yet it has been unclear as to whether the standard methods for determining average tannin molecular weight (MW), including gel-permeation chromatography (GPC) and depolymerization reactions, are actually related to the size of the tannin in wine-like conditions. Small-angle X-ray scattering (SAXS) was therefore used to determine the molecular sizes and corresponding MWs of wine tannin samples from 3 and 7 year old Cabernet Sauvignon wine in a variety of wine-like matrixes: 5-15% and 100% ethanol; 0-200 mM NaCl and pH 3.0-4.0, and compared to those measured using the standard methods. The SAXS results indicated that the tannin samples from the older wine were larger than those of the younger wine and that wine composition did not greatly impact on tannin molecular size. The average tannin MWs as determined by GPC correlated strongly with the SAXS results, suggesting that this method does give a good indication of tannin molecular size in wine-like conditions. The MW as determined from the depolymerization reactions did not correlate as strongly with the SAXS results. To our knowledge, SAXS measurements have not previously been attempted for wine tannins.

  18. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens

    PubMed Central

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP–GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core–shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP–GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP–GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP–GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP–GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP–GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP–GA has potential for further application in biomedical sciences. PMID:27555764

  19. Estimation of degree of polymerization of poly-acrylonitrile-grafted carbon nanotubes using Guinier plot of small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Cho, Hyunjung; Jin, Kyeong Sik; Lee, Jaegeun; Lee, Kun-Hong

    2018-07-01

    Small angle x-ray scattering (SAXS) was used to estimate the degree of polymerization of polymer-grafted carbon nanotubes (CNTs) synthesized using a ‘grafting from’ method. This analysis characterizes the grafted polymer chains without cleaving them from CNTs, and provides reliable data that can complement conventional methods such as thermogravimetric analysis or transmittance electron microscopy. Acrylonitrile was polymerized from the surface of the CNTs by using redox initiation to produce poly-acrylonitrile-grafted CNTs (PAN-CNTs). Polymerization time and the initiation rate were varied to control the degree of polymerization. Radius of gyration (R g ) of PAN-CNTs was determined using the Guinier plot obtained from SAXS solution analysis. The results showed consistent values according to the polymerization condition, up to a maximum R g = 125.70 Å whereas that of pristine CNTs was 99.23 Å. The dispersibility of PAN-CNTs in N,N-dimethylformamide was tested using ultraviolet–visible-near infrared spectroscopy and was confirmed to increase as the degree of polymerization increased. This analysis will be helpful to estimate the degree of polymerization of any polymer-grafted CNTs synthesized using the ‘grafting from’ method and to fabricate polymer/CNT composite materials.

  20. Determination of the topological shape of integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria in the detergent solution by small-angle X-ray scattering.

    PubMed

    Hong, Xinguo; Weng, Yu-Xiang; Li, Ming

    2004-02-01

    The topological shape of the integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria Rhodobacter spheroides 2.4.1 in detergent solution has been determined from synchrotron small-angle X-ray scattering data using direct curve-fitting by the ellipsoid, ab initio shape determination methods of simulated annealing algorithm and multipole expansion, respectively. The results indicate that the LH2 protein in aqueous solution is encapsulated by a monolayered detergent shell. The detergent-stabilized structure has the shape of an oblate plate, with a thickness of 40 A, a long axis of 110 A, and a short axis of 85 A. After correction for the detergent shell, the shape of the LH2 core is also an oblate plate with a height of 40 A, a long axis of 80 A, and a short axis of 55 A. In contrast to the cylindrical crystal structure with a height of 40 A and a diameter of 68 A, the molecular shape of the LH2 complex in detergent solution clearly deviates from the ringlike crystal structure, with an eccentricity found to be 0.59-consistent with the result of single molecular spectroscopy study of the isolated single LH2 molecules.

Top