Optical mapping of prefrontal brain connectivity and activation during emotion anticipation.
Wang, Meng-Yun; Lu, Feng-Mei; Hu, Zhishan; Zhang, Juan; Yuan, Zhen
2018-09-17
Accumulated neuroimaging evidence shows that the dorsal lateral prefrontal cortex (dlPFC) is activated during emotion anticipation. The aim of this work is to examine the brain connectivity and activation differences in dlPFC between the positive, neutral and negative emotion anticipation by using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses were first assessed for all subjects during the performance of various emotion anticipation tasks. And then small-world analysis was performed, in which the small-world network indicators including the clustering coefficient, average path length, average node degree, and measure of small-world index were calculated for the functional brain networks associated with the positive, neutral and negative emotion anticipation, respectively. We discovered that compared to negative and neutral emotion anticipation, the positive one exhibited enhanced brain activation in the left dlPFC. Although the functional brain networks for the three emotion anticipation cases manifested the small-world properties regarding the clustering coefficient, average path length, average node degree, and measure of small-world index, the positive one showed significantly higher clustering coefficient and shorter average path length than those from the neutral and negative cases. Consequently, the small-world network indicators and brain activation in dlPPC were able to distinguish well between the positive, neutral and negative emotion anticipation. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Jiang; Li, Yuyao; Chen, Huafu; Ding, Jurong; Yuan, Zhen
2016-11-04
In this study, small-world network analysis was performed to identify the similarities and differences between functional brain networks for right- and left-hand motor imageries (MIs). First, Pearson correlation coefficients among the nodes within the functional brain networks from healthy subjects were calculated. Then, small-world network indicators, including the clustering coefficient, the average path length, the global efficiency, the local efficiency, the average node degree, and the small-world index, were generated for the functional brain networks during both right- and left-hand MIs. We identified large differences in the small-world network indicators between the functional networks during MI and in the random networks. More importantly, the functional brain networks underlying the right- and left-hand MIs exhibited similar small-world properties in terms of the clustering coefficient, the average path length, the global efficiency, and the local efficiency. By contrast, the right- and left-hand MI brain networks showed differences in small-world characteristics, including indicators such as the average node degree and the small-world index. Interestingly, our findings also suggested that the differences in the activity intensity and range, the average node degree, and the small-world index of brain networks between the right- and left-hand MIs were associated with the asymmetry of brain functions.
On the structural properties of small-world networks with range-limited shortcut links
NASA Astrophysics Data System (ADS)
Jia, Tao; Kulkarni, Rahul V.
2013-12-01
We explore a new variant of Small-World Networks (SWNs), in which an additional parameter (r) sets the length scale over which shortcuts are uniformly distributed. When r=0 we have an ordered network, whereas r=1 corresponds to the original Watts-Strogatz SWN model. These limited range SWNs have a similar degree distribution and scaling properties as the original SWN model. We observe the small-world phenomenon for r≪1, indicating that global shortcuts are not necessary for the small-world effect. For limited range SWNs, the average path length changes nonmonotonically with system size, whereas for the original SWN model it increases monotonically. We propose an expression for the average path length for limited range SWNs based on numerical simulations and analytical approximations.
Properties of a new small-world network with spatially biased random shortcuts
NASA Astrophysics Data System (ADS)
Matsuzawa, Ryo; Tanimoto, Jun; Fukuda, Eriko
2017-11-01
This paper introduces a small-world (SW) network with a power-law distance distribution that differs from conventional models in that it uses completely random shortcuts. By incorporating spatial constraints, we analyze the divergence of the proposed model from conventional models in terms of fundamental network properties such as clustering coefficient, average path length, and degree distribution. We find that when the spatial constraint more strongly prohibits a long shortcut, the clustering coefficient is improved and the average path length increases. We also analyze the spatial prisoner's dilemma (SPD) games played on our new SW network in order to understand its dynamical characteristics. Depending on the basis graph, i.e., whether it is a one-dimensional ring or a two-dimensional lattice, and the parameter controlling the prohibition of long-distance shortcuts, the emergent results can vastly differ.
Determining average path length and average trapping time on generalized dual dendrimer
NASA Astrophysics Data System (ADS)
Li, Ling; Guan, Jihong
2015-03-01
Dendrimer has wide number of important applications in various fields. In some cases during transport or diffusion process, it transforms into its dual structure named Husimi cactus. In this paper, we study the structure properties and trapping problem on a family of generalized dual dendrimer with arbitrary coordination numbers. We first calculate exactly the average path length (APL) of the networks. The APL increases logarithmically with the network size, indicating that the networks exhibit a small-world effect. Then we determine the average trapping time (ATT) of the trapping process in two cases, i.e., the trap placed on a central node and the trap is uniformly distributed in all the nodes of the network. In both case, we obtain explicit solutions of ATT and show how they vary with the networks size. Besides, we also discuss the influence of the coordination number on trapping efficiency.
Dry paths effectively reduce road mortality of small and medium-sized terrestrial vertebrates.
Niemi, Milla; Jääskeläinen, Niina C; Nummi, Petri; Mäkelä, Tiina; Norrdahl, Kai
2014-11-01
Wildlife passages are widely used mitigation measures designed to reduce the adverse impacts of roads on animals. We investigated whether road kills of small and medium-sized terrestrial vertebrates can be reduced by constructing dry paths adjacent to streams that pass under road bridges. The study was carried out in southern Finland during the summer of 2008. We selected ten road bridges with dry paths and ten bridges without them, and an individual dry land reference site for each study bridge on the basis of landscape and traffic features. A total of 307 dead terrestrial vertebrates were identified during the ten-week study period. The presence of dry paths decreased the amount of road-killed terrestrial vertebrates (Poisson GLMM; p < 0.001). That was true also when considering amphibians alone (p < 0.001). The evidence on road-kills on mammals was not such clear. In the mammal model, a lack of dry paths increased the amount of carcasses (p = 0.001) whereas the number of casualties at dry path bridges was comparable with dry land reference sites. A direct comparison of the dead ratios suggests an average efficiency of 79% for the dry paths. When considering amphibians and mammals alone, the computed effectiveness was 88 and 70%, respectively. Our results demonstrate that dry paths under road bridges can effectively reduce road-kills of small and medium-sized terrestrial vertebrates, even without guiding fences. Dry paths seemed to especially benefit amphibians which are a threatened species group worldwide and known to suffer high traffic mortality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coevolutionary dynamics of opinion propagation and social balance: The key role of small-worldness
NASA Astrophysics Data System (ADS)
Chen, Yan; Chen, Lixue; Sun, Xian; Zhang, Kai; Zhang, Jie; Li, Ping
2014-03-01
The propagation of various opinions in social networks, which influences human inter-relationships and even social structure, and hence is a most important part of social life. We have incorporated social balance into opinion propagation in social networks are influenced by social balance. The edges in networks can represent both friendly or hostile relations, and change with the opinions of individual nodes. We introduce a model to characterize the coevolutionary dynamics of these two dynamical processes on Watts-Strogatz (WS) small-world network. We employ two distinct evolution rules (i) opinion renewal; and (ii) relation adjustment. By changing the rewiring probability, and thus the small-worldness of the WS network, we found that the time for the system to reach balanced states depends critically on both the average path length and clustering coefficient of the network, which is different than other networked process like epidemic spreading. In particular, the system equilibrates most quickly when the underlying network demonstrates strong small-worldness, i.e., small average path lengths and large clustering coefficient. We also find that opinion clusters emerge in the process of the network approaching the global equilibrium, and a measure of global contrariety is proposed to quantify the balanced state of a social network.
NASA Astrophysics Data System (ADS)
Griffith, David W. T.; Pöhler, Denis; Schmitt, Stefan; Hammer, Samuel; Vardag, Sanam N.; Platt, Ulrich
2018-03-01
In complex and urban environments, atmospheric trace gas composition is highly variable in time and space. Point measurement techniques for trace gases with in situ instruments are well established and accurate, but do not provide spatial averaging to compare against developing high-resolution atmospheric models of composition and meteorology with resolutions of the order of a kilometre. Open-path measurement techniques provide path average concentrations and spatial averaging which, if sufficiently accurate, may be better suited to assessment and interpretation with such models. Open-path Fourier transform spectroscopy (FTS) in the mid-infrared region, and differential optical absorption spectroscopy (DOAS) in the UV and visible, have been used for many years for open-path spectroscopic measurements of selected species in both clean air and in polluted environments. Near infrared instrumentation allows measurements over longer paths than mid-infrared FTS for species such as greenhouse gases which are not easily accessible to DOAS.In this pilot study we present the first open-path near-infrared (4000-10 000 cm-1, 1.0-2.5 µm) FTS measurements of CO2, CH4, O2, H2O and HDO over a 1.5 km path in urban Heidelberg, Germany. We describe the construction of the open-path FTS system, the analysis of the collected spectra, several measures of precision and accuracy of the measurements, and the results a four-month trial measurement period in July-November 2014. The open-path measurements are compared to calibrated in situ measurements made at one end of the open path. We observe significant differences of the order of a few ppm for CO2 and a few tens of ppb for CH4 between the open-path and point measurements which are 2 to 4 times the measurement repeatability, but we cannot unequivocally assign the differences to specific local sources or sinks. We conclude that open-path FTS may provide a valuable new tool for investigations of atmospheric trace gas composition in complex, small-scale environments such as cities.
Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths
Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.
2011-01-01
This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.
A Well-Balanced Path-Integral f-Wave Method for Hyperbolic Problems with Source Terms
2014-01-01
Systems of hyperbolic partial differential equations with source terms (balance laws) arise in many applications where it is important to compute accurate time-dependent solutions modeling small perturbations of equilibrium solutions in which the source terms balance the hyperbolic part. The f-wave version of the wave-propagation algorithm is one approach, but requires the use of a particular averaged value of the source terms at each cell interface in order to be “well balanced” and exactly maintain steady states. A general approach to choosing this average is developed using the theory of path conservative methods. A scalar advection equation with a decay or growth term is introduced as a model problem for numerical experiments. PMID:24563581
The SPINDLE Disruption-Tolerant Networking System
2007-11-01
average availability ( AA ). The AA metric attempts to measure the average fraction of time in the near future that the link will be available for use...Each link’s AA is epidemically disseminated to all nodes. Path costs are computed using the topology learned through this dissemination, with cost of a...link l set to (1 − AA (l)) + c (a small constant factor that makes routing favor fewer number of hops when all links have AA of 1). Additional details
Corona graphs as a model of small-world networks
NASA Astrophysics Data System (ADS)
Lv, Qian; Yi, Yuhao; Zhang, Zhongzhi
2015-11-01
We introduce recursive corona graphs as a model of small-world networks. We investigate analytically the critical characteristics of the model, including order and size, degree distribution, average path length, clustering coefficient, and the number of spanning trees, as well as Kirchhoff index. Furthermore, we study the spectra for the adjacency matrix and the Laplacian matrix for the model. We obtain explicit results for all the quantities of the recursive corona graphs, which are similar to those observed in real-life networks.
Factors associated with the career path choices of veterinarians in western Canada
Jelinski, Murray D.; Campbell, John R.; Naylor, Jonathan M.; Lawson, Karen L.; Derkzen, Dena
2009-01-01
This second of 2 articles, relating to the veterinary profession in western Canada, explores the factors associated with veterinarians’ career path choices. Among other factors, companion animal (small animal and equine) (CA) practitioners were less likely to have been raised in, or near to, a small center (≤ 10 000), were more concerned with their workload (hours of work and number of nights on-call), and preferred to work in progressive practices. Food animal (FA) practitioners were more likely to be male, have been raised in a small center, have been raised in the Province of Saskatchewan, and to have self-assessed themselves as having an above average knowledge of agriculture at the time they applied for admission to veterinary college. Mixed animal (MA) practitioners had more factors in common with FA than with CA practitioners. Three main factors were associated with leaving mixed or food animal practice: hours of work and too many nights on-call, the level of remuneration, and lack of support and mentorship. PMID:19721783
Sign phase transition in the problem of interfering directed paths
NASA Astrophysics Data System (ADS)
Baldwin, C. L.; Laumann, C. R.; Spivak, B.
2018-01-01
We investigate the statistical properties of interfering directed paths in disordered media. At long distance, the average sign of the sum over paths may tend to zero (sign disordered) or remain finite (sign ordered) depending on dimensionality and the concentration of negative scattering sites x . We show that in two dimensions the sign-ordered phase is unstable even for arbitrarily small x by identifying rare destabilizing events. In three dimensions, we present strong evidence that there is a sign phase transition at a finite xc>0 . These results have consequences for several different physical systems. In two-dimensional insulators at low temperature, the variable-range-hopping magnetoresistance is always negative, while in three dimensions, it changes sign at the point of the sign phase transition. We also show that in the sign-disordered regime a small magnetic field may enhance superconductivity in a random system of D -wave superconducting grains embedded in a metallic matrix. Finally, the existence of the sign phase transition in three dimensions implies new features in the spin-glass phase diagram at high temperature.
Controlled manipulation and actuation of micro-objects with magnetotactic bacteria
NASA Astrophysics Data System (ADS)
Martel, Sylvain; Tremblay, Charles C.; Ngakeng, Serge; Langlois, Guillaume
2006-12-01
Bacterial actuation and manipulation are demonstrated where Magnetospirillum gryphiswaldense magnetotactic bacteria (MTB) are used to push 3μm beads at an average velocity of 7.5μms-1 along preplanned paths by modifying the torque on a chain of magnetosomes in the bacterium with a directional magnetic field of at least 0.5G generated from a small programmed electrical current. But measured average thrusts of 0.5 and 4pN of the flagellar motor of a single Magnetospirillum gryphiswaldense and MC-1 MTB suggest that average velocities greater than 16 and 128μms-1, respectively could be achieved.
Mobility based multicast routing in wireless mesh networks
NASA Astrophysics Data System (ADS)
Jain, Sanjeev; Tripathi, Vijay S.; Tiwari, Sudarshan
2013-01-01
There exist two fundamental approaches to multicast routing namely minimum cost trees and shortest path trees. The (MCT's) minimum cost tree is one which connects receiver and sources by providing a minimum number of transmissions (MNTs) the MNTs approach is generally used for energy constraint sensor and mobile ad hoc networks. In this paper we have considered node mobility and try to find out simulation based comparison of the (SPT's) shortest path tree, (MST's) minimum steiner trees and minimum number of transmission trees in wireless mesh networks by using the performance metrics like as an end to end delay, average jitter, throughput and packet delivery ratio, average unicast packet delivery ratio, etc. We have also evaluated multicast performance in the small and large wireless mesh networks. In case of multicast performance in the small networks we have found that when the traffic load is moderate or high the SPTs outperform the MSTs and MNTs in all cases. The SPTs have lowest end to end delay and average jitter in almost all cases. In case of multicast performance in the large network we have seen that the MSTs provide minimum total edge cost and minimum number of transmissions. We have also found that the one drawback of SPTs, when the group size is large and rate of multicast sending is high SPTs causes more packet losses to other flows as MCTs.
The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
ERIC Educational Resources Information Center
Steyvers, Mark; Tenenbaum, Joshua B.
2005-01-01
We present statistical analyses of the large-scale structure of 3 types of semantic networks: word associations, WordNet, and Roget's Thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path lengths between words, and strong local clustering. In addition, the distributions of the number of…
Viscous Torques on a Levitating Body
NASA Technical Reports Server (NTRS)
Busse, F.; Wang, T.
1982-01-01
New analytical expressions for viscous torque generated by orthogonal sound waves agree well with experiment. It is possible to calculate torque on an object levitated in a fluid. Levitation has applications in containerless materials processing, coating, and fabrication of small precision parts. Sound waves cause fluid particles to move in elliptical paths and induce azimuthal circulation in boundary layer, giving rise to time-averaged torque.
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Buluc, Aydn; Pothen, Alex
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
Azad, Ariful; Buluc, Aydn; Pothen, Alex
2016-03-24
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
Impact of heliogeophysical disturbances on ionospheric HF channels
NASA Astrophysics Data System (ADS)
Uryadov, V. P.; Vybornov, F. I.; Kolchev, A. A.; Vertogradov, G. G.; Sklyarevsky, M. S.; Egoshin, I. A.; Shumaev, V. V.; Chernov, A. G.
2018-04-01
The article presents the results of the observation of a strong magnetic storm and two X-ray flares during the summer solstice in 2015, and their impact on the HF signals characteristics in ionospheric oblique sounding. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, ultimately causing a long blackout on paths adjacent to subauroral latitudes. On mid-latitude paths, the decrease in 1FMOF reached ∼50% relative to the average values for the quiet ionosphere. It is shown that the propagation conditions via the sporadic Es layer during the magnetic storm on a subauroral path are substantially better than those for F-mode propagation via the upper ionosphere. The delay of the sharp decrease in 1FMOF during the main phase of the magnetic storm allowed us to determine the propagation velocity of the negative phase disturbances (∼100 m/s) from subauroral to mid-latitude ionosphere along two paths: Lovozero - Yoshkar-Ola and Cyprus - Nizhny Novgorod. It is shown that both the LOF and the signal/noise ratio averaged over the frequency band corresponding to the propagation mode via the sporadic Es layer correlate well with the auroral AE index. Using an over-the-horizon chirp radar with a bistatic configuration on the Cyprus - Rostov-on-Don path, we located small-scale scattering irregularities responsible for abnormal signals in the region of the equatorial boundary of the auroral oval.
Edwards, James P; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
NASA Astrophysics Data System (ADS)
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
Limited-path-length entanglement percolation in quantum complex networks
NASA Astrophysics Data System (ADS)
Cuquet, Martí; Calsamiglia, John
2011-03-01
We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.
Schuldt, Bernhard; Leuschner, Christoph; Brock, Nicolai; Horna, Viviana
2013-02-01
It is generally assumed that the largest vessels are occurring in the roots and that vessel diameters and the related hydraulic conductance in the xylem are decreasing acropetally from roots to leaves. With this study in five tree species of a perhumid tropical rainforest in Sulawesi (Indonesia), we searched for patterns in hydraulic architecture and axial conductivity along the flow path from small-diameter roots through strong roots and the trunk to distal sun-canopy twigs. Wood density differed by not more than 10% across the different flow path positions in a species, and branch and stem wood density were closely related in three of the five species. Other than wood density, the wood anatomical and xylem hydraulic traits varied in dependence on the position along the flow path, but were unrelated to wood density within a tree. In contrast to reports from conifers and certain dicotyledonous species, we found a hump-shaped variation in vessel diameter and sapwood area--specific conductivity along the flow path in all five species with a maximum in the trunk and strong roots and minima in both small roots and twigs; the vessel size depended on the diameter of the organ. This pattern might be an adaptation to the perhumid climate with a low risk of hydraulic failure. Despite a similar mean vessel diameter in small roots and twigs, the two distal organs, hydraulically weighted mean vessel diameters were on average 30% larger in small roots, resulting in ∼ 85% higher empirical and theoretical specific conductivities. Relative vessel lumen area in percent of sapwood area decreased linearly by 70% from roots to twigs, reflecting the increase in sclerenchymatic tissue and tracheids in acropetal direction in the xylem. Vessel size was more closely related to the organ diameter than to the distance along the root-to-shoot flow path. We conclude that (i) the five co-occurring tree species show convergent patterns in their hydraulic architecture despite different growth strategies, and (ii) the paradigm assuming continuous acropetal vessel tapering and decrease in specific conductance from fine roots towards distal twigs needs reconsideration.
Right-side-stretched multifractal spectra indicate small-worldness in networks
NASA Astrophysics Data System (ADS)
Oświȩcimka, Paweł; Livi, Lorenzo; Drożdż, Stanisław
2018-04-01
Complex network formalism allows to explain the behavior of systems composed by interacting units. Several prototypical network models have been proposed thus far. The small-world model has been introduced to mimic two important features observed in real-world systems: i) local clustering and ii) the possibility to move across a network by means of long-range links that significantly reduce the characteristic path length. A natural question would be whether there exist several ;types; of small-world architectures, giving rise to a continuum of models with properties (partially) shared with other models belonging to different network families. Here, we take advantage of the interplay between network theory and time series analysis and propose to investigate small-world signatures in complex networks by analyzing multifractal characteristics of time series generated from such networks. In particular, we suggest that the degree of right-sided asymmetry of multifractal spectra is linked with the degree of small-worldness present in networks. This claim is supported by numerical simulations performed on several parametric models, including prototypical small-world networks, scale-free, fractal and also real-world networks describing protein molecules. Our results also indicate that right-sided asymmetry emerges with the presence of the following topological properties: low edge density, low average shortest path, and high clustering coefficient.
Classification of Birds and Bats Using Flight Tracks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullinan, Valerie I.; Matzner, Shari; Duberstein, Corey A.
Classification of birds and bats that use areas targeted for offshore wind farm development and the inference of their behavior is essential to evaluating the potential effects of development. The current approach to assessing the number and distribution of birds at sea involves transect surveys using trained individuals in boats or airplanes or using high-resolution imagery. These approaches are costly and have safety concerns. Based on a limited annotated library extracted from a single-camera thermal video, we provide a framework for building models that classify birds and bats and their associated behaviors. As an example, we developed a discriminant modelmore » for theoretical flight paths and applied it to data (N = 64 tracks) extracted from 5-min video clips. The agreement between model- and observer-classified path types was initially only 41%, but it increased to 73% when small-scale jitter was censored and path types were combined. Classification of 46 tracks of bats, swallows, gulls, and terns on average was 82% accurate, based on a jackknife cross-validation. Model classification of bats and terns (N = 4 and 2, respectively) was 94% and 91% correct, respectively; however, the variance associated with the tracks from these targets is poorly estimated. Model classification of gulls and swallows (N ≥ 18) was on average 73% and 85% correct, respectively. The models developed here should be considered preliminary because they are based on a small data set both in terms of the numbers of species and the identified flight tracks. Future classification models would be greatly improved by including a measure of distance between the camera and the target.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, R.S.
1989-06-01
For a vehicle operating across arbitrarily-contoured terrain, finding the most fuel-efficient route between two points can be viewed as a high-level global path-planning problem with traversal costs and stability dependent on the direction of travel (anisotropic). The problem assumes a two-dimensional polygonal map of homogeneous cost regions for terrain representation constructed from elevation information. The anisotropic energy cost of vehicle motion has a non-braking component dependent on horizontal distance, a braking component dependent on vertical distance, and a constant path-independent component. The behavior of minimum-energy paths is then proved to be restricted to a small, but optimal set of traversalmore » types. An optimal-path-planning algorithm, using a heuristic search technique, reduces the infinite number of paths between the start and goal points to a finite number by generating sequences of goal-feasible window lists from analyzing the polygonal map and applying pruning criteria. The pruning criteria consist of visibility analysis, heading analysis, and region-boundary constraints. Each goal-feasible window lists specifies an associated convex optimization problem, and the best of all locally-optimal paths through the goal-feasible window lists is the globally-optimal path. These ideas have been implemented in a computer program, with results showing considerably better performance than the exponential average-case behavior predicted.« less
Conformational analysis by intersection: CONAN.
Smellie, Andrew; Stanton, Robert; Henne, Randy; Teig, Steve
2003-01-15
As high throughput techniques in chemical synthesis and screening improve, more demands are placed on computer assisted design and virtual screening. Many of these computational methods require one or more three-dimensional conformations for molecules, creating a demand for a conformational analysis tool that can rapidly and robustly cover the low-energy conformational spaces of small molecules. A new algorithm of intersection is presented here, which quickly generates (on average <0.5 seconds/stereoisomer) a complete description of the low energy conformational space of a small molecule. The molecule is first decomposed into nonoverlapping nodes N (usually rings) and overlapping paths P with conformations (N and P) generated in an offline process. In a second step the node and path data are combined to form distinct conformers of the molecule. Finally, heuristics are applied after intersection to generate a small representative collection of conformations that span the conformational space. In a study of approximately 97,000 randomly selected molecules from the MDDR, results are presented that explore these conformations and their ability to cover low-energy conformational space. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 24: 10-20, 2003
Path Finding on High-Dimensional Free Energy Landscapes
NASA Astrophysics Data System (ADS)
Díaz Leines, Grisell; Ensing, Bernd
2012-07-01
We present a method for determining the average transition path and the free energy along this path in the space of selected collective variables. The formalism is based upon a history-dependent bias along a flexible path variable within the metadynamics framework but with a trivial scaling of the cost with the number of collective variables. Controlling the sampling of the orthogonal modes recovers the average path and the minimum free energy path as the limiting cases. The method is applied to resolve the path and the free energy of a conformational transition in alanine dipeptide.
Unimodular lattice triangulations as small-world and scale-free random graphs
NASA Astrophysics Data System (ADS)
Krüger, B.; Schmidt, E. M.; Mecke, K.
2015-02-01
Real-world networks, e.g., the social relations or world-wide-web graphs, exhibit both small-world and scale-free behaviour. We interpret lattice triangulations as planar graphs by identifying triangulation vertices with graph nodes and one-dimensional simplices with edges. Since these triangulations are ergodic with respect to a certain Pachner flip, applying different Monte Carlo simulations enables us to calculate average properties of random triangulations, as well as canonical ensemble averages, using an energy functional that is approximately the variance of the degree distribution. All considered triangulations have clustering coefficients comparable with real-world graphs; for the canonical ensemble there are inverse temperatures with small shortest path length independent of system size. Tuning the inverse temperature to a quasi-critical value leads to an indication of scale-free behaviour for degrees k≥slant 5. Using triangulations as a random graph model can improve the understanding of real-world networks, especially if the actual distance of the embedded nodes becomes important.
NASA Astrophysics Data System (ADS)
Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian
2017-04-01
Flow pattern and seasonal as well as diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many microbial processes. In this study we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high frequent observations of hydraulic heads and temperatures for quantifying reach scale water and heat flux across the river groundwater interface and hyporheic temperature dynamics of a lowland gravel-bed river. The magnitude and dynamics of simulated temperatures matched the observed with an average mean absolute error of 0.7 °C and an average Nash Sutcliffe Efficiency of 0.87. Our results highlight that the average temperature in the hyporheic zone follows the temperature in the river which is characterized by distinct seasonal and daily temperature cycles. Individual hyporheic flow path temperature substantially varies around the average hyporheic temperature. Hyporheic flow path temperature was found to strongly depend on the flow path residence time and the temperature gradient between river and groundwater; that is, in winter the average flow path temperature of long flow paths is potentially higher compared to short flow paths. Based on the simulation results we derived a general empirical relationship, estimating the influence of hyporheic flow path residence time on hyporheic flow path temperature. Furthermore we used an empirical temperature relationship between effective temperature and respiration rate to estimate the influence of hyporheic flow path residence time and temperature on hyporheic oxygen consumption. This study highlights the relation between complex hyporheic temperature patterns, hyporheic residence times and their implications on temperature sensitive biogeochemical processes.
Topology of the conceptual network of language
NASA Astrophysics Data System (ADS)
Motter, Adilson E.; de Moura, Alessandro P.; Lai, Ying-Cheng; Dasgupta, Partha
2002-06-01
We define two words in a language to be connected if they express similar concepts. The network of connections among the many thousands of words that make up a language is important not only for the study of the structure and evolution of languages, but also for cognitive science. We study this issue quantitatively, by mapping out the conceptual network of the English language, with the connections being defined by the entries in a Thesaurus dictionary. We find that this network presents a small-world structure, with an amazingly small average shortest path, and appears to exhibit an asymptotic scale-free feature with algebraic connectivity distribution.
NASA Astrophysics Data System (ADS)
Ribeiro, André S.; Almeida, Miguel
2003-11-01
We propose a model of structural organization and intercommunication between all elements of every team involved in the development of a space probe to improve efficiency. Such structure is built to minimize path between any two elements, allowing fast information flow in the structure. Structures are usually very clustered inside each task team but only the heads of departments, or occasional meetings, usually assure the links between team elements. This is responsible for a lack of information exchange between staff members of each team. We propose the establishment of permanent small working groups of staff elements from different teams, in a random but permanent basis. The elements chosen for such connections establishment can be chosen in a temporary basis, but the connections must exist permanently because only with permanent connections can information flow when needed. A few of such random connections between staff members will diminish the average path length, between any two elements of any team, for information exchange. A small world structure will emerge with low internal energy costs, which is the structure used by biological neuronal systems.
NASA Astrophysics Data System (ADS)
Ribeiro, André S.; Almeida, Miguel
2006-10-01
We propose a model of structural organization and intercommunication between all elements of every team involved in the development of a space probe to improve efficiency. Such structure is built to minimize path between any two elements, allowing fast information flow in the structure. Structures are usually very clustered inside each task team but only the heads of departments, or occasional meetings, usually assure the links between team elements. This is responsible for a lack of information exchange between staff members of each team. We propose the establishment of permanent small working groups of staff elements from different teams, in a random but permanent basis. The elements chosen for such connections establishment can be chosen on a temporary basis, but the connections must exist permanently because only with permanent connections can information flow when needed. A few of such random connections between staff members will diminish the average path length, between any two elements of any team, for information exchange. A small world structure will emerge with low internal energy costs, which is the structure used by biological neuronal systems.
Method and system for modulation of gain suppression in high average power laser systems
Bayramian, Andrew James [Manteca, CA
2012-07-31
A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.
NASA Astrophysics Data System (ADS)
Muschinski, A.; Hu, K.; Root, L. M.; Tichkule, S.; Wijesundara, S. N.
2010-12-01
Mean values and fluctuations of angles-of-arrival (AOAs) of light emitted from astronomical or terrestrial sources and observed through a telescope equipped with a CCD camera carry quantitative information about certain statistics of the wind and temperature field, integrated along the propagation path. While scintillometry (i.e., the retrieval of atmospheric quantities from light intensity fluctuations) has been a popular technique among micrometeorologists for many years, there have been relatively few attempts to utilize AOA observations to probe the atmospheric surface layer (ASL). Here we report results from a field experiment that we conducted at the Boulder Atmospheric Observatory (BAO) site near Erie, CO, in June 2010. During the night of 15/16 June, the ASL was characterized by intermittent turbulence and intermittent gravity-wave events. We measured temperature and wind with 12 sonics (R.M. Young, Model 81000, sampling rate 31 Hz) mounted on two portable towers at altitudes between 1.45 m and 4.84 m AGL; air pressure with two quartz-crystal barometers (Paroscientific, 10 Hz); and AOAs by means of a CCD camera (Lumenera, Model 075M, thirty 640x480 frames per second) attached to a 14-inch, Schmidt-Cassegrain telescope (Meade, Model LX200GPS) pointing at a rectangular array of four test lights (LEDs, vertical spacing 8 cm, horizontal spacing 10 cm) located at a distance of 182 m. The optical path was horizontal and 1.7 m above flat ground. The two towers were located 2 m away from the optical path. In our presentation, we focus on AOA retrievals of the following quantities: temporal fluctuations of the path-averaged, vertical temperature gradient; mean values and fluctuations of the path-averaged, lateral wind velocity; and mean values and fluctuations of the path-averaged temperature turbulence structure parameter. We compare the AOA retrievals with the collocated and simultaneous point measurements obtained with the sonics, and we analyze our observations in the framework of the Monin-Obukhov theory. The AOA techniques enable us to detect temporal fluctuations of the path-averaged vertical temperature gradient (estimated over a height increment defined by the telescope's aperture diameter) down to a few millikelvins per meter, which probably cannot be achieved with sonics. Extremely small wind velocities can also be resolved. Therefore, AOA techniques are well suited for observations of the nocturnal surface layer under quiet conditions. AOA retrieval techniques have major advantages over scintillometric techniques because AOAs can be understood within the framework of the weak-scattering theory or even geometrical optics (the eikonal-fluctuation theory), while the well-known "saturation effect" makes the weak-scattering theory invalid for intensity fluctuations in the majority of cases of practical relevance.
Comparison Of Reaction Barriers In Energy And Free Energy For Enzyme Catalysis
NASA Astrophysics Data System (ADS)
Andrés Cisneros, G.; Yang, Weitao
Reaction paths on potential energy surfaces obtained from QM/MM calculations of enzymatic or solution reactions depend on the starting structure employed for the path calculations. The free energies associated with these paths should be more reliable for studying reaction mechanisms, because statistical averages are used. To investigate this, the role of enzyme environment fluctuations on reaction paths has been studied with an ab initio QM/MM method for the first step of the reaction catalyzed by 4-oxalocrotonate tautomerase (4OT). Four minimum energy paths (MEPs) are compared, which have been determined with two different methods. The first path (path A) has been determined with a procedure that combines the nudged elastic band (NEB) method and a second order parallel path optimizer recently developed in our group. The second path (path B) has also been determined by the combined procedure, however, the enzyme environment has been relaxed by molecular dynamics (MD) simulations. The third path (path C) has been determined with the coordinate driving (CD) method, using the enzyme environment from path B. We compare these three paths to a previously determined path (path D) determined with the CD method. In all four cases the QM/MM-FE method (Y. Zhang et al., JCP, 112, 3483) was employed to obtain the free energy barriers for all four paths. In the case of the combined procedure, the reaction path is approximated by a small number of images which are optimized to the MEP in parallel, which results in a reduced computational cost. However, this does not allow the FEP calculation on the MEP. In order to perform FEP calculations on these paths, we introduce a modification to the NEB method that enables the addition of as many extra images to the path as needed for the FEP calculations. The calculated potential energy barriers show differences in the activation barrier between the calculated paths of as much as 5.17 kcal/mol. However, the largest free energy barrier difference is 1.58 kcal/mol. These results show the importance of the inclusion of the environment fluctuation in the calculation of enzymatic activation barriers
Drift-Induced Selection Between Male and Female Heterogamety.
Veller, Carl; Muralidhar, Pavitra; Constable, George W A; Nowak, Martin A
2017-10-01
Evolutionary transitions between male and female heterogamety are common in both vertebrates and invertebrates. Theoretical studies of these transitions have found that, when all genotypes are equally fit, continuous paths of intermediate equilibria link the two sex chromosome systems. This observation has led to a belief that neutral evolution along these paths can drive transitions, and that arbitrarily small fitness differences among sex chromosome genotypes can determine the system to which evolution leads. Here, we study stochastic evolutionary dynamics along these equilibrium paths. We find non-neutrality, both in transitions retaining the ancestral pair of sex chromosomes, and in those creating a new pair. In fact, substitution rates are biased in favor of dominant sex determining chromosomes, which fix with higher probabilities than mutations of no effect. Using diffusion approximations, we show that this non-neutrality is a result of "drift-induced selection" operating at every point along the equilibrium paths: stochastic jumps off the paths return with, on average, a directional bias in favor of the dominant segregating sex chromosome. Our results offer a novel explanation for the observed preponderance of dominant sex determining genes, and hint that drift-induced selection may be a common force in standard population genetic systems. Copyright © 2017 by the Genetics Society of America.
Meng, Lu; Xiang, Jing
2016-11-01
The present study investigated frequency dependent developmental patterns of the brain resting-state networks from childhood to adolescence. Magnetoencephalography (MEG) data were recorded from 20 healthy subjects at resting-state with eyes-open. The resting-state networks (RSNs) was analyzed at source-level. Brain network organization was characterized by mean clustering coefficient and average path length. The correlations between brain network measures and subjects' age during development from childhood to adolescence were statistically analyzed in delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), and beta (12-30Hz) frequency bands. A significant positive correlation between functional connectivity with age was found in alpha and beta frequency bands. A significant negative correlation between average path lengths with age was found in beta frequency band. The results suggest that there are significant developmental changes of resting-state networks from childhood to adolescence, which matures from a lattice network to a small-world network. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
In-situ and path-averaged measurements of aerosol optical properties
NASA Astrophysics Data System (ADS)
van Binsbergen, Sven A.; Grossmann, Peter; February, Faith J.; Cohen, Leo H.; van Eijk, Alexander M. J.; Stein, Karin U.
2017-09-01
This paper compares in-situ and path-averaged measurements of the electro-optical transmission, with emphasis on aerosol effects. The in-situ sensors consisted of optical particle counters (OPC), the path-averaged data was provided by a 7-wavelength transmissometer (MSRT) and scintillometers (BLS). Data were collected at two sites: a homogeneous test site in Northern Germany, and over the inhomogeneous False Bay near Cape Town, South Africa. A retrieval algorithm was developed to infer characteristics of the aerosol size distribution (Junge approximation) from the MSRT data. A comparison of the various sensors suggests that the optical particle counters are over optimistic in their estimate of the transmission. For the homogeneous test site, in-situ and path-averaged sensors yield similar results. For the inhomogeneous test site, sensors may react differently or temporally separated to meteorological events such as a change in wind speed and/or direction.
Equity venture capital platform model based on complex network
NASA Astrophysics Data System (ADS)
Guo, Dongwei; Zhang, Lanshu; Liu, Miao
2018-05-01
This paper uses the small-world network and the random-network to simulate the relationship among the investors, construct the network model of the equity venture capital platform to explore the impact of the fraud rate and the bankruptcy rate on the robustness of the network model while observing the impact of the average path length and the average agglomeration coefficient of the investor relationship network on the income of the network model. The study found that the fraud rate and bankruptcy rate exceeded a certain threshold will lead to network collapse; The bankruptcy rate has a great influence on the income of the platform; The risk premium exists, and the average return is better under a certain range of bankruptcy risk; The structure of the investor relationship network has no effect on the income of the investment model.
Aerosol optical properties inferred from in-situ and path-averaged measurements
NASA Astrophysics Data System (ADS)
van Binsbergen, Sven A.; Grossmann, Peter; Cohen, Leo H.; van Eijk, Alexander M. J.; Stein, Karin U.
2017-09-01
This paper compares in-situ and path-averaged measurements of the electro-optical transmission, with emphasis on aerosol effects. The in-situ sensors consisted of optical particle counters (OPC) and a visibility meter, the path-averaged data was provided by a 7-wavelength transmissometer (MSRT) and a scintillometer (BLS). Data was collected at a test site in Northern Germany. A retrieval algorithm was developed to infer characteristics of the aerosol size distribution (Junge approximation) from the MSRT data. A comparison of the various sensors suggests that the optical particle counters are over-optimistic in their estimate of the transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianbao; Ma, Zhongjun, E-mail: mzj1234402@163.com; Chen, Guanrong
All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding ormore » deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.« less
NASA Astrophysics Data System (ADS)
Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong
2014-06-01
All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.
Scale-free networks which are highly assortative but not small world
NASA Astrophysics Data System (ADS)
Small, Michael; Xu, Xiaoke; Zhou, Jin; Zhang, Jie; Sun, Junfeng; Lu, Jun-An
2008-06-01
Uncorrelated scale-free networks are necessarily small world (and, in fact, smaller than small world). Nonetheless, for scale-free networks with correlated degree distribution this may not be the case. We describe a mechanism to generate highly assortative scale-free networks which are not small world. We show that it is possible to generate scale-free networks, with arbitrary degree exponent γ>1 , such that the average distance between nodes in the network is large. To achieve this, nodes are not added to the network with preferential attachment. Instead, we greedily optimize the assortativity of the network. The network generation scheme is physically motivated, and we show that the recently observed global network of Avian Influenza outbreaks arises through a mechanism similar to what we present here. Simulations show that this network exhibits very similar physical characteristics (very high assortativity, clustering, and path length).
Algorithms and Sensors for Small Robot Path Following
NASA Technical Reports Server (NTRS)
Hogg, Robert W.; Rankin, Arturo L.; Roumeliotis, Stergios I.; McHenry, Michael C.; Helmick, Daniel M.; Bergh, Charles F.; Matthies, Larry
2002-01-01
Tracked mobile robots in the 20 kg size class are under development for applications in urban reconnaissance. For efficient deployment, it is desirable for teams of robots to be able to automatically execute path following behaviors, with one or more followers tracking the path taken by a leader. The key challenges to enabling such a capability are (l) to develop sensor packages for such small robots that can accurately determine the path of the leader and (2) to develop path following algorithms for the subsequent robots. To date, we have integrated gyros, accelerometers, compass/inclinometers, odometry, and differential GPS into an effective sensing package. This paper describes the sensor package, sensor processing algorithm, and path tracking algorithm we have developed for the leader/follower problem in small robots and shows the result of performance characterization of the system. We also document pragmatic lessons learned about design, construction, and electromagnetic interference issues particular to the performance of state sensors on small robots.
Transition path time distributions
NASA Astrophysics Data System (ADS)
Laleman, M.; Carlon, E.; Orland, H.
2017-12-01
Biomolecular folding, at least in simple systems, can be described as a two state transition in a free energy landscape with two deep wells separated by a high barrier. Transition paths are the short part of the trajectories that cross the barrier. Average transition path times and, recently, their full probability distribution have been measured for several biomolecular systems, e.g., in the folding of nucleic acids or proteins. Motivated by these experiments, we have calculated the full transition path time distribution for a single stochastic particle crossing a parabolic barrier, including inertial terms which were neglected in previous studies. These terms influence the short time scale dynamics of a stochastic system and can be of experimental relevance in view of the short duration of transition paths. We derive the full transition path time distribution as well as the average transition path times and discuss the similarities and differences with the high friction limit.
NASA Astrophysics Data System (ADS)
Huang, Dong; Campos, Edwin; Liu, Yangang
2014-09-01
Statistical characteristics of cloud variability are examined for their dependence on averaging scales and best representation of probability density function with the decade-long retrieval products of cloud liquid water path (LWP) from the tropical western Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy's Atmospheric Radiation Measurement Program. The statistical moments of LWP show some seasonal variation at the SGP and NSA sites but not much at the TWP site. It is found that the standard deviation, relative dispersion (the ratio of the standard deviation to the mean), and skewness all quickly increase with the averaging window size when the window size is small and become more or less flat when the window size exceeds 12 h. On average, the cloud LWP at the TWP site has the largest values of standard deviation, relative dispersion, and skewness, whereas the NSA site exhibits the least. Correlation analysis shows that there is a positive correlation between the mean LWP and the standard deviation. The skewness is found to be closely related to the relative dispersion with a correlation coefficient of 0.6. The comparison further shows that the lognormal, Weibull, and gamma distributions reasonably explain the observed relationship between skewness and relative dispersion over a wide range of scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Dong; Campos, Edwin; Liu, Yangang
2014-09-17
Statistical characteristics of cloud variability are examined for their dependence on averaging scales and best representation of probability density function with the decade-long retrieval products of cloud liquid water path (LWP) from the tropical western Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy’s Atmospheric Radiation Measurement Program. The statistical moments of LWP show some seasonal variation at the SGP and NSA sites but not much at the TWP site. It is found that the standard deviation, relative dispersion (the ratio of the standard deviation to the mean), and skewness allmore » quickly increase with the averaging window size when the window size is small and become more or less flat when the window size exceeds 12 h. On average, the cloud LWP at the TWP site has the largest values of standard deviation, relative dispersion, and skewness, whereas the NSA site exhibits the least. Correlation analysis shows that there is a positive correlation between the mean LWP and the standard deviation. The skewness is found to be closely related to the relative dispersion with a correlation coefficient of 0.6. The comparison further shows that the log normal, Weibull, and gamma distributions reasonably explain the observed relationship between skewness and relative dispersion over a wide range of scales.« less
Scan path entropy and arrow plots: capturing scanning behavior of multiple observers
Hooge, Ignace; Camps, Guido
2013-01-01
Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures (1) “scan path entropy” to quantify gaze guidance and (2) the “arrow plot” to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50). The new measures were tested in an eye tracking study (48 observers, 39 advertisements). Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place. PMID:24399993
NASA Astrophysics Data System (ADS)
Pitarka, A.; Mellors, R. J.; Walter, W. R.
2016-12-01
Depending on emplacement conditions and underground structure, and contrary to what is theoretically predicted for isotropic sources, recorded local, regional, and teleseismic waveforms from chemical explosions often contain shear waves with substantial energy. Consequently, the transportability of empirical techniques for yield estimation and source discrimination to regions with complex underground structure becomes problematic. Understanding the mechanisms of generation and conversion of shear waves caused by wave path effects during explosions can help improve techniques used in nuclear explosion monitoring. We used seismic data from LargeN, a dense array of three and one component geophones, to analyze far-field waveforms from the underground chemical explosion recorded during shot 5 of the Source Physics Experiment (SPE-5) at the Nevada National Security Site. Combined 3D elastic wave propagation modeling and frequency-wavenumber beam-forming on small arrays containing selected stations were used to detect and identify several wave phases, including primary and secondary S waves, and Rgwaves, and determine their direction of propagation. We were able to attribute key features of the waveforms, and wave phases to either source processes or propagation path effects, such as focusing and wave conversions. We also found that coda waves were more likely generated by path effects outside the source region, rather than by interaction of source generated waves with the emplacement structure. Waveform correlation and statistical analysis were performed to estimate average correlation length of small-scale heterogeneity in the upper sedimentary layers of the Yucca Flat basin in the area covered by the array. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- 699180
Phase-Shifted Laser Feedback Interferometry
NASA Technical Reports Server (NTRS)
Ovryn, Benjie
1999-01-01
Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.
Demonstration of a small programmable quantum computer with atomic qubits.
Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C
2016-08-04
Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.
Demonstration of a small programmable quantum computer with atomic qubits
NASA Astrophysics Data System (ADS)
Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.
2016-08-01
Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.
Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methods
NASA Technical Reports Server (NTRS)
Lin, Bing; Rossow, William B.
1994-01-01
Published estimates of cloud liquid water path (LWP) from satellite-measured microwave radiation show little agreement, even about the relative magnitudes of LWP in the tropics and midlatitudes. To understand these differences and to obtain more reliable estimate, optical and microwave LWP retrieval methods are compared using the International Satellite Cloud Climatology Project (ISCCP) and special sensor microwave/imager (SSM/I) data. Errors in microwave LWP retrieval associated with uncertainties in surface, atmosphere, and cloud properties are assessed. Sea surface temperature may not produce great LWP errors, if accurate contemporaneous measurements are used in the retrieval. An uncertainty of estimated near-surface wind speed as high as 2 m/s produces uncertainty in LWP of about 5 mg/sq cm. Cloud liquid water temperature has only a small effect on LWP retrievals (rms errors less than 2 mg/sq cm), if errors in the temperature are less than 5 C; however, such errors can produce spurious variations of LWP with latitude and season. Errors in atmospheric column water vapor (CWV) are strongly coupled with errors in LWP (for some retrieval methods) causing errors as large as 30 mg/sq cm. Because microwave radiation is much less sensitive to clouds with small LWP (less than 7 mg/sq cm) than visible wavelength radiation, the microwave results are very sensitive to the process used to separate clear and cloudy conditions. Different cloud detection sensitivities in different microwave retrieval methods bias estimated LWP values. Comparing ISCCP and SSM/I LWPs, we find that the two estimated values are consistent in global, zonal, and regional means for warm, nonprecipitating clouds, which have average LWP values of about 5 mg/sq cm and occur much more frequently than precipitating clouds. Ice water path (IWP) can be roughly estimated from the differences between ISCCP total water path and SSM/I LWP for cold, nonprecipitating clouds. IWP in the winter hemisphere is about 3 times the LWP but only half the LWP in the summer hemisphere. Precipitating clouds contribute significantly to monthly, zonal mean LWP values determined from microwave, especially in the intertropical convergence zone (ITCZ), because they have almost 10 times the liquid water (cloud plus precipitation) of nonprecipitating clouds on average. There are significant differences among microwave LWP estimates associated with the treatment of precipitating clouds.
NASA Astrophysics Data System (ADS)
Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin
2017-09-01
Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly spherical ice particles from supercooled droplets. Correlation analysis of bulk averaged path depolarisation measurements and single particle measurements of these clouds showed higher R2 values at high concentrations and small diameters, but these results require further confirmation. We find that none of these instruments were able to determine unambiguously the phase of the small particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds.
Transition path time distributions for Lévy flights
NASA Astrophysics Data System (ADS)
Janakiraman, Deepika
2018-07-01
This paper presents a study of transition path time distributions for Lévy noise-induced barrier crossing. Transition paths are short segments of the reactive trajectories and span the barrier region of the potential without spilling into the reactant/product wells. The time taken to traverse this segment is referred to as the transition path time. Since the transition path is devoid of excursions in the minimum, the corresponding time will give the exclusive barrier crossing time, unlike . This work explores the distribution of transition path times for superdiffusive barrier crossing, analytically. This is made possible by approximating the barrier by an inverted parabola. Using this approximation, the distributions are evaluated in both over- and under-damped limits of friction. The short-time behaviour of the distributions, provide analytical evidence for single-step transition events—a feature in Lévy-barrier crossing as observed in prior simulation studies. The average transition path time is calculated as a function of the Lévy index (α), and the optimal value of α leading to minimum average transition path time is discussed, in both the limits of friction. Langevin dynamics simulations corroborating with the analytical results are also presented.
Total Kinetic Energy and Fragment Mass Distribution of Neutron-Induced Fission of U-233
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, Daniel James; Schmitt, Kyle Thomas; Mosby, Shea Morgan
Properties of fission in U-233 were studied at the Los Alamos Neutron Science Center (LANSCE) at incident neutron energies from thermal to 40 MeV at both the Lujan Neutron Scattering Center flight path 12 and at WNR flight path 90-Left from Dec 2016 to Jan 2017. Fission fragments are observed in coincidence using a twin ionization chamber with Frisch grids. The average total kinetic energy (TKE) released from fission and fragment mass distributions are calculated from observations of energy deposited in the detector and conservation of mass and momentum. Accurate experimental measurements of these parameters are necessary to better understandmore » the fission process and obtain data necessary for calculating criticality. The average TKE released from fission has been well characterized for several isotopes at thermal neutron energy, however, few measurements have been made at fast neutron energies. This experiment expands on previous successful experiments using an ionization chamber to measure TKE and fragment mass distributions of U-235, U-238, and Pu-239. This experiment requires the full spectrum of neutron energies and can therefore only be performed at a small number of facilities in the world. The required full neutron energy spectrum is obtained by combining measurements from WNR 90L and Lujan FP12 at LANSCE.« less
Medium-induced gluon radiation and colour decoherence beyond the soft approximation
NASA Astrophysics Data System (ADS)
Apolinário, Liliana; Armesto, Néstor; Milhano, José Guilherme; Salgado, Carlos A.
2015-02-01
We derive the in-medium gluon radiation spectrum off a quark within the path integral formalism at finite energies, including all next-to-eikonal corrections in the propagators of quarks and gluons. Results are computed for finite formation times, including interference with vacuum amplitudes. By rewriting the medium averages in a convenient manner we present the spectrum in terms of dipole cross sections and a colour decoherence parameter with the same physical origin as that found in previous studies of the antenna radiation. This factorisation allows us to present a simple physical picture of the medium-induced radiation for any value of the formation time, that is of interest for a probabilistic implementation of the modified parton shower. Known results are recovered for the particular cases of soft radiation and eikonal quark and for the case of a very long medium, with length much larger than the average formation times for medium-induced radiation. Technical details of the computation of the relevant n-point functions in colour space and of the required path integrals in transverse space are provided. The final result completes the calculation of all finite energy corrections for the radiation off a quark in a QCD medium that exist in the small angle approximation and for a recoilless medium.
Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels
Laenen, Antonius; Curtis, R. E.
1989-01-01
Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)
Hopkins, Carl
2011-05-01
In architectural acoustics, noise control and environmental noise, there are often steady-state signals for which it is necessary to measure the spatial average, sound pressure level inside rooms. This requires using fixed microphone positions, mechanical scanning devices, or manual scanning. In comparison with mechanical scanning devices, the human body allows manual scanning to trace out complex geometrical paths in three-dimensional space. To determine the efficacy of manual scanning paths in terms of an equivalent number of uncorrelated samples, an analytical approach is solved numerically. The benchmark used to assess these paths is a minimum of five uncorrelated fixed microphone positions at frequencies above 200 Hz. For paths involving an operator walking across the room, potential problems exist with walking noise and non-uniform scanning speeds. Hence, paths are considered based on a fixed standing position or rotation of the body about a fixed point. In empty rooms, it is shown that a circle, helix, or cylindrical-type path satisfy the benchmark requirement with the latter two paths being highly efficient at generating large number of uncorrelated samples. In furnished rooms where there is limited space for the operator to move, an efficient path comprises three semicircles with 45°-60° separations.
Estienne, Mark J; Harper, Allen F; Day, Jennifer L
2007-11-01
Although numerous extenders exist for diluting boar semen, little research has been conducted comparing commercial extenders with regard to maintaining sperm motility during storage. The objective was to use a computer- assisted sperm analysis system to assess motility of boar spermatozoa diluted in Beltsville Thawing Solution, Merck-III, Androhep-lite, Sperm Aid, MR-A, Modena, X-Cell, VSP, and Vital. Ejaculates from boars (n=10) were collected and sub-samples were diluted (35x10(6) spermatozoa/ml) in the different extenders and stored for seven days at 18 degrees. Extender by day interactions were detected (p<0.01) and on each day post collection, there were numerically small, but statistically significant differences in characteristics of sperm motility among extenders. For example, on day 7, the percentages of motile and progressively motile spermatozoa were highest (p<0.05) in X-Cell (90.7%) and Modena (63.9%), respectively. The average velocity measured over the actual point-to-point track followed by the sperm cell (VCL; 198.2 microm/s) and path velocity of the smoothed cell path (VAP; 106.4 microm/s) were highest (p<0.05) in Vital and Modena, respectively. Average velocity measured in a straight line from the beginning to the end of the track (VSL; 78.3 microm/s), average value of the ratio VSL/VAP (straightness; 73.2) and average value of the ratio VSL/VCL (linearity; 44.1) on day 7 were highest in Androhep-lite. In summary, changes in sperm motility during storage were affected by the extender utilized, but with the exception of Sperm Aid, all extenders maintained a high degree of sperm motility through 7 days of storage.
Efficient sampling of complex network with modified random walk strategies
NASA Astrophysics Data System (ADS)
Xie, Yunya; Chang, Shuhua; Zhang, Zhipeng; Zhang, Mi; Yang, Lei
2018-02-01
We present two novel random walk strategies, choosing seed node (CSN) random walk and no-retracing (NR) random walk. Different from the classical random walk sampling, the CSN and NR strategies focus on the influences of the seed node choice and path overlap, respectively. Three random walk samplings are applied in the Erdös-Rényi (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and the weighted USAir networks, respectively. Then, the major properties of sampled subnets, such as sampling efficiency, degree distributions, average degree and average clustering coefficient, are studied. The similar conclusions can be reached with these three random walk strategies. Firstly, the networks with small scales and simple structures are conducive to the sampling. Secondly, the average degree and the average clustering coefficient of the sampled subnet tend to the corresponding values of original networks with limited steps. And thirdly, all the degree distributions of the subnets are slightly biased to the high degree side. However, the NR strategy performs better for the average clustering coefficient of the subnet. In the real weighted USAir networks, some obvious characters like the larger clustering coefficient and the fluctuation of degree distribution are reproduced well by these random walk strategies.
NASA Astrophysics Data System (ADS)
Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian
2017-11-01
Flow patterns in conjunction with seasonal and diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many temperature-sensitive microbial processes. In this study, we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high-resolution observations of hydraulic heads and temperatures to quantify reach-scale water and heat flux across the river-groundwater interface and hyporheic temperature dynamics of a lowland gravel bed river. The model was calibrated in order to constrain estimates of the most sensitive model parameters. The magnitude and variations of the simulated temperatures matched the observed ones, with an average mean absolute error of 0.7°C and an average Nash Sutcliffe efficiency of 0.87. Our results indicate that nonsubmerged streambed structures such as gravel bars cause substantial thermal heterogeneity within the saturated sediment at the reach scale. Individual hyporheic flow path temperatures strongly depend on the flow path residence time, flow path depth, river, and groundwater temperature. Variations in individual hyporheic flow path temperatures were up to 7.9°C, significantly higher than the daily average (2.8°C), but still lower than the average seasonal hyporheic temperature difference (19.2°C). The distribution between flow path temperatures and residence times follows a power law relationship with exponent of about 0.37. Based on this empirical relation, we further estimated the influence of hyporheic flow path residence time and temperature on oxygen consumption which was found to partly increase by up to 29% in simulations.
Remote atmospheric probing by ground to ground line of sight optical methods
NASA Technical Reports Server (NTRS)
Lawrence, R. S.
1969-01-01
The optical effects arising from refractive-index variations in the clear air are qualitatively described, and the possibilities are discussed of using those effects for remotely sensing the physical properties of the atmosphere. The effects include scintillations, path length fluctuations, spreading of a laser beam, deflection of the beam, and depolarization. The physical properties that may be measured include the average temperature along the path, the vertical temperature gradient, and the distribution along the path of the strength of turbulence and the transverse wind velocity. Line-of-sight laser beam methods are clearly effective in measuring the average properties, but less effective in measuring distributions along the path. Fundamental limitations to the resolution are pointed out and experiments are recommended to investigate the practicality of the methods.
Andrew, Rex K; Ganse, Andrew; White, Andrew W; Mercer, James A; Dzieciuch, Matthew A; Worcester, Peter F; Colosi, John A
2016-07-01
Observations of the spread of wander-corrected averaged pulses propagated over 510 km for 54 h in the Philippine Sea are compared to Monte Carlo predictions using a parabolic equation and path-integral predictions. Two simultaneous m-sequence signals are used, one centered at 200 Hz, the other at 300 Hz; both have a bandwidth of 50 Hz. The internal wave field is estimated at slightly less than unity Garrett-Munk strength. The observed spreads in all the early ray-like arrivals are very small, <1 ms (for pulse widths of 17 and 14 ms), which are on the order of the sampling period. Monte Carlo predictions show similar very small spreads. Pulse spread is one consequence of scattering, which is assumed to occur primarily at upper ocean depths where scattering processes are strongest and upward propagating rays refract downward. If scattering effects in early ray-like arrivals accumulate with increasing upper turning points, spread might show a similar dependence. Real and simulation results show no such dependence. Path-integral theory prediction of spread is accurate for the earliest ray-like arrivals, but appears to be increasingly biased high for later ray-like arrivals, which have more upper turning points.
NASA Astrophysics Data System (ADS)
Chaput, J.; Campillo, M.; Aster, R. C.; Roux, P.; Kyle, P. R.; Knox, H.; Czoski, P.
2015-02-01
We examine seismic coda from an unusually dense deployment of over 100 short-period and broadband seismographs in the summit region of Mount Erebus volcano on a network with an aperture of approximately 5 km. We investigate the energy-partitioning properties of the seismic wavefield generated by thousands of small icequake sources originating on the upper volcano and use them to estimate Green's functions via coda cross correlation. Emergent coda seismograms suggest that this locale should be particularly amenable to such methods. Using a small aperture subarray, we find that modal energy partition between S and P wave energy between ˜1 and 4 Hz occurs in just a few seconds after event onset and persists for tens of seconds. Spatially averaged correlograms display clear body and surface waves that span the full aperture of the array. We test for stable bidirectional Green's function recovery and note that good symmetry can be achieved at this site even with a geographically skewed distribution of sources. We estimate scattering and absorption mean free path lengths and find a power law decrease in mean free path between 1.5 and 3.3 Hz that suggests a quasi-Rayleigh or Rayleigh-Gans scattering situation. Finally, we demonstrate the existence of coherent backscattering (weak localization) for this coda wavefield. The remarkable properties of scattered seismic wavefields in the vicinity of active volcanoes suggests that the abundant small icequake sources may be used for illumination where temporal monitoring of such dynamic structures is concerned.
Nitrogen dioxide sensing using a novel gas correlation detector
NASA Astrophysics Data System (ADS)
Kebabian, Paul L.; Annen, Kurt D.; Berkoff, Timothy A.; Freedman, Andrew
2000-05-01
A nitrogen dioxide point sensor, based on a novel nondispersive gas filter spectroscopic scheme, is described. The detection scheme relies on the fact that the absorption spectrum of nitrogen dioxide in the 400-550 nm region consists of a complicated line structure superimposed on an average broadband absorption. A compensating filter is used to remove the effect of the broadband absorption, making the sensor insensitive both to small particles in the optical path and to potentially interfering gases with broadband absorption features in the relevant wavelength region. Measurements are obtained using a remote optical absorption cell that is linked via multimode fibre optics to the source and detection optics. The incorporation of blue light emitting diodes which spectrally match the nitrogen dioxide absorption allows the employment of electronic (instead of mechanical) switching between optical paths. A sensitivity of better than 1.0 ppm m column density (1 s integration time) has been observed; improvements in electronics and thermal stabilization should increase this sensitivity.
The complex network of the Brazilian Popular Music
NASA Astrophysics Data System (ADS)
de Lima e Silva, D.; Medeiros Soares, M.; Henriques, M. V. C.; Schivani Alves, M. T.; de Aguiar, S. G.; de Carvalho, T. P.; Corso, G.; Lucena, L. S.
2004-02-01
We study the Brazilian Popular Music in a network perspective. We call the Brazilian Popular Music Network, BPMN, the graph where the vertices are the song writers and the links are determined by the existence of at least a common singer. The linking degree distribution of such graph shows power law and exponential regions. The exponent of the power law is compatible with the values obtained by the evolving network algorithms seen in the literature. The average path length of the BPMN is similar to the correspondent random graph, its clustering coefficient, however, is significantly larger. These results indicate that the BPMN forms a small-world network.
Michel, Anna P M; Kapit, Jason; Witinski, Mark F; Blanchard, Romain
2017-04-10
Methane is a powerful greenhouse gas that has both natural and anthropogenic sources. The ability to measure methane using an integrated path length approach such as an open/long-path length sensor would be beneficial in several environments for examining anthropogenic and natural sources, including tundra landscapes, rivers, lakes, landfills, estuaries, fracking sites, pipelines, and agricultural sites. Here a broadband monolithic distributed feedback-quantum cascade laser array was utilized as the source for an open-path methane sensor. Two telescopes were utilized for the launch (laser source) and receiver (detector) in a bistatic configuration for methane sensing across a 50 m path length. Direct-absorption spectroscopy was utilized with intrapulse tuning. Ambient methane levels were detectable, and an instrument precision of 70 ppb with 100 s averaging and 90 ppb with 10 s averaging was achieved. The sensor system was designed to work "off the grid" and utilizes batteries that are rechargeable with solar panels and wind turbines.
Traumatic brain injury impairs small-world topology
Pandit, Anand S.; Expert, Paul; Lambiotte, Renaud; Bonnelle, Valerie; Leech, Robert; Turkheimer, Federico E.
2013-01-01
Objective: We test the hypothesis that brain networks associated with cognitive function shift away from a “small-world” organization following traumatic brain injury (TBI). Methods: We investigated 20 TBI patients and 21 age-matched controls. Resting-state functional MRI was used to study functional connectivity. Graph theoretical analysis was then applied to partial correlation matrices derived from these data. The presence of white matter damage was quantified using diffusion tensor imaging. Results: Patients showed characteristic cognitive impairments as well as evidence of damage to white matter tracts. Compared to controls, the graph analysis showed reduced overall connectivity, longer average path lengths, and reduced network efficiency. A particular impact of TBI is seen on a major network hub, the posterior cingulate cortex. Taken together, these results confirm that a network critical to cognitive function shows a shift away from small-world characteristics. Conclusions: We provide evidence that key brain networks involved in supporting cognitive function become less small-world in their organization after TBI. This is likely to be the result of diffuse white matter damage, and may be an important factor in producing cognitive impairment after TBI. PMID:23596068
Zheng, Jingjing; Truhlar, Donald G
2012-01-01
Complex molecules often have many structures (conformations) of the reactants and the transition states, and these structures may be connected by coupled-mode torsions and pseudorotations; some but not all structures may have hydrogen bonds in the transition state or reagents. A quantitative theory of the reaction rates of complex molecules must take account of these structures, their coupled-mode nature, their qualitatively different character, and the possibility of merging reaction paths at high temperature. We have recently developed a coupled-mode theory called multi-structural variational transition state theory (MS-VTST) and an extension, called multi-path variational transition state theory (MP-VTST), that includes a treatment of the differences in the multi-dimensional tunneling paths and their contributions to the reaction rate. The MP-VTST method was presented for unimolecular reactions in the original paper and has now been extended to bimolecular reactions. The MS-VTST and MP-VTST formulations of variational transition state theory include multi-faceted configuration-space dividing surfaces to define the variational transition state. They occupy an intermediate position between single-conformation variational transition state theory (VTST), which has been used successfully for small molecules, and ensemble-averaged variational transition state theory (EA-VTST), which has been used successfully for enzyme kinetics. The theories are illustrated and compared here by application to three thermal rate constants for reactions of ethanol with hydroxyl radical--reactions with 4, 6, and 14 saddle points.
In recent years, a new class of enclosed, closed-path gas analyzers suitable for eddy covariance applications has come to market, designed to combine the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path syst...
Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites
NASA Technical Reports Server (NTRS)
Yoonessi, Mitra; Gaier, James R.
2010-01-01
Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.
A path-based measurement for human miRNA functional similarities using miRNA-disease associations
NASA Astrophysics Data System (ADS)
Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao
2016-09-01
Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity.
Effect of shoe inserts on kinematics, center of pressure, and leg joint moments during running.
Nigg, Benno M; Stergiou, Pro; Cole, Gerald; Stefanyshyn, Darren; Mündermann, Anne; Humble, Neil
2003-02-01
The purposes of this project were to assess the effect of four different shoe inserts on the path of the center of pressure (COP), to quantify the effect of these inserts on selected knee joint moments during running, and to assess the potential of COP data to predict the effects of inserts/orthotics on knee joint moments. Kinematics for the lower extremities, resultant ankle and knee joint moments, and the path of the COP were collected from the right foot of 15 male subjects while running heel-toe with five different shoe inserts (full or half with 4.5-mm postings). Individual movement changes with respect to the neutral insert condition were typically small and not systematic. Significant changes for the path of the COP were registered only for the full lateral insert condition with an average shift toward the lateral side. The mediolateral shift of the COP was not consistent for the full medial and the two half-shoe inserts. The subject-specific reactions to the inserts' intervention in the corresponding knee joint moments were typically not consistent. Compared with the neutral insert condition, subjects showed increases or decreases of the knee joint moments. The correlation between the individual COP shifts and the resultant knee joint moment was generally small. The results of this study showed that subject-specific reactions to the tested inserts were often not as expected. Additionally, reactions were not consistent between the subjects. This result suggests that the prescription of inserts and/or orthotics is a difficult task and that methods must be developed to test and assess these effects. Such methods, however, are not currently available.
The phenotypic equilibrium of cancer cells: From average-level stability to path-wise convergence.
Niu, Yuanling; Wang, Yue; Zhou, Da
2015-12-07
The phenotypic equilibrium, i.e. heterogeneous population of cancer cells tending to a fixed equilibrium of phenotypic proportions, has received much attention in cancer biology very recently. In the previous literature, some theoretical models were used to predict the experimental phenomena of the phenotypic equilibrium, which were often explained by different concepts of stabilities of the models. Here we present a stochastic multi-phenotype branching model by integrating conventional cellular hierarchy with phenotypic plasticity mechanisms of cancer cells. Based on our model, it is shown that: (i) our model can serve as a framework to unify the previous models for the phenotypic equilibrium, and then harmonizes the different kinds of average-level stabilities proposed in these models; and (ii) path-wise convergence of our model provides a deeper understanding to the phenotypic equilibrium from stochastic point of view. That is, the emergence of the phenotypic equilibrium is rooted in the stochastic nature of (almost) every sample path, the average-level stability just follows from it by averaging stochastic samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Girsanov reweighting for path ensembles and Markov state models
NASA Astrophysics Data System (ADS)
Donati, L.; Hartmann, C.; Keller, B. G.
2017-06-01
The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.
Anatomy of the obturator region: relations to a trans-obturator sling.
Whiteside, James L; Walters, Mark D
2004-01-01
Our objective was to determine the relationships between a trans-obturator sling and anatomic structures within the obturator region. The obturator regions of six cadavers were dissected and distances from the mid-point of the ischiopubic ramus to the muscles, nerves, and vessels of the region were measured. A trans-obturator sling was placed and distances from the device to the same anatomic structures were determined. Four additional cadavers were dissected to determine the device route of passage. The obturator canal is on average 4.4 cm from the midpoint of the ischiopubic rami. The trans-obturator sling passes on average 2.4 cm inferior-medial to the obturator canal. The anterior and posterior divisions of the obturator nerve are on average 3.4 and 2.8 cm, respectively, from a passed trans-obturator device. The device passed on average 1.1 cm from the most medial branch of the obturator vessels. Vascular and nerve structures are within 1-3 cm of the path of any device passed through the obturator foramen. A trans-obturator sling risks injury to these structures, although the small caliber of the vessels and the confined space in which they would bleed make the consequences of injury uncertain.
Drivers of solar radiation variability in the McMurdo Dry Valleys, Antarctica
Obryk, Maciej; Fountain, Andrew G.; Doran, Peter; Lyons, Berry; Eastman, Ryan
2018-01-01
Annually averaged solar radiation in the McMurdo Dry Valleys, Antarctica has varied by over 20 W m−2 during the past three decades; however, the drivers of this variability are unknown. Because small differences in radiation are important to water availability and ecosystem functioning in polar deserts, determining the causes are important to predictions of future desert processes. We examine the potential drivers of solar variability and systematically eliminate all but stratospheric sulfur dioxide. We argue that increases in stratospheric sulfur dioxide increase stratospheric aerosol optical depth and decrease solar intensity. Because of the polar location of the McMurdo Dry Valleys (77–78°S) and relatively long solar ray path through the stratosphere, terrestrial solar intensity is sensitive to small differences in stratospheric transmissivity. Important sources of sulfur dioxide include natural (wildfires and volcanic eruptions) and anthropogenic emission.
Park size and disturbance: impact on soil heterogeneity - a case study Tel-Aviv- Jaffa.
NASA Astrophysics Data System (ADS)
Zhevelev, Helena; Sarah, Pariente; Oz, Atar
2015-04-01
Parks and gardens are poly-functional elements of great importance in urban areas, and can be used for optimization of physical and social components in these areas. This study aimed to investigate alteration of soil properties with land usages within urban park and with area size of park. Ten parks differed by size (2 - 50 acres) were chosen, in random, in Tel-Aviv- Jaffa city. Soil was sampled in four microenvironments ((lawn, path, picnic and peripheral area (unorganized area) of each the park)), in three points and three depth (0-2, 5-10 and 10-20 cm). Penetration depth was measured in all point of sampling. For each soil sample electrical conductivity and organic matter content were determined. Averages of penetration depth drastically increased from the most disturbed microenvironments (path and picnic) to the less disturbed ones (lawn and peripheral). The maximal heterogeneity (by variances and percentiles) of penetration depth was found in the peripheral area. In this area, penetration depth increased with increasing park size, i.e., from 2.6 cm to 3.7 cm in the small and large parks, respectively. Averages of organic matter content and electrical conductivity decreased with soil depth in all microenvironments and increased with decreasing disturbance of microenvironments. Maximal heterogeneity for both of these properties was found in the picnic area. Increase of park size was accompanied by increasing of organic matter content in the upper depth in the peripheral area, i.e., from 2.4% in the small parks to 4.5% in the large ones. In all microenvironments the increasing of averages of all studied soil properties was accompanied by increasing heterogeneity, i.e., variances and upper percentiles. The increase in the heterogeneity of the studied soil properties is attributed to improved ecological soil status in the peripheral area, on the one hand, and to the high anthropogenic pressure in the picnic area, on the other. This means that the urban park offers "islands" with better ecological conditions which improve the urban system.
NASA Astrophysics Data System (ADS)
Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred
2016-05-01
Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they contribute to the global increase of greenhouse gas concentrations. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents standoff detection of CH4 and N2O leaks using a quantum cascade laser open-path system that retrieves path-averaged concentrations by collecting the backscattered light from a remote hard target. It is a true standoff system and differs from other open-path systems that are deployed as point samplers or long-path transmission systems that use retroreflectors. The measured absorption spectra are obtained using a thermal intra-pulse frequency chirped DFB quantum cascade laser at ~7.7 µm wavelength range with ~200 ns pulse width. Making fast time resolved observations, the system simultaneously realizes high spectral resolution and range to the target, resulting in path-averaged concentration retrieval. The system performs measurements at high speed ~15 Hz and sufficient range (up to 45 m, ~148 feet) achieving an uncertainty of 3.1 % and normalized sensitivity of 3.3 ppm m Hz-1/2 for N2O and 9.3 % and normalized sensitivity of 30 ppm m Hz-1/2 for CH4 with a 0.31 mW average power QCL. Given these characteristics, this system is promising for mobile or multidirectional search and remote detection of gas leaks.
Energy aware path planning in complex four dimensional environments
NASA Astrophysics Data System (ADS)
Chakrabarty, Anjan
This dissertation addresses the problem of energy-aware path planning for small autonomous vehicles. While small autonomous vehicles can perform missions that are too risky (or infeasible) for larger vehicles, the missions are limited by the amount of energy that can be carried on board the vehicle. Path planning techniques that either minimize energy consumption or exploit energy available in the environment can thus increase range and endurance. Path planning is complicated by significant spatial (and potentially temporal) variations in the environment. While the main focus is on autonomous aircraft, this research also addresses autonomous ground vehicles. Range and endurance of small unmanned aerial vehicles (UAVs) can be greatly improved by utilizing energy from the atmosphere. Wind can be exploited to minimize energy consumption of a small UAV. But wind, like any other atmospheric component , is a space and time varying phenomenon. To effectively use wind for long range missions, both exploration and exploitation of wind is critical. This research presents a kinematics based tree algorithm which efficiently handles the four dimensional (three spatial and time) path planning problem. The Kinematic Tree algorithm provides a sequence of waypoints, airspeeds, heading and bank angle commands for each segment of the path. The planner is shown to be resolution complete and computationally efficient. Global optimality of the cost function cannot be claimed, as energy is gained from the atmosphere, making the cost function inadmissible. However the Kinematic Tree is shown to be optimal up to resolution if the cost function is admissible. Simulation results show the efficacy of this planning method for a glider in complex real wind data. Simulation results verify that the planner is able to extract energy from the atmosphere enabling long range missions. The Kinematic Tree planning framework, developed to minimize energy consumption of UAVs, is applied for path planning in ground robots. In traditional path planning problem the focus is on obstacle avoidance and navigation. The optimal Kinematic Tree algorithm named Kinematic Tree* is shown to find optimal paths to reach the destination while avoiding obstacles. A more challenging path planning scenario arises for planning in complex terrain. This research shows how the Kinematic Tree* algorithm can be extended to find minimum energy paths for a ground vehicle in difficult mountainous terrain.
K. Novick; J. Walker; W.S. Chan; A. Schmidt; C. Sobek; J.M. Vose
2013-01-01
A new class of enclosed path gas analyzers suitable for eddy covariance applications combines the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path systems (good spectral response, low power requirements), and permits estimates of instantaneous gas mixing ratio. Here, the extent to which these...
Path attenuation statistics influenced by orientation of rain cells
NASA Technical Reports Server (NTRS)
Goldhirsh, J.
1976-01-01
The influence of path azimuth on fade and space diversity statistics associated with propagation along earth-satellite paths at a frequency of 18 GHz is examined. A radar rain reflectivity data base obtained during the summer of 1973 is injected into a modeling program and the attenuation along parallel earth-satellite paths are obtained for a conglomeration of azimuths. Statistics are separated into two groupings: one pertaining to earth-satellite paths oriented in the northwest-southeast and the other in the northeast-southwest quadrants using a fixed elevation angle of 45 deg. The latter case shows fading to be greater with a degraded space diversity suggesting rain cells to be elongated along this direction. Cell dimensions are analyzed for both sets of quadrants and are found to have average values larger by 2 km in the northeast-southwest quadrants; a result consistent with the fade and space diversity results. Examination of the wind direction for the 14 rain days of data analyzed shows good correlation of the average or median wind directions with the directions of maximum fading and degraded space diversity.
NASA Astrophysics Data System (ADS)
Xin, Fengxin; Guo, Jinjia; Sun, Jiayun; Li, Jie; Zhao, Chaofang; Liu, Zhishen
2017-06-01
An open-path atmospheric CO2 measurement system was built based on tunable diode laser absorption spectroscopy (TDLAS). The CO2 absorption line near 2 μm was selected, measuring the atmospheric CO2 with direct absorption spectroscopy and carrying on the comparative experiment with multipoint measuring instruments of the open-path. The detection limit of the TDLAS system is 1.94×10-6. The calibration experiment of three AZ-7752 handheld CO2 measuring instruments was carried out with the Los Gatos Research gas analyzer. The consistency of the results was good, and the handheld instrument could be used in the TDLAS system after numerical calibration. With the contrast of three AZ-7752 and their averages, the correlation coefficients are 0.8828, 0.9004, 0.9079, and 0.9393 respectively, which shows that the open-path TDLAS has the best correlation with the average of three AZ-7752 and measures the concentration of atmospheric CO2 accurately. Multipoint measurement provides a convenient comparative method for open-path TDLAS.
NASA Astrophysics Data System (ADS)
Fujiwara, Takahiro; Uchiito, Haruki; Tokairin, Tomoya; Kawai, Hiroyuki
2017-04-01
Regarding Structural Health Monitoring (SHM) for seismic acceleration, Wireless Sensor Networks (WSN) is a promising tool for low-cost monitoring. Compressed sensing and transmission schemes have been drawing attention to achieve effective data collection in WSN. Especially, SHM systems installing massive nodes of WSN require efficient data transmission due to restricted communications capability. The dominant frequency band of seismic acceleration is occupied within 100 Hz or less. In addition, the response motions on upper floors of a structure are activated at a natural frequency, resulting in induced shaking at the specified narrow band. Focusing on the vibration characteristics of structures, we introduce data compression techniques for seismic acceleration monitoring in order to reduce the amount of transmission data. We carry out a compressed sensing and transmission scheme by band pass filtering for seismic acceleration data. The algorithm executes the discrete Fourier transform for the frequency domain and band path filtering for the compressed transmission. Assuming that the compressed data is transmitted through computer networks, restoration of the data is performed by the inverse Fourier transform in the receiving node. This paper discusses the evaluation of the compressed sensing for seismic acceleration by way of an average error. The results present the average error was 0.06 or less for the horizontal acceleration, in conditions where the acceleration was compressed into 1/32. Especially, the average error on the 4th floor achieved a small error of 0.02. Those results indicate that compressed sensing and transmission technique is effective to reduce the amount of data with maintaining the small average error.
Channel Characterization for Free-Space Optical Communications
2012-07-01
parameters. From the path- average parameters, a 2nC profile model, called the HAP model, was constructed so that the entire channel from air to ground...SR), both of which are required to estimate the Power in the Bucket (PIB) and Power in the Fiber (PIF) associated with the FOENEX data beam. UCF was...of the path-average values of 2nC , the resulting HAP 2nC profile model led to values of ground level 2 nC that compared very well with actual
An airborne sensor for the avoidance of clear air turbulence
NASA Technical Reports Server (NTRS)
Gary, B. L.
1981-01-01
This paper describes an airborne microwave radiometer that may be able to provide altitude guidance away from layers containing clear air turbulence, CAT. The sensor may also be able to predict upper limits for the severity of upcoming CAT. The 55 GHz radiometer is passive, not radar, and it measures the temperature of oxygen molecules in the viewing direction (averaged along a several-kilometer path). A small computer directs the viewing direction through elevation angle scans, and converts observed quantities to an 'altitude temperature profile'. The principle for CAT avoidance is that CAT is found statistically more often within inversion layers and at the tropopause, both of which are easily located from sensor-generated altitude temperature profiles.
Observation of STF 2686 from Haleakala
NASA Astrophysics Data System (ADS)
McGaughey, Stephen A.; Genet, Russell M.
2012-07-01
The visual double star STF 2686 was observed with a small telescope from the summit of Haleakala in Hawaii. Although our visually-estimated separation of 26.6 arc seconds was in close agreement with 19 past observations spread over 186 years, our position angle estimate of 277 degrees differed from the average of past observations by 1.5 degrees, a sizeable 2.4 sigma standard deviation difference. We concluded that in future observations from Haleakala with this telescope our precision could be improved by making multiple observations and by incorporating a Barlow in the optical path. Our position angle accuracy might be improved by rotating the astrometric eyepiece 180 degrees between each observation to avoid initial positioning bias.
A biomimetic, energy-harvesting, obstacle-avoiding, path-planning algorithm for UAVs
NASA Astrophysics Data System (ADS)
Gudmundsson, Snorri
This dissertation presents two new approaches to energy harvesting for Unmanned Aerial Vehicles (UAV). One method is based on the Potential Flow Method (PFM); the other method seeds a wind-field map based on updraft peak analysis and then applies a variant of the Bellman-Ford algorithm to find the minimum-cost path. Both methods are enhanced by taking into account the performance characteristics of the aircraft using advanced performance theory. The combined approach yields five possible trajectories from which the one with the minimum energy cost is selected. The dissertation concludes by using the developed theory and modeling tools to simulate the flight paths of two small Unmanned Aerial Vehicles (sUAV) in the 500 kg and 250 kg class. The results show that, in mountainous regions, substantial energy can be recovered, depending on topography and wind characteristics. For the examples presented, as much as 50% of the energy was recovered for a complex, multi-heading, multi-altitude, 170 km mission in an average wind speed of 9 m/s. The algorithms constitute a Generic Intelligent Control Algorithm (GICA) for autonomous unmanned aerial vehicles that enables an extraction of atmospheric energy while completing a mission trajectory. At the same time, the algorithm. automatically adjusts the flight path in order to avoid obstacles, in a fashion not unlike what one would expect from living organisms, such as birds and insects. This multi-disciplinary approach renders the approach biomimetic, i.e. it constitutes a synthetic system that “mimics the formation and function of biological mechanisms and processes.”.
Arias, Ana; de Vasconcelos, Rafaela Andrade; Hernández, Alexis; Peters, Ove A
2017-03-01
The purpose of this study was to assess the ex vivo torsional performance of a novel rotary system in small root canals after 2 different glide path preparations. Each independent canal of 8 mesial roots of mandibular molars was randomly assigned to achieve a reproducible glide path with a new set of either PathFile #1 (Dentsply Maillefer, Ballaigues, Switzerland) and #2 or ProGlider (Dentsply Maillefer) after negotiation with a 10 K-file. After glide path preparation, root canals in both groups were shaped with the same sequence of ProTaper Gold (Dentsply Tulsa Dental Specialties, Tulsa, OK) following the directions for use recommended by the manufacturer. A total of 16 new sets of each instrument of the ProTaper Gold (PTG) system were used. The tests were run in a standardized fashion in a torque-testing platform. Peak torque (Ncm) and force (N) were registered during the shaping procedure and compared with Student t tests after normal distribution of data was confirmed. No significant differences were found for any of the instruments in peak torque or force after the 2 different glide path preparations (P > .05). Data presented in this study also serve as a basis for the recommended torque for the use of PTG instruments. Under the conditions of this study, differences in the torsional performance of PTG rotary instruments after 2 different glide path preparations could not be shown. The different geometry of glide path rotary systems seemed to have no effect on peak torque and force induced by PTG rotary instruments when shaping small root canals in extracted teeth. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick
2009-08-01
Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.
NASA Astrophysics Data System (ADS)
Che-Aron, Z.; Abdalla, A. H.; Abdullah, K.; Hassan, W. H.
2013-12-01
In recent years, Cognitive Radio (CR) technology has largely attracted significant studies and research. Cognitive Radio Ad Hoc Network (CRAHN) is an emerging self-organized, multi-hop, wireless network which allows unlicensed users to opportunistically access available licensed spectrum bands for data communication under an intelligent and cautious manner. However, in CRAHNs, a lot of failures can easily occur during data transmission caused by PU (Primary User) activity, topology change, node fault, or link degradation. In this paper, an attempt has been made to evaluate the performance of the Multi-Radio Link-Quality Source Routing (MR-LQSR) protocol in CRAHNs under different path failure rate. In the MR-LQSR protocol, the Weighted Cumulative Expected Transmission Time (WCETT) is used as the routing metric. The simulations are carried out using the NS-2 simulator. The protocol performance is evaluated with respect to performance metrics like average throughput, packet loss, average end-to-end delay and average jitter. From the simulation results, it is observed that the number of path failures depends on the PUs number and mobility rate of SUs (Secondary Users). Moreover, the protocol performance is greatly affected when the path failure rate is high, leading to major service outages.
Artificial intelligence-assisted occupational lung disease diagnosis.
Harber, P; McCoy, J M; Howard, K; Greer, D; Luo, J
1991-08-01
An artificial intelligence expert-based system for facilitating the clinical recognition of occupational and environmental factors in lung disease has been developed in a pilot fashion. It utilizes a knowledge representation scheme to capture relevant clinical knowledge into structures about specific objects (jobs, diseases, etc) and pairwise relations between objects. Quantifiers describe both the closeness of association and risk, as well as the degree of belief in the validity of a fact. An independent inference engine utilizes the knowledge, combining likelihoods and uncertainties to achieve estimates of likelihood factors for specific paths from work to illness. The system creates a series of "paths," linking work activities to disease outcomes. One path links a single period of work to a single possible disease outcome. In a preliminary trial, the number of "paths" from job to possible disease averaged 18 per subject in a general population and averaged 25 per subject in an asthmatic population. Artificial intelligence methods hold promise in the future to facilitate diagnosis in pulmonary and occupational medicine.
Combining path integration and remembered landmarks when navigating without vision.
Kalia, Amy A; Schrater, Paul R; Legge, Gordon E
2013-01-01
This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information.
Combining Path Integration and Remembered Landmarks When Navigating without Vision
Kalia, Amy A.; Schrater, Paul R.; Legge, Gordon E.
2013-01-01
This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information. PMID:24039742
Autonomous search and surveillance with small fixed wing aircraft
NASA Astrophysics Data System (ADS)
McGee, Timothy Garland
Small unmanned aerial vehicles (UAVs) have the potential to act as low cost tools in a variety of both civilian and military applications including traffic monitoring, border patrol, and search and rescue. While most current operational UAV systems require human operators, advances in autonomy will allow these systems to reach their full potential as sensor platforms. This dissertation specifically focuses on developing advanced control, path planning, search, and image processing techniques that allow small fixed wing aircraft to autonomously collect data. The problems explored were motivated by experience with the development and experimental flight testing of a fleet of small autonomous fixed wing aircraft. These issues, which have not been fully addressed in past work done on ground vehicles or autonomous helicopters, include the influence of wind and turning rate constraints, the non-negligible velocity of ground targets relative to the aircraft velocity, and limitations on sensor size and processing power on small vehicles. Several contributions for the autonomous operation of small fixed wing aircraft are presented. Several sliding surface controllers are designed which extend previous techniques to include variable sliding surface coefficients and the use of spatial vehicle dynamics. These advances eliminate potential singularities in the control laws to follow spatially defined paths and allow smooth transition between controllers. The optimal solution for the problem of path planning through an ordered set of points for an aircraft with a bounded turning rate in the presence of a constant wind is then discussed. Path planning strategies are also explored to guarantee that a searcher will travel within sensing distance of a mobile ground target. This work assumes only a maximum velocity of the target and is designed to succeed for any possible path of the target. Closed-loop approximations of both the path planning and search techniques, using the sliding surface controllers already discussed, are also studied. Finally, a novel method is presented to detect obstacles by segmenting an image into sky and non-sky regions. The feasibility of this method is demonstrated experimentally on an aircraft test bed.
Importance sampling studies of helium using the Feynman-Kac path integral method
NASA Astrophysics Data System (ADS)
Datta, S.; Rejcek, J. M.
2018-05-01
In the Feynman-Kac path integral approach the eigenvalues of a quantum system can be computed using Wiener measure which uses Brownian particle motion. In our previous work on such systems we have observed that the Wiener process numerically converges slowly for dimensions greater than two because almost all trajectories will escape to infinity. One can speed up this process by using a generalized Feynman-Kac (GFK) method, in which the new measure associated with the trial function is stationary, so that the convergence rate becomes much faster. We thus achieve an example of "importance sampling" and, in the present work, we apply it to the Feynman-Kac (FK) path integrals for the ground and first few excited-state energies for He to speed up the convergence rate. We calculate the path integrals using space averaging rather than the time averaging as done in the past. The best previous calculations from variational computations report precisions of 10-16 Hartrees, whereas in most cases our path integral results obtained for the ground and first excited states of He are lower than these results by about 10-6 Hartrees or more.
A Lagrangian View of Stratospheric Trace Gas Distributions
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.; Sparling, L.; Dessler, A.; Jackman, C. H.; Fleming, E. L.
1998-01-01
As a result of photochemistry, some relationship between the stratospheric age-of-air and the amount of tracer contained within an air sample is expected. The existence of such a relationship allows inferences about transport history to be made from observations of chemical tracers. This paper lays down the conceptual foundations for the relationship between age and tracer amount, developed within a Lagrangian framework. In general, the photochemical loss depends not only on the age of the parcel but also on its path. We show that under the "average path approximation" that the path variations are less important than parcel age. The average path approximation then allows us to develop a formal relationship between the age spectrum and the tracer spectrum. Using the relation between the tracer and age spectra, tracer-tracer correlations can be interpreted as resulting from mixing which connects parts of the single path photochemistry curve, which is formed purely from the action of photochemistry on an irreducible parcel. This geometric interpretation of mixing gives rise to constraints on trace gas correlations, and explains why some observations are do not fall on rapid mixing curves. This effect is seen in the ATMOS observations.
A game-theoretic approach to optimize ad hoc networks inspired by small-world network topology
NASA Astrophysics Data System (ADS)
Tan, Mian; Yang, Tinghong; Chen, Xing; Yang, Gang; Zhu, Guoqing; Holme, Petter; Zhao, Jing
2018-03-01
Nodes in ad hoc networks are connected in a self-organized manner. Limited communication radius makes information transmit in multi-hop mode, and each forwarding needs to consume the energy of nodes. Insufficient communication radius or exhaustion of energy may cause the absence of some relay nodes and links, further breaking network connectivity. On the other hand, nodes in the network may refuse to cooperate due to objective faulty or personal selfish, hindering regular communication in the network. This paper proposes a model called Repeated Game in Small World Networks (RGSWN). In this model, we first construct ad hoc networks with small-world feature by forming "communication shortcuts" between multiple-radio nodes. Small characteristic path length reduces average forwarding times in networks; meanwhile high clustering coefficient enhances network robustness. Such networks still maintain relative low global power consumption, which is beneficial to extend the network survival time. Then we use MTTFT strategy (Mend-Tolerance Tit-for-Tat) for repeated game as a rule for the interactions between neighbors in the small-world networks. Compared with other five strategies of repeated game, this strategy not only punishes the nodes' selfishness more reasonably, but also has the best tolerance to the network failure. This work is insightful for designing an efficient and robust ad hoc network.
Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements, and Crazing
Ge, Ting; Grest, Gary S.; Robbins, Mark O.
2014-09-26
Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time t. Changes in the tensile stress, mode of failure and interfacial fracture energy G I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small t welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable crazemore » is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy G I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, G I increases as t 1/2 before saturating at the average bulk fracture energy G b. As in previous studies of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, G I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and G I << G b.« less
Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.
Strangman, Gary E; Zhang, Quan; Li, Zhi
2014-01-15
Near-infrared neuromonitoring (NIN) is based on near-infrared spectroscopy (NIRS) measurements performed through the intact scalp and skull. Despite the important effects of overlying tissue layers on the measurement of brain hemodynamics, the influence of scalp and skull on NIN sensitivity are not well characterized. Using 3555 Monte Carlo simulations, we estimated the sensitivity of individual continuous-wave NIRS measurements to brain activity over the entire adult human head by introducing a small absorption perturbation to brain gray matter and quantifying the influence of scalp and skull thickness on this sensitivity. After segmenting the Colin27 template into five tissue types (scalp, skull, cerebrospinal fluid, gray matter and white matter), the average scalp thickness was 6.9 ± 3.6 mm (range: 3.6-11.2mm), while the average skull thickness was 6.0 ± 1.9 mm (range: 2.5-10.5mm). Mean NIN sensitivity - defined as the partial path length through gray matter divided by the total photon path length - ranged from 0.06 (i.e., 6% of total path length) at a 20mm source-detector separation, to over 0.19 at 50mm separations. NIN sensitivity varied substantially around the head, with occipital pole exhibiting the highest NIRS sensitivity to gray matter, whereas inferior frontal regions had the lowest sensitivity. Increased scalp and skull thickness were strongly associated with decreased sensitivity to brain tissue. Scalp thickness always exhibited a slightly larger effect on sensitivity than skull thickness, but the effect of both varied with SD separation. We quantitatively characterize sensitivity around the head as well as the effects of scalp and skull, which can be used to interpret NIN brain activation studies as well as guide the design, development and optimization of NIRS devices and sensors. Copyright © 2013 Elsevier Inc. All rights reserved.
Model-Averaged ℓ1 Regularization using Markov Chain Monte Carlo Model Composition
Fraley, Chris; Percival, Daniel
2014-01-01
Bayesian Model Averaging (BMA) is an effective technique for addressing model uncertainty in variable selection problems. However, current BMA approaches have computational difficulty dealing with data in which there are many more measurements (variables) than samples. This paper presents a method for combining ℓ1 regularization and Markov chain Monte Carlo model composition techniques for BMA. By treating the ℓ1 regularization path as a model space, we propose a method to resolve the model uncertainty issues arising in model averaging from solution path point selection. We show that this method is computationally and empirically effective for regression and classification in high-dimensional datasets. We apply our technique in simulations, as well as to some applications that arise in genomics. PMID:25642001
NASA Astrophysics Data System (ADS)
Kidmose, Jacob; Dahl, Mette; Engesgaard, Peter; Nilsson, Bertel; Christensen, Britt S. B.; Andersen, Stine; Hoffmann, Carl Christian
2010-05-01
SummaryA field-scale pulse-injection experiment with the herbicide Isoproturon was conducted in a Danish riparian wetland. A non-reactive tracer (bromide) experiment was also carried out to characterize the physical transport system. Groundwater flow and reactive transport modelling was used to simulate flow paths, residence times, as well as bromide and Isoproturon distributions. The wetland can be characterized by two distinct riparian flow paths; one flow path discharges 2/3 of the incoming groundwater directly to the free water surface of the wetland near the foot of the hillslope with an average residence time of 205 days, and another flow path diffusively discharging the remaining 1/3 of the incoming groundwater to the stream with an average residence time of 425 days. The reactive transport simulations reveal that Isoproturon is retarded by a factor of 2-4, which is explained by the high organic content in the peat layer of the wetland. Isoproturon was found to be aerobically degraded with a half-life in the order of 12-80 days. Based on the quantification of flow paths, residence times and half-lives it is estimated that about 2/3 of the injected Isoproturon is removed in the wetland. Thus, close to 1/3 may find its way to the stream through overland flow. It is also possible that high concentrations of metabolites will reach the stream.
DOAS (differential optical absorption spectroscopy) urban pollution measurements
NASA Astrophysics Data System (ADS)
Stevens, Robert K.; Vossler, T. L.
1991-05-01
During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. Over path 1 (1099 m) and path 2 (1824 m), ozone (03), sulfur dioxide (SO2) nitrogen dioxide (NO2), nitrous acid (HNO2) formaldehyde (HCHO), benzene, toluene, and o-xylene were measured. Nitric oxide (NO) and ammonia (NH3) were monitored over path 3 (143 m). The data quality and data capture depended on the compound being measured and the path over which it was measured. Data quality criteria for each compound were chosen such that the average relative standard deviation would be less than 25%. Data capture ranged from 43% for o-xylene for path 1 to 95% for ozone for path 2. Benzene, toluene, and o-xylene concentrations measured over path 2, which crossed over an interstate highway, were higher than concentrations measured over path 1, implicating emissions from vehicles on the highway as a significant source of these compounds. Federal Reference Method (FRN) instruments were located near the DOAS light receivers and measurements of 03, NO2, and NO were made concurrently with the DOAS. Correlation coefficients greater than 0.85 were obtained between the DOAS and FRM's; however, there was a difference between the mean values obtained by the two methods for 03 and NO. A gas chromatograph for measuring volatile organic compounds was operated next to the FRN's. Correlation coefficients of about 0.66 were obtained between the DOAS and GC measurements of benzene and o- xylene. However, the correlation coefficient between the DOAS and GC measurements of toluene averaged only 0.15 for the two DOAS measurement paths. The lack of correlation and other factors indicate the possibility of a localized source of toluene near the GC. In general, disagreements between the two measurement methods could be caused by atmospheric inhomogeneities or interferences in the DOAS and other methods.
Efficient packet transportation on complex networks with nonuniform node capacity distribution
NASA Astrophysics Data System (ADS)
He, Xuan; Niu, Kai; He, Zhiqiang; Lin, Jiaru; Jiang, Zhong-Yuan
2015-03-01
Provided that node delivery capacity may be not uniformly distributed in many realistic networks, we present a node delivery capacity distribution in which each node capacity is composed of uniform fraction and degree related proportion. Based on the node delivery capacity distribution, we construct a novel routing mechanism called efficient weighted routing (EWR) strategy to enhance network traffic capacity and transportation efficiency. Compared with the shortest path routing and the efficient routing strategies, the EWR achieves the highest traffic capacity. After investigating average path length, network diameter, maximum efficient betweenness, average efficient betweenness, average travel time and average traffic load under extensive simulations, it indicates that the EWR appears to be a very effective routing method. The idea of this routing mechanism gives us a good insight into network science research. The practical use of this work is prospective in some real complex systems such as the Internet.
Revealing Stellar Surface Structure Behind Transiting Exoplanets
NASA Astrophysics Data System (ADS)
Dravins, Dainis
2018-04-01
During exoplanet transits, successive stellar surface portions become hidden and differential spectroscopy between various transit phases provide spectra of small surface segments temporarily hidden behind the planet. Line profile changes across the stellar disk offer diagnostics for hydrodynamic modeling, while exoplanet analyses require stellar background spectra to be known along the transit path. Since even giant planets cover only a small fraction of any main-sequence star, very precise observations are required, as well as averaging over numerous spectral lines with similar parameters. Spatially resolved Fe I line profiles across stellar disks have now been retrieved for HD209458 (G0V) and HD189733A (K1V), using data from the UVES and HARPS spectrometers. Free from rotational broadening, spatially resolved profiles are narrower and deeper than in integrated starlight. During transit, the profiles shift towards longer wavelengths, illustrating both stellar rotation at the latitude of transit and the prograde orbital motion of the exoplanets. This method will soon become applicable to more stars, once additional bright exoplanet hosts have been found.
NASA Astrophysics Data System (ADS)
Alimi, Isiaka A.; Monteiro, Paulo P.; Teixeira, António L.
2017-11-01
The key paths toward the fifth generation (5G) network requirements are towards centralized processing and small-cell densification systems that are implemented on the cloud computing-based radio access networks (CC-RANs). The increasing recognitions of the CC-RANs can be attributed to their valuable features regarding system performance optimization and cost-effectiveness. Nevertheless, realization of the stringent requirements of the fronthaul that connects the network elements is highly demanding. In this paper, considering the small-cell network architectures, we present multiuser mixed radio-frequency/free-space optical (RF/FSO) relay networks as feasible technologies for the alleviation of the stringent requirements in the CC-RANs. In this study, we use the end-to-end (e2e) outage probability, average symbol error probability (ASEP), and ergodic channel capacity as the performance metrics in our analysis. Simulation results show the suitability of deployment of mixed RF/FSO schemes in the real-life scenarios.
The Small World of Psychopathology
Borsboom, Denny; Cramer, Angélique O. J.; Schmittmann, Verena D.; Epskamp, Sacha; Waldorp, Lourens J.
2011-01-01
Background Mental disorders are highly comorbid: people having one disorder are likely to have another as well. We explain empirical comorbidity patterns based on a network model of psychiatric symptoms, derived from an analysis of symptom overlap in the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV). Principal Findings We show that a) half of the symptoms in the DSM-IV network are connected, b) the architecture of these connections conforms to a small world structure, featuring a high degree of clustering but a short average path length, and c) distances between disorders in this structure predict empirical comorbidity rates. Network simulations of Major Depressive Episode and Generalized Anxiety Disorder show that the model faithfully reproduces empirical population statistics for these disorders. Conclusions In the network model, mental disorders are inherently complex. This explains the limited successes of genetic, neuroscientific, and etiological approaches to unravel their causes. We outline a psychosystems approach to investigate the structure and dynamics of mental disorders. PMID:22114671
Sparsely-synchronized brain rhythm in a small-world neural network
NASA Astrophysics Data System (ADS)
Kim, Sang-Yoon; Lim, Woochang
2013-07-01
Sparsely-synchronized cortical rhythms, associated with diverse cognitive functions, have been observed in electric recordings of brain activity. At the population level, cortical rhythms exhibit small-amplitude fast oscillations while at the cellular level, individual neurons show stochastic firings sparsely at a much lower rate than the population rate. We study the effect of network architecture on sparse synchronization in an inhibitory population of subthreshold Morris-Lecar neurons (which cannot fire spontaneously without noise). Previously, sparse synchronization was found to occur for cases of both global coupling ( i.e., regular all-to-all coupling) and random coupling. However, a real neural network is known to be non-regular and non-random. Here, we consider sparse Watts-Strogatz small-world networks which interpolate between a regular lattice and a random graph via rewiring. We start from a regular lattice with only short-range connections and then investigate the emergence of sparse synchronization by increasing the rewiring probability p for the short-range connections. For p = 0, the average synaptic path length between pairs of neurons becomes long; hence, only an unsynchronized population state exists because the global efficiency of information transfer is low. However, as p is increased, long-range connections begin to appear, and global effective communication between distant neurons may be available via shorter synaptic paths. Consequently, as p passes a threshold p th (}~ 0.044), sparsely-synchronized population rhythms emerge. However, with increasing p, longer axon wirings become expensive because of their material and energy costs. At an optimal value p* DE (}~ 0.24) of the rewiring probability, the ratio of the synchrony degree to the wiring cost is found to become maximal. In this way, an optimal sparse synchronization is found to occur at a minimal wiring cost in an economic small-world network through trade-off between synchrony and wiring cost.
Richmond, Amos; Cheng-Wu, Zhang; Zarmi, Yair
2003-07-01
The interrelationships between the optical path in flat plate reactors and photosynthetic productivity were elucidated. In preliminary works, a great surge in photosynthetic productivity was attained in flat plate photoreactors with an ultra short (e.g. 1.0 cm) optical path, in which extremely high culture density was facilitated by vigorous stirring and strong light. This surge in net photosynthetic efficiency was associated with a very significant increase in the optimal population density facilitated by the very short optical path (OP). A salient feature of these findings concerns the necessity to address growth inhibition (GI) which becomes increasingly manifested as cell concentration rises above a certain, species-specific, threshold (e.g. 1-2 billion cells of Nannochloropsis sp. ml(-1)). Indeed, ultrahigh cell density cultures may be established and sustained only if growth inhibition is continuously, or at least frequently, removed. Nannochloropsis culture from which GI was not removed, yielded 60 mg(-1) h(-1), yielding 260 mg l(-1) h(-1) when GI was removed. Two basic factors crucial for obtaining maximal photosynthetic productivity and efficiency in strong photon irradiance are defined: (1) areal cell density must be optimal, as high as possible (cell growth inhibition having been eliminated), insuring the average photon irradiance (I(av)) available per cell is falling at the end of the linear phase of the PI(av) curve, relating rate of photosynthesis to I(av), i.e. approximately photon irradiance per cell. (2) The light-dark (L-D) cycle period, which is determined by travel time of cells between the dark and the light volumes along the optical path, should be made as short as practically feasible, so as to approach, as much as possible the photosynthetic unit turnover time. This is obtainable in flat plate reactors by reducing the OP to as small a magnitude as is practically feasible.
Long-time Dynamics of Stochastic Wave Breaking
NASA Astrophysics Data System (ADS)
Restrepo, J. M.; Ramirez, J. M.; Deike, L.; Melville, K.
2017-12-01
A stochastic parametrization is proposed for the dynamics of wave breaking of progressive water waves. The model is shown to agree with transport estimates, derived from the Lagrangian path of fluid parcels. These trajectories are obtained numerically and are shown to agree well with theory in the non-breaking regime. Of special interest is the impact of wave breaking on transport, momentum exchanges and energy dissipation, as well as dispersion of trajectories. The proposed model, ensemble averaged to larger time scales, is compared to ensemble averages of the numerically generated parcel dynamics, and is then used to capture energy dissipation and path dispersion.
Aptitude, Achievement and Competence in Medicine: A Latent Variable Path Model
ERIC Educational Resources Information Center
Collin, V. Terri; Violato, Claudio; Hecker, Kent
2009-01-01
To develop and test a latent variable path model of general achievement, aptitude for medicine and competence in medicine employing data from the Medical College Admission Test (MCAT), pre-medical undergraduate grade point average (UGPA) and demographic characteristics for competence in pre-clinical and measures of competence (United States…
NASA Astrophysics Data System (ADS)
Buffin-Belanger, T. K.; Rice, S. P.; Reid, I.; Lancaster, J.
2009-12-01
Fluvial habitats can be described from a series of physical variables but to adequately address the habitat quality it becomes necessary to develop an understanding that combines the physical variables with the behaviour of the inhabitating organisms. The hypothesis of flow refugia provide a rational that can explain the persistence of macroinvertebrate communities in gravel-bed rivers when spates occur. The movement behaviour of macroinvertebrates is a key element to the flow refugia hypothesis, but little is known about how local near-bed turbulence and bed microtopography may affect macroinvertebrate movements. We reproduced natural gravel-bed substrates with contrasting gravel bed textures in a large flume where we were able to document the movement behaviour of the cased caddisfly Potamophylax latipennis for a specific discharge. The crawling paths and drift events of animals were analysed from video recordings. Characteristics of movements differ from one substrate to another. The crawling speed is higher for the small grain-size substrates but the mean travel distance remains approximately the same between substrates. For each substrate, the animals tended to follow consistent paths across the surface. The number of drift events and mean distance drifted is higher for the small grain-size substrate. ADV measurements close to the boundary allow detailed characterisation of near-bed hydraulic variables, including : skewness coefficients, TKE, UV correlation coefficients and integral time scales from autocorrelation analysis. For these variables, the vertical patterns of turbulence parameters are similar between the substrates but the amplitude of the average values and standard errors vary significantly. The spatial distribution of this variability is considered in relation to the crawling paths. It appears that the animals tend to crawl within areas of the substrate where low flow velocities and low turbulent kinetic energies are found, while sites that insects avoided were characterised by higher elevations, velocities and turbulence.
Channel Capacity Calculation at Large SNR and Small Dispersion within Path-Integral Approach
NASA Astrophysics Data System (ADS)
Reznichenko, A. V.; Terekhov, I. S.
2018-04-01
We consider the optical fiber channel modelled by the nonlinear Shrödinger equation with additive white Gaussian noise. Using Feynman path-integral approach for the model with small dispersion we find the first nonzero corrections to the conditional probability density function and the channel capacity estimations at large signal-to-noise ratio. We demonstrate that the correction to the channel capacity in small dimensionless dispersion parameter is quadratic and positive therefore increasing the earlier calculated capacity for a nondispersive nonlinear optical fiber channel in the intermediate power region. Also for small dispersion case we find the analytical expressions for simple correlators of the output signals in our noisy channel.
Measurements of Aperture Averaging on Bit-Error-Rate
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.;
2005-01-01
We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.
Measurements of aperture averaging on bit-error-rate
NASA Astrophysics Data System (ADS)
Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; Burdge, Geoffrey L.; Wayne, David; Pescatore, Robert
2005-08-01
We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 m. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.
Investigating scintillometer source areas
NASA Astrophysics Data System (ADS)
Perelet, A. O.; Ward, H. C.; Pardyjak, E.
2017-12-01
Scintillometry is an indirect ground-based method for measuring line-averaged surface heat and moisture fluxes on length scales of 0.5 - 10 km. These length scales are relevant to urban and other complex areas where setting up traditional instrumentation like eddy covariance is logistically difficult. In order to take full advantage of scintillometry, a better understanding of the flux source area is needed. The source area for a scintillometer is typically calculated as a convolution of point sources along the path. A weighting function is then applied along the path to compensate for a total signal contribution that is biased towards the center of the beam path, and decreasing near the beam ends. While this method of calculating the source area provides an estimate of the contribution of the total flux along the beam, there are still questions regarding the physical meaning of the weighted source area. These questions are addressed using data from an idealized experiment near the Salt Lake City International Airport in northern Utah, U.S.A. The site is a flat agricultural area consisting of two different land uses. This simple heterogeneity in the land use facilitates hypothesis testing related to source areas. Measurements were made with a two wavelength scintillometer system spanning 740 m along with three standard open-path infrared gas analyzer-based eddy-covariance stations along the beam path. This configuration allows for direct observations of fluxes along the beam and comparisons to the scintillometer average. The scintillometer system employed measures the refractive index structure parameter of air for two wavelengths of electromagnetic radiation, 880 μm and 1.86 cm to simultaneously estimate path-averaged heat and moisture fluxes, respectively. Meteorological structure parameters (CT2, Cq2, and CTq) as well as surface fluxes are compared for various amounts of source area overlap between eddy covariance and scintillometry. Additionally, surface properties from LANDSAT 7 & 8 are used to help understand source area composition for different times throughout the experiment.
Long Open Path Fourier Transform Spectroscopy Measurements of Greenhouse Gases in the Near Infrared
NASA Astrophysics Data System (ADS)
Griffith, D. W. T.
2015-12-01
Atmospheric composition measurements are an important tool to quantify local and regional emissions and sinks of greenhouse gases. Most in situ measurements are made at a point, but how representative are such measurements in an inhomogeneous environment? Open path Fourier Transform Spectroscopy (FTS) measurements potentially offer spatial averaging and continuous measurements of several trace gases (including CO2, CH4, CO and N2O) simultaneously in the same airmass. Spatial averaging over kilometre scales is a better fit to the finest scale atmospheric models becoming available, and helps bridge the gap between models and in situ measurements. In this paper we assess the precision, accuracy and reliability of long open path measurements by Fourier Transform Spectroscopy in the near infrared from a 5-month continuous record of measurements over a 1.5 km pathlength. Direct open-atmosphere measurements of trace gases CO2, CH4, CO and N2O as well as O2 were retrieved from several absorption bands between 4000 and 8000 cm-1 (2.5 - 1.25 micron). At one end of the path an in situ FTIR analyser simultaneously collected well calibrated measurements of the same species for comparison with the open path-integrated measurements. The measurements ran continuously from June - November 2014. We introduce the open path FTS measurement system and present an analysis of the results, including assessment of precision, accuracy relative to co-incident in situ measurements, reliability. Short term precision of the open path measurement of CO2 was better than 1 ppm for 5 minute averages and thus sufficient for studies in urban and other non-background environments. Measurement bias relative to calibrated in situ measurements was stable across the measurement period. The system operated reliably with data losses mainly due to weather events such as rain and fog preventing transmission of the IR beam. In principle the system can be improved to provide longer pathlengths and higher precision, and we present recent progress in improving the original measurements.
Tropical deforestation alters hummingbird movement patterns
Hadley, Adam S.; Betts, Matthew G.
2009-01-01
Reduced pollination success, as a function of habitat loss and fragmentation, appears to be a global phenomenon. Disruption of pollinator movement is one hypothesis put forward to explain this pattern in pollen limitation. However, the small size of pollinators makes them very difficult to track; thus, knowledge of their movements is largely speculative. Using tiny radio transmitters (0.25 g), we translocated a generalist tropical ‘trap-lining’ hummingbird, the green hermit (Phaethornis guy), across agricultural and forested landscapes to test the hypothesis that movement is influenced by patterns of deforestation. Although, we found no difference in homing times between landscape types, return paths were on average 459±144 m (±s.e.) more direct in forested than agricultural landscapes. In addition, movement paths in agricultural landscapes contained 36±4 per cent more forest than the most direct route. Our findings suggest that this species can circumvent agricultural matrix to move among forest patches. Nevertheless, it is clear that movement of even a highly mobile species is strongly influenced by landscape disturbance. Maintaining landscape connectivity with forest corridors may be important for enhancing movement, and thus in facilitating pollen transfer. PMID:19158031
Turbulence Model Effects on RANS Simulations of the HIFiRE Flight 2 Ground Test Configurations
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Mankbadi, Mina R.; Vyas, Manan A.
2014-01-01
The Wind-US Reynolds-averaged Navier-Stokes solver was applied to the Hypersonic International Flight Research Experimentation (HIFiRE) Flight 2 scramjet ground test configuration. Two test points corresponding to flight Mach numbers of 5.9 and 8.9 were examined. The emphasis was examining turbulence model effects on the prediction of flow path pressures. Three variants of the Menter k-omega turbulence model family were investigated. These include the baseline (BSL) and shear stress transport (SST) as well as a modified SST model where the shear stress limiter was altered. Variations in the turbulent Schmidt number were also considered. Choice of turbulence model had a substantial effect on prediction of the flow path pressures. The BSL model produced the highest pressures and the SST model produced the lowest pressures. As expected, the settings for the turbulent Schmidt number also had significant effects on predicted pressures. Small values for the turbulent Schmidt number enabled more rapid mass transfer, faster combustion, and in turn higher flowpath pressures. Optimal settings for turbulence model and turbulent Schmidt number were found to be rather case dependent, as has been concluded in other scramjet investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlickeiser, R.; Lazar, M.; Vukcevic, M., E-mail: rsch@tp4.rub.d, E-mail: mlazar@tp4.ruhr-uni-bochum.d, E-mail: vuk.mira@gmail.co
2010-08-20
The influence of the polarization state and the dissipation range spectral steepening of slab plasma waves on the scattering mean free path of single-charged cosmic-ray particles is investigated in a turbulence model, where the crucial scattering of cosmic-ray particles with small pitch-angle cosines is caused by resonant cyclotron interactions with slab plasma waves. Analytical expressions for the mean free path of protons, antiprotons, negatrons, and positrons are derived for the case of constant frequency-independent magnetic helicity values {sigma} and different values of the dissipation range spectral index k for characteristic interplanetary and interstellar plasma conditions. The positron mean free pathmore » is not affected by the dissipation range spectral index k as these particles can only cyclotron-resonate for rigidity values larger than R {sub 0} = m{sub p}c = 938 MV. Proton and antiproton mean free paths are only slightly affected by the dissipation range spectral index k at small rigidities R < R {sub 0}. The negatron mean free path is severely affected by the dissipation range spectral index k at rigidities smaller than R {sub 0}. At high rigidities R >> R {sub 0}, all particle species approach the same power-law dependence {proportional_to}R {sup 2-s} determined by the inertial range spectral index s = 5/3. The magnetic helicity value {sigma} affects the value of the mean free path. At all rigidities, the ratio of the antiproton to proton mean free paths equals the constant (1 + {sigma})/(1 - {sigma}), which also agrees with the ratio of the negatron to the proton and positron mean free paths at relativistic rigidities. At relativistic rigidities the positron and proton mean free paths agree, as do the negatron and antiproton mean free paths.« less
Turner, B L; Ali, A M
1996-12-10
Bangladesh is dominated by a small-holder agrarian economy under extreme stress. Production shortfalls, increasing economic polarization, and chronic malnutrition are persistent, but major famine has been diverted in part by significant growth in agriculture. This recent history is open to both Malthusian and Boserupian interpretations-a history we explore here through a test of the induced intensification thesis of agricultural change. This thesis, framed by variations in the behavior of small-holders, has grown from a simple demand-production relationship to a consideration of the mediating influences on that relationship. The induced intensification thesis is reviewed and tested for 265 households in 6 villages in Bangladesh from 1950-1986. A time-series analysis of an induced intensification model provides relatively high levels of explained variance in cropping intensity (frequency and land productivity) and also indicates the relative impacts of household class, environment, and cropping strategies. On average, the small-holders in question kept pace with the demands on production, although important class and village variations were evident and the proportion of landless households increased. These results, coupled with evidence that agricultural growth involved intensification thresholds, provide clues about Malthusian and Boserupian interpretations of Bangladesh, and suggest that small-holder agriculture there is likely to continue on a "muted" path of growth.
A Small World of Neuronal Synchrony
Yu, Shan; Huang, Debin; Singer, Wolf
2008-01-01
A small-world network has been suggested to be an efficient solution for achieving both modular and global processing—a property highly desirable for brain computations. Here, we investigated functional networks of cortical neurons using correlation analysis to identify functional connectivity. To reconstruct the interaction network, we applied the Ising model based on the principle of maximum entropy. This allowed us to assess the interactions by measuring pairwise correlations and to assess the strength of coupling from the degree of synchrony. Visual responses were recorded in visual cortex of anesthetized cats, simultaneously from up to 24 neurons. First, pairwise correlations captured most of the patterns in the population's activity and, therefore, provided a reliable basis for the reconstruction of the interaction networks. Second, and most importantly, the resulting networks had small-world properties; the average path lengths were as short as in simulated random networks, but the clustering coefficients were larger. Neurons differed considerably with respect to the number and strength of interactions, suggesting the existence of “hubs” in the network. Notably, there was no evidence for scale-free properties. These results suggest that cortical networks are optimized for the coexistence of local and global computations: feature detection and feature integration or binding. PMID:18400792
NASA Astrophysics Data System (ADS)
Cappon, Giacomo; Pedersen, Morten Gram
2016-05-01
Many multicellular systems consist of coupled cells that work as a syncytium. The pancreatic islet of Langerhans is a well-studied example of such a microorgan. The islets are responsible for secretion of glucose-regulating hormones, mainly glucagon and insulin, which are released in distinct pulses. In order to observe pulsatile insulin secretion from the β-cells within the islets, the cellular responses must be synchronized. It is now well established that gap junctions provide the electrical nearest-neighbor coupling that allows excitation waves to spread across islets to synchronize the β-cell population. Surprisingly, functional coupling analysis of calcium responses in β-cells shows small-world properties, i.e., a high degree of local coupling with a few long-range "short-cut" connections that reduce the average path-length greatly. Here, we investigate how such long-range functional coupling can appear as a result of heterogeneity, nearest-neighbor coupling, and wave propagation. Heterogeneity is also able to explain a set of experimentally observed synchronization and wave properties without introducing all-or-none cell coupling and percolation theory. Our theoretical results highlight how local biological coupling can give rise to functional small-world properties via heterogeneity and wave propagation.
Coevolution of Cooperation and Partner Rewiring Range in Spatial Social Networks
NASA Astrophysics Data System (ADS)
Khoo, Tommy; Fu, Feng; Pauls, Scott
2016-11-01
In recent years, there has been growing interest in the study of coevolutionary games on networks. Despite much progress, little attention has been paid to spatially embedded networks, where the underlying geographic distance, rather than the graph distance, is an important and relevant aspect of the partner rewiring process. It thus remains largely unclear how individual partner rewiring range preference, local vs. global, emerges and affects cooperation. Here we explicitly address this issue using a coevolutionary model of cooperation and partner rewiring range preference in spatially embedded social networks. In contrast to local rewiring, global rewiring has no distance restriction but incurs a one-time cost upon establishing any long range link. We find that under a wide range of model parameters, global partner switching preference can coevolve with cooperation. Moreover, the resulting partner network is highly degree-heterogeneous with small average shortest path length while maintaining high clustering, thereby possessing small-world properties. We also discover an optimum availability of reputation information for the emergence of global cooperators, who form distant partnerships at a cost to themselves. From the coevolutionary perspective, our work may help explain the ubiquity of small-world topologies arising alongside cooperation in the real world.
Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.
2012-01-01
We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".
Initial Observations of Lingual Movement Characteristics of Children With Cerebral Palsy
Arias, Carlos R.; Morita, Kristen; Richardson, Hannah
2017-01-01
Purpose This preliminary study compared the speech motor control of the tongue and jaw between children with cerebral palsy (CP) and their typically developing (TD) peers. Method Tongue tip and jaw movements of 4 boys with spastic CP and 4 age- and sex-matched TD peers were recorded using an electromagnetic articulograph during 10 repetitions of “Dad told stories today.” The duration, path distance, average speed, and speech movement stability of the movements were calculated for each repetition. Results The children with CP had longer durations than their TD peers. Children with CP had longer path distances and faster average speed as compared with their TD peers for both articulators. The TD group but not the CP group had longer path distances and faster average speeds for the tongue than the jaw. The CP group had reduced speech movement stability for the tongue as compared with their TD peers, but both groups had similar speech movement stability for the jaw. Conclusions Children with CP had impaired speech motor control of the tongue and jaw as compared with their TD peers, and these speech motor control deficits were more pronounced in the tongue tip than the jaw. PMID:28655047
NASA Astrophysics Data System (ADS)
Mebrahitom, A.; Rizuan, D.; Azmir, M.; Nassif, M.
2016-02-01
High speed milling is one of the recent technologies used to produce mould inserts due to the need for high surface finish. It is a faster machining process where it uses a small side step and a small down step combined with very high spindle speed and feed rate. In order to effectively use the HSM capabilities, optimizing the tool path strategies and machining parameters is an important issue. In this paper, six different tool path strategies have been investigated on the surface finish and machining time of a rectangular cavities of ESR Stavax material. CAD/CAM application of CATIA V5 machining module for pocket milling of the cavities was used for process planning.
Particle acceleration at shocks with surface ripples
NASA Technical Reports Server (NTRS)
Decker, R. B.
1990-01-01
The present treatment of superthermal-ion acceleration on the surface of a fast-mode hydromagnetic shock gives attention to (1) small-amplitude surface ripples characterized by width L and amplitude A that are large relative to the energetic-ion gyroradius, and (2) shocks which are on average quasi-perpendicular. An investigation is made of the effects of the confinement, evolving geometry, and finite shock curvature associated with the ripple, by integrating along the orbits of the proton test particles. As an upstream magnetic field line convects through the surface ripple, it intersects the shock at two points, thereby forming a temporary magnetic trap. Flux-line profiles and angular distributions in a given ripple differ substantially, depending on the path it takes through the ripple and its distance from the shock.
ELASTIC NET FOR COX'S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM.
Wu, Yichao
2012-01-01
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox's proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox's proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems.
AFMS Flight Path: Building Future Leaders
2009-02-12
small numbers of deactivated squadrons were reactivated. In general, the Flight Path maintains the four squadron framework of OMG with an additional...MC fill all but two. Vast differences in rank and promotion rates further bias the AFMS to a non-DOPMA corps led entity . The Flight Path has done...Aeromedical Squadron (AMDS) can combine into an Aeromedical Dental Squadron ( ADOS ) or can reside as flights under the Medical Operations Squadron
Arnold, Corey W; Wallace, W Dean; Chen, Shawn; Oh, Andrea; Abtin, Fereidoun; Genshaft, Scott; Binder, Scott; Aberle, Denise; Enzmann, Dieter
2016-01-01
The current paradigm of cancer diagnosis involves uncoordinated communication of findings from radiology and pathology to downstream physicians. Discordance between these findings can require additional time from downstream users to resolve, or given incorrect resolution, may adversely impact treatment decisions. To mitigate this problem, we developed a web-based system, called RadPath, for correlating and integrating radiology and pathology reporting. RadPath includes interfaces to our institution's clinical information systems, which are used to retrieve reports, images, and test results that are structured into an interactive compendium for a diagnostic patient case. The system includes an editing interface for physicians, allowing for the inclusion of additional clinical data, as well as the ability to retrospectively correlate and contextualize imaging findings following pathology diagnosis. During pilot deployment and testing over the course of 1 year, physicians at our institution have completed 60 RadPath cases, requiring an average of 128 seconds from a radiologist and an average of 93 seconds from a pathologist per case. Several technical and workflow challenges were encountered during development, including interfacing with diverse clinical information systems, automatically structuring report contents, and determining the appropriate physicians to create RadPath summaries. Reaction to RadPath has been positive, with users valuing the system's ability to consolidate diagnostic information. With the increasing complexity of medicine and the movement toward team-based disease management, there is a need for improved clinical communication and information exchange. RadPath provides a platform for generating coherent and correlated diagnostic summaries in cancer diagnosis with minimal additional effort from physicians. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Particulate matter exposure of bicycle path users in a high-altitude city
NASA Astrophysics Data System (ADS)
Fajardo, Oscar A.; Rojas, Nestor Y.
2012-01-01
It is necessary to evaluate cyclists' exposure to particulate matter and if they are at a higher risk due to their increased breathing rate and their exposure to freshly emitted pollutants. The aim of this pilot study was to determine cyclists' exposure to PM 10 in a highly-polluted, high-altitude city such as Bogotá, and comment on the appropriateness of building bicycle paths alongside roads with heavy traffic in third world cities. A total of 29 particulate matter (PM 10) measurements, taken at two sampling sites using Harvard impactors, were used for estimating the exposure of users of the 80th street bicycle path to this pollutant. PM 10 dose could be considered as being high, especially due to high concentrations and cyclists' increased inhalation rates. A random survey was conducted over 73 bicycle path users to determine cyclists' time, distance and speed on the bicycle path on a daily and weekly basis, their level of effort when cycling and general characteristics, such as this population's gender and age. Based on this information, the PM 10 average daily dose (ADD c) for different bicycle path users and the ratio between ADD c and a reference ADD for people at rest exposed to an indoor concentration of 25 μg m -3 were estimated. The average increase in ADD was 6%-9% when riding with light effort and by 12%-18% when riding with moderate effort. The most enthusiastic bicycle path users showed ADD c/ADD r ratios as high as 1.30 when riding with light effort and 1.64 when riding with moderate effort, thereby significantly increasing their PM 10 exposure-associated health risks.
The predictive power of local properties of financial networks
NASA Astrophysics Data System (ADS)
Caraiani, Petre
2017-01-01
The literature on analyzing the dynamics of financial networks has focused so far on the predictive power of global measures of networks like entropy or index cohesive force. In this paper, I show that the local network properties have similar predictive power. I focus on key network measures like average path length, average degree or cluster coefficient, and also consider the diameter and the s-metric. Using Granger causality tests, I show that some of these measures have statistically significant prediction power with respect to the dynamics of aggregate stock market. Average path length is most robust relative to the frequency of data used or specification (index or growth rate). Most measures are found to have predictive power only for monthly frequency. Further evidences that support this view are provided through a simple regression model.
A Three-Parameter Inversion of the Drop Size Distribution Using NASA/TRMM Microwave Link Data
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Lang, Roger H.; Meneghini, Robert
2003-01-01
Attenuation measurements at 25 and 38 GHz performed with the NASA/TRMM Microwave Link provide information about the drop size distribution (DSD) along the propagation path. Additional path-average measurements along the Link path, such as a third attenuation measurement or the rain rate from well-calibrated raingauges, can provide further DSD information. This paper explores an inversion procedure for determining simultaneously three parameters of a gamma DSD by using three measurements. Also, some preliminary results obtained using Link data are presented.
A simple distributed sediment delivery approach for rural catchments
NASA Astrophysics Data System (ADS)
Reid, Lucas; Scherer, Ulrike
2014-05-01
The transfer of sediments from source areas to surface waters is a complex process. In process based erosion models sediment input is thus quantified by representing all relevant sub processes such as detachment, transport and deposition of sediment particles along the flow path to the river. A successful application of these models requires, however, a large amount of spatially highly resolved data on physical catchment characteristics, which is only available for a few, well examined small catchments. For the lack of appropriate models, the empirical Universal Soil Loss Equation (USLE) is widely applied to quantify the sediment production in meso to large scale basins. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). In these models, the SDR is related to data on morphological characteristics of the catchment such as average local relief, drainage density, proportion of depressions or soil texture. Some approaches include the relative distance between sediment source areas and the river channels. However, several studies showed that spatially lumped parameters describing the morphological characteristics are only of limited value to represent the factors of influence on sediment transport at the catchment scale. Sediment delivery is controlled by the location of the sediment source areas in the catchment and the morphology along the flow path to the surface water bodies. This complex interaction of spatially varied physiographic characteristics cannot be adequately represented by lumped morphological parameters. The objective of this study is to develop a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in a catchment. We selected a small catchment located in in an intensively cultivated loess region in Southwest Germany as study area for the development of the SDR approach. The flow pathways were extracted in a geographic information system. Then the sediment delivery ratio for each source area was determined using an empirical approach considering the slope, morphology and land use properties along the flow path. As a benchmark for the calibration of the model parameters we used results of a detailed process based erosion model available for the study area. Afterwards the approach was tested in larger catchments located in the same loess region.
Robot path planning using a genetic algorithm
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu
1988-01-01
Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.
Li, Ming; Gao, Wenbo; Cvijetic, Milorad
2017-01-10
As a continuation of our previous work [Appl. Opt.54, 1453 (2015)APOPAI0003-693510.1364/AO.54.001453] in which we have studied the performance of coherent free space optical (FSO) communication systems operating over a horizontal path, in this paper we study the coherent FSO system operating over a general slant path. We evaluated system bit-error-rate (BER) in the case when the quadrature phase-shift keying (QPSK) modulation format is applied and when an adaptive optics (AO) system is employed to mitigate the air turbulence effects for both maritime and terrestrial air transmission scenarios. We adopted a multiple-layer scheme to efficiently model the FSO slant-path links. The atmospheric channel fading was characterized by the wavefront phase distortions and the log-amplitude fluctuations. We derived analytical expressions to characterize log-amplitude fluctuations of air turbulence by asserting the aperture averaging within the frame of the multiple-layer model. The obtained results showed that use of AO enabled improvement of system performance for both uplinks and downlinks, and also revealed that it is more beneficial for the FSO downlinks. Also, AO employment brought larger enhancements in BER performance for the maritime slant-path FSO links than for the terrestrial ones, with an additional striking increase in performance when the AO correction is combined with the aperture averaging.
Quantum correlation in degenerate optical parametric oscillators with mutual injections
NASA Astrophysics Data System (ADS)
Takata, Kenta; Marandi, Alireza; Yamamoto, Yoshihisa
2015-10-01
We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive P representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections is simulated, and its quantum state is investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes p ̂ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, estimated via Gaussian quantum discord, and the entanglement between the intracavity subharmonic fields. When the loss in the injection path is low, each oscillator around the phase transition point forms macroscopic superposition even under a small pump noise. It suggests that the squeezed field stored in the low-loss injection path weakens the decoherence in the oscillators.
Path integration: effect of curved path complexity and sensory system on blindfolded walking.
Koutakis, Panagiotis; Mukherjee, Mukul; Vallabhajosula, Srikant; Blanke, Daniel J; Stergiou, Nicholas
2013-02-01
Path integration refers to the ability to integrate continuous information of the direction and distance traveled by the system relative to the origin. Previous studies have investigated path integration through blindfolded walking along simple paths such as straight line and triangles. However, limited knowledge exists regarding the role of path complexity in path integration. Moreover, little is known about how information from different sensory input systems (like vision and proprioception) contributes to accurate path integration. The purpose of the current study was to investigate how sensory information and curved path complexity affect path integration. Forty blindfolded participants had to accurately reproduce a curved path and return to the origin. They were divided into four groups that differed in the curved path, circle (simple) or figure-eight (complex), and received either visual (previously seen) or proprioceptive (previously guided) information about the path before they reproduced it. The dependent variables used were average trajectory error, walking speed, and distance traveled. The results indicated that (a) both groups that walked on a circular path and both groups that received visual information produced greater accuracy in reproducing the path. Moreover, the performance of the group that received proprioceptive information and later walked on a figure-eight path was less accurate than their corresponding circular group. The groups that had the visual information also walked faster compared to the group that had proprioceptive information. Results of the current study highlight the roles of different sensory inputs while performing blindfolded walking for path integration. Copyright © 2012 Elsevier B.V. All rights reserved.
Guidance and Control for Tactical Guided Weapons with Emphasis on Simulation and Testing
1979-05-01
VELOCITY TARGET TRAJECTORY NA MORE DIRECT MISSILE PATH NOTE: IN THE DIRECT PATH. LINE OF SIGHT RATE IS POSITIVE BEFORE BURNOUT AND NEGATIVE...FOLLOWING BURNOUT FIGURE 3-1 PROPORTIONAL NAVIGATION GUIDANCE AND A MORE DIRECT APPROACH PATH In thi Studie small two, b Becaus the ga for ot...During the tests, the missile was suspended in low- frequency slings, and both launch and burnout flight conditions were tested. An active
Gaining Insight Into Femtosecond-scale CMOS Effects using FPGAs
2015-03-24
paths or detecting gross path delay faults , but for characterizing subtle aging effects, there is a need to isolate very short paths and detect very...data using COTS FPGAs and novel self-test. Hardware experiments using a 28 nm FPGA demonstrate isolation of small sets of transistors, detection of...hold the static configuration data specifying the LUT function. A set of inverters drive the SRAM contents into a pass-gate multiplexor tree; we
Long open-path instrument for simultaneously monitoring of methane, CO2 and water vapor
NASA Astrophysics Data System (ADS)
Simeonov, Valentin; Parlange, Marc
2013-04-01
A new, long open-path instrument for monitoring of path-averaged methane, CO2 and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver -distant retroreflector). A VCSEL with a central wavelength of 1654 nm is used as a light source. The receiver is built around a 20 cm Newtonian telescope. The design optical path length is 2000 m but can be further extended. To avoid distortions in the shape of the spectral lines caused by atmospheric turbulences they are scanned within 1 µs. The expected concentration resolution for the above mentioned path length is of the order of 2 ppb for methane, 100 ppb for CO2 and 100 ppm for water vapor. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane and CO2 concentrations in the Swiss Alps. The initial calibration validation tests at EPFL were completed in December 2012 and the instrument will be installed at the beginning of 2013 at the High Altitude Research Station Jungfraujoch (HARSJ). The HARSJ is located at 3580 m ASL and is one of the 24 global GAW stations. One of the goals of the project is to compare path-averaged to the ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Canadian arctic and Siberian wetlands. The instrument can be used for ground truthing of satellite observation as well.
Temporal variation of meandering intensity and domain-wide lateral oscillations of the Gulf Stream
NASA Technical Reports Server (NTRS)
Lee, Tong; Cornillon, Peter
1995-01-01
The path of the Gulf Stream exhibits two modes of variability: wavelike spatial meanders associated with instability processes and large-sale lateral shifts of the path presumably due to atmospheric forcing. The objectives of this study are to examine the temporal variation of the intensity of spatial meandering in the stream, to characterize large-scale lateral oscillations in the stream's path, and to study the correlation betwen these two dynamically distinct modes of variability. The data used for this analysis are path displacemets ofthe Gulf Stream between 75 deg and 60 deg W obtained from AVHRR-derived (Advanced Very High Resolution Radiometer) infrared images for the period April 1982 through December 1989. Meandering intensity, measured by the spatial root-mean-sqaure displacement of the stream path, displays a 9-month dominant periodicity which is persistent through the study period. The 9-month fluctuation in meandering intensity may be related to the interaction of Rosseby waves with the stream. Interannual variation of meandering intensity is also found to be significant, with meandering being mich more intense during 1985 than it was in 1987. Annual variation, however,is weak and not well-defined.The spatially averaged position of the stream, which reflects nonmeandering large-scale lateral oscillations of the stream path, is dominated by an annual cycle. On average, the mean position is farthest north in November and farthest south in April. The first empirical orthogonal function mode of the space-time path displacements represents lateral oscillatins that are in-phase over the space-time domain. Interannual oscillations are also observed and are found to be weaker than the annual oscillation. The eigenvalue of the first mode indicates that about 21.5% of the total space-time variability of the stream path can be attibuted to domain-wide lateral oscillation. The correlation between meandering intensity and domain-wide lateral oscillations is very weak.
Pheromone Static Routing Strategy for Complex Networks
NASA Astrophysics Data System (ADS)
Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui
2012-12-01
We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.
LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean
2011-04-21
It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.
Schubert, Christopher E.
1999-01-01
The Peconic Estuary, at the eastern end of Long Island, has been plagued by a recurrent algal bloom that has caused the severe decline of local marine resources. Although the onset, duration, and cessation of the bloom remain unpredictable, ground-water discharge has been shown to affect surface-water quality in the western part of the estuary. Results from a study on the North Fork of Long Island indicate that local hydrogeologic factors cause differences in ground-water age and characteristics of discharge to the estuary. The need for information on the local patterns and rates of ground-water discharge to the Peconic Estuary prompted analysis of ground-water flow paths and traveltime to three small embayments within the estuary.Meetinghouse Creek, near the west end of the North Fork; Sag Harbor Cove, in the central part of the South Fork; and West Neck Bay, on Shelter Island.Ground-water-flow models were developed, and particle-tracking procedures were applied to the results of each model, to define the flow paths and traveltime of ground water to the three embayments. The steady-state flow models represent the two-dimensional ground-water-flow system along a vertical section through the uplands of each embayment and simulate long-term hydrologic conditions. The particle-tracking procedure used model-generated ground-water levels and flow rates to calculate the water-particle pathlines and times-of-travel through each flow system from the point of entry (recharge) to the point of exit at streams, the shore, or subsea-discharge areas.Results for the Meetinghouse Creek study area indicate that about 50 percent of the total recharge that enters the system flows southward to Meetinghouse Creek; half of this amount discharges as base flow to the fresh-water reach of the creek, and half as shoreline underflow to the estuarine reach. About 85 percent of the total discharge to Meetinghouse Creek has flowed entirely within the upper glacial aquifer, and about 15 percent has flowed through the Magothy aquifer. The average age of all ground water discharged to Meetinghouse Creek is about 60 years; the average age of base flow to the freshwater reach of the creek is about 7 years, and the average age of shoreline underflow to the estuarine reach is about 120 years. The results for the Sag Harbor Cove study area indicate that about 30 percent of the total recharge that enters the system flows northward to Sag Harbor Cove; about half of this amount discharges as shoreline underflow, and half as subsea underflow. About 40 percent of the total discharge to Sag Harbor Cove has flowed entirely within the upper glacial aquifer, and about 60 percent has flowed through the Pleistocene marine clay unit, Pleistocene(?) sand unit, or Magothy aquifer. The average age of all ground water discharged to Sag Harbor Cove is about 110 years; the average age of shoreline underflow is about 25 years, and the average age of subsea underflow is about 190 years.Results for the West Neck Bay study area indicate that about 65 percent of the total recharge that enters the system flows westward to West Neck Bay; virtually all of this amount discharges as shoreline underflow, but a negligible percentage discharges as subsea underflow. Virtually all discharge to West Neck Bay has flowed entirely within the upper glacial aquifer, although a minor amount has flowed through the Pleistocene marine clay unit. The average age of shoreline underflow to West Neck Bay is about 15 years, and the average age of subsea underflow is about 1,800 years.Ground water that discharges to streams and the shores represented in the models is mostly relatively young water that has flowed entirely within the shallow zones of the flow systems, whereas ground water that discharges to the subsea-discharge areas is mostly old water that has flowed through the deep zones. Data obtained from these models allows evaluation of each embayment.s vulnerability to contaminants introduced at the water table and can guide the development of source-area-protection strategies for the corresponding watersheds.
Drawing Trees with Perfect Angular Resolution and Polynomial Area
2010-01-01
depends on the curvature of the two heavy edges incident to v. Our construction in this section uses the invariant that a heavy path P at level j is drawn...4.1 Drawing heavy paths Let P = (v1, . . . ,vk) be a heavy path at level j of the heavy-path decomposition that is rooted at the last node vk. We...If both angles equal π , then we can consider both regions small zones. For a node vi at level j of H(T ) we define the radius ri of Di as ri = 4h(T
Simulation of Tropical Pacific and Atlantic Oceans Using a HYbrid Coordinate Ocean Model
2005-01-01
with respect to cotemporal 1m temperature measured by buoys. The cli- matology was created by averaging into monthly means, then calculating...inconsistency could result in part from the different temporal averaging intervals of the two temperature climatologies. This question is further assessed in...observational temperature datasets (drifter and Path- finder) have different temporal averaging intervals. This question is further assessed in
Martinez, Suzanna M; Frongillo, Edward A; Leung, Cindy; Ritchie, Lorrene
2018-06-01
This study examined the relationships between food insecurity, mental health, and academic performance among college students in a California public university system ( N = 8705). Structural equation modeling was performed to examine a direct path from food insecurity to student grade point average and an indirect path through mental health, controlling for demographic characteristics. Food insecurity was related to lower student grade point average directly and indirectly through poor mental health. These findings support the need for future interventions and policy on the importance of providing students with the basic needs to succeed both academically and in the future.
Mizukami, Masato; Yamaguchi, Joji; Nemoto, Naru; Kawajiri, Yuko; Hirata, Hirooki; Uchiyama, Shingo; Makihara, Mitsuhiro; Sakata, Tomomi; Shimoyama, Nobuhiro; Oda, Kazuhiro
2011-07-20
A 128×128 three-dimensional MEMS optical switch module and a switching-control algorithm for high-speed connection and optical power stabilization are described. A prototype switch module enables the simultaneous switching of all optical paths. The insertion loss is less than 4.6 dB and is 2.3 dB on average. The switching time is less than 38 ms and is 8 ms on average. We confirmed that the maximum optical power can be obtained and optical power stabilization control is possible. The results confirm that the module is suitable for practical use in optical cross-connect systems. © 2011 Optical Society of America
Solar corona electron density distribution
NASA Astrophysics Data System (ADS)
Esposito, P. B.; Edenhofer, P.; Lueneburg, E.
1980-07-01
The paper discusses the three and one-half months of single-frequency time delay data which were acquired from the Helios 2 spacecraft around the time of its solar occultation. The excess time delay due to integrated effect of free electrons along the signal's ray path could be separated and modeled following the determination of the spacecraft trajectory. An average solar corona and equatorial electron density profile during solar minimum were deduced from the time delay measurements acquired within 5-60 solar radii of the sun. As a point of reference at 10 solar radii from the sun, an average electron density was 4500 el/cu cm. However, an asymmetry was found in the electron density as the ray path moved from the west to east solar limb. This may be related to the fact that during entry into occultation the heliographic latitude of the ray path was about 6 deg, while during exit it was 7 deg. The Helios density model is compared with similar models deduced from different experimental techniques.
Small Aircraft RF Interference Path Loss
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.
2007-01-01
Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.
Understanding and applying open-path optical sensing data
NASA Astrophysics Data System (ADS)
Virag, Peter; Kricks, Robert J.
1999-02-01
During the last 10 years, open-path air monitors have evolved to yield reliable and effective measurements of single and multiple compounds on a real-time basis. To many individuals within the optical remote sensing community, the attributes of open-path and its the potential uses seem unlimited. Then why has the market has been stagnant for the last few years? The reason may center on how open-path information is applied and how well the end user understands that information. We constantly try to compare open-path data to risk/health or safety levels that are based for use at a single point and for a specific averaging period often far longer than a typical open-path data point. Often this approach is perceived as putting a square peg in a round hole. This perception may be well founded, as open-path data at times may need to go through extensive data manipulation and assumptions before it can be applied. This paper will review pervious open-path monitoring programs and their success in applying the data collected. We will also look at how open-path data is being currently used, some previous pitfalls in data use, alternate methods of data interpretation, and how open-path data can be best practically applied to fit current needs.
"Stepping Stones": Career Paths to the SSAO for Men and Women at Four-Year Institutions
ERIC Educational Resources Information Center
Biddix, J. Patrick
2011-01-01
This study examined career paths to becoming the Senior Student Affairs Officer for men (n = 151) and women (n = 99) at 4-year institutions. Descriptive statistics and network analysis of resume data revealed that an average of 20 years and six job changes led to the position. Most started careers in residential life or student activities,…
Nonintrusive performance measurement of a gas turbine engine in real time
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculatedmore » from the gas density and the volumetric flow rate.« less
Oshchepkov, Sergey; Bril, Andrey; Yokota, Tatsuya; Yoshida, Yukio; Blumenstock, Thomas; Deutscher, Nicholas M; Dohe, Susanne; Macatangay, Ronald; Morino, Isamu; Notholt, Justus; Rettinger, Markus; Petri, Christof; Schneider, Matthias; Sussman, Ralf; Uchino, Osamu; Velazco, Voltaire; Wunch, Debra; Belikov, Dmitry
2013-02-20
This paper presents an improved photon path length probability density function method that permits simultaneous retrievals of column-average greenhouse gas mole fractions and light path modifications through the atmosphere when processing high-resolution radiance spectra acquired from space. We primarily describe the methodology and retrieval setup and then apply them to the processing of spectra measured by the Greenhouse gases Observing SATellite (GOSAT). We have demonstrated substantial improvements of the data processing with simultaneous carbon dioxide and light path retrievals and reasonable agreement of the satellite-based retrievals against ground-based Fourier transform spectrometer measurements provided by the Total Carbon Column Observing Network (TCCON).
Effect of small and large animal skull bone on photoacoustic signal
NASA Astrophysics Data System (ADS)
Xu, Qiuyun; Volinski, Bridget; Hariri, Ali; Fatima, Afreen; Nasiriavanaki, Mohammadreza
2017-03-01
Photoacoustic imaging (PAI) has proved to be a promising non-invasive technique for diagnosis, prognosis and treatment monitoring of neurological disorders in small and large animals. Skull bone effects both light illumination and ultrasound propagation. Hence, the PA signal is largely affected. This study aims to quantify and compare the attenuation of PA signal due to the skull obstacle in the light illumination path, in the ultrasound propagation path, or in both. The effect of mouse, rat, and mesocephalic dog skull bones, ex-vivo, is quantitatively studied.
A double medium model for diffusion in fluid-bearing rock
NASA Astrophysics Data System (ADS)
Wang, H. F.
1993-09-01
The concept of a double porosity medium to model fluid flow in fractured rock has been applied to model diffusion in rock containing a small amount of a continuous fluid phase that surrounds small volume elements of the solid matrix. The model quantifies the relative role of diffusion in the fluid and solid phases of the rock. The fluid is the fast diffusion path, but the solid contains the volumetrically significant amount of the diffusing species. The double medium model consists of two coupled differential equations. One equation is the diffusion equation for the fluid concentration; it contains a source term for change in the average concentration of the diffusing species in the solid matrix. The second equation represents the assumption that the change in average concentration in a solid element is proportional to the difference between the average concentration in the solid and the concentration in the fluid times the solid-fluid partition coefficient. The double medium model is shown to apply to laboratory data on iron diffusion in fluid-bearing dunite and to measured oxygen isotope ratios at marble-metagranite contacts. In both examples, concentration profiles are calculated for diffusion taking place at constant temperature, where a boundary value changes suddenly and is subsequently held constant. Knowledge of solid diffusivities can set a lower bound to the length of time over which diffusion occurs, but only the product of effective fluid diffusivity and time is constrained for times longer than the characteristic solid diffusion time. The double medium results approach a local, grain-scale equilibrium model for times that are large relative to the time constant for solid diffusion.
Structureborne noise investigations of a twin engine aircraft
NASA Technical Reports Server (NTRS)
Garrelick, J. M.; Cole, J. E., III; Martini, K.
1986-01-01
The interior noise of aircraft powered by advanced turbo-prop concepts is likely to have nonnegligible contributions from structureborne paths, these paths being those involving propeller loads transmitted to the structures of the lifting surfaces. As a means of examining these paths, structural measurements have been performed on a small twin-engine aircraft, and in addition analytical models of the structure have been developed. In this paper results from both portions of this study are presented.
Context Aware TCP for Intelligence, Surveillance and Reconnaissance Missions on Autonomous Platforms
2014-10-08
under the Unmanned Vehicle Experimental Communications Testbed (UVECT) flight test plan and were done over the Stockbridge Research Facility in the...sure the payload did not interfere with the command and control systems of the aircraft several flight paths were selected to exert the link and the...throughput from data source to destination. Figure 1 shows the flight path of a small RPA in a PoL flight path scenario. The change of SNR
Study of the De-Icing Properties of the ASDE-3 Rotodome.
1982-04-01
Heat Transfer Coefficients ........................... 3 -18 3.2.3 Prediction of De-Icing Capability ...... 3 -23 3.2.4 Calculation of Mean DIA & PATH...kVA 3 -31 N NUL =ti: :6 i ::p :: %:::::28 -R) [ eN 23,100t Averaged for Laminar & Turbulent Regimes. SAssuming a transition from Laminar to. Turbulent...Calculation of Mean Dia .& Path Length for Roof Mean Path Length for Roof: y 4r 4x 9 3.82 ft 3 x 7 1 2(92 3.8221/2 1 = 2(92 - 3.822 = 8.15 ft x 2 16.3 ft 16.3
Optical remote measurement of toxic gases
NASA Technical Reports Server (NTRS)
Grant, W. B.; Kagann, R. H.; McClenny, W. A.
1992-01-01
Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.
A Quantitative Evaluation of SCEC Community Velocity Model Version 3.0
NASA Astrophysics Data System (ADS)
Chen, P.; Zhao, L.; Jordan, T. H.
2003-12-01
We present a systematic methodology for evaluating and improving 3D seismic velocity models using broadband waveform data from regional earthquakes. The operator that maps a synthetic waveform into an observed waveform is expressed in the Rytov form D(ω ) = {exp}[{i} ω δ τ {p}(ω ) - ω δ τ {q}(ω )]. We measure the phase delay time δ τ p(ω ) and the amplitude reduction time δ τ q(ω ) as a function of frequency ω using Gee & Jordan's [1992] isolation-filter technique, and we correct the data for frequency-dependent interference and frequency-independent source statics. We have applied this procedure to a set of small events in Southern California. Synthetic seismograms were computed using three types of velocity models: the 1D Standard Southern California Crustal Model (SoCaL) [Dreger & Helmberger, 1993], the 3D SCEC Community Velocity Model, Version 3.0 (CVM3.0) [Magistrale et al., 2000], and a set of path-averaged 1D models (A1D) extracted from CVM3.0 by horizontally averaging wave slownesses along source-receiver paths. The 3D synthetics were computed using K. Olsen's finite difference code. More than 1000 measurements were made on both P and S waveforms at frequencies ranging from 0.2 to 1 Hz. Overall, the 3D model provided a substantially better fit to the waveform data than either laterally homogeneous or path-dependent 1D models. Relative to SoCaL, CVM3.0 provided a variance reduction of about 64% in δ τ p, and 41% in δ τ q. Relative to A1D, the variance reduction is about 46% and 20%, respectively. The same set of measurements can be employed to invert for both seismic source properties and seismic velocity structures. Fully numerical methods are being developed to compute the Fréchet kernels for these measurements [L. Zhao et. al., this meeting]. This methodology thus provides a unified framework for regional studies of seismic sources and Earth structure in Southern California and elsewhere.
Land-mobile satellite excess path loss measurements
NASA Astrophysics Data System (ADS)
Hess, G. C.
1980-05-01
An experiment conducted with the ATS-6 satellite to determine the additional path loss over free-space loss experienced by land-mobile communication links is described. This excess path loss is measured as a function of 1) local environment, 2) vehicle heading, 3) link frequency, 4) satellite elevation angle, and 5) street side. A statistical description of excess loss developed from the data shows that the first two parameters dominate. Excess path loss on the order of 25 dB is typical in urban situations, but decreases to under 10 dB in suburban/rural areas. Spaced antenna selection diversity is found to provide only a slight decrease (4 dB, typically) in the urban excess path loss observed. Level crossing rates are depressed in satellite links relative to those of Rayleigh-faded terrestrial links, but increases in average fade durations tend to offset that advantage. The measurements show that the excess path loss difference between 860-MHz links and 1550-MHz links is generally negligible.
ELASTIC NET FOR COX’S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM
Wu, Yichao
2012-01-01
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox’s proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox’s proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems. PMID:23226932
NASA Technical Reports Server (NTRS)
Rowe, Neil C.; Lewis, David H.
1989-01-01
Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.
Demers, Jason D.; Blum, Joel D.; Brooks, Scott C.; ...
2018-03-01
In this paper, natural abundance stable Hg isotope measurements were used to place new constraints on sources, transport, and transformations of Hg along the flow path of East Fork Poplar Creek (EFPC), a point-source contaminated headwater stream in Oak Ridge, Tennessee. Particulate-bound Hg in the water column of EFPC within the Y-12 National Security Complex, was isotopically similar to average metallic Hg(0) used in industry, having a mean δ 202Hg value of -0.42 ± 0.09‰ (1SD) and near-zero Δ 199Hg. On average, particulate fraction δ 202Hg values increased downstream by 0.53‰, while Δ 199Hg decreased by -0.10‰, converging with themore » Hg isotopic composition of the fine fraction of streambed sediment along the 26 km flow path. The dissolved fraction behaved differently. Although initial Δ 199Hg values of the dissolved fraction were also near-zero, these values increased transiently along the flow path. Initial δ 202Hg values of the dissolved fraction were more variable than in the particulate fraction, ranging from -0.44 to 0.18‰ among three seasonal sampling campaigns, but converged to an average δ 202Hg value of 0.01 ± 0.10‰ (1SD) downstream. Dissolved Hg in the hyporheic and riparian pore water had higher and lower δ 202Hg values, respectively, compared to dissolved Hg in stream water. Finally, variations in Hg isotopic composition of the dissolved and suspended fractions along the flow path suggest that: (1) physical processes such as dilution and sedimentation do not fully explain decreases in total mercury concentrations along the flow path; (2) in-stream processes include photochemical reduction, but microbial reduction is likely more dominant; and (3) additional sources of dissolved mercury inputs to EFPC at baseflow during this study predominantly arise from the hyporheic zone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demers, Jason D.; Blum, Joel D.; Brooks, Scott C.
In this paper, natural abundance stable Hg isotope measurements were used to place new constraints on sources, transport, and transformations of Hg along the flow path of East Fork Poplar Creek (EFPC), a point-source contaminated headwater stream in Oak Ridge, Tennessee. Particulate-bound Hg in the water column of EFPC within the Y-12 National Security Complex, was isotopically similar to average metallic Hg(0) used in industry, having a mean δ 202Hg value of -0.42 ± 0.09‰ (1SD) and near-zero Δ 199Hg. On average, particulate fraction δ 202Hg values increased downstream by 0.53‰, while Δ 199Hg decreased by -0.10‰, converging with themore » Hg isotopic composition of the fine fraction of streambed sediment along the 26 km flow path. The dissolved fraction behaved differently. Although initial Δ 199Hg values of the dissolved fraction were also near-zero, these values increased transiently along the flow path. Initial δ 202Hg values of the dissolved fraction were more variable than in the particulate fraction, ranging from -0.44 to 0.18‰ among three seasonal sampling campaigns, but converged to an average δ 202Hg value of 0.01 ± 0.10‰ (1SD) downstream. Dissolved Hg in the hyporheic and riparian pore water had higher and lower δ 202Hg values, respectively, compared to dissolved Hg in stream water. Finally, variations in Hg isotopic composition of the dissolved and suspended fractions along the flow path suggest that: (1) physical processes such as dilution and sedimentation do not fully explain decreases in total mercury concentrations along the flow path; (2) in-stream processes include photochemical reduction, but microbial reduction is likely more dominant; and (3) additional sources of dissolved mercury inputs to EFPC at baseflow during this study predominantly arise from the hyporheic zone.« less
Li, Wenjin
2018-02-28
Transition path ensemble consists of reactive trajectories and possesses all the information necessary for the understanding of the mechanism and dynamics of important condensed phase processes. However, quantitative description of the properties of the transition path ensemble is far from being established. Here, with numerical calculations on a model system, the equipartition terms defined in thermal equilibrium were for the first time estimated in the transition path ensemble. It was not surprising to observe that the energy was not equally distributed among all the coordinates. However, the energies distributed on a pair of conjugated coordinates remained equal. Higher energies were observed to be distributed on several coordinates, which are highly coupled to the reaction coordinate, while the rest were almost equally distributed. In addition, the ensemble-averaged energy on each coordinate as a function of time was also quantified. These quantitative analyses on energy distributions provided new insights into the transition path ensemble.
Horton, J.A.
1994-05-03
Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.
NASA Astrophysics Data System (ADS)
Xie, J.
2003-12-01
Pn waves from three near-colocated seismic events in the eastern Tarim Basin are well-recorded by the INDEPTH III and II arrays, which are deployed from northern to southern Tibet with a small east-west spread (between ˜88 and 91° E). The paths run southward and sample the Tibetan mantle with epicentral distances increasing from 870 to 1540 km. These waves have spectral contents that are distinctly different from those collected from the Kyrghistan network (KNET), to which the paths traverse westward through the eastern Tienshan. Pn Q beneath Tibet and Tienshan must therefore be different. Xie and Patton (1999,JGR, 104, 941-954) have simultaneously estimated source spectra of the co-located events, and path-averaged Pn Q to the KNET stations. Under a simplified geometrical spreading of Δ -1.3, they have estimated Q0 and η (Pn Q at 1 Hz and its frequency dependence) to KNET to be about 360 and 0.5, respectively. Using those estimates as a priori knowledge, we estimate that Q0 and η are ~180 and 0.3 along paths to northern Tibet, and ˜260 and 0.0 along paths to southern Tibet. The southward increase of Q0 correlates well with a similar increase in Pn velocity contained in previous tomographic images. Additionally, we measured Pn Q using a two-station method along two profiles (from station SANG to TUNL, and GANZ to MAQI) deployed during the 1991-1992 Sino-US Tibetan Plateau experiment. Both profiles are located to the east of 92° E. Along profile SANG-TUNL, we estimate Q0 and η to be ˜270 and 0.0, respectively. The Q0 value is rather high, but correlates well with the high Pn velocities of > 8.1 km/s re-measured in this study. Our results suggest that the zone of low Pn Q0 and velocity in northern Tibet, which is likely caused by high mantle temperature and partial melting, is confined to the west of 92° E. This is so despite that the zone of high Sn attenuation extends to further east.
A dynamic network model for interbank market
NASA Astrophysics Data System (ADS)
Xu, Tao; He, Jianmin; Li, Shouwei
2016-12-01
In this paper, a dynamic network model based on agent behavior is introduced to explain the formation mechanism of interbank market network. We investigate the impact of credit lending preference on interbank market network topology, the evolution of interbank market network and stability of interbank market. Experimental results demonstrate that interbank market network is a small-world network and cumulative degree follows the power-law distribution. We find that the interbank network structure keeps dynamic stability in the network evolution process. With the increase of bank credit lending preference, network clustering coefficient increases and average shortest path length decreases monotonously, which improves the stability of the network structure. External shocks are main threats for the interbank market and the reduction of bank external investment yield rate and deposits fluctuations contribute to improve the resilience of the banking system.
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; Soenario, Ivan; Vaartjes, Ilonca; Strak, Maciek; Hoek, Gerard; Brunekreef, Bert; Dijst, Martin; Karssenberg, Derek
2016-04-01
Air pollution is one of the major concerns for human health. Associations between air pollution and health are often calculated using long-term (i.e. years to decades) information on personal exposure for each individual in a cohort. Personal exposure is the air pollution aggregated along the space-time path visited by an individual. As air pollution may vary considerably in space and time, for instance due to motorised traffic, the estimation of the spatio-temporal location of a persons' space-time path is important to identify the personal exposure. However, long term exposure is mostly calculated using the air pollution concentration at the x, y location of someone's home which does not consider that individuals are mobile (commuting, recreation, relocation). This assumption is often made as it is a major challenge to estimate space-time paths for all individuals in large cohorts, mostly because limited information on mobility of individuals is available. We address this issue by evaluating multiple approaches for the calculation of space-time paths, thereby estimating the personal exposure along these space-time paths with hyper resolution air pollution maps at national scale. This allows us to evaluate the effect of the space-time path and resulting personal exposure. Air pollution (e.g. NO2, PM10) was mapped for the entire Netherlands at a resolution of 5×5 m2 using the land use regression models developed in the European Study of Cohorts for Air Pollution Effects (ESCAPE, http://escapeproject.eu/) and the open source software PCRaster (http://www.pcraster.eu). The models use predictor variables like population density, land use, and traffic related data sets, and are able to model spatial variation and within-city variability of annual average concentration values. We approximated space-time paths for all individuals in a cohort using various aggregations, including those representing space-time paths as the outline of a persons' home or associated parcel of land, the 4 digit postal code area or neighbourhood of a persons' home, circular areas around the home, and spatial probability distributions of space-time paths during commuting. Personal exposure was estimated by averaging concentrations over these space-time paths, for each individual in a cohort. Preliminary results show considerable differences of a persons' exposure using these various approaches of space-time path aggregation, presumably because air pollution shows large variation over short distances.
3D Orbit Visualization for Earth-Observing Missions
NASA Technical Reports Server (NTRS)
Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.
2011-01-01
This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.
MacNeilage, Paul R.; Turner, Amanda H.
2010-01-01
Gravitational signals arising from the otolith organs and vertical plane rotational signals arising from the semicircular canals interact extensively for accurate estimation of tilt and inertial acceleration. Here we used a classical signal detection paradigm to examine perceptual interactions between otolith and horizontal semicircular canal signals during simultaneous rotation and translation on a curved path. In a rotation detection experiment, blindfolded subjects were asked to detect the presence of angular motion in blocks where half of the trials were pure nasooccipital translation and half were simultaneous translation and yaw rotation (curved-path motion). In separate, translation detection experiments, subjects were also asked to detect either the presence or the absence of nasooccipital linear motion in blocks, in which half of the trials were pure yaw rotation and half were curved path. Rotation thresholds increased slightly, but not significantly, with concurrent linear velocity magnitude. Yaw rotation detection threshold, averaged across all conditions, was 1.45 ± 0.81°/s (3.49 ± 1.95°/s2). Translation thresholds, on the other hand, increased significantly with increasing magnitude of concurrent angular velocity. Absolute nasooccipital translation detection threshold, averaged across all conditions, was 2.93 ± 2.10 cm/s (7.07 ± 5.05 cm/s2). These findings suggest that conscious perception might not have independent access to separate estimates of linear and angular movement parameters during curved-path motion. Estimates of linear (and perhaps angular) components might instead rely on integrated information from canals and otoliths. Such interaction may underlie previously reported perceptual errors during curved-path motion and may originate from mechanisms that are specialized for tilt-translation processing during vertical plane rotation. PMID:20554843
Line-of-Sight Data Link Test Set
1976-06-01
spheric layer model for layer refraction or a surface reflectivity model for ground reflection paths. Measurement of the channel impulse response...the model is exercised over a path consisting of only a constant direct component. The test would consist of measuring the modem demodulator bit...direct and a fading direct component. The test typically would consist of measuring the bit error-rate over a range of average signal-to-noise
ERIC Educational Resources Information Center
Whittock, Tammy
2013-01-01
Through this mixed-method study, the researcher investigated social reproduction in a student's decision to follow the Louisiana Career/Basic Core Diploma Path. In 2008-2009, Louisiana's cohort graduation rate was 67.3%, which was well below the national average of 75.5%, ranking Louisiana forty-sixth in the country. This rate led to the…
Network Design for Reliability and Resilience to Attack
2014-03-01
attacker can destroy n arcs in the network SPNI Shortest-Path Network-Interdiction problem TSP Traveling Salesman Problem UB upper bound UKR Ukraine...elimination from the traveling salesman problem (TSP). Literature calls a walk that does not contain a cycle a path [19]. The objective function in...arc lengths as random variables with known probability distributions. The m-median problem seeks to design a network with minimum average travel cost
Langen, Carolyn D; White, Tonya; Ikram, M Arfan; Vernooij, Meike W; Niessen, Wiro J
2015-01-01
Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uni- and bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of significantly different connections comparing multiple metrics are presented. On the global level, "bi-modal comparison plots" show the distribution of uni- and bi-modal group differences and the relationship between structure and function. Differences between brain lobes are visualized using "worm plots". Group differences in connections are examined with an existing visualization, the "connectogram". These visualizations were evaluated in two proof-of-concept studies: (1) middle-aged versus elderly subjects; and (2) patients with schizophrenia versus controls. Each included two measures derived from diffusion weighted images and two from functional magnetic resonance images. The structural measures were minimum cost path between two anatomical regions according to the "Statistical Analysis of Minimum cost path based Structural Connectivity" method and the average fractional anisotropy along the fiber. The functional measures were Pearson's correlation and partial correlation of mean regional time series. The relationship between structure and function was similar in both studies. Uni-modal group differences varied greatly between connectivity types. Group differences were identified in both studies globally, within brain lobes and between regions. In the aging study, minimum cost path was highly effective in identifying group differences on all levels; fractional anisotropy and mean correlation showed smaller differences on the brain lobe and regional levels. In the schizophrenia study, minimum cost path and fractional anisotropy showed differences on the global level and within brain lobes; mean correlation showed small differences on the lobe level. Only fractional anisotropy and mean correlation showed regional differences. The presented visualizations were helpful in comparing and evaluating connectivity measures on multiple levels in both studies.
Channel movement of meandering Indiana streams
Daniel, James F.
1971-01-01
Because of the consistency of yearly above-average discharge volumes, it was possible to develop a general relation between path-length increase per thousand cubic-feet-per-second-days per square mile of drainage area above average discharge and the width-depth ratio of the channel. Little progress was made toward defining relationships for rotation and translation.
A simple method for estimating frequency response corrections for eddy covariance systems
W. J. Massman
2000-01-01
A simple analytical formula is developed for estimating the frequency attenuation of eddy covariance fluxes due to sensor response, path-length averaging, sensor separation, signal processing, and flux averaging periods. Although it is an approximation based on flat terrain cospectra, this analytical formula should have broader applicability than just flat-terrain...
Small Aircraft RF Interference Path Loss Measurements
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.
2007-01-01
Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.
NASA Astrophysics Data System (ADS)
Takatsuka, Kazuo; Seko, Chihiro
1996-12-01
The validity of the physical premise of the Rice-Ramsperger-Kassel-Marcus (RRKM) theory is investigated in terms of the classical dynamics of isomerization reaction in Ar7-like molecules (clusters). The passage times of classical trajectories through the potential basins of isomers in the structural transitions are examined. In the high energy region corresponding to the so-called liquidlike phase, remarkable uniformity of the average passage times has been found. That is, the average passage time is characterized only by a basin through which a trajectory is currently passing and, hence, does not depend on the next visiting basins. This behavior is out of accord with the ordinary chemical law in that the ``reaction rates'' do not seem to depend on the height of the individual potential barriers. We ascribe this seemingly strange uniformity to the strong mixing (chaos) lying behind the rate process. That is, as soon as a classical path enters a basin, it gets involved into a chaotic zone in which many paths having different channels are entangled among each other, and effectively (in the statistical sense) loses its memory about which basin it came from and where it should visit next time. This model is verified by confirming that the populations of the lifetime of transition from one basin to others are expressed in exponential functions, which should have very similar exponents to each other in each passing-through basin. The inverse of the exponent is essentially proportional to the average passage time, and consequently brings about the uniformity. These populations set a foundation for the multichannel generalization of the RRKM theory. Two cases of the non-RRKM behaviors have been studied. One is a nonstatistical behavior in the low energy region such as the so-called coexistence phase. The other is the short-time behavior. It is well established [M. Berblinger and C. Schlier, J. Chem. Phys. 101, 4750 (1994)] that in a relatively simple and small system such as H+3, the so-called direct paths, which lead to dissociation before the phase-space mixing is completed, increase the probability of short-time passage. In contrast, we have found in our Ar7-like molecules that trajectories of short passage time are fewer than expected by the statistical theory. It is conceived that somewhat a long time in the initial stage of the isomerization is spent by a trajectory to find its ways out to the next basins.
Motion on Cycloid Paths: A Project
ERIC Educational Resources Information Center
Gluck, P.
2010-01-01
This article reports a high school laboratory project whose theme is the motion of a small ball on cycloidal tracks. Models were built both of a brachistochrone and of a Huygens pendulum clock whose bob is constrained to move on a cycloidal path. Photogates and a data acquisition system were employed in order to investigate experimentally the…
For Teachers, a Better Kind of Pension Plan
ERIC Educational Resources Information Center
Winters, Marcus A.
2017-01-01
Public school teachers deserve a compensation system that puts them on a secure path toward retirement. The severely backloaded structure of today's public school teacher pension systems benefit only a small proportion of entering teachers while putting the rest on an insecure retirement path. But there is a cost-neutral solution to this problem…
Leak localization and quantification with a small unmanned aerial system
NASA Astrophysics Data System (ADS)
Golston, L.; Zondlo, M. A.; Frish, M. B.; Aubut, N. F.; Yang, S.; Talbot, R. W.
2017-12-01
Methane emissions from oil and gas facilities are a recognized source of greenhouse gas emissions, requiring cost-effective and reliable monitoring systems to support leak detection and repair programs. We describe a set of methods for locating and quantifying natural gas leaks using a small unmanned aerial system (sUAS) equipped with a path-integrated methane sensor along with ground-based wind measurements. The algorithms are developed as part of a system for continuous well pad scale (100 m2 area) monitoring, supported by a series of over 200 methane release trials covering multiple release locations and flow rates. Test measurements include data obtained on a rotating boom platform as well as flight tests on a sUAS. The system is found throughout the trials to reliably distinguish between cases with and without a methane release down to 6 scfh (0.032 g/s). Among several methods evaluated for horizontal localization, the location corresponding to the maximum integrated methane reading have performed best with a median error of ± 1 m if two or more flights are averaged, or ± 1.2 m for individual flights. Additionally, a method of rotating the data around the estimated leak location is developed, with the leak magnitude calculated as the average crosswind integrated flux in the region near the source location. Validation of these methods will be presented, including blind test results. Sources of error, including GPS uncertainty, meteorological variables, and flight pattern coverage, will be discussed.
NASA Astrophysics Data System (ADS)
Wolosoff, S. E.; Duncan, J.; Endreny, T.
2001-05-01
The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.
Path perception during rotation: influence of instructions, depth range, and dot density
NASA Technical Reports Server (NTRS)
Li, Li; Warren, William H Jr
2004-01-01
How do observers perceive their direction of self-motion when traveling on a straight path while their eyes are rotating? Our previous findings suggest that information from retinal flow and extra-retinal information about eye movements are each sufficient to solve this problem for both perception and active control of self-motion [Vision Res. 40 (2000) 3873; Psych. Sci. 13 (2002) 485]. In this paper, using displays depicting translation with simulated eye rotation, we investigated how task variables such as instructions, depth range, and dot density influenced the visual system's reliance on retinal vs. extra-retinal information for path perception during rotation. We found that path errors were small when observers expected to travel on a straight path or with neutral instructions, but errors increased markedly when observers expected to travel on a curved path. Increasing depth range or dot density did not improve path judgments. We conclude that the expectation of the shape of an upcoming path can influence the interpretation of the ambiguous retinal flow. A large depth range and dense motion parallax are not essential for accurate path perception during rotation, but reference objects and a large field of view appear to improve path judgments.
Bressloff, Paul C
2015-01-01
We consider applications of path-integral methods to the analysis of a stochastic hybrid model representing a network of synaptically coupled spiking neuronal populations. The state of each local population is described in terms of two stochastic variables, a continuous synaptic variable and a discrete activity variable. The synaptic variables evolve according to piecewise-deterministic dynamics describing, at the population level, synapses driven by spiking activity. The dynamical equations for the synaptic currents are only valid between jumps in spiking activity, and the latter are described by a jump Markov process whose transition rates depend on the synaptic variables. We assume a separation of time scales between fast spiking dynamics with time constant [Formula: see text] and slower synaptic dynamics with time constant τ. This naturally introduces a small positive parameter [Formula: see text], which can be used to develop various asymptotic expansions of the corresponding path-integral representation of the stochastic dynamics. First, we derive a variational principle for maximum-likelihood paths of escape from a metastable state (large deviations in the small noise limit [Formula: see text]). We then show how the path integral provides an efficient method for obtaining a diffusion approximation of the hybrid system for small ϵ. The resulting Langevin equation can be used to analyze the effects of fluctuations within the basin of attraction of a metastable state, that is, ignoring the effects of large deviations. We illustrate this by using the Langevin approximation to analyze the effects of intrinsic noise on pattern formation in a spatially structured hybrid network. In particular, we show how noise enlarges the parameter regime over which patterns occur, in an analogous fashion to PDEs. Finally, we carry out a [Formula: see text]-loop expansion of the path integral, and use this to derive corrections to voltage-based mean-field equations, analogous to the modified activity-based equations generated from a neural master equation.
Graph theoretical model of a sensorimotor connectome in zebrafish.
Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan
2012-01-01
Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.
Avoiding Braess' Paradox Through Collective Intelligence
NASA Technical Reports Server (NTRS)
Wolpert , David H.; Tumer, Kagan
1999-01-01
In an Ideal Shortest Path Algorithm (ISPA), at each moment each router in a network sends all of its traffic down the path that will incur the lowest cost to that traffic. In the limit of an infinitesimally small amount of traffic for a particular router, its routing that traffic via an ISPA is optimal, as far as cost incurred by that traffic is concerned. We demonstrate though that in many cases, due to the side-effects of one router's actions on another routers performance, having routers use ISPA's is suboptimal as far as global aggregate cost is concerned, even when only used to route infinitesimally small amounts of traffic. As a particular example of this we present an instance of Braess' paradox for ISPA'S, in which adding new links to a network decreases overall throughput. We also demonstrate that load-balancing, in which the routing decisions are made to optimize the global cost incurred by all traffic currently being routed, is suboptimal as far as global cost averaged across time is concerned. This is also due to "side-effects", in this case of current routing decision on future traffic. The theory of COllective INtelligence (COIN) is concerned precisely with the issue of avoiding such deleterious side-effects. We present key concepts from that theory and use them to derive an idealized algorithm whose performance is better than that of the ISPA, even in the infinitesimal limit. We present experiments verifying this, and also showing that a machine-learning-based version of this COIN algorithm in which costs are only imprecisely estimated (a version potentially applicable in the real world) also outperforms the ISPA, despite having access to less information than does the ISPA. In particular, this COIN algorithm avoids Braess' paradox.
Rainfall measurement from the opportunistic use of an Earth-space link in the Ku band
NASA Astrophysics Data System (ADS)
Barthès, L.; Mallet, C.
2013-08-01
The present study deals with the development of a low-cost microwave device devoted to the measurement of average rain rates observed along Earth-satellite links, the latter being characterized by a tropospheric path length of a few kilometres. The ground-based power measurements, which are made using the Ku-band television transmissions from several different geostationary satellites, are based on the principle that the atmospheric attenuation produced by rain encountered along each transmission path can be used to determine the path-averaged rain rate. This kind of device could be very useful in hilly areas where radar data are not available or in urban areas where such devices could be directly placed in homes by using residential TV antenna. The major difficulty encountered with this technique is that of retrieving rainfall characteristics in the presence of many other causes of received signal fluctuation, produced by atmospheric scintillation, variations in atmospheric composition (water vapour concentration, cloud water content) or satellite transmission parameters (variations in emitted power, satellite pointing). In order to conduct a feasibility study with such a device, a measurement campaign was carried out over a period of five months close to Paris. The present paper proposes an algorithm based on an artificial neural network, used to identify dry and rainy periods and to model received signal variability resulting from effects not related to rain. When the altitude of the rain layer is taken into account, the rain attenuation can be inverted to obtain the path-averaged rain rate. The rainfall rates obtained from this process are compared with co-located rain gauges and radar measurements taken throughout the full duration of the campaign, and the most significant rainfall events are analysed.
Turgut, Enis T; Usanmaz, Oznur; Rosen, Marc A
2018-05-01
In this study, the effects of descent flight path angle (between 1.25° and 4.25°) on aircraft gaseous emissions (carbon monoxide, total hydrocarbons and nitrogen oxides) are explored using actual flight data from aircraft flight data recording system and emissions indices from the International Civil Aviation Organization. All emissions parameters are corrected to flight conditions using Boeing Fuel Flow Method2, where the ambient air pressure, temperature and humidity data are obtained from long-term radiosonde data measured close to the arrival airport. The main findings highlight that the higher the flight path angle, the higher the emission indices of CO and HC, whereas the lower the emissions index of NO x and fuel consumption. Furthermore, during a descent, a heavier aircraft tends to emit less CO and HC, and more NO x . For a five-tonne aircraft mass increase, the average change in emissions indices are found to be -4.1% and -5.7% (CO), -5.4% and -8.2% (HC), and +1.1% and +1.6% (NO x ) for high and low flight path angle groups, respectively. The average emissions indices for CO, HC and NO x during descent are calculated to be 24.5, 1.7 and 5.6 g/kg of fuel, whereas the average emissions for descending from 32,000 ft (9.7 km) and 24,000 ft (7.3 km) are calculated to be 7-8 kg (CO), ∼0.5 kg (HC) and ∼3 kg (NO x ). Copyright © 2018 Elsevier Ltd. All rights reserved.
Research on the Calculation Method of Optical Path Difference of the Shanghai Tian Ma Telescope
NASA Astrophysics Data System (ADS)
Dong, J.; Fu, L.; Jiang, Y. B.; Liu, Q. H.; Gou, W.; Yan, F.
2016-03-01
Based on the Shanghai Tian Ma Telescope (TM), an optical path difference calculation method of the shaped Cassegrain antenna is presented in the paper. Firstly, the mathematical model of the TM optics is established based on the antenna reciprocity theorem. Secondly, the TM sub-reflector and main reflector are fitted by the Non-Uniform Rational B-Splines (NURBS). Finally, the method of optical path difference calculation is implemented, and the expanding application of the Ruze optical path difference formulas in the TM is researched. The method can be used to calculate the optical path difference distributions across the aperture field of the TM due to misalignment like the axial and lateral displacements of the feed and sub-reflector, or the tilt of the sub-reflector. When the misalignment quantity is small, the expanding Ruze optical path difference formulas can be used to calculate the optical path difference quickly. The paper supports the real-time measurement and adjustment of the TM structure. The research has universality, and can provide reference for the optical path difference calculation of other radio telescopes with shaped surfaces.
NASA Astrophysics Data System (ADS)
Kröger, Martin
2005-06-01
We present an algorithm which returns a shortest path and related number of entanglements for a given configuration of a polymeric system in 2 or 3 dimensions. Rubinstein and Helfand, and later Everaers et al. introduced a concept to extract primitive paths for dense polymeric melts made of linear chains (a multiple disconnected multibead 'path'), where each primitive path is defined as a path connecting the (space-fixed) ends of a polymer under the constraint of non-interpenetration (excluded volume) between primitive paths of different chains, such that the multiple disconnected path fulfills a minimization criterion. The present algorithm uses geometrical operations and provides a—model independent—efficient approximate solution to this challenging problem. Primitive paths are treated as 'infinitely' thin (we further allow for finite thickness to model excluded volume), and tensionless lines rather than multibead chains, excluded volume is taken into account without a force law. The present implementation allows to construct a shortest multiple disconnected path (SP) for 2D systems (polymeric chain within spherical obstacles) and an optimal SP for 3D systems (collection of polymeric chains). The number of entanglements is then simply obtained from the SP as either the number of interior kinks, or from the average length of a line segment. Further, information about structure and potentially also the dynamics of entanglements is immediately available from the SP. We apply the method to study the 'concentration' dependence of the degree of entanglement in phantom chain systems. Program summaryTitle of program:Z Catalogue number:ADVG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Silicon Graphics (Irix), Sun (Solaris), PC (Linux) Operating systems or monitors under which the program has been tested: UNIX, Linux Program language used: USANSI Fortran 77 and Fortran 90 Memory required to execute with typical data: 1 MByte No. of lines in distributed program, including test data, etc.: 10 660 No. of bytes in distributed program, including test data, etc.: 119 551 Distribution formet:tar.gz Nature of physical problem: The problem is to obtain primitive paths substantiating a shortest multiple disconnected path (SP) for a given polymer configuration (chains of particles, with or without additional single particles as obstacles for the 2D case). Primitive paths are here defined as in [M. Rubinstein, E. Helfand, J. Chem. Phys. 82 (1985) 2477; R. Everaers, S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian, K. Kremer, Science 303 (2004) 823] as the shortest line (path) respecting 'topological' constraints (from neighboring polymers or point obstacles) between ends of polymers. There is a unique solution for the 2D case. For the 3D case it is unique if we construct a primitive path of a single chain embedded within fixed line obstacles [J.S.B. Mitchell, Geometric shortest paths and network optimization, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000, pp. 633-701]. For a large 3D configuration made of several chains, short is meant to be the Euclidean shortest multiple disconnected path (SP) where primitive paths are constructed for all chains simultaneously. While the latter problem, in general, does not possess a unique solution, the algorithm must return a locally optimal solution, robust against minor displacements of the disconnected path and chain re-labeling. The problem is solved if the number of kinks (or entanglements Z), explicitly deduced from the SP, is quite insensitive to the exact conformation of the SP which allows to estimate Z with a small error. Efficient method of solution: Primitive paths are constructed from the given polymer configuration (a non-shortest multiple disconnected path, including obstacles, if present) by first replacing each polymer contour by a line with a number of 'kinks' (beads, nodes) and 'segments' (edges). To obtain primitive paths, defined to be uncrossable by any other objects (neighboring primitive paths, line or point obstacles), the algorithm minimizes the length of all primitive paths consecutively, until a final minimum Euclidean length of the SP is reached. Fast geometric operations rather than dynamical methods are used to minimize the contour lengths of the primitive paths. Neighbor lists are used to keep track of potentially intersecting segments of other chains. Periodic boundary conditions are employed. A finite small line thickness is used in order to make sure that entanglements are not 'lost' due to finite precision of representation of numbers. Restrictions on the complexity of the problem: For a single chain embedded within fixed line or point obstacles, the algorithm returns the exact SP. For more complex problems, the algorithm returns a locally optimal SP. Except for exotic, probably rare, configurations it turns out that different locally optimal SPs possess quite an identical number of nodes. In general, the problem constructing the SP is known to be NP-hard [J.S.B. Mitchell, Geometric shortest paths and network optimization, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000, pp. 633-701], and we offer a solution which should suffice to analyze physical problems, and gives an estimate about the precision and uniqueness of the result (from a standard deviation by varying the parameter: cyclicswitch). The program is NOT restricted to handle systems for which segment lengths of the SP exceed half the box size. Typical running time: Typical running times are approximately two orders of magnitude shorter compared with the ones needed for a corresponding molecular dynamics approach, and scale mostly linearly with system size. We provide a benchmark table.
Neurosurgical robotic arm drilling navigation system.
Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai
2017-09-01
The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.
Optimization of Turbine Rim Seals
NASA Technical Reports Server (NTRS)
Wagner, J. H.; Tew, D. E.; Stetson, G. M.; Sabnis, J. S.
2006-01-01
Experiments are being conducted to gain an understanding of the physics of rim scale cavity ingestion in a turbine stage with the high-work, single-stage characteristics envisioned for Advanced Subsonic Transport (AST) aircraft gas turbine engines fo the early 21st century. Initial experimental measurements to be presented include time-averaged turbine rim cavity and main gas path static pressure measurements for rim seal coolant to main gas path mass flow ratios between 0 and 0.02. The ultimate objective of this work is develop improved rim seal design concepts for use in modern high-work, single sage turbines n order to minimize the use of secondary coolant flow. Toward this objective the time averaged and unsteady data to be obtained in these experiments will be used to 1) Quantify the impact of the rim cavity cooling air on the ingestion process. 2) Quantify the film cooling benefits of the rim cavity purge flow in the main gas path. 3) Quantify the impact of the cooling air on turbine efficiency. 4) Develop/evaluate both 3D CFD and analytical models of the ingestion/cooling process.
WEAMR — A Weighted Energy Aware Multipath Reliable Routing Mechanism for Hotline-Based WSNs
Tufail, Ali; Qamar, Arslan; Khan, Adil Mehmood; Baig, Waleed Akram; Kim, Ki-Hyung
2013-01-01
Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR), a novel energy aware multipath routing protocol which utilizes hotline-assisted routing to meet such requirements for mission critical applications. The protocol reduces the number of average hops from source to destination and provides unmatched reliability as compared to well known reactive ad hoc protocols i.e., AODV and AOMDV. Our protocol makes efficient use of network paths based on weighted cost calculation and intelligently selects the best possible paths for data transmissions. The path cost calculation considers end to end number of hops, latency and minimum energy node value in the path. In case of path failure path recalculation is done efficiently with minimum latency and control packets overhead. Our evaluation shows that our proposal provides better end-to-end delivery with less routing overhead and higher packet delivery success ratio compared to AODV and AOMDV. The use of multipath also increases overall life time of WSN network using optimum energy available paths between sender and receiver in WDNs. PMID:23669714
WEAMR-a weighted energy aware multipath reliable routing mechanism for hotline-based WSNs.
Tufail, Ali; Qamar, Arslan; Khan, Adil Mehmood; Baig, Waleed Akram; Kim, Ki-Hyung
2013-05-13
Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR), a novel energy aware multipath routing protocol which utilizes hotline-assisted routing to meet such requirements for mission critical applications. The protocol reduces the number of average hops from source to destination and provides unmatched reliability as compared to well known reactive ad hoc protocols i.e., AODV and AOMDV. Our protocol makes efficient use of network paths based on weighted cost calculation and intelligently selects the best possible paths for data transmissions. The path cost calculation considers end to end number of hops, latency and minimum energy node value in the path. In case of path failure path recalculation is done efficiently with minimum latency and control packets overhead. Our evaluation shows that our proposal provides better end-to-end delivery with less routing overhead and higher packet delivery success ratio compared to AODV and AOMDV. The use of multipath also increases overall life time of WSN network using optimum energy available paths between sender and receiver in WDNs.
The Bands Culture in Victoria, Australia: Live Music Benefits Career Paths, Employment and Community
ERIC Educational Resources Information Center
Watson, Amanda; Forrest, David
2012-01-01
This study explores the career paths, employment, business opportunities and community contributions made available through the provision and development of the contemporary performance bands' culture in the State of Victoria. It is framed with the support given to live music performers by Arts Victoria, Small Business Victoria and Music Victoria.…
Rainfall measurement from opportunistic use of earth-space link in Ku Band
NASA Astrophysics Data System (ADS)
Barthès, L.; Mallet, C.
2013-02-01
The present study deals with the development of a low cost microwave device devoted to measure average rain rate observed along earth - satellite links. The principle is to use rain atmospheric attenuation along Earth - space links in Ku-band to deduce the path averaged rain rate. These links are characterized by a path length of a few km through the troposphere. Ground based power measurements are carried out by receiving TV channels from different geostationary satellites in Ku-band. The major difficulty in this study is to retrieve rain characteristics among many fluctuations of the received signal which are due to atmospheric scintillations, changes in the composition of the atmosphere (water vapour concentration, cloud water content) or satellite features (variation of the emitted power, satellite motions). In order to perform a feasibility study of such a device, a measurement campaign has been performed for five months near Paris. This paper proposes an algorithm based on an artificial neural network to identify drought and rainy periods and to suppress the variability of the received signal due to no-rain effects. Taking into account the height of the rain layer, rain attenuation is then inverted to obtain path averaged rain rate. Obtained rainfall rates are compared with co-located rain gauges and radar measurements on the whole experiment period, then the most significant rainy events are analyzed.
Wartmann, Flurina M; Purves, Ross S; van Schaik, Carel P
2010-04-01
Quantification of the spatial needs of individuals and populations is vitally important for management and conservation. Geographic information systems (GIS) have recently become important analytical tools in wildlife biology, improving our ability to understand animal movement patterns, especially when very large data sets are collected. This study aims at combining the field of GIS with primatology to model and analyse space-use patterns of wild orang-utans. Home ranges of female orang-utans in the Tuanan Mawas forest reserve in Central Kalimantan, Indonesia were modelled with kernel density estimation methods. Kernel results were compared with minimum convex polygon estimates, and were found to perform better, because they were less sensitive to sample size and produced more reliable estimates. Furthermore, daily travel paths were calculated from 970 complete follow days. Annual ranges for the resident females were approximately 200 ha and remained stable over several years; total home range size was estimated to be 275 ha. On average, each female shared a third of her home range with each neighbouring female. Orang-utan females in Tuanan built their night nest on average 414 m away from the morning nest, whereas average daily travel path length was 777 m. A significant effect of fruit availability on day path length was found. Sexually active females covered longer distances per day and may also temporarily expand their ranges.
Molloy, Kevin; Shehu, Amarda
2013-01-01
Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers.
NASA Technical Reports Server (NTRS)
Goldhirsh, Julius; Krichevsky, Vladimir; Gebo, Norman
1992-01-01
Five years of rain rate and modeled slant path attenuation distributions at 20 GHz and 30 GHz derived from a network of 10 tipping bucket rain gages was examined. The rain gage network is located within a grid 70 km north-south and 47 km east-west in the Mid-Atlantic coast of the United States in the vicinity of Wallops Island, Virginia. Distributions were derived from the variable integration time data and from one minute averages. It was demonstrated that for realistic fade margins, the variable integration time results are adequate to estimate slant path attenuations at frequencies above 20 GHz using models which require one minute averages. An accurate empirical formula was developed to convert the variable integration time rain rates to one minute averages. Fade distributions at 20 GHz and 30 GHz were derived employing Crane's Global model because it was demonstrated to exhibit excellent accuracy with measured COMSTAR fades at 28.56 GHz.
Analytical modeling of the structureborne noise path on a small twin-engine aircraft
NASA Technical Reports Server (NTRS)
Cole, J. E., III; Stokes, A. Westagard; Garrelick, J. M.; Martini, K. F.
1988-01-01
The structureborne noise path of a six passenger twin-engine aircraft is analyzed. Models of the wing and fuselage structures as well as the interior acoustic space of the cabin are developed and used to evaluate sensitivity to structural and acoustic parameters. Different modeling approaches are used to examine aspects of the structureborne path. These approaches are guided by a number of considerations including the geometry of the structures, the frequency range of interest, and the tractability of the computations. Results of these approaches are compared with experimental data.
EEG-based research on brain functional networks in cognition.
Wang, Niannian; Zhang, Li; Liu, Guozhong
2015-01-01
Recently, exploring the cognitive functions of the brain by establishing a network model to understand the working mechanism of the brain has become a popular research topic in the field of neuroscience. In this study, electroencephalography (EEG) was used to collect data from subjects given four different mathematical cognitive tasks: recite numbers clockwise and counter-clockwise, and letters clockwise and counter-clockwise to build a complex brain function network (BFN). By studying the connectivity features and parameters of those brain functional networks, it was found that the average clustering coefficient is much larger than its corresponding random network and the average shortest path length is similar to the corresponding random networks, which clearly shows the characteristics of the small-world network. The brain regions stimulated during the experiment are consistent with traditional cognitive science regarding learning, memory, comprehension, and other rational judgment results. The new method of complex networking involves studying the mathematical cognitive process of reciting, providing an effective research foundation for exploring the relationship between brain cognition and human learning skills and memory. This could help detect memory deficits early in young and mentally handicapped children, and help scientists understand the causes of cognitive brain disorders.
Rogers, Geoffrey
2018-06-01
The Yule-Nielsen effect is an influence on halftone color caused by the diffusion of light within the paper upon which the halftone ink is printed. The diffusion can be characterized by a point spread function. In this paper, a point spread function for paper is derived using the multiple-path model of reflection. This model treats the interaction of light with turbid media as a random walk. Using the multiple-path point spread function, a general expression is derived for the average reflectance of light from a frequency-modulated halftone, in which dot size is constant and the number of dots is varied, with the arrangement of dots random. It is also shown that the line spread function derived from the multiple-path model has the form of a Lorentzian function.
Jarzynski equality in the context of maximum path entropy
NASA Astrophysics Data System (ADS)
González, Diego; Davis, Sergio
2017-06-01
In the global framework of finding an axiomatic derivation of nonequilibrium Statistical Mechanics from fundamental principles, such as the maximum path entropy - also known as Maximum Caliber principle -, this work proposes an alternative derivation of the well-known Jarzynski equality, a nonequilibrium identity of great importance today due to its applications to irreversible processes: biological systems (protein folding), mechanical systems, among others. This equality relates the free energy differences between two equilibrium thermodynamic states with the work performed when going between those states, through an average over a path ensemble. In this work the analysis of Jarzynski's equality will be performed using the formalism of inference over path space. This derivation highlights the wide generality of Jarzynski's original result, which could even be used in non-thermodynamical settings such as social systems, financial and ecological systems.
On the orthogonalised reverse path method for nonlinear system identification
NASA Astrophysics Data System (ADS)
Muhamad, P.; Sims, N. D.; Worden, K.
2012-09-01
The problem of obtaining the underlying linear dynamic compliance matrix in the presence of nonlinearities in a general multi-degree-of-freedom (MDOF) system can be solved using the conditioned reverse path (CRP) method introduced by Richards and Singh (1998 Journal of Sound and Vibration, 213(4): pp. 673-708). The CRP method also provides a means of identifying the coefficients of any nonlinear terms which can be specified a priori in the candidate equations of motion. Although the CRP has proved extremely useful in the context of nonlinear system identification, it has a number of small issues associated with it. One of these issues is the fact that the nonlinear coefficients are actually returned in the form of spectra which need to be averaged over frequency in order to generate parameter estimates. The parameter spectra are typically polluted by artefacts from the identification of the underlying linear system which manifest themselves at the resonance and anti-resonance frequencies. A further problem is associated with the fact that the parameter estimates are extracted in a recursive fashion which leads to an accumulation of errors. The first minor objective of this paper is to suggest ways to alleviate these problems without major modification to the algorithm. The results are demonstrated on numerically-simulated responses from MDOF systems. In the second part of the paper, a more radical suggestion is made, to replace the conditioned spectral analysis (which is the basis of the CRP method) with an alternative time domain decorrelation method. The suggested approach - the orthogonalised reverse path (ORP) method - is illustrated here using data from simulated single-degree-of-freedom (SDOF) and MDOF systems.
In vivo verification of proton beam path by using post-treatment PET/CT imaging.
Hsi, Wen C; Indelicato, Daniel J; Vargas, Carlos; Duvvuri, Srividya; Li, Zuofeng; Palta, Jatinder
2009-09-01
The purpose of this study is to establish the in vivo verification of proton beam path by using proton-activated positron emission distributions. A total of 50 PET/CT imaging studies were performed on ten prostate cancer patients immediately after daily proton therapy treatment through a single lateral portal. The PET/CT and planning CT were registered by matching the pelvic bones, and the beam path of delivered protons was defined in vivo by the positron emission distribution seen only within the pelvic bones, referred to as the PET-defined beam path. Because of the patient position correction at each fraction, the marker-defined beam path, determined by the centroid of implanted markers seen in the posttreatment (post-Tx) CT, is used for the planned beam path. The angular variation and discordance between the PET- and marker-defined paths were derived to investigate the intrafraction prostate motion. For studies with large discordance, the relative location between the centroid and pelvic bones seen in the post-Tx CT was examined. The PET/CT studies are categorized for distinguishing the prostate motion that occurred before or after beam delivery. The post-PET CT was acquired after PET imaging to investigate prostate motion due to physiological changes during the extended PET acquisition. The less than 2 degrees of angular variation indicates that the patient roll was minimal within the immobilization device. Thirty of the 50 studies with small discordance, referred as good cases, show a consistent alignment between the field edges and the positron emission distributions from the entrance to the distal edge. For those good cases, average displacements are 0.6 and 1.3 mm along the anterior-posterior (D(AP)) and superior-inferior (D(SI)) directions, respectively, with 1.6 mm standard deviations in both directions. For the remaining 20 studies demonstrating a large discordance (more than 6 mm in either D(AP) or D(SI)), 13 studies, referred as motion-after-Tx cases, also show large misalignment between the field edge and the positron emission distribution in lipomatous tissues around the prostate. These motion-after-Tx cases correspond to patients with large changes in volume of rectal gas between the post-Tx and the post-PET CTs. The standard deviations for D(AP) and D(SI) are 5.0 and 3.0 mm, respectively, for these motion-after-Tx cases. The final seven studies, referred to as position-error cases, which had a large discordance but no misalignment, were found to have deviations of 4.6 and 3.6 mm in D(AP) and D(SI), respectively. The position-error cases correspond to a large discrepancy on the relative location between the centroid and pelvic bones seen in post-Tx CT and recorded x-ray radiographs. Systematic analyses of proton-activated positron emission distributions provide patient-specific information on prostate motion (sigmaM) and patient position variability (sigmap) during daily proton beam delivery. The less than 2 mm of displacement variations in the good cases indicates that population-based values of sigmap and sigmaM, used in margin algorithms for treatment planning at the authors' institution are valid for the majority of cases. However, a small fraction of PET/CT studies (approximately 14%) with -4 mm displacement variations may require different margins. Such data are useful in establishing patient-specific planning target volume margins.
Yang, Liu; Liu, Juan-Juan
2013-04-01
To study the feasibility and effect of clinical nursing path in the standard management of advanced schistosomiasis patients with splenomegaly. A total of 64 advanced schistosomiasis patients with splenomegaly were randomly divided into a routine nursing group (control group) and a clinical nursing pathway group (CNP group), and the postoperative situation, average hospitalization days, cost of hospitalization and the satisfaction of the patients of the 2 groups were compared. The complications, average hospitalization days, costs of hospitalization in the CNP group were significantly decreased compared with those in the control group, and satisfaction rate of the patients in the CNP group increased from 81.25% to 100%. The implementation of CNP effectively reduces the length of hospitalization, costs and complications, and improves the satisfaction of the patients.
Rutile TiO2 Mesocrystals as Sulfur Host for High-Performance Lithium-Sulfur Batteries.
Sun, Qingqing; Chen, Kaixiang; Liu, Yubin; Li, Yafeng; Wei, Mingdeng
2017-11-16
Although lithium-sulfur (Li-S) batteries are among the most promising rechargeable batteries in the field of energy-storage devices, their poor cycling performance restricts their potential applications. Polar materials can improve the cycling stability owing to their inherent strong chemical interaction with polysulfides. Herein, novel rutile TiO 2 mesocrystals (RTMs) are employed as the host for sulfur in Li-S batteries; the RTMs display a stable cycling performance with a capacity retention of 64 % and a small average capacity decay rate of 0.12 % per cycle over 300 cycles at 1 C rate. The good electrochemical properties are attributed to the interior ordered nanopores of the RTMs, which can effectively limit the dissolution of polysulfides, and the ultrafine nanowires in RTMs, which shorten the path for lithium-ion transport effectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jolly, Arthur D.; Matoza, Robin S.; Fee, David; Kennedy, Ben M.; Iezzi, Alexandra M.; Fitzgerald, Rebecca H.; Austin, Allison C.; Johnson, Richard
2017-10-01
We obtained an unprecedented view of the acoustic radiation from persistent strombolian volcanic explosions at Yasur volcano, Vanuatu, from the deployment of infrasound sensors attached to a tethered aerostat. While traditional ground-based infrasound arrays may sample only a small portion of the eruption pressure wavefield, we were able to densely sample angular ranges of 200° in azimuth and 50° in takeoff angle by placing the aerostat at 38 tethered loiter positions around the active vent. The airborne data joined contemporaneously collected ground-based infrasound and video recordings over the period 29 July to 1 August 2016. We observe a persistent variation in the acoustic radiation pattern with average eastward directed root-mean-square pressures more than 2 times larger than in other directions. The observed radiation pattern may be related to both path effects from the crater walls, and source directionality.
Automated identification of OB associations in M31
NASA Technical Reports Server (NTRS)
Magnier, Eugene A.; Battinelli, Paolo; Lewin, Walter H. G.; Haiman, Zoltan; Paradijs, Jan Van; Hasinger, Guenther; Pietsch, Wolfgang; Supper, Rodrigo; Truemper, Joachim
1993-01-01
A new identification of OB associations in M31 has been performed using the Path Linkage Criterion (PLC) technique of Battinelli (1991). We found 174 associations with a very small contamination (less than 5%) by random clumps of stars. The expected total number and average size of OB associations in the region of M 31 covered by our data set (Magnier et al. 1992) are approximately 280 and approximately 90 pc, respectively. M31 associations therefore have sizes similar to those of OB associations observed in nearby galaxies, so that we can consider them to be classical OB associations. This list of OB associations will be used for the study of the spatial distribution of OB associations and their correlation with other objects. Taking into account the fact that we do not cover the entire disk of M31, we extrapolate a total number of association in M31 of approximately 420.
UAV Cooperation Architectures for Persistent Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, R S; Kent, C A; Jones, E D
2003-03-20
With the number of small, inexpensive Unmanned Air Vehicles (UAVs) increasing, it is feasible to build multi-UAV sensing networks. In particular, by using UAVs in conjunction with unattended ground sensors, a degree of persistent sensing can be achieved. With proper UAV cooperation algorithms, sensing is maintained even though exceptional events, e.g., the loss of a UAV, have occurred. In this paper a cooperation technique that allows multiple UAVs to perform coordinated, persistent sensing with unattended ground sensors over a wide area is described. The technique automatically adapts the UAV paths so that on the average, the amount of time thatmore » any sensor has to wait for a UAV revisit is minimized. We also describe the Simulation, Tactical Operations and Mission Planning (STOMP) software architecture. This architecture is designed to help simulate and operate distributed sensor networks where multiple UAVs are used to collect data.« less
Dong, Lei; Li, Chunguang; Sanchez, Nancy P.; ...
2016-01-05
A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Lei; Li, Chunguang; Sanchez, Nancy P.
A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less
An Assessment of the Radiative Effects of Ice Supersaturation Based on in Situ Observations
NASA Technical Reports Server (NTRS)
Tan, Xiaoxiao; Huang, i; Diao, Minghui; Bansemer, Aaron; Zondlo, Mark A.; DiGangi, Joshua P.; Volkamer, Rainer; Hu, Yongyun
2016-01-01
We use aircraft observations combined with the reanalysis data to investigate the radiative effects of ice supersaturation (ISS). Our results show that although the excess water vapor over ice saturation itself has relatively small radiative effects, mistaking it as ice crystals in climate models would lead to considerable impacts: on average, +2.49 W/m(exp 2) change in the top of the atmosphere (TOA) radiation, -2.7 W/m(exp 2) change in surface radiation, and 1.47 K/d change in heating rates. The radiative effects of ISS generally increase with the magnitudes of supersaturation. However, there is a strong dependence on the preexisting ice water path, which can even change the sign of the TOA radiative effect. It is therefore important to consider coexistence between ISS and ice clouds and to validate their relationship in the parameterizations of ISS in climate models.
The halo current in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Pautasso, G.; Giannone, L.; Gruber, O.; Herrmann, A.; Maraschek, M.; Schuhbeck, K. H.; ASDEX Upgrade Team
2011-04-01
Due to the complexity of the phenomena involved, a self-consistent physical model for the prediction of the halo current is not available. Therefore the ITER specifications of the spatial distribution and evolution of the halo current rely on empirical assumptions. This paper presents the results of an extensive analysis of the halo current measured in ASDEX Upgrade with particular emphasis on the evolution of the halo region, on the magnitude and time history of the halo current, and on the structure and duration of its toroidal and poloidal asymmetries. The effective length of the poloidal path of the halo current in the vessel is found to be rather insensitive to plasma parameters. Large values of the toroidally averaged halo current are observed in both vertical displacement events and centred disruptions but last a small fraction of the current quench; they coincide typically with a large but short-lived MHD event.
Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heusen, M.; Shalchi, A., E-mail: husseinm@myumanitoba.ca, E-mail: andreasm4@yahoo.com
In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to smallmore » Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.« less
Empson, R M; Heinemann, U
1995-05-01
1. The perforant path projection from layer III of the entorhinal cortex to CA1 of the hippocampus was studied within a hippocampal-entorhinal combined slice preparation. We prevented contamination from the other main hippocampal pathways by removal of CA3 and the dentate gyrus. 2. Initially the projection was mapped using field potential recordings that suggested an excitatory sink in stratum lacunosum moleculare with an associated source in stratum pyramidale. 3. However, recording intracellularly from CA1 cells, stimulation of the perforant path produced prominent fast GABAA and slow GABAB IPSPs often preceded by small EPSPs. In a small number of cells we observed EPSPs only. 4. CNQX blocked excitatory and inhibitory responses. This indicated the presence of an intervening excitatory synapse between the inhibitory interneurone and the pyramidal cell. 5. Focal bicuculline applications revealed that the major site of GABAA inhibitory input was to stratum radiatum of CA1. 6. The inhibition activated by the perforant path was very effective at reducing simultaneously activated Schaffer collateral mediated EPSPs and suprathreshold-stimulated action potentials. 7. Blockade of fast inhibition increased excitability and enhanced slow inhibition. Both increases relied upon the activation of NMDA receptors. 8. Perforant path inputs activated prominent and effective disynaptic inhibition of CA1 cells. This has significance for the output of hippocampal processing during normal behaviour and also under pathological conditions.
Ishikawa, Tomohiro; Mori, Yojiro; Hasegawa, Hiroshi; Subramaniam, Suresh; Sato, Ken-Ichi; Moriwaki, Osamu
2017-07-10
A novel compact OXC node architecture that combines WSSs and arrays of small scale optical delivery-coupling type switches ("DCSWs") is proposed. Unlike conventional OXC nodes, the WSSs are only responsible for dynamic path bundling ("flexible waveband") while the small scale optical switches route bundled path groups. A network design algorithm that is aware of the routing scheme is also proposed, and numerical experiments elucidate that the necessary number of WSSs and amplifiers can be significantly reduced. A prototype of the proposed OXC is also developed using monolithic arrayed DCSWs. Transmission experiments on the prototype verify the proposal's technical feasibility.
Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Zhou, Zhennan
2018-02-01
To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.
Gain degradation and amplitude scintillation due to tropospheric turbulence
NASA Technical Reports Server (NTRS)
Theobold, D. M.; Hodge, D. B.
1978-01-01
It is shown that a simple physical model is adequate for the prediction of the long term statistics of both the reduced signal levels and increased peak-to-peak fluctuations. The model is based on conventional atmospheric turbulence theory and incorporates both amplitude and angle of arrival fluctuations. This model predicts the average variance of signals observed under clear air conditions at low elevation angles on earth-space paths at 2, 7.3, 20 and 30 GHz. Design curves based on this model for gain degradation, realizable gain, amplitude fluctuation as a function of antenna aperture size, frequency, and either terrestrial path length or earth-space path elevation angle are presented.
NASA Astrophysics Data System (ADS)
Rytchkov, D. S.
2017-11-01
The paper presents the results of a study of the backscattering enhancement factor (BSE) dependence of vortex LaguerreGaussian beams propagating on monostatic location paths in the atmosphere on optical turbulence intensity. The numeric simulation split-step method of laser beam propagation was used to obtain BSE factor values of a laser beam propagated on monostatic location path in the turbulent atmosphere and reflected from a diffuse target. It is shown that BSE factor of the averaged intensity of a backscattered vortex laser beam of any topological charge is less than BSE factor values of backscattered Gaussian beam in arbitrary turbulent conditions.
A note on subtrees rooted along the primary path of a binary tree
Troutman, B.M.; Karlinger, M.R.
1993-01-01
Let Fn denote the set of rooted binary plane trees with n external nodes, for given T???Fn let ui(T) be the altitude i node along the primary path of T, and let ??i(T) denote the number of external nodes in the induced subtree rooted at ui(T). We set ??i(T) = 0 if i is greater than the length of the primary path of T. We prove limn?????? ???i???x/n En{??i}/???i?? En{??i} = G(x), where En denotes the average over trees T???Fn and where the distribution function G is determined by its moments, for which we present an explicit expression. ?? 1993.
ERIC Educational Resources Information Center
Shic, Frederick; Smith, Daniel; Horsburgh, Brian; Hollander, Eric; Rehg, James M.; Goodwin, Matthew
2015-01-01
A gap exists between the expanding space of technological innovations to aid those affected by autism spectrum disorders, and the actual impact of those technologies on daily lives. This gap can be addressed through a very practical path of commercialization. However, the path from a technological innovation to a commercially viable product is…
Context-Aided Tracking with Adaptive Hyperspectral Imagery
2011-06-01
narrow spectral bands (e). . . . . . . . . . . . . . . . . . . . . 14 ix Figure Page 2.2. An illustration of a small portion of a digital micromirror ...incorporates two light paths: imaging and spectroscopy. Each pixel is steered towards a light path indepen- dently via the digital micromirror device (DMD...With the advent of digital micromirror device (DMD) arrays (DMA), the Rochester Institute of Technology Multi-Object Spectrometer (RITMOS) [36
NASA Astrophysics Data System (ADS)
Wu, Zikai; Hou, Baoyu; Zhang, Hongjuan; Jin, Feng
2014-04-01
Deterministic network models have been attractive media for discussing dynamical processes' dependence on network structural features. On the other hand, the heterogeneity of weights affect dynamical processes taking place on networks. In this paper, we present a family of weighted expanded Koch networks based on Koch networks. They originate from a r-polygon, and each node of current generation produces m r-polygons including the node and whose weighted edges are scaled by factor w in subsequent evolutionary step. We derive closed-form expressions for average weighted shortest path length (AWSP). In large network, AWSP stays bounded with network order growing (0 < w < 1). Then, we focus on a special random walks and trapping issue on the networks. In more detail, we calculate exactly the average receiving time (ART). ART exhibits a sub-linear dependence on network order (0 < w < 1), which implies that nontrivial weighted expanded Koch networks are more efficient than un-weighted expanded Koch networks in receiving information. Besides, efficiency of receiving information at hub nodes is also dependent on parameters m and r. These findings may pave the way for controlling information transportation on general weighted networks.
Tofte, Josef N; Westerlind, Brian O; Martin, Kevin D; Guetschow, Brian L; Uribe-Echevarria, Bastián; Rungprai, Chamnanni; Phisitkul, Phinit
2017-03-01
To validate the knee, shoulder, and virtual Fundamentals of Arthroscopic Training (FAST) modules on a virtual arthroscopy simulator via correlations with arthroscopy case experience and postgraduate year. Orthopaedic residents and faculty from one institution performed a standardized sequence of knee, shoulder, and FAST modules to evaluate baseline arthroscopy skills. Total operation time, camera path length, and composite total score (metric derived from multiple simulator measurements) were compared with case experience and postgraduate level. Values reported are Pearson r; alpha = 0.05. 35 orthopaedic residents (6 per postgraduate year), 2 fellows, and 3 faculty members (2 sports, 1 foot and ankle), including 30 male and 5 female residents, were voluntarily enrolled March to June 2015. Knee: training year correlated significantly with year-averaged knee composite score, r = 0.92, P = .004, 95% confidence interval (CI) = 0.84, 0.96; operation time, r = -0.92, P = .004, 95% CI = -0.96, -0.84; and camera path length, r = -0.97, P = .0004, 95% CI = -0.98, -0.93. Knee arthroscopy case experience correlated significantly with composite score, r = 0.58, P = .0008, 95% CI = 0.27, 0.77; operation time, r = -0.54, P = .002, 95% CI = -0.75, -0.22; and camera path length, r = -0.62, P = .0003, 95% CI = -0.8, -0.33. Shoulder: training year correlated strongly with average shoulder composite score, r = 0.90, P = .006, 95% CI = 0.81, 0.95; operation time, r = -0.94, P = .001, 95% CI = -0.97, -0.89; and camera path length, r = -0.89, P = .007, 95% CI = -0.95, -0.80. Shoulder arthroscopy case experience correlated significantly with average composite score, r = 0.52, P = .003, 95% CI = 0.2, 0.74; strongly with operation time, r = -0.62, P = .0002, 95% CI = -0.8, -0.33; and camera path length, r = -0.37, P = .044, 95% CI = -0.64, -0.01, by training year. FAST: training year correlated significantly with 3 combined FAST activity average composite scores, r = 0.81, P = .0279, 95% CI = 0.65, 0.90; operation times, r = -0.86, P = .012, 95% CI = -0.93, -0.74; and camera path lengths, r = -0.85, P = .015, 95% CI = -0.92, -0.72. Total arthroscopy cases performed did not correlate significantly with overall FAST performance. We found significant correlations between both training year and knee and shoulder arthroscopy experience when compared with performance as measured by composite score, camera path length, and operation time during a simulated diagnostic knee and shoulder arthroscopy, respectively. Three FAST activities demonstrated significant correlations with training year but not arthroscopy case experience as measured by composite score, camera path length, and operation time. We attempt to validate an arthroscopy simulator that could be used to supplement arthroscopy skills training for orthopaedic residents. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Small-world bias of correlation networks: From brain to climate
NASA Astrophysics Data System (ADS)
Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan
2017-03-01
Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.
Small-world bias of correlation networks: From brain to climate.
Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan
2017-03-01
Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; Roberts, C. M.; White, D. D.; Larson, K. L.; Brewis, A.
2013-06-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences based on development status and, to a lesser extent, water scarcity. People in less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in more developed sites. Thematically, people in less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community based solutions, while people in more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in water-rich sites. Thematically, people in water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
The impact of u.s. Energy policy on international health: alternate paths into the future.
Ratcliffe, J W; Merrill, J C
1982-01-01
Historical, sociological, and epidemiological research shows that international health and mortality levels are determined primarily not by health sector policies but, instead, by national and international policies that shape the broader sociopolitical and economic systems within which health sectors are embedded. Such policies have traditionally been considered to lie outside the domain of the health sector and, therefore, not of concern to health educators. One such national policy with the potential to powerfully influence international health and mortality levels is the looming choice between alternate American energy paths: the capital-intensive, large-scale, and centralized "hard" path of non-renewable energy resources; and the labor-intensive, small-scale, and decentralized "soft" path of renewable energy sources. Substantial effort has been directed to projecting the physical environmental impacts in the United States for both paths. But the social environmental impacts of each path and their implications for international health have been ignored. This article reviews links between alternate U.S. energy paths and alternate international health futures, and their implications for health educators around the world.
Zhou, Hufeng; Jin, Jingjing; Zhang, Haojun; Yi, Bo; Wozniak, Michal; Wong, Limsoon
2012-01-01
Pathway data are important for understanding the relationship between genes, proteins and many other molecules in living organisms. Pathway gene relationships are crucial information for guidance, prediction, reference and assessment in biochemistry, computational biology, and medicine. Many well-established databases--e.g., KEGG, WikiPathways, and BioCyc--are dedicated to collecting pathway data for public access. However, the effectiveness of these databases is hindered by issues such as incompatible data formats, inconsistent molecular representations, inconsistent molecular relationship representations, inconsistent referrals to pathway names, and incomprehensive data from different databases. In this paper, we overcome these issues through extraction, normalization and integration of pathway data from several major public databases (KEGG, WikiPathways, BioCyc, etc). We build a database that not only hosts our integrated pathway gene relationship data for public access but also maintains the necessary updates in the long run. This public repository is named IntPath (Integrated Pathway gene relationship database for model organisms and important pathogens). Four organisms--S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M. musculus--are included in this version (V2.0) of IntPath. IntPath uses the "full unification" approach to ensure no deletion and no introduced noise in this process. Therefore, IntPath contains much richer pathway-gene and pathway-gene pair relationships and much larger number of non-redundant genes and gene pairs than any of the single-source databases. The gene relationships of each gene (measured by average node degree) per pathway are significantly richer. The gene relationships in each pathway (measured by average number of gene pairs per pathway) are also considerably richer in the integrated pathways. Moderate manual curation are involved to get rid of errors and noises from source data (e.g., the gene ID errors in WikiPathways and relationship errors in KEGG). We turn complicated and incompatible xml data formats and inconsistent gene and gene relationship representations from different source databases into normalized and unified pathway-gene and pathway-gene pair relationships neatly recorded in simple tab-delimited text format and MySQL tables, which facilitates convenient automatic computation and large-scale referencing in many related studies. IntPath data can be downloaded in text format or MySQL dump. IntPath data can also be retrieved and analyzed conveniently through web service by local programs or through web interface by mouse clicks. Several useful analysis tools are also provided in IntPath. We have overcome in IntPath the issues of compatibility, consistency, and comprehensiveness that often hamper effective use of pathway databases. We have included four organisms in the current release of IntPath. Our methodology and programs described in this work can be easily applied to other organisms; and we will include more model organisms and important pathogens in future releases of IntPath. IntPath maintains regular updates and is freely available at http://compbio.ddns.comp.nus.edu.sg:8080/IntPath.
Calibration of neural networks using genetic algorithms, with application to optimal path planning
NASA Technical Reports Server (NTRS)
Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel
1987-01-01
Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.
Fast exploration of an optimal path on the multidimensional free energy surface
Chen, Changjun
2017-01-01
In a reaction, determination of an optimal path with a high reaction rate (or a low free energy barrier) is important for the study of the reaction mechanism. This is a complicated problem that involves lots of degrees of freedom. For simple models, one can build an initial path in the collective variable space by the interpolation method first and then update the whole path constantly in the optimization. However, such interpolation method could be risky in the high dimensional space for large molecules. On the path, steric clashes between neighboring atoms could cause extremely high energy barriers and thus fail the optimization. Moreover, performing simulations for all the snapshots on the path is also time-consuming. In this paper, we build and optimize the path by a growing method on the free energy surface. The method grows a path from the reactant and extends its length in the collective variable space step by step. The growing direction is determined by both the free energy gradient at the end of the path and the direction vector pointing at the product. With fewer snapshots on the path, this strategy can let the path avoid the high energy states in the growing process and save the precious simulation time at each iteration step. Applications show that the presented method is efficient enough to produce optimal paths on either the two-dimensional or the twelve-dimensional free energy surfaces of different small molecules. PMID:28542475
Scale-free Graphs for General Aviation Flight Schedules
NASA Technical Reports Server (NTRS)
Alexandov, Natalia M. (Technical Monitor); Kincaid, Rex K.
2003-01-01
In the late 1990s a number of researchers noticed that networks in biology, sociology, and telecommunications exhibited similar characteristics unlike standard random networks. In particular, they found that the cummulative degree distributions of these graphs followed a power law rather than a binomial distribution and that their clustering coefficients tended to a nonzero constant as the number of nodes, n, became large rather than O(1/n). Moreover, these networks shared an important property with traditional random graphs as n becomes large the average shortest path length scales with log n. This latter property has been coined the small-world property. When taken together these three properties small-world, power law, and constant clustering coefficient describe what are now most commonly referred to as scale-free networks. Since 1997 at least six books and over 400 articles have been written about scale-free networks. In this manuscript an overview of the salient characteristics of scale-free networks. Computational experience will be provided for two mechanisms that grow (dynamic) scale-free graphs. Additional computational experience will be given for constructing (static) scale-free graphs via a tabu search optimization approach. Finally, a discussion of potential applications to general aviation networks is given.
Toward cost-efficient sampling methods
NASA Astrophysics Data System (ADS)
Luo, Peng; Li, Yongli; Wu, Chong; Zhang, Guijie
2015-09-01
The sampling method has been paid much attention in the field of complex network in general and statistical physics in particular. This paper proposes two new sampling methods based on the idea that a small part of vertices with high node degree could possess the most structure information of a complex network. The two proposed sampling methods are efficient in sampling high degree nodes so that they would be useful even if the sampling rate is low, which means cost-efficient. The first new sampling method is developed on the basis of the widely used stratified random sampling (SRS) method and the second one improves the famous snowball sampling (SBS) method. In order to demonstrate the validity and accuracy of two new sampling methods, we compare them with the existing sampling methods in three commonly used simulation networks that are scale-free network, random network, small-world network, and also in two real networks. The experimental results illustrate that the two proposed sampling methods perform much better than the existing sampling methods in terms of achieving the true network structure characteristics reflected by clustering coefficient, Bonacich centrality and average path length, especially when the sampling rate is low.
Ovchinnikov, Victor; Karplus, Martin
2012-07-26
The popular targeted molecular dynamics (TMD) method for generating transition paths in complex biomolecular systems is revisited. In a typical TMD transition path, the large-scale changes occur early and the small-scale changes tend to occur later. As a result, the order of events in the computed paths depends on the direction in which the simulations are performed. To identify the origin of this bias, and to propose a method in which the bias is absent, variants of TMD in the restraint formulation are introduced and applied to the complex open ↔ closed transition in the protein calmodulin. Due to the global best-fit rotation that is typically part of the TMD method, the simulated system is guided implicitly along the lowest-frequency normal modes, until the large spatial scales associated with these modes are near the target conformation. The remaining portion of the transition is described progressively by higher-frequency modes, which correspond to smaller-scale rearrangements. A straightforward modification of TMD that avoids the global best-fit rotation is the locally restrained TMD (LRTMD) method, in which the biasing potential is constructed from a number of TMD potentials, each acting on a small connected portion of the protein sequence. With a uniform distribution of these elements, transition paths that lack the length-scale bias are obtained. Trajectories generated by steered MD in dihedral angle space (DSMD), a method that avoids best-fit rotations altogether, also lack the length-scale bias. To examine the importance of the paths generated by TMD, LRTMD, and DSMD in the actual transition, we use the finite-temperature string method to compute the free energy profile associated with a transition tube around a path generated by each algorithm. The free energy barriers associated with the paths are comparable, suggesting that transitions can occur along each route with similar probabilities. This result indicates that a broad ensemble of paths needs to be calculated to obtain a full description of conformational changes in biomolecules. The breadth of the contributing ensemble suggests that energetic barriers for conformational transitions in proteins are offset by entropic contributions that arise from a large number of possible paths.
Method and apparatus for ultrasonic characterization through the thickness direction of a moving web
Jackson, Theodore; Hall, Maclin S.
2001-01-01
A method and apparatus for determining the caliper and/or the ultrasonic transit time through the thickness direction of a moving web of material using ultrasonic pulses generated by a rotatable wheel ultrasound apparatus. The apparatus includes a first liquid-filled tire and either a second liquid-filled tire forming a nip or a rotatable cylinder that supports a thin moving web of material such as a moving web of paper and forms a nip with the first liquid-filled tire. The components of ultrasonic transit time through the tires and fluid held within the tires may be resolved and separately employed to determine the separate contributions of the two tire thicknesses and the two fluid paths to the total path length that lies between two ultrasonic transducer surfaces contained within the tires in support of caliper measurements. The present invention provides the benefit of obtaining a transit time and caliper measurement at any point in time as a specimen passes through the nip of rotating tires and eliminates inaccuracies arising from nonuniform tire circumferential thickness by accurately retaining point-to-point specimen transit time and caliper variation information, rather than an average obtained through one or more tire rotations. Morever, ultrasonic transit time through the thickness direction of a moving web may be determined independent of small variations in the wheel axle spacing, tire thickness, and liquid and tire temperatures.
2018-04-01
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...2006. Since that time , SS-RICS has been the integration platform for many robotics algorithms using a variety of different disciplines from cognitive...voice recognition. Each noise level was run 10 times per gender, yielding 60 total runs. Two paths were chosen for testing (Paths A and B) of
2008-05-22
Prior to the 1980s, politicians aligned with the PIRA conducted an activity called “ abstentionism ,” which meant that they participated in elections... The Prachanda Path and Óglaigh na hÉireann: A Comparative Case Study of the Insurgencies in Nepal and Northern Ireland A Monograph by MAJOR...burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys
NASA Astrophysics Data System (ADS)
Gupta, Vipul K.
The crack initiation sites and microstructure-sensitive growth of small fatigue cracks are experimentally characterized in two precipitation-hardened aluminum alloys, 7075-T651 and 7050-T7451, stressed in ambient temperature moist-air (warm-humid) and -50°C dry N2 (cold-dry) environmental conditions. Backscattered electron imaging (BSE) and energy dispersive spectroscopy (EDS) of the fracture surfaces showed that Fe-Cu rich constituent particle clusters are the most common initiation sites within both alloys stressed in either environment. The crack growth within each alloy, on average, was observed to be slowed in the cold-dry environment than in the warm-humid environment, but only at longer crack lengths. Although no overwhelming effects of grain boundaries and grain orientations on small-crack growth were observed, crack growth data showed local fluctuations within individual grains. These observations are understood as crack propagation through the underlying substructure at the crack surface and frequent interaction with low/high-angle grain and subgrain boundaries, during cyclic loading, and, are further attributed to periodic changes in crack propagation path and multiple occurrences of crack-branching observed in the current study. SEM-based stereology in combination with electron backscattered diffraction (EBSD) established fatigue crack surface crystallography within the region from ˜1 to 50 mum of crack initiating particle clusters. Fatigue crack facets were parallel to a wide variety of crystallographic planes, with pole orientations distributed broadly across the irreducible stereographic triangle between the {001} and {101}-poles within both warm-humid and cold-dry environments. The results indicate environmentally affected fatigue cracking in both cases, given the similarity between the observed morphology and crystallography with that of a variety of aerospace aluminum alloys cracked in the presence of moist-air. There was no evidence of crystallographic {111} slip-plane cracking typical of the Stage I crack growth mode observed in single crystals and high purity polycrystals of face centered cubic metals, and which has presently been assumed for the present materials within fatigue crack initiation models. Rather, the facets tend to have near-Mode I spatial orientation, which is another indicator of the importance of environmentally affected fatigue damage. The results provide a physical basis to develop microstructurally-based next generation multi-stage fatigue (MSF) models that should include a new crack decohesion criteria based upon environmental fatigue cracking mechanisms. EBSD study of small-cracks in alloy 7050-T7451, stressed in warm-humid environment, showed that crack-path orientation changes and crack-branching occurred at both low/high-angle grain and subgrain boundaries. Single surface trace analysis suggests that the crack-path differs substantially from crystallographic slip-planes. EBSD-based observations of small-crack propagation through subgrain structure, either formed by cyclic plastic strain accumulation or pre-existing (typical of unrecrystallized grain structure in the present materials), suggest that subgrain structure plays a crucial role in small fatigue crack propagation. As mentioned earlier, local fluctuations in small-crack growth rates appear to be caused by frequent interaction with subgrain boundaries, and multiple occurrences of crack-branching and crack-path orientation changes at low/high-angle grain and subgrain boundaries. The aforementioned deviation from low-index {001}/{101}-planes and the occurrence of high-index cracking planes observed by EBSD/Stereology, in this study and others, are interpreted as trans-subgranular decohesion or inter-subgranular cracking, due to trapped hydrogen. In summary, the results provide a firmer experimental foundation for, and clearer understanding of, the mechanisms of environmental fatigue cracking of aluminum alloys, especially the role of inter-subgranular cracking, which had previously been advanced based upon fracture surface observations alone.
An improved global dynamic routing strategy for scale-free network with tunable clustering
NASA Astrophysics Data System (ADS)
Sun, Lina; Huang, Ning; Zhang, Yue; Bai, Yannan
2016-08-01
An efficient routing strategy can deliver packets quickly to improve the network capacity. Node congestion and transmission path length are inevitable real-time factors for a good routing strategy. Existing dynamic global routing strategies only consider the congestion of neighbor nodes and the shortest path, which ignores other key nodes’ congestion on the path. With the development of detection methods and techniques, global traffic information is readily available and important for the routing choice. Reasonable use of this information can effectively improve the network routing. So, an improved global dynamic routing strategy is proposed, which considers the congestion of all nodes on the shortest path and incorporates the waiting time of the most congested node into the path. We investigate the effectiveness of the proposed routing for scale-free network with different clustering coefficients. The shortest path routing strategy and the traffic awareness routing strategy only considering the waiting time of neighbor node are analyzed comparatively. Simulation results show that network capacity is greatly enhanced compared with the shortest path; congestion state increase is relatively slow compared with the traffic awareness routing strategy. Clustering coefficient increase will not only reduce the network throughput, but also result in transmission average path length increase for scale-free network with tunable clustering. The proposed routing is favorable to ease network congestion and network routing strategy design.
Werner, Kent; Bosson, Emma; Berglund, Sten
2006-12-01
Safety assessment related to the siting of a geological repository for spent nuclear fuel deep in the bedrock requires identification of potential flow paths and the associated travel times for radionuclides originating at repository depth. Using the Laxemar candidate site in Sweden as a case study, this paper describes modeling methodology, data integration, and the resulting water flow models, focusing on the Quaternary deposits and the upper 150 m of the bedrock. Example simulations identify flow paths to groundwater discharge areas and flow paths in the surface system. The majority of the simulated groundwater flow paths end up in the main surface waters and along the coastline, even though the particles used to trace the flow paths are introduced with a uniform spatial distribution at a relatively shallow depth. The calculated groundwater travel time, determining the time available for decay and retention of radionuclides, is on average longer to the coastal bays than to other biosphere objects at the site. Further, it is demonstrated how GIS-based modeling can be used to limit the number of surface flow paths that need to be characterized for safety assessment. Based on the results, the paper discusses an approach for coupling the present models to a model for groundwater flow in the deep bedrock.
MO-F-CAMPUS-T-05: SQL Database Queries to Determine Treatment Planning Resource Usage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, C; Gladstone, D
2015-06-15
Purpose: A radiation oncology clinic’s treatment capacity is traditionally thought to be limited by the number of machines in the clinic. As the number of fractions per course decrease and the number of adaptive plans increase, the question of how many treatment plans a clinic can plan becomes increasingly important. This work seeks to lay the ground work for assessing treatment planning resource usage. Methods: Care path templates were created using the Aria 11 care path interface. Care path tasks included key steps in the treatment planning process from the completion of CT simulation through the first radiation treatment. SQLmore » Server Management Studio was used to run SQL queries to extract task completion time stamps along with care path template information and diagnosis codes from the Aria database. 6 months of planning cycles were evaluated. Elapsed time was evaluated in terms of work hours within Monday – Friday, 7am to 5pm. Results: For the 195 validated treatment planning cycles, the average time for planning and MD review was 22.8 hours. Of those cases 33 were categorized as urgent. The average planning time for urgent plans was 5 hours. A strong correlation between diagnosis code and range of elapsed planning time was as well as between elapsed time and select diagnosis codes was observed. It was also observed that tasks were more likely to be completed on the date due than the time that they were due. Follow-up confirmed that most users did not look at the due time. Conclusion: Evaluation of elapsed planning time and other tasks suggest that care paths should be adjusted to allow for different contouring and planning times for certain diagnosis codes and urgent cases. Additional clinic training around task due times vs dates or a structuring of care paths around due dates is also needed.« less
Rock climbing: A local-global algorithm to compute minimum energy and minimum free energy pathways.
Templeton, Clark; Chen, Szu-Hua; Fathizadeh, Arman; Elber, Ron
2017-10-21
The calculation of minimum energy or minimum free energy paths is an important step in the quantitative and qualitative studies of chemical and physical processes. The computations of these coordinates present a significant challenge and have attracted considerable theoretical and computational interest. Here we present a new local-global approach to study reaction coordinates, based on a gradual optimization of an action. Like other global algorithms, it provides a path between known reactants and products, but it uses a local algorithm to extend the current path in small steps. The local-global approach does not require an initial guess to the path, a major challenge for global pathway finders. Finally, it provides an exact answer (the steepest descent path) at the end of the calculations. Numerical examples are provided for the Mueller potential and for a conformational transition in a solvated ring system.
Chemseal 3808-A2 penetration into small leak path
NASA Technical Reports Server (NTRS)
Carruth, M. R., Jr.; Dehaye, R. F.
1988-01-01
A possible fix to a leak in the oxidizer system of the Space Shuttle Discovery's attitude control system was proposed by MSFC. This fix involved the passing of a shuttlecock past the leaking Dynaflow fitting and sealing the vent tube containing the fitting with Chemseal 3808-A2. The question of whether the Chemseal 3808-A2 can flow into the leak path and provide a better seal was addressed analytically and by experiment to verify the analytical formula used. The results show that the equations are applicable and that the Chemseal will flow into the expected leak path and seal.
Airway Tree Segmentation in Serial Block-Face Cryomicrotome Images of Rat Lungs
Bauer, Christian; Krueger, Melissa A.; Lamm, Wayne J.; Smith, Brian J.; Glenny, Robb W.; Beichel, Reinhard R.
2014-01-01
A highly-automated method for the segmentation of airways in serial block-face cryomicrotome images of rat lungs is presented. First, a point inside of the trachea is manually specified. Then, a set of candidate airway centerline points is automatically identified. By utilizing a novel path extraction method, a centerline path between the root of the airway tree and each point in the set of candidate centerline points is obtained. Local disturbances are robustly handled by a novel path extraction approach, which avoids the shortcut problem of standard minimum cost path algorithms. The union of all centerline paths is utilized to generate an initial airway tree structure, and a pruning algorithm is applied to automatically remove erroneous subtrees or branches. Finally, a surface segmentation method is used to obtain the airway lumen. The method was validated on five image volumes of Sprague-Dawley rats. Based on an expert-generated independent standard, an assessment of airway identification and lumen segmentation performance was conducted. The average of airway detection sensitivity was 87.4% with a 95% confidence interval (CI) of (84.9, 88.6)%. A plot of sensitivity as a function of airway radius is provided. The combined estimate of airway detection specificity was 100% with a 95% CI of (99.4, 100)%. The average number and diameter of terminal airway branches was 1179 and 159 μm, respectively. Segmentation results include airways up to 31 generations. The regression intercept and slope of airway radius measurements derived from final segmentations were estimated to be 7.22 μm and 1.005, respectively. The developed approach enables quantitative studies of physiology and lung diseases in rats, requiring detailed geometric airway models. PMID:23955692
NASA Astrophysics Data System (ADS)
Simeonov, Valentin; van den Bergh, Hubert; Parlange, Marc
2010-05-01
A new, long open-path instrument for monitoring of path-averaged methane and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver - distant retroreflector). A VCSEL tunable diode laser (TDL) with a central wavelength of 1654 nm is used as a light source. A specially designed, single-cell, hollow-cube retroreflector with 150 mm aperture will be installed at 1200 m from the transceiver in the final deployment at Jungfraujjoch and 100 mm retroreflectors will be used in the other applications. The receiver is built around a 20 cm Newtonian telescope. To avoid distortions in the shape of a methane line, caused by atmospheric turbulences, the line is scanned within 1 µs. Fast InGaAs photodiodes and 200 MHz are used to achieve this scanning rate. The expected concentration resolution for the above mentioned path lengths is of the order of 2 ppb. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane concentration in the Swiss Alps. After completing the initial tests at EPFL the instrument will be installed in 2012 at the High Altitude Research Station Jungfraujoch (HARSJ) located at 3580 m ASL. The HARSJ is one of the 24 global GAW stations and carries on continuous observations of a number of trace gasses, including methane. One of the goals of the project is to compare path-averaged to ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Colombian part of Amazonia and Siberian wetlands.
ERIC Educational Resources Information Center
Adelman, Clifford
2005-01-01
Visitors to the FDR Memorial in Washington, D.C., enter the area through ceremonial openings: from the pathway around the reflecting pond of the Jefferson Memorial, or across a small shaded plaza reached from a roadway parallel to the Potomac River. The FDR Memorial itself cannot be seen at the start of either of these paths. It is out there…
Aoun, Georges; Nasseh, Ibrahim; Sokhn, Sayde
2016-01-01
Aim: The aim of this study was to describe the morphology of the component, greater palatine canal-pterygopalatine fossa (GPC-PPF), in a Lebanese population using cone-beam computed tomography (CBCT) technology. Materials and Methods: CBCT images of 79 Lebanese adult patients (38 females and 41 males) were included in this study, and a total of 158 cases were evaluated bilaterally. The length and path of the GPCs-PPFs were determined, and the data obtained analyzed statistically. Results: In the sagittal plane, of all the GPCs-PPFs assessed, the average length was 35.02 mm on the right and 35.01 mm on the left. The most common anatomic path consisted in the presence of a curvature resulting in an internal narrowing whose average diameter was 2.4 mm on the right and 2.45 mm on the left. The mean diameter of the upper opening was 5.85 mm on the right and 5.82 mm on the left. As for the lower opening corresponding to the greater palatine foramen, the right and left average diameters were 6.39 mm and 6.42 mm, respectively. Conclusion: Within the limits of this study, we concluded that throughout the Lebanese population, the GPC-PPF path is variable with a predominance of curved one (77.21% [122/158] in both the right and left sides); however, the GPC-PPF length does not significantly vary according to gender and side. PMID:27833777
Channel Modeling of Miniaturized Battery-Powered Capacitive Human Body Communication Systems.
Park, Jiwoong; Garudadri, Harinath; Mercier, Patrick P
2017-02-01
The purpose of this contribution is to estimate the path loss of capacitive human body communication (HBC) systems under practical conditions. Most prior work utilizes large grounded instruments to perform path loss measurements, resulting in overly optimistic path loss estimates for wearable HBC devices. In this paper, small battery-powered transmitter and receiver devices are implemented to measure path loss under realistic assumptions. A hybrid electrostatic finite element method simulation model is presented that validates measurements and enables rapid and accurate characterization of future capacitive HBC systems. Measurements from form-factor-accurate prototypes reveal path loss results between 31.7 and 42.2 dB from 20 to 150 MHz. Simulation results matched measurements within 2.5 dB. Comeasurements using large grounded benchtop vector network analyzer (VNA) and large battery-powered spectrum analyzer (SA) underestimate path loss by up to 33.6 and 8.2 dB, respectively. Measurements utilizing a VNA with baluns, or large battery-powered SAs with baluns still underestimate path loss by up to 24.3 and 6.7 dB, respectively. Measurements of path loss in capacitive HBC systems strongly depend on instrumentation configurations. It is thus imperative to simulate or measure path loss in capacitive HBC systems utilizing realistic geometries and grounding configurations. HBC has a great potential for many emerging wearable devices and applications; accurate path loss estimation will improve system-level design leading to viable products.
Extended charge banking model of dual path shocks for implantable cardioverter defibrillators
Dosdall, Derek J; Sweeney, James D
2008-01-01
Background Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. Methods The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. Results The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Discussion Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters. PMID:18673561
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; ...
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less
NASA Astrophysics Data System (ADS)
Yang, Mingxi; Prytherch, John; Kozlova, Elena; Yelland, Margaret J.; Parenkat Mony, Deepulal; Bell, Thomas G.
2016-11-01
In recent years several commercialised closed-path cavity-based spectroscopic instruments designed for eddy covariance flux measurements of carbon dioxide (CO2), methane (CH4), and water vapour (H2O) have become available. Here we compare the performance of two leading models - the Picarro G2311-f and the Los Gatos Research (LGR) Fast Greenhouse Gas Analyzer (FGGA) at a coastal site. Both instruments can compute dry mixing ratios of CO2 and CH4 based on concurrently measured H2O, temperature, and pressure. Additionally, we used a high throughput Nafion dryer to physically remove H2O from the Picarro airstream. Observed air-sea CO2 and CH4 fluxes from these two analysers, averaging about 12 and 0.12 mmol m-2 day-1 respectively, agree within the measurement uncertainties. For the purpose of quantifying dry CO2 and CH4 fluxes downstream of a long inlet, the numerical H2O corrections appear to be reasonably effective and lead to results that are comparable to physical removal of H2O with a Nafion dryer in the mean. We estimate the high-frequency attenuation of fluxes in our closed-path set-up, which was relatively small ( ≤ 10 %) for CO2 and CH4 but very large for the more polar H2O. The Picarro showed significantly lower noise and flux detection limits than the LGR. The hourly flux detection limit for the Picarro was about 2 mmol m-2 day-1 for CO2 and 0.02 mmol m-2 day-1 for CH4. For the LGR these detection limits were about 8 and 0.05 mmol m-2 day-1. Using global maps of monthly mean air-sea CO2 flux as reference, we estimate that the Picarro and LGR can resolve hourly CO2 fluxes from roughly 40 and 4 % of the world's oceans respectively. Averaging over longer timescales would be required in regions with smaller fluxes. Hourly flux detection limits of CH4 from both instruments are generally higher than the expected emissions from the open ocean, though the signal to noise of this measurement may improve closer to the coast.
Faraday Rotation: Effect of Magnetic Field Reversals
NASA Astrophysics Data System (ADS)
Melrose, D. B.
2010-12-01
The standard formula for the rotation measure (RM), which determines the position angle, ψ = RMλ2, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ needed to correct this omission. In contrast with a result proposed by Broderick & Blandford, Δψ is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.
A novel cost-effective parallel narrowband ANC system with local secondary-path estimation
NASA Astrophysics Data System (ADS)
Delegà, Riccardo; Bernasconi, Giancarlo; Piroddi, Luigi
2017-08-01
Many noise reduction applications are targeted at multi-tonal disturbances. Active noise control (ANC) solutions for such problems are generally based on the combination of multiple adaptive notch filters. Both the performance and the computational cost are negatively affected by an increase in the number of controlled frequencies. In this work we study a different modeling approach for the secondary path, based on the estimation of various small local models in adjacent frequency subbands, that greatly reduces the impact of reference-filtering operations in the ANC algorithm. Furthermore, in combination with a frequency-specific step size tuning method it provides a balanced attenuation performance over the whole controlled frequency range (and particularly in the high end of the range). Finally, the use of small local models is greatly beneficial for the reactivity of the online secondary path modeling algorithm when the characteristics of the acoustic channels are time-varying. Several simulations are provided to illustrate the positive features of the proposed method compared to other well-known techniques.
2010-09-01
received beams (Fig. 2). Narrow bandpass filters were used to dedicate each subaperture to a specific wave from a single beacon. In this paper we...r , (6) where 1 1 ( )Mn n mmI M I − = = ∑ r is the aperture-average intensity for the nth frame. The index S in Eq. (6) denotes averaging over
Cloud Optical Depths and Liquid Water Paths at the NSA CART
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doran, J C.; Barnard, James C.; Zhong, Shiyuan
2000-03-14
Cloud optical depths have been measured using multifilter rotating shadowband radiometers (MFRSRs) at Barrow and Atqasuk, and liquid water paths have been measured at Barrow using a microwave radiometer (MWR) during the warm season (June-September) in 1999. Comparisons have been made between these quantities and the corresponding ones determined from the ECMWF GCM. Hour-by-hour comparisons of cloud optical depths show considerable scatter. The scatter is reduced, but is still substantial, when the averaging period is increased to ''daily'' averages, i.e., the time period each day over which the MFRSR can make measurements. This period varied between 18 hours in Junemore » and 6 hours in September. Preliminary results indicate that, for measured cloud optical depths less than approximately 25, the ECMWF has a low bias in its predictions, consistent with a low bias in predicted liquid water path. Based on a more limited set of data, the optical depths at Atqasuk were found to be generally lower than those at Barrow, a trend at least qualitatively captured by the ECMWF model. Analyses to identify the cause of the biases and the considerable scatter in the predictions are continuing.« less
2013-01-01
Background Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. Methods We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Results and conclusions Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers. PMID:24565158
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.
2014-01-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
Pan, Feng; Tao, Guohua
2013-03-07
Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.
Epidemic extinction paths in complex networks
NASA Astrophysics Data System (ADS)
Hindes, Jason; Schwartz, Ira B.
2017-05-01
We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.
Epidemic extinction paths in complex networks.
Hindes, Jason; Schwartz, Ira B
2017-05-01
We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.
Safety behavior of in-line skaters
Osberg, J; Stiles, S.
2000-01-01
Objectives and setting—Injuries from in-line skating have risen sharply in many cities around the world. To understand risk taking behavior and safety practices associated with urban in-line skating, 2210 outdoor skaters were observed in Boston, Massachusetts. Methods—Estimated age, gender, use of helmets, wrist guards, elbow and kneepads were recorded. Skaters were coded as beginner, average, or advanced, and skating locations were classified as street, sidewalk, or bicycle path. Results—About 60% of skaters wore wrist guards, but only 5.7% wore helmets. Males wore less protective equipment than females, and were more likely to skate on streets. Beginners and advanced skaters wore more protective gear than average skaters. Surprisingly, street skaters wore less protective gear than skaters on sidewalks or paths. Conclusions—Renewed focus on the importance of wearing helmets is needed. Given the higher injury risks for males, clinicians and public health experts need to target male skaters in prevention efforts. In addition, average and advanced skaters need to be convinced that even though they have improved, it is still important to wear protective gear. PMID:11003191
Live minimal path for interactive segmentation of medical images
NASA Astrophysics Data System (ADS)
Chartrand, Gabriel; Tang, An; Chav, Ramnada; Cresson, Thierry; Chantrel, Steeve; De Guise, Jacques A.
2015-03-01
Medical image segmentation is nowadays required for medical device development and in a growing number of clinical and research applications. Since dedicated automatic segmentation methods are not always available, generic and efficient interactive tools can alleviate the burden of manual segmentation. In this paper we propose an interactive segmentation tool based on image warping and minimal path segmentation that is efficient for a wide variety of segmentation tasks. While the user roughly delineates the desired organs boundary, a narrow band along the cursors path is straightened, providing an ideal subspace for feature aligned filtering and minimal path algorithm. Once the segmentation is performed on the narrow band, the path is warped back onto the original image, precisely delineating the desired structure. This tool was found to have a highly intuitive dynamic behavior. It is especially efficient against misleading edges and required only coarse interaction from the user to achieve good precision. The proposed segmentation method was tested for 10 difficult liver segmentations on CT and MRI images, and the resulting 2D overlap Dice coefficient was 99% on average..
Horton, James A.
1994-01-01
Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).
A benchmark for reaction coordinates in the transition path ensemble
2016-01-01
The molecular mechanism of a reaction is embedded in its transition path ensemble, the complete collection of reactive trajectories. Utilizing the information in the transition path ensemble alone, we developed a novel metric, which we termed the emergent potential energy, for distinguishing reaction coordinates from the bath modes. The emergent potential energy can be understood as the average energy cost for making a displacement of a coordinate in the transition path ensemble. Where displacing a bath mode invokes essentially no cost, it costs significantly to move the reaction coordinate. Based on some general assumptions of the behaviors of reaction and bath coordinates in the transition path ensemble, we proved theoretically with statistical mechanics that the emergent potential energy could serve as a benchmark of reaction coordinates and demonstrated its effectiveness by applying it to a prototypical system of biomolecular dynamics. Using the emergent potential energy as guidance, we developed a committor-free and intuition-independent method for identifying reaction coordinates in complex systems. We expect this method to be applicable to a wide range of reaction processes in complex biomolecular systems. PMID:27059559
Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.
Gao, J
2016-01-01
Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects. © 2016 Elsevier Inc. All rights reserved.
Observed cloud reflectivities and liquid water paths: An update
NASA Technical Reports Server (NTRS)
Coakley, James A., Jr.; Snider, Jack B.
1990-01-01
The FIRE microwave radiometer observations of liquid water path from San Nicolas Island and simultaneous NOAA AVHRR observations of cloud reflectivity were used to test a relationship between cloud liquid water path and cloud reflectivity that is often used in general circulation climate models (Stephens, 1978). The results of attempts to improve the data analysis which was described at the previous FIRE Science Team Workshop and elsewhere (Coakley and Snider, 1989) are reported. The improvements included the analysis of additional satellite passes over San Nicolas and sensitivity studies to estimate the effects on the observed reflectivities due to: (1) nonzero surface reflectivities beneath the clouds; (2) the anisotropy of the reflected radiances observed by the AVHRR; (3) small scale spatial structure in the liquid water path; and (4) adjustments to the calibration of AVHRR.
NASA Astrophysics Data System (ADS)
Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.
2017-11-01
This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size, which is consistent with the incremental development of snow-avalanche impact craters through the Holocene.
NASA Astrophysics Data System (ADS)
Sulovcová, Katarína; Jandačka, Jozef; Nosek, Radovan
2014-08-01
Concentration of solid particles in ambient atmosphere is increasing in many countries nowadays. Particulate matter pollution in higher concentration has harmful impact on human and animal health. Source of particulate matter are not only industry and traffic. Small heat sources with biomass combustion, especially during winter heating season, are also significant producer of particulate matter emission. There is a huge importance to decrease quantities of solid particles which are getting into the atmosphere in every region of their production in order to decrease environmental pollution and improve air quality. The ability of flue gas emission elimination can influence future using of biomass combustion. Therefore effective and affordable solutions are searching for. The paper deals with the reduction of particulate matter in small heat source with biomass combustion by modification of geometric parameters in flue gas path.
Structures, electronic properties and reaction paths from Fe(CO)5 molecule to small Fe clusters
NASA Astrophysics Data System (ADS)
Li, Zhi; Zhao, Zhen
2018-04-01
The geometries, electrical characters and reaction paths from Fe(CO)5 molecule to small Fe clusters were investigated by using all-electron density functional theory. The results show that in the decomposition process of pentacarbonyl-iron, Fe(CO)5 molecule prefers to remove a carbon monoxide and adsorb another Fe(CO)5 molecule to produce nonacarbonyldiiron Fe2(CO)9 then Fe2(CO)9 gradually removes carbon monoxide to produce small Fe clusters. As It can be seen from the highest occupied molecule orbital-lowest unoccupied molecule orbital gap curves, the Fe(CO)n=3, and 5 and Fe2(CO)n=3, 7 and 9 intermediates have higher chemical stability than their neighbors. The local magnetic moment of the carbon monoxide is aligning anti-ferromagnetic. The effect of external magnetic field to the initial decomposition products of Fe(CO)5 can be ignored.
An adaptive multi-level simulation algorithm for stochastic biological systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less
Springback effects during single point incremental forming: Optimization of the tool path
NASA Astrophysics Data System (ADS)
Giraud-Moreau, Laurence; Belchior, Jérémy; Lafon, Pascal; Lotoing, Lionel; Cherouat, Abel; Courtielle, Eric; Guines, Dominique; Maurine, Patrick
2018-05-01
Incremental sheet forming is an emerging process to manufacture sheet metal parts. This process is more flexible than conventional one and well suited for small batch production or prototyping. During the process, the sheet metal blank is clamped by a blank-holder and a small-size smooth-end hemispherical tool moves along a user-specified path to deform the sheet incrementally. Classical three-axis CNC milling machines, dedicated structure or serial robots can be used to perform the forming operation. Whatever the considered machine, large deviations between the theoretical shape and the real shape can be observed after the part unclamping. These deviations are due to both the lack of stiffness of the machine and residual stresses in the part at the end of the forming stage. In this paper, an optimization strategy of the tool path is proposed in order to minimize the elastic springback induced by residual stresses after unclamping. A finite element model of the SPIF process allowing the shape prediction of the formed part with a good accuracy is defined. This model, based on appropriated assumptions, leads to calculation times which remain compatible with an optimization procedure. The proposed optimization method is based on an iterative correction of the tool path. The efficiency of the method is shown by an improvement of the final shape.
NASA Astrophysics Data System (ADS)
Uryadov, V. P.; Vertogradov, G. G.; Sklyarevsky, M. S.; Vybornov, F. I.
2018-02-01
We realize the possibilities for positioning of ionospheric irregularities and the Earth's surface roughness with the chirp-signal ionosonde-radio direction finder used as an over-the-horizon HF radar of bistatic configuration on the Cyprus — Rostov-on-Don and Australia — Rostov-on-Don paths. It is established that the small-amplitude diffuse signals coming from azimuths of 310°-50° on the Cyprus — Rostov-on-Don path in the evening and at night at frequencies above the maximum observable frequency (MOF) of the forward signal are due to backscattering by small-scale irregularities of the mid-latitude ionospheric F Layer. It is shown that the backward obliquesounding signals recorded on the Cyprus — Rostov-on-Don path are caused by the sideband scattering of radio waves from the Caucasus mountain ranges, the Iranian highlands, and the Balkan mountains. It is found that the anomalous signals observed on the Alice Springs (Australia) — Rostov-on-Don path, which come from azimuths of 10°-25° with delays by 10-16 ms exceeding the delay of the forward signal are due to scattering of radio waves by the high-latitude ionospheric F-layer irregularities localized in the evening sector of the auroral oval at latitudes of 70°-80° N.
When the Test of Mediation is More Powerful than the Test of the Total Effect
O'Rourke, Holly P.; MacKinnon, David P.
2014-01-01
Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. First, a study compared analytical power of the mediated effect to the total effect in a single mediator model to identify the situations in which the inclusion of one mediator increased statistical power. Results from the first study indicated that including a mediator increased statistical power in small samples with large coefficients and in large samples with small coefficients, and when coefficients were non-zero and equal across models. Next, a study identified conditions where power was greater for the test of the total mediated effect compared to the test of the total effect in the parallel two mediator model. Results indicated that including two mediators increased power in small samples with large coefficients and in large samples with small coefficients, the same pattern of results found in the first study. Finally, a study assessed analytical power for a sequential (three-path) two mediator model and compared power to detect the three-path mediated effect to power to detect both the test of the total effect and the test of the mediated effect for the single mediator model. Results indicated that the three-path mediated effect had more power than the mediated effect from the single mediator model and the test of the total effect. Practical implications of these results for researchers are then discussed. PMID:24903690
Detto, Matteo; Verfaillie, Joseph; Anderson, Frank; Xu, Liukang; Baldocchi, Dennis
2011-01-01
Closed- and open-path methane gas analyzers are used in eddy covariance systems to compare three potential methane emitting ecosystems in the Sacramento-San Joaquin Delta (CA, USA): a rice field, a peatland pasture and a restored wetland. The study points out similarities and differences of the systems in field experiments and data processing. The closed-path system, despite a less intrusive placement with the sonic anemometer, required more care and power. In contrast, the open-path system appears more versatile for a remote and unattended experimental site. Overall, the two systems have comparable minimum detectable limits, but synchronization between wind speed and methane data, air density corrections and spectral losses have different impacts on the computed flux covariances. For the closed-path analyzer, air density effects are less important, but the synchronization and spectral losses may represent a problem when fluxes are small or when an undersized pump is used. For the open-path analyzer air density corrections are greater, due to spectroscopy effects and the classic Webb–Pearman–Leuning correction. Comparison between the 30-min fluxes reveals good agreement in terms of magnitudes between open-path and closed-path flux systems. However, the scatter is large, as consequence of the intensive data processing which both systems require.
Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process
NASA Astrophysics Data System (ADS)
Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.
2018-03-01
A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.
Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process
NASA Astrophysics Data System (ADS)
Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.
2018-06-01
A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.
2012-01-01
Background Pathway data are important for understanding the relationship between genes, proteins and many other molecules in living organisms. Pathway gene relationships are crucial information for guidance, prediction, reference and assessment in biochemistry, computational biology, and medicine. Many well-established databases--e.g., KEGG, WikiPathways, and BioCyc--are dedicated to collecting pathway data for public access. However, the effectiveness of these databases is hindered by issues such as incompatible data formats, inconsistent molecular representations, inconsistent molecular relationship representations, inconsistent referrals to pathway names, and incomprehensive data from different databases. Results In this paper, we overcome these issues through extraction, normalization and integration of pathway data from several major public databases (KEGG, WikiPathways, BioCyc, etc). We build a database that not only hosts our integrated pathway gene relationship data for public access but also maintains the necessary updates in the long run. This public repository is named IntPath (Integrated Pathway gene relationship database for model organisms and important pathogens). Four organisms--S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M. musculus--are included in this version (V2.0) of IntPath. IntPath uses the "full unification" approach to ensure no deletion and no introduced noise in this process. Therefore, IntPath contains much richer pathway-gene and pathway-gene pair relationships and much larger number of non-redundant genes and gene pairs than any of the single-source databases. The gene relationships of each gene (measured by average node degree) per pathway are significantly richer. The gene relationships in each pathway (measured by average number of gene pairs per pathway) are also considerably richer in the integrated pathways. Moderate manual curation are involved to get rid of errors and noises from source data (e.g., the gene ID errors in WikiPathways and relationship errors in KEGG). We turn complicated and incompatible xml data formats and inconsistent gene and gene relationship representations from different source databases into normalized and unified pathway-gene and pathway-gene pair relationships neatly recorded in simple tab-delimited text format and MySQL tables, which facilitates convenient automatic computation and large-scale referencing in many related studies. IntPath data can be downloaded in text format or MySQL dump. IntPath data can also be retrieved and analyzed conveniently through web service by local programs or through web interface by mouse clicks. Several useful analysis tools are also provided in IntPath. Conclusions We have overcome in IntPath the issues of compatibility, consistency, and comprehensiveness that often hamper effective use of pathway databases. We have included four organisms in the current release of IntPath. Our methodology and programs described in this work can be easily applied to other organisms; and we will include more model organisms and important pathogens in future releases of IntPath. IntPath maintains regular updates and is freely available at http://compbio.ddns.comp.nus.edu.sg:8080/IntPath. PMID:23282057
NASA Astrophysics Data System (ADS)
Allen, Dale; Pickering, Kenneth; Stenchikov, Georgiy; Thompson, Anne; Kondo, Yutaka
2000-02-01
The relative importance of various odd nitrogen (NOy) sources including lightning, aircraft, and surface emissions on upper tropospheric total odd nitrogen is illustrated as a first application of the three-dimensional Stretched-Grid University of Maryland/Goddard Chemical-Transport Model (SG-GCTM). The SG-GCTM has been developed to look at the effect of localized sources and/or small-scale mixing processes on the large-scale or global chemical balance. For this simulation the stretched grid was chosen so that its maximum resolution is located over eastern North America and the North Atlantic; a region that includes most of the Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) flight paths. The SONEX period (October-November 1997) is simulated by driving the SG-GCTM with assimilated data from the Goddard Earth Observing System-Stratospheric Tracers of Atmospheric Transport Data Assimilation System (GEOS-STRAT DAS). A new algorithm is used to estimate the lightning flash rates needed to calculate NOy emission by lightning. This algorithm parameterizes the flash rate in terms of upper tropospheric convective mass flux. Model-calculated upper tropospheric NOy and NOy measurements from the NASA DC-8 aircraft are compared. Spatial variations in NOy were well captured especially with the stretched-grid run; however, model-calculated peaks due to "stratospheric" NOy are occasionally too large. The lightning algorithm reproduces the temporally and spatially averaged total flash rate accurately; however, the use of emissions from observed lightning flashes significantly improves the simulation on a few days, especially November 3, 1997, showing that significant uncertainty remains in parameterizing lightning in chemistry and transport models. Aircraft emissions contributed ˜15% of the upper tropospheric NOy averaged along SONEX flight paths within the North Atlantic Flight Corridor with the contribution exceeding 40% during portions of some flights.
The impact of environmental factors on cycling speed on shared paths.
Boufous, Soufiane; Hatfield, Julie; Grzebieta, Raphael
2018-01-01
Despite the importance of cycling speed on shared paths to the amenity and safety of users, few studies have systematically measured it, nor examined circumstances surrounding it. Speed was measured for 5421 riders who were observed cycling on shared paths across 12 metropolitan and regional locations in Sydney, Australia. Multivariate regression analysis was carried out to examine rider and environmental factors that contribute to riders cycling above the median speed. The study found that observed riders travelled at a median speed of 16km/h (mean 18.4km/h). Nearly 80% of riders travelled at 20km/h or less and 7.8% at speeds of more than 30km/h. Riders were significantly less likely to cycle above the median speed on shared paths that had an average volume of over 20 pedestrians/hour. Riders were significantly more likely to travel above the median speed on paths that had a centreline (OR: 1.71, 95% CI: 1.41-2.07), on wider paths (over 3.5m) (OR: 1.34, 95% CI: 1.12-1.59) and on paths with visual segregation between cyclists and pedestrians. Visual segregation, where cycling and walking areas are differentiated by the type of material or by paint colour used, was the strongest predictor of travelling above median speed on shared paths (OR: 3.9, 95% CI: 3.1-4.8). The findings suggest that riders adjust their speeds to accommodate pedestrians and path conditions. Path characteristics that support separation from pedestrians may allow relatively higher speeds, and associated amenity, without substantial loss of safety. Copyright © 2017 Elsevier Ltd. All rights reserved.
Blood Pump Having a Magnetically Suspended Rotor
NASA Technical Reports Server (NTRS)
Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)
2002-01-01
A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.
Blood Pump Having a Magnetically Suspended Rotor
NASA Technical Reports Server (NTRS)
Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)
2001-01-01
A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.
Ara, Perzila; Cheng, Shaokoon; Heimlich, Michael; Dutkiewicz, Eryk
2015-01-01
Recent developments in capsule endoscopy have highlighted the need for accurate techniques to estimate the location of a capsule endoscope. A highly accurate location estimation of a capsule endoscope in the gastrointestinal (GI) tract in the range of several millimeters is a challenging task. This is mainly because the radio-frequency signals encounter high loss and a highly dynamic channel propagation environment. Therefore, an accurate path-loss model is required for the development of accurate localization algorithms. This paper presents an in-body path-loss model for the human abdomen region at 2.4 GHz frequency. To develop the path-loss model, electromagnetic simulations using the Finite-Difference Time-Domain (FDTD) method were carried out on two different anatomical human models. A mathematical expression for the path-loss model was proposed based on analysis of the measured loss at different capsule locations inside the small intestine. The proposed path-loss model is a good approximation to model in-body RF propagation, since the real measurements are quite infeasible for the capsule endoscopy subject.
Meta-Analysis inside and outside Particle Physics: Convergence Using the Path of Least Resistance?
ERIC Educational Resources Information Center
Jackson, Dan; Baker, Rose
2013-01-01
In this note, we explain how the method proposed by Hartung and Knapp provides a compromise between conventional meta-analysis methodology and "unconstrained averaging", as used by the Particle Data Group.
Gao, Zhengguang; Liu, Hongzhan; Ma, Xiaoping; Lu, Wei
2016-11-10
Multi-hop parallel relaying is considered in a free-space optical (FSO) communication system deploying binary phase-shift keying (BPSK) modulation under the combined effects of a gamma-gamma (GG) distribution and misalignment fading. Based on the best path selection criterion, the cumulative distribution function (CDF) of this cooperative random variable is derived. Then the performance of this optical mesh network is analyzed in detail. A Monte Carlo simulation is also conducted to demonstrate the effectiveness of the results for the average bit error rate (ABER) and outage probability. The numerical result proves that it needs a smaller average transmitted optical power to achieve the same ABER and outage probability when using the multi-hop parallel network in FSO links. Furthermore, the system use of more number of hops and cooperative paths can improve the quality of the communication.
New measurements of the 6190-A band of methane
NASA Technical Reports Server (NTRS)
Mickelson, M. E.; Larson, L. E.; Schubert, A.
1991-01-01
The present paper reports new laboratory measurements that were made of the absorption coefficient of the visible methane band at 6190 A. Data were obtained using a tunable dye laser system operating with a line width of 0.067/cm. Spectra were recorded at approximately 1-A intervals with the beam coupled to a 22-m base length White-type absorption cell adjusted for an optical path of 1584 km and filled to a density of 0.884 amagats. Errors in pressure, temperature, and path length amounted to an uncertainty in the abundance of no more than 0.4 percent. Fourteen data sets were recorded and coadded. The final signal-averaged methane data were divided by a similar set of signal-averaged empty cell scans to remove the transmittance of the White cell and system optics. The results are compared with previous low-resolution measurements in the spectral region from 6000 to 6400 A.
NASA Astrophysics Data System (ADS)
Randunu Pathirannehelage, Nishantha
Fourier telescopy imaging is a recently-developed imaging method that relies on active structured-light illumination of the object. Reflected/scattered light is measured by a large "light bucket" detector; processing of the detected signal yields the magnitude and phase of spatial frequency components of the object reflectance or transmittance function. An inverse Fourier transform results in the image. In 2012 a novel method, known as time-average Fourier telescopy (TAFT), was introduced by William T. Rhodes as a means for diffraction-limited imaging through ground-level atmospheric turbulence. This method, which can be applied to long horizontal-path terrestrial imaging, addresses a need that is not solved by the adaptive optics methods being used in astronomical imaging. Field-experiment verification of the TAFT concept requires instrumentation that is not available at Florida Atlantic University. The objective of this doctoral research program is thus to demonstrate, in the absence of full-scale experimentation, the feasibility of time-average Fourier telescopy through (a) the design, construction, and testing of small-scale laboratory instrumentation capable of exploring basic Fourier telescopy data-gathering operations, and (b) the development of MATLAB-based software capable of demonstrating the effect of kilometer-scale passage of laser beams through ground-level turbulence in a numerical simulation of TAFT.
Path optimization method for the sign problem
NASA Astrophysics Data System (ADS)
Ohnishi, Akira; Mori, Yuto; Kashiwa, Kouji
2018-03-01
We propose a path optimization method (POM) to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t)(f ɛ R) and by optimizing f(t) to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.
van Velsen, Evert F S; Niessen, Wiro J; de Weert, Thomas T; de Monyé, Cécile; van der Lugt, Aad; Meijering, Erik; Stokking, Rik
2007-07-01
Vessel image analysis is crucial when considering therapeutical options for (cardio-) vascular diseases. Our method, VAMPIRE (Vascular Analysis using Multiscale Paths Inferred from Ridges and Edges), involves two parts: a user defines a start- and endpoint upon which a lumen path is automatically defined, and which is used for initialization; the automatic segmentation of the vessel lumen on computed tomographic angiography (CTA) images. Both parts are based on the detection of vessel-like structures by analyzing intensity, edge, and ridge information. A multi-observer evaluation study was performed to compare VAMPIRE with a conventional method on the CTA data of 15 patients with carotid artery stenosis. In addition to the start- and endpoint, the two radiologists required on average 2.5 (SD: 1.9) additional points to define a lumen path when using the conventional method, and 0.1 (SD: 0.3) when using VAMPIRE. The segmentation results were quantitatively evaluated using Similarity Indices, which were slightly lower between VAMPIRE and the two radiologists (respectively 0.90 and 0.88) compared with the Similarity Index between the radiologists (0.92). The evaluation shows that the improved definition of a lumen path requires minimal user interaction, and that using this path as initialization leads to good automatic lumen segmentation results.
Shic, Frederick; Smith, Daniel; Horsburgh, Brian; Hollander, Eric; Rehg, James M.; Goodwin, Matthew
2015-01-01
A gap exists between the expanding space of technological innovations to aid those affected by autism spectrum disorders, and the actual impact of those technologies on daily lives. This gap can be addressed through a very practical path of commercialization. However, the path from a technological innovation to a commercially viable product is fraught with challenges. These challenges can be mitigated through small business funding agencies, which are, more and more, catalyzing the dissemination of innovation by fostering social entrepreneurship through capital support and venture philanthropy. This letter describes the differences and nature of these agencies, and their importance in facilitating the translational and real-world impact of technological and scientific discoveries. PMID:26481385
Shic, Frederick; Smith, Daniel; Horsburgh, Brian; Hollander, Eric; Rehg, James M; Goodwin, Matthew
2015-12-01
A gap exists between the expanding space of technological innovations to aid those affected by autism spectrum disorders, and the actual impact of those technologies on daily lives. This gap can be addressed through a very practical path of commercialization. However, the path from a technological innovation to a commercially viable product is fraught with challenges. These challenges can be mitigated through small business funding agencies, which are, more and more, catalyzing the dissemination of innovation by fostering social entrepreneurship through capital support and venture philanthropy. This letter describes the differences and nature of these agencies, and their importance in facilitating the translational and real-world impact of technological and scientific discoveries.
Transitioning DARPA Technology
2001-05-01
logo suggests, the Institute’s work reflects the summation of technology’s effects on business and government. With a reputation for fierce objectivity... effective for "customerpull" strategies. b. Products moved along the DIS path 30 percent of the time. This path was particularlysuccessful for small...must often be "waited out." But DARPA ha s few effective mechanisms for continuing to "market" its products after the prog ram is over- particularly
Effective use of congestion in complex networks
NASA Astrophysics Data System (ADS)
Echagüe, Juan; Cholvi, Vicent; Kowalski, Dariusz R.
2018-03-01
In this paper, we introduce a congestion-aware routing protocol that selects the paths according to the congestion of nodes in the network. The aim is twofold: on one hand, and in order to prevent the networks from collapsing, it provides a good tolerance to nodes' overloads; on the other hand, and in order to guarantee efficient communication, it also incentivize the routes to follow short paths. We analyze the performance of our proposed routing strategy by means of a series of experiments carried out by using simulations. We show that it provides a tolerance to collapse close to the optimal value. Furthermore, the average length of the paths behaves optimally up to the certain value of packet generation rate ρ and it grows in a linear fashion with the increase of ρ.
Modeling the average shortest-path length in growth of word-adjacency networks
NASA Astrophysics Data System (ADS)
Kulig, Andrzej; DroŻdŻ, Stanisław; Kwapień, Jarosław; OświÈ©cimka, Paweł
2015-03-01
We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest-path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest-path length. Then, we identify the local chainlike linear growth induced by grammar and style as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained.
Free energy landscape from path-sampling: application to the structural transition in LJ38
NASA Astrophysics Data System (ADS)
Adjanor, G.; Athènes, M.; Calvo, F.
2006-09-01
We introduce a path-sampling scheme that allows equilibrium state-ensemble averages to be computed by means of a biased distribution of non-equilibrium paths. This non-equilibrium method is applied to the case of the 38-atom Lennard-Jones atomic cluster, which has a double-funnel energy landscape. We calculate the free energy profile along the Q4 bond orientational order parameter. At high or moderate temperature the results obtained using the non-equilibrium approach are consistent with those obtained using conventional equilibrium methods, including parallel tempering and Wang-Landau Monte Carlo simulations. At lower temperatures, the non-equilibrium approach becomes more efficient in exploring the relevant inherent structures. In particular, the free energy agrees with the predictions of the harmonic superposition approximation.
A link-adding strategy for transport efficiency of complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Han, Weizhan; Guo, Qing; Wang, Zhenyong; Zhang, Shuai
2016-12-01
The transport efficiency is one of the critical parameters to evaluate the performance of a network. In this paper, we propose an improved efficient (IE) strategy to enhance the network transport efficiency of complex networks by adding a fraction of links to an existing network based on the node’s local degree centrality and the shortest path length. Simulation results show that the proposed strategy can bring better traffic capacity and shorter average shortest path length than the low-degree-first (LDF) strategy under the shortest path routing protocol. It is found that the proposed strategy is beneficial to the improvement of overall traffic handling and delivering ability of the network. This study can alleviate the congestion in networks, and is helpful to design and optimize realistic networks.
On computing the global time-optimal motions of robotic manipulators in the presence of obstacles
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1991-01-01
A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.
Folded path LWIR system for SWAP constrained platforms
NASA Astrophysics Data System (ADS)
Fleet, Erin F.; Wilson, Michael L.; Linne von Berg, Dale; Giallorenzi, Thomas; Mathieu, Barry
2014-06-01
Folded path reflection and catadioptric optics are of growing interest, especially in the long wave infrared (LWIR), due to continuing demands for reductions in imaging system size, weight and power (SWAP). We present the optical design and laboratory data for a 50 mm focal length low f/# folded-path compact LWIR imaging system. The optical design uses 4 concentric aspheric mirrors, each of which is described by annular aspheric functions well suited to the folded path design space. The 4 mirrors are diamond turned onto two thin air-spaced aluminum plates which can be manually focused onto the uncooled LWIR microbolometer array detector. Stray light analysis will be presented to show how specialized internal baffling can be used to reduce stray light propagation through the folded path optical train. The system achieves near diffraction limited performance across the FOV with a 15 mm long optical train and a 5 mm back focal distance. The completed system is small enough to reside within a 3 inch diameter ball gimbal.
Forward- and reverse-bias tunneling effects in n/+/p silicon solar cells
NASA Technical Reports Server (NTRS)
Garlick, G. F. J.; Kachare, A. H.
1980-01-01
Excess currents due to field-assisted tunneling in both forward and reverse bias directions have been observed in n(+)-p silicon solar cells. These currents arise from the effect of conducting paths produced in the depletion layer by n(+) diffusion and cell processing. Forward-bias data indicate a small potential barrier with height of 0.04 eV at the n(+) end of conducting paths. Under reverse bias, excess tunneling currents involve a potential barrier at the p end of the conducting paths, the longer paths being associated with smaller barrier heights and dominating at the lower temperatures. Low-reverse-bias data give energy levels of 0.11 eV for lower temperatures (253-293 K) and 0.35 eV for higher temperatures (293-380 K). A model is suggested to explain the results.
A blind squirrel finds a nut: tales from at an entrepreneurial adventure
NASA Astrophysics Data System (ADS)
Doughty, Chris
2010-03-01
When I received my PhD back in the dark days of 386 computers, fax machines, and a miserable economy it was commonly said that ``a degree in Physics is a great foundation for wide variety of non-academic career paths,'' but it was never entirely clear what those paths were. I still can't say what those paths are but can describe at least one: starting, building and ultimately exiting a small entrepreneurial business. This talk will describe at least one entrepreneurial path, where a physics background has value, where it is a liability, and what other skills the physicist needs to acquire to succeed in business. I will give a personal view of what it looks like inside a startup, lessons learned, mistakes made, and copious advice of dubious utility and value.
NASA Astrophysics Data System (ADS)
Gyenge, N.; Baranyi, T.; Ludmány, A.
The solar active longitudes were studied in the northern hemisphere in cycles 22 and 23 by using data of DPD sunspot catalogue. The active longitudes are not fixed in the Carrington system, they have a well recognizable migration path between the descending phase of cycle 21 (from about 1984) and ascending phase of cycle 23 (until about 1996), out of this interval the migration path is ambiguous. The longitudinal distribution on both sides of the path has been computed and averaged for the length of the path. The so-called flip-flop phenomenon, when the activity temporarily gets to the opposite longitude, can also be recognized. The widths of the active domains are fairly narrow in the increasing and decaying phases of cycle 22, their half widths are about 20°-30° for both the main and secondary active belts but it is more flat and stretched around the maximum with a half width of about 60°.
Monitoring trace gases in downtown Toronto using open-path Fourier transform infrared spectroscopy
NASA Astrophysics Data System (ADS)
Byrne, B.; Strong, K.; Colebatch, O.; Fogal, P.; Mittermeier, R. L.; Wunch, D.; Jones, D. B. A.
2017-12-01
Emissions of greenhouse gases (GHGs) in urban environments can be highly heterogeneous. For example, vehicles produce point source emissions which can result in heterogeneous GHG concentrations on scales <10 m. The highly localized scale of these emissions can make it difficult to measure mean GHG concentrations on scales of 100-1000 m. Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) measurements offer spatial averaging and continuous measurements of several trace gases simultaneously in the same airmass. We have set up an open-path system in downtown Toronto to monitor trace gases in the urban boundary layer. Concentrations of CO2, CO, CH4, and N2O are derived from atmospheric absorption spectra recorded over a two-way atmospheric open path of 320 m using non-linear least squares fitting. Using a simple box model and co-located boundary layer height measurements, we estimate surface fluxes of these gases in downtown Toronto from our OP-FTIR observations.
Feasibility of Whole-Body Functional Mouse Imaging Using Helical Pinhole SPECT
Metzler, Scott D.; Vemulapalli, Sreekanth; Jaszczak, Ronald J.; Akabani, Gamal; Chin, Bennett B.
2010-01-01
Purpose Detailed in vivo whole-body biodistributions of radiolabeled tracers may characterize the longitudinal progression of disease, and changes with therapeutic interventions. Small-animal imaging in mice is particularly attractive due to the wide array of well characterized genetically and surgically created models of disease. Single Photon Emission Computed Tomography (SPECT) imaging using pinhole collimation provides high resolution and sensitivity, but conventional methods using circular acquisitions result in severe image truncation and incomplete sampling of data which prevent the accurate determination of whole-body radiotracer biodistributions. This study describes the feasibility of helical acquisition paths to mitigate these effects. Procedures Helical paths of pinhole apertures were implemented using an external robotic stage aligned with the axis of rotation (AOR) of the scanner. Phantom and mouse scans were performed using helical paths and either circular or bi-circular orbits at the same radius of rotation (ROR). The bi-circular orbits consisted of two 360-degree scans separated by an axial shift to increase the axial field of view (FOV) and to improve the complete-sampling properties. Results Reconstructions of phantoms and mice acquired with helical paths show good image quality and are visually free of both truncation and axial-blurring artifacts. Circular orbits yielded reconstructions with both artifacts and a limited effective FOV. The bi-circular scans enlarged the axial FOV, but still suffered from truncation and sampling artifacts. Conclusions Helical paths can provide complete sampling data and large effective FOV, yielding 3D full-body in vivo biodistributions while still maintaining a small distance from the aperture to the object for good sensitivity and resolution. PMID:19521736
NASA Astrophysics Data System (ADS)
Yuksel, Heba; Davis, Christopher C.
2006-09-01
Intensity fluctuations at the receiver in free space optical (FSO) communication links lead to a received power variance that depends on the size of the receiver aperture. Increasing the size of the receiver aperture reduces the power variance. This effect of the receiver size on power variance is called aperture averaging. If there were no aperture size limitation at the receiver, then there would be no turbulence-induced scintillation. In practice, there is always a tradeoff between aperture size, transceiver weight, and potential transceiver agility for pointing, acquisition and tracking (PAT) of FSO communication links. We have developed a geometrical simulation model to predict the aperture averaging factor. This model is used to simulate the aperture averaging effect at given range by using a large number of rays, Gaussian as well as uniformly distributed, propagating through simulated turbulence into a circular receiver of varying aperture size. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. For each statistical representation of the atmosphere, the three-dimensional trajectory of each ray is analyzed using geometrical optics. These Monte Carlo techniques have proved capable of assessing the aperture averaging effect, in particular, the quantitative expected reduction in intensity fluctuations with increasing aperture diameter. In addition, beam wander results have demonstrated the range-cubed dependence of mean-squared beam wander. An effective turbulence parameter can also be determined by correlating beam wander behavior with the path length.
The effect of path length and display size on memory for spatial information.
Guérard, Katherine; Tremblay, Sébastien
2012-01-01
In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.
Strategies for Choosing Descent Flight-Path Angles for Small Jets
NASA Technical Reports Server (NTRS)
Wu, Minghong Gilbert; Green, Steven M.
2012-01-01
Three candidate strategies for choosing the descent flight path angle (FPA) for small jets are proposed, analyzed, and compared for fuel efficiency under arrival metering conditions. The strategies vary in operational complexity from a universally fixed FPA, or FPA function that varies with descent speed for improved fuel efficiency, to the minimum-fuel FPA computed for each flight based on winds, route, and speed profile. Methodologies for selecting the parameter for the first two strategies are described. The differences in fuel burn are analyzed over a year s worth of arrival traffic and atmospheric conditions recorded for the Dallas/Fort Worth (DFW) Airport during 2011. The results show that the universally fixed FPA strategy (same FPA for all flights, all year) burns on average 26 lbs more fuel per flight as compared to the minimum-fuel solution. This FPA is adapted to the arrival gate (direction of entry to the terminal) and various timespans (season, month and day) to improve fuel efficiency. Compared to a typical FPA of approximately 3 degrees the adapted FPAs vary significantly, up to 1.3 from one arrival gate to another or up to 1.4 from one day to another. Adapting the universally fixed FPA strategy to the arrival gate or to each day reduces the extra fuel burn relative to the minimum-fuel solution by 27% and 34%, respectively. The adaptations to gate and time combined shows up to 57% reduction of the extra fuel burn. The second strategy, an FPA function, contributes a 17% reduction in the 26 lbs of extra fuel burn over the universally fixed FPA strategy. Compared to the corresponding adaptations of the universally fixed FPA, adaptations of the FPA function reduce the extra fuel burn anywhere from 15-23% depending on the extent of adaptation. The combined effect of the FPA function strategy with both directional and temporal adaptation recovers 67% of the extra fuel relative to the minimum-fuel solution.
Modeling and dynamical topology properties of VANET based on complex networks theory
NASA Astrophysics Data System (ADS)
Zhang, Hong; Li, Jie
2015-01-01
Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate and control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What's more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.
Modeling and dynamical topology properties of VANET based on complex networks theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong; Li, Jie, E-mail: prof.li@foxmail.com
2015-01-15
Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate andmore » control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What’s more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.« less
NASA Astrophysics Data System (ADS)
Blagoveshchenskaya, N. F.; Borisova, T. D.; Kornienko, V. A.; Kalishin, A. S.; Robinson, T. R.; Yeoman, T. K.; Wright, D. M.; Baddeley, L. J.
2009-01-01
Experimental results from SPEAR HF heating experiments in the polar ionosphere are examined. Bi-static scatter measurements of HF diagnostic signals were carried out on the Pori (Finland)-SPEAR-St. Petersburg path at operational frequencies of 11,755 and 15,400 kHz and the London-SPEAR-St. Petersburg path at frequencies of 12,095 and 17,700 kHz, using a Doppler spectral method. The SPEAR HF heating facility generates heater-induced artificial field-aligned small-scale irregularities (AFAIs), which can be detected by HF diagnostic bi-static radio scatter techniques at St. Petersburg at a distance of about 2000 km. In accordance with the Bragg condition, HF bi-static backscatters were sensitive to small-scale irregularities having spatial sizes of the order of 9-13 m across the geomagnetic field line. The properties and behaviour of AFAIs have been considered in the winter and summer seasons under quiet magnetic conditions and under various status of the polar ionosphere (the presence of "thick" and "thin" sporadic Es layers, different structures of the F2 layer). The experimental results obtained have shown that AFAIs can be excited in the F as well as in the E regions of the polar ionosphere. The excitation of a very intense wide-band spectral component with an abrupt increase in the spectral width up to 16-20 Hz has been found in the signals scattered from striations. Along with a wide-band component, a narrow-band spectral component can be also seen in the Doppler sonograms and in the average spectra of the signals scattered from the SPEAR-induced striations. AFAIs were excited even when the HF heater frequency was up to 0.5 MHz larger than the critical frequency. A simulation of the ray geometry for the diagnostic HF radio waves scattered from AFAIs in the polar ionosphere has been made for the geophysical conditions prevailing during experiments carried out in both the winter and summer seasons.
NASA Astrophysics Data System (ADS)
Guo, Shiyi; Mai, Ying; Zhao, Hongying; Gao, Pengqi
2013-05-01
The airborne video streams of small-UAVs are commonly plagued with distractive jittery and shaking motions, disorienting rotations, noisy and distorted images and other unwanted movements. These problems collectively make it very difficult for observers to obtain useful information from the video. Due to the small payload of small-UAVs, it is a priority to improve the image quality by means of electronic image stabilization. But when small-UAV makes a turn, affected by the flight characteristics of it, the video is easy to become oblique. This brings a lot of difficulties to electronic image stabilization technology. Homography model performed well in the oblique image motion estimation, while bringing great challenges to intentional motion estimation. Therefore, in this paper, we focus on solve the problem of the video stabilized when small-UAVs banking and turning. We attend to the small-UAVs fly along with an arc of a fixed turning radius. For this reason, after a series of experimental analysis on the flight characteristics and the path how small-UAVs turned, we presented a new method to estimate the intentional motion in which the path of the frame center was used to fit the video moving track. Meanwhile, the image sequences dynamic mosaic was done to make up for the limited field of view. At last, the proposed algorithm was carried out and validated by actual airborne videos. The results show that the proposed method is effective to stabilize the oblique video of small-UAVs.
Liljequist, David
2012-01-01
Backscattering of very low energy electrons in thin layers of amorphous ice is known to provide experimental data for the elastic and inelastic cross sections and indicates values to be expected in liquid water. The extraction of cross sections was based on a transport analysis consistent with Monte Carlo simulation of electron trajectories. However, at electron energies below 20 eV, quantum coherence effects may be important and trajectory-based methods may be in significant error. This possibility is here investigated by calculating quantum multiple elastic scattering of electrons in a simple model of a very small, thin foil of amorphous ice. The average quantum multiple elastic scattering of electrons is calculated for a large number of simulated foils, using a point-scatterer model for the water molecule and taking inelastic absorption into account. The calculation is compared with a corresponding trajectory simulation. The difference between average quantum scattering and trajectory simulation at energies below about 20 eV is large, in particular in the forward scattering direction, and is found to be almost entirely due to coherence effects associated with the short-range order in the amorphous ice. For electrons backscattered at the experimental detection angle (45° relative to the surface normal) the difference is however small except at electron energies below about 10 eV. Although coherence effects are in general found to be strong, the mean free path values derived by trajectory-based analysis may actually be in fair agreement with the result of an analysis based on quantum scattering, at least for electron energies larger than about 10 eV.
Curvature and torsion in growing actin networks
NASA Astrophysics Data System (ADS)
Shaevitz, Joshua W.; Fletcher, Daniel A.
2008-06-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.
Anderst, William; Baillargeon, Emma; Donaldson, William; Lee, Joon; Kang, James
2013-01-01
Study Design Case-control. Objective To characterize the motion path of the instant center of rotation (ICR) at each cervical motion segment from C2 to C7 during dynamic flexion-extension in asymptomatic subjects. To compare asymptomatic and single-level arthrodesis patient ICR paths. Summary of Background Data The ICR has been proposed as an alternative to range of motion (ROM) for evaluating the quality of spine movement and for identifying abnormal midrange kinematics. The motion path of the ICR during dynamic motion has not been reported. Methods 20 asymptomatic controls, 12 C5/C6 and 5 C6/C7 arthrodesis patients performed full ROM flexion-extension while biplane radiographs were collected at 30 Hz. A previously validated tracking process determined three-dimensional vertebral position with sub-millimeter accuracy. The finite helical axis method was used to calculate the ICR between adjacent vertebrae. A linear mixed-model analysis identified differences in the ICR path among motion segments and between controls and arthrodesis patients. Results From C2/C3 to C6/C7, the mean ICR location moved superior for each successive motion segment (p < .001). The AP change in ICR location per degree of flexion-extension decreased from the C2/C3 motion segment to the C6/C7 motion segment (p < .001). Asymptomatic subject variability (95% CI) in the ICR location averaged ±1.2 mm in the SI direction and ±1.9 mm in the AP direction over all motion segments and flexion-extension angles. Asymptomatic and arthrodesis groups were not significantly different in terms of average ICR position (all p ≥ .091) or in terms of the change in ICR location per degree of flexion-extension (all p ≥ .249). Conclusions To replicate asymptomatic in vivo cervical motion, disc replacements should account for level-specific differences in the location and motion path of ICR. Single-level anterior arthrodesis does not appear to affect cervical motion quality during flexion-extension. PMID:23429677
NASA Astrophysics Data System (ADS)
Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Schiller, Cornelius; Krämer, Martina; Ebert, Volker
2017-01-01
The novel Hygrometer for Atmospheric Investigation (HAI) realizes a unique concept for simultaneous gas-phase and total (gas-phase + evaporated cloud particles) water measurements. It has been developed and successfully deployed for the first time on the German HALO research aircraft. This new instrument combines direct tunable diode laser absorption spectroscopy (dTDLAS) with a first-principle evaluation method to allow absolute water vapor measurements without any initial or repetitive sensor calibration using a reference gas or a reference humidity generator. HAI contains two completely independent dual-channel (closed-path, open-path) spectrometers, one at 1.4 and one at 2.6 µm, which together allow us to cover the entire atmospheric H2O range from 1 to 40 000 ppmv with a single instrument. Both spectrometers each comprise a separate, wavelength-individual extractive, closed-path cell for total water (ice and gas-phase) measurements. Additionally, both spectrometers couple light into a common open-path cell outside of the aircraft fuselage for a direct, sampling-free, and contactless determination of the gas-phase water content. This novel twin dual-channel setup allows for the first time multiple self-validation functions, in particular a reliable, direct, in-flight validation of the open-path channels. During the first field campaigns, the in-flight deviations between the independent and calibration-free channels (i.e., closed-path to closed-path and open-path to closed-path) were on average in the 2 % range. Further, the fully autonomous HAI hygrometer allows measurements up to 240 Hz with a minimal integration time of 1.4 ms. The best precision is achieved by the 1.4 µm closed-path cell at 3.8 Hz (0.18 ppmv) and by the 2.6 µm closed-path cell at 13 Hz (0.055 ppmv). The requirements, design, operation principle, and first in-flight performance of the hygrometer are described and discussed in this work.
When the test of mediation is more powerful than the test of the total effect.
O'Rourke, Holly P; MacKinnon, David P
2015-06-01
Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. To address this deficit, in a first study we compared the analytical power values of the mediated effect and the total effect in a single-mediator model, to identify the situations in which the inclusion of one mediator increased statistical power. The results from this first study indicated that including a mediator increased statistical power in small samples with large coefficients and in large samples with small coefficients, and when coefficients were nonzero and equal across models. Next, we identified conditions under which power was greater for the test of the total mediated effect than for the test of the total effect in the parallel two-mediator model. These results indicated that including two mediators increased power in small samples with large coefficients and in large samples with small coefficients, the same pattern of results that had been found in the first study. Finally, we assessed the analytical power for a sequential (three-path) two-mediator model and compared the power to detect the three-path mediated effect to the power to detect both the test of the total effect and the test of the mediated effect for the single-mediator model. The results indicated that the three-path mediated effect had more power than the mediated effect from the single-mediator model and the test of the total effect. Practical implications of these results for researchers are then discussed.
Volcanic eruption induced WWVB transmission path interruption
NASA Astrophysics Data System (ADS)
Buckmaster, H. A.; Hansen, C. H.
1985-07-01
It is reported that the 60 kHz transmission of WWVB from Fort Collins, Colorado, was not received in Calgary, Alberta, Canada, for about 11 h from 1109 UT to 2153 UT on July 23, 1980. It is suggested that this transmission path interruption is correlated with the 15 km height ash cloud due to the July 22, 1980 volcanic eruption of Mount St. Helens as it drifted eastward interrupting both the ground- and first hop sky-wave paths and that this ash cloud is the source of the conductivity and/or ionization necessary to produce this interruption. Small phase retardations are also reported which could be correlated with other Mount St. Helens volcanic events during May-July 1980.
Exact and Heuristic Minimization of the Average Path Length in Decision Diagrams
2005-01-01
34$&%’ (*) &+#-,./&%1023 ’+/4%! 5637& 158+#&9 1 SHINOBU NAGAYAMA∗ , ALAN ...reviewers for constructive comments. REFERENCES [1] Ashar , P. and Malik, S. (1995). Fast functional simulation using branching programs, ICCAD’95, 408–412. [2
Light-duty vehicle CO2 targets consistent with 450 ppm CO2 stabilization.
Winkler, Sandra L; Wallington, Timothy J; Maas, Heiko; Hass, Heinz
2014-06-03
We present a global analysis of CO2 emission reductions from the light-duty vehicle (LDV) fleet consistent with stabilization of atmospheric CO2 concentration at 450 ppm. The CO2 emission reductions are described by g CO2/km emission targets for average new light-duty vehicles on a tank-to-wheel basis between 2010 and 2050 that we call CO2 glide paths. The analysis accounts for growth of the vehicle fleet, changing patterns in driving distance, regional availability of biofuels, and the changing composition of fossil fuels. New light-duty vehicle fuel economy and CO2 regulations in the U.S. through 2025 and in the EU through 2020 are broadly consistent with the CO2 glide paths. The glide path is at the upper end of the discussed 2025 EU range of 68-78 g CO2/km. The proposed China regulation for 2020 is more stringent than the glide path, while the 2017 Brazil regulation is less stringent. Existing regulations through 2025 are broadly consistent with the light-duty vehicle sector contributing to stabilizing CO2 at approximately 450 ppm. The glide paths provide long-term guidance for LDV powertrain/fuel development.
Development of induction current acquisition device based on ARM
NASA Astrophysics Data System (ADS)
Ji, Yanju; Liu, Xiyang; Huang, Wanyu; Yao, Jiang; Yuan, Guiyang; Hui, Luan; Guan, Shanshan
2018-03-01
We design an induction current acquisition device based on ARM in order to realize high resolution and high sampling rate of acquisition for the induction current in wire-loop. Considering its characteristics of fast attenuation and small signal amplitude, we use the method of multi-path fusion for noise suppression. In the paper, the design is carried out from three aspects of analog circuit and device selection, independent power supply structure and the electromagnetic interference suppression of high frequency. DMA and ping-pong buffer, as a new data transmission technology, solves real time storage problem of massive data. The performance parameters of ARM acquisition device are tested. The comparison test of ARM acquisition device and cRIO acquisition device is performed at different time constants. The results show that it has 120dB dynamic range, 47kHz bandwidth, 96kHz sampling rate, 5μV the smallest resolution, and its average error value is not more than 4%, which proves the high accuracy and stability of the device.
Offdiagonal complexity: A computationally quick complexity measure for graphs and networks
NASA Astrophysics Data System (ADS)
Claussen, Jens Christian
2007-02-01
A vast variety of biological, social, and economical networks shows topologies drastically differing from random graphs; yet the quantitative characterization remains unsatisfactory from a conceptual point of view. Motivated from the discussion of small scale-free networks, a biased link distribution entropy is defined, which takes an extremum for a power-law distribution. This approach is extended to the node-node link cross-distribution, whose nondiagonal elements characterize the graph structure beyond link distribution, cluster coefficient and average path length. From here a simple (and computationally cheap) complexity measure can be defined. This offdiagonal complexity (OdC) is proposed as a novel measure to characterize the complexity of an undirected graph, or network. While both for regular lattices and fully connected networks OdC is zero, it takes a moderately low value for a random graph and shows high values for apparently complex structures as scale-free networks and hierarchical trees. The OdC approach is applied to the Helicobacter pylori protein interaction network and randomly rewired surrogates.
Light Management in Flexible Glass by Wood Cellulose Coating
Fang, Zhi-Qiang; Zhu, Hong-Li; Li, Yuan-Yuan; Liu, Zhen; Dai, Jia-Qi; Preston, Colin; Garner, Sean; Cimo, Pat; Chai, Xin-Sheng; Chen, Gang; Hu, Liang-Bing
2014-01-01
Ultra-thin flexible glass with high transparency is attractive for a broad range of display applications; however, substrates with low optical haze are not ideal for thin film solar cells, since most of the light will go through the semiconductor layer without scattering, and the length of light travelling path in the active layer is small. By simply depositing a layer of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-oxidized wood fibers (TOWFs), we are able to tailor the optical properties of flexible glass dramatically from exhibiting low haze (<1%) to high haze (~56%) without compromising the total forward transmittance (~90%). The influence of the TOWFs morphology on the optical properties of TOWFs-coated flexible glass is investigated. As the average fiber length decreases, the transmission haze of TOWF-coated flexible glass illustrates a decreasing trend. Earth-abundant natural materials for transparent, hazy, and flexible glass have tremendous applicability in the fabrication of flexible optoelectronics with tunable light scattering effects by enabling inexpensive and large-scale processes. PMID:25068486
A random walk approach to quantum algorithms.
Kendon, Vivien M
2006-12-15
The development of quantum algorithms based on quantum versions of random walks is placed in the context of the emerging field of quantum computing. Constructing a suitable quantum version of a random walk is not trivial; pure quantum dynamics is deterministic, so randomness only enters during the measurement phase, i.e. when converting the quantum information into classical information. The outcome of a quantum random walk is very different from the corresponding classical random walk owing to the interference between the different possible paths. The upshot is that quantum walkers find themselves further from their starting point than a classical walker on average, and this forms the basis of a quantum speed up, which can be exploited to solve problems faster. Surprisingly, the effect of making the walk slightly less than perfectly quantum can optimize the properties of the quantum walk for algorithmic applications. Looking to the future, even with a small quantum computer available, the development of quantum walk algorithms might proceed more rapidly than it has, especially for solving real problems.
NASA Technical Reports Server (NTRS)
Chui, T. C. P.; Shao, M.; Redding, D.; Gursel, Y.; Boden, A.
1995-01-01
We discuss the effect of mirror birefringence in two optical schemes designed to detect the quantum-electrodynamics (QED) predictions of vacuum birefringence under the influence of a strong magnetic field, B. Both schemes make use of a high finesse Fabry-Perot cavity (F-P) to increase the average path length of the light in the magnetic field. The first scheme, which we called the frequency scheme, is based on measurement of the beat frequency of two orthogonal polarized laser beams in the cavity. We show that mirror birefringence contributes to the detection uncertainties in first order, resulting in a high susceptibility to small thermal disturbances. We estimate that an unreasonably high thermal stability of 10-9 K is required to resolve the effect to 0.1%. In the second scheme, which we called the polarization rotation scheme, laser polarized at 45 relative to the B field is injected into the cavity.
Horton, Keith A.; Williams-Jones, Glyn; Garbeil, Harold; Elias, Tamar; Sutton, A. Jeff; Mouginis-Mark, Peter J; Porter, John T.; Clegg, Steven
2006-01-01
A miniaturized, lightweight and low-cost UV correlation spectrometer, the FLYSPEC, has been developed as an alternative for the COSPEC, which has long been the mainstay for monitoring volcanic sulfur dioxide fluxes. Field experiments have been conducted with the FLYSPEC at diverse volcanic systems, including Masaya (Nicaragua), Poás (Costa Rica), Stromboli, Etna and Vulcano (Italy), Villarica (Chile) and Kilauea (USA). We present here those validation measurements that were made simultaneously with COSPEC at Kilauea between March 2002 and February 2003. These experiments, with source emission rates that ranged from 95 to 1,560 t d−1, showed statistically identical results from both instruments. SO2 path-concentrations ranged from 0 to >1,000 ppm-m with average correlation coefficients greater than r2=0.946. The small size and low cost create the opportunity for FLYSPEC to be used in novel deployment modes that have the potential to revolutionize the manner in which volcanic and industrial monitoring is performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Lei, E-mail: donglei@sxu.edu.cn; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006; Li, Chunguang
A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 μm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH{sub 4} sensor with a small footprint (32 × 20 × 17 cm{sup 3}) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH{sub 4} concentrations, respectively. An Allan-Werle deviation analysis shows that the measurement precision can reach 1.4 ppb for amore » 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH{sub 4} sensor system.« less
Observation of the quantum paradox of separation of a single photon from one of its properties
NASA Astrophysics Data System (ADS)
Ashby, James M.; Schwarz, Peter D.; Schlosshauer, Maximilian
2016-07-01
We report an experimental realization of the quantum paradox of the separation of a single photon from one of its properties (the so-called "quantum Cheshire cat"). We use a modified Sagnac interferometer with displaced paths to produce appropriately pre- and postselected states of heralded single photons. Weak measurements of photon presence and circular polarization are performed in each arm of the interferometer by introducing weak absorbers and small polarization rotations and analyzing changes in the postselected signal. The absorber is found to have an appreciable effect only in one arm of the interferometer, while the polarization rotation significantly affects the signal only when performed in the other arm. We carry out both sequential and simultaneous weak measurements and find good agreement between measured and predicted weak values. In the language of Aharonov et al. and in the sense of the ensemble averages described by weak values, the experiment establishes the separation of a particle from one its properties during the passage through the interferometer.
Insight to the express transport network
NASA Astrophysics Data System (ADS)
Yang, Hua; Nie, Yuchao; Zhang, Hongbin; Di, Zengru; Fan, Ying
2009-09-01
The express delivery industry is developing rapidly in recent years and has attracted attention in many fields. Express shipment service requires that parcels be delivered in a limited time with a low operation cost, which requests a high level and efficient express transport network (ETN). The ETN is constructed based on the public transport networks, especially the airline network. It is similar to the airline network in some aspects, while it has its own feature. With the complex network theory, the topological properties of the ETN are analyzed deeply. We find that the ETN has the small-world property, with disassortative mixing behavior and rich club phenomenon. It also shows difference from the airline network in some features, such as edge density and average shortest path. Analysis on the corresponding distance-weighted network shows that the distance distribution displays a truncated power-law behavior. At last, an evolving model, which takes both geographical constraint and preference attachment into account, is proposed. The model shows similar properties with the empirical results.
A network analysis of indirect carbon emission flows among different industries in China.
Du, Qiang; Xu, Yadan; Wu, Min; Sun, Qiang; Bai, Libiao; Yu, Ming
2018-06-17
Indirect carbon emissions account for a large ratio of the total carbon emissions in processes to make the final products, and this implies indirect carbon emission flow across industries. Understanding these flows is crucial for allocating a carbon allowance for each industry. By combining input-output analysis and complex network theory, this study establishes an indirect carbon emission flow network (ICEFN) for 41 industries from 2005 to 2014 to investigate the interrelationships among different industries. The results show that the ICEFN was consistent with a small-world nature based on an analysis of the average path lengths and the clustering coefficients. Moreover, key industries in the ICEFN were identified using complex network theory on the basis of degree centrality and betweenness centrality. Furthermore, the 41 industries of the ICEFN were divided into four industrial subgroups that are related closely to one another. Finally, possible policy implications were provided based on the knowledge of the structure of the ICEFN and its trend.
Planning maximally smooth hand movements constrained to nonplanar workspaces.
Liebermann, Dario G; Krasovsky, Tal; Berman, Sigal
2008-11-01
The article characterizes hand paths and speed profiles for movements performed in a nonplanar, 2-dimensional workspace (a hemisphere of constant curvature). The authors assessed endpoint kinematics (i.e., paths and speeds) under the minimum-jerk model assumptions and calculated minimal amplitude paths (geodesics) and the corresponding speed profiles. The authors also calculated hand speeds using the 2/3 power law. They then compared modeled results with the empirical observations. In all, 10 participants moved their hands forward and backward from a common starting position toward 3 targets located within a hemispheric workspace of small or large curvature. Comparisons of modeled observed differences using 2-way RM-ANOVAs showed that movement direction had no clear influence on hand kinetics (p < .05). Workspace curvature affected the hand paths, which seldom followed geodesic lines. Constraining the paths to different curvatures did not affect the hand speed profiles. Minimum-jerk speed profiles closely matched the observations and were superior to those predicted by 2/3 power law (p < .001). The authors conclude that speed and path cannot be unambiguously linked under the minimum-jerk assumption when individuals move the hand in a nonplanar 2-dimensional workspace. In such a case, the hands do not follow geodesic paths, but they preserve the speed profile, regardless of the geometric features of the workspace.
Raman scattering in a whispering mode optical waveguide
Kurnit, Norman A.
1982-01-01
A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.
Optical pumping in a whispering-mode optical waveguide
Kurnit, N.A.
1981-08-11
A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.
Pan, Feng; Yang, Lizhi; Xiao, Wen
2017-09-04
In digital holographic microscopy (DHM), it is undesirable to observe coherent noise in the reconstructed images. The sources of the noise are mainly the parasitic interference fringes caused by multiple reflections and the speckle pattern caused by the optical scattering on the object surface. Here we propose a noise reduction approach in DHM by averaging multiple holograms recorded with a multimode laser. Based on the periodicity of the temporal coherence of a multimode semiconductor laser, we acquire a series of holograms by changing the optical path length difference between the reference beam and object beam. Because of the use of low coherence light, we can remove the parasitic interference fringes caused by multiple reflections in the holograms. In addition, the coherent noise patterns change in this process due to the different optical paths. Therefore, the coherent noise can be reduced by averaging the multiple reconstructions with uncorrelated noise patterns. Several experiments have been carried out to validate the effectiveness of the proposed approach for coherent noise reduction in DHM. It is shown a remarkable improvement both in amplitude imaging quality and phase measurement accuracy.
NASA Astrophysics Data System (ADS)
Ma, Fei; Yao, Bing
2017-10-01
It is always an open, demanding and difficult task for generating available model to simulate dynamical functions and reveal inner principles from complex systems and networks. In this article, due to lots of real-life and artificial networks are built from series of simple and small groups (components), we discuss some interesting and helpful network-operation to generate more realistic network models. In view of community structure (modular topology), we present a class of sparse network models N(t , m) . At the moment, we capture the fact the N(t , 4) has not only scale-free feature, which means that the probability that a randomly selected vertex with degree k decays as a power-law, following P(k) ∼k-γ, where γ is the degree exponent, but also small-world property, which indicates that the typical distance between two uniform randomly chosen vertices grows proportionally to logarithm of the order of N(t , 4) , namely, relatively shorter diameter and lower average path length, simultaneously displays higher clustering coefficient. Next, as a new topological parameter correlating to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees over a network is studied in more detail, an exact analytical solution for the number of spanning trees of the N(t , 4) is obtained. Based on the network-operation, part hub-vertex linking with each other will be helpful for structuring various network models and investigating the rules related with real-life networks.
NASA Astrophysics Data System (ADS)
Lloyd, A. S.; Newcombe, M. E.; Plank, T. A.
2016-12-01
Although olivine-hosted melt inclusions (MIs) remain the gold standard for recovering volatile concentrations of primitive magmas, later-fractionating minerals may be more appropriate for assessing magma storage conditions immediately prior to eruption. We present volatile analyses of MIs entrapped in early (Mg# 81-83) olivine and later (Mg# 70-80) clinopyroxene (Cpx) from the 1977 eruption of Seguam volcano, to assess the ascent history prior to this violent strombolian eruption. The olivine-hosted MIs contain average volatile concentrations (n=16) of 3.79 wt% H2O, 167 ppm CO2, 592 ppm Cl, and 133 ppm F, consistent with an entrapment pressure of 200 to 300 MPa ( 10-13 km depth) if the CO2 contained in the bubble is taken into account (Moore et al., 2015). Cpx phenocrysts contain two distinct MI assemblages; the inner assemblage consists of randomly distributed, rounded MIs which never contain a vapor bubble. Average volatile concentrations of the inner assemblage MIs (n=11) are 0.96 wt% H2O, 98 ppm CO2, 798 ppm Cl, and 280 ppm F, consistent with an entrapment at much shallower depth, 2 km. The outer assemblage contains inclusions too small for routine volatile analysis. Inner assemblage Cpx-hosted MIs preserve average enrichments of 1.3x and 2x for Cl and F respectively, and are similarly enriched in incompatible minor and trace elements (up to a factor of 5x). Two potential scenarios can explain these observations. The enrichments may represent the entrapment of an unrelated highly-fractionated, shallow magma (which is unsupported by the whole rock record at Seguam). A second possibility is enrichment through boundary layer entrapment during a period of rapid crystal growth during ascent through the upper crust. Boundary layer entrapment during MI formation is further supported by a negative correlation between the degree of enrichment and the diffusivity of individual elements, which is consistent with growth rates 10-8 m/s. Although the olivine-hosted MIs record a volatile-rich storage region, the later-fractionating Cpx indicate a phase of rapid crystallization, likely driven by water loss from the melt at shallow depths. This work highlights the information added by analyzing multiple phases in order to reconstruct the degassing path of magma prior to eruption.
NASA Astrophysics Data System (ADS)
Zhai, Zirui; Wang, Yong; Jiang, Hanqing
2018-03-01
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications.
Zhai, Zirui; Wang, Yong; Jiang, Hanqing
2018-02-27
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. Copyright © 2018 the Author(s). Published by PNAS.
Zhai, Zirui; Wang, Yong
2018-01-01
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. PMID:29440441
Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs
Jiang, Peng; Li, Deshi; Sun, Tao
2017-01-01
Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region. PMID:28925960
Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.
Wang, Xiaoliang; Jiang, Peng; Li, Deshi; Sun, Tao
2017-09-19
Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region.
Method for Veterbi decoding of large constraint length convolutional codes
NASA Technical Reports Server (NTRS)
Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor); Reed, Irving S. (Inventor); Jing, Sun (Inventor)
1988-01-01
A new method of Viterbi decoding of convolutional codes lends itself to a pipline VLSI architecture using a single sequential processor to compute the path metrics in the Viterbi trellis. An array method is used to store the path information for NK intervals where N is a number, and K is constraint length. The selected path at the end of each NK interval is then selected from the last entry in the array. A trace-back method is used for returning to the beginning of the selected path back, i.e., to the first time unit of the interval NK to read out the stored branch metrics of the selected path which correspond to the message bits. The decoding decision made in this way is no longer maximum likelihood, but can be almost as good, provided that constraint length K in not too small. The advantage is that for a long message, it is not necessary to provide a large memory to store the trellis derived information until the end of the message to select the path that is to be decoded; the selection is made at the end of every NK time unit, thus decoding a long message in successive blocks.
Osuga, T; Obata, T; Ikehira, H
2004-04-01
A small degree of nonuniformity in dialysate flow in a hollow-fiber dialyzer was detected using proton magnetic resonance imaging (MRI). Since paramagnetic ions reduce the spin-lattice relaxation time of protons around them, MRI can detect Gd in water. An aqueous solution of a chelate compound of Gd was impulsively injected into the dialysate flow path at a flow rate of 500 cm(3) /m, which is that utilized in actual dialysis. Despite the apparent elimination of Gd from the dialysate flow path by the newly injected dialysate fluid after the injection of Gd was terminated, MRI revealed that Gd remained in the interior of the hollow fiber. The observed structure pattern of the Gd concentration profile revealed that the dialysate flow had a small degree of nonuniformity despite the currently established design to restrict channeling in dialysate flow. Local nonuniformity of the hollow-fiber density and vortex generation in the dialysate flow were considered to cause the nonuniformity in the dialysate flow.
Graph transformation method for calculating waiting times in Markov chains.
Trygubenko, Semen A; Wales, David J
2006-06-21
We describe an exact approach for calculating transition probabilities and waiting times in finite-state discrete-time Markov processes. All the states and the rules for transitions between them must be known in advance. We can then calculate averages over a given ensemble of paths for both additive and multiplicative properties in a nonstochastic and noniterative fashion. In particular, we can calculate the mean first-passage time between arbitrary groups of stationary points for discrete path sampling databases, and hence extract phenomenological rate constants. We present a number of examples to demonstrate the efficiency and robustness of this approach.
NASA Astrophysics Data System (ADS)
Marhadi, Kun Saptohartyadi
Structural optimization for damage tolerance under various unforeseen damage scenarios is computationally challenging. It couples non-linear progressive failure analysis with sampling-based stochastic analysis of random damage. The goal of this research was to understand the relationship between alternate load paths available in a structure and its damage tolerance, and to use this information to develop computationally efficient methods for designing damage tolerant structures. Progressive failure of a redundant truss structure subjected to small random variability was investigated to identify features that correlate with robustness and predictability of the structure's progressive failure. The identified features were used to develop numerical surrogate measures that permit computationally efficient deterministic optimization to achieve robustness and predictability of progressive failure. Analysis of damage tolerance on designs with robust progressive failure indicated that robustness and predictability of progressive failure do not guarantee damage tolerance. Damage tolerance requires a structure to redistribute its load to alternate load paths. In order to investigate the load distribution characteristics that lead to damage tolerance in structures, designs with varying degrees of damage tolerance were generated using brute force stochastic optimization. A method based on principal component analysis was used to describe load distributions (alternate load paths) in the structures. Results indicate that a structure that can develop alternate paths is not necessarily damage tolerant. The alternate load paths must have a required minimum load capability. Robustness analysis of damage tolerant optimum designs indicates that designs are tailored to specified damage. A design Optimized under one damage specification can be sensitive to other damages not considered. Effectiveness of existing load path definitions and characterizations were investigated for continuum structures. A load path definition using a relative compliance change measure (U* field) was demonstrated to be the most useful measure of load path. This measure provides quantitative information on load path trajectories and qualitative information on the effectiveness of the load path. The use of the U* description of load paths in optimizing structures for effective load paths was investigated.
A Prospective Method to Guide Small Molecule Drug Design
ERIC Educational Resources Information Center
Johnson, Alan T.
2015-01-01
At present, small molecule drug design follows a retrospective path when considering what analogs are to be made around a current hit or lead molecule with the focus often on identifying a compound with higher intrinsic potency. What this approach overlooks is the simultaneous need to also improve the physicochemical (PC) and pharmacokinetic (PK)…
Chen, Jia; Mo, Zhi-Hong; Yang, Xiao; Zhou, Hai-Ling; Gao, Qin
2017-06-22
The organic-inorganic hybrid perovskites efficiently enhance the infrared absorption of small molecules. It is suggested that the quantum wells of perovskites enable the electrons of the perovskites to be excited by light in the infrared region. The exploration has opened a new path for chemical sensing through infrared spectroscopy.
47 CFR 27.60 - TV/DTV interference protection criteria.
Code of Federal Regulations, 2014 CFR
2014-10-01
... average terrain, the distance to the radio path horizon will be calculated assuming smooth earth. If the... Section 27.60 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.60 TV/DTV interference protection...
The impact of self-driving cars on existing transportation networks
NASA Astrophysics Data System (ADS)
Ji, Xiang
2018-04-01
In this paper, considering the usage of self-driving, I research the congestion problems of traffic networks from both macro and micro levels. Firstly, the macroscopic mathematical model is established using the Greenshields function, analytic hierarchy process and Monte Carlo simulation, where the congestion level is divided into five levels according to the average vehicle speed. The roads with an obvious congestion situation is investigated mainly and the traffic flow and topology of the roads are analyzed firstly. By processing the data, I propose a traffic congestion model. In the model, I assume that half of the non-self-driving cars only take the shortest route and the other half can choose the path randomly. While self-driving cars can obtain vehicle density data of each road and choose the path more reasonable. When the path traffic density exceeds specific value, it cannot be selected. To overcome the dimensional differences of data, I rate the paths by BORDA sorting. The Monte Carlo simulation of Cellular Automaton is used to obtain the negative feedback information of the density of the traffic network, where the vehicles are added into the road network one by one. I then analyze the influence of negative feedback information on path selection of intelligent cars. The conclusion is that the increase of the proportion of intelligent vehicles will make the road load more balanced, and the self-driving cars can avoid the peak and reduce the degree of road congestion. Combined with other models, the optimal self-driving ratio is about sixty-two percent. From the microscopic aspect, by using the single-lane traffic NS rule, another model is established to analyze the road Partition scheme. The self-driving traffic is more intelligent, and their cooperation can reduce the random deceleration probability. By the model, I get the different self-driving ratio of space-time distribution. I also simulate the case of making a lane separately for self-driving, compared to the former model. It is concluded that a single lane is more efficient in a certain interval. However, it is not recommended to offer a lane separately. However, the self-driving also faces the problem of hacker attacks and greater damage after fault. So, when self-driving ratio is higher than a certain value, the increase of traffic flow rate is small. In this article, that value is discussed, and the optimal proportion is determined. Finally, I give a nontechnical explanation of the problem.
Hysteresis and uncertainty in soil water-retention curve parameters
Likos, William J.; Lu, Ning; Godt, Jonathan W.
2014-01-01
Accurate estimates of soil hydraulic parameters representing wetting and drying paths are required for predicting hydraulic and mechanical responses in a large number of applications. A comprehensive suite of laboratory experiments was conducted to measure hysteretic soil-water characteristic curves (SWCCs) representing a wide range of soil types. Results were used to quantitatively assess differences and uncertainty in three simplifications frequently adopted to estimate wetting-path SWCC parameters from more easily measured drying curves. They are the following: (1) αw=2αd, (2) nw=nd, and (3) θws=θds, where α, n, and θs are fitting parameters entering van Genuchten’s commonly adopted SWCC model, and the superscripts w and d indicate wetting and drying paths, respectively. The average ratio αw/αd for the data set was 2.24±1.25. Nominally cohesive soils had a lower αw/αd ratio (1.73±0.94) than nominally cohesionless soils (3.14±1.27). The average nw/nd ratio was 1.01±0.11 with no significant dependency on soil type, thus confirming the nw=nd simplification for a wider range of soil types than previously available. Water content at zero suction during wetting (θws) was consistently less than during drying (θds) owing to air entrapment. The θws/θds ratio averaged 0.85±0.10 and was comparable for nominally cohesive (0.87±0.11) and cohesionless (0.81±0.08) soils. Regression statistics are provided to quantitatively account for uncertainty in estimating hysteretic retention curves. Practical consequences are demonstrated for two case studies.
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.
1994-01-01
System for remote control of robotic land vehicle requires only small radio-communication bandwidth. Twin video cameras on vehicle create stereoscopic images. Operator views cross-polarized images on two cathode-ray tubes through correspondingly polarized spectacles. By use of cursor on frozen image, remote operator designates path. Vehicle proceeds to follow path, by use of limited degree of autonomous control to cope with unexpected conditions. System concept, called "computer-aided remote driving" (CARD), potentially useful in exploration of other planets, military surveillance, firefighting, and clean-up of hazardous materials.
Single reflector interference spectrometer and drive system therefor
NASA Technical Reports Server (NTRS)
Schindler, R. A. (Inventor)
1974-01-01
In a Fourier interference spectrometer of the doublepass retroreflector type, a single mirror is employed in the path of both split beams of an incoming ray to cause them to double back through separate retroreflectors. Changes in optical path length are achieved by linear displacement of both retroreflectors using a motor driven lead screw on one for large, low frequency changes, a moving-coil actuator on the other for smaller, mid-frequency changes and a piezoelectric actuator on one of these two for small, high frequency changes.
MAS Bulletin. GY-90 Fiber Optic Gyro
1989-07-20
487 GY.9O Fiber Optic Gyro Background. Elettronica San Giorgio ELSAG S.p.A., Genoa, Italy, has developed a fiber optic gyro (FOG) for use on short...to the length of ELSAG S.p.A., Naval Systems Division, Via G. Puccini, 2-16154 the optical path and an extremely long optical path can be Genoa, Italy...Telephone 39 10/60011, Fax 39 10/607329, Telex achieved in a small size by using a many-turn coil of optical fiber. 270660/213847 ELSAG 1. There are
REGIONAL SEISMIC CHEMICAL AND NUCLEAR EXPLOSION DISCRIMINATION: WESTERN U.S. EXAMPLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W R; Taylor, S R; Matzel, E
2006-07-07
We continue exploring methodologies to improve regional explosion discrimination using the western U.S. as a natural laboratory. The western U.S. has abundant natural seismicity, historic nuclear explosion data, and widespread mine blasts, making it a good testing ground to study the performance of regional explosion discrimination techniques. We have assembled and measured a large set of these events to systematically explore how to best optimize discrimination performance. Nuclear explosions can be discriminated from a background of earthquakes using regional phase (Pn, Pg, Sn, Lg) amplitude measures such as high frequency P/S ratios. The discrimination performance is improved if the amplitudesmore » can be corrected for source size and path length effects. We show good results are achieved using earthquakes alone to calibrate for these effects with the MDAC technique (Walter and Taylor, 2001). We show significant further improvement is then possible by combining multiple MDAC amplitude ratios using an optimized weighting technique such as Linear Discriminant Analysis (LDA). However this requires data or models for both earthquakes and explosions. In many areas of the world regional distance nuclear explosion data is lacking, but mine blast data is available. Mine explosions are often designed to fracture and/or move rock, giving them different frequency and amplitude behavior than contained chemical shots, which seismically look like nuclear tests. Here we explore discrimination performance differences between explosion types, the possible disparity in the optimization parameters that would be chosen if only chemical explosions were available and the corresponding effect of that disparity on nuclear explosion discrimination. Even after correcting for average path and site effects, regional phase ratios contain a large amount of scatter. This scatter appears to be due to variations in source properties such as depth, focal mechanism, stress drop, in the near source material properties (including emplacement conditions in the case of explosions) and in variations from the average path and site correction. Here we look at several kinds of averaging as a means to try and reduce variance in earthquake and explosion populations and better understand the factors going into a minimum variance level as a function of epicenter (see Anderson ee et al. this volume). We focus on the performance of P/S ratios over the frequency range from 1 to 16 Hz finding some improvements in discrimination as frequency increases. We also explore averaging and optimally combining P/S ratios in multiple frequency bands as a means to reduce variance. Similarly we explore the effects of azimuthally averaging both regional amplitudes and amplitude ratios over multiple stations to reduce variance. Finally we look at optimal performance as a function of magnitude and path length, as these put limits the availability of good high frequency discrimination measures.« less
NASA Astrophysics Data System (ADS)
Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas
2016-03-01
Machine learning (ML) algorithms have successfully been demonstrated to be valuable tools in satellite-based rainfall retrievals which show the practicability of using ML algorithms when faced with high dimensional and complex data. Moreover, recent developments in parallel computing with ML present new possibilities for training and prediction speed and therefore make their usage in real-time systems feasible. This study compares four ML algorithms - random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) - for rainfall area detection and rainfall rate assignment using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path serve as predictor variables. The results indicate an overestimation of rainfall area delineation regardless of the ML algorithm (averaged bias = 1.8) but a high probability of detection ranging from 81% (SVM) to 85% (NNET). On a 24-hour basis, the performance of the rainfall rate assignment yielded R2 values between 0.39 (SVM) and 0.44 (AVNNET). Though the differences in the algorithms' performance were rather small, NNET and AVNNET were identified as the most suitable algorithms. On average, they demonstrated the best performance in rainfall area delineation as well as in rainfall rate assignment. NNET's computational speed is an additional advantage in work with large datasets such as in remote sensing based rainfall retrievals. However, since no single algorithm performed considerably better than the others we conclude that further research in providing suitable predictors for rainfall is of greater necessity than an optimization through the choice of the ML algorithm.
NASA Astrophysics Data System (ADS)
Kreis, Karsten; Kremer, Kurt; Potestio, Raffaello; Tuckerman, Mark E.
2017-12-01
Path integral-based methodologies play a crucial role for the investigation of nuclear quantum effects by means of computer simulations. However, these techniques are significantly more demanding than corresponding classical simulations. To reduce this numerical effort, we recently proposed a method, based on a rigorous Hamiltonian formulation, which restricts the quantum modeling to a small but relevant spatial region within a larger reservoir where particles are treated classically. In this work, we extend this idea and show how it can be implemented along with state-of-the-art path integral simulation techniques, including path-integral molecular dynamics, which allows for the calculation of quantum statistical properties, and ring-polymer and centroid molecular dynamics, which allow the calculation of approximate quantum dynamical properties. To this end, we derive a new integration algorithm that also makes use of multiple time-stepping. The scheme is validated via adaptive classical-path-integral simulations of liquid water. Potential applications of the proposed multiresolution method are diverse and include efficient quantum simulations of interfaces as well as complex biomolecular systems such as membranes and proteins.
Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Birge, Brian
2013-01-01
The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.
Heuristic approaches for energy-efficient shared restoration in WDM networks
NASA Astrophysics Data System (ADS)
Alilou, Shahab
In recent years, there has been ongoing research on the design of energy-efficient Wavelength Division Multiplexing (WDM) networks. The explosive growth of Internet traffic has led to increased power consumption of network components. Network survivability has also been a relevant research topic, as it plays a crucial role in assuring continuity of service with no disruption, regardless of network component failure. Network survivability mechanisms tend to utilize considerable resources such as spare capacity in order to protect and restore information. This thesis investigates techniques for reducing energy demand and enhancing energy efficiency in the context of network survivability. We propose two novel heuristic energy-efficient shared protection approaches for WDM networks. These approaches intend to save energy by setting on sleep mode devices that are not being used while providing shared backup paths to satisfy network survivability. The first approach exploits properties of a math series in order to assign weight to the network links. It aims at reducing power consumption at the network indirectly by aggregating traffic on a set of nodes and links with high traffic load level. Routing traffic on links and nodes that are already under utilization makes it possible for the links and nodes with no load to be set on sleep mode. The second approach is intended to dynamically route traffic through nodes and links with high traffic load level. Similar to the first approach, this approach computes a pair of paths for every newly arrived demand. It computes these paths for every new demand by comparing the power consumption of nodes and links in the network before the demand arrives with their potential power consumption if they are chosen along the paths of this demand. Simulations of two different networks were used to compare the total network power consumption obtained using the proposed techniques against a standard shared-path restoration scheme. Shared-path restoration is a network survivability method in which a link-disjoint backup path and wavelength is reserved at the time of call setup for a working path. However, in order to reduce spare capacity consumption, this reserved backup path and wavelength may be shared with other backup paths. Pool Sharing Scheme (PSS) is employed to implement shared-path restoration scheme [1]. In an optical network, the failure of a single link leads to the failure of all the lightpaths that pass through that particular link. PSS ensures that the amount of backup bandwidth required on a link to restore the failed connections will not be more than the total amount of reserved backup bandwidth on that link. Simulation results indicate that the proposed approaches lead to up to 35% power savings in WDM networks when traffic load is low. However, power saving decreases to 14% at high traffic load level. Furthermore, in terms of the total capacity consumption for working paths, PSS outperforms the two proposed approaches, as expected. In terms of total capacity consumption all the approaches behave similarly. In general, at low traffic load level, the two proposed approaches behave similar to PSS in terms of average link load, and the ratio of block demands. Nevertheless, at high traffic load, the proposed approaches result in higher ratio of blocked demands than PSS. They also lead to higher average link load than PSS for the equal number of generated demands.
Application of LANDSAT data to delimitation of avalanche hazards in Montane Colorado
NASA Technical Reports Server (NTRS)
Knepper, D. H. (Principal Investigator); Ives, J. D.; Summer, R.
1975-01-01
The author has identified the following significant results. Interpretation of small scale LANDSAT imagery provides a means for determining the general location and distribution of avalanche paths. The accuracy and completeness of small scale mapping is less than is obtained from the interpretation of large scale color infrared photos. Interpretation of enlargement prints (18X) of LANDSAT imagery is superior to small scale imagery, because more detailed information can be extracted and annotated.
Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary Ann
2014-01-01
We introduce the Spectrum-averaged Harmonic Path (SHAPA) algorithm for estimation of heart rate (HR) and respiration rate (RR) with Impulse Radio Ultrawideband (IR-UWB) radar. Periodic movement of human torso caused by respiration and heart beat induces fundamental frequencies and their harmonics at the respiration and heart rates. IR-UWB enables capture of these spectral components and frequency domain processing enables a low cost implementation. Most existing methods of identifying the fundamental component either in frequency or time domain to estimate the HR and/or RR lead to significant error if the fundamental is distorted or cancelled by interference. The SHAPA algorithm (1) takes advantage of the HR harmonics, where there is less interference, and (2) exploits the information in previous spectra to achieve more reliable and robust estimation of the fundamental frequency in the spectrum under consideration. Example experimental results for HR estimation demonstrate how our algorithm eliminates errors caused by interference and produces 16% to 60% more valid estimates.
NASA Astrophysics Data System (ADS)
Chen, Ching-Hsu; Lu, Ming-Lun; Tai, Po-Tse
2015-08-01
We determine the average path length ls of amplified spontaneous emission (ASE) by comparing the numerical slope of a straight line with the experimental slope in the graph of the square of relaxation oscillation frequency versus normalized pump ratio. The simple method is applied in an end-pumped Nd:YVO4 laser with the 1/3 mode-degeneracy cavity having the transverse mode spacing equal to 1/3 of the longitudinal mode spacing. We find that ls is larger at the degeneracy than that far from the degeneracy. This result indicates the existence of stronger ASE at the degeneracy, which is confirmed below the threshold. This is because many spontaneous emission photons can undergo amplification not only before escaping from the gain medium but also after leaving the gain medium, owing to cavity reflection. Our method can be applied in the situations where the Auger upconversion effect is absent, weak, or well-known.
High-speed measurement of an air transect's temperature shift heated by laser beam
NASA Astrophysics Data System (ADS)
Li, WenYu; Jiang, ZongFu; Xi, Fengjie; Li, Qiang; Xie, Wenke
2005-02-01
Laser beam heat the air on the optic path, Beam-deflection optical tomography is a non-intrusive method to measure the 2-dimension temperature distribution in the transect. By means of linear Hartmann Sensor at the rate of 27kHz, the optic path was heated by a 2.7μm HF laser, continuous and high time resolution gradients of optic phase were obtained. the result of analysing and calculation showed the temperament shift in the heated beam path was not higher than 50K when the HF laser power was 9W. The experiment showed that it is a practical non-intrusive temperature shift measurement method for a small area aero-optical medium.
Observation and modeling of source effects in coda wave interferometry at Pavlof volcano
Haney, M.M.; van, Wijik K.; Preston, L.A.; Aldridge, D.F.
2009-01-01
Sorting out source and path effects for seismic waves at volcanoes is critical for the proper interpretation of underlying volcanic processes. Source or path effects imply that seismic waves interact strongly with the volcanic subsurface, either through partial resonance in a conduit (Garces et al., 2000; Sturton and Neuberg, 2006) or by random scattering in the heterogeneous volcanic edifice (Wegler and Luhr, 2001). As a result, both source and path effects can cause seismic waves to repeatedly sample parts of the volcano, leading to enhanced sensitivity to small changes in material properties at those locations. The challenge for volcano seismologists is to detect and reliably interpret these subtle changes for the purpose of monitoring eruptions. ?? 2009 Society of Exploration Geophysicists.
A family of small-world network models built by complete graph and iteration-function
NASA Astrophysics Data System (ADS)
Ma, Fei; Yao, Bing
2018-02-01
Small-world networks are popular in real-life complex systems. In the past few decades, researchers presented amounts of small-world models, in which some are stochastic and the rest are deterministic. In comparison with random models, it is not only convenient but also interesting to study the topological properties of deterministic models in some fields, such as graph theory, theorem computer sciences and so on. As another concerned darling in current researches, community structure (modular topology) is referred to as an useful statistical parameter to uncover the operating functions of network. So, building and studying such models with community structure and small-world character will be a demanded task. Hence, in this article, we build a family of sparse network space N(t) which is different from those previous deterministic models. Even though, our models are established in the same way as them, iterative generation. By randomly connecting manner in each time step, every resulting member in N(t) has no absolutely self-similar feature widely shared in a large number of previous models. This makes our insight not into discussing a class certain model, but into investigating a group various ones spanning a network space. Somewhat surprisingly, our results prove all members of N(t) to possess some similar characters: (a) sparsity, (b) exponential-scale feature P(k) ∼α-k, and (c) small-world property. Here, we must stress a very screming, but intriguing, phenomenon that the difference of average path length (APL) between any two members in N(t) is quite small, which indicates this random connecting way among members has no great effect on APL. At the end of this article, as a new topological parameter correlated to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees on a representative member NB(t) of N(t) is studied in detail, then an exact analytical solution for its spanning trees entropy is also obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, R.E.
1993-02-01
Numerical models are useful tools for developing an understanding of ground-water flow in sparsely characterized low-permeability aquifers. Finite-difference, cross-sectional models of Cretaceous chalk and marl formations near the Superconducting Super Collider (SSC) were constructed using MODFLOW to evaluate ground-water circulation paths and travel times. Weathered and fractured zones with enhanced permeability were included to assess the effect these features had on flow paths and times. Pump tests, slug tests, packer tests, core tests, and estimates were used to define hydraulic properties for model input. The model was calibrated with water-level data from monitor wells and from wire-line piezometers near amore » test shaft excavated by the SSC project. A ratio of vertical-to-horizontal permeability of 0.0085 was estimated through model calibration. A chalk-to-marl permeability ratio of 18 was needed to reproduce artesian head in a well completed in chalk beneath marl. Hydraulic head distributions and ground-water flow paths reflected local, intermediate, and regional flow systems with recharge beneath upland surface-water divides and discharge in valleys. Most of the flow (99%) occurred in the weathered zone, with average residence times of 5 to 10 years. Residence time in unweathered chalk bedrock was substantially longer, at an average of 1.7 Ma. As expected, the model demonstrated that deep and rapid ground-water circulation might occur in fracture zones. Particle paths calculated using MODPATH showed that ground-water travel times from recharge areas to the SSC subsurface facilities might be 20 to 60 years where flow is through fracture zones.« less
NASA Astrophysics Data System (ADS)
Everaers, Ralf
2012-08-01
We show that the front factor appearing in the shear modulus of a phantom network, Gph=(1-2/f)(ρkBT)/Ns, also controls the ratio of the strand length, Ns, and the number of monomers per Kuhn length of the primitive paths, NphPPKuhn, characterizing the average network conformation. In particular, NphPPKuhn=Ns/(1-2/f) and Gph=(ρkBT)/NphPPKuhn. Neglecting the difference between cross-links and slip-links, these results can be transferred to entangled systems and the interpretation of primitive path analysis data. In agreement with the tube model, the analogy to phantom networks suggest that the rheological entanglement length, Nerheo=(ρkBT)/Ge, should equal NePPKuhn. Assuming binary entanglements with f=4 functional junctions, we expect that Nerheo should be twice as large as the topological entanglement length, Netopo. These results are in good agreement with reported primitive path analysis results for model systems and a wide range of polymeric materials. Implications for tube and slip-link models are discussed.
The correlation of metrics in complex networks with applications in functional brain networks
NASA Astrophysics Data System (ADS)
Li, C.; Wang, H.; de Haan, W.; Stam, C. J.; Van Mieghem, P.
2011-11-01
An increasing number of network metrics have been applied in network analysis. If metric relations were known better, we could more effectively characterize networks by a small set of metrics to discover the association between network properties/metrics and network functioning. In this paper, we investigate the linear correlation coefficients between widely studied network metrics in three network models (Bárabasi-Albert graphs, Erdös-Rényi random graphs and Watts-Strogatz small-world graphs) as well as in functional brain networks of healthy subjects. The metric correlations, which we have observed and theoretically explained, motivate us to propose a small representative set of metrics by including only one metric from each subset of mutually strongly dependent metrics. The following contributions are considered important. (a) A network with a given degree distribution can indeed be characterized by a small representative set of metrics. (b) Unweighted networks, which are obtained from weighted functional brain networks with a fixed threshold, and Erdös-Rényi random graphs follow a similar degree distribution. Moreover, their metric correlations and the resultant representative metrics are similar as well. This verifies the influence of degree distribution on metric correlations. (c) Most metric correlations can be explained analytically. (d) Interestingly, the most studied metrics so far, the average shortest path length and the clustering coefficient, are strongly correlated and, thus, redundant. Whereas spectral metrics, though only studied recently in the context of complex networks, seem to be essential in network characterizations. This representative set of metrics tends to both sufficiently and effectively characterize networks with a given degree distribution. In the study of a specific network, however, we have to at least consider the representative set so that important network properties will not be neglected.
NASA Astrophysics Data System (ADS)
Gorokhovski, Mikhael; Zamansky, Rémi
2018-03-01
Consistently with observations from recent experiments and DNS, we focus on the effects of strong velocity increments at small spatial scales for the simulation of the drag force on particles in high Reynolds number flows. In this paper, we decompose the instantaneous particle acceleration in its systematic and residual parts. The first part is given by the steady-drag force obtained from the large-scale energy-containing motions, explicitly resolved by the simulation, while the second denotes the random contribution due to small unresolved turbulent scales. This is in contrast with standard drag models in which the turbulent microstructures advected by the large-scale eddies are deemed to be filtered by the particle inertia. In our paper, the residual term is introduced as the particle acceleration conditionally averaged on the instantaneous dissipation rate along the particle path. The latter is modeled from a log-normal stochastic process with locally defined parameters obtained from the resolved field. The residual term is supplemented by an orientation model which is given by a random walk on the unit sphere. We propose specific models for particles with diameter smaller and larger size than the Kolmogorov scale. In the case of the small particles, the model is assessed by comparison with direct numerical simulation (DNS). Results showed that by introducing this modeling, the particle acceleration statistics from DNS is predicted fairly well, in contrast with the standard LES approach. For the particles bigger than the Kolmogorov scale, we propose a fluctuating particle response time, based on an eddy viscosity estimated at the particle scale. This model gives stretched tails of the particle acceleration distribution and dependence of its variance consistent with experiments.
NASA Technical Reports Server (NTRS)
Rall, Jonathan A. R.
1994-01-01
Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.
Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems
NASA Astrophysics Data System (ADS)
Sahawneh, Laith Rasmi
The increasing demand to integrate unmanned aircraft systems (UAS) into the national airspace is motivated by the rapid growth of the UAS industry, especially small UAS weighing less than 55 pounds. Their use however has been limited by the Federal Aviation Administration regulations due to collision risk they pose, safety and regulatory concerns. Therefore, before civil aviation authorities can approve routine UAS flight operations, UAS must be equipped with sense-and-avoid technology comparable to the see-and-avoid requirements for manned aircraft. The sense-and-avoid problem includes several important aspects including regulatory and system-level requirements, design specifications and performance standards, intruder detecting and tracking, collision risk assessment, and finally path planning and collision avoidance. In this dissertation, our primary focus is on developing an collision detection, risk assessment and avoidance framework that is computationally affordable and suitable to run on-board small UAS. To begin with, we address the minimum sensing range for the sense-and-avoid (SAA) system. We present an approximate close form analytical solution to compute the minimum sensing range to safely avoid an imminent collision. The approach is then demonstrated using a radar sensor prototype that achieves the required minimum sensing range. In the area of collision risk assessment and collision prediction, we present two approaches to estimate the collision risk of an encounter scenario. The first is a deterministic approach similar to those been developed for Traffic Alert and Collision Avoidance (TCAS) in manned aviation. We extend the approach to account for uncertainties of state estimates by deriving an analytic expression to propagate the error variance using Taylor series approximation. To address unanticipated intruders maneuvers, we propose an innovative probabilistic approach to quantify likely intruder trajectories and estimate the probability of collision risk using the uncorrelated encounter model (UEM) developed by MIT Lincoln Laboratory. We evaluate the proposed approach using Monte Carlo simulations and compare the performance with linearly extrapolated collision detection logic. For the path planning and collision avoidance part, we present multiple reactive path planning algorithms. We first propose a collision avoidance algorithm based on a simulated chain that responds to a virtual force field produced by encountering intruders. The key feature of the proposed approach is to model the future motion of both the intruder and the ownship using a chain of waypoints that are equally spaced in time. This timing information is used to continuously re-plan paths that minimize the probability of collision. Second, we present an innovative collision avoidance logic using an ownship centered coordinate system. The technique builds a graph in the local-level frame and uses the Dijkstra's algorithm to find the least cost path. An advantage of this approach is that collision avoidance is inherently a local phenomenon and can be more naturally represented in the local coordinates than the global coordinates. Finally, we propose a two step path planner for ground-based SAA systems. In the first step, an initial suboptimal path is generated using A* search. In the second step, using the A* solution as an initial condition, a chain of unit masses connected by springs and dampers evolves in a simulated force field. The chain is described by a set of ordinary differential equations that is driven by virtual forces to find the steady-state equilibrium. The simulation results show that the proposed approach produces collision-free plans while minimizing the path length. To move towards a deployable system, we apply collision detection and avoidance techniques to a variety of simulation and sensor modalities including camera, radar and ADS-B along with suitable tracking schemes. Keywords: unmanned aircraft system, small UAS, sense and avoid, minimum sensing range, airborne collision detection and avoidance, collision detection, collision risk assessment, collision avoidance, conflict detection, conflict avoidance, path planning.
A character network study of two Sci-Fi TV series
NASA Astrophysics Data System (ADS)
Tan, M. S. A.; Ujum, E. A.; Ratnavelu, K.
2014-03-01
This work is an analysis of the character networks in two science fiction television series: Stargate and Star Trek. These networks are constructed on the basis of scene co-occurrence between characters to indicate the presence of a connection. Global network structure measures such as the average path length, graph density, network diameter, average degree, median degree, maximum degree, and average clustering coefficient are computed as well as individual node centrality scores. The two fictional networks constructed are found to be quite similar in structure which is astonishing given that Stargate only ran for 18 years in comparison to the 48 years for Star Trek.
NASA Technical Reports Server (NTRS)
Yang, Yuekui; Marshak, Alexander; Varnai, Tamas; Wiscombe, Warren; Yang, Ping
2010-01-01
In support of the Ice, Cloud, and land Elevation Satellite (ICESat)-II mission, this paper studies the bias in surface-elevation measurements caused by undetected thin clouds. The ICESat-II satellite may only have a 1064-nm single-channel lidar onboard. Less sensitive to clouds than the 532-nm channel, the 1064-nm channel tends to miss thin clouds. Previous studies have demonstrated that scattering by cloud particles increases the photon-path length, thus resulting in biases in ice-sheet-elevation measurements from spaceborne lidars. This effect is referred to as atmospheric path delay. This paper complements previous studies in the following ways: First, atmospheric path delay is estimated over the ice sheets based on cloud statistics from the Geoscience Laser Altimeter System onboard ICESat and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua. Second, the effect of cloud particle size and shape is studied with the state-of-the-art phase functions developed for MODIS cirrus- cloud microphysical model. Third, the contribution of various orders of scattering events to the path delay is studied, and an analytical model of the first-order scattering contribution is developed. This paper focuses on the path delay as a function of telescope field of view (FOV). The results show that reducing telescope FOV can significantly reduce the expected path delay. As an example, the average path delays for FOV = 167 microrad (a 100-m-diameter circle on the surface) caused by thin undetected clouds by the 1064-nm channel over Greenland and East Antarctica are illustrated.
Benefit of adaptive FEC in shared backup path protected elastic optical network.
Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang
2015-07-27
We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.
An Effective Evolutionary Approach for Bicriteria Shortest Path Routing Problems
NASA Astrophysics Data System (ADS)
Lin, Lin; Gen, Mitsuo
Routing problem is one of the important research issues in communication network fields. In this paper, we consider a bicriteria shortest path routing (bSPR) model dedicated to calculating nondominated paths for (1) the minimum total cost and (2) the minimum transmission delay. To solve this bSPR problem, we propose a new multiobjective genetic algorithm (moGA): (1) an efficient chromosome representation using the priority-based encoding method; (2) a new operator of GA parameters auto-tuning, which is adaptively regulation of exploration and exploitation based on the change of the average fitness of parents and offspring which is occurred at each generation; and (3) an interactive adaptive-weight fitness assignment mechanism is implemented that assigns weights to each objective and combines the weighted objectives into a single objective function. Numerical experiments with various scales of network design problems show the effectiveness and the efficiency of our approach by comparing with the recent researches.
An axisymmetric single-path model for gas transport in the conducting airways.
Madasu, Srinath; Borhan, All; Ultman, James S
2006-02-01
In conventional one-dimensional single-path models, radially averaged concentration is calculated as a function of time and longitudinal position in the lungs, and coupled convection and diffusion are accounted for with a dispersion coefficient. The axisymmetric single-path model developed in this paper is a two-dimensional model that incorporates convective-diffusion processes in a more fundamental manner by simultaneously solving the Navier-Stokes and continuity equations with the convection-diffusion equation. A single airway path was represented by a series of straight tube segments interconnected by leaky transition regions that provide for flow loss at the airway bifurcations. As a sample application, the model equations were solved by a finite element method to predict the unsteady state dispersion of an inhaled pulse of inert gas along an airway path having dimensions consistent with Weibel's symmetric airway geometry. Assuming steady, incompressible, and laminar flow, a finite element analysis was used to solve for the axisymmetric pressure, velocity and concentration fields. The dispersion calculated from these numerical solutions exhibited good qualitative agreement with the experimental values, but quantitatively was in error by 20%-30% due to the assumption of axial symmetry and the inability of the model to capture the complex recirculatory flows near bifurcations.
NASA Astrophysics Data System (ADS)
Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig
2012-01-01
In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.
Topographic Controls on Landslide and Debris-Flow Mobility
NASA Astrophysics Data System (ADS)
McCoy, S. W.; Pettitt, S.
2014-12-01
Regardless of whether a granular flow initiates from failure and liquefaction of a shallow landslide or from overland flow that entrains sediment to form a debris flow, the resulting flow poses hazards to downslope communities. Understanding controls on granular-flow mobility is critical for accurate hazard prediction. The topographic form of granular-flow paths can vary significantly across different steeplands and is one of the few flow-path properties that can be readily altered by engineered control structures such as closed-type check dams. We use grain-scale numerical modeling (discrete element method simulations) of free-surface, gravity-driven granular flows to investigate how different topographic profiles with the same mean slope and total relief can produce notable differences in flow mobility due to strong nonlinearities inherent to granular-flow dynamics. We describe how varying the profile shape from planar, to convex up, to concave up, as well how varying the number, size, and location of check dams along a flow path, changes flow velocity, thickness, discharge, energy dissipation, impact force and runout distance. Our preliminary results highlight an important path dependence for this nonlinear system, show that caution should be used when predicting flow dynamics from path-averaged properties, and provide some mechanics-based guidance for engineering control structures.
The use and effects of studded tires in Oregon.
DOT National Transportation Integrated Search
1974-12-01
During the past 11 years the use of studded tires has increased from a novelty to anestimated average of 20 percent for the Northern States in which snow and ice is expected. An alarming amount of surface wear in the wheel paths of the highway paveme...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullmann, John Leonard; Couture, Aaron Joseph; Koehler, Paul E.
An accurate knowledge of the neutron capture cross section is important for many applications. Experimental measurements are important since theoretical calculations of capture have been notoriously difficult, with the ratio of measured to calculated cross sections often a factor of 2 or more in the 10 keV to 1 MeV region. However, a direct measurement of capture cannot be made on many interesting radioactive nuclides because of their short half-life or backgrounds caused by their nuclear decay. On the other hand, neutron transmission measurements of the total cross section are feasible for a wide range of radioactive nuclides since themore » detectors are far from the sample, and often are less sensitive to decay radiation. The parameters extracted from a total cross section measurement, which include the average resonance spacing, the neutron strength function, and the average total radiation width, (Γ γ), provide tight constraints on the calculation of the capture cross section, and when applied produce much more accurate results. These measurements can be made using the intense epithermal neutron flux at the Lujan Center on relatively small quantities of target material. It was the purpose of this project to investigate and develop the capability to make these measurements. A great deal of progress was made towards establishing this capability during 2016, including setting up the flight path and obtaining preliminary results, but more work remains to be done.« less
C IV absorption-line variability in X-ray-bright broad absorption-line quasi-stellar objects
NASA Astrophysics Data System (ADS)
Joshi, Ravi; Chand, Hum; Srianand, Raghunathan; Majumdar, Jhilik
2014-07-01
We report the kinematic shift and strength variability of the C IV broad absorption-line (BAL) trough in two high-ionization X-ray-bright quasi-stellar objects (QSOs): SDSS J085551+375752 (at zem ˜ 1.936) and SDSS J091127+055054 (at zem ˜ 2.793). Both these QSOs have shown a combination of profile shifts and the appearance and disappearance of absorption components belonging to a single BAL trough. The observed average kinematic shift of the whole BAL profile resulted in an average deceleration of ˜-0.7 ± 0.1, -2.0 ± 0.1 cm s-2 over rest-frame time-spans of 3.11 and 2.34 yr for SDSS J085551+375752 and SDSS J091127+055054, respectively. To our knowledge, these are the largest kinematic shifts known, exceeding by factors of about 2.8 and 7.8 the highest deceleration reported in the literature; this makes both objects potential candidates to investigate outflows using multiwavelength monitoring of their line and continuum variability. We explore various possible mechanisms to understand the observed profile variations. Outflow models involving many small self-shielded clouds, probably moving in a curved path, provide the simplest explanation for the C IV BAL strength and velocity variations, along with the X-ray-bright nature of these sources.
Implementation and validation of a wake model for low-speed forward flight
NASA Technical Reports Server (NTRS)
Komerath, Narayanan M.; Schreiber, Olivier A.
1987-01-01
The computer implementation and calculations of the induced velocities produced by a wake model consisting of a trailing vortex system defined from a prescribed time averaged downwash distribution are detailed. Induced velocities are computed by approximating each spiral turn by a pair of large straight vortex segments positioned at critical points relative to where the induced velocity is required. A remainder term for the rest of the spiral is added. This approach results in decreased computation time compared to classical models where each spiral turn is broken down in small straight vortex segments. The model includes features such a harmonic variation of circulation, downwash outside of the blade and/or outside the tip path plane, blade bound vorticity induced velocity with harmonic variation of circulation and time averaging. The influence of various options and parameters on the results are investigated and results are compared to experimental field measurements with which, a resonable agreement is obtained. The capabilities of the model as well as its extension possibilities are studied. The performance of the model in predicting the recently-acquired NASA Langley Inflow data base for a four-bladed rotor is compared to that of the Scully Free Wake code, a well-established program which requires much greater computational resources. It is found that the two codes predict the experimental data with essentially the same accuracy, and show the same trends.
Brownian relaxation of an inelastic sphere in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, G. A., E-mail: gab@gab.com.au
2016-06-15
The procedures that are used to calculate the forces and moments on an aerodynamic body in the rarefied gas of the upper atmosphere are applied to a small sphere of the size of an aerosol particle at sea level. While the gas-surface interaction model that provides accurate results for macroscopic bodies may not be appropriate for bodies that are comprised of only about a thousand atoms, it provides a limiting case that is more realistic than the elastic model. The paper concentrates on the transfer of energy from the air to an initially stationary sphere as it acquires Brownian motion.more » Individual particle trajectories vary wildly, but a clear relaxation process emerges from an ensemble average over tens of thousands of trajectories. The translational and rotational energies in equilibrium Brownian motion are determined. Empirical relationships are obtained for the mean translational and rotational relaxation times, the mean initial power input to the particle, the mean rates of energy transfer between the particle and air, and the diffusivity. These relationships are functions of the ratio of the particle mass to an average air molecule mass and the Knudsen number, which is the ratio of the mean free path in the air to the particle diameter. The ratio of the molecular radius to the particle radius also enters as a correction factor. The implications of Brownian relaxation for the second law of thermodynamics are discussed.« less
A framework for activity detection in wide-area motion imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Reid B; Ruggiero, Christy E; Morrison, Jack D
2009-01-01
Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be imaged at relatively high frame rates (1-2 fps). The efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent years there has been significant progress made on stabilization, moving object detection and tracking and automated systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, the tracking performance at this scale, is unreliable and average track length is much smallermore » than the average vehicle route. This is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.« less
Differential optical absorption spectrometer for measurement of tropospheric pollutants
NASA Astrophysics Data System (ADS)
Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.
1995-05-01
Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.
A new optimal seam method for seamless image stitching
NASA Astrophysics Data System (ADS)
Xue, Jiale; Chen, Shengyong; Cheng, Xu; Han, Ying; Zhao, Meng
2017-07-01
A novel optimal seam method which aims to stitch those images with overlapping area more seamlessly has been propos ed. Considering the traditional gradient domain optimal seam method and fusion algorithm result in bad color difference measurement and taking a long time respectively, the input images would be converted to HSV space and a new energy function is designed to seek optimal stitching path. To smooth the optimal stitching path, a simplified pixel correction and weighted average method are utilized individually. The proposed methods exhibit performance in eliminating the stitching seam compared with the traditional gradient optimal seam and high efficiency with multi-band blending algorithm.
The Container Problem in Bubble-Sort Graphs
NASA Astrophysics Data System (ADS)
Suzuki, Yasuto; Kaneko, Keiichi
Bubble-sort graphs are variants of Cayley graphs. A bubble-sort graph is suitable as a topology for massively parallel systems because of its simple and regular structure. Therefore, in this study, we focus on n-bubble-sort graphs and propose an algorithm to obtain n-1 disjoint paths between two arbitrary nodes in time bounded by a polynomial in n, the degree of the graph plus one. We estimate the time complexity of the algorithm and the sum of the path lengths after proving the correctness of the algorithm. In addition, we report the results of computer experiments evaluating the average performance of the algorithm.
Measured values of coal mine stopping resistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswald, N.; Prosser, B.; Ruckman, R.
2008-12-15
As coal mines become larger, the number of stoppings in the ventilation system increases. Each stopping represents a potential leakage path which must be adequately represented in the ventilation model. Stopping resistance can be calculated using two methods, the USBM method, used to determine a resistance for a single stopping, and the MVS technique, in which an average resistance is calculated for multiple stoppings. Through MVS data collected from ventilation surveys of different subsurface coal mines, average resistances for stoppings were determined for stopping in poor, average, good, and excellent conditions. The calculated average stoppings resistance were determined for concretemore » block and Kennedy stopping. Using the average stopping resistance, measured and calculated using the MVS method, provides a ventilation modeling tool which can be used to construct more accurate and useful ventilation models. 3 refs., 3 figs.« less
Kilohertz Pulse Repetition Frequency Slab Ti:sapphire Lasers with High Average Power (10 W)
NASA Astrophysics Data System (ADS)
Wadsworth, William J.; Coutts, David W.; Webb, Colin E.
1999-11-01
High-average-power broadband 780-nm slab Ti:sapphire lasers, pumped by a kilohertz pulse repetition frequency copper vapor laser (CVL), were demonstrated. These lasers are designed for damage-free power scaling when pumped by CVL s configured for maximum output power (of order 100 W) but with poor beam quality ( M 2 300 ). A simple Brewster-angled slab laser side pumped by a CVL produced 10-W average power (1.25-mJ pulses at 8 kHz) with 4.2-ns FWHM pulse duration at an absolute efficiency of 15% (68-W pump power). Thermal lensing in the Brewster slab laser resulted in multitransverse mode output, and pump absorption was limited to 72% by the maximum doping level for commercially available Ti:sapphire (0.25%). A slab laser with a multiply folded zigzag path was therefore designed and implemented that produced high-beam-quality (TEM 00 -mode) output when operated with cryogenic cooling and provided a longer absorption path for the pump. Excessive scattering of the Ti:sapphire beam at the crystal surfaces limited the efficiency of operation for the zigzag laser, but fluorescence diagnostic techniques, gain measurement, and modeling suggest that efficient power extraction ( 15 W TEM 00 , 23% efficiency) from this laser would be possible for crystals with an optical quality surface polish.
Postnatal Growth Patterns in a Chilean Cohort: The Role of SES and Family Environment
Kang Sim, D. E.; Cappiello, M.; Castillo, M.; Lozoff, B.; Martinez, S.; Blanco, E.; Gahagan, S.
2012-01-01
Objective. This study examined how family environmental characteristics served as mediators in the relationship between socioeconomic conditions and infant growth in a cohort of Chilean infants. Methods. We studied 999 infants, born between 1991 and 1996, from a longitudinal cohort which began as an iron deficiency anemia preventive trial. SES (Graffar Index), the Life Experiences Survey, and the Home Observation for Measurement of the Environment (HOME) were assessed in infancy. Using path analysis, we assessed the relationships between the social factors, home environment, and infant growth. Results. During the first year, weight and length gain averaged 540 grams/month and 6.5 cm/month, respectively. In the path analysis model for weight gain, higher SES and a better physical environment were positively related to higher maternal warmth, which in turn was associated with higher average weight gain. Higher SES was directly related to higher average length gain. Conclusions. In our cohort, a direct relationship between SES and length gain developed during infancy. Higher SES was indirectly related to infant weight gain through the home environment and maternal warmth. As the fastest growing infants are at risk for later obesity, new strategies are needed to encourage optimal rather than maximal growth. PMID:22666275
Rotational symmetric HMD with eye-tracking capability
NASA Astrophysics Data System (ADS)
Liu, Fangfang; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian
2016-10-01
As an important auxiliary function of head-mounted displays (HMDs), eye tracking has an important role in the field of intelligent human-machine interaction. In this paper, an eye-tracking HMD system (ET-HMD) is designed based on the rotational symmetric system. The tracking principle in this paper is based on pupil-corneal reflection. The ET-HMD system comprises three optical paths for virtual display, infrared illumination, and eye tracking. The display optics is shared by three optical paths and consists of four spherical lenses. For the eye-tracking path, an extra imaging lens is added to match the image sensor and achieve eye tracking. The display optics provides users a 40° diagonal FOV with a ״ 0.61 OLED, the 19 mm eye clearance, and 10 mm exit pupil diameter. The eye-tracking path can capture 15 mm × 15 mm of the users' eyes. The average MTF is above 0.1 at 26 lp/mm for the display path, and exceeds 0.2 at 46 lp/mm for the eye-tracking path. Eye illumination is simulated using LightTools with an eye model and an 850 nm near-infrared LED (NIR-LED). The results of the simulation show that the illumination of the NIR-LED can cover the area of the eye model with the display optics that is sufficient for eye tracking. The integrated optical system HMDs with eye-tracking feature can help improve the HMD experience of users.
NASA Astrophysics Data System (ADS)
Elias, Thierry; Ramon, Didier; Garnero, Marie-Agnès; Dubus, Laurent; Bourdil, Charles
2017-06-01
By scattering and absorbing solar radiation, aerosols generate production losses in solar plants. Due to the specific design of solar tower plants, solar radiation is attenuated not only in the atmospheric column but also in the slant path between the heliostats and the receiver. Broadband attenuation by aerosols is estimated in both the column and the slant path for Ouarzazate, Morocco, using spectral measurements of aerosol optical thickness (AOT) collected by AERONET. The proportion of AOT below the tower's height is computed assuming a single uniform aerosol layer of height equal to the boundary layer height computed by ECMWF for the Operational Analysis. The monthly average of the broadband attenuation by aerosols in the slant path was 6.9±3.0% in August 2012 at Ouarzazate, for 1-km distance between the heliostat and the receiver. The slant path attenuation should be added to almost 40% attenuation along the atmospheric column, with aerosols in an approximate 4.7-km aerosol layer. Also, around 1.5% attenuation is caused by Rayleigh and water vapour in the slant path. The monochromatic-broadband extrapolation is validated by comparing computed and observed direct normal irradiance (DNI). DNI observed around noon varied from more than 1000 W/m2 to around 400 W/m2 at Ouarzazate in 2012 because of desert dust plumes transported from North African desert areas.
Body monitoring and imaging apparatus and method
McEwan, T.E.
1998-06-16
A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator. 13 figs.
Body monitoring and imaging apparatus and method
McEwan, Thomas E.
1998-01-01
A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator.
Precessional Periods of Long and Short Foucault Pendulums
ERIC Educational Resources Information Center
Soga, Michitoshi
1978-01-01
Derives the precessional period of a Foucault pendulum without using small oscillation amplitudes. Shows that if the path of the pendulum passes through the origin, the periods for differing amplitudes are essentially the same. (GA)
Complex networks in confined comminution
NASA Astrophysics Data System (ADS)
Walker, David M.; Tordesillas, Antoinette; Einav, Itai; Small, Michael
2011-08-01
The physical process of confined comminution is investigated within the framework of complex networks. We first characterize the topology of the unweighted contact networks as generated by the confined comminution process. We find this process gives rise to an ultimate contact network which exhibits a scale-free degree distribution and small world properties. In particular, if viewed in the context of networks through which information travels along shortest paths, we find that the global average of the node vulnerability decreases as the comminution process continues, with individual node vulnerability correlating with grain size. A possible application to the design of synthetic networks (e.g., sensor networks) is highlighted. Next we turn our attention to the physics of the granular comminution process and examine force transmission with respect to the weighted contact networks, where each link is weighted by the inverse magnitude of the normal force acting at the associated contact. We find that the strong forces (i.e., force chains) are transmitted along pathways in the network which are mainly following shortest-path routing protocols, as typically found, for example, in communication systems. Motivated by our earlier studies of the building blocks for self-organization in dense granular systems, we also explore the properties of the minimal contact cycles. The distribution of the contact strain energy intensity of 4-cycle motifs in the ultimate state of the confined comminution process is shown to be consistent with a scale-free distribution with infinite variance, thereby suggesting that 4-cycle arrangements of grains are capable of storing vast amounts of energy in their contacts without breaking.
Duy, Pham K; Chun, Seulah; Chung, Hoeil
2017-11-21
We have systematically characterized Raman scatterings in solid samples with different particle sizes and investigated subsequent trends of particle size-induced intensity variations. For this purpose, both lactose powders and pellets composed of five different particle sizes were prepared. Uniquely in this study, three spectral acquisition schemes with different sizes of laser illuminations and detection windows were employed for the evaluation, since it was expected that the experimental configuration would be another factor potentially influencing the intensity of the lactose peak, along with the particle size itself. In both samples, the distribution of Raman photons became broader with the increase in particle size, as the mean free path of laser photons, the average photon travel distance between consecutive scattering locations, became longer under this situation. When the particle size was the same, the Raman photon distribution was narrower in the pellets since the individual particles were more densely packed in a given volume (the shorter mean free path). When the size of the detection window was small, the number of photons reaching the detector decreased as the photon distribution was larger. Meanwhile, a large-window detector was able to collect the widely distributed Raman photons more effectively; therefore, the trends of intensity change with the variation in particle size were dissimilar depending on the employed spectral acquisition schemes. Overall, the Monte Carlo simulation was effective at probing the photon distribution inside the samples and helped to support the experimental observations.
Use of an augmented-vision device for visual search by patients with tunnel vision.
Luo, Gang; Peli, Eli
2006-09-01
To study the effect of an augmented-vision device that superimposes minified contour images over natural vision on visual search performance of patients with tunnel vision. Twelve subjects with tunnel vision searched for targets presented outside their visual fields (VFs) on a blank background under three cue conditions (with contour cues provided by the device, with auditory cues, and without cues). Three subjects (VF, 8 degrees -11 degrees wide) carried out the search over a 90 degrees x 74 degrees area, and nine subjects (VF, 7 degrees -16 degrees wide) carried out the search over a 66 degrees x 52 degrees area. Eye and head movements were recorded for performance analyses that included directness of search path, search time, and gaze speed. Directness of the search path was greatly and significantly improved when the contour or auditory cues were provided in the larger and the smaller area searches. When using the device, a significant reduction in search time (28% approximately 74%) was demonstrated by all three subjects in the larger area search and by subjects with VFs wider than 10 degrees in the smaller area search (average, 22%). Directness and gaze speed accounted for 90% of the variability of search time. Although performance improvement with the device for the larger search area was obvious, whether it was helpful for the smaller search area depended on VF and gaze speed. Because improvement in directness was demonstrated, increased gaze speed, which could result from further training and adaptation to the device, might enable patients with small VFs to benefit from the device for visual search tasks.
ERIC Educational Resources Information Center
Kapes, Jerome T.; And Others
Three models of multiple regression analysis (MRA): single equation, commonality analysis, and path analysis, were applied to longitudinal data from the Pennsylvania Vocational Development Study. Variables influencing weekly income of vocational education students one year after high school graduation were examined: grade point averages (grades…
ERIC Educational Resources Information Center
Simon-Brown, Viviane; Faast, Tony
"An ethic may be regarded as a mode of guidance for meeting ecological situations so new or intricate 'that the path of social expedience is not discernible to the average individual'. Ethics are a kind of community instinct in the making." Fifty years after Leopold penned those words, the human component of natural resource science is…
Minimizing Wide-Area Performance Disruptions in Inter-Domain Routing
2011-09-01
Servers As another example, we saw the average round-trip time double for an ISP in Malaysia . The RTT increase was caused by a traffic shift to different... censorship , conduct wiretapping, or offer poor performance. This is achieved by applying regular expressions to the AS-PATH to assign lower preference
NASA Technical Reports Server (NTRS)
Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.
1985-01-01
The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.
NASA Technical Reports Server (NTRS)
Huang, C. Y.; Goertz, C. K.
1983-01-01
Gyroresonance and Landau resonance interactions between unducted low-frequency whistler waves and trapped electrons in the earth's plasmasphere have been studied. Ray paths for waves launched near the plasmapause have been traced. In agreement with recent findings by Thorne et al. (1979), waves have been found which return through the equatorial zone with field-aligned wave normal angles. However, when the growth along the ray path is calculated for such waves, assuming an electron distribution function of the form E exp -n sin exp m alpha, it is found that for all the waves considered, the local growth rate becomes negative before plasmapause reflection, limiting the total gain to small values. Most waves reach zero gain before reflection. This is the result of Landau damping at oblique propagation angles, which necessarily occurs before reflection can take place. It is concluded that the concept of cyclic ray paths does not provide an explanation for the generation of unguided plasmaspheric hiss.
Hard Fighting: Israel in Lebanon and Gaza
2011-01-01
mines . Hezbollah itself also proved an unexpectedly formidable adversary. During the years leading up to the Second Lebanon War, Hezbollah forces...hitting Hamas positions and detonating mines and IEDs. IDF engineers used armored D-9 bulldozers to clear paths through the remaining IEDs. Armored...discipline; cellular structure; small formations (squads) • Weapons: small arms; RPGs; mortars; short- range rockets; IEDs/ mines • Command and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jian, E-mail: jianliupku@pku.edu.cn; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871; Zhang, Zhijun
Path integral Liouville dynamics (PILD) is applied to vibrational dynamics of several simple but representative realistic molecular systems (OH, water, ammonia, and methane). The dipole-derivative autocorrelation function is employed to obtain the infrared spectrum as a function of temperature and isotopic substitution. Comparison to the exact vibrational frequency shows that PILD produces a reasonably accurate peak position with a relatively small full width at half maximum. PILD offers a potentially useful trajectory-based quantum dynamics approach to compute vibrational spectra of molecular systems.
Sampling the kinetic pathways of a micelle fusion and fission transition.
Pool, René; Bolhuis, Peter G
2007-06-28
The mechanism and kinetics of micellar breakup and fusion in a dilute solution of a model surfactant are investigated by path sampling techniques. Analysis of the path ensemble gives insight in the mechanism of the transition. For larger, less stable micelles the fission/fusion occurs via a clear neck formation, while for smaller micelles the mechanism is more direct. In addition, path analysis yields an appropriate order parameter to evaluate the fusion and fission rate constants using stochastic transition interface sampling. For the small, stable micelle (50 surfactants) the computed fission rate constant is a factor of 10 lower than the fusion rate constant. The procedure opens the way for accurate calculation of free energy and kinetics for, e.g., membrane fusion, and wormlike micelle endcap formation.
Spatially-Scanned Dual Comb Spectroscopy for Atmospheric Measurements
NASA Astrophysics Data System (ADS)
Cossel, K.; Waxman, E.; Giorgetta, F.; Cermak, M.; Coddington, I.; Hesselius, D.; Ruben, S.; Swann, W.; Rieker, G. B.; Newbury, N.
2017-12-01
Measuring trace gas emissions from sources that are spatially complex and temporally variable, such as leaking natural gas infrastructure, is challenging with current measurement systems. Here, we present a new technique that provides the path-integrated concentrations of multiple gas species between a ground station and a retroreflector mounted on a small quadcopter. Such a system could provide the ability to quantify small area emissions sources as well measure vertical mixing within the boundary layer. The system is based on a near-infrared dual frequency-comb spectroscopy system (DCS) covering 1.58-1.7 microns, which enables rapid, accurate measurements of CO2, CH4, H2O, and HDO. The eye-safe laser light is launched from a telescope on a fast azimuth, elevation gimbal to a small quadcopter carrying a lightweight retroreflector as well as a high-precision real-time kinematic GPS receiver (for real-time cm-level path length measurements) and pressure, temperature and humidity sensors. Here, we show the results of test measurements from controlled releases of CH4 as well as from test vertical profiles.
Scale-dependency of effective hydraulic conductivity on fire-affected hillslopes
NASA Astrophysics Data System (ADS)
Langhans, Christoph; Lane, Patrick N. J.; Nyman, Petter; Noske, Philip J.; Cawson, Jane G.; Oono, Akiko; Sheridan, Gary J.
2016-07-01
Effective hydraulic conductivity (Ke) for Hortonian overland flow modeling has been defined as a function of rainfall intensity and runon infiltration assuming a distribution of saturated hydraulic conductivities (Ks). But surface boundary condition during infiltration and its interactions with the distribution of Ks are not well represented in models. As a result, the mean value of the Ks distribution (KS¯), which is the central parameter for Ke, varies between scales. Here we quantify this discrepancy with a large infiltration data set comprising four different methods and scales from fire-affected hillslopes in SE Australia using a relatively simple yet widely used conceptual model of Ke. Ponded disk (0.002 m2) and ring infiltrometers (0.07 m2) were used at the small scales and rainfall simulations (3 m2) and small catchments (ca 3000 m2) at the larger scales. We compared KS¯ between methods measured at the same time and place. Disk and ring infiltrometer measurements had on average 4.8 times higher values of KS¯ than rainfall simulations and catchment-scale estimates. Furthermore, the distribution of Ks was not clearly log-normal and scale-independent, as supposed in the conceptual model. In our interpretation, water repellency and preferential flow paths increase the variance of the measured distribution of Ks and bias ponding toward areas of very low Ks during rainfall simulations and small catchment runoff events while areas with high preferential flow capacity remain water supply-limited more than the conceptual model of Ke predicts. The study highlights problems in the current theory of scaling runoff generation.
NASA Astrophysics Data System (ADS)
Warlick, Kent M.
While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through microscopy in order to examine best and worst case scenarios. High quality fiber reinforced composite materials, in terms of low void content, high fiber volume fractions and homogeneity in microstructure, were manufactured in both of these scenarios. In order to improve fidelity and quality in fiber path transition regions, a forced air cooling manifold was designed, printed, and implemented into the current system. To better understand the composite performance that results from varying pertinent manufacturing parameters, the effect of feed rate, hot end temperature, forced air cooling, and deposition surface (polypropylene and previously deposited glass polypropylene commingled tow) on interply performance, microstructure, and positional fidelity were analyzed. Interply performance, in terms of average maximum load and average peel strength, was quantified through a t-peel test of the bonding quality between two surfaces. With use of forced air cooling, minor decreases in average peel strength were present due to a reduction in tow deposition temperature which was found to be the variable most indicative of performance. Average maximum load was comparable between the forced air cooled and non-air cooled samples. Microstructure was evaluated through characterization of composite area, void content, and flash percentage. Low void contents mostly between five to seven percent were attained. Further reduction of this void content to two percent is possible through higher processing temperatures; however, reduced composite area, low average peel strength performance, and the presence of smoke during manufacturing implied thermal degradation of the polypropylene matrix occurred in these samples with higher processing temperatures. Positional fidelity was measured through calculations of shear angle, shift width, and error of a predefined path. While positional fidelity variation was low with a polypropylene deposition surface, forced air cooling is necessary to achieve fidelity on top of an already deposited tow surface as evident by the fifty-six percent reduction in error tolerance profile achieved. Lastly, proof of concept articles with unique fiber paths and neat plastic elements incorporated were produced to demonstrate fiber placement along pre-planned load paths and the ability to achieve greater structural efficiency through the use of less material. The results show that high positional fidelity and high quality composites can be produced through the use of the tow shearing technique implemented in the developed mechanical system. The implementation of forced air cooling was critical in achieving fidelity and quality in transition regions. Alignment of continuous reinforcement with pre-planned load paths was demonstrated in the proof of concept article with varying fiber orientations within a layer. Combining fused deposition modeling of plastic with the placement of continuous reinforcement enabled a honeycomb composite to be produced with higher specific properties than traditional composites. Thus, the current system demonstrated a greater capability of achieving ultimate gains in structural performance than previously possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hershey, Ronald L.; Fereday, Wyall; Thomas, James M
Dissolved inorganic carbon (DIC) carbon-14 ( 14C) ages must be corrected for complex chemical and physical reactions and processes that change the amount of 14C in groundwater as it flows from recharge to downgradient areas. Because of these reactions, DIC 14C can produce unrealistically old ages and long groundwater travel times that may, or may not, agree with travel times estimated by other methods. Dissolved organic carbon (DOC) 14C ages are often younger than DIC 14C ages because there are few chemical reactions or physical processes that change the amount of DOC 14C in groundwater. However, there are several issuesmore » that create uncertainty in DOC 14C groundwater ages including limited knowledge of the initial (A 0) DOC 14C in groundwater recharge and potential changes in DOC composition as water moves through an aquifer. This study examines these issues by quantifying A 0 DOC 14C in recharge areas of southern Nevada groundwater flow systems and by evaluating changes in DOC composition as water flows from recharge areas to downgradient areas. The effect of these processes on DOC 14C groundwater ages is evaluated and DOC and DIC 14C ages are then compared along several southern Nevada groundwater flow paths. Twenty-seven groundwater samples were collected from springs and wells in southern Nevada in upgradient, midgradient, and downgradient locations. DOC 14C for upgradient samples ranged from 96 to 120 percent modern carbon (pmc) with an average of 106 pmc, verifying modern DOC 14C ages in recharge areas, which decreases uncertainty in DOC 14C A 0 values, groundwater ages, and travel times. The HPLC spectra of groundwater along a flow path in the Spring Mountains show the same general pattern indicating that the DOC compound composition does not change along this flow path. Although DOC concentration decreases from recharge-area to downgradient groundwater, the organic compounds are similar, indicating that DOC 14C is unaffected by other processes such as microbial degradation. A small amount of organic carbon was leached from crushed volcanic and carbonate aquifer outcrop rock in rock-leaching experiments. The leached DOC was high in 14C (75 pmc carbonate rocks, 91 pmc volcanic) suggesting that the leached DOC likely came from microbes in the rock samples. The small amount of DOC and high 14C indicates that the amount of old organic carbon in these rocks is low so there should be minimal impact on groundwater DOC 14C ages. Based on the results from this study, DOC 14C ages do not require additional corrections. Several correction models were applied to DIC 14C ages to correct for water-rock reactions along two carbonate and two volcanic flow paths and the corresponding travel times were compare to DOC 14C travel times. The DOC 14C travel times were hundreds to thousands of years shorter than uncorrected and corrected DIC 14C travel times except for the upper section of one carbonate flow path. DOC 14C travel times ranged from 400 to 5,400 years as compared to DIC 14C that ranged from modern to 20,900 years. The DIC 14C ages are greatly influenced by carbonate mineral and gas reactions and other processes such as matrix diffusion, isotope exchange, or adsorption, which are not always adequately accounted for in DIC 14C groundwater age correction models.« less
Surface Wave Tomography across the Alpine-Mediterranean Mobile Belt
NASA Astrophysics Data System (ADS)
El-Sharkawy, A. M. M. E.; Meier, T. M.; Lebedev, S.; Weidle, C.; Cristiano, L.
2017-12-01
The Alpine-Mediterranean mobile belt is, tectonically, one of the most complicated and active regions in the world. Since the Mesozoic, collisions between Gondwana-derived continental blocks and Eurasia, due to the closure of a number of rather small ocean basins, have shaped the Mediterranean geology. Despite the numerous studies that have attempted to characterize the lithosphere-asthenosphere structure in that area, details of the lithospheric structure and dynamics, as well as flow in the asthenosphere are, however, poorly known. The purpose of this study is to better define the 3D shear-wave velocity structure of the lithosphere-asthenosphere system in the Mediterranean using new tomographic images obtained from surface wave tomography. An automated algorithm for inter-station phase velocity measurements is applied here to obtain Rayleigh fundamental mode phase velocities. We utilize a database consisting of more than 4000 seismic events recorded by more than 3000 broadband seismic stations within the area (WebDc/EIDA, IRIS). Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, are also included in the analysis. For each station pair, approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. We calculate maps of Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical slices through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates
Real-time path planning and autonomous control for helicopter autorotation
NASA Astrophysics Data System (ADS)
Yomchinda, Thanan
Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.
Different Evolutionary Paths to Complexity for Small and Large Populations of Digital Organisms
2016-01-01
A major aim of evolutionary biology is to explain the respective roles of adaptive versus non-adaptive changes in the evolution of complexity. While selection is certainly responsible for the spread and maintenance of complex phenotypes, this does not automatically imply that strong selection enhances the chance for the emergence of novel traits, that is, the origination of complexity. Population size is one parameter that alters the relative importance of adaptive and non-adaptive processes: as population size decreases, selection weakens and genetic drift grows in importance. Because of this relationship, many theories invoke a role for population size in the evolution of complexity. Such theories are difficult to test empirically because of the time required for the evolution of complexity in biological populations. Here, we used digital experimental evolution to test whether large or small asexual populations tend to evolve greater complexity. We find that both small and large—but not intermediate-sized—populations are favored to evolve larger genomes, which provides the opportunity for subsequent increases in phenotypic complexity. However, small and large populations followed different evolutionary paths towards these novel traits. Small populations evolved larger genomes by fixing slightly deleterious insertions, while large populations fixed rare beneficial insertions that increased genome size. These results demonstrate that genetic drift can lead to the evolution of complexity in small populations and that purifying selection is not powerful enough to prevent the evolution of complexity in large populations. PMID:27923053
Architecture of marine food webs: To be or not be a 'small-world'.
Marina, Tomás Ignacio; Saravia, Leonardo A; Cordone, Georgina; Salinas, Vanesa; Doyle, Santiago R; Momo, Fernando R
2018-01-01
The search for general properties in network structure has been a central issue for food web studies in recent years. One such property is the small-world topology that combines a high clustering and a small distance between nodes of the network. This property may increase food web resilience but make them more sensitive to the extinction of connected species. Food web theory has been developed principally from freshwater and terrestrial ecosystems, largely omitting marine habitats. If theory needs to be modified to accommodate observations from marine ecosystems, based on major differences in several topological characteristics is still on debate. Here we investigated if the small-world topology is a common structural pattern in marine food webs. We developed a novel, simple and statistically rigorous method to examine the largest set of complex marine food webs to date. More than half of the analyzed marine networks exhibited a similar or lower characteristic path length than the random expectation, whereas 39% of the webs presented a significantly higher clustering than its random counterpart. Our method proved that 5 out of 28 networks fulfilled both features of the small-world topology: short path length and high clustering. This work represents the first rigorous analysis of the small-world topology and its associated features in high-quality marine networks. We conclude that such topology is a structural pattern that is not maximized in marine food webs; thus it is probably not an effective model to study robustness, stability and feasibility of marine ecosystems.
Coordinated and uncoordinated optimization of networks
NASA Astrophysics Data System (ADS)
Brede, Markus
2010-06-01
In this paper, we consider spatial networks that realize a balance between an infrastructure cost (the cost of wire needed to connect the network in space) and communication efficiency, measured by average shortest path length. A global optimization procedure yields network topologies in which this balance is optimized. These are compared with network topologies generated by a competitive process in which each node strives to optimize its own cost-communication balance. Three phases are observed in globally optimal configurations for different cost-communication trade offs: (i) regular small worlds, (ii) starlike networks, and (iii) trees with a center of interconnected hubs. In the latter regime, i.e., for very expensive wire, power laws in the link length distributions P(w)∝w-α are found, which can be explained by a hierarchical organization of the networks. In contrast, in the local optimization process the presence of sharp transitions between different network regimes depends on the dimension of the underlying space. Whereas for d=∞ sharp transitions between fully connected networks, regular small worlds, and highly cliquish periphery-core networks are found, for d=1 sharp transitions are absent and the power law behavior in the link length distribution persists over a much wider range of link cost parameters. The measured power law exponents are in agreement with the hypothesis that the locally optimized networks consist of multiple overlapping suboptimal hierarchical trees.
NASA Astrophysics Data System (ADS)
Terakawa, T.; Miller, S. A.; Deichmann, N.
2011-12-01
We estimate the pore fluid pressure field of the stimulated region during the fluid injection experiment in Basel, Switzerland by analyzing 118 well-constrained focal mechanisms. This technique, termed focal mechanism tomography (FMT), uses the orientations of the slip planes within the prevailing regional stress field as indicator of the fluid pressure along the plane at the time of slip. Elevated pore fluid pressures were concentrated within 500 m of the open hole section, and we find average earthquake triggering excess pressures of about 10MPa, with a peak value of 19.3 MPa, consistent with the known wellhead pressure applied at the borehole. Our results demonstrate that FMT is a robust approach, being validated at the macroscopic scale of the Basel stimulation experiment. Over-pressurized fluids induced many small events (M < 3) along faults unfavourably-oriented relative to the tectonic stress pattern, while larger events tended to occur along optimally-oriented faults. This suggests that small-scale hydraulic networks, developed from the high pressure stimulation, interact to load (hydraulically isolated) high strength bridges that produce the larger events. The triggering pore fluid pressures are substantially higher than that predicted from a linear pressure diffusion process from the source boundary, showing that the system is highly permeable along flow paths, allowing fast pressure diffusion to the boundaries of the stimulated region.
Wang, Yong-Yan; Yang, Hong-Jun
2014-03-01
Small and medium-sized enterprises (SMEs) are important components in Chinese medicine industry. However, the lack of big brand is becoming an urgent problem which is critical to the survival of SMEs. This article discusses the concept and traits of Chinese medicine of big brand, from clinical, scientific and market value three aspects. Guided by market value, highlighting clinical value, aiming at the scientific value improvement of big brand cultivation, we put forward the key points in cultivation, aiming at obtaining branded Chinese medicine with widely recognized efficacy, good quality control system and mechanism well explained and meanwhile which can bring innovation improvement to theory of Chinese medicine. According to the characters of SMEs, we hold a view that to build multidisciplinary research union could be considered as basic path, and then, from top-level design, skill upgrading and application three stages to probe the implementation strategy.
[Application of extended exergy method in driving mechanism and efficiency of regional eco-economy].
Fan, Xin Gang; Mi, Wen Bao; Hou, Jing Wei
2017-01-01
To analyze social-economic causes of the regional ecological degradation, and avoid such problems as the complex circulation network and difficulty to identify laws caused by extended exergy analysis (EEA) previously applied at the national scale, this paper reduced spatial scale to the county scale and took Pengyang County in Ningxia as an example. Eco-economic system in Peng-yang County was divided into seven interrelated sectors. The exergy value of circulations in the eco-economic system including materials, labor and capital were calculated respectively to analyze the extended exergy characteristics of the driving sectors, factors and paths and evaluate their ecological efficiency. The results showed that agriculture and households were the main driving sectors of the eco-economic system in Pengyang County. The average exergy value of 31 flow paths among the sectors was 0.80 PJ. There were only 8 flow paths whose exergy values were higher than the average value. Eco-economic system in Pengyang County development was driven by two continuous flow paths, labor output of the households sector and demands of the households sector supported by other sectors. The mineral resources were massively exploited, and then directly exported to the outside, which could not promote the local development from the inside, but, on the contrary, increase the ecological environment pressure because of the over-exploitation. The eco-efficiency of Pengyang County in 2014 was 68.1%, almost equivalent to the by-level of the national scale at home and abroad ten years ago, mainly because of the lower eco-efficiencies of the service sector and households sector. EEA had the advantage of networking and structuring, could specify the sectors, factors and driven paths, and break through the bottleneck of driving mechanism research of the eco-economic system. EEA had certain adaptability to explore the operational principle and optimal pattern of the regional eco-economic system. Compared with the national scale, EEA at the regional scale could more easily identify the driving mechanism of eco-economic system, and could clearly guide the regional administrative department to reduce the ecological environment pressure.
POSTMAN: Point of Sail Tacking for Maritime Autonomous Navigation
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.; Reinhart, Felix
2012-01-01
Waves apply significant forces to small boats, in particular when such vessels are moving at a high speed in severe sea conditions. In addition, small high-speed boats run the risk of diving with the bow into the next wave crest during operations in the wavelengths and wave speeds that are typical for shallow water. In order to mitigate the issues of autonomous navigation in rough water, a hybrid controller called POSTMAN combines the concept of POS (point of sail) tack planning from the sailing domain with a standard PID (proportional-integral-derivative) controller that implements reliable target reaching for the motorized small boat control task. This is an embedded, adaptive software controller that uses look-ahead sensing in a closed loop method to perform path planning for safer navigation in rough waters. State-of-the-art controllers for small boats are based on complex models of the vessel's kinematics and dynamics. They enable the vessel to follow preplanned paths accurately and can theoretically control all of the small boat s six degrees of freedom. However, the problems of bow diving and other undesirable incidents are not addressed, and it is questionable if a six-DOF controller with basically a single actuator is possible at all. POSTMAN builds an adaptive capability into the controller based on sensed wave characteristics. This software will bring a muchneeded capability to unmanned small boats moving at high speeds. Previously, this class of boat was limited to wave heights of less than one meter in the sea states in which it could operate. POSTMAN is a major advance in autonomous safety for small maritime craft.
NASA Astrophysics Data System (ADS)
Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland
2016-03-01
Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the material layers and site contour could still be broadly deduced. This study highlights both the challenge of collecting suitably informative field data with which to characterise subsurface hydrology, and the power of modern calibration and uncertainty modelling techniques to assess flow path uncertainty in hillslopes and other small scale systems.
Topological Structure of the Space of Phenotypes: The Case of RNA Neutral Networks
Aguirre, Jacobo; Buldú, Javier M.; Stich, Michael; Manrubia, Susanna C.
2011-01-01
The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence) and phenotype (approximated by the secondary structure fold) are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 412 sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described. PMID:22028856
Herculano-Houzel, Suzana; Manger, Paul R.; Kaas, Jon H.
2014-01-01
Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining) changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution. PMID:25157220
Prosch, Helmut; Oschatz, Elisabeth; Eisenhuber, Edith; Wohlschlager, Helmut; Mostbeck, Gerhard H
2011-01-01
Small subpleural pulmonary lesions are difficult to biopsy. While the direct, short needle path has been reported to have a lower rate of pneumothorax, the indirect path provides a higher diagnostic yield. Therefore, we tried to optimize the needle pathway and minimize the iatrogenic pneumothorax risk by evaluating a CT fluoroscopy guided direct approach to biopsy subpleural lesions. Between 01/2005 and 01/2007, CT fluoroscopy guided core biopsies were performed in 24 patients. Using our technique, the tip of the guide needle remains outside the visceral pleura (17 G coaxial guide needle, 18 G Biopsy-gun, 15 or 22 mm needle path). The position of the lesion relative to the needle tip can be optimized using CT fluoroscopy by adjusting the breathing position of the patient. The Biopty gun is fired with the needle tip still outside the pleural space. Cytological smears are analyzed by a cytopathologist on-site, and biopsies are repeated as indicated with the coaxial needle still outside the pleura. Median nodule size was 1.6 cm (0.7-2.3 cm). A definitive diagnosis was obtained in 22 patients by histology and/or cytology. In one patient, only necrotic material could be obtained. In another patient, the intervention had to be aborted as the dyspnoic patient could not follow breathing instructions. An asymptomatic pneumothorax was present in seven patients; chest tube placement was not required. The presented biopsy approach has a high diagnostic yield and is especially advantageous for biopsies of small subpleural lesions in the lower lobes. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wilson, Robert H.; Vishwanath, Karthik; Mycek, Mary-Ann
2009-02-01
Monte Carlo (MC) simulations are considered the "gold standard" for mathematical description of photon transport in tissue, but they can require large computation times. Therefore, it is important to develop simple and efficient methods for accelerating MC simulations, especially when a large "library" of related simulations is needed. A semi-analytical method involving MC simulations and a path-integral (PI) based scaling technique generated time-resolved reflectance curves from layered tissue models. First, a zero-absorption MC simulation was run for a tissue model with fixed scattering properties in each layer. Then, a closed-form expression for the average classical path of a photon in tissue was used to determine the percentage of time that the photon spent in each layer, to create a weighted Beer-Lambert factor to scale the time-resolved reflectance of the simulated zero-absorption tissue model. This method is a unique alternative to other scaling techniques in that it does not require the path length or number of collisions of each photon to be stored during the initial simulation. Effects of various layer thicknesses and absorption and scattering coefficients on the accuracy of the method will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.
Here, we present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to themore » proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. Lastly, while these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.« less
Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.
2016-10-12
Here, we present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to themore » proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. Lastly, while these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.« less
Body monitoring and imaging apparatus and method
McEwan, T.E.
1996-11-12
A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path. The pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. 12 figs.
Body monitoring and imaging apparatus and method
McEwan, Thomas E.
1996-01-01
A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path. The pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung.
Transition paths in single-molecule force spectroscopy
NASA Astrophysics Data System (ADS)
Cossio, Pilar; Hummer, Gerhard; Szabo, Attila
2018-03-01
In a typical single-molecule force spectroscopy experiment, the ends of the molecule of interest are connected by long polymer linkers to a pair of mesoscopic beads trapped in the focus of two laser beams. At constant force load, the total extension, i.e., the end-to-end distance of the molecule plus linkers, is measured as a function of time. In the simplest systems, the measured extension fluctuates about two values characteristic of folded and unfolded states, with occasional transitions between them. We have recently shown that molecular (un)folding rates can be recovered from such trajectories, with a small linker correction, as long as the characteristic time of the bead fluctuations is shorter than the residence time in the unfolded (folded) state. Here, we show that accurate measurements of the molecular transition path times require an even faster apparatus response. Transition paths, the trajectory segments in which the molecule (un)folds, are properly resolved only if the beads fluctuate more rapidly than the end-to-end distance of the molecule. Therefore, over a wide regime, the measured rates may be meaningful but not the transition path times. Analytic expressions for the measured mean transition path times are obtained for systems diffusing anisotropically on a two-dimensional free energy surface. The transition path times depend on the properties both of the molecule and of the pulling device.
Path homogeneity along a horizontal line-of-sight path during the FESTER experiment: first results
NASA Astrophysics Data System (ADS)
Gunter, W. H.; Maritz, B.; Koago, M.; Wainman, C. K.; Gardener, M. E.; February, F.; van Eijk, A. M. J.
2016-10-01
The First European South African Experiment (FESTER) was conducted over about a 10 month period at the Institute of Maritime Technology (IMT) in False Bay, South Africa. One of the important goals was the establishment of the air-sea temperature difference (ASTD) homogeneity along the main propagation link atmospheric path since it is a basic assumption for most of the atmospheric turbulence models (caused by refractive index variations). The ASTD was measured from a small scientific work boat (called Sea Lab) moving along a straight in- and outbound track along the main propagation link path. The air temperature on-board was measured using standard weather sensors, while the sea surface temperature was measured using a long wavelength infrared radiometer, which was compared to the bulk sea temperature half a meter below the sea surface. This was obtained by an under water temperature sensor mounted on a `surfboard' that was towed alongside Sea Lab. Vertical water temperature profiles were also measured along the main propagation path in order to determine the depth of the surface mixed layer and thermocline using a Conductivity Temperature Depth profiler (CTD). First results investigated the ASTD variation along the horizontal line-of-sight path used by the principal electro-optic transmission link monitoring equipment (i.e. scintillometer and multi-spectral radiometer-transmissometer system).
NASA Astrophysics Data System (ADS)
Niebieskikwiat, D.; Sánchez, R. D.; Lamas, D. G.; Caneiro, A.; Hueso, L. E.; Rivas, J.
2003-05-01
We study the nonlinear current-voltage (I-V) characteristics and analyze the voltage-dependent tunneling conductance in nanoparticles of La2/3A1/3MnO3 (A=Ca, Sr). The powders were prepared by different wet-chemical routes and low calcination temperatures were used to obtain an average particle size D≈30 nm. The data are comprehensively explained in terms of the tunneling picture, which allows one to estimate the height of the grain boundary insulating barrier (φ) for each sample. For constant D, our results show that the sample preparation route is mainly responsible for the value of φ in nanoparticles, while the Coulomb gap in the Coulomb blockade regime is ˜3 times higher for Sr- than for Ca-doping. We also show that a small fraction of the barriers contribute to the nonlinear transport, and the current is mainly carried through low-resistive percolated paths. In addition, despite the different barrier strengths, the low-field magnetoresistance (LFMR) is similar for all samples, implying that φ is not the fundamental parameter determining the LFMR.
Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system.
Song, H; Fraanje, R; Schitter, G; Kroese, H; Vdovin, G; Verhaegen, M
2010-11-08
In many scientific and medical applications, such as laser systems and microscopes, wavefront-sensor-less (WFSless) adaptive optics (AO) systems are used to improve the laser beam quality or the image resolution by correcting the wavefront aberration in the optical path. The lack of direct wavefront measurement in WFSless AO systems imposes a challenge to achieve efficient aberration correction. This paper presents an aberration correction approach for WFSlss AO systems based on the model of the WFSless AO system and a small number of intensity measurements, where the model is identified from the input-output data of the WFSless AO system by black-box identification. This approach is validated in an experimental setup with 20 static aberrations having Kolmogorov spatial distributions. By correcting N=9 Zernike modes (N is the number of aberration modes), an intensity improvement from 49% of the maximum value to 89% has been achieved in average based on N+5=14 intensity measurements. With the worst initial intensity, an improvement from 17% of the maximum value to 86% has been achieved based on N+4=13 intensity measurements.
A Structural Model for the Single-Stranded DNA Genome of Filamentous Bacteriophage Pf1†
Tsuboi, Masamichi; Tsunoda, Masaru; Overman, Stacy A.; Benevides, James M.; Thomas, George J.
2010-01-01
The filamentous bacteriophage Pf1, which infects strain PAK of Pseudomonas aeruginosa, is a flexible filament (~2000 × 6.5 nm) consisting of a covalently closed DNA loop of 7349 nucleotides sheathed by 7350 copies of a 46-residue α-helical subunit. The subunit α-helices, which are inclined at a small average angle (~16°) from the virion axis, are arranged compactly around the DNA core. Orientations of the Pf1 DNA nucleotides with respect to the filament axis are not known. In this work we report and interpret the polarized Raman spectra of oriented Pf1 filaments. We demonstrate that the polarizations of DNA Raman band intensities establish that the nucleotide bases of packaged Pf1 DNA are well ordered within the virion and that the base planes are positioned close to parallel to the filament axis. The present results are combined with a previously proposed projection of the intraviral path of Pf1 DNA (1) to develop a novel molecular model for the Pf1 assembly. PMID:20078135
Characteristics of real futures trading networks
NASA Astrophysics Data System (ADS)
Wang, Junjie; Zhou, Shuigeng; Guan, Jihong
2011-01-01
Futures trading is the core of futures business, and it is considered as one of the typical complex systems. To investigate the complexity of futures trading, we employ the analytical method of complex networks. First, we use real trading records from the Shanghai Futures Exchange to construct futures trading networks, in which nodes are trading participants, and two nodes have a common edge if the two corresponding investors appear simultaneously in at least one trading record as a purchaser and a seller, respectively. Then, we conduct a comprehensive statistical analysis on the constructed futures trading networks. Empirical results show that the futures trading networks exhibit features such as scale-free behavior with interesting odd-even-degree divergence in low-degree regions, small-world effect, hierarchical organization, power-law betweenness distribution, disassortative mixing, and shrinkage of both the average path length and the diameter as network size increases. To the best of our knowledge, this is the first work that uses real data to study futures trading networks, and we argue that the research results can shed light on the nature of real futures business.
Prettejohn, Brenton J.; Berryman, Matthew J.; McDonnell, Mark D.
2011-01-01
Many simulations of networks in computational neuroscience assume completely homogenous random networks of the Erdös–Rényi type, or regular networks, despite it being recognized for some time that anatomical brain networks are more complex in their connectivity and can, for example, exhibit the “scale-free” and “small-world” properties. We review the most well known algorithms for constructing networks with given non-homogeneous statistical properties and provide simple pseudo-code for reproducing such networks in software simulations. We also review some useful mathematical results and approximations associated with the statistics that describe these network models, including degree distribution, average path length, and clustering coefficient. We demonstrate how such results can be used as partial verification and validation of implementations. Finally, we discuss a sometimes overlooked modeling choice that can be crucially important for the properties of simulated networks: that of network directedness. The most well known network algorithms produce undirected networks, and we emphasize this point by highlighting how simple adaptations can instead produce directed networks. PMID:21441986
Schumann, Marcel; Armen, Roger S
2013-05-30
Molecular docking of small-molecules is an important procedure for computer-aided drug design. Modeling receptor side chain flexibility is often important or even crucial, as it allows the receptor to adopt new conformations as induced by ligand binding. However, the accurate and efficient incorporation of receptor side chain flexibility has proven to be a challenge due to the huge computational complexity required to adequately address this problem. Here we describe a new docking approach with a very fast, graph-based optimization algorithm for assignment of the near-optimal set of residue rotamers. We extensively validate our approach using the 40 DUD target benchmarks commonly used to assess virtual screening performance and demonstrate a large improvement using the developed side chain optimization over rigid receptor docking (average ROC AUC of 0.693 vs. 0.623). Compared to numerous benchmarks, the overall performance is better than nearly all other commonly used procedures. Furthermore, we provide a detailed analysis of the level of receptor flexibility observed in docking results for different classes of residues and elucidate potential avenues for further improvement. Copyright © 2013 Wiley Periodicals, Inc.
Research on Some Bus Transport Networks with Random Overlapping Clique Structure
NASA Astrophysics Data System (ADS)
Yang, Xu-Hua; Wang, Bo; Wang, Wan-Liang; Sun, You-Xian
2008-11-01
On the basis of investigating the statistical data of bus transport networks of three big cities in China, we propose that each bus route is a clique (maximal complete subgraph) and a bus transport network (BTN) consists of a lot of cliques, which intensively connect and overlap with each other. We study the network properties, which include the degree distribution, multiple edges' overlapping time distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belongs to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We also research its network properties such as degree distribution, clustering, average path length, and so on. We propose that a BTN has the properties of random clique increment and random overlapping clique, at the same time, a BTN is a small-world network with highly clique-clustered and highly clique-overlapped. Finally, we introduce a BTN evolution model, whose simulation results agree well with the statistical laws that emerge in real BTNs.
Cell transmission model of dynamic assignment for urban rail transit networks.
Xu, Guangming; Zhao, Shuo; Shi, Feng; Zhang, Feilian
2017-01-01
For urban rail transit network, the space-time flow distribution can play an important role in evaluating and optimizing the space-time resource allocation. For obtaining the space-time flow distribution without the restriction of schedules, a dynamic assignment problem is proposed based on the concept of continuous transmission. To solve the dynamic assignment problem, the cell transmission model is built for urban rail transit networks. The priority principle, queuing process, capacity constraints and congestion effects are considered in the cell transmission mechanism. Then an efficient method is designed to solve the shortest path for an urban rail network, which decreases the computing cost for solving the cell transmission model. The instantaneous dynamic user optimal state can be reached with the method of successive average. Many evaluation indexes of passenger flow can be generated, to provide effective support for the optimization of train schedules and the capacity evaluation for urban rail transit network. Finally, the model and its potential application are demonstrated via two numerical experiments using a small-scale network and the Beijing Metro network.
Identifying Source Water and Flow Paths in a Semi-Arid Watershed
NASA Astrophysics Data System (ADS)
Gulvin, C. J.; Miller, S. N.
2016-12-01
Processes controlling water delivery to perennial streams in the semi-arid mountain west are poorly understood, yet necessary to characterize water distribution across the landscape and better protect and manage diminishing water resources. Stream water chemistry profiling and hydrograph separation using stable isotopes can help identify source waters. Weekly stream water samples tested for stable water isotope fractionations, and major cations and anions at seven sites collocated with continuously recording stream depth gauges within a small watershed in southeastern Wyoming is a necessary first-step to identifying seasonally changing source water and flow paths. Sample results will help establish appropriate end members for a mixing analysis, as well as, characterize flow path heterogeneity, transit time distributions, and landscape selectively features. Hourly stream sampling during late-summer thunderstorms and rapid spring melt will help demonstrate if and how stream discharge change is affected by the two different events. Soil water and water extracted from tree xylem will help resolve how water is partitioned in the first 10m of the subsurface. In the face of land use change and a growing demand for water in the area, understanding how the water in small mountain streams is sustained is crucial for the future of agriculture, municipal water supplies, and countless ecosystem services.
Dysfunctional whole brain networks in mild cognitive impairment patients: an fMRI study
NASA Astrophysics Data System (ADS)
Liu, Zhenyu; Bai, Lijun; Dai, Ruwei; Zhong, Chongguang; Xue, Ting; You, Youbo; Tian, Jie
2012-03-01
Mild cognitive impairment (MCI) was recognized as the prodromal stage of Alzheimer's disease (AD). Recent researches have shown that cognitive and memory decline in AD patients is coupled with losses of small-world attributes. However, few studies pay attention to the characteristics of the whole brain networks in MCI patients. In the present study, we investigated the topological properties of the whole brain networks utilizing graph theoretical approaches in 16 MCI patients, compared with 18 age-matched healthy subjects as a control. Both MCI patients and normal controls showed small-world architectures, with large clustering coefficients and short characteristic path lengths. We detected significantly longer characteristic path length in MCI patients compared with normal controls at the low sparsity. The longer characteristic path lengths in MCI indicated disrupted information processing among distant brain regions. Compared with normal controls, MCI patients showed decreased nodal centrality in the brain areas of the angular gyrus, heschl gyrus, hippocampus and superior parietal gyrus, while increased nodal centrality in the calcarine, inferior occipital gyrus and superior frontal gyrus. These changes in nodal centrality suggested a widespread rewiring in MCI patients, which may be an integrated reflection of reorganization of the brain networks accompanied with the cognitive decline. Our findings may be helpful for further understanding the pathological mechanisms of MCI.
Graph theoretical analysis of EEG functional connectivity during music perception.
Wu, Junjie; Zhang, Junsong; Liu, Chu; Liu, Dongwei; Ding, Xiaojun; Zhou, Changle
2012-11-05
The present study evaluated the effect of music on large-scale structure of functional brain networks using graph theoretical concepts. While most studies on music perception used Western music as an acoustic stimulus, Guqin music, representative of Eastern music, was selected for this experiment to increase our knowledge of music perception. Electroencephalography (EEG) was recorded from non-musician volunteers in three conditions: Guqin music, noise and silence backgrounds. Phase coherence was calculated in the alpha band and between all pairs of EEG channels to construct correlation matrices. Each resulting matrix was converted into a weighted graph using a threshold, and two network measures: the clustering coefficient and characteristic path length were calculated. Music perception was found to display a higher level mean phase coherence. Over the whole range of thresholds, the clustering coefficient was larger while listening to music, whereas the path length was smaller. Networks in music background still had a shorter characteristic path length even after the correction for differences in mean synchronization level among background conditions. This topological change indicated a more optimal structure under music perception. Thus, prominent small-world properties are confirmed in functional brain networks. Furthermore, music perception shows an increase of functional connectivity and an enhancement of small-world network organizations. Copyright © 2012 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
MacCann, Carolyn; Fogarty, Gerard J.; Roberts, Richard D.
2012-01-01
This paper examines relationships between the Big Five personality factors, time management, and grade-point-average in 556 community colleges students. A path model controlling for vocabulary, gender, and demographic covariates demonstrated that time management mediates the relationship between conscientiousness and students' academic achievement…
Ar-Xe Laser: The Path to a Robust, All-Electric Shipboard Directed Energy Weapon
2008-12-18
Krypton Fluoride (KrF) laser for fusion energy and is sponsored by the Department of Energy’s (DOE) High Average Power Laser (HAPL) program. DOE...Electronics Conference, Arlington VA, October 2007. 9. “Electron Beam Pumped Lasers for Fusion Energy and Directed Energy Applications”, presented by
Sampling errors for a nadir viewing instrument on the International Space Station
NASA Astrophysics Data System (ADS)
Berger, H. I.; Pincus, R.; Evans, F.; Santek, D.; Ackerman, S.; Ackerman, S.
2001-12-01
In an effort to improve the observational charactarization of ice clouds in the earth's atmosphere, we are developing a sub-millimeter wavelength radiometer which we propose to fly on the International Space Station for two years. Our goal is to accurately measure the ice water path and mass-weighted particle size at the finest possible temporal and spatial resolution. The ISS orbit precesses, sampling through the dirunal cycle every 16 days, but technological constraints limit our instrument to a single pixel viewed near nadir. We discuss sampling errors associated with this instrument/platform configuration. We use as "truth" the ISCCP dataset of pixel-level cloud optical retrievals, which acts as a proxy for ice water path; this dataset is sampled according to the orbital characteristics of the space station, and the statistics computed from the sub-sampled population are compared with those from the full dataset. We explore the tradeoffs in average sampling error as a function of the averaging time and spatial scale, and explore the possibility of resolving the dirunal cycle.
Optimal sensor fusion for land vehicle navigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, J.D.
1990-10-01
Position location is a fundamental requirement in autonomous mobile robots which record and subsequently follow x,y paths. The Dept. of Energy, Office of Safeguards and Security, Robotic Security Vehicle (RSV) program involves the development of an autonomous mobile robot for patrolling a structured exterior environment. A straight-forward method for autonomous path-following has been adopted and requires digitizing'' the desired road network by storing x,y coordinates every 2m along the roads. The position location system used to define the locations consists of a radio beacon system which triangulates position off two known transponders, and dead reckoning with compass and odometer. Thismore » paper addresses the problem of combining these two measurements to arrive at a best estimate of position. Two algorithms are proposed: the optimal'' algorithm treats the measurements as random variables and minimizes the estimate variance, while the average error'' algorithm considers the bias in dead reckoning and attempts to guarantee an average error. Data collected on the algorithms indicate that both work well in practice. 2 refs., 7 figs.« less
Long-path measurements of pollutants and micrometeorology over Highway 401 in Toronto
NASA Astrophysics Data System (ADS)
You, Yuan; Staebler, Ralf M.; Moussa, Samar G.; Su, Yushan; Munoz, Tony; Stroud, Craig; Zhang, Junhua; Moran, Michael D.
2017-11-01
Traffic emissions contribute significantly to urban air pollution. Measurements were conducted over Highway 401 in Toronto, Canada, with a long-path Fourier transform infrared (FTIR) spectrometer combined with a suite of micrometeorological instruments to identify and quantify a range of air pollutants. Results were compared with simultaneous in situ observations at a roadside monitoring station, and with output from a special version of the operational Canadian air quality forecast model (GEM-MACH). Elevated mixing ratios of ammonia (0-23 ppb) were observed, of which 76 % were associated with traffic emissions. Hydrogen cyanide was identified at mixing ratios between 0 and 4 ppb. Using a simple dispersion model, an integrated emission factor of on average 2.6 g km-1 carbon monoxide was calculated for this defined section of Highway 401, which agreed well with estimates based on vehicular emission factors and observed traffic volumes. Based on the same dispersion calculations, vehicular average emission factors of 0.04, 0.36, and 0.15 g km-1 were calculated for ammonia, nitrogen oxide, and methanol, respectively.
Atmospheric characterization on the Kennedy Space Center Shuttle Landing Facility
NASA Astrophysics Data System (ADS)
Ko, Jonathan; Coffaro, Joseph; Wu, Chensheng; Paulson, Daniel; Davis, Christopher
2017-08-01
Large temperature gradients are a known source of strong atmospheric turbulence conditions. Often times these areas of strong turbulence conditions are also accompanied by conditions that make it difficult to conduct long term optical atmospheric tests. The Shuttle Landing Facility (SLF) at the Kennedy Space Center (KSC) provides a prime testing environment that is capable of generating strong atmospheric turbulence yet is also easily accessible for well instrumented testing. The Shuttle Landing Facility features a 5000 m long and 91 m wide concrete runway that provides ample space for measurements of atmospheric turbulence as well as the opportunity for large temperature gradients to form as the sun heats the surface. We present the results of a large aperture LED scintillometer, a triple aperture laser scintillometer, and a thermal probe system that were used to calculate a path averaged and a point calculation of Cn2. In addition, we present the results of the Plenoptic Sensor that was used to calculate a path averaged Cn2 value. These measurements were conducted over a multi-day continuous test with supporting atmospheric and weather data provided by the University of Central Florida.
Identification of literary movements using complex networks to represent texts
NASA Astrophysics Data System (ADS)
Amancio, Diego Raphael; Oliveira, Osvaldo N., Jr.; da Fontoura Costa, Luciano
2012-04-01
The use of statistical methods to analyze large databases of text has been useful in unveiling patterns of human behavior and establishing historical links between cultures and languages. In this study, we identified literary movements by treating books published from 1590 to 1922 as complex networks, whose metrics were analyzed with multivariate techniques to generate six clusters of books. The latter correspond to time periods coinciding with relevant literary movements over the last five centuries. The most important factor contributing to the distinctions between different literary styles was the average shortest path length, in particular the asymmetry of its distribution. Furthermore, over time there has emerged a trend toward larger average shortest path lengths, which is correlated with increased syntactic complexity, and a more uniform use of the words reflected in a smaller power-law coefficient for the distribution of word frequency. Changes in literary style were also found to be driven by opposition to earlier writing styles, as revealed by the analysis performed with geometrical concepts. The approaches adopted here are generic and may be extended to analyze a number of features of languages and cultures.
Differential correction system of laser beam directional dithering based on symmetrical beamsplitter
NASA Astrophysics Data System (ADS)
Hongwei, Yang; Wei, Tao; Xiaoqia, Yin; Hui, Zhao
2018-02-01
This paper proposes a differential correction system with a differential optical path and a symmetrical beamsplitter for correcting the directional dithering of the laser beams. This system can split a collimated laser beam into two laser beams with equal and opposite movements. Thus, the positional averages of the two split laser beams remain constant irrespective of the dithering angle. The symmetrical beamsplitter designed based on transfer matrix principle is to balance the optical paths and irradiances of the two laser beams. Experimental results show that the directional dithering is reduced to less than one-pixel value. Finally, two examples show that this system can be widely used in one-dimensional measurement.
On the formation of granulites
Bohlen, S.R.
1991-01-01
The tectonic settings for the formation and evolution of regional granulite terranes and the lowermost continental crust can be deduced from pressure-temperature-time (P-T-time) paths and constrained by petrological and geophysical considerations. P-T conditions deduced for regional granulites require transient, average geothermal gradients of greater than 35??C km-1, implying minimum heat flow in excess of 100 mW m-2. Such high heat flow is probably caused by magmatic heating. Tectonic settings wherein such conditions are found include convergent plate margins, continental rifts, hot spots and at the margins of large, deep-seated batholiths. Cooling paths can be constrained by solid-solid and devolatilization equilibria and geophysical modelling. -from Author
A Broadband Microwave Radiometer Technique at X-band for Rain and Drop Size Distribution Estimation
NASA Technical Reports Server (NTRS)
Meneghini, R.
2005-01-01
Radiometric brightess temperatures below about 12 GHz provide accurate estimates of path attenuation through precipitation and cloud water. Multiple brightness temperature measurements at X-band frequencies can be used to estimate rainfall rate and parameters of the drop size distribution once correction for cloud water attenuation is made. Employing a stratiform storm model, calculations of the brightness temperatures at 9.5, 10 and 12 GHz are used to simulate estimates of path-averaged median mass diameter, number concentration and rainfall rate. The results indicate that reasonably accurate estimates of rainfall rate and information on the drop size distribution can be derived over ocean under low to moderate wind speed conditions.
Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space: Progress
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Krainak, M.; Riris, H. J.; Sun, X.; Riris, H.; Andrews, A. E.; Collatz, J.
2004-01-01
We describe progress toward developing a laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate measurements of the tropospheric CO2 mixing ratio from space are challenging due to the many potential error sources. These include possible interference from other trace gas species, the effects of temperature, clouds, aerosols & turbulence in the path, changes in surface reflectivity, and variability in dry air density caused by changes in atmospheric pressure, water vapor and topographic height. Some potential instrumental errors include frequency drifts in the transmitter, small transmission and sensitivity drifts in the instrument. High signal-to-noise ratios and measurement stability are needed for mixing ratio estimates at the few ppm level. We have been developing a laser sounder approach as a candidate for a future space mission. It utilizes multiple different laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter in the same measurement path. It directs the narrow co-aligned laser beams from the instrument's fiber lasers toward nadir, and measures the energy of the strong laser echoes reflected from the Earth's land and water surfaces. During the measurement its narrow linewidth lasers are rapidly tuned on- and off- selected CO2 line near 1572 nm and an O2 absorption line near 770 nm. The receiver measures the energies of the laser echoes from the surface and any clouds and aerosols in the path with photon counting detectors. Ratioing the on- to off-line echo pulse energies for each gas permits the column extinction and column densities of CO2 and O2 to be estimated simultaneously via the differential absorption lidar technique. For the on-line wavelengths, the side of the selected absorption lines are used, which due to pressure broadening, weights the measurements to the lower troposphere, where CO2 variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line. The laser backscatter profiles from clouds and aerosols are measured with other lidar channels, which permits identifying measurements influenced by clouds and/or aerosol scattering in the path. For space use, our lidar would continuously measure at nadir in near polar circular orbit. Using dawn and dusk measurements made over the same region will make it possible to sample the diurnal variations in CO2 mixing ratios. A 1-m diameter telescope is used for the receiver for all wavelengths. When averaging over 50 seconds, our calculations show a SNR of approximately 1500 is achievable for each gas at each on- and off-line measurement. Measurements from such a mission can be used to generate monthly global maps of the lower tropospheric CO2 column abundance. Our calculations show global coverage with an accuracy of a few ppm with a spatial resolution of approximately 50,000 sq. km are achievable each month. We have demonstrated some key elements of the laser, detector and receiver approaches in the laboratory and with measurements over a 206 m horizontal path. These include stable measurements of CO2 line shapes in an absorption cell using a fiber laser amplifier seeded by a tunable diode laser, measurement of small amplitude changes at low optical signal levels with the PMT receiver, and comparison of the horizontal path measurements of CO2 against those from an in-situ instrument.
Sensitivity studies for a space-based methane lidar mission
NASA Astrophysics Data System (ADS)
Kiemle, C.; Quatrevalet, M.; Ehret, G.; Amediek, A.; Fix, A.; Wirth, M.
2011-10-01
Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA) lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN) on a small satellite in polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1% over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol layers and thin ice clouds will be minimised.
Sensitivity studies for a space-based methane lidar mission
NASA Astrophysics Data System (ADS)
Kiemle, C.; Quatrevalet, M.; Ehret, G.; Amediek, A.; Fix, A.; Wirth, M.
2011-06-01
Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA) lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN) on a small satellite in Polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1 % over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol layers and thin ice clouds will be minimised.
NASA Astrophysics Data System (ADS)
Stephanou, Pavlos S.; Baig, Chunggi; Tsolou, Georgia; Mavrantzas, Vlasis G.; Kröger, Martin
2010-03-01
The topological state of entangled polymers has been analyzed recently in terms of primitive paths which allowed obtaining reliable predictions of the static (statistical) properties of the underlying entanglement network for a number of polymer melts. Through a systematic methodology that first maps atomistic molecular dynamics (MD) trajectories onto time trajectories of primitive chains and then documents primitive chain motion in terms of a curvilinear diffusion in a tubelike region around the coarse-grained chain contour, we are extending these static approaches here even further by computing the most fundamental function of the reptation theory, namely, the probability ψ(s,t) that a segment s of the primitive chain remains inside the initial tube after time t, accounting directly for contour length fluctuations and constraint release. The effective diameter of the tube is independently evaluated by observing tube constraints either on atomistic displacements or on the displacement of primitive chain segments orthogonal to the initial primitive path. Having computed the tube diameter, the tube itself around each primitive path is constructed by visiting each entanglement strand along the primitive path one after the other and approximating it by the space of a small cylinder having the same axis as the entanglement strand itself and a diameter equal to the estimated effective tube diameter. Reptation of the primitive chain longitudinally inside the effective constraining tube as well as local transverse fluctuations of the chain driven mainly from constraint release and regeneration mechanisms are evident in the simulation results; the latter causes parts of the chains to venture outside their average tube surface for certain periods of time. The computed ψ(s,t) curves account directly for both of these phenomena, as well as for contour length fluctuations, since all of them are automatically captured in the atomistic simulations. Linear viscoelastic properties such as the zero shear rate viscosity and the spectra of storage and loss moduli obtained on the basis of the obtained ψ(s,t) curves for three different polymer melts (polyethylene, cis-1,4-polybutadiene, and trans-1,4-polybutadiene) are consistent with experimental rheological data and in qualitative agreement with the double reptation and dual constraint models. The new methodology is general and can be routinely applied to analyze primitive path dynamics and chain reptation in atomistic trajectories (accumulated through long MD simulations) of other model polymers or polymeric systems (e.g., bidisperse, branched, grafted, etc.); it is thus believed to be particularly useful in the future in evaluating proposed tube models and developing more accurate theories for entangled systems.
New device architecture of a thermoelectric energy conversion for recovering low-quality heat
NASA Astrophysics Data System (ADS)
Kim, Hoon; Park, Sung-Geun; Jung, Buyoung; Hwang, Junphil; Kim, Woochul
2014-03-01
Low-quality heat is generally discarded for economic reasons; a low-cost energy conversion device considering price per watt, /W, is required to recover this waste heat. Thin-film based thermoelectric devices could be a superior alternative for this purpose, based on their low material consumption; however, power generated in conventional thermoelectric device architecture is negligible due to the small temperature drop across the thin film. To overcome this challenge, we propose new device architecture, and demonstrate approximately 60 Kelvin temperature differences using a thick polymer nanocomposite. The temperature differences were achieved by separating the thermal path from the electrical path; whereas in conventional device architecture, both electrical charges and thermal energy share same path. We also applied this device to harvest body heat and confirmed its usability as an energy conversion device for recovering low-quality heat.
Gunshot injuries in the neck area: ballistics elements and forensic issues.
Pinto, Antonio; Brunese, Luca; Scaglione, Mariano; Scuderi, Maria Giuseppina; Romano, Luigia
2009-06-01
The neck is an interesting structure as far as penetrating trauma is concerned because of the multiple vital structures that are concentrated in a small anatomic area. Gunshot wounding is an interaction between the penetrating projectile, the anatomy of the wounded subject, and the chance occurrences that determine the exact missile path. The mass and velocity of the projectile establish the upper limit of possible tissue damage. Management of gunshot neck injuries depends on a clear understanding of the anatomy of the neck. The radiologist can contribute substantially to the successful treatment of the patient with a gunshot wound. Important analysis includes the assessment of the missile path in emergency conditions by using plain film and multidetector row computed tomography. The radiologist further evaluates the extent of wounding by determining missile fragmentation and secondary missile paths.
10 CFR 431.445 - Determination of small electric motor efficiency.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) General requirements. The average full-load efficiency of each basic model of small electric motor must be... this section, provided, however, that an AEDM may be used to determine the average full-load efficiency of one or more of a manufacturer's basic models only if the average full-load efficiency of at least...
10 CFR 431.445 - Determination of small electric motor efficiency.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) General requirements. The average full-load efficiency of each basic model of small electric motor must be... this section, provided, however, that an AEDM may be used to determine the average full-load efficiency of one or more of a manufacturer's basic models only if the average full-load efficiency of at least...
Thermal averages in a quantum point contact with a single coherent wave packet.
Heller, E J; Aidala, K E; LeRoy, B J; Bleszynski, A C; Kalben, A; Westervelt, R M; Maranowski, K D; Gossard, A C
2005-07-01
A novel formal equivalence between thermal averages of coherent properties (e.g., conductance) and time averages of a single wave packet arises for Fermi gases and certain geometries. In the case of one open channel in a quantum point contact (QPC), only one wave packet history, with the wave packet width equal to the thermal length, completely determines the thermally averaged conductance. The formal equivalence moreover allows very simple physical interpretations of interference features surviving under thermal averaging. Simply put, pieces of the thermal wave packet returning to the QPC along independent paths must arrive at the same time in order to interfere. Remarkably, one immediate result of this approach is that higher temperature leads to narrower wave packets and therefore better resolution of events in the time domain. In effect, experiments at 4.2 K are performing time-gated experiments at better than a gigahertz. Experiments involving thermally averaged ballistic conductance in 2DEGS are presented as an application of this picture.
Modelling of information diffusion on social networks with applications to WeChat
NASA Astrophysics Data System (ADS)
Liu, Liang; Qu, Bo; Chen, Bin; Hanjalic, Alan; Wang, Huijuan
2018-04-01
Traces of user activities recorded in online social networks open new possibilities to systematically understand the information diffusion process on social networks. From the online social network WeChat, we collected a large number of information cascade trees, each of which tells the spreading trajectory of a message/information such as which user creates the information and which users view or forward the information shared by which neighbours. In this work, we propose two heterogeneous non-linear models, one for the topologies of the information cascade trees and the other for the stochastic process of information diffusion on a social network. Both models are validated by the WeChat data in reproducing and explaining key features of cascade trees. Specifically, we apply the Random Recursive Tree (RRT) to model the growth of cascade trees. The RRT model could capture key features, i.e. the average path length and degree variance of a cascade tree in relation to the number of nodes (size) of the tree. Its single identified parameter quantifies the relative depth or broadness of the cascade trees and indicates that information propagates via a star-like broadcasting or viral-like hop by hop spreading. The RRT model explains the appearance of hubs, thus a possibly smaller average path length as the cascade size increases, as observed in WeChat. We further propose the stochastic Susceptible View Forward Removed (SVFR) model to depict the dynamic user behaviour including creating, viewing, forwarding and ignoring a message on a given social network. Beside the average path length and degree variance of the cascade trees in relation to their sizes, the SVFR model could further explain the power-law cascade size distribution in WeChat and unravel that a user with a large number of friends may actually have a smaller probability to read a message (s)he receives due to limited attention.
South Philadelphia passive sampler and sensor study.
Thoma, Eben D; Brantley, Halley L; Oliver, Karen D; Whitaker, Donald A; Mukerjee, Shaibal; Mitchell, Bill; Wu, Tai; Squier, Bill; Escobar, Elsy; Cousett, Tamira A; Gross-Davis, Carol Ann; Schmidt, Howard; Sosna, Dennis; Weiss, Hallie
2016-10-01
From June 2013 to March 2015, in total 41 passive sampler deployments of 2 wk duration each were conducted at 17 sites in South Philadelphia, PA, with results for benzene discussed here. Complementary time-resolved measurements with lower cost prototype fenceline sensors and an open-path ultraviolet differential optical absorption spectrometer were also conducted. Minimum passive sampler benzene concentrations for each sampling period ranged from 0.08 ppbv to 0.65 ppbv, with a mean of 0.25 ppbv, and were negatively correlated with ambient temperature (-0.01 ppbv/°C, R(2) = 0.68). Co-deployed duplicate passive sampler pairs (N = 609) demonstrated good precision with an average and maximum percent difference of 1.5% and 34%, respectively. A group of passive samplers located within 50 m of a refinery fenceline had a study mean benzene concentration of 1.22 ppbv, whereas a group of samplers located in communities >1 km distant from facilities had a mean of 0.29 ppbv. The difference in the means of these groups was statistically significant at the 95% confidence level (p < 0.001). A decreasing gradient in benzene concentrations moving away from the facilities was observed, as was a significant period-to-period variation. The highest recorded 2-wk average benzene concentration for the fenceline group was 3.11 ppbv. During this period, time-resolved data from the prototype sensors and the open-path spectrometer detected a benzene signal from the west on one day in particular, with the highest 5-min path-averaged benzene concentration measured at 24 ppbv. Using a variation of EPA's passive sampler refinery fenceline monitoring method, coupled with time-resolved measurements, a multiyear study in South Philadelphia informed benzene concentrations near facilities and in communities. The combination of measurement strategies can assist facilities in identification and mitigation of emissions from fugitive sources and improve information on air quality complex air sheds.
NASA Astrophysics Data System (ADS)
Udawatta, Ranjith; Gantzer, Clark; Anderson, Stephen; Assouline, Shmuel
2015-04-01
Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2mm and < 0.5mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5-mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN)=10-CN/Co and P(PL)=10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (64 and 61 μm; p<0.04), largest pore volume (1.6 and 0.6 mm3; p=0.06), number of pores (55 and 50; p=0.09), characteristic coordination number (6.3 and 6.0; p=0.09), and characteristic path length number (116 and 105; p=0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.
NASA Astrophysics Data System (ADS)
Udawatta, R. P.; Gantzer, C. J.; Anderson, S. H.; Assouline, S.
2015-07-01
Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 μm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), characteristic coordination number (6.32 and 5.94; p = 0.09), and characteristic path length number (116 and 105; p = 0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.
Direct simulation of high-vorticity gas flows
NASA Technical Reports Server (NTRS)
Bird, G. A.
1987-01-01
The computational limitations associated with the molecular dynamics (MD) method and the direct simulation Monte Carlo (DSMC) method are reviewed in the context of the computation of dilute gas flows with high vorticity. It is concluded that the MD method is generally limited to the dense gas case in which the molecular diameter is one-tenth or more of the mean free path. It is shown that the cell size in DSMC calculations should be small in comparison with the mean free path, and that this may be facilitated by a new subcell procedure for the selection of collision partners.
Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas.
Malone, Fionn D; Blunt, N S; Brown, Ethan W; Lee, D K K; Spencer, J S; Foulkes, W M C; Shepherd, James J
2016-09-09
The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration path-integral formalism disagree by up to ∼10% at certain reduced temperatures T/T_{F}≤0.5 and densities r_{s}≤1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T_{F}≥1 and r_{s}≤2.
Migration mechanisms and diffusion barriers of vacancies in Ga2O3
NASA Astrophysics Data System (ADS)
Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico
2017-06-01
We employ the nudged elastic band and the dimer methods within the standard density functional theory (DFT) formalism to study the migration of the oxygen and gallium vacancies in the monoclinic structure of β -Ga2O3 . We identify all the first nearest neighbor paths and calculate the migration barriers for the diffusion of the oxygen and gallium vacancies. We also identify the metastable sites of the gallium vacancies which are critical for the diffusion of the gallium atoms. The migration barriers for the diffusion of the gallium vacancies are lower than the migration barriers for oxygen vacancies by 1 eV on average, suggesting that the gallium vacancies are mobile at lower temperatures. Using the calculated migration barriers we estimate the annealing temperature of these defects within the harmonic transition state theory formalism, finding excellent agreement with the observed experimental annealing temperatures. Finally, we suggest the existence of percolation paths which enable the migration of the species without utilizing all the migration paths of the crystal.
Fast marching methods for the continuous traveling salesman problem.
Andrews, June; Sethian, J A
2007-01-23
We consider a problem in which we are given a domain, a cost function which depends on position at each point in the domain, and a subset of points ("cities") in the domain. The goal is to determine the cheapest closed path that visits each city in the domain once. This can be thought of as a version of the traveling salesman problem, in which an underlying known metric determines the cost of moving through each point of the domain, but in which the actual shortest path between cities is unknown at the outset. We describe algorithms for both a heuristic and an optimal solution to this problem. The complexity of the heuristic algorithm is at worst case M.N log N, where M is the number of cities, and N the size of the computational mesh used to approximate the solutions to the shortest paths problems. The average runtime of the heuristic algorithm is linear in the number of cities and O(N log N) in the size N of the mesh.
NASA Astrophysics Data System (ADS)
Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.
2016-12-01
We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, F.G.A.; Camacho, F.G.; Perez, J.A.S.
1997-09-05
A mathematical model to estimate the solar irradiance profile and average light intensity inside a tubular photobioreactor under outdoor conditions is proposed, requiring only geographic, geometric, and solar position parameters. First, the length of the path into the culture traveled by any direct or disperse ray of light was calculated as the function of three variables: day of year, solar hour, and geographic latitude. Then, the phenomenon of light attenuation by biomass was studied considering Lambert-Beer`s law (only considering absorption) and the monodimensional model of Cornet et al. (1900) (considering absorption and scattering phenomena). Due to the existence of differentialmore » wavelength absorption, none of the literature models are useful for explaining light attenuation by the biomass. Therefore, an empirical hyperbolic expression is proposed. The equations to calculate light path length were substituted in the proposed hyperbolic expression, reproducing light intensity data obtained in the center of the loop tubes. The proposed model was also likely to estimate the irradiance accurately at any point inside the culture. Calculation of the local intensity was thus extended to the full culture volume in order to obtain the average irradiance, showing how the higher biomass productivities in a Phaeodactylum tricornutum UTEX 640 outdoor chemostat culture could be maintained by delaying light limitation.« less
Prevedello, Jayme Augusto; Forero-Medina, Germán; Vieira, Marcus Vinícius
2010-11-01
1. For animal species inhabiting heterogeneous landscapes, the tortuosity of the dispersal path is a key determinant of the success in locating habitat patches. Path tortuosity within and beyond perceptual range must differ, and may be differently affected by intrinsic attributes of individuals and extrinsic environmental factors. Understanding how these factors interact to determine path tortuosity allows more accurate inference of successful movements between habitat patches. 2. We experimentally determined the effects of intrinsic (body mass and species identity) and extrinsic factors (distance to nearest forest fragment and matrix type) on the tortuosity of movements of three forest-dwelling didelphid marsupials, in a fragmented landscape of the Atlantic Forest, Brazil. 3. A total of 202 individuals were captured in forest fragments and released in three unsuitable matrix types (mowed pasture, abandoned pasture and manioc plantation), carrying spool-and-line devices. 4. Twenty-four models were formulated representing a priori hypotheses of major determinants of path tortuosity, grouped in three scenarios (only intrinsic factors, only extrinsic factors and models with combinations of both), and compared using a model selection approach. Models were tested separately for individuals released within the perceptual range of the species, and for individuals released beyond the perceptual range. 5. Matrix type strongly affected path tortuosity, with more obstructed matrix types hampering displacement of animals. Body mass was more important than species identity to determine path tortuosity, with larger animals moving more linearly. Increased distance to the fragment resulted in more tortuous paths, but actually reflects a threshold in perceptual range: linear paths within perceptual range, tortuous paths beyond. 6. The variables tested explained successfully path tortuosity, but only for animals released within the perceptual range. Other factors, such as wind intensity and direction of plantation rows, may be more important for individuals beyond their perceptual range. 7. Simplistic scenarios considering only intrinsic or extrinsic factors are inadequate to predict path tortuosity, and to infer dispersal success in heterogeneous landscapes. Perceptual range represents a fundamental threshold where the effects of matrix type, body mass and individual behaviour change drastically. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.
Tornado Intensity Estimated from Damage Path Dimensions
Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242
Tornado intensity estimated from damage path dimensions.
Elsner, James B; Jagger, Thomas H; Elsner, Ian J
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.
Stemflow-induced processes of soil water storage
NASA Astrophysics Data System (ADS)
Germer, Sonja
2013-04-01
Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might partly explain the competitive position of babassu palms on pastures or secondary forests.
Structural overview and learner control in hypermedia instructional programs
NASA Astrophysics Data System (ADS)
Burke, Patricia Anne
1998-09-01
This study examined the effects of a structural overview and learner control in a computer-based program on the achievement, attitudes, time in program and Linearity of path of fifth-grade students. Four versions of a computer-based instructional program about the Sun and planets were created in a 2 x 2 factorial design. The program consisted of ten sections, one for each planet and one for the Sun. Two structural overview conditions (structural overview, no structural overview) were crossed with two control conditions (learner control, program control). Subjects in the structural overview condition chose the order in which they would learn about the planets from among three options: ordered by distance from the Sun, ordered by size, or ordered by temperature. Subjects in the learner control condition were able to move freely among screens within a section and to choose their next section after finishing the previous one. In contrast, those in the program control condition advanced through the program in a prescribed linear manner. A 2 x 2 ANOVA yielded no significant differences in posttest scores for either independent variable or for their interaction. The structural overview was most likely not effective because subjects spent only a small percentage of their total time on the structural overview screens and they were not required to act upon the information in those screens. Learner control over content sequencing may not have been effective because most learner-control subjects chose the same overall sequence of instruction (i.e., distance from the Sun) prescribed for program-control subjects. Learner-control subjects chose to view an average of 40 more screens than the fixed number of 160 screens in the program-control version. However, program-control subjects spent significantly more time per screen than learner-control subjects, and the total time in program did not differ significantly between the two groups. Learner-control subjects receiving the structural overview deviated from the linear path significantly more often than subjects who did not have the structural overview, but deviation from the linear path was not associated with higher posttest scores.
NASA Astrophysics Data System (ADS)
Acton, C. E.; Priestley, K.; Mitra, S.; Gaur, V. K.; Rai, S. S.
2007-12-01
We present group velocity dispersion results from a study of regional fundamental mode Rayleigh and Love waves propagating across India and surrounding regions. Data used in this study comes from broadband stations operated in India by us in addition to data from seismograms in the region whose data is archived at the IRIS Data Management Centre. The large amount of new and available data allows an improved path coverage and accordingly increased lateral resolution than in previous similar global and regional studies. 1D path- averaged dispersion measurements have been made using multiple filter analyis for source-receiver paths and are combined to produce tomographic group velocity maps for periods between 10 and 60 s. Preliminary Rayleigh wave group velocity maps have been produced using ~2500 paths and checkerboard tests indicate an average resolution of 5 degrees with substantially higher resolution achieved over the more densely sampled Himalayan regions. Short period velocity maps correlate well with surface geology resolving low velocity regions (2.0-2.4 km/s) corresponding to the Ganges and Brahmaputra river deltas, the Indo-Gangetic plains, the Katawaz Basin in Pakhistan, the Tarim Basin in China and the Turan Depression. The Tibetan Plateau is well defined as a high velocity region (2.9-3.2 km/s) at 10 s period, but for periods greater than 20 s it becomes a low velocity region which remains a distinct feature at 60 s and is consistent with the increased crustal thickness. The southern Indian shield is characterized by high crustal group velocities (3.0-3.4 km/s) and at short periods of 10 and 15 s it is possible to make some distinction between the Singhbhum, Dharwar and Aravali cratons. Initial Love wave group velocity maps from 500 dispersion measurements show similarly low velocities at short periods across regions with high sedimentation but higher velocities compared to Rayleigh waves across the Indian shield.
Analyzing Study of Path loss Propagation Models in Wireless Communications at 0.8 GHz
NASA Astrophysics Data System (ADS)
Kadhim Hoomod, Haider; Al-Mejibli, Intisar; Issa Jabboory, Abbas
2018-05-01
The paths loss propagation model is an important tool in wireless network planning, allowing network planner to optimize the cell towers distribution and meet expected service level requirements. However, each type of path loss propagation model is designed to predict path loss in a particular environment that may be inaccurate in other different environment. In this research different propagation models (Hata Model, ICC-33 Model, Ericson Model and Coast-231 Model) have been analyzed and compared based on the measured data. The measured data represent signal strength of two cell towers placed in two different environments which obtained by a drive test of them. First one in AL-Habebea represents an urban environment (high-density region) and the second in AL-Hindea district represents a rural environment (low-density region) with operating frequency 0.8 GHz. The results of performing the analysis and comparison conclude that Hata model and Ericsson model shows small deviation from real measurements in urban environment and Hata model generally gives better prediction in the rural environment.
NASA Astrophysics Data System (ADS)
Moriya, Makoto
2017-12-01
In the development of innovative molecule-based materials, the identification of the structural features in supramolecular solids and the understanding of the correlation between structure and function are important factors. The author investigated the development of supramolecular solid electrolytes by constructing ion conduction paths using a supramolecular hierarchical structure in molecular crystals because the ion conduction path is an attractive key structure due to its ability to generate solid-state ion diffusivity. The obtained molecular crystals exhibited selective lithium ion diffusion via conduction paths consisting of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and small molecules such as ether or amine compounds. In the present review, the correlation between the crystal structure and ion conductivity of the obtained molecular crystals is addressed based on the systematic structural control of the ionic conduction paths through the modification of the component molecules. The relationship between the crystal structure and ion conductivity of the molecular crystals provides a guideline for the development of solid electrolytes based on supramolecular solids exhibiting rapid and selective lithium ion conduction.
A Statistical Simulation Approach to Safe Life Fatigue Analysis of Redundant Metallic Components
NASA Technical Reports Server (NTRS)
Matthews, William T.; Neal, Donald M.
1997-01-01
This paper introduces a dual active load path fail-safe fatigue design concept analyzed by Monte Carlo simulation. The concept utilizes the inherent fatigue life differences between selected pairs of components for an active dual path system, enhanced by a stress level bias in one component. The design is applied to a baseline design; a safe life fatigue problem studied in an American Helicopter Society (AHS) round robin. The dual active path design is compared with a two-element standby fail-safe system and the baseline design for life at specified reliability levels and weight. The sensitivity of life estimates for both the baseline and fail-safe designs was examined by considering normal and Weibull distribution laws and coefficient of variation levels. Results showed that the biased dual path system lifetimes, for both the first element failure and residual life, were much greater than for standby systems. The sensitivity of the residual life-weight relationship was not excessive at reliability levels up to R = 0.9999 and the weight penalty was small. The sensitivity of life estimates increases dramatically at higher reliability levels.
Explore Stochastic Instabilities of Periodic Points by Transition Path Theory
NASA Astrophysics Data System (ADS)
Cao, Yu; Lin, Ling; Zhou, Xiang
2016-06-01
We consider the noise-induced transitions from a linearly stable periodic orbit consisting of T periodic points in randomly perturbed discrete logistic map. Traditional large deviation theory and asymptotic analysis at small noise limit cannot distinguish the quantitative difference in noise-induced stochastic instabilities among the T periodic points. To attack this problem, we generalize the transition path theory to the discrete-time continuous-space stochastic process. In our first criterion to quantify the relative instability among T periodic points, we use the distribution of the last passage location related to the transitions from the whole periodic orbit to a prescribed disjoint set. This distribution is related to individual contributions to the transition rate from each periodic points. The second criterion is based on the competency of the transition paths associated with each periodic point. Both criteria utilize the reactive probability current in the transition path theory. Our numerical results for the logistic map reveal the transition mechanism of escaping from the stable periodic orbit and identify which periodic point is more prone to lose stability so as to make successful transitions under random perturbations.
B. Lane Rivenbark; C. Rhett Jackson
2004-01-01
Regional average evapotranspiration estimates developed by water balance techniques are frequently used to estimate average discharge in ungaged strttams. However, the lower stream size range for the validity of these techniques has not been explored. Flow records were collected and evaluated for 16 small streams in the Southern Appalachians to test whether the...
NASA Astrophysics Data System (ADS)
Huang, Y.; Yao, H.; Wu, F. T.; Liang, W.; Huang, B.; Lin, C.; Wen, K.
2013-12-01
Although orogeny seems to have stopped in western Taiwan large and small earthquakes do occur in the Taiwan Strait. Limited studies have focused on this region before and were barely within reach for comprehensive projects like TAICRUST and TAIGER for logistical reasons; thus, the overall crustal structures of the Taiwan Strait remain unknown. Time domain empirical Green's function (TDEGF) from ambient seismic noise to determine crustal velocity structure allows us to study an area using station pairs on its periphery. This research aims to resolve 1-D average crustal and upper mantle S-wave velocity (Vs) structures alone paths of several broadband station-pairs across the Taiwan Strait; 5-120 s Rayleigh wave phase velocity dispersion data derived by combining TDEGF and traditional surface wave two-station method (TS). The average Vs structures show significant differences in the upper 15 km as expected. In general, the highest Vs are observed in the coastal area of Mainland China and the lowest Vs appear along the southwest offshore of the Taiwan Island; they differ by about 0.6-1.1 km/s. For different parts of the Strait, the Vs are lower in the middle by about 0.1-0.2 km/s relative to those in the northern and southern parts. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island.
Four-dimensional guidance algorithms for aircraft in an air traffic control environment
NASA Technical Reports Server (NTRS)
Pecsvaradi, T.
1975-01-01
Theoretical development and computer implementation of three guidance algorithms are presented. From a small set of input parameters the algorithms generate the ground track, altitude profile, and speed profile required to implement an experimental 4-D guidance system. Given a sequence of waypoints that define a nominal flight path, the first algorithm generates a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained by the minimum turning radius of the aircraft. The ground track and the specified waypoint altitudes are used as inputs to the second algorithm which generates the altitude profile. The altitude profile consists of piecewise constant flight path angle segments, each segment lying within specified upper and lower bounds. The third algorithm generates a feasible speed profile subject to constraints on the rate of change in speed, permissible speed ranges, and effects of wind. Flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft so that a 4-D flight path could be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually.
2013-01-01
Background There are repeated calls to build better cycling paths in Australian cities if the proportion of people cycling is to increase. Yet the full range of transport, health, environmental and economic impacts of new cycling infrastructure and the extent to which observed changes are sustained is not well understood. The City of Sydney is currently building a new bicycle network, which includes a new bicycle path separated from road traffic in the south Sydney area. This protocol paper describes a comprehensive method to evaluate this new cycling infrastructure. Method A cohort of residents within two kilometres of the new bicycle path will be surveyed at baseline before a new section of bicycle path is built, and again 12 and 24 months later to assess changes in travel behaviour, sense of community, quality of life and health behaviours. Residents in a comparable area of Sydney that will not get a new separated bike path will act as a comparison group. At baseline a sub-set of residents who volunteer will also take a small GPS device with them for one week to assess travel behaviour. Discussion This research should contribute to the advancement in evaluation and appraisal methods for cycling projects. PMID:24131667
Hannon, Peggy A.; Helfrich, Christian D.; Chan, K. Gary; Allen, Claire L.; Hammerback, Kristen; Kohn, Marlana J.; Parrish, Amanda T.; Weiner, Bryan J.; Harris, Jeffrey R.
2016-01-01
Purpose To develop a theory-based questionnaire to assess readiness for change in small workplaces adopting wellness programs. Design In developing our scale, we first tested items via “think-aloud” interviews. We tested the revised items in a cross-sectional quantitative telephone survey. Setting Small workplaces (20–250 employees) in low-wage industries. Subjects Decision-makers representing small workplaces in King County, Washington (think-aloud interviews, n=9) and the United States (telephone survey, n=201). Measures We generated items for each construct in Weiner’s theory of organizational readiness for change. We also measured workplace characteristics and current implementation of workplace wellness programs. Analysis We assessed reliability by coefficient alpha for each of the readiness questionnaire subscales. We tested the association of all subscales with employers’ current implementation of wellness policies, programs, and communications, and conducted a path analysis to test the associations in the theory of organizational readiness to change. Results Each of the readiness subscales exhibited acceptable internal reliability (coefficient alpha range = .75–.88) and was positively associated with wellness program implementation (p <.05). The path analysis was consistent with the theory of organizational readiness to change, except change efficacy did not predict change-related effort. Conclusion We developed a new questionnaire to assess small workplaces’ readiness to adopt and implement evidence-based wellness programs. Our findings also provide empirical validation of Weiner’s theory of readiness for change. PMID:26389975
Hannon, Peggy A; Helfrich, Christian D; Chan, K Gary; Allen, Claire L; Hammerback, Kristen; Kohn, Marlana J; Parrish, Amanda T; Weiner, Bryan J; Harris, Jeffrey R
2017-01-01
To develop a theory-based questionnaire to assess readiness for change in small workplaces adopting wellness programs. In developing our scale, we first tested items via "think-aloud" interviews. We tested the revised items in a cross-sectional quantitative telephone survey. The study setting comprised small workplaces (20-250 employees) in low-wage industries. Decision-makers representing small workplaces in King County, Washington (think-aloud interviews, n = 9), and the United States (telephone survey, n = 201) served as study subjects. We generated items for each construct in Weiner's theory of organizational readiness for change. We also measured workplace characteristics and current implementation of workplace wellness programs. We assessed reliability by coefficient alpha for each of the readiness questionnaire subscales. We tested the association of all subscales with employers' current implementation of wellness policies, programs, and communications, and conducted a path analysis to test the associations in the theory of organizational readiness to change. Each of the readiness subscales exhibited acceptable internal reliability (coefficient alpha range, .75-.88) and was positively associated with wellness program implementation ( p < .05). The path analysis was consistent with the theory of organizational readiness to change, except change efficacy did not predict change-related effort. We developed a new questionnaire to assess small workplaces' readiness to adopt and implement evidence-based wellness programs. Our findings also provide empirical validation of Weiner's theory of readiness for change.
Voronin, Lois M.; Cauller, Stephen J.
2017-07-31
Elevated concentrations of nitrogen in groundwater that discharges to surface-water bodies can degrade surface-water quality and habitats in the New Jersey Coastal Plain. An analysis of groundwater flow in the Kirkwood-Cohansey aquifer system and deeper confined aquifers that underlie the Barnegat Bay–Little Egg Harbor (BB-LEH) watershed and estuary was conducted by using groundwater-flow simulation, in conjunction with a particle-tracking routine, to provide estimates of groundwater flow paths and travel times to streams and the BB-LEH estuary.Water-quality data from the Ambient Groundwater Quality Monitoring Network, a long-term monitoring network of wells distributed throughout New Jersey, were used to estimate the initial nitrogen concentration in recharge for five different land-use classes—agricultural cropland or pasture, agricultural orchard or vineyard, urban non-residential, urban residential, and undeveloped. Land use at the point of recharge within the watershed was determined using a geographic information system (GIS). Flow path starting locations were plotted on land-use maps for 1930, 1973, 1986, 1997, and 2002. Information on the land use at the time and location of recharge, time of travel to the discharge location, and the point of discharge were determined for each simulated flow path. Particle-tracking analysis provided the link from the point of recharge, along the particle flow path, to the point of discharge, and the particle travel time. The travel time of each simulated particle established the recharge year. Land use during the year of recharge was used to define the nitrogen concentration associated with each flow path. The recharge-weighted average nitrogen concentration for all flow paths that discharge to the Toms River upstream from streamflow-gaging station 01408500 or to the BB-LEH estuary was calculated.Groundwater input into the Barnegat Bay–Little Egg Harbor estuary from two main sources— indirect discharge from base flow to streams that eventually flow into the bay and groundwater discharge directly into the estuary and adjoining coastal wetlands— is summarized by quantity, travel time, and estimated nitrogen concentration. Simulated average groundwater discharge to streams in the watershed that flow into the BB-LEH estuary is approximately 400 million gallons per day. Particle-tracking results indicate that the travel time of 56 percent of this discharge is less than 7 years. Fourteen percent of the groundwater discharge to the streams in the BB-LEH watershed has a travel time of less than 7 years and originates in urban land. Analysis of flow-path simulations indicate that approximately 13 percent of the total groundwater flow through the study area discharges directly to the estuary and adjoining coastal wetlands (approximately 64 million gallons per day). The travel time of 19 percent of this discharge is less than 7 years. Ten percent of this discharge (1 percent of the total groundwater flow through the study area) originates in urban areas and has a travel time of less than 7 years. Groundwater that discharges to the streams that flow into the BB-LEH, in general, has shorter travel times, and a higher percentage of it originates in urban areas than does direct groundwater discharge to the Barnegat Bay–Little Egg Harbor estuary.The simulated average nitrogen concentration in groundwater that discharges to the Toms River, upstream from streamflow-gaging station 01408500 was computed and compared to summary concentrations determined from analysis of multiple surface-water samples. The nitrogen concentration in groundwater that discharges directly to the estuary and adjoining coastal wetlands is a current data gap. The particle tracking methodology used in this study provides an estimate of this concentration."
The Path to Presidency: Tips for Teaching Elementary Students about the Election Process
ERIC Educational Resources Information Center
Conrad, Marika
2016-01-01
Teaching about presidential elections at the elementary level can seem a bit daunting at times. Students are quick to share their strong opinions on the current candidates running for office. These opinions often involve repeating feelings and phrases shared by parents around the dinner table the night before. For the average seven- or…
ERIC Educational Resources Information Center
Henriksen, Larry; And Others
The study reported in this paper used path analysis statistical methodology and an attrition model to examine the separate and combined relationships of several different types of background, personal, and college experience variables with the attained college grade-point average (GPA) and graduation rate for 3,125 Ball State (Indiana) University…
14 CFR 171.265 - Glide path performance requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... depth of modulation of the radio frequency carrier due to each of the 90 Hz and 150 Hz tones must be 40... tone, which is the time average equivalent to amplitude modulation. The pattern must be arranged to... 5220 MHz to 5250 MHz. The frequency tolerance may not exceed ±0.0001 percent. (f) The emission from the...
Stochastic and deterministic models for agricultural production networks.
Bai, P; Banks, H T; Dediu, S; Govan, A Y; Last, M; Lloyd, A L; Nguyen, H K; Olufsen, M S; Rempala, G; Slenning, B D
2007-07-01
An approach to modeling the impact of disturbances in an agricultural production network is presented. A stochastic model and its approximate deterministic model for averages over sample paths of the stochastic system are developed. Simulations, sensitivity and generalized sensitivity analyses are given. Finally, it is shown how diseases may be introduced into the network and corresponding simulations are discussed.
Making the Most of Education and Training: An Employer Perspective.
ERIC Educational Resources Information Center
Pollitt, David, Ed.
2002-01-01
Eleven articles focus on issues surrounding employer investment in training in Britain. Topics include employee induction, flexible lifelong learning, workplace learning partnerships, retention through training, management development, cooperation with competitors, technician career paths to management, online learning in small businesses, and…
Developmental Neurotoxicity Testing: A Path Forward
Great progress has been made over the past 40 years in understanding the hazards of exposure to a small number of developmental neurotoxicants. Lead, PCBs, and methylmercury are all good examples of science-based approaches to characterizing the hazard to the developing nervous s...
NASA Astrophysics Data System (ADS)
Ramanujam, Nirmala; Vishnoi, Gargi; Hielscher, Andreas H.; Rode, Martha; Forouzan, Iraj; Chance, Britton
2000-04-01
Near infrared (NIR) measurements were made from the maternal abdomen (clinical studies) and laboratory tissue phantoms (experimental studies) to gain insight into photon migration through the fetal head in utero. Specifically, a continuous wave spectrometer was modified and employed to make NIR measurements at 760 and 850 nm, at a large (10 cm) and small (2.5/4 cm) source-detector separation, simultaneously, on the maternal abdomen, directly above the fetal head. A total of 19 patients were evaluated, whose average gestational age and fetal head depth, were 37 weeks +/- 3 and 2.25 cm +/- 0.7, respectively. At the large source-detector separation, the photons are expected to migrate through both the underlying maternal and fetal tissues before being detected at the surface, while at the short source-detector separation, the photons are expected to migrate primarily through the superficial maternal tissues before being detected. Second, similar NIR measurements were made on laboratory tissue phantoms, with variable optical properties and physical geometries. The variable optical properties were obtained using different concentrations of India ink and Intralipid in water, while the variable physical geometries were realized by employing glass containers of different shapes and sizes. Third, the NIR measurements, which were made on the laboratory tissue phantoms, were compared to the NIR measurements made on the maternal abdomen to determine which tissue phantom best simulates the photon migration path through the fetal head in utero. The results of the comparison were used to provide insight into the optical properties and physical geometry of the maternal and fetal tissues in the photon migration path.