Neptune's small dark spot (D2)
NASA Technical Reports Server (NTRS)
1999-01-01
This bulls-eye view of Neptune's small dark spot (D2) was obtained by Voyager 2's narrow-angle camera. Banding surrounding the feature indicates unseen strong winds, while structures within the bright spot suggest both active upwelling of clouds and rotation about the center. A rotation rate has not yet been measured, but the V-shaped structure near the right edge of the bright area indicates that the spot rotates clockwise. Unlike the Great Red Spot on Jupiter, which rotates counterclockwise, if the D2 spot on Neptune rotates clockwise, the material will be descending in the dark oval region. The fact that infrared data will yield temperature information about the region above the clouds makes this observation especially valuable. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.
Defrosting Polar Dunes--Dark Spots and Wind Streaks
NASA Technical Reports Server (NTRS)
1999-01-01
The first time that the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC)team saw dark spots on defrosting dune surfaces was in August and September of 1998. At that time, it was the north polar seasonal frost cap that was subliming away (more recent images from 1999 have shown the south polar frosts). This picture (above) shows a small portion of the giant dune field that surrounds the north polar region, as it appeared on August 23, 1998. At the time, it was early northern spring and the dunes were still covered with winter frost. Dark spots had appeared on the north polar dunes, and many of them exhibited a radial or semi-radial pattern of dark streaks and streamers. At first, there was speculation that the streaks indicated that the defrosting process might somehow involve explosions! The dark spots seemed to resemble small craters with dark, radial ejecta. It seemed possible that frozen carbon dioxide trapped beneath water ice might somehow heat up, turn to gas, expand, and then 'explode' in either a small blast or at least a 'puff' of air similar to that which comes from the blowhole of a surfacing whale or seal. The image shown here changed the earlier impression. The dark spots and streaks do not result from explosions. The spots--though not well understood--represent the earliest stages of defrosting on the sand dunes. The streaks, instead of being caused by small explosions, are instead the result of wind. In this picture, the fine, dark streaks show essentially identical orientations from spot to spot (e.g., compare the spots seen in boxes (a) and (b)). Each ray of dark material must result from wind blowing from a particular direction--for example, all of the spots in this picture exhibit a ray that points toward the upper left corner of the image, and each of these rays indicates the same wind regime. Each spot also has a ray pointing toward the lower right and top/upper-right. These, too, must indicate periods when the wind was strong enough to move materials, consistently, in only one direction. The sand that makes up the north polar dunes is dark. Each spot and streak is composed of the dune sand. The bright surfaces are all covered with frost. This picture is located near 76.9oN, 271.2oW, in the north polar sand sea. Illumination is from the lower left. The 200 meter scale also indicates a distance of 656 feet. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.Stepwise dynamics of an anionic micellar film - Formation of crown lenses.
Lee, Jongju; Nikolov, Alex; Wasan, Darsh
2017-06-15
We studied the stepwise thinning of a microscopic circular foam film formed from an anionic micellar solution of sodium dodecyl sulfate (SDS). The foam film formed from the SDS micellar solution thins in a stepwise manner by the formation and expansion of a dark spot(s) of one layer less than the film thickness. During the last stages of film thinning (e.g., a film with one micellar layer), the dark spot expansion occurs via two steps. Initially, a small dark circular spot inside a film of several microns in size is formed, which expands at a constant rate. Then, a ridge along the expanding spot is formed. As the ridge grows, it becomes unstable and breaks into regular crown lenses, which are seen as white spots in the reflected light at the border of the dark spot with the surrounding thicker film. The Rayleigh type of instability contributes to the formation of the lenses, which results in the increase of the dark spot expansion rate with time. We applied the two-dimensional micellar-vacancy diffusion model and took into consideration the effects of the micellar layering and film volume on the rate of the dark spot expansion [Lee et al., 2016] to predict the rate of the dark spot expansion for a 0.06M SDS film in the presence of lenses. We briefly discuss the Rayleigh type of instability in the case of a 0.06M SDS foam film. The goals of this study are to reveal why the crown lenses are formed during the foam film stratification and to elucidate their effect on the rate of spot expansion. Copyright © 2017 Elsevier Inc. All rights reserved.
HUBBLE FINDS NEW DARK SPOT ON NEPTUNE
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet's northern hemisphere is now tilted away from Earth, the new feature appears near the limb of the planet. The spot is a near mirror-image to a similar southern hemisphere dark spot that was discovered in 1989 by the Voyager 2 probe. In 1994, Hubble showed that the southern dark spot had disappeared. Like its predecessor, the new spot has high altitude clouds along its edge, caused by gasses that have been pushed to higher altitudes where they cool to form methane ice crystal clouds. The dark spot may be a zone of clear gas that is a window to a cloud deck lower in the atmosphere. Planetary scientists don t know how long lived this new feature might be. Hubble's high resolution will allow astronomers to follow the spot's evolution and other unexpected changes in Neptune's dynamic atmosphere. The image was taken on November 2, 1994 with Hubble's Wide Field Planetary Camera 2, when Neptune was 2.8 billion miles (4.5 billion kilometers) from Earth. Hubble can resolve features as small as 625 miles (1,000 kilometers) across in Neptune's cloud tops. Credit: H. Hammel (Massachusetts Institute of Technology) and NASA
... Print Share Birthmarks & Hemangiomas Page Content Article Body Dark-Pigmented Birthmarks (Nevi or Moles) Nevi, or moles, ... so-called nevus cells, these spots are often dark brown or black. Congenital Nevi Small nevi (less ...
Kullander, Sven O; Britz, Ralf
2015-04-21
Danio feegradei Hora is redescribed based on recently collected specimens from small coastal streams on the western slope of the Rakhine Yoma, ranging from the Thade River drainage southward to slightly north of Kyeintali. Danio absconditus, new species, is described from the Kyeintali Chaung and small coastal streams near Gwa, south of the range of D. feegradei. Both species are distinguished from other Danio by the presence of a dark, elongate or round spot at the base of the caudal fin and a cleithral marking composed of a small black spot margined by a much smaller orange spot. Danio feegradei is characterized by the colour pattern, with series of white spots along the otherwise dark side; D. absconditus by about 7--11 dark vertical bars on the abdominal side. Within Danio, the presence of a complete lateral line, cleithral spot, and 14 circumpeduncular scales is shared with D. dangila and similar species, but these character states may be plesiomorphic as suggested by the shared presence of cleithral spot and complete lateral line in Devario and Betadevario. In other Danio the cleithral spot is absent, the lateral line is short or absent, and the circumpeduncular scale count is lower (10-12). Twenty teleost species are reported from streams on the western slope of the Rakhine Yoma, all probably endemic. The parapatric distribution of D. absconditus and D. feegradei is unique within the genus, and may be partly explained by changes in eustatic sea levels.
Genetics Home Reference: Noonan syndrome with multiple lentigines
... Noonan syndrome with multiple lentigines include brown skin spots called lentigines that are similar to freckles, heart ... may have thousands of small dark brown skin spots by the time they reach puberty. Unlike freckles, ...
Defrosting Polar Dunes -- "The Snow Leopard"
2000-05-16
The patterns created by dark spots on defrosting south polar dunes are often strange and beautiful. This picture, which the Mars Orbiter Camera team has dubbed, "the snow leopard," shows a dune field located at 61.5°S, 18.9°W, as it appeared on July 1, 1999. The spots are areas where dark sand has been exposed from beneath bright frost as the south polar winter cap begins to retreat. Many of the spots have a diffuse, bright ring around them this is thought to be fresh frost that was re-precipitated after being removed from the dark spot. The spots seen on defrosting polar dunes are a new phenomenon that was not observed by previous spacecraft missions to Mars. Thus, there is much about these features that remains unknown. For example, no one yet knows why the dunes become defrosted by forming small spots that grow and grow over time. No one knows for sure if the bright rings around the dark spots are actually composed of re-precipitated frost. And no one knows for sure why some dune show spots that appear to be "lined-up" (as they do in the picture shown here). This Mars Global Surveyor Mars Orbiter Camera image is illuminated from the upper left. North is toward the upper right. The scale bar indicates a distance of 200 meters (656 feet). http://photojournal.jpl.nasa.gov/catalog/PIA02301
Dark zone in the centre of the Arago-Poisson diffraction spot of a helical laser beam
NASA Astrophysics Data System (ADS)
Emile, O.; Voisin, A.; Niemiec, R.; Viaris de Lesegno, B.; Pruvost, L.; Ropars, G.; Emile, J.; Brousseau, C.
2013-03-01
We report on the diffraction of non-zero Laguerre Gaussian laser beams by an opaque disk. We observe a tiny circular dark zone at the centre of the usual Arago-Poisson diffraction bright spot. For such non-diffracting dark hollow beams, we have measured diameters as small as 20 μm on distances of the order of ten metres, without focalization. Diameters depend on the diffracting object size and on the topological charge of the input Laguerre Gaussian beam. These results are in good agreement with theoretical considerations. Potential applications are then discussed.
Hubble Finds New Dark Spot on Neptune
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's Hubble Space Telescope has discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet's northern hemisphere is now tilted away from Earth, the new feature appears near the limb of the planet.
The spot is a near mirror-image to a similar southern hemisphere dark spot that was discovered in 1989 by the Voyager 2 probe. In 1994, Hubble showed that the southern dark spot had disappeared.Like its predecessor, the new spot has high altitude clouds along its edge, caused by gasses that have been pushed to higher altitudes where they cool to form methane ice crystal clouds. The dark spot may be a zone of clear gas that is a window to a cloud deck lower in the atmosphere.Planetary scientists don t know how long lived this new feature might be. Hubble's high resolution will allow astronomers to follow the spot's evolution and other unexpected changes in Neptune's dynamic atmosphere.The image was taken on November 2, 1994 with Hubble's Wide Field Planetary Camera 2, when Neptune was 2.8 billion miles (4.5 billion kilometers) from Earth. Hubble can resolve features as small as 625 miles (1,000 kilometers) across in Neptune's cloud tops.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/A new fish species of the subfamily Serraninae (Perciformes, Serranidae) from the Philippines.
Williams, Jeffrey T; Carpenter, Kent E
2015-01-19
A new species of serranine fish is described from the Philippine Islands. A single specimen of a new species, Chelidoperca santosi, captured by fishermen working in Palawan waters was discovered in the public fish market in Iloilo City, Panay, Philippines. Two additional specimens of the new species, also from the Philippines, were subsequently discovered in the collections of the Museum Victoria, Australia. The new species is currently known only from the Philippines and is characterized by its distinctive coloration with a row of four small dark spots on the snout (two in front of each eye) and two dark spots on the chin (one on each side of the symphysis of the dentaries), a white anal fin with six large yellow spots separated by broad white interspaces and a narrow yellow distal border, caudal fin with narrow yellow bars and a yellowish distal margin and no dark spots, and a combination of meristic and morphological characters.
Unblinding the dark matter blind spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Tao; Kling, Felix; Su, Shufang
The dark matter (DM) blind spots in the Minimal Supersymmetric Standard Model (MSSM) refer to the parameter regions where the couplings of the DM particles to the $Z$-boson or the Higgs boson are almost zero, leading to vanishingly small signals for the DM direct detections. In this paper, we carry out comprehensive analyses for the DM searches under the blind-spot scenarios in MSSM. Guided by the requirement of acceptable DM relic abundance, we explore the complementary coverage for the theory parameters at the LHC, the projection for the future underground DM direct searches, and the indirect searches from the relicmore » DM annihilation into photons and neutrinos. We find that (i) the spin-independent (SI) blind spots may be rescued by the spin-dependent (SD) direct detection in the future underground experiments, and possibly by the indirect DM detections from IceCube and SuperK neutrino experiments; (ii) the detection of gamma rays from Fermi-LAT may not reach the desirable sensitivity for searching for the DM blind-spot regions; (iii) the SUSY searches at the LHC will substantially extend the discovery region for the blind-spot parameters. As a result, the dark matter blind spots thus may be unblinded with the collective efforts in future DM searches.« less
Unblinding the dark matter blind spots
Han, Tao; Kling, Felix; Su, Shufang; ...
2017-02-10
The dark matter (DM) blind spots in the Minimal Supersymmetric Standard Model (MSSM) refer to the parameter regions where the couplings of the DM particles to the $Z$-boson or the Higgs boson are almost zero, leading to vanishingly small signals for the DM direct detections. In this paper, we carry out comprehensive analyses for the DM searches under the blind-spot scenarios in MSSM. Guided by the requirement of acceptable DM relic abundance, we explore the complementary coverage for the theory parameters at the LHC, the projection for the future underground DM direct searches, and the indirect searches from the relicmore » DM annihilation into photons and neutrinos. We find that (i) the spin-independent (SI) blind spots may be rescued by the spin-dependent (SD) direct detection in the future underground experiments, and possibly by the indirect DM detections from IceCube and SuperK neutrino experiments; (ii) the detection of gamma rays from Fermi-LAT may not reach the desirable sensitivity for searching for the DM blind-spot regions; (iii) the SUSY searches at the LHC will substantially extend the discovery region for the blind-spot parameters. As a result, the dark matter blind spots thus may be unblinded with the collective efforts in future DM searches.« less
An Atomic Lens Using a Focusing Hollow Beam
NASA Astrophysics Data System (ADS)
Xia, Yong; Yin, Jian-Ping; Wang, Yu-Zhu
2003-05-01
We propose a new method to generate a focused hollow laser beam by using an azimuthally distributed 2pi-phase plate and a convergent thin lens, and calculate the intensity distribution of the focused hollow beam in free propagation space. The relationship between the waist wo of the incident collimated Gaussian beam and the dark spot size of the focused hollow beam at the focal point, and the relationship between the focal length f of the thin lens and the dark spot size are studied respectively. The optical potential of the blue-detuned focused hollow beam for 85Rb atoms is calculated. Our study shows that when the larger waist w of the incident Gaussian beam and the shorter focal length f of the lens are chosen, we can obtain an extremely small dark spot size of the focused hollow beam, which can be used to form an atomic lens with a resolution of several angstroms.
A new species of Scinax from the Purus-Madeira interfluve, Brazilian Amazonia (Anura, Hylidae).
Ferrão, Miquéias; Moravec, Jiří; de Fraga, Rafael; de Almeida, Alexandre Pinheiro; Kaefer, Igor Luis; Lima, Albertina Pimentel
2017-01-01
A new tree frog species of the genus Scinax from the interfluve between the Purus and Madeira rivers, Brazilian Amazonia, is described and illustrated. The new species is diagnosed by medium body size, snout truncate in dorsal view, ulnar and tarsal tubercles absent, nuptial pads poorly developed, skin on dorsum shagreen, dorsum light brown with dark brown spots and markings, white groin with black spots, anterior and posterior surfaces of thighs black, and iris bright orange. The advertisement call consists of a single short note, with 16-18 pulses and dominant frequency at 1572-1594 Hz. Tadpoles are characterized by body ovoid in dorsal view and triangular in lateral view, tail higher than body, oral disc located anteroventrally and laterally emarginated, dorsum of body uniformly grey-brown with dark brown eye-snout stripe in preservative, fins translucent with small to large irregular diffuse dark brown spots.
A new species of Scinax from the Purus-Madeira interfluve, Brazilian Amazonia (Anura, Hylidae)
Ferrão, Miquéias; Moravec, Jiří; de Fraga, Rafael; de Almeida, Alexandre Pinheiro; Kaefer, Igor Luis; Lima, Albertina Pimentel
2017-01-01
Abstract A new tree frog species of the genus Scinax from the interfluve between the Purus and Madeira rivers, Brazilian Amazonia, is described and illustrated. The new species is diagnosed by medium body size, snout truncate in dorsal view, ulnar and tarsal tubercles absent, nuptial pads poorly developed, skin on dorsum shagreen, dorsum light brown with dark brown spots and markings, white groin with black spots, anterior and posterior surfaces of thighs black, and iris bright orange. The advertisement call consists of a single short note, with 16−18 pulses and dominant frequency at 1572−1594 Hz. Tadpoles are characterized by body ovoid in dorsal view and triangular in lateral view, tail higher than body, oral disc located anteroventrally and laterally emarginated, dorsum of body uniformly grey-brown with dark brown eye-snout stripe in preservative, fins translucent with small to large irregular diffuse dark brown spots. PMID:29118625
Defrosting Polar Dunes--'The Snow Leopard'
NASA Technical Reports Server (NTRS)
1999-01-01
The patterns created by dark spots on defrosting south polar dunes are often strange and beautiful. This picture, which the Mars Orbiter Camera team has dubbed, 'the snow leopard,' shows a dune field located at 61.5oS, 18.9oW, as it appeared on July 1, 1999. The spots are areas where dark sand has been exposed from beneath bright frost as the south polar winter cap begins to retreat. Many of the spots have a diffuse, bright ring around them this is thought to be fresh frost that was re-precipitated after being removed from the dark spot. The spots seen on defrosting polar dunes are a new phenomenon that was not observed by previous spacecraft missions to Mars. Thus, there is much about these features that remains unknown. For example, no one yet knows why the dunes become defrosted by forming small spots that grow and grow over time. No one knows for sure if the bright rings around the dark spots are actually composed of re-precipitated frost. And no one knows for sure why some dune show spots that appear to be 'lined-up' (as they do in the picture shown here). This Mars Global Surveyor Mars Orbiter Camera image is illuminated from the upper left. North is toward the upper right. The scale bar indicates a distance of 200 meters (656 feet). Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.Neptune Great Dark Spot in High Resolution
1999-08-30
This photograph shows the last face on view of the Great Dark Spot that Voyager will make with the narrow angle camera. The image was shuttered 45 hours before closest approach at a distance of 2.8 million kilometers (1.7 million miles). The smallest structures that can be seen are of an order of 50 kilometers (31 miles). The image shows feathery white clouds that overlie the boundary of the dark and light blue regions. The pinwheel (spiral) structure of both the dark boundary and the white cirrus suggest a storm system rotating counterclockwise. Periodic small scale patterns in the white cloud, possibly waves, are short lived and do not persist from one Neptunian rotation to the next. This color composite was made from the clear and green filters of the narrow-angle camera. http://photojournal.jpl.nasa.gov/catalog/PIA00052
Naya, Hugo; Urioste, Jorge I; Chang, Yu-Mei; Rodrigues-Motta, Mariana; Kremer, Roberto; Gianola, Daniel
2008-01-01
Dark spots in the fleece area are often associated with dark fibres in wool, which limits its competitiveness with other textile fibres. Field data from a sheep experiment in Uruguay revealed an excess number of zeros for dark spots. We compared the performance of four Poisson and zero-inflated Poisson (ZIP) models under four simulation scenarios. All models performed reasonably well under the same scenario for which the data were simulated. The deviance information criterion favoured a Poisson model with residual, while the ZIP model with a residual gave estimates closer to their true values under all simulation scenarios. Both Poisson and ZIP models with an error term at the regression level performed better than their counterparts without such an error. Field data from Corriedale sheep were analysed with Poisson and ZIP models with residuals. Parameter estimates were similar for both models. Although the posterior distribution of the sire variance was skewed due to a small number of rams in the dataset, the median of this variance suggested a scope for genetic selection. The main environmental factor was the age of the sheep at shearing. In summary, age related processes seem to drive the number of dark spots in this breed of sheep. PMID:18558072
Genetics Home Reference: fucosidosis
... muscle stiffness (spasticity); clusters of enlarged blood vessels forming small, dark red spots on the skin (angiokeratomas); ... link) FUCOSIDOSIS Sources for This Page Ben Turkia H, Tebib N, Azzouz H, Abdelmoula MS, Bouguila J, ...
Exposed Ice in the Northern Mid-Latitudes of Mars
NASA Technical Reports Server (NTRS)
Allen, Carlton C.
2007-01-01
Ice-Rich Layer: Polygonal features with dimensions of approximately 100 meters, bounded by cracks, are commonly observed on the martian northern plains. These features are generally attributed to thermal cracking of ice-rich sediments, in direct analogy to polygons in terrestrial polar regions. We mapped polygons in the northern mid-latitudes (30 to 65 N) using MOC and HiRISE images. Polygons are scattered across the northern plains, with a particular concentration in western Utopia Planitia. This region largely overlaps the Late Amazonian Astapus Colles unit, characterized by polygonal terrain and nested pits consistent with periglacial and thermokarst origins. Bright and Dark Polygonal Cracks: An examination of all MOC images (1997 through 2003) covering the study area demonstrated that, at latitudes of 55 to 65 N, most of the imaged polygons show bright bounding cracks. We interpret these bright cracks as exposed ice. Between 40 and 55 N, most of the imaged polygons show dark bounding cracks. These are interpreted as polygons from which the exposed ice has been removed by sublimation. The long-term stability limit for exposed ice, even in deep cracks, apparently lies near 55 N. Bright and Dark Spots: Many HiRISE and MOC frames showing polygons in the northern plains also show small numbers of bright and dark spots, particularly in western Utopia Planitia. Many of the spots are closely associated with collapse features suggestive of thermokarst. The spots range from tens to approximately 100 meters in diameter. The bright spots are interpreted as exposed ice, due to their prevalence on terrain mapped as ice rich. The dark spots are interpreted as former bright spots, which have darkened as the exposed ice is lost by sublimation. The bright spots may be the martian equivalents of pingos, ice-cored mounds found in periglacial regions on Earth. Terrestrial pingos from which the ice core has melted often collapse to form depressions similar to the martian dark spots. Future Observations: The SHARAD radar should be able to confirm the presence and measure the depth of the interpreted ice-rich layer that forms the Astapus Colles unit. If this layer is confirmed it will strengthen the interpretation of bright polygon cracks and bright spots as exposed ice. HiRISE images of the northern plains are showing unprecedented details of the polygonal cracks. Future HiRISE images that include bright spots, compared to MOC images taken years earlier, will illustrate the temporal stability of the spots. The CRISM spectrometer, with multiple spectral bands and a spatial resolution around 20 meters, should allow mineralogical identification of the material exposed in the polygonal bounding cracks and in the bright spots.
Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet
NASA Technical Reports Server (NTRS)
Simon-Miller, A. A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael; Adamoli, Gianluigi; Mettig, Hans-Joerg
2012-01-01
We have conducted a detailed study of the cloud features in the strong southern equatorial wind jet near 7.5 S planetographic latitude. To understand the apparent variations in average zonal wind jet velocity at this latitude [e.g.. 1,2,3], we have searched for variations iIi both feature latitude and velocity with longitude and time. In particular, we focused on the repetitive chevron-shaped dark spots visible on most dates and the more transient large anticyclonic system known as the South Equatorial Disturbance (SED). These small dark spots are interpreted as cloud holes, and are often used as material tracers of the wind field.
1989-08-21
Range : 12 million km (7.5 million miles) Resolution 110 km (68 miles) per pixel. These 2 images of Neptune were taken by Voyager 2's narrow-angle camera. During the 17.6 hours between the left and right images, the Great Dark Spot, at 22 degrees south latitude (left of center), has completed a little less than one rotation of Neptune. The smaller dark spot, at 54 south, completed a little more than one rotation, as can be seen by comparing its relative positions in the two pictures. The Great Dark Spot and the smaller spot have a relative velocity of 100 meters per second (220 miles an hour). The light and dark bands circling Neptune indicate predominantly zonal (east-west) motion. The diffuse white feature north of the Great Dark Spot is near Neptune's equator, and rotates with about the same period as the Great Dark Spot. Streak of bright clouds at the south edge, and just east of the Great Dark Spot, are its constatnt companions, and change the details of their appearance, often within a few hours. Changing brightness of the cloud streaks could be a result of vertical mortions.
NASA Astrophysics Data System (ADS)
Wong, Michael H.; Tollefson, Joshua; Hsu, Andrew I.; de Pater, Imke; Simon, Amy A.; Hueso, Ricardo; Sánchez-Lavega, Agustín; Sromovsky, Lawrence; Fry, Patrick; Luszcz-Cook, Statia; Hammel, Heidi; Delcroix, Marc; de Kleer, Katherine; Orton, Glenn S.; Baranec, Christoph
2018-03-01
An outburst of cloud activity on Neptune in 2015 led to speculation about whether the clouds were convective in nature, a wave phenomenon, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). The Hubble Space Telescope (HST) finally answered this question by discovering a new dark vortex at 45 degrees south planetographic latitude, named SDS-2015 for “southern dark spot discovered in 2015.” SDS-2015 is only the fifth dark vortex ever seen on Neptune. In this paper, we report on imaging of SDS-2015 using HST’s Wide Field Camera 3 across four epochs: 2015 September, 2016 May, 2016 October, and 2017 October. We find that the size of SDS-2015 did not exceed 20 degrees of longitude, more than a factor of two smaller than the Voyager dark spots, but only slightly smaller than previous northern-hemisphere dark spots. A slow (1.7–2.5 deg/year) poleward drift was observed for the vortex. Properties of SDS-2015 and its surroundings suggest that the meridional wind shear may be twice as strong at the deep level of the vortex as it is at the level of cloud-tracked winds. Over the 2015–2017 period, the dark spot’s contrast weakened from about -7 % to about -3 % , while companion clouds shifted from offset to centered, a similar evolution to some historical dark spots. The properties and evolution of SDS-2015 highlight the diversity of Neptune’s dark spots and the need for faster cadence dark spot observations in the future.
The clouds and winds of Neptune
NASA Astrophysics Data System (ADS)
Beebe, R.
1992-04-01
The atmospheric features of Neptune are described based on the images from Voyager 2 with comparisons made to the atmosphere of Uranus. Specific attention is given to the clear atmosphere's methane content and lack of the smog associated with Uranus. Neptune absorbs only a small amount of energy from sunlight and radiates about 2.7 times as much as it absorbs. The mechanisms that keep Neptune's atmosphere free of smog are thought to be upwelling enhanced by an outward heat flow and melting ice. The Voyager photographs show streaks of white clouds indicating strong winds and probably white ice in the upper atmosphere. The Great Dark Spot and a small triangular cloud are described in terms of their periods of rotation, and the wind speed is discussed in terms of cloud variations. The Great Dark Spot drifted equatorward during the observational period, and the drift yields some important clues regarding the nature of the Neptunian atmosphere and climate.
NASA Astrophysics Data System (ADS)
Bokor, Nándor; Davidson, Nir
2006-01-01
The properties of the focal spot for 4pi focusing with radially polarized first-order Laguerre-Gaussian beams are calculated. It is shown that a focal spot that has an extremely sharp dark region at the center and an almost-perfect spherical symmetry can be achieved. When such a hollow dark spherical spot is used in 4pi fluorescence depletion microscopy, an axial FWHM spot size of ˜39 nm and a transverse FWHM spot size of ˜64 nm can be achieved simultaneously in a practical system.
Bokor, Nándor; Davidson, Nir
2006-01-15
The properties of the focal spot for 4pi focusing with radially polarized first-order Laguerre-Gaussian beams are calculated. It is shown that a focal spot that has an extremely sharp dark region at the center and an almost-perfect spherical symmetry can be achieved. When such a hollow dark spherical spot is used in 4pi fluorescence depletion microscopy, an axial FWHM spot size of approximately 39 nm and a transverse FWHM spot size of approximately 64 nm can be achieved simultaneously in a practical system.
Neptune's New Dark Vortex: Aerosol Properties from Optical Data
NASA Astrophysics Data System (ADS)
Tollefson, J.; Luszcz-Cook, S.; Wong, M. H.; De Pater, I.
2016-12-01
Over the past year, amateur and professional astronomers alike have monitored the appearance of a new dark vortex on Neptune, dubbed SDS-2015 for "southern dark spot discovered in 2015" (Wong et al. 2016; CBET 4278). The discovery of SDS-2015 is fortuitous, being one of only five dark spots observed on Neptune since Voyager 2 imaged the Great Dark Spot (Smith et al. 1989, Science 246, 1422). A companion abstract (Wong et al., this meeting) will present Hubble Space Telescope images of SDS-2015, showcasing the discovery of the vortex in September 2015 and subsequent observations in May 2016. These observations span the optical regime. Longer wavelengths track bright companion clouds thought to form as air is diverted around SDS-2015. Shorter wavelengths reveal the dark spot itself. Combined, these data probe the vertical extent of the dark spot and Neptune's surrounding upper atmosphere. We present preliminary radiative transfer analyses of SDS-2015 using our multispectral data. Our model is the same as that in Luszcz-Cook et al. (2016, Icarus 276, 52) but extended to optical wavelengths. Prior to this work, little was known about the composition and vertical extent of Neptune's dark spots. Only data at optical wavelengths reveal these vortices, suggesting they consist of clearings in the background of fine, evenly-distributed haze particle. Alternatively, the spots may consist of low-albedo aerosols, causing their apparent darkness. Radiative transfer modeling is also one way to determine the vortex top altitude. Simulations of the Great Dark Spot by Stratman et al. (2001, Icarus 151, 275) found that the vortex top altitude is coupled to the brightness of companion clouds, where cloud opacity weakened as the top of the vortex reached higher into the tropopause region. The modeling presented here will compare these hypotheses and provide the first glimpses into the vertical structure of SDS-2015.
A new species of Odorrana (Amphibia: Anura: Ranidae) from Vietnam.
Pham, Cuong The; Nguyen, Truong Quang; Le, Minh Duc; Bonkowski, Michael; Ziegler, Thomas
2016-02-26
A new species of Odorrana is described from the karst forests in northeastern Vietnam based on morphological differences and molecular divergence. Morphologically, the new species is distinguishable from its congeners on the basis of a combination of the following diagnostic characters: (1) size large (SVL 85.9-91.6 mm in males, 108.7-110.1 mm in females); (2) head longer than wide; (3) vomerine teeth present; (4) external vocal sacs absent; (5) snout short (SL/SVL 0.16-0.17); (6) tympanum large (TD/ED 0.70 in males, 0.68 in females); (7) dorsal surface of head and anterior part of body smooth, posterior part of body and flanks with small tubercles; (8) supratympanic fold present; (9) dorsolateral fold absent; (10) webbing formula I0-0II0-0III0-1/2IV1/2-0V; (11) in life, dorsum green with dark brown spots; (12) flanks greyish brown with dark brown spots; (13) throat and chest grey, underside of limbs with large dark brown spots, edged in white, forming a network. In the phylogenetic analyses, the new species is unambiguously nested within the O. andersonii group, and placed as the sister taxon to O. wuchuanensis.
Neptune - Changes in Great Dark Spot
NASA Technical Reports Server (NTRS)
1989-01-01
These images show changes in the clouds around Neptune's Great Dark Spot (GDS) over a four and one-half-day period. From top to bottom the images show successive rotations of the planet an interval of about 18 hours. The GDS is at a mean latitude of 20 degrees south, and covers about 30 degrees of longitude. The violet filter of the Voyager narrow angle camera was used to produce these images at distances ranging from 17 million kilometers (10.5 million miles) at the top, to 10 million kilometers (6.2 million miles) at bottom. The images have been mapped on to a rectangular latitude longitude grid to remove the effects of changing viewing geometry and the changing distance to Neptune. The sequence shows a large change in the western end (left side) of the GDS, where a dark extension apparent in the earlier images converges into an extended string of small dark spots over the next five rotations. This 'string of beads' extends from the GDS at a surprisingly large angle relative to horizontal lines of constant latitude. The large bright cloud at the southern (bottom) border of the GDS is a more or less permanent companion of the GDS. The apparent motion of smaller clouds at the periphery of the GDS suggests a counterclockwise rotation of the GDS reminiscent of flow around the Great Red Spot in Jupiter's atmosphere. This activity of the GDS is surprising because the total energy flux from the sun and from Neptune's interior is only 5 percent as large as the total energy flux on Jupiter.
Lujan, Nathan K; Steele, Sarah; Velasquez, Miquel
2013-01-01
Panaqolus albivermis is described as a new species based on four specimens from the San Alejandro River, a tributary of the upper Ucayali River in central Peru. Panaqolus albivermis is diagnosed from all other Panaqolus except P. maccus by having head, body, and fins with widely separated small white to yellow spots, vermiculations, and/or thin oblique bands on a black base (vs. exclusively small white to yellow spots on a black base in P. alboinaculatus, generally broad oblique bands of alternating light to dark brown in P. changae, P. gnomus, P purusiensis, and a uniformly dark gray to black body color in P. dentex, P. koko, and P. nocturnus); P. albivernis can be diagnosed from P. maccus by having a black base color (vs. brown), by having parallel dentary tooth cups (vs. acute intermandibular tooth cup angle), and by having a larger known adult body size (95.8 mm SL vs. 84.8).
Code of Federal Regulations, 2013 CFR
2013-01-01
... well cured; (e) Poorly developed kernels; (f) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more...
Code of Federal Regulations, 2014 CFR
2014-01-01
... well cured; (e) Poorly developed kernels; (f) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more...
Hot Spots on Io: Correlation of Infrared Emission and Visible Reflectance
NASA Technical Reports Server (NTRS)
Mcewen, A. S.; Soderblom, L.; Matson, D. L.; Johnson, T. V.
1985-01-01
The Voyager 1 infrared spectrometer (IRIS) data and two recently compiled data sets (Voyager imaging mosaics and measurements of Io's thermal emission from the NASA Infrared Telescope Facility) are correlated. These data were used to refine the correlation between dark spot optical properties (albedo and color) and thermal emission, to examine this correspondence on a satellite-wide scale, and to identify additional hot spots not included in the IRIS inventory. The results suggest the hot spots are liquid sulfur lava lakes, for the following reasons: (1) the melting point of sulfur is 390 K, and the model hot spot temperatures range from approximately 200 to 450 K; (2) the albedos and color of the dark spots, measured from the global mosaics, are consistent with laboratory measurements for liquid sulfur; (3) high resolution images of the dark features show morphologies suggestive of lava lakes; and (4) this hypothesis provides a simple and direct explanation for why dark spots are hot on Io.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more than one-eighth inch (3 mm) in greatest dimension; (h...
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more than one-eighth inch (3 mm) in greatest dimension; (h...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
1989-08-24
Voyager II Imagery; Neptune. This bulls-eye view of Neptune's small dark spot (D2) was obtained by Voyager 2's narrow-angle camera , when Neptune was within 1.1 million km (680,000 miles) of the planet. The smallest structures that can be seen are 20 km (12 miles) across. This unplanned photograph was obtained when the infrared spectrograph was mapping the the highest-resolution view of the feature taken during the flyby. Banding surrounding the feature indicates unseen strong winds, while structues within the bright spot suggest both active upwelling of clouds and rotation about the center. A rotation rate has not yet been measured, but the v-shaped structure near the right edge of the bright area indicates that the spot rotates clockwise. Unlike the Great Red Spot on Jupiter, which rotates counterclockwise, if the D2 spot on Neptune rotates clockwise, the material will be descending in the dark oval region. The fact that infrared data will yield temperature information about the region above the clouds makes this observation especially valuable. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applicaitons. (JPL ref: P-34749 Voyager N-71) taken during the flyby. Banding surrounding the feature indicates unseen strong winds, while structures within the bright spot suggest both active upwelling of clouds and rotation about the center. A rotation rate has not yest been measured, but the Vv-sphped
Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate
NASA Astrophysics Data System (ADS)
Usami, Shigeyoshi; Ando, Yuto; Tanaka, Atsushi; Nagamatsu, Kentaro; Deki, Manato; Kushimoto, Maki; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi; Sugawara, Yoshihiro; Yao, Yong-Zhao; Ishikawa, Yukari
2018-04-01
Dislocations that cause a reverse leakage current in vertical p-n diodes on a GaN free-standing substrate were investigated. Under a high reverse bias, dot-like leakage spots were observed using an emission microscope. Subsequent cathodoluminescence (CL) observations revealed that the leakage spots coincided with part of the CL dark spots, indicating that some types of dislocation cause reverse leakage. When etch pits were formed on the dislocations by KOH etching, three sizes of etch pits were obtained (large, medium, and small). Among these etch pits, only the medium pits coincided with leakage spots. Additionally, transmission electron microscopy observations revealed that pure screw dislocations are present under the leakage spots. The results revealed that 1c pure screw dislocations are related to the reverse leakage in vertical p-n diodes.
Radiative Transfer Analysis of Neptune’s New Dark Vortex
NASA Astrophysics Data System (ADS)
Tollefson, Joshua; Luszcz-Cook, Statia H.; Wong, Michael H.; de Pater, Imke
2017-10-01
A new dark spot on Neptune was discovered in late 2015, named: "SDS-2015" for "Southern Dark Spot discovered in 2015". Subsequent observations from Hubble Space Telescope Mid-Cycle 23 (PI: Wong) and the Outer Planetary Atmospheres Legacy (OPAL) programs (PI: Simon-Miller) took the first multispectral data over multiple viewing geometries of a Neptunian dark spot, spanning wavelengths from 336 to 763nm. SDS-2015 is visible at blue wavelengths, with contrast from the background atmosphere peaking at 467nm. In this abstract, we present a radiative transfer analysis of the dark spot and surrounding background atmosphere. We summarize our retrieved properties of Neptune's background atmosphere, including its aerosol structure and methane profile, and compare our findings in the optical wavelengths to those in the near-infrared. We then discuss various hypotheses about the make up of SDS-2015 and its interaction with the background atmosphere.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Kernel which is “dark amber” or darker color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth inch in greatest dimension; (f) Shriveling when the surface of the kernel is very conspicuously wrinkled; (g) Internal flesh discoloration of a medium shade of gray...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Kernel which is “dark amber” or darker color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth inch in greatest dimension; (f) Shriveling when the surface of the kernel is very conspicuously wrinkled; (g) Internal flesh discoloration of a medium shade of gray...
Code of Federal Regulations, 2014 CFR
2014-01-01
... are excessively thin kernels and can have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more than one-eighth of the surface of the kernel. (g) Serious...
Code of Federal Regulations, 2010 CFR
2010-01-01
... have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more... the kernel shows conspicuous evidence of feeding. (3) Insect damage is an insect, insect fragment, web...
Code of Federal Regulations, 2013 CFR
2013-01-01
... are excessively thin kernels and can have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more than one-eighth of the surface of the kernel. (g) Serious...
Code of Federal Regulations, 2012 CFR
2012-01-01
... have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more... the kernel shows conspicuous evidence of feeding. (3) Insect damage is an insect, insect fragment, web...
Code of Federal Regulations, 2011 CFR
2011-01-01
... have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more... the kernel shows conspicuous evidence of feeding. (3) Insect damage is an insect, insect fragment, web...
Catching the Drift: Simulating Dark Spots and Bright Companions on the Ice Giants
NASA Astrophysics Data System (ADS)
LeBeau, R. P., Jr.; Koutas, N.; Palotai, C. J.; Bhure, S.; Hadland, N.; Sankar, R.
2017-12-01
Starting with the original Great Dark Spot (GDS-89) observed by Voyager 2, roughly a half-dozen large geophysical vortices have been observed on the Ice Giants, the most recent in 2015 on Neptune (Wong et al., 2016). While the presumption is that these Dark Spots are similar in structure to the large vortices on Jupiter, in some cases the Dark Spots exhibit dynamical motions such as the shape oscillations and latitudinal drift of GDS-89 (Smith et al., 1989) or the possible vortex drift underlying the "Berg" cloud feature on Uranus (de Pater et al., 2011). Others, like NGDS-1998, have remained largely stable across years of observation (Sromovsky et al., 2002). In addition, several of the vortices are linked with Bright Companion clouds which are presumed to be orographic features formed as the atmosphere rises over the vortex. The numerical simulation of these features has evolved with each new observation. Prior simulations have captured the forms if not all the specifics of observed Dark Spot dynamics (LeBeau and Dowling, 1998; LeBeau and Deng, 2006); likewise, numerical models have demonstrated the potential for orographic companion clouds (Stratman et al., 2001). However, as more knowledge of the Ice Giant atmospheres has been obtained, it has proven challenging to generate consistent dynamical models that capture the details of the Dark Spot variations and are physically consistent with known observations. In particular, current simulations indicate that the addition of a companion cloud can alter the vortex dynamics, both in terms of drift and oscillations. Given the impact of these clouds, a new parametric simulation study uses an updated microphysics model, implemented in the Explicit Planetary Isentropic Coordinate (EPIC) general circulation model (Dowling et al., 1998, 2006), to account for the condensation of methane and hydrogen sulfide (Palotai et al., 2016). Simulations of dark spots with varying sizes, strengths, and locations are conducted with different microphysical parameters such as the deep abundance and ambient supersaturation. Simulations are evaluated in terms of vortex stability and drift rate along with companion cloud formation with the goal of improving our understanding of the underlying physics driving the varying behaviors of the observed Dark Spots.
7 CFR 51.1414 - Serious damage.
Code of Federal Regulations, 2014 CFR
2014-01-01
... following defects shall be considered as serious damage: (a) Adhering hull material or dark stains affecting... insect, web or frass is present inside the shell, or the kernal shows distinct evidence of insect feeding; (h) Kernel spots when more than three dark spots on either half of the kernel, or when any spot or...
7 CFR 51.1414 - Serious damage.
Code of Federal Regulations, 2013 CFR
2013-01-01
... following defects shall be considered as serious damage: (a) Adhering hull material or dark stains affecting... insect, web or frass is present inside the shell, or the kernal shows distinct evidence of insect feeding; (h) Kernel spots when more than three dark spots on either half of the kernel, or when any spot or...
Espíndola, V C; Tencatt, L F C; Pupo, F M; Villa-Verde, L; Britto, M R
2018-05-01
A new species of the armoured catfish genus Corydoras is described from the Xingu-Tapajos ecoregion, Brazilian Amazon. The new species can be distinguished from its congeners by having the following combination of features: short mesethmoid, with anterior tip poorly developed, smaller than 50% of bone length; posterior margin of pectoral spine with serrations directed towards spine tip or perpendicularly oriented; infraorbital 2 only in contact with sphenotic; ventral laminar expansion of infraorbital 1 poorly or moderately developed; flank midline covered by small dark brown or black saddles with similar size to remaining markings on body; relatively larger, scarcer and more sparsely distributed dark brown or black spots on body; absence of stripe on flank midline; caudal fin with conspicuous dark brown or black spots along its entire surface; slender body; and strongly narrow frontals. A more comprehensive description of poorly-explored internal character sources, such as the gross morphology of the brain, Weberian apparatus and swimbladder capsule elements is presented. © 2018 The Fisheries Society of the British Isles.
Taravat, Alireza; Oppelt, Natascha
2014-01-01
Oil spills represent a major threat to ocean ecosystems and their environmental status. Previous studies have shown that Synthetic Aperture Radar (SAR), as its recording is independent of clouds and weather, can be effectively used for the detection and classification of oil spills. Dark formation detection is the first and critical stage in oil-spill detection procedures. In this paper, a novel approach for automated dark-spot detection in SAR imagery is presented. A new approach from the combination of adaptive Weibull Multiplicative Model (WMM) and MultiLayer Perceptron (MLP) neural networks is proposed to differentiate between dark spots and the background. The results have been compared with the results of a model combining non-adaptive WMM and pulse coupled neural networks. The presented approach overcomes the non-adaptive WMM filter setting parameters by developing an adaptive WMM model which is a step ahead towards a full automatic dark spot detection. The proposed approach was tested on 60 ENVISAT and ERS2 images which contained dark spots. For the overall dataset, an average accuracy of 94.65% was obtained. Our experimental results demonstrate that the proposed approach is very robust and effective where the non-adaptive WMM & pulse coupled neural network (PCNN) model generates poor accuracies. PMID:25474376
Code of Federal Regulations, 2012 CFR
2012-01-01
... color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth... wrinkled; (g) Internal flesh discoloration of a medium shade of gray or brown extending more than one...
Code of Federal Regulations, 2011 CFR
2011-01-01
... color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth... wrinkled; (g) Internal flesh discoloration of a medium shade of gray or brown extending more than one...
Neptune Long-Lived Atmospheric Features in 2013 - 2015 from Small (28-cm) to Large (10-m) Telescopes
NASA Technical Reports Server (NTRS)
Hueso, R.; de Pater, I.; Simon, A.; Sanchez-Lavega, A.; Delcroix, M.; Wong, M. H.; Tollefson, J. W.; Baranec, C.; de Kleer, K.; Luszcz-Cook, S. H.;
2017-01-01
Since 2013, observations of Neptune with small telescopes (28-50 cm) have resulted in several detections of long-lived bright atmospheric features that have also been observed by large telescopes such as Keck II or Hubble. The combination of both types of images allows the study of the long-term evolution of major cloud systems in the planet. In 2013 and 2014 two bright features were present on the planet at southern mid-latitudes. These may have merged in late 2014, possibly leading to the formation of a single bright feature observed during 2015 at the same latitude. This cloud system was first observed in January 2015 and nearly continuously from July to December 2015 in observations with telescopes in the 2-10-m class and in images from amateur astronomers. These images show the bright spot as a compact feature at -40.1 +/- 1.6 deg planetographic latitude well resolved from a nearby bright zonal band that extended from -42 deg to -20 deg. The size of this system depends on wavelength and varies from a longitudinal extension of 8000 +/- 900 km and latitudinal extension of 6500 +/- 900 km in Keck II images in H and Ks bands to 5100 +/- 1400 km in longitude and 4500 +/- 1400 km in latitude in HST images in 657 nm. Over July to September 2015 the structure drifted westward in longitude at a rate of 24.48 +/- 0.03 deg/day or -94 +/- 3 m/s. This is about 30 m/s slower than the zonal winds measured at the time of the Voyager 2 flyby. Tracking its motion from July to November 2015 suggests a longitudinal oscillation of 16 deg in amplitude with a 90-day period, typical of dark spots on Neptune and similar to the Great Red Spot oscillation in Jupiter. The limited time covered by high-resolution observations only covers one full oscillation and other interpretations of the changing motions could be possible. HST images in September 2015 show the presence of a dark spot at short wavelengths located in the southern flank (planetographic latitude -47.0 deg) of the bright compact cloud observed throughout 2015. The drift rate of the bright cloud and dark spot translates to a zonal speed of -87.0 +/- 2.0 m/s, which matches the Voyager 2 zonal speeds at the latitude of the dark spot. Identification of a few other features in 2015 enabled the extraction of some limited wind information over this period. This work demonstrates the need of frequently monitoring Neptune to understand its atmospheric dynamics and shows excellent opportunities for professional and amateur collaborations.
Modified hollow Gaussian beam and its paraxial propagation
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Chen, Chiyi; Wang, Fei
2007-10-01
A model named modified hollow Gaussian beam (HGB) is proposed to describe a dark hollow beam with adjustable beam spot size, central dark size and darkness factor. In this modified model, both the beam spot size and the central dark size will be convergent to finite constants as the beam order approaches infinity, which are much different from that of the previous unmodified model, where the beam spot size and the central dark size will not be convergent as the beam order approaches infinity. The dependences of the propagation factor of modified and unmodified HGBs on the beam order are found to be the same. Based on the Collins integral, analytical formulas for the modified HGB propagating through aligned and misaligned optical system are derived. Some numerical examples are given.
Zygoura, Vasiliki; Baydoun, Lamis; Monnereau, Claire; Satué, Maria; Oellerich, Silke; Melles, Gerrit R J
2017-12-01
To evaluate the clinical significance of dark spots in the donor endothelial cell layer as observed with specular microscopy, in patients who underwent Descemet membrane endothelial keratoplasty (DMEK) for Fuchs endothelial dystrophy (FED). Specular microscopy images of 83 consecutive eyes up to 7 years after DMEK were retrospectively reviewed in a masked fashion for the presence of dark spots and morphologic changes in the endothelial cell layer and processed for endothelial cell density (ECD) measurements. A normal endothelial cell layer was found in 52/83 eyes (62.7%) (group 0). In the remaining 31/83 eyes, various dark discolorations with or without altered endothelial cell morphology were categorized into 4 groups. Dark spots were classified as artifacts in 10/83 (12.0%) eyes (group I) and as "superimposed" dots in 10/83 (12.0%) eyes (group II), that is, optical irregularities slightly anterior to a healthy endothelial cell layer. In 11/83 (13.3%) eyes, endothelial stress was characterized by dark grayish discolorations and/or nuclear activation (group III). Most of the latter eyes also had a significant ECD decrease; 3 of these eyes later developed secondary graft failure, of which one was preceded by allograft rejection. None of the eyes showed recurrent guttae typical for FED (group IV). Dark endothelial spots after DMEK for FED may not represent a recurrent disease, but tissue irregularities just anterior to the graft. However, if associated with changes in endothelial cell morphology, nuclear activation and/or ECD decrease, dark discolorations may reflect "cellular stress" heralding secondary graft failure or (subclinical) allograft rejection.
NASA Astrophysics Data System (ADS)
Shigapov, A. I.; Il'inkova, T. A.; Kuryntsev, S. V.; Petrova, E. P.
2017-01-01
Seven heats of alloy V95ochT2 are studied after a heat treatment imitating the conditions of the appearance of dark spots in the production process and anodic oxidizing (anodizing). The mechanical properties, the hardness, the structure, and the electrical conductivity of the alloy are determined. The causes and conditions of the appearance of dark spots are analyzed. The transparence of the film is shown to worsen upon formation of particles of second phase in the alloy.
NASA Technical Reports Server (NTRS)
2006-01-01
Dark spots (left) and 'fans' appear to scribble dusty hieroglyphics on top of the Martian south polar cap in two high-resolution Mars Global Surveyor, Mars Orbiter Camera images taken in southern spring. Each image is about 3-kilometers wide (2-miles).Proteomic identification of rhythmic proteins in rice seedlings.
Hwang, Heeyoun; Cho, Man-Ho; Hahn, Bum-Soo; Lim, Hyemin; Kwon, Yong-Kook; Hahn, Tae-Ryong; Bhoo, Seong Hee
2011-04-01
Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes. 2011 Elsevier B.V. All rights reserved.
Hubble Finds New Dark Spot on Neptune
1998-08-02
In 1995, NASA Hubble Space Telescope discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet northern hemisphere was tilted away from Earth, the new feature appeared near the limb of the planet.
Titan's Elusive Lakes? Properties and Context of Dark Spots in Cassini TA Radar Data
NASA Technical Reports Server (NTRS)
Lorenz, R. D.; Elachi, C.; Stiles, B.; West, R.; Janssen, M.; Lopes, R.; Stofan, E.; Paganelli, F.; Wood, C.; Kirk, R.
2005-01-01
Titan's atmospheric methane abundance suggests the likelihood of a surface reservoir of methane and a surface sink for its photochemical products, which might also be predominantly liquid. Although large expanses of obvious hydrocarbon seas have not been unambiguously observed, a number of rather radar-dark spots up to approximately 30 km across are observed in the Synthetic Aperture Radar (SAR) data acquired during the Cassini TA encounter on October 26th 2004. Here we review the properties and setting of these dark spots to explore whether these may be hydrocarbon lakes.
2017-03-24
This enhanced-color image of a mysterious dark spot on Jupiter seems to reveal a Jovian "galaxy" of swirling storms. Juno acquired this JunoCam image on Feb. 2, 2017, at 5:13 a.m. PDT (8:13 a.m. EDT), at an altitude of 9,000 miles (14,500 kilometers) above the giant planet's cloud tops. This publicly selected target was simply titled "Dark Spot." In ground-based images it was difficult to tell that it is a dark storm. Citizen scientist Roman Tkachenko enhanced the color to bring out the rich detail in the storm and surrounding clouds. Just south of the dark storm is a bright, oval-shaped storm with high, bright, white clouds, reminiscent of a swirling galaxy. As a final touch, he rotated the image 90 degrees, turning the picture into a work of art. http://photojournal.jpl.nasa.gov/catalog/PIA21386
NASA Astrophysics Data System (ADS)
Hunter, A. T.; Kimura, H.; Olsen, H. M.; Winston, H. V.
1986-07-01
Czochralski GaAs grown with In incorporated into the melt has large regions with fewer than 100 cm-2 dislocations. We have examined the effect of these dislocations on substrate and device properties. Infrared transmission images reveal dark filaments of high EL2 concentration a few tens of microns in diameter surrounding dislocations, Cathodo and photoluminescence images show orders of magnitude contrast in band-edge luminescence intensity near dislocations. Single dislocations appear to be surrounded by bright rings ˜200 μm in diameter in luminescence images, with dark spots 50 to 75 μm across centered on the dislocation. More complex luminescence structures with larger dark regions (˜150 μ across) and central bright spots are centered on small dislocation clusters. Differences in lifetime of photogenerated electrons or holes are the most likely cause of the luminescence contrast. Anneals typical of our post-implant processing substantially lower the luminescence contrast, suggesting the defect lowering the lifetime is removed by annealing. This may partially explain why we do not observe any effect of dislocation proximity on the properties of devices made in the material, in spite of the enormous luminescence contrast observed near dislocations.
De Bats, Flore; Cornut, Pierre-Loïc; Wolff, Benjamin; Kodjikian, Laurent; Mauget-Faÿsse, Martine
2018-03-01
To describe abnormal dark (hyposignal) and white (hypersignal) lesions observed on optical coherence tomography angiography in central serous chorioretinopathy. Prospective, multicenter, and descriptive study including patients with active or quiescent central serous chorioretinopathy. All patients had undergone a complete ophthalmic examination. Abnormal dark lesions were detected as "dark spots" and "dark areas" on optical coherence tomography angiography. A "dark spot" could correspond to six different abnormalities: pigment epithelium detachment, subretinal deposit, "Lucency" within surrounding subretinal fibrin, choroidal cavitation, choroidal excavation, and choroidal fluid. A "dark area" could be related to a serous retinal detachment or choriocapillary compression. Abnormal white lesions were also detected: A "white spot" could correspond with the leaking point on fluorescein angiography or with hyper-reflective dots; A "white filamentous pattern" at the Brüch's membrane level corresponded to abnormal choroidal neovascular vessels. A semiology is described using optical coherence tomography angiography in central serous chorioretinopathy as abnormal dark and white lesions. Multimodal imaging is mandatory in addition to optical coherence tomography angiography to diagnose non-neovascular retinal and choroidal central serous chorioretinopathy lesions. However, optical coherence tomography angiography alone is helpful in detecting choroidal neovascular membrane in central serous chorioretinopathy.
Algorithm for Detecting a Bright Spot in an Image
NASA Technical Reports Server (NTRS)
2009-01-01
An algorithm processes the pixel intensities of a digitized image to detect and locate a circular bright spot, the approximate size of which is known in advance. The algorithm is used to find images of the Sun in cameras aboard the Mars Exploration Rovers. (The images are used in estimating orientations of the Rovers relative to the direction to the Sun.) The algorithm can also be adapted to tracking of circular shaped bright targets in other diverse applications. The first step in the algorithm is to calculate a dark-current ramp a correction necessitated by the scheme that governs the readout of pixel charges in the charge-coupled-device camera in the original Mars Exploration Rover application. In this scheme, the fraction of each frame period during which dark current is accumulated in a given pixel (and, hence, the dark-current contribution to the pixel image-intensity reading) is proportional to the pixel row number. For the purpose of the algorithm, the dark-current contribution to the intensity reading from each pixel is assumed to equal the average of intensity readings from all pixels in the same row, and the factor of proportionality is estimated on the basis of this assumption. Then the product of the row number and the factor of proportionality is subtracted from the reading from each pixel to obtain a dark-current-corrected intensity reading. The next step in the algorithm is to determine the best location, within the overall image, for a window of N N pixels (where N is an odd number) large enough to contain the bright spot of interest plus a small margin. (In the original application, the overall image contains 1,024 by 1,024 pixels, the image of the Sun is about 22 pixels in diameter, and N is chosen to be 29.)
NASA Technical Reports Server (NTRS)
2006-01-01
As winter turns to spring at the south polar ice cap of Mars, the rising sun reveals dark spots and fans emerging from the cold polar night. Using visual images (left) and temperature data (right) from the Thermal Emission Imaging system on NASA's Mars Odyssey orbiter, scientists have built a new model for the origin of the dark markings. Scientists propose the markings come from dark sand and dust strewn by high-speed jets of carbon-dioxide gas. These erupt from under a layer of carbon-dioxide ice that forms each Martian winter.When Jovian Light and Dark Collide
2017-04-06
This image, taken by the JunoCam imager on NASA's Juno spacecraft, highlights a feature on Jupiter where multiple atmospheric conditions appear to collide. This publicly selected target is called "STB Spectre." The ghostly bluish streak across the right half of the image is a long-lived storm, one of the few structures perceptible in these whitened latitudes where the south temperate belt of Jupiter would normally be. The egg-shaped spot on the lower left is where incoming small dark spots make a hairpin turn. The image was taken on March 27, 2017, at 2:06 a.m. PDT (5:06 a.m. EDT), as the Juno spacecraft performed a close flyby of Jupiter. When the image was taken, the spacecraft was 7,900 miles (12,700 kilometers) from the planet. The image was processed by Roman Tkachenko, and the description is from John Rogers, the citizen scientist who identified the point of interest. https://photojournal.jpl.nasa.gov/catalog/PIA21388
Defrosting Polar Dunes--"They Look Like Bushes!"
2000-05-26
"They look like bushes!" That's what almost everyone says when they see the dark features found in pictures taken of sand dunes in the polar regions as they are beginning to defrost after a long, cold winter. It is hard to escape the fact that, at first glance, these images acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) over both polar regions during the spring and summer seasons, do indeed resemble aerial photographs of sand dune fields on Earth -- complete with vegetation growing on and around them! Of course, this is not what the features are, as we describe below and in related picture captions. Still, don't they look like vegetation to you? Shown here are two views of the same MGS MOC image. On the left is the full scene, on the right is an expanded view of a portion of the scene on the left. The bright, smooth surfaces that are dotted with occasional, nearly triangular dark spots are sand dunes covered by winter frost. The MGS MOC has been used over the past several months (April-August 1999) to monitor dark spots as they form and evolve on polar dune surfaces. The dark spots typically appear first along the lower margins of a dune -- similar to the position of bushes and tufts of grass that occur in and among some sand dunes on Earth. Because the martian air pressure is very low -- 100 times lower than at Sea Level on Earth -- ice on Mars does not melt and become liquid when it warms up. Instead, ice sublimes -- that is, it changes directly from solid to gas, just as "dry ice" does on Earth. As polar dunes emerge from the months-long winter night, and first become exposed to sunlight, the bright winter frost and snow begins to sublime. This process is not uniform everywhere on a dune, but begins in small spots and then over several months it spreads until the entire dune is spotted like a leopard. The early stages of the defrosting process -- as in the picture shown here -- give the impression that something is "growing" on the dunes. The sand underneath the frost is dark, just like basalt beach sand in Hawaii. Once it is exposed to sunlight, the dark sand probably absorbs sunlight and helps speed the defrosting of each sand dune. This picture was taken by MGS MOC on July 21, 1999. The dunes are located in the south polar region and are expected to be completely defrosted by November or December 1999. North is approximately up, and sunlight illuminates the scene from the upper left. The 500 meter scale bar equals 547 yards; the 300 meter scale is also 328 yards. http://photojournal.jpl.nasa.gov/catalog/PIA02300
1980-04-01
spots are due to the " phase ). Dark field imaging of the a" phase shows a large density of small precipitates uniformly distributed in the ferrite . In...density of defect structures and small precipitates of Fe 16N2 (a"). Although there exists some evidence of martensitic transformation in aged speci...implantation into 304 stainless steel ha-s been shown to produce a micro- crystalline surface alloy saturated with P. Combined electrochemical and XPS studies
... to the condition. Significant freckling without darkly pigmented spots or typical pattern Blue nevus, if multiple and confirmed by biopsy Café-au-lait spots, which are light brown spots on skin, or ...
Hot spots and dark current in advanced plasma wakefield accelerators
Manahan, G. G.; Deng, A.; Karger, O.; ...
2016-01-29
Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. Likewise, these electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. The strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.
NASA Astrophysics Data System (ADS)
Arcidiacono, Carmelo; Ragazzoni, Roberto; Viotto, Valentina; Bergomi, Maria; Farinato, Jacopo; Magrin, Demetrio; Dima, Marco; Gullieuszik, Marco; Marafatto, Luca
2016-07-01
Dark wavefront sensing in its simplest and more crude form is a quad-cell with a round spot of dark ink acting as occulting disk at the center. This sensor exhibits fainter limiting magnitude than a conventional quad-cell, providing that the size of the occulting disk is slightly smaller than the size of the spot and smaller than the residual jitter movement in closed loop. We present simulations focusing a generic Adaptive Optics system using Natural Guide Stars to provide the tip-tilt signal. We consider a jitter spectrum of the residual correction including amplitudes exceeding the dark disk size.
7 CFR 51.1414 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... as serious damage: (a) Adhering hull material or dark stains affecting an aggregate of more than 20...) Decay affecting any portion of the kernel; (g) Insect injury when the insect, web or frass is present... than three dark spots on either half of the kernel, or when any spot or the aggregate of two or more...
7 CFR 51.1414 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
... as serious damage: (a) Adhering hull material or dark stains affecting an aggregate of more than 20...) Decay affecting any portion of the kernel; (g) Insect injury when the insect, web or frass is present... than three dark spots on either half of the kernel, or when any spot or the aggregate of two or more...
7 CFR 51.1414 - Serious damage.
Code of Federal Regulations, 2012 CFR
2012-01-01
... as serious damage: (a) Adhering hull material or dark stains affecting an aggregate of more than 20...) Decay affecting any portion of the kernel; (g) Insect injury when the insect, web or frass is present... than three dark spots on either half of the kernel, or when any spot or the aggregate of two or more...
1979-03-01
Range : 4.3 million km. ( 2.7 million miles ) This photograph taken from Voyager I, shows the area east of the Great Red Spot. The dark halo surrounding the bright spot, just to the right of the bright oval, is said by scientists to be, almost certainly, a five micron hot spot. This is a region of the atmosphere warmer than those around it. The dark halo may represent an area in which we are looking deeper into Jupiter's Atmosphere, although not yet completely understood.
NASA Astrophysics Data System (ADS)
Gillen-Christandl, Katharina; Frazer, Travis D.
2017-04-01
The standing wave of two identical counter-propagating Gaussian laser beams constitutes a 1D array of bright spots that can serve as traps for single neutral atoms for quantum information operations. Detuning the frequency of one of the beams causes the array to start moving, effectively forming a conveyor belt for the qubits. Using a pair of nested Gaussian laser beams with different beam waists, however, forms a standing wave with a 1D array of dark spot traps confined in all dimensions. We have computationally explored the trap properties and limitations of this configuration and, trading off trap depth and frequencies with the number of traps and trap photon scattering rates, we determined the laser powers and beam waists needed for useful 1D arrays of dark spot traps for trapping and transporting atomic qubits in neutral atom quantum computing platforms.
Influence of skin ageing features on Chinese women's perception of facial age and attractiveness.
Porcheron, A; Latreille, J; Jdid, R; Tschachler, E; Morizot, F
2014-08-01
Ageing leads to characteristic changes in the appearance of facial skin. Among these changes, we can distinguish the skin topographic cues (skin sagging and wrinkles), the dark spots and the dark circles around the eyes. Although skin changes are similar in Caucasian and Chinese faces, the age of occurrence and the severity of age-related features differ between the two populations. Little is known about how the ageing of skin influences the perception of female faces in Chinese women. The aim of this study is to evaluate the contribution of the different age-related skin features to the perception of age and attractiveness in Chinese women. Facial images of Caucasian women and Chinese women in their 60s were manipulated separately to reduce the following skin features: (i) skin sagging and wrinkles, (ii) dark spots and (iii) dark circles. Finally, all signs were reduced simultaneously (iv). Female Chinese participants were asked to estimate the age difference between the modified and original images and evaluate the attractiveness of modified and original faces. Chinese women perceived the Chinese faces as younger after the manipulation of dark spots than after the reduction in wrinkles/sagging, whereas they perceived the Caucasian faces as the youngest after the manipulation of wrinkles/sagging. Interestingly, Chinese women evaluated faces with reduced dark spots as being the most attractive whatever the origin of the face. The manipulation of dark circles contributed to making Caucasian and Chinese faces being perceived younger and more attractive than the original faces, although the effect was less pronounced than for the two other types of manipulation. This is the first study to have examined the influence of various age-related skin features on the facial age and attractiveness perception of Chinese women. The results highlight different contributions of dark spots, sagging/wrinkles and dark circles to their perception of Chinese and Caucasian faces. © 2014 The Authors. International Journal of Cosmetic Science published by John Wiley & Sons Ltd on behalf of Society of Cosmetic Scientists and Societe Francaise de Cosmetologie.
2005-05-02
This recent image of Titan reveals more complex patterns of bright and dark regions on the surface, including a small, dark, circular feature, completely surrounded by brighter material. During the two most recent flybys of Titan, on March 31 and April 16, 2005, Cassini captured a number of images of the hemisphere of Titan that faces Saturn. The image at the left is taken from a mosaic of images obtained in March 2005 (see PIA06222) and shows the location of the more recently acquired image at the right. The new image shows intriguing details in the bright and dark patterns near an 80-kilometer-wide (50-mile) crater seen first by Cassini's synthetic aperture radar experiment during a Titan flyby in February 2005 (see PIA07368) and subsequently seen by the imaging science subsystem cameras as a dark spot (center of the image at the left). Interestingly, a smaller, roughly 20-kilometer-wide (12-mile), dark and circular feature can be seen within an irregularly-shaped, brighter ring, and is similar to the larger dark spot associated with the radar crater. However, the imaging cameras see only brightness variations, and without topographic information, the identity of this feature as an impact crater cannot be conclusively determined from this image. The visual infrared mapping spectrometer, which is sensitive to longer wavelengths where Titan's atmospheric haze is less obscuring -- observed this area simultaneously with the imaging cameras, so those data, and perhaps future observations by Cassini's radar, may help to answer the question of this feature's origin. The new image at the right consists of five images that have been added together and enhanced to bring out surface detail and to reduce noise, although some camera artifacts remain. These images were taken with the Cassini spacecraft narrow-angle camera using a filter sensitive to wavelengths of infrared light centered at 938 nanometers -- considered to be the imaging science subsystem's best spectral filter for observing the surface of Titan. This view was acquired from a distance of 33,000 kilometers (20,500 miles). The pixel scale of this image is 390 meters (0.2 miles) per pixel, although the actual resolution is likely to be several times larger. http://photojournal.jpl.nasa.gov/catalog/PIA06234
Code of Federal Regulations, 2010 CFR
2010-01-01
... hull material, light stained, or dark stained. (1) Damage by external (shell) defects means any... noticeable. (v) Dark stained on raw or roasted nuts, means an aggregate amount of dark brown, dark gray or... than three-fourths, but not less than one-half the shell cavity. (ii) Kernel spotting refers to dark...
Code of Federal Regulations, 2012 CFR
2012-01-01
... hull material, light stained, or dark stained. (1) Damage by external (shell) defects means any... noticeable. (v) Dark stained on raw or roasted nuts, means an aggregate amount of dark brown, dark gray or... than three-fourths, but not less than one-half the shell cavity. (ii) Kernel spotting refers to dark...
Code of Federal Regulations, 2011 CFR
2011-01-01
... hull material, light stained, or dark stained. (1) Damage by external (shell) defects means any... noticeable. (v) Dark stained on raw or roasted nuts, means an aggregate amount of dark brown, dark gray or... than three-fourths, but not less than one-half the shell cavity. (ii) Kernel spotting refers to dark...
Propagation of a phase-locked circular dark hollow beams array in a turbulent atmosphere
NASA Astrophysics Data System (ADS)
Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Xu, Xiaojun; Liu, Zejin
2010-10-01
The propagation of phase-locked circular dark hollow beams array in a turbulent atmosphere is studied. An analytical expression for the average intensity distribution at the receiving plane is obtained based on the extended Huygens-Fresnel principle. The effects of turbulence, dark parameter and beam order of the beams array on the intensity pattern are studied and analyzed. It is found that the intensity pattern of the phase-locked circular dark hollow beams array will evolve from a multiple-spot-pattern into a Gaussian beam spot under the isotropic influence of the turbulence. The intensity pattern of beam array with a larger dark parameter and beam order evolves into the Gaussian-shape faster with increasing propagation distance.
Z boson mediated dark matter beyond the effective theory
Kearney, John; Orlofsky, Nicholas; Pierce, Aaron
2017-02-17
Here, direct detection bounds are beginning to constrain a very simple model of weakly interacting dark matter—a Majorana fermion with a coupling to the Z boson. In a particularly straightforward gauge-invariant realization, this coupling is introduced via a higher-dimensional operator. While attractive in its simplicity, this model generically induces a large ρ parameter. An ultraviolet completion that avoids an overly large contribution to ρ is the singlet-doublet model. We revisit this model, focusing on the Higgs blind spot region of parameter space where spin-independent interactions are absent. This model successfully reproduces dark matter with direct detection mediated by the Zmore » boson but whose cosmology may depend on additional couplings and states. Future direct detection experiments should effectively probe a significant portion of this parameter space, aside from a small coannihilating region. As such, Z-mediated thermal dark matter as realized in the singlet-doublet model represents an interesting target for future searches.« less
Distribution of Vesta Dark Materials, Southern View
2013-01-03
This map shows the distribution of dark materials throughout the southern hemisphere of the giant asteroid Vesta. The circles, diamonds, and stars show where the dark material appears in craters, spots and topographic highs.
1988-04-30
spots and it gives milk and it chews cud and it has a long neck and it has long legs, then it is a giraffe . These rules are translated into a Lisp...implies tiger) ((ungulate and ( long legs) and ( long neck ) and tawny and (dark spots)) implies giraffe ) ((Ungulate and white and (black stripes)) implies...it is a tiger. I1) If the animal is an ungulate and it has long legs and it has a long neck and it has a tawny color and it has dark spots then it is a
Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini
NASA Technical Reports Server (NTRS)
Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.
2013-01-01
We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.
Morphological Analysis of Annual Recurrence of Dark Dune Spots on Southern Polar Region of Mars
NASA Technical Reports Server (NTRS)
Horvath, A.; Ganti, T.; Berczi, Sz.; Gesztesi, A.; Szathmary, E.
2003-01-01
Analysis of the Mars Global Surveyor narrow-angle images of the dark dune spots (DDSs) in three subsequent Martian winters and springs in Southern Polar Region resulted in the recognition that year by year DDSs reappeared on the same place with almost the same configuration. Comparison of the 1999 and 2001 high-resolution images showed a very interest recovery process.
Optical Flares and a Long-lived Dark Spot on a Cool Shallow Contact Binary
NASA Astrophysics Data System (ADS)
Qian, S.-B.; Wang, J.-J.; Zhu, L.-Y.; Snoonthornthum, B.; Wang, L.-Z.; Zhao, E. G.; Zhou, X.; Liao, W.-P.; Liu, N.-P.
2014-05-01
W UMa-type stars are contact systems where both cool components fill the critical Roche lobes and share a common convective envelope. Long and unbroken time-series photometry is expected to play an important role in their origin and activity. The newly discovered short-period W UMa-type star, CSTAR 038663, was monitored continuously by Chinese Small Telescope ARray (CSTAR) in Antarctica during the winters of 2008 and 2010. There were 15 optical flares recorded in the i band during the winter of 2010. This was the first time such flares were detected from a W UMa-type star. By analyzing the nearly unbroken photometric data from 2008, it is discovered that CSTAR 038663 is a W-type shallow contact binary system (f = 10.6(± 2.9)%) with a high mass ratio of q = 1.12(± 0.01), where the less massive component is slightly hotter than the more massive one. The asymmetric light curves are explained by the presence of a dark spot on the more massive component. Its temperature is about 800 K lower than the stellar photosphere and it covers 2.1% of the total photospheric surface. The lifetime of the dark spot is longer than 116 days. Using 725 eclipse times, we found that the observed-calculated (O-C) curve may show a cyclic variation that is explained by the presence of a close-in third body. Both the shallow contact configuration and the extremely high mass ratio suggest that CSTAR 038663 is presently evolving into a contact system with little mass transfer. The formation and evolution is driven by the loss of angular momentum via magnetic braking, and the close-in companion star is expected to play an important role, removing angular momentum from the central eclipsing binary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
Destructive and non-destructive examinations have been performed on the components of shipping package 9975-02019 as part of a comprehensive SRS surveillance program for plutonium material stored in the K-Area Complex (KAC). During the field surveillance inspection of this package in KAC, two non-conforming conditions were noted: the axial gap of 1.577 inch exceeded the 1 inch maximum criterion, and two areas of dried glue residue were noted on the upper fiberboard subassembly. This package was subsequently transferred to SRNL for more detailed inspection and destructive examination. In addition to the conditions noted in KAC, the following conditions were noted: -more » Numerous small spots of corrosion were observed along the bottom edge of the drum. - In addition to the smeared glue residue on the upper fiberboard subassembly, there was also a small dark stain. - Mold was present on the side and bottom of the lower fiberboard subassembly. Dark stains from elevated moisture content were also present in these areas. - A dark spot with possible light corrosion was observed on the primary containment vessel flange, and corresponding rub marks were observed on the secondary containment vessel ID. - The fiberboard thermal conductivity in the radial orientation was above the specified range. When the test was repeated with slightly lower moisture content, the result was acceptable. The moisture content for both tests was within a range typical of other packages in storage. The observed conditions must be fully evaluated by KAC to ensure the safety function of the package is being maintained. Several factors can contribute to the concentration of moisture in the fiberboard, including higher than average initial moisture content, higher internal temperature (due to internal heat load and placement within the array of packages), and the creation of additional moisture as the fiberboard begins to degrade.« less
NASA Astrophysics Data System (ADS)
Wong, Michael
2015-10-01
A bright, unusually long-lived outburst of cloud activity on Neptune was observed in 2015. This led to speculation about whether the clouds were convective in nature, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). HST OPAL images at blue wavelengths finally answered this question by discovering a new dark vortex at 45 deg S. We call this feature SDS-2015, for southern dark spot discovered in 2015.Dark vortices on Neptune are rare; SDS-2015 is only the fifth ever seen. All five were diverse in terms of size and shape, the distribution of bright companion clouds, and horizontal motions (oscillations and drifts). The drift of these vortices is highly sensitive to horizontal and vertical wind shear, making them valuable probes into the structure of Neptune's atmospheric jets. We have traced oscillations in the longitudinal positions of bright companion clouds of SDS-2015, but a second epoch of HST imaging is needed to measure latitudinal motion of the dark vortex itself.Only HST can image dark vortices on Neptune. Ground-based facilities lack the resolution to detect these low-contrast features at blue optical wavelengths, while infrared observations don't detect the dark spots themselves, only their bright companion features. We propose observations of SDS-2015, in order to measure its size, drift rate, and aerosol structure, and to trace its temporal evolution. The observations will improve our understanding of the life cycle of neptunian vortices, of their influence on the surrounding atmosphere, and of the structure of planetary jets.
NASA Technical Reports Server (NTRS)
2005-01-01
3 October 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, defrosting spots formed on a polygon-cracked plain in the south polar region of Mars. The surface was covered with carbon dioxide frost during the previous winter. In spring, the material begins to sublime away, creating a pattern of dark spots that sometimes have wind streaks emanating from them, as wind carries away or erodes the frost. Location near: 87.2oS, 28.4oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringVortices Bump into a Hot Spot in Jupiter Atmosphere
2013-03-14
In this series of images from NASA Cassini spacecraft, a dark, rectangular hot spot interacts with a line of vortices that approaches from on the upper-right side. The interaction distorts the shape of the hot spot, leaving it diminished.
The identity of Pethia punctata, a senior synonym of P. muvattupuzhaensis (Teleostei: Cyprinidae).
Katwate, Unmesh; Baby, Fibin; Raghavan, Rajeev; Dahanukar, Neelesh
2014-11-14
Francis Day described Pethia punctata from Cochin, on the Malabar (south western) coast of India. Although, the species is now recovered from its synonymy with P. ticto, an accurate diagnosis and description have been lacking. A redescription of P. punctata based on external morphology, osteology and genetics is provided, which revealed that P. muvattupuzhaensis, described from Muvattupuzha River, Ernakulam District, Kerala, India, is its junior synonym. Pethia punctata can be diagnosed from other known species in the genus by a combination of characters including lateral line complete, with 23-25 pored scales; 8 predorsal scales; ½4/1/3½ scales in transverse line; dorsal fin originating almost opposite to, or slightly before pelvic-fin origin; gill rakers 7 on first ceratobranchial; 4+26 total vertebrae; a small black humeral spot covering anterior half of the fourth scale of the row below the lateral-line row; two minute dark spots below the humeral spot; a prominent spot on the caudal peduncle, surrounded by a golden hoop covering scales 19-21 of the lateral-line row; and dorsal fin with 2-3 longitudinal rows of black spots, third row occupying only anterior portion of the fin.
SOAP 2.0: Spot Oscillation And Planet 2.0
NASA Astrophysics Data System (ADS)
Dumusque, Xavier; Boisse, I.; Santos, N. C.
2015-04-01
SOAP (Spot Oscillation And Planet) 2.0 simulates the effects of dark spots and bright plages on the surface of a rotating star, computing their expected radial velocity and photometric signatures. It includes the convective blueshift and its inhibition in active regions.
2004-05-13
As Cassini nears its rendezvous with Saturn, new detail in the banded clouds of the planet's atmosphere are becoming visible. Cassini began the journey to the ringed world of Saturn nearly seven years ago and is now less than two months away from orbit insertion on June 30. Cassini’s narrow-angle camera took this image on April 16, 2004, when the spacecraft was 38.5 million kilometers (23.9 million miles) from Saturn. Dark regions are generally areas free of high clouds, and bright areas are places with high, thick clouds which shield the view of the darker areas below. A dark spot is visible at the south pole, which is remarkable to scientists because it is so small and centered. The spot could be affected by Saturn's magnetic field, which is nearly aligned with the planet's rotation axis, unlike the magnetic fields of Jupiter and Earth. From south to north, other notable features are the two white spots just above the dark spot toward the right, and the large dark oblong-shaped feature that extends across the middle. The darker band beneath the oblong-shaped feature has begun to show a lacy pattern of lighter-colored, high altitude clouds, indicative of turbulent atmospheric conditions. The cloud bands move at different speeds, and their irregularities may be due to either the different motions between them or to disturbances below the visible cloud layer. Such disturbances might be powered by the planet's internal heat; Saturn radiates more energy than it receives from the Sun. The moon Mimas (396 kilometers, 245 miles across) is visible to the left of the south pole. Saturn currently has 31 known moons. Since launch, 13 new moons have been discovered by ground-based telescopes. Cassini will get a closer look and may discover new moons, perhaps embedded within the planet’s magnificent rings. This image was taken using a filter sensitive to light near 727 nanometers, one of the near-infrared absorption bands of methane gas, which is one of the ingredients in Saturn's atmosphere. The image scale is approximately 231 kilometers (144 miles) per pixel. Contrast has been enhanced to aid visibility of features in the atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA05391
Superoscillating electron wave functions with subdiffraction spots
NASA Astrophysics Data System (ADS)
Remez, Roei; Tsur, Yuval; Lu, Peng-Han; Tavabi, Amir H.; Dunin-Borkowski, Rafal E.; Arie, Ady
2017-03-01
Almost one and a half centuries ago, Abbe [Arch. Mikrosk. Anat. 9, 413 (1873), 10.1007/BF02956173] and shortly after Lord Rayleigh [Philos. Mag. Ser. 5 8, 261 (1879), 10.1080/14786447908639684] showed that, when an optical lens is illuminated by a plane wave, a diffraction-limited spot with radius 0.61 λ /sinα is obtained, where λ is the wavelength and α is the semiangle of the beam's convergence cone. However, spots with much smaller features can be obtained at the focal plane when the lens is illuminated by an appropriately structured beam. Whereas this concept is known for light beams, here, we show how to realize it for a massive-particle wave function, namely, a free electron. We experimentally demonstrate an electron central spot of radius 106 pm, which is more than two times smaller than the diffraction limit of the experimental setup used. In addition, we demonstrate that this central spot can be structured by adding orbital angular momentum to it. The resulting superoscillating vortex beam has a smaller dark core with respect to a regular vortex beam. This family of electron beams having hot spots with arbitrarily small features and tailored structures could be useful for studying electron-matter interactions with subatomic resolution.
NASA Astrophysics Data System (ADS)
Qian, S.-B.; Zhu, L.-Y.; Fernández-Lajús, E.; He, J.-J.; Liao, W.-P.; Zhao, E.-G.; Liu, L.; Yang, Y.-G.
2014-08-01
In magnetic CVs (polars), the magnetic fields of the white dwarfs are strong enough to prevent materials from the main-sequence companions for forming an accretion disc. Therefore, polars especially eclipsing polars provide a good chance to study mass accretion directly. In the past 4 years, we have monitored several eclipsing polars (e.g., DP Leo and HU Aqr) by using the 2.4-m and 1.0-m telescopes in China and the 2.15-m telescope in Argentina. Nearly 100 eclipse profiles were obtained. In this talk, apart from the detection of a few giant planets orbiting polars, I will summarize some other progresses of our research group at Yunnan Observatories. Our results are as following: (1) the correlation between the out-of-eclipse brightness variation and the change of the eclipse profile suggests that both the accretion hot spot and the accretion stream brighten and become faint instantaneously. This is the direct evidence of variable mass transfer in a CV that is also supported by the relation between the out-of-eclipse brightness and the depth of eclipse. (2) We find the brightness state change is correlated with the dark-spot activity near the L1 point. The low state usually corresponds to the presence of a large spot at L1 point, while the dark spot disappear at a high state indicating that it is the dark-spot activity caused the mass transfer in CVs. (3) Magnetic activity cycles of the cool secondary did not correlate with the brightness state change revealing the variable mass accretion was not caused by magnetic activity cycles.
Defrosting Polar Dunes--'They Look Like Bushes!'
NASA Technical Reports Server (NTRS)
1999-01-01
'They look like bushes!' That's what almost everyone says when they see the dark features found in pictures taken of sand dunes in the polar regions as they are beginning to defrost after a long, cold winter. It is hard to escape the fact that, at first glance, these images acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) over both polar regions during the spring and summer seasons, do indeed resemble aerial photographs of sand dune fields on Earth--complete with vegetation growing on and around them! Of course, this is not what the features are, as we describe below and in related picture captions. Still, don't they look like vegetation to you? Shown here are two views of the same MGS MOC image. On the left is the full scene, on the right is an expanded view of a portion of the scene on the left. The bright, smooth surfaces that are dotted with occasional, nearly triangular dark spots are sand dunes covered by winter frost. The MGS MOC has been used over the past several months (April-August 1999) to monitor dark spots as they form and evolve on polar dune surfaces. The dark spots typically appear first along the lower margins of a dune--similar to the position of bushes and tufts of grass that occur in and among some sand dunes on Earth. Because the martian air pressure is very low--100 times lower than at Sea Level on Earth--ice on Mars does not melt and become liquid when it warms up. Instead, ice sublimes--that is, it changes directly from solid to gas, just as 'dry ice' does on Earth. As polar dunes emerge from the months-long winter night, and first become exposed to sunlight, the bright winter frost and snow begins to sublime. This process is not uniform everywhere on a dune, but begins in small spots and then over several months it spreads until the entire dune is spotted like a leopard. The early stages of the defrosting process--as in the picture shown here--give the impression that something is 'growing' on the dunes. The sand underneath the frost is dark, just like basalt beach sand in Hawaii. Once it is exposed to sunlight, the dark sand probably absorbs sunlight and helps speed the defrosting of each sand dune. This picture was taken by MGS MOC on July 21, 1999. The dunes are located in the south polar region and are expected to be completely defrosted by November or December 1999. North is approximately up, and sunlight illuminates the scene from the upper left. The 500 meter scale bar equals 547 yards; the 300 meter scale is also 328 yards. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.Proposal for mars express: detailed dds-test in the "inca city" and "csontváry" areas
NASA Astrophysics Data System (ADS)
Horvath, A.; Manrubia, S. C.; Ganti, T.; Berczi, S.; Gesztesi, A.; Fernandez-Remolar, D.; Prieto Ballesteros, O.; Szathmary, E.
2003-04-01
Analyis of Mars Global Surveyor MOC images taken in Martian winter and spring has revealed a peculiar spotting phenomenon on the dark dunes in the polar region of Mars [1]. These spots are named Dark Dune Spots (DDSs) and various hypotheses have been put forward for their origin and formation process, which fall into two main groups: geophysical and biological [2, 3, 4, 5 and 6]. Because the high-resolution images by MGS-MOC have shown well-developed and recurrent DDSs on some dark dune fields since the Southern winter of 1999 [5, 6 and 7], we have selected two areas of them. They are many dozen kilometers in size in the Southern polar region. Namely: the "Inca City" area (λ=295.3^oE, ϕ=81.5^oS) and the Northern part of Pityusa Patera (λ=37^oE, ϕ=66^oS), which we call "Csontváry" area. These two areas could be excellent test areas for Mars Express in order to reveal the mechanism of the formation, development and annual recurrence of the DDSs. For this we propose, that different instruments (HRSC, spectrometers, etc.) of the orbiter of the ESA Mars Express Mission should produce high-resolution images and spectral measurements of the frosted surface of the dark dunes of the "Inca City" and the Pityusa Patera from the second half of the Southern winter till the end of spring, with weekly regularity, because this may be sufficient to choose between the abiogenic and the biogenic origin of DDSs. Referenes [1] Malin, M. C. and Edgett, K. S.: 2000, Frosting and defrosting of Martian polar dunes, LPS XXXI, #1056, Houston-CD. [2] Horváth, A., Gánti, T., Gesztesi, A., Bérczi, Sz., Szathmáry, E., 2001, Probable evidences of recent biological activity on Mars: appearance and growing of dark dune spots in the south polar region. LPS XXXII, # 1543, Houston-CD. [3] Malin, M. C. and Edgett, K. S.: 2001, The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise through Primary Mission. J. Geophys. Res. 106 E10, p. 23,429-23,570. [4] Gánti, T., Horváth, A., Gesztesi, A., Bérczi, Sz., Szathmáry E.: 2002, Defrosting and Melting, not Defrosting Alone, Lunar Planetary Science XXXIII, #1221, Houston-CD. [5] Horváth, A., Bérczi, Sz., Gánti, T., Gesztesi, A., Szathmáry E.: 2002, The “Inca City” Region of Mars: Test field for Dark Dune Spots Origin, LPS XXXIII, #1109, Houston-CD. [6] Gánti, T., Horváth, A., Gesztesi, A., Bérczi, Sz., Szathmáry, E., 2003, Dark dune spots: possible biomarkers on Mars? OLEB in print. [7] Horváth, A., Gánti, T., Bérczi, Sz., Gesztesi, A., Szathmáry, E., 2003, Morphological analysis of annual recurrence of dark dune spots on Southern Polar Region, LPS XXXIV.
Bright spots among the world’s coral reefs
NASA Astrophysics Data System (ADS)
Cinner, Joshua E.; Huchery, Cindy; MacNeil, M. Aaron; Graham, Nicholas A. J.; McClanahan, Tim R.; Maina, Joseph; Maire, Eva; Kittinger, John N.; Hicks, Christina C.; Mora, Camilo; Allison, Edward H.; D'Agata, Stephanie; Hoey, Andrew; Feary, David A.; Crowder, Larry; Williams, Ivor D.; Kulbicki, Michel; Vigliola, Laurent; Wantiez, Laurent; Edgar, Graham; Stuart-Smith, Rick D.; Sandin, Stuart A.; Green, Alison L.; Hardt, Marah J.; Beger, Maria; Friedlander, Alan; Campbell, Stuart J.; Holmes, Katherine E.; Wilson, Shaun K.; Brokovich, Eran; Brooks, Andrew J.; Cruz-Motta, Juan J.; Booth, David J.; Chabanet, Pascale; Gough, Charlie; Tupper, Mark; Ferse, Sebastian C. A.; Sumaila, U. Rashid; Mouillot, David
2016-07-01
Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.
Ephemeral Dark Spots Associated with Martian Gullies
NASA Technical Reports Server (NTRS)
Bridges, N. T.; Herkenhoff, K. E.; Titus, T. N.; Kieffer, H. H.
2001-01-01
Seasonal spots confined to the channels of the recently-discovered martian gullies are described and explanations offered for their origin. Additional information is contained in the original extended abstract.
... in the groin area. This condition may leave dark raised scars (keloids). Pityrosporum (pit-ih-ROS-puh- ... furunculosis) Permanent skin damage, such as scarring or dark spots Destruction of hair follicles and permanent hair ...
Yang, Jian-Huan; Wang, Ying-Yong; Chan, Bosco Pui-Lok
2016-08-11
We describe a new species of the genus Leptobrachium from the Gaoligongshan Mountain Range, Yunnan Province of China based on molecular and morphological evidences. The new species, Leptobrachium tengchongense sp. nov., can be distinguished from its congeners by a combination of the following characters: (1) relatively small size (adult males SVL 41.7-51.5 mm); (2) head width slightly larger than head length; (3) tympanum indistinct; (4) two palmar tubercles oval and distinct, inner one larger than outer one; (5) sexually active males without spines on the upper lip; (6) dorsal skin smooth with distinct network of ridges; (7) dorsum pinkish grey and scattered with irregular black markings; (8) venter dark purplish-gray with numerous small white spots on tubercles, solid white chest; (9) iris bicolored, upper one-third light blue, lower two-third dark brown. With the description of the new species, the number of Leptobrachium species currently known from China adds up to ten.
1979-02-13
Voyager 1 Image of Jupiter and two of its satellites (Io, left, and Europa). Io is about 350,000 kilometers (220,000 miles) above Jupiter's Great Red Spot; Europa is about 600,000 kilometers (375,000 miles) above Jupiter's clouds. Although both satellites have about the same brightness, Io's color is very different from Europa's. Io's equatorial region show two types of material -- dark orange, broken by several bright spots -- producing a mottled appearance. The poles are darker and reddish. Preliminary evidence suggests color variations within and between the polar regions. Io's surface composition is unknown, but scientists believe it may be a mixture of salts and sulfur. Erupoa is less strongly colored, although still relatively dark at short wavelengths. Markings on Eruopa are less evident that on the other satellites, although this picture shows darker regions toward the trailing half of the visible disk. Jupiter at this point is about 20 million kilometers (12.4 million miles) from the spacecraft. At this resolution (about 400 kimometers or 250 miles) there is evidence of circular motion in Jupiter's atmosphere. While the dominant large-scale motions are west-to-east, small-scale movement includes eddy-like circulation within and between the bands. (JPL ref: P-21082)
1979-02-13
Voyager 1 Image of Jupiter and two of its satellites (Io, left, and Europa). Io is about 350,000 kilometers (220,000 miles) above Jupiter's Great Red Spot; Europa is about 600,000 kilometers (375,000 miles) above Jupiter's clouds. Although both satellites have about the same brightness, Io's color is very different from Europa's. Io's equatorial region show two types of material -- dark orange, broken by several bright spots -- producing a mottled appearance. The poles are darker and reddish. Preliminary evidence suggests color variations within and between the polar regions. Io's surface composition is unknown, but scientists believe it may be a mixture of salts and sulfur. Erupoa is less strongly colored, although still relatively dark at short wavelengths. Markings on Eruopa are less evident that on the other satellites, although this picture shows darker regions toward the trailing half of the visible disk. Jupiter at this point is about 20 million kilometers (12.4 million miles) from the spacecraft. At this resolution (about 400 kimometers or 250 miles) there is evidence of circular motion in Jupiter's atmosphere. While the dominant large-scale motions are west-to-east, small-scale movement includes eddy-like circulation within and between the bands. (JPL ref: P-21082)
Investigation of Jupiter's Equatorial Hotspots and Plumes Using Cassini ISS Observations
NASA Technical Reports Server (NTRS)
Choi, David S.; Showman, A. P.; Vasavada, A. R.; Simon-Miller, A. A.
2012-01-01
We present updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the ISS onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial 5-micron hot spots and their interactions with adjacent latitudes. Hot spots are quasi-stable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but a diffuse western edge serving as a nebulous boundary with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-iike 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. This raises the possibility that the plumes and fast-moving clouds are at higher altitudes, because their speed does not match previously published zonal wind profiles. Most profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby waves controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed. Instead, our expanded data set demonstrating the rapid flow of these scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. This research was supported by a NASA JDAP grant and the NASA Postdoctoral Program.
Infrared Spectral Signatures for Io's Dark and Green Spots
NASA Technical Reports Server (NTRS)
Granahan, J. C.; Fanale, F. P.; Carlson, R.; Smythe, W. D.
2001-01-01
This spectral study of Io identifies the infrared components of the visible spectral units (green and dark) as identified by Galileo. The green units possess sulfur dioxide and the dark units are associated with infrared thermal signatures. Additional information is contained in the original extended abstract.
... People with light skin have less melanin than dark-skinned people. This is why very fair-skinned ... this are wrinkled, tight, or leathery skin and dark spots. Lowered immune system. White blood cells work ...
1989-12-31
color and it has dark spots and it gives milk and It chews cud and it has a long neck and it has long legs, then it is a giraffe . -8- These rules are...black stripes)) implies tiger) ((ungulate and ( long legs) and ( long neck ) and tawny and (dark spots)) implies giraffe ) ((Ungulate and white and (black...black stripes then it is a tiger. 11 ) If the animal is an ungulate and it has long legs and it has a long neck and it has a tawny color and it has
2017-02-07
The dark spots in this enhanced-color infrared image are the recent impact craters that occurred in the Tharsis region between 2008 and 2014. These impact craters were first discovered by the Mars Context Camera (or CTX, also onboard the Mars Reconnaissance Orbiter) as a cluster of dark spots. The meteoroid that formed these craters must have broken up upon atmospheric entry and fragmented into two larger masses along with several smaller fragments, spawning at least twenty or so smaller impact craters. The dark halos around the resulting impact craters are a combination of the light-toned dust being cleared from the impact event and the deposition of the underlying dark toned materials as crater ejecta. The distribution and the pattern of the rayed ejecta suggests that the meteoroid most-likely struck from the south. http://photojournal.jpl.nasa.gov/catalog/PIA11176
CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap
Kieffer, H.H.; Christensen, P.R.; Titus, T.N.
2006-01-01
The martian polar caps are among the most dynamic regions on Mars, growing substantially in winter as a significant fraction of the atmosphere freezes out in the form of CO2 ice. Unusual dark spots, fans and blotches form as the south-polar seasonal CO2 ice cap retreats during spring and summer. Small radial channel networks are often associated with the location of spots once the ice disappears. The spots have been proposed to be simply bare, defrosted ground; the formation of the channels has remained uncertain. Here we report infrared and visible observations that show that the spots and fans remain at CO2 ice temperatures well into summer, and must be granular materials that have been brought up to the surface of the ice, requiring a complex suite of processes to get them there. We propose that the seasonal ice cap forms an impermeable, translucent slab of CO2 ice that sublimates from the base, building up high-pressure gas beneath the slab. This gas levitates the ice, which eventually ruptures, producing high-velocity CO 2 vents that erupt sand-sized grains in jets to form the spots and erode the channels. These processes are unlike any observed on Earth. ?? 2006 Nature Publishing Group.
NASA Technical Reports Server (NTRS)
1996-01-01
Volcanic hot spots and auroral emissions glow on the darkside of Jupiter's moon Io in the image at left. The image was taken by the camera onboard NASA's Galileo spacecraft on 29 June, 1996 UT while Io was in Jupiter's shadow. It is the best and highest-resolution image ever acquired of hot spots or auroral features on Io. The mosaic at right of 1979 Voyager images is shown with an identical scale and projection to identify the locations of the hot spots seen in the Galileo image. The grid marks are at 30 degree intervals of latitude and longitude. North is to the top.
In the nighttime Galileo image, small red ovals and perhaps some small green areas are from volcanic hot spots with temperatures of more than about 700 kelvin (about 1000 degrees Fahrenheit). Greenish areas seen near the limb, or edge of the moon, are probably the result of auroral or airglow emissions of neutral oxygen or sulfur atoms in volcanic plumes and in Io's patchy atmosphere. The image was taken from a range of 1,035,000 kilometers (about 643,000 miles).The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoNASA Astrophysics Data System (ADS)
Momary, Thomas W.; Baines, K. H.; Brown, R. H.; Buratti, B. J.; Clark, R. N.; Nicholson, P. D.; Sotin, C.
2012-10-01
A massive dark anti-cyclonic storm system on Saturn spanning some 7∘ of longitude and 2∘ of latitude was observed by Cassini/VIMS at a planetocentric latitude of 37∘ on 4 January 2012 and 26 January 2012. During this time, it drifted some 54∘ of longitude at a speed of 23.1 ± 0.2 m/s prograde, a drift speed which correlates well with the canonical Voyager (and VIMS) wind profiles for Saturn at this latitude. The spot also drifted northward during this time by 1∘ and became noticeably "squished" in morphology. Using this drift rate and extrapolating backward, we find that the position corresponds to the large (> 5,000 km) anti-cyclone observed by VIMS on 11 May 2011 at 35.4∘ latitude (pc) and 49.4∘ W. longitude. This would represent 8 months of observation of this titanic feature, which was associated with the major lightning storm of 2010-2011, following the spot as it changed in size and morphology and drifted northward. The spot underwent a dramatic shift in shape in the 3 weeks of January, changing from roughly oval to a highly elongated pancake shape as it apparently bumped up against the dark band at 40∘ latitude and experienced a powerful shear. The evolution suggests that we are watching the death throes of this feature in our most recent observations. Finally, the dark spot was darker than surrounding regions in May 2011 and maintained its dark color across all pseudo-continua from 1.0 to 4.0 μm between May 2011 and early January 2012.
Correlation of EBIC and SWBXT Imaged Defects and Epilayer Growth Pits in 6H-SiC Schottky Diodes
NASA Technical Reports Server (NTRS)
Schnable, C. M.; Tabib-Azar, M.; Neudeck, P. G.; Bailey, S. G.; Su, H. B.; Dudley, M.; Raffaelle, R. P.
2000-01-01
We show the first direct experimental correlation between the presence of closed core screw dislocations in 6H-SiC epilayers with recombination centers, as well as with some of the small growth pits on the epilayer surface in lightly-doped 6H-SiC Schottky diodes. At every Synchrotron White-Beam X-ray Topography (SWBXT)-identified closed core screw dislocation, an Electron Beam Induced Current (EBIC) image showed a dark spot indicating a recombination center, and Nomarski optical microscope and Atomic Force Microscope (AFM) images showed a corresponding small growth pit with a sharp apex on the surface of the epilayer.
Zhang, Yueyun; Chen, Chongtao; Li, Li; Zhao, Chengjian; Chen, Weicai; Huang, Yong
2014-09-01
The black-spotted tokay and the red-spotted tokay are morphologically distinct and have largely allopatric distributions. The black-spotted tokay is characterized by a small body size and dark skin with sundry spots, while the red-spotted tokay has a relatively large body size and red spots. Based on morphological, karyotypic, genetic, and distribution differences, recent studies suggested their species status; however, their classifications remain controversial, and additional data such as ecological niches are necessary to establish firm hypotheses regarding their taxonomic status. We reconstructed their ecological niches models using climatic and geographic data. We then performed niche similarity tests (niche identity and background tests) and point-based analyses to explore whether ecological differentiation has occurred, and whether such differences are sufficient to explain the maintenance of their separate segments of environmental ranges. We found that both niche models of the black- and the red-spotted tokay had a good fit and a robust performance, as indicated by the high area under the curve (AUC) values ("black" = 0.982, SD = ± 0.002, "red" = 0.966 ± 0.02). Significant ecological differentiation across the entire geographic range was found, indicating that the involvement of ecological differentiation is important for species differentiation. Divergence along the environmental axes is highly associated with climatic conditions, with isothermality being important for the "black" form, while temperature seasonality, precipitation of warmest quarter, and annual temperature range together being important for the "red" form. These factors are likely important factors in niche differentiation between the two forms, which result in morphological replacement. Overall, beside morphological and genetic differentiation information, our results contribute to additional insights into taxonomic distinction and niche differentiation between the black- and the red-spotted tokay.
Confronting the Dark Side of Higher Education
ERIC Educational Resources Information Center
Bengsten, Soren; Barnett, Ronald
2017-01-01
In this paper we philosophically explore the notion of darkness within higher education teaching and learning. Within the present-day discourse of how to make visible and to explicate teaching and learning strategies through alignment procedures and evidence-based intellectual leadership, we argue that dark spots and blind angles grow too. As we…
Stuart, Bryan L; Phimmachak, Somphouthone; Seateun, Sengvilay; Sheridan, Jennifer A
2013-12-03
The small rhacophorid frog Philautus abditus is geographically restricted to central Vietnam and adjacent Cambodia. Our fieldwork in northern Laos resulted in the discovery of a Philautus species that very closely resembles P. abditus, but is at least 330 km from the nearest known locality of that species. The Laos population differs from P. abditus in mitochondrial DNA and coloration, and is described here as a new species. Philautus nianeae sp. nov. is distinguished from its congeners by having the combination of a hidden tympanum; no nuptial pads; smooth skin; large black spots on the hidden surfaces of the hind limbs; light venter with dark spotting; and a bronze iris. A second species of Philautus from northern Laos, P. petilus, is transferred on the basis of morphology to the genus Theloderma.
Galileo's First Images of Jupiter and the Galilean Satellites
Belton, M J S; Head, J W; Ingersoll, A P; Greeley, R; McEwen, A S; Klaasen, K P; Senske, D; Pappalardo, R; Collins, G; Vasavada, A R; Sullivan, R; Simonelli, D; Geissler, P; Carr, M H; Davies, M E; Veverka, J; Gierasch, P J; Banfield, D; Bell, M; Chapman, C R; Anger, C; Greenberg, R; Neukum, G; Pilcher, C B; Beebe, R F; Burns, J A; Fanale, F; Ip, W; Johnson, T V; Morrison, D; Moore, J; Orton, G S; Thomas, P; West, R A
1996-10-18
The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on Io. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.
Galileo's first images of Jupiter and the Galilean satellites
Belton, M.J.S.; Head, J. W.; Ingersoll, A.P.; Greeley, R.; McEwen, A.S.; Klaasen, K.P.; Senske, D.; Pappalardo, R.; Collins, G.; Vasavada, A.R.; Sullivan, R.; Simonelli, D.; Geissler, P.; Carr, M.H.; Davies, M.E.; Veverka, J.; Gierasch, P.J.; Banfield, D.; Bell, M.; Chapman, C.R.; Anger, C.; Greenberg, R.; Neukum, G.; Pilcher, C.B.; Beebe, R.F.; Burns, J.A.; Fanale, F.; Ip, W.; Johnson, T.V.; Morrison, D.; Moore, J.; Orton, G.S.; Thomas, P.; West, R.A.
1996-01-01
The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on lo. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.
Giove 2003-2004: rapporto osservativo
NASA Astrophysics Data System (ADS)
Adamoli, Gianluigi
2005-08-01
The planet was monitored from 2003 September 19 to 2004 August 7, with plenty of digital images and a few visual observations. Undulations in latitude were shown by many belts, with SSTB, STB and NNTB spiralling so as to overpose parallel to themselves after a turn. Bright SPH and an SPB were recorded in the SPR, with spots discernible to about 60°S. The SSTZ anti-cyclonic white ovals were prominent, so as oval BA, well visible amidst dark SSTB/STB features; it was reached by a prograding STB dark sector. A dark STZ spot surpassed the GRS and then became a diagonal streak. The GRS was pale red, with a darker S. edge and a central condensation, followed by the usual train of white spots in SEB. This belt had much structure, with white SEBZ, a central dark component and projections on both edges. EZ was 3/4 veiled and EB was systematically S. of the equator; NEBs activity consisted of the usual festoons, often distorted through the Zone by the wind speed shear, and prominent blue bars on the edge of the belt. The NEB N. edge underwent a new Northern expansion in April; its barges were few and faint, while Roger's Z bay decelerated. A continuous NTrB was present, with NTB very faint; they were blue, while NNTB had a warm hue and the NNTBs jetstream was very active. Many faint belt sectors were recorded N. of it, with spots to about 60°N.
2000-02-16
Neptune's blue-green atmosphere is shown in greater detail than ever before by the Voyager 2 spacecraft as it rapidly approaches its encounter with the giant planet. This color image, produced from a distance of about 16 million kilometers, shows several complex and puzzling atmospheric features. The Great Dark Spot (GDS) seen at the center is about 13,000 km by 6,600 km in size -- as large along its longer dimension as the Earth. The bright, wispy "cirrus-type" clouds seen hovering in the vicinity of the GDS are higher in altitude than the dark material of unknown origin which defines its boundaries. A thin veil often fills part of the GDS interior, as seen on the image. The bright cloud at the southern (lower) edge of the GDS measures about 1,000 km in its north-south extent. The small, bright cloud below the GDS, dubbed the "scooter," rotates faster than the GDS, gaining about 30 degrees eastward (toward the right) in longitude every rotation. Bright streaks of cloud at the latitude of the GDS, the small clouds overlying it, and a dimly visible dark protrusion at its western end are examples of dynamic weather patterns on Neptune, which can change significantly on time scales of one rotation (about 18 hours). https://photojournal.jpl.nasa.gov/catalog/PIA02245
Neptune's blue-green atmosphere
NASA Technical Reports Server (NTRS)
1989-01-01
Neptune's blue-green atmosphere is shown in greater detail than ever before by the Voyager 2 spacecraft as it rapidly approaches its encounter with the giant planet. This color image, produced from a distance of about 16 million kilometers, shows several complex and puzzling atmospheric features. The Great Dark Spot (GDS) seen at the center is about 13,000 km by 6,600 km in size -- as large along its longer dimension as the Earth. The bright, wispy 'cirrus-type' clouds seen hovering in the vicinity of the GDS are higher in altitude than the dark material of unknown origin which defines its boundaries. A thin veil often fills part of the GDS interior, as seen on the image. The bright cloud at the southern (lower) edge of the GDS measures about 1,000 km in its north-south extent. The small, bright cloud below the GDS, dubbed the 'scooter,' rotates faster than the GDS, gaining about 30 degrees eastward (toward the right) in longitude every rotation. Bright streaks of cloud at the latitude of the GDS, the small clouds overlying it, and a dimly visible dark protrusion at its western end are examples of dynamic weather patterns on Neptune, which can change significantly on time scales of one rotation (about 18 hours).
Iwata, Masaki; Otaki, Joji M
2016-01-01
Developmental studies on butterfly wing color patterns often focus on eyespots. A typical eyespot (such as that of Bicyclus anynana) has a few concentric rings of dark and light colors and a white spot (called a focus) at the center. The prospective eyespot center during the early pupal stage is known to act as an organizing center. It has often been assumed, according to gradient models for positional information, that a white spot in adult wings corresponds to an organizing center and that the size of the white spot indicates how active that organizing center was. However, there is no supporting evidence for these assumptions. To evaluate the feasibility of these assumptions in nymphalid butterflies, we studied the unique color patterns of Calisto tasajera (Nymphalidae, Satyrinae), which have not been analyzed before in the literature. In the anterior forewing, one white spot was located at the center of an eyespot, but another white spot associated with either no or only a small eyespot was present in the adjacent compartment. The anterior hindwing contained two adjacent white spots not associated with eyespots, one of which showed a sparse pattern. The posterior hindwing contained two adjacent pear-shaped eyespots, and the white spots were located at the proximal side or even outside the eyespot bodies. The successive white spots within a single compartment along the midline in the posterior hindwing showed a possible trajectory of a positional determination process for the white spots. Several cases of focus-less eyespots in other nymphalid butterflies were also presented. These results argue for the uncoupling of white spots from eyespot bodies, suggesting that an eyespot organizing center does not necessarily differentiate into a white spot and that a prospective white spot does not necessarily signify organizing activity for an eyespot. Incorporation of these results in future models for butterfly wing color pattern formation is encouraged.
Guangming, Gan; Tao, Zhao; Chao, Li; Moyan, Zhao
2017-01-01
The black-spotted frog (Pelophylax nigromaculata) and Asiatic toad (Bufo gargarizans), two relatively distantly related species, live in different habitats with different adaptive dark patches. To explain the formation of dark patches, the distribution patterns of melanin granules were examined with light microscopy and transmission electron microscopy. Melanin granules were produced and gathered into the "cap" structures on top of the nuclei in most epidermal cells. The "cap" structures may play a role in forming the dorsal dark patches coupled with three-layer melanophores, which can give rise to three layers of interconnected melanin networks in the dorsal dermis in P. nigromaculata. Epidermal melanocytes are rare and do not have a definitive role in forming dorsal dark patches in either P. nigromaculata or B. gargarizans. In B. gargarizans, the dermal melanophores only give rise to a single-layered melanin network, which hardly results in dark patches in the dorsal skin. However, the dermal melanophores migrate twice and form into pseudostratified networks, leading to dark patch formation in the ventral skin in B. gargarizans. The melanin granules precisely coregulate dark patches in the dermis and/or epidermis in P. nigromaculata and B. gargarizans. The dark patch formation depends on melanin granules in the epidermis or/and dermis in P. nigromaculata and B. gargarizans.
Eye-spots in Lepidoptera attract attention in humans
Yorzinski, Jessica L.; Platt, Michael L.; Adams, Geoffrey K.
2015-01-01
Many prey species exhibit defensive traits to decrease their chances of predation. Conspicuous eye-spots, concentric rings of contrasting colours, are one type of defensive trait that some species exhibit to deter predators. We examined the function of eye-spots in Lepidoptera to determine whether they are effective at deterring predators because they resemble eyes (‘eye mimicry hypothesis’) or are highly salient (‘conspicuous signal hypothesis’). We recorded the gaze behaviour of men and women as they viewed natural images of butterflies and moths as well as images in which the eye-spots of these insects were modified. The eye-spots were modified by removing them, scrambling their colours, or replacing them with elliptical or triangular shapes that had either dark or light centres. Participants were generally more likely to look at, spend more time looking at and be faster to first fixate the eye-spots of butterflies and moths that were natural compared with ones that were modified, including the elliptical eye-spots with dark centres that most resembled eyes as well as the scrambled eye-spots that had the same contrast as the natural eye-spots. Participants were most likely to look at eye-spots that were numerous, had a large surface area and were located close to the insects' heads. Participants' pupils were larger when viewing eye-spots compared with the rest of the insects' body, suggesting a greater arousal when viewing eye-spots. Our results provide some support for the conspicuous signal hypothesis (and minimal support for the eye mimicry hypothesis) and suggest that eye-spots may be effective at deterring predators because they are highly conspicuous signals that draw attention. PMID:26543589
NASA Astrophysics Data System (ADS)
Taravat, A.; Del Frate, F.
2013-09-01
As a major aspect of marine pollution, oil release into the sea has serious biological and environmental impacts. Among remote sensing systems (which is a tool that offers a non-destructive investigation method), synthetic aperture radar (SAR) can provide valuable synoptic information about the position and size of the oil spill due to its wide area coverage and day/night, and all-weather capabilities. In this paper we present a new automated method for oil-spill monitoring. A new approach is based on the combination of Weibull Multiplicative Model and machine learning techniques to differentiate between dark spots and the background. First, the filter created based on Weibull Multiplicative Model is applied to each sub-image. Second, the sub-image is segmented by two different neural networks techniques (Pulsed Coupled Neural Networks and Multilayer Perceptron Neural Networks). As the last step, a very simple filtering process is used to eliminate the false targets. The proposed approaches were tested on 20 ENVISAT and ERS2 images which contained dark spots. The same parameters were used in all tests. For the overall dataset, the average accuracies of 94.05 % and 95.20 % were obtained for PCNN and MLP methods, respectively. The average computational time for dark-spot detection with a 256 × 256 image in about 4 s for PCNN segmentation using IDL software which is the fastest one in this field at present. Our experimental results demonstrate that the proposed approach is very fast, robust and effective. The proposed approach can be applied to the future spaceborne SAR images.
Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil; Lidén, Carola; Julander, Anneli; Møller, Per; Johansen, Jeanne Duus
2010-08-01
Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure. The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. The cobalt spot test was used to assess cobalt release from all items. Microstructural characterization was made using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). Cobalt release was found in 4 (1.1%) of 354 items. All these had a dark appearance. SEM/EDS was performed on the four dark appearing items which showed tin-cobalt plating on these. This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future. Industries may not be fully aware of the potential cobalt allergy problem.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 24 April 2002) The Science The Cerberus feature is a relatively dark region at the southeastern edge of the huge Elysium Mons volcanic complex. It was visible to early astronomers of Mars because it was a distinctive dark spot on a large bright region of the planet. Today we recognize that the Cerberus region encompasses a range of geologic terrains from relatively young and smooth lava flows to the very rugged, ancient eroded landscape seen in this THEMIS image. The Cerberus feature has also proven to be ephemeral. Compared to just 20 years ago when the Viking orbiter instruments viewed the planet, the Cerberus feature has shrunk down from its original length of roughly 1000 kilometers to just a few isolated dark splotches of just a few 100 kilometers. This is testament to the active eolian environment on Mars where global dust storms can lift and then later deposit significant amounts of dust, brightening formerly dark surfaces. The THEMIS image occurs in a portion of Cerberus that remains relatively dark and dust-free although in the bottommost portion of the image are faint, criss-crossing lines that likely are dust devil tracks. The abundant dune-like features covering many of the low, smooth surfaces are similar to those found in many places across the planet. They are evidence of the interaction of wind and movable particles at the surface but not necessarily in today's environment. In many other places on Mars they are clearly inactive; relicts of a different climate. The Story Hellhound of Greek mythology, Cerberus was the three-headed, dragon-tailed dog that stood guard at the opening to the underworld. This rough-and-tumble Mars terrain looks just as fierce and foreboding. At the edge of the huge Elysium Mons volcano complex, the Cerberus area appeared as a dark spot to early Mars astronomers in an otherwise bright region of the planet. If this dark area seems somewhat hellish to your imagination too, you'll be glad to know that the Martian wind has been brightening up the area. Just twenty years ago, the Viking orbiters reached Mars for the first long-term studies of Mars up close. The Cerberus feature was then almost 600 miles long, but has now been vanquished down to few small splotches about 60 miles long. Call that a triumph of lightness upon the surface, but don't think that the force bringing back the light is gentle and kind. The Martian wind can kick up a fierce global dust storm that lifts up the bright Martian dust into the air and then blankets the surface with the brighter material as it settles down again. The ancient, eroded terrain in this image is still rather dark and dust free, so you might say it's one area where a mythical Cerberus still guards its shrinking territory. The wind teases it, however, by kicking up small, whirling dust devils that leave long, dark, scratchy tracks upon the land. Fields of dunes wrinkle the surface in places as well, but they may be permanently cemented upon the surface now, no longer able to blow and drift as they did in their younger days.
NASA Astrophysics Data System (ADS)
Mateo, Mario
1994-01-01
Three teams of astronomers believe they have independently found evidence for dark matter in our galaxy. A brief history of the search for dark matter is presented. The use of microlensing-event observation for spotting dark matter is described. The equipment required to observe microlensing events and three groups working on dark matter detection are discussed. The three groups are the Massive Compact Halo Objects (MACHO) Project team, the Experience de Recherche d'Objets Sombres (EROS) team, and the Optical Gravitational Lensing Experiment (OGLE) team. The first apparent detections of microlensing events by the three teams are briefly reported.
Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11* beam
NASA Astrophysics Data System (ADS)
Zhao, Jiang; Li, Bo; Zhao, Heng; Hu, Yi; Wang, Wenjin; Wang, Youqing
2013-06-01
An novel method for generating an annual periodic optical chain by tight focusing the rotational symmetric π/0 phase plate modulated first order radially polarized Laguerre Gaussian (LG11*) beam with a high-NA lens is proposed. The optical chain is composed of either bright spots or dark spots. Vector diffraction numerical calculation method is employed to analyze the tight focus properties. The analyses indicate that the properties of the optical chains are closely related to the number of phase plate sectors, beam width of radially polarized LG11* beam and the numerical aperture of focusing lens. Furthermore, the average Full Width at Half Maximum (FWHM) of hollow dark spots or bright spots in optical chain is breaking the diffraction limit. These kinds of annular optical chains are expected to be applied in trapping or arranging multiple bar-like micro particles whose refractive index are either higher or lower than that of the ambient.
Jupiter's non-auroral Ionosphere and Thermosphere
NASA Astrophysics Data System (ADS)
Stallard, T.; Melin, H.; Burrell, A. G.; Hsu, V.; Johnson, R.; Moore, L.; O'Donoghue, J.; Thayer, J. P.
2017-12-01
Until recently, our understanding of the non-auroral ionosphere of Jupiter was very limited. However, with the arrival of the Juno spacecraft at Jupiter, we have begun to revise past observations of this region, as well as utilizing modern telescope facilities, in order to reveal a complex array of ionospheric features that show strong coupling with both the local magnetic field and dynamics within the underlying thermosphere. The first feature that was identified was an apparent `Great Dark Spot' in the sub-auroral ionosphere, almost as large as the Great Red Spot. This was observed well away from the northern magnetic pole, mapping to only 2.4 jovian radii. Spectra of the feature showed that it was produced by a 150K cooling in the thermosphere. However, images taken between 1995-2000 showed this feature was consistently observed over two decades at similar magnetic longitudes, but appeared to vary in size, morphology and exact location on a timescale of only days. This suggests that the Great Dark Spot is a large thermospheric vortex driven by auroral heating, similar to transitory features observed at Earth, forming in sub-auroral regions during periods of active aurora. Careful analysis of the Jupiter images then allowed us to measure ionospheric emission down to the equator. This revealed the location of Jupiter's magnetic equator for the first time, appearing as a dark sinusoidal ribbon. This feature appears to be produced as photo-electrons are pushed poleward of the equator when magnetic fields are parallel with the planet's surface, a different process than the dominant plasma fountain that drives Earth's equatorial anomaly. Also revealed were a series of dark spots. Recent Juno magnetometer measurements show that two of these spots appear in regions of high radial magnetic field, suggesting that these regions of the ionosphere are shielded, an inversion of the same process that drives higher ionization in the South Atlantic Anomaly.
Studies of Dark Spots and Their Companion Clouds on the Ice Giant Planets
NASA Astrophysics Data System (ADS)
Bhure, Sakhee; Sankar, Ramanakumar; Hadland, Nathan; Palotai, Csaba J.; Le Beau, Raymond P.; Koutas, Nikko
2017-10-01
Observations of ice giant planets in our Solar System have shown several large-scale dark spots with varying lifespans. Some of these features were directly observed, others were diagnosed from their orographic companion clouds. Historically, numerical simulations have been able to model certain characteristics of these storms such as the shape variability of the Neptune Great Dark Spot (GDS-89) (Deng and Le Beau, 2006), but have not been able to match observed drift rates and lifespans using the standard zonal wind profiles (Hammel et al. 2009). Common amongst these studies has been the lack of condensable species in the atmosphere and an explicit treatment of cloud microphysics. Yet, observations show that dark spots can affect neighboring cloud features, such as in the case of bright companion clouds or the “Berg” on Uranus. An analysis of the cloud structure is therefore required to gain a better understanding of the underlying atmospheric physics and dynamics of these vortices.For our simulations, we use the Explicit Planetary Isentropic Coordinate (EPIC) general circulation model (Dowling et al. 1998, 2006) and adapt its jovian cloud microphysics module which successfully reproduced the cloud structure of jovian storms, such as the Great Red Spot and the Oval BA (Palotai and Dowling 2008, Palotai et al. 2014). EPIC was recently updated to account for the condensation of methane and hydrogen sulfide (Palotai et al. 2016), which allows us to account for both the high-altitude methane ice-cloud and the deep atmosphere hydrogen sulfide ice-cloud layers.In this work, we simulate large-scale vortices on Uranus and Neptune with varying cloud microphysical parameters such as the deep abundance and the ambient supersaturation. We examine the effect of cloud formation on their lifespan and drift rates to better understand the underlying processes which drive these storms.
The Light and Dark Sides of a Distant Planet
2006-10-12
The top graph consists of infrared data from NASA Spitzer Space Telescope. It tells astronomers that a distant planet, called Upsilon Andromedae b, always has a giant hot spot on the side that faces the star, while the other side is cold and dark.
Neptune's New Dark Vortex: Imaging with HST/WFC3
NASA Astrophysics Data System (ADS)
Wong, M. H.; Tollefson, J.; De Pater, I.; de Kleer, K.; Hammel, H. B.; Luszcz-Cook, S.; Hueso, R.; Sanchez-Lavega, A.; Simon, A. A.; Delcroix, M.; Sromovsky, L. A.; Fry, P. M.; Orton, G. S.; Baranec, C.
2016-12-01
A bright, unusually long-lived outburst of cloud activity on Neptune was observed in 2015 (Hueso et al. 2015, DPS 400.02). This led to speculation about whether the clouds were convective in nature, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2: Smith et al. 1989, Science 246, 1422). HST OPAL images at blue wavelengths finally answered this question by discovering a new dark vortex at 45 deg S. We call this feature SDS-2015, for "southern dark spot discovered in 2015" (Wong et al. 2016, CBET 4278). Dark vortices on Neptune are rare; SDS-2015 is only the fifth ever seen. All five were diverse in terms of size and shape, the distribution of bright companion clouds, and horizontal motions (oscillations and drifts). The drift of these vortices is highly sensitive to horizontal and vertical wind shear, making them valuable probes into the structure of Neptune's atmospheric jets. We will present imaging observations of SDS-2015 obtained with the WFC3/UVIS camera on the Hubble Space Telescope, covering the discovery of the vortex in September 2015 and follow-up observations in May 2016. No significant latitudinal drift was seen over this time span. We will compare size estimates, which are complicated by the continual presence of companion clouds, and by the low contrast between the vortex and its surroundings. The 2015 observations included 7 filters spanning 467-845 nm, weighted toward longer wavelengths to study general cloud motions and vertical distributions. The 2016 observations included 7 filters spanning 336-763 nm, weighted toward shorter wavelengths where the dark spot itself can be detected. A companion abstract (Tollefson et al., this meeting) will present results from radiative transfer modeling of the multispectral data. [This conference abstract is based on observations made with the NASA/ESA Hubble Space Telescope, associated with programs GO-13937 ("OPAL") and GO-14492.
Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Gray, Michael A.; Andersen, Gary L.
2014-01-01
Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990's as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea.
Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; ...
2014-10-07
Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990's as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean ismore » the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea.« less
Mariner 9 television reconnaissance of Mars and its satellites: Preliminary results
Masursky, H.; Batson, R.M.; McCauley, J.F.; Soderblom, L.A.; Wildey, R.L.; Carr, M.H.; Milton, D.J.; Wilhelms, D.E.; Smith, B.A.; Kirby, T.B.; Robinson, J.C.; Leovy, C.B.; Briggs, G.A.; Duxbury, T.C.; Acton, C.H.; Murray, B.C.; Cutts, J.A.; Sharp, R.P.; Smith, S.; Leighton, R.B.; Sagan, C.; Veverka, J.; Noland, M.; Lederberg, J.; Levinthal, E.; Pollack, James B.; Moore, J.T.; Hartmann, W.K.; Shipley, E.N.; De Vaucouleurs, G.; Davies, M.E.
1972-01-01
At orbit insertion on 14 November 1971 the Martian surface was largely obscured by a dust haze with an extinction optical depth that ranged from near unity in the south polar region to probably greater than 2 over most of the planet. The only features clearly visible were the south polar cap, one dark spot in Nix Olympica, and three dark spots in the Tharsis region. During the third week the atmosphere began to clear and surface visibility improved, but contrasts remained a fraction of their normal value. Each of the dark spots that apparently protrude through most of the dust-filled atmosphere has a crater or crater complex in its center. The craters are rimless and have featureless floors that, in the crater complexes, are at different levels. The largest crater within the southernmost spot is approximately 100 kilometers wide. The craters apparently were formed by subsidence and resemble terrestrial calderas. The south polar cap has a regular margin, suggsting very flat topography. Two craters outside the cap have frost on their floors; an apparent crater rim within the cap is frost free, indicating preferential loss of frost from elevated ground. If this is so then the curvilinear streaks, which were frost covered in 1969 and are now clear of frost, may be low-relief ridges. Closeup pictures of Phobos and Deimos show that Phobos is about 25 ?? 5 by 21 ?? 1 kilometers and Deimos is about 13.5 ?? 2 by 12.0 ?? 0.5 kilometers. Both have irregular shapes and are highly cratered, with some craters showing raised rims. The satellites are dark objects with geometric albedos of 0.05.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.
Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990's as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean ismore » the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea.« less
Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Gray, Michael A.; Andersen, Gary L.
2014-01-01
Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990's as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea. PMID:25289937
Mariner 9 television reconnaissance of Mars and its satellites: preliminary results.
Masursky, H; Batson, R M; McCauley, J F; Soderblom, L A; Wildey, R L; Carr, M H; Milton, D J; Wilhelms, D E; Smith, B A; Kirby, T B; Robinson, J C; Leovy, C B; Briggs, G A; Duxbury, T C; Acton, C H; Murray, B C; Cutts, J A; Sharp, R P; Smith, S; Leighton, R B; Sagan, C; Veverka, J; Noland, M; Lederberg, J; Levinthal, E; Pollack, J B; Moore, J T; Hartmann, W K; Shipley, E N; De Vaucouleurs, G; Davies, M E
1972-01-21
At orbit insertion on 14 November 1971 the Martian surface was largely obscured by a dust haze with an extinction optical depth that ranged from near unity in the south polar region to probably greater than 2 over most of the planet. The only features clearly visible were the south polar cap, one dark, spot in Nix Olympica, and three dark spots in the Tharsis region. During the third week the atmosphere began to clear and surface visibility improved, but contrasts remained a fraction of their normal value. Each of the dark spots that apparently protrude through most of the dust-filled atmosphere has a crater or crater complex in its center. The craters are rimless and have featureless floors that, in the crater complexes, are at different levels. The largest crater within the southernmost spot is approximately 100 kilometers wide. The craters apparently were formed by subsidence and resemble terrestrial calderas. The south polar cap has a regular margin, suggsting very flat topography. Two craters outside the cap have frost on their floors; an apparent crater rim within the cap is frost free, indicating preferentia loss of frost from elevated ground. If this is so then the curvilinear streaks, which were frost covered in 1969 and are now clear of frost, may be low-relief ridges. Closeup pictures of Phobos and Deimos show that Phobos is about 25 +/-5 by 21 +/-1 kilometers and Deimos is about 13.5 +/- 2 by 12.0 +/-0.5 kilometers. Both have irregular shapes and are highly cratered, with some craters showing raised rims. The satellites are dark objects with geometric albedos of 0.05.
Removal of a glowing spot from an image tube using laser radiation.
NASA Technical Reports Server (NTRS)
Gurski, T. R.
1972-01-01
A troublesome problem with the Kron electronograph has been the presence of a white glowing spot on the glass wall of the tube adjacent to the focus electrode. The procedure followed to eliminate the spot was to operate in the dark and apply voltage only to the focused electrode. Ruby laser radiation was unfocused, and its position was shifted on the electrode between laser shots until an effect was observed. This technique for removing the glowing spot should be applicable to other electronic image tubes.
TES premapping data: Slab ice and snow flurries in the Martian north polar night
Titus, T.N.; Kieffer, H.H.; Mullins, K.F.; Christensen, P.R.
2001-01-01
In the 1970s, Mariner and Viking spacecraft observations of the north polar region of Mars revealed polar brightness temperatures that were significantly below the expected kinetic temperatures for CO2 sublimation. For the past few decades, the scientific community has speculated as to the nature of these Martian polar cold spots. Thermal Emission Spectrometer (TES) thermal spectral data have shown these cold spots to result largely from fine-grained, CO2 and have constrained most of these cold spots to the surface (or near-surface). Cold spot formation is strongly dependent on topography, forming preferentially near craters and on polar slopes. TES data, combined with Mars Orbiter Laser Altimeter (MOLA) cloud data, suggest atmospheric condensates form a small fraction of the observed cold spots. TES observations of spectra close to a blackbody indicate that another major component of the polar cap is slab CO2 ice; these spectrally bland regions commonly have a low albedo. The cause is uncertain but may result from most of the light being reflected toward the specular direction, from the slab ice being intrinsically dark, or from it being transparent. Regions of the cap where the difference between the brightness temperatures at 18 ??m (T18) and 25 ??m (T25) is less than 5?? are taken to indicate deposits of slab ice. Slab ice is the dominant component of the polar cap at latitudes outside of the polar night. Copyright 2001 by the American Geophysical Union.
1989-08-17
August 17 to 19, 1989 Range : 11.5 million km (7.1 million mi.) to 7.9 million km (4.9 million mi.) Four black and white images of Neptune's largest satellite, Triton, show it's rotation between the first (upper left) image and the last (lower right). Resolution improves from about 200 km (124 miles) to 150 km (93 miles) per line pair. Triton's south pole lies in the dark area near the bottom of the disk. Dark spots, roughly 1,000 km (620 miles) across, occur near the equator, and show Triton rotation between images. The rotation appears to be synchronous with Triton's 5.88-day orbital period (i.e., Triton rotates on its axis in the same time it revolves around Neptune.) The spots' constant rotation rate and their visibility near the edge of the disk suggest the spots are surface features. Whatever atmosphere is present on Triton appears transparent enough that Voyager 2's cameras can see through it.
2004-04-02
As Cassini closes in on Saturn, its view is growing sharper with time and now reveals new atmospheric features in the planet's southern hemisphere. Atmospheric features, such as two small, faint dark spots, visible in the planet's southern hemisphere, will become clearer in the coming months. The spots are located at 38 degrees south latitude. The spacecraft's narrow angle camera took several exposures on March 8, 2004, which have been combined to create this natural color image. The image contrast and colors have been slightly enhanced to aid visibility. Moons visible in the lower half of this image are: Mimas (398 kilometers, or 247 miles across) at left, just below the rings; Dione (1,118 kilometers, or 695 miles across) at left, below Mimas; and Enceladus (499 kilometers, 310 miles across) at right. The moons had their brightness enhanced to aid visibility. The spacecraft was then 56.4 million kilometers (35 million miles) from Saturn, or slightly more than one-third of the distance from Earth to the Sun. The image scale is approximately 338 kilometers (210 miles) per pixel. The planet is 23 percent larger in this image than it appeared in the preceding color image, taken four weeks earlier. http://photojournal.jpl.nasa.gov/catalog/PIA05385
NASA Technical Reports Server (NTRS)
2005-01-01
20 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows varied springtime patterns formed in defrosting, seasonal carbon dioxide frost in the south polar region of Mars. The feature sporting an outline of dark spots and an interior of smaller, closely-spaced dark spots and dark-outlined polygons is a patch of windblown or wind-eroded sand that was covered by carbon dioxide frost during the previous autumn and winter. The fainter, larger polygon pattern on either side of the patch of defrosting sand is formed in the substrate upon which the sand patch is sitting. Polygonal forms such as these might indicate the presence of ice below the surface. Location near: 79.6oS, 125.0oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringNASA Technical Reports Server (NTRS)
West, R. A.; Kupferman, P. N.; Hart, H.
1984-01-01
Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature is quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.
NASA Technical Reports Server (NTRS)
West, R. A.; Kupferman, P. N.; Hart, H.
1985-01-01
Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature are quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.
Celsa Señaris, J; Ayarzagüena, J
2001-01-01
A new species of Hyalinobatrachium of the fleischmanni group, H. mondolfii, is described from the Orinoco delta floodplains in Venezuela. This new species can be distinguished from other congeners by the following combination of characters: parietal peritoneum clear, pericardium white, visceral and hepatic peritoneum white, color in life pale green with diminute yellow spots and, in preservative, cream with small dark melanophores (visible only under magnification), bones white in life, extense webbing, snout round in dorsal view and inclinate in lateral view, dorsal skin granulate and a advertisement call with a fundamental frequency greater than 5000 Hz.
Van Kleunen, Mark; Nänni, Ingrid; Donaldson, John S; Manning, John C
2007-12-01
A deviation from the classical beetle pollination syndrome of dull-coloured flowers with an unpleasant scent is found in the Greater Cape Floral Region of South Africa. Here, monkey beetles (Scarabaeidae) visit brightly coloured, odourless flowers with conspicuous dark spots and centres (beetle marks). The role of flower colour and markings in attracting monkey beetles is still poorly understood. Artificial model flowers with different marking patterns were used to test the effect of beetle marks on visitation by monkey beetles. To test whether monkey beetles are conditioned to the colour of the local matrix species, model flowers of different colours were placed in populations of three differently coloured species of Iridaceae. Among all three matrix species the presence of dark markings of some kind (either centres or spots) increased visitation rates but the different matrix species differed in whether the effect was due to a dark centre or to dark spots. Monkey beetles were not conditioned for the colour of the matrix species: model colour was not significant in the Hesperantha vaginata and in the Romulea monadelpha matrices, whereas yellow model flowers were preferred over orange ones in the orange-flowered Sparaxis elegans matrix. This study is the first to demonstrate that beetle marks attract pollinating monkey beetles in the Greater Cape Floral Region. In contrast to plants with the classical beetle pollination syndrome that use floral scent as the most important attractant of pollinating beetles, plants with the monkey beetle pollination syndrome rely on visual signals, and, in some areas at least, monkey beetles favour flowers with dark beetle markings over unmarked flowers.
Dermoscopy of black-spot poison ivy.
Rader, Ryan K; Mu, Ruipu; Shi, Honglan; Stoecker, William V; Hinton, Kristen A
2012-10-15
Black-spot poison ivy is an uncommon presentation of poison ivy (Toxicodendron) allergic contact dermatitis. A 78-year-old sought evaluation of a black spot present on her right hand amid pruritic vesicles. The presentation of a black spot on the skin in a clinical context suggesting poison ivy is indicative of black-spot poison ivy. Dermoscopy revealed a jagged, centrally homogeneous, dark brown lesion with a red rim. A skin sample was obtained and compared against a poison ivy standard using ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS). This finding confirmed the presence of multiple urushiol congeners in the skin sample. Black-spot poison ivy may be added to the list of diagnoses that show a specific dermoscopic pattern.
No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry.
Roettenbacher, R M; Monnier, J D; Korhonen, H; Aarnio, A N; Baron, F; Che, X; Harmon, R O; Kővári, Zs; Kraus, S; Schaefer, G H; Torres, G; Zhao, M; ten Brummelaar, T A; Sturmann, J; Sturmann, L
2016-05-12
Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.
Speckle interferometry of asteroids. IV - Reconstructed images of 4 Vesta
NASA Technical Reports Server (NTRS)
Drummond, J.; Eckart, A.; Hege, E. K.
1988-01-01
The images of 4 Vesta obtained by means of speckle interferometric observations on November 16 and 17, 1983, support a 5-hr 20.5-min rotational period. The 4 Vesta visible light curve was approximately matched by the placing of circular 'spots' with 135-km diameter over the three dark and three bright features, followed by the assigning of albedos of 0 to the dark spots and 2 to the bright. The light curve is found to be primarily defined by albedo structure, rather than shape; this results in one maximum and one minimum/rotation, rather than the two of each that would be associated with 4 Vesta's triaxial ellipsoid morphology.
Voyager 2 at Neptune - Imaging science results
NASA Technical Reports Server (NTRS)
Smith, B. A.; Soderblom, L. A.; Banfield, D.; Barnet, C.; Beebe, R. F.; Bazilevskii, A. T.; Bollinger, K.; Boyce, J. M.; Briggs, G. A.; Brahic, A.
1989-01-01
Neptune's atmosphere is revealed by Voyager 2 images to contain clouds of methane ice above a lower deck of hydrogen sulfide or ammonia ices, and to be dominated by an anticyclonic storm system designated the 'Great Dark Spot'; this bears both similarities and differences to the Great Red Spot of Jupiter. Like the rings of Uranus, those of Neptune are composed of very dark, but in addition very dusty, material. Six new regular satellites have been discovered whose radii range from 25 to 200 km. Triton is noted to be a differentiated body showing evidence of early surface-melting episodes. At least two active plumes are found on Triton, which may be driven by solar heating.
Polarimetry and spectroscopy of a simple sunspot. I - On the magnetic field of a sunspot penumbra
NASA Technical Reports Server (NTRS)
Schmidt, W.; Hofmann, A.; Balthasar, H.; Tarbell, T. D.; Frank, Z. A.
1992-01-01
We investigate the magnetic field structure of a medium sized sunspot using high resolution magnetograms and spectrograms and derive a relationship between the brightness of penumbral structures and the inclination of the magnetic field. The field inclination to the spot normal is larger in the dark structures than in the bright ones. We show that the field strength does not vary between dark and bright structures. At the inner penumbral boundary the field strength is 2000 Gauss and about 1000 Gauss at the outer penumbral edge. The line-of sight component of the material flow decreases rapidly within one arcsecond at the photospheric boundary of the spot.
1998-10-30
This picture of Neptune was produced from the last whole planet images taken through the green and orange filters on NASA's Voyager 2 narrow angle camera. The images were taken at a range of 4.4 million miles from the planet, 4 days and 20 hours before closest approach. The picture shows the Great Dark Spot and its companion bright smudge; on the west limb the fast moving bright feature called Scooter and the little dark spot are visible. These clouds were seen to persist for as long as Voyager's cameras could resolve them. North of these, a bright cloud band similar to the south polar streak may be seen. http://photojournal.jpl.nasa.gov/catalog/PIA01492
Matamoros, Wilfredo A.; Schaefer, Jacob F.; Hernández, Carmen L.; Prosanta Chakrabarty
2012-01-01
Abstract A new species of Profundulus, Profundulus kreiseri (Cyprinodontiformes: Profundulidae), is described from the Chamelecón and Ulúa Rivers in the northwestern Honduran highlands. Based on a phylogenetic analysis using cytochrome b and the presence of synapomorphic characters (dark humeral spot, a scaled preorbital region and between 32-34 vertebrae), this new species is placed in the subgenus Profundulus, which also includes Profundulus (Profundulus) oaxacae, Profundulus (Profundulus) punctatus and Profundulus (Profundulus) guatemalensis. Profundulus kreiseri can be distinguished from other members of the subgenus Profundulus by having less than half of its caudal fin densely scaled. Profundulus kreiseri can further be differentiated from Profundulus (Profundulus) oaxacae and Profundulus (Profundulus) punctatus by the absence of rows of dark spots on its flanks. The new species can further be differentiated from Profundulus (Profundulus) guatemalensis by the presence of fewer caudal- and pectoral-fin rays. The new species is distinguished from congeners of the profundulid subgenus Tlaloc (viz., Profundulus (Tlaloc) hildebrandi, Profundulus (Tlaloc) labialis, Profundulus (Tlaloc) candalarius and Profundulus (Tlaloc) portillorum) by having a scaled preorbital region and a dark humeral spot. Profundulus kreiseri and Profundulus portillorum are the only two species of Profundulus that are endemic to the region south of the Motagua River drainage in southern Guatemala and northwestern Honduras. PMID:23166464
Zuha, R M; Supriyani, M; Omar, B
2008-04-01
Analysis on fly artifacts produced by forensically important blowfly, Chrysomya megacephala (Fabricius) (Diptera:Calliphoridae), revealed several unique patterns. They can be divided into fecal spots, regurgitation spots and swiping stains. The characteristics of fecal spots are round with three distinct levels of pigmentation; creamy, brownish and darkly pigmented. Matrix of the spots appears cloudy. The round spots are symmetrical and non-symmetrical, delineated by irregular and darker perimeter which only visible in fairly colored fecal spots. Diameter of these artifacts ranged from 0.5 mm to 4 mm. Vomit or regurgitation spots are determined by the presence of craters due to sucking activity of blowflies and surrounded by thickly raised and darker colored perimeter. The size of these specks ranged from 1 mm to 2 mm. Matrix of the spots displays irregular surface and reflective under auxiliary microscope light. Swiping stains due to defecation by flies consists of two distinguishable segments, the body and tail. It can be seen as a tear drop-like, sperm-like, snake-like and irregular tadpole-like stain. The direction of body and tail is inconsistent and length ranged between 4.8 mm to 9.2 mm. A finding that should be highlighted in this observation is the presence of crater on tadpole-like swiping stain which is apparent by its raised border characteristic and reflective under auxiliary microscope light. The directionality of this darkly brown stain is random. This unique mix of regurgitation and swiping stain has never been reported before. Highlighting the features of artifacts produced by flies would hopefully add our understanding in differentiating them from blood spatters produced from victims at crime scenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badziak, Marcin; Olechowski, Marek; Szczerbiak, Paweł
The LUX experiment has recently set very strong constraints on spin-independent interactions of WIMP with nuclei. These null results can be accommodated in NMSSM provided that the effective spin-independent coupling of the LSP to nucleons is suppressed. Here, we investigate thermal relic abundance of singlino-higgsino LSP in these so-called spin-independent blind spots and derive current constraints and prospects for direct detection of spin-dependent interactions of the LSP with nuclei providing strong constraints on parameter space. We show that if the Higgs boson is the only light scalar the new LUX constraints set a lower bound on the LSP mass of about 300 GeV except for a small range around the half of Z 0 boson masses where resonant annihilation via Z 0 exchange dominates. XENON1T will probe entire range of LSP masses except for a tiny Z 0-resonant region that may be tested by the LZ experiment. These conclusions apply to general singlet-doublet dark matter annihilating dominantly tomore » $$t\\bar{t}$$. Presence of light singlet (pseudo)scalars generically relaxes the constraints because new LSP (resonant and non-resonant) annihilation channels become important. Even away from resonant regions, the lower limit on the LSP mass from LUX is relaxed to about 250 GeV while XENON1T may not be sensitive to the LSP masses above about 400 GeV.« less
Badziak, Marcin; Olechowski, Marek; Szczerbiak, Paweł
2017-07-11
The LUX experiment has recently set very strong constraints on spin-independent interactions of WIMP with nuclei. These null results can be accommodated in NMSSM provided that the effective spin-independent coupling of the LSP to nucleons is suppressed. Here, we investigate thermal relic abundance of singlino-higgsino LSP in these so-called spin-independent blind spots and derive current constraints and prospects for direct detection of spin-dependent interactions of the LSP with nuclei providing strong constraints on parameter space. We show that if the Higgs boson is the only light scalar the new LUX constraints set a lower bound on the LSP mass of about 300 GeV except for a small range around the half of Z 0 boson masses where resonant annihilation via Z 0 exchange dominates. XENON1T will probe entire range of LSP masses except for a tiny Z 0-resonant region that may be tested by the LZ experiment. These conclusions apply to general singlet-doublet dark matter annihilating dominantly tomore » $$t\\bar{t}$$. Presence of light singlet (pseudo)scalars generically relaxes the constraints because new LSP (resonant and non-resonant) annihilation channels become important. Even away from resonant regions, the lower limit on the LSP mass from LUX is relaxed to about 250 GeV while XENON1T may not be sensitive to the LSP masses above about 400 GeV.« less
1998-03-26
The Near-Infrared Mapping Spectrometer (NIMS) on Galileo obtained this image of half of Io's disk in darkness on September 19, 1997. This image, at 5 microns, shows several hot spots on Io, which are volcanic regions of enhanced thermal emission. The area shown is part of the leading hemisphere of Io. Two new hot spots are shown and indicated in the image (New, and Shamshu). Neither of these hot spots were seen by NIMS or the Solid State Imaging Experiment, (SSI) prior to this observation, becoming only recently active. Several other previously known hot spots are labelled in the image. Galileo was at a distance of 342,000 km from Io when this observation was made. http://photojournal.jpl.nasa.gov/catalog/PIA01226
NASA Technical Reports Server (NTRS)
2001-01-01
These images taken through the wide angle camera near closest approach in the deep near-infrared methane band, combined with filters which sense electromagnetic radiation of orthogonal polarization, show that the light from the poles is polarized. That is, the poles appear bright in one image, and dark in the other. Polarized light is most readily scattered by aerosols. These images indicate that the aerosol particles at Jupiter's poles are small and likely consist of aggregates of even smaller particles, whereas the particles at the equator and covering the Great Red Spot are larger. Images like these will allow scientists to ascertain the distribution, size and shape of aerosols, and consequently, the distribution of heat, in Jupiter's atmosphere.Bobcat (Felis rufus) ecology and management
Howell, Judd A.
1997-01-01
The bobcat (Felis rufus) is a medium sized predator in the family Felidae found exclusively in North America. Extensive natural history information is available and is summarized in several bibliographies and reviews (Sweeny and Poelker 1977, McCord and Cardoza 1982, Boddicker 1983, Anderson 1987, Rolley 1987). The bobcat is a spotted cat with a short white-tipped tail, small dark ear tufts and is about twice the size of the house cat (Felis domesticus) because of the bobcat’s longer bone structure (McCord and Cardoza 1982, Jameson and Peeters 1988). The bobcat weights between 5- 15 kg with males larger than females. TL 700- 1000, T 95-150, E (from crown) 60-75 (Jameson and Peeters 1988).
2001-10-22
These ASTER images cover an area of 11 x 14 km on the north rim of the Grand Canyon, Arizona, and were acquired May 12, 2000. The left image displays bands 3,2,1 in RGB, displaying vegetation as red. The large dark area is burned forest, and small smoke plumes can be seen at the edges where active fires are burning. The right display substitutes SWIR band 8 for band 3. The bright red spots are the active fires, visible because the SWIR wavelength region has the capability to penetrate through the smoke. This image is located at 35.9 degrees north latitude and 113.4 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11092
Modeling the nucleus and jets of comet 81P/Wild 2 based on the Stardust encounter data
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek; Brownlee, Donald E.; Economou, Thanasis E.; Tuzzolino, Anthony J.; Green, Simon F.
2004-01-01
We interpret the nucleus properties and jet activity from the Stardust spacecraft imaging and the onboard dust monitoring system data. Triangulation of 20 jets shows that 2 emanate from the nucleus dark side and 16 emanate from sources that are on slopes where the Sun's elevation is greater than predicted from the fitted triaxial ellipsoid. Seven sources, including five in the Mayo depression, coincide with relatively bright surface spots. Fitting the imaged jets, the spikelike temporal distribution of dust impacts indicates that the spacecraft crossed thin, densely populated sheets of particulate ejecta extending from small sources on the rotating nucleus, consistent with an emission cone model.
Lu, Jing; Tu, Xinglong; Yin, Guilin; Wang, Hui; He, Dannong
2017-11-09
In this work, a spot laser modulated resistance switching (RS) effect is firstly observed on n-type Mn-doped ZnO/SiO 2 /Si structure by growing n-type Mn-doped ZnO film on Si wafer covered with a 1.2 nm native SiO 2 , which has a resistivity in the range of 50-80 Ω∙cm. The I-V curve obtained in dark condition evidences the structure a rectifying junction, which is further confirmed by placing external bias. Compared to the resistance state modulated by electric field only in dark (without illumination), the switching voltage driving the resistance state of the structure from one state to the other, shows clear shift under a spot laser illumination. Remarkably, the switching voltage shift shows a dual dependence on the illumination position and power of the spot laser. We ascribe this dual dependence to the electric filed produced by the redistribution of photo-generated carriers, which enhance the internal barrier of the hetero-junction. A complete theoretical analysis based on junction current and diffusion equation is presented. The dependence of the switching voltage on spot laser illumination makes the n-type Mn-doped ZnO/SiO 2 /Si structure sensitive to light, which thus allows for the integration of an extra functionality in the ZnO-based photoelectric device.
A new species of flea-toad (Anura: Brachycephalidae) from southern Atlantic Forest, Brazil.
Condez, Thais Helena; Monteiro, Juliane Petry De Carli; Comitti, Estevão Jasper; Garcia, Paulo Christiano De Anchietta; Amaral, Ivan Borel; Haddad, Célio Fernando Baptista
2016-02-18
We describe a new species of Brachycephalus that is morphologically similar to the flea-toads B. didactylus, B. hermogenesi, and B. pulex. The new species occurs from the sea level up to 1000 m and it is widely distributed throughout southern Atlantic Forest. Brachycephalus sulfuratus sp. nov. is distinguished from all of its congeners by the combination of the following characters: (1) small body size (SVL of adults: 7.4-8.5 mm for males and 9.0-10.8 mm for females); (2) "leptodactyliform" body; (3) pectoral girdle arciferal and less robust compared to the Brachycephalus species with "bufoniform" body; (4) procoracoid and epicoracoid fused with coracoid but separated from the clavicle by a large fenestrae; (5) toe I externally absent; toes II, III, IV, and V distinct; phalanges of toes II and V reduced; (6) skin smooth with no dermal ossifications; (7) in life, general background color brown with small dark-brown spots; skin of throat, chest, arms, and forearms with irregular yellow blotches; in ventral view, cloacal region of alive and preserved specimens surrounded by a dark-brown inverted v-shaped mark outlined with white; (8) advertisement call long, composed of a set of 4-7 high-frequency notes (6.2-7.2 kHz) repeated regularly.
NASA Technical Reports Server (NTRS)
1998-01-01
A recently discovered black spot in Jupiter's clouds is darker than any feature ever before observed on the giant planet. The spot may be the result of a downward spiraling wind that blows away high clouds and reveals deeper, very dark cloud layers. These three panels depict the same area of Jupiter's atmosphere. A map of Jovian temperatures near 250 millibar pressure (top) panel is derived from the photopolarimeter-radiometer instrument on NASA's Galileo Jupiter orbiter. This map is compared with maps derived from images of the same area in visible light (middle panel)and thermal radiation sensitive to cloud-top temperatures (bottom panel).
The single downward-pointing arrow in the top panel indicates the location of a warm area that corresponds to the position of a so-called 'black spot'(shown in the middle panel), a feature that is about a year old. Features this dark are rare on Jupiter. The bottom panel, sensitive to temperatures at Jupiter's cloud tops, shows this feature as a bright object, meaning that upper-level cold clouds are missing - allowing us to see deeper into Jupiter's warmer interior. The dark visible appearance of the feature than most likely represents the color of very deep clouds. The warm temperatures and cloud-free conditions imply that this feature is a region where dry upper-atmospheric gas is being forced to converge, is warmed up and then forced to descend, clearing out clouds. It is the opposite of wet, upwelling gas in areas such as Jupiter's Great Red Spot or white ovals. On the other hand, it is unlike the dry and relatively cloudless feature into which the Galileo probe descended in 1995, because that region had the same temperatures as its surroundings and did not appear nearly as dark as this new spot.The temperatures sampled by the photopolarimeter radiometer are near the top of Jupiter's troposphere, where wind motions control the atmosphere. The top row of arrows shows the location of temperature waves in a warm region of the atmosphere. These types of waves have never been seen before. What is interesting about these waves is both that they are 'channeled' within the warm band at the top of the panel, and that they appear to have no counterpart in the visible cloud structure. Thermal waves have already been seen in Jupiter that are independent of the cloud structure, but those waves were much larger in size. This is the first time Jupiter's temperatures have been mapped at a spatial resolution better than 2,000 kilometers (1,243 miles), allowing these waves to be detected.These maps include an area on Jupiter between approximately the equator and 40 degrees south latitude, covering about 60 degrees of longitude. They were taken in late September during the spacecraft's 17th orbit.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC.Agarwal, Ishan; Mirza, Zeeshan A; Pal, Saunak; Maddock, Simon T; Mishra, Anurag; Bauer, Aaron M
2016-09-23
A new species of Cyrtodactylus (Geckoella) from the C. collegalensis complex is described based on a series of specimens from western and central India. Morphological and molecular data support the distinctiveness of the new form, which can be diagnosed from other Cyrtodactylus (including other Geckoella) species by its small body size (snout to vent length to 56 mm), the absence of precloacal and femoral pores, no enlarged preanal or femoral scales, and a dorsal scalation consisting wholly of small, granular scales. The new species is most closely related to C. collegalensis, C. speciosus and C. yakhuna, from which it differs by the presence of a patch of enlarged roughly hexagonal scales on the canthus rostralis and beneath the angle of jaw, its relatively long limbs and narrow body, and a dorsal colour pattern of 4-6 pairs of dark spots.
Vortex Mask: Making 80nm contacts with a twist!
NASA Astrophysics Data System (ADS)
Levenson, Marc D.; Dai, Grace; Ebihara, Takeaki
2002-12-01
An optical vortex has a phase that spirals like a corkscrew. Since any nonzero optical amplitude must have a well-defined phase, the axis of a vortex (where the phase is undefined) is always dark. Printed in negative resist, lowest order vortices would produce contact holes with 0.2
Chasing Down Gravitational Wave Sources with the Dark Energy Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annis, Jim; Soares-Santos, Marcelle
On August 17, 2017, scientists using the Dark Energy Camera tracked down the first visible counterpart to a gravitational wave signal ever spotted by astronomers. Using data provided by the LIGO and Virgo collaborations, scientists embarked on a quest for the unknown, and discovered a new wonder of the universe. Includes interviews with Fermilab’s Jim Annis and Brandeis University’s Marcelle Soares-Santos.
NIMS Views of a Jovian 'Hot Spot'
NASA Technical Reports Server (NTRS)
1997-01-01
These four Galileo/NIMS near-infrared images of a small portion of the equatorial region of Jupiter show a dark clearing of clouds in the meteorologically-active troposphere of Jupiter. This region constitutes a 'hot spot', a nearly-clear area devoid of thick ammonia clouds which allows Jupiter's indigenous heat radiation to shine through at 5 microns (not shown). These features are thought to be areas of downwelling, dry (low ammonia and water humidity) air. The second image from the top, taken at a wavelength sensitive to methane absorption, has muted contrast, showing that a high-level optically-thin haze layer overlies the entire region. All other images, taken over a large range of methane-insensitive wavelengths from 0.76 to 2.74 microns, reveal such 5 micron bright hotspots as actually being dark in reflected sunlight, confirming clearings in the bright reflective surrounding cloud layer and perhaps indicating absorption by clouds and/or gases at relatively deep levels in the atmosphere.
These images were acquired December 17, 1996 from a distance of 1.43 million kilometers above the cloudtops. The large dark clearing near the middle of the image is approximately 7000 km wide in the east-west direction and 4000 km tall in the north-south direction, about twice the size of the continental U. S. Images shown are at 0.76, 1.61, 1.99, and 2.74 microns, proceeding from top to bottom.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.NASA Technical Reports Server (NTRS)
1998-01-01
This view taken by NASA's Galileo spacecraft of Jupiter's icy moon Europa focuses on a dark, smooth region whose center is the lowest area in this image. To the west (left), it is bounded by a cliff and terraces, which might have been formed by normal faulting. The slopes toward the east (right) leading into the dark spot are gentle.
Near the center of the dark area, it appears the dark materials have covered some of the bright terrain and ridges. This suggests that when the dark material was deposited, it may have been a fluid or an icy slush.Only a few impact craters are visible, with some of them covered or flooded by dark material. Some appear in groups, which may indicate that they are secondary craters formed by debris excavated during a larger impact event. A potential source for these is the nearby crater Mannann`an.North is to the top of the picture which is centered at 1 degree south latitude and 225 degrees west longitude. The images in this mosaic have been re-projected to 50 meters (55 yards) per picture element. They were obtained by the Solid State Imaging (SSI) system on March 29, 1998, during Galileo's fourteenth orbit of Jupiter, at ranges as close as 1940 kilometers (1,200 miles) from Europa.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo1979-02-28
Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost Galilean satellites and darkest of the four(but almost twice as bright as Earth's Moon). Mottled appearance from bright and dark patches. Bright spots seem like rayed or bright halved craters seen on our Moon. This face is always turned toward Jupiter. Photo taken through violet filter. Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.
Ibrahimi, Omar A; Kilmer, Suzanne L
2012-06-01
The long-pulsed diode (800-810-nm) laser is one of the most commonly used and effective lasers for hair removal. Limitations of currently available devices include a small treatment spot size, treatment-associated pain, and the need for skin cooling. To evaluate the long-term hair reduction capabilities of a long-pulsed diode laser with a large spot size and vacuum assisted suction. Thirty-five subjects were enrolled in a prospective, self-controlled, single-center study of axillary hair removal. The study consisted of three treatments using a long-pulsed diode laser with a large spot size and vacuum-assisted suction at 4- to 6-week intervals with follow-up visits 6 and 15 months after the last treatment. Hair clearance was quantified using macro hair-count photographs taken at baseline and at 6- and 15-month follow-up visits. Changes in hair thickness and color, levels of treatment-associated pain, and adverse events were additional study endpoints. There was statistically significant hair clearance at the 6 (54%) and 15-month (42%) follow-up visits. Remaining hairs were thinner and lighter at the 15-month follow-up visit, and the majority of subjects reported feeling up to mild to moderate pain during treatment without the use of pretreatment anesthesia or skin cooling. A long-pulsed diode laser with a large spot size and vacuum-assisted suction is safe and effective for long-term hair removal. This is the largest prospective study to evaluate long-term hair removal and the first to quantify decreases in hair thickness and darkness with treatment. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
Ray, C Keith; Armbruster, Jonathan W
2016-02-04
We review the complex history of those species included in the Hypostomus emarginatus species complex and recognize them in Isorineloricaria and Aphanotorulus. Isorineloricaria consists of four valid species: I. acuarius n. sp., I. spinosissima, I. tenuicauda, and I. villarsi. Aphanotorulus consists of six valid species: A. ammophilus, A, emarginatus, A. gomesi, A. horridus, A. phrixosoma, and A. unicolor. Plecostomus annae and Hypostoma squalinum are placed in the synonymy of A. emarginatus; Plecostomus biseriatus, P. scopularius, and P. virescens are placed in the synonymy of A. horridus; Plecostomus winzi is placed in the synonymy of I. tenuicauda, and one new species, I. acuarius is described from the Apure River basin of Venezuela. Aphanotoroulus can be distinguished from Isorineloricaria by having caudal peduncles that do not become greatly lengthed with size and that are oval in cross section (vs. caudal peduncle proportions that get proportionately longer with size and that become round in cross-section), and by having small dark spots (less than half plate diameter) on a light tan background (vs. spots almost as large as lateral plates on a nearly white background.
Ion beam radiation effects on natural halite crystals
NASA Astrophysics Data System (ADS)
Arun, T.; Ram, S. S.; Karthikeyan, B.; Ranjith, P.; Ray, D. K.; Rout, B.; Krishna, J. B. M.; Sengupta, Pranesh; Parlapalli, Venkata Satyam
2017-10-01
Halites are one of the interesting material due to its color variations. Natural halites whose color ranges from transparent to dark blue were studied by UV-VIS and Raman spectroscopy. The halite crystals were irradiated with 3 MeV proton micro-beam (∼20 μm beam width with ∼80 PA beam current) for 10 and 90 min to study the radiation damage. After 10 mins of irradiation, small spot developed on the surface of transparent halite crystal whereas after 90 mins of irradiation the spot spread inside the bulk leading to a brown coloration (20 μm initial size to ∼2.0 mm final size). The irradiated portion and the un-irradiated portion of the halites was characterized by Raman spectroscopic technique. The variation in the population density was observed from the UV-Vis spectra. The change in the Raman band intensities was observed for transparent, blue colored and proton beam irradiation halites. Such variation of spectroscopic characteristics due to proton irradiation suggests that the halite can be used for the radiation monitoring.
A Photometric Study of the Contact Binary System FU Dra
NASA Astrophysics Data System (ADS)
Kaitchuck, R. H.; Hill, R. L.; Corn, A. P.; Gevirtz, J.; Levell, K. L.; Valenti, T. L.
2006-12-01
This paper reports new four-filter CCD observations of the contact binary FU Dra. The Wilson and Devinney model was used to simultaneously fit these light curves and published radial velocity data. The stellar masses, sizes, and densities were calculated. Five additional models involving dark spots, hot spots, and accretion heating were considered as explanations for the light curve asymmetry known as the "O'Connell effect" in FU Dra. No conclusive spot model choice could be made but the Liu and Yang model for accretion heating is an unlikely explanation for the O'Connell effect in FU Dra.
Giove 2005 - 06: rapporto osservativo
NASA Astrophysics Data System (ADS)
Adamoli, G.
2007-08-01
Jupiter was observed and photographed at visible and near-IR wavelenghts. White spots at 59°S, a train of SSTCAWOs, oval BA turned orange, followed by a dark STB sector, relevant mid-SEB outbreak, big equatorial festoons and produced a massive EB, NEB extended beyond 20°N, NNTBs jetstream was active, a methan image showed a bright S. Polar Hood, a fainter N. one and a large and dark NTB
2016-05-20
NASA New Horizons scientists have spotted an expanse of terrain they describe as fretted bright plains divided into polygon-shaped blocks by a network of dark, connected valleys in Pluto informally named Venera Terra region.
1989-08-21
Photo by Voyager 2 (JPL) During August 16 and 17, 1989, the Voyager 2 narrow-angle camera was used to photograph Neptune almost continuously, recording approximately two and one-half rotations of the planet. These images represent the most complete set of full disk Neptune images that the spacecraft will acquire. This picture from the sequence shows two of the four cloud features which have been tracked by the Voyager cameras during the past two months. The large dark oval near the western limb (the left edge) is at a latitude of 22 degrees south and circuits Neptune every 18.3 hours. The bright clouds immediately to the south and east of this oval are seen to substantially change their appearances in periods as short as four hours. The second dark spot, at 54 degrees south latitude near the terminator (lower right edge), circuits Neptune every 16.1 hours. This image has been processed to enchance the visibility of small features, at some sacrifice of color fidelity. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications. (JPL Ref: A-34611 Voyager 2-N29)
The tight focusing properties of Laguerre-Gaussian-correlated Schell-model beams
NASA Astrophysics Data System (ADS)
Xu, Hua-Feng; Zhang, Zhou; Qu, Jun; Huang, Wei
2016-08-01
Based on the Richards-Wolf vectorial diffraction theory, the tight focusing properties, including the intensity distribution, the degree of polarization and the degree of coherence, of the Laguerre-Gaussian-correlated Schell-model (LGSM) beams through a high-numerical-aperture (NA) focusing system are investigated in detail. It is found that the LGSM beam exhibits some extraordinary focusing properties, which is quite different from that of the GSM beam, and the tight focusing properties are closely related to the initial spatial coherence ? and the mode order n. The LGSM beam can form an elliptical focal spot, a circular focal spot or a doughnut-shaped dark hollow beam at the focal plane by choosing a suitable value of the initial spatial coherence ?, and the central dark size of the dark hollow beam increases with the increase of the mode order n. In addition, the influences of the initial spatial coherence ? and the mode order n on the degree of polarization and the degree of coherence are also analysed in detail, respectively. Our results may find applications in optical trapping.
Comparison of epifluorescent viable bacterial count methods
NASA Technical Reports Server (NTRS)
Rodgers, E. B.; Huff, T. L.
1992-01-01
Two methods, the 2-(4-Iodophenyl) 3-(4-nitrophenyl) 5-phenyltetrazolium chloride (INT) method and the direct viable count (DVC), were tested and compared for their efficiency for the determination of the viability of bacterial populations. Use of the INT method results in the formation of a dark spot within each respiring cell. The DVC method results in elongation or swelling of growing cells that are rendered incapable of cell division. Although both methods are subjective and can result in false positive results, the DVC method is best suited to analysis of waters in which the number of different types of organisms present in the same sample is assumed to be small, such as processed waters. The advantages and disadvantages of each method are discussed.
A marvelous new glassfrog (Centrolenidae, Hyalinobatrachium) from Amazonian Ecuador.
Guayasamin, Juan M; Cisneros-Heredia, Diego F; Maynard, Ross J; Lynch, Ryan L; Culebras, Jaime; Hamilton, Paul S
2017-01-01
Hyalinobatrachium is a behaviorally and morphologically conserved genus of Neotropical anurans, with several pending taxonomic problems. Using morphology, vocalizations, and DNA, a new species from the Amazonian lowlands of Ecuador is described and illustrated. The new species, Hyalinobatrachium yaku sp. n. , is differentiated from all other congenerics by having small, middorsal, dark green spots on the head and dorsum, a transparent pericardium, and a tonal call that lasts 0.27-0.4 s, with a dominant frequency of 5219.3-5329.6 Hz. Also, a mitochondrial phylogeny for the genus is presented that contains the new species, which is inferred as sister to H. pellucidum . Conservation threats to H. yaku sp. n. include habitat destruction and/or pollution mainly because of oil and mining activities.
NASA Spacecraft Spots Signs of Erupting Russian Volcano
2014-05-20
Winter still grips the volcanoes on Russia Kamchatka peninsula. NASA Terra spacecraft acquired this image showing the mantle of white, disturbed by dark ash entirely covering Sheveluch volcano from recent eruptions.
1999-10-14
This photograph of Neptune shows three of the features that NASA Voyager 2 has been photographing during recent weeks. At the north is the Great Dark Spot, accompanied by bright, white clouds that undergo rapid changes in appearance.
Genome Sequence of the Necrotrophic Plant Pathogen Alternaria brassicicola Abra43
Belmas, Elodie; Briand, Martial; Kwasiborski, Anthony; Colou, Justine; N’Guyen, Guillaume; Iacomi, Béatrice; Grappin, Philippe; Campion, Claire; Simoneau, Philippe; Barret, Matthieu
2018-01-01
ABSTRACT Alternaria brassicicola causes dark spot (or black spot) disease, which is one of the most common and destructive fungal diseases of Brassicaceae spp. worldwide. Here, we report the draft genome sequence of strain Abra43. The assembly comprises 29 scaffolds, with an N50 value of 2.1 Mb. The assembled genome was 31,036,461 bp in length, with a G+C content of 50.85%. PMID:29439047
Xu, David; Si, Yubing; Meroueh, Samy O
2017-09-25
The binding affinity of a protein-protein interaction is concentrated at amino acids known as hot spots. It has been suggested that small molecules disrupt protein-protein interactions by either (i) engaging receptor protein hot spots or (ii) mimicking hot spots of the protein ligand. Yet, no systematic studies have been done to explore how effectively existing small-molecule protein-protein interaction inhibitors mimic or engage hot spots at protein interfaces. Here, we employ explicit-solvent molecular dynamics simulations and end-point MM-GBSA free energy calculations to explore this question. We select 36 compounds for which high-quality binding affinity and cocrystal structures are available. Five complexes that belong to three classes of protein-protein interactions (primary, secondary, and tertiary) were considered, namely, BRD4•H4, XIAP•Smac, MDM2•p53, Bcl-xL•Bak, and IL-2•IL-2Rα. Computational alanine scanning using MM-GBSA identified hot-spot residues at the interface of these protein interactions. Decomposition energies compared the interaction of small molecules with individual receptor hot spots to those of the native protein ligand. Pharmacophore analysis was used to investigate how effectively small molecules mimic the position of hot spots of the protein ligand. Finally, we study whether small molecules mimic the effects of the native protein ligand on the receptor dynamics. Our results show that, in general, existing small-molecule inhibitors of protein-protein interactions do not optimally mimic protein-ligand hot spots, nor do they effectively engage protein receptor hot spots. The more effective use of hot spots in future drug design efforts may result in smaller compounds with higher ligand efficiencies that may lead to greater success in clinical trials.
Stars and Stripes ... and Spokes
2007-01-22
From on high, the Cassini spacecraft spots a group of faint spokes against the striped landscape of the B ring, the dark region in the middle of the rings here. The spokes appear as irregular blotches
2006-05-08
This Mars MOC image shows dunes in the north polar region of Mars covered by a layer of carbon dioxide frost that accumulated during the winter in 2005. Dark spots indicate areas where frost has begun to sublime away
Photographer : JPL Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost
NASA Technical Reports Server (NTRS)
1979-01-01
Photographer : JPL Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost Galilean satellites and darkest of the four(but almost twice as bright as Earth's Moon). Mottled appearance from bright and dark patches. Bright spots seem like rayed or bright halved craters seen on our Moon. This face is always turned toward Jupiter. Photo taken through violet filter. Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.
NASA Astrophysics Data System (ADS)
Xia, Yong; Yin, Jianping
2005-03-01
We propose a new scheme to generate a focusing hollow beam (FHB) by use of an azimuthally distributed 2π-phase plate and a convergent thin lens. From the Fresnel diffraction theory, we calculate the intensity distributions of the FHB in free propagation space and study the relationship between the waist w0 of the incident Gaussian beam (or the focal length f of the lens) and the dark spot size (or the beam radius) at the focal point and the relationship between the maximum radial intensity of the FHB and the dark spot size (or the beam radius) at the focal point, respectively. Our study shows that the FHB can be used to cool and trap neutral atoms by intensity-gradient-induced Sisyphus cooling due to an extremely high intensity gradient of the FHB itself near the focal point, or to guide and focus a cold molecular beam. We also calculate the optical potential of the blue-detuned FHB for 85Rb atoms and find that in the focal plane, the smaller the dark spot size of the FHB is, the higher the optical potential is, and the greater the corresponding optimal detuning δ is; these qualities are beneficial to an atomic lens not only because it is profitable to obtain an atomic lens with a higher resolution, but also because it is helpful to reduce the spontaneous photon-scattering effect of atoms in the FHB.
Poyarkov, Nikolay A; Rowley, Jodi J L; Gogoleva, Svetlana I; Vassilieva, Anna B; Galoyan, Eduard A; Orlov, Nikolai L
2015-03-12
We describe a new species of megophryid frog from Loc Bac forest in the western part of the Langbian Plateau in the southern Annamite Mountains, Vietnam. Leptolalax pyrrhops sp. nov. is distinguished from its congeners by a combination of the following morphological attributes: (1) presence of distinct dark brown/black dorsolateral markings, including blackish spots on flanks and dark canthal and/or temporal streaks; (2) rudimentary webbing on toes; (3) tympanum externally distinct; (4) dorsal skin finely shagreened with numerous small tubercles and pustules; (5) medium size for the genus (30.3-33.9 mm in 2 adult males, 30.8-34.3 mm in 7 females); (6) grey-pinkish to dark brownish-violet chest and belly with numerous whitish speckles, also covering the lateral sides of body; (7) ventrolateral glands small, indistinct, do not form a distinct line; (8) pectoral glands comparatively small, comprising 1-3% of adult SVL; (10) iris bicolored, typically bright orange-red in upper two-thirds, fading to silvery green in lower third. The male advertisement call of the new species is also unique among those Leptolalax species for which calls are known, with a single long 'introductory' note, consisting of 5-12 pulses, followed by of 4-5 predominantly single-pulsed notes, and an average dominant frequency of 1.91-2.23 kHz. From the morphologically similar L. applebyi, L. melicus and L. bidoupensis, Leptolalax pyrrhops sp. nov. can be further distinguished by 13.5%, 13.7% and 10.3% sequence divergence at the 16S rRNA mtDNA gene. At present, the new species is known from montane evergreen forest between 800-1100 m elevation. We suggest the species should be considered as Data Deficient following IUCN's Red List categories. To date our finding represents the southernmost known record of the genus Leptolalax from Vietnam.
Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune
NASA Technical Reports Server (NTRS)
1995-01-01
Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.
Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they moved across the planet's disk, revealing wind speeds as large as 325 meters per second (730 miles per hour). The largest of the giant, dark storm systems, called the 'Great Dark Spot', received special attention because it resembled Jupiter's Great Red Spot, a storm that has persisted for more than three centuries. The lifetime of Neptune's Great Dark Spot could not be determined from the Voyager data alone, however, because the encounter was too brief. Its evolution was impossible to monitor with ground-based telescopes, because it could not be resolved on Neptune's tiny disk, and its contribution to the disk-integrated brightness of Neptune confused by the presence of a rapidly-varying bright cloud feature, called the 'Bright Companion' that usually accompanied the Great Dark spot.The repaired Hubble Space Telescope provides new opportunities to monitor these and other phenomena in the atmosphere of the most distant planet. Images taken with WFPC-2's Planetary Camera (PC) can resolve Neptune's disk as well as most ground-based telescopes can resolve the disk of Jupiter. The spatial resolution of the HST WFPC-2 images is not as high as that obtained by the Voyager-2 Narrow-Angle Camera during that spacecraft's closest approach to Neptune, but they have a number of other assets that enhance their scientific value, including improved ultra-violet and infrared sensitivity, better signal-to-noise, and, and greater photometric accuracy.The images of Neptune acquired by the WFPC-2 Science team in late June clearly demonstrate these capabilities. The side of the planet facing the Earth at the start of the program (11:36 Universal Time on July 27) was imaged in color filters spanning the ultraviolet (255 and 300-nm), visible (467, 588, 620, and 673- nm), and near-infrared (890-nm) parts of the spectrum. The planet then rotated 180 degrees in longitude, and the opposite hemisphere was imaged in a subset of these colors (300, 467, 588, 620, and 673-nm). The HST/WFPC-2 program more recently conducted by Hammel and Lockwood provides better longitude coverage, and a wider range of observing times, but uses a more restricted set of colors.The ultraviolet pictures show an almost featureless disk that is slightly darker near the edge. The observed contrast increases in the blue, green, red, and near-infrared images, which reveal many of the features seen by Voyager 2, including the dark band near 60 S latitude and several distinct bright cloud features. The bright cloud features are most obvious in the red and infrared parts of the spectrum where methane gas absorbs most strongly (619 and 890 nm). These bright clouds thought to be high above the main cloud deck, and above much of the absorbing methane gas. The edge of the planet's disk also appears somewhat bright in these colors, indicating the presence of a ubiquitous, high-altitude haze layer.The northern hemisphere is occupied by a single prominent cloud band centered near 30 N latitude. This planet-encircling feature may be the same bright cloud discovered last fall by ground-based observers. Northern hemisphere clouds were much less obvious at the time of the Voyager-2 encounter. The tropics are about 20 % darker than the disk average in the 890-nm images, and one of these images reveals a discrete bright cloud on the equator, near the edge of the disk. The southern hemisphere includes two broken bright bands. The largest and brightest is centered at 30 S latitude, and extends for least 40 degrees of longitude, like the Bright Companion to the Great Dark Spot. There is also a thin cloud band at 45 S latitude, which almost encircles the planet.One feature that is conspicuous by its absence is the storm system known as the Great Dark Spot. The second smaller dark spot, DS2, that was seen during the Voyager-2 encounter was also missing. The absence of these dark spots was one of the biggest surprises of this program. The WFPC-2 Science team initially assumed that the two storm systems might be near the edge of the planet's disk, where they would not be particularly obvious. An analysis of their longitude coverage revealed that less than 20 degrees of longitude had been missed in the colors where these spots had their greatest contrast (467 and 588 nm). The Great Dark Spot covered almost 40 degrees of longitude at the time of the Voyager-2 fly-by. Even if it were on the edge of the disk, it would appear as a 'bite' out of the limb. Because no such feature was detected, we concluded that these features had vanished. This conclusion was reinforced by the more recent observations by Hammel and Lockwood, which also show no evidence of discrete dark spots.These dramatic changes in the large-scale storm systems and planet-encircling clouds bands on Neptune are not yet completely understood, but they emphasize the dynamic nature of this planet's atmosphere, and the need for further monitoring. Additional HST WFPC-2 observations are planned for next summer. These two teams are continuing their analysis of these data sets to place improved constraints on these and other phenomena in Neptune's atmosphere.Figure Captions:These almost true-color pictures of Neptune were constructed from HST/WFPC2 images taken in blue (467-nm), green (588- nm), and red (673-nm) spectral filters. There is a bright cloud feature at the south pole, near the bottom right of the image. Bright cloud bands can be seen at 30S and 60S latitude. The northern hemisphere also includes a bright cloud band centered near 30N latitude. The second picture was compiled from images taken after the planet had rotated about 180 degrees of longitude (about 9 hours later) to show the opposite hemisphere.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/2013-07-17
These craters on Tharsis are first visible as new dark spots observed by NASA Mars Reconnaissance Orbiter Context Camera CTX, which can view much larger areas, and then imaged by HiRISE for a close-up look.
Visual Disturbances: Related to Migraine or Not?
... warrants medical attention. Causes for concern include: New dark spots or floaters in one eye (remember, cover ... Chairman of the American Migraine Foundation. “To make matters worse, women with migraine are at a significantly ...
NASA Astrophysics Data System (ADS)
Coutinho, M. L.; Muralha, V. S. F.; Mirão, J.; Veiga, J. P.
2014-03-01
The study of ancient materials with recognized cultural and economic value is a challenge to scientists and conservators, since it is usually necessary an approach through non-destructive techniques. Difficulties in establishing a correct analytical strategy are often significantly increased by the lack of knowledge on manufacture technologies and raw materials employed combined with the diversity of decay processes that may have acted during the lifetime of the cultural artefacts. A non-destructive characterization was performed on the glaze and underglaze pigments from a group of Chinese porcelain shards dated from the late Ming Dynasty (1368-1644) excavated at the Monastery of Santa Clara- a- Velha in Coimbra (Portugal). Chemical analysis was performed using micro-energy dispersive X-ray fluorescence spectrometry (μ-EDXRF). Mineralogical characterization was achieved by Raman microscopy (μ-Raman) and observation of small-surface crystallization dark spots with a metallic lustre in areas with high pigment concentration was done by variable pressure scanning electron microscopy (VP-SEM). Cobalt aluminate was identified as the blue underglaze pigment and a comparison of blue and dark blue pigments was performed by the ratio of Co, Mn, and Fe oxides, indicating a compositional difference between the two blue tonalities. Manganese oxide compounds were also identified as colouring agents in dark blue areas and surface migration of manganese compounds was verified.
Impact of spot charge inaccuracies in IMPT treatments.
Kraan, Aafke C; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M
2017-08-01
Spot charge is one parameter of pencil-beam scanning dose delivery system whose accuracy is typically high but whose required value has not been investigated. In this work we quantify the dose impact of spot charge inaccuracies on the dose distribution in patients. Knowing the effect of charge errors is relevant for conventional proton machines, as well as for new generation proton machines, where ensuring accurate charge may be challenging. Through perturbation of spot charge in treatment plans for seven patients and a phantom, we evaluated the dose impact of absolute (up to 5× 10 6 protons) and relative (up to 30%) charge errors. We investigated the dependence on beam width by studying scenarios with small, medium and large beam sizes. Treatment plan statistics included the Γ passing rate, dose-volume-histograms and dose differences. The allowable absolute charge error for small spot plans was about 2× 10 6 protons. Larger limits would be allowed if larger spots were used. For relative errors, the maximum allowable error size for small, medium and large spots was about 13%, 8% and 6% for small, medium and large spots, respectively. Dose distributions turned out to be surprisingly robust against random spot charge perturbation. Our study suggests that ensuring spot charge errors as small as 1-2% as is commonly aimed at in conventional proton therapy machines, is clinically not strictly needed. © 2017 American Association of Physicists in Medicine.
Yu, Charles Q; Manche, Edward E
2014-03-01
To compare laser in situ keratomileusis (LASIK) outcomes between 2 wavefront-guided excimer laser systems in the treatment of myopia. University eye clinic, Palo Alto, California, USA. Prospective comparative case series. One eye of patients was treated with the Allegretto Wave Eye-Q system (small-spot scanning laser) and the fellow eye with the Visx Star Customvue S4 IR system (variable-spot scanning laser). Evaluations included measurement of uncorrected visual acuity, corrected visual acuity, and wavefront aberrometry. One hundred eyes (50 patients) were treated. The mean preoperative spherical equivalent (SE) refraction was -3.89 diopters (D) ± 1.67 (SD) and -4.18 ± 1.73 D in the small-spot scanning laser group and variable-spot scanning laser group, respectively. There were no significant differences in preoperative higher-order aberrations (HOAs) between the groups. Twelve months postoperatively, all eyes in the small-spot scanning laser group and 92% in the variable-spot scanning laser group were within ±0.50 D of the intended correction (P = .04). At that time, the small-spot scanning laser group had significantly less spherical aberration (0.12 versus 0.15) (P = .04) and significantly less mean total higher-order root mean square (0.33 μm versus 0.40 μm) (P = .01). Subjectively, patients reported that the clarity of night and day vision was significantly better in the eye treated with the small-spot scanning laser. The predictability and self-reported clarity of vision of wavefront-guided LASIK were better with the small-spot scanning laser. Eyes treated with the small-spot scanning laser had significantly fewer HOAs. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Possible Bright Starspots on TRAPPIST-1
NASA Astrophysics Data System (ADS)
Morris, Brett M.; Agol, Eric; Davenport, James R. A.; Hawley, Suzanne L.
2018-04-01
The M8V star TRAPPIST-1 hosts seven roughly Earth-sized planets and is a promising target for exoplanet characterization. Kepler/K2 Campaign 12 observations of TRAPPIST-1 in the optical show an apparent rotational modulation with a 3.3-day period, though that rotational signal is not readily detected in the Spitzer light curve at 4.5 μm. If the rotational modulation is due to starspots, persistent dark spots can be excluded from the lack of photometric variability in the Spitzer light curve. We construct a photometric model for rotational modulation due to photospheric bright spots on TRAPPIST-1 that is consistent with both the Kepler and Spitzer light curves. The maximum-likelihood model with three spots has typical spot sizes of R spot/R ⋆ ≈ 0.004 at temperature T spot ≳ 5300 ± 200 K. We also find that large flares are observed more often when the brightest spot is facing the observer, suggesting a correlation between the position of the bright spots and flare events. In addition, these flares may occur preferentially when the spots are increasing in brightness, which suggests that the 3.3-day periodicity may not be a rotational signal, but rather a characteristic timescale of active regions.
Peering Deep into Jupiter Atmosphere
2013-03-14
The dark hot spot in this false-color image from NASA Cassini spacecraft is a window deep into Jupiter atmosphere. All around it are layers of higher clouds, with colors indicating which layer of the atmosphere the clouds are in.
Reeves, Adam; Grayhem, Rebecca
2016-03-01
Rod-mediated 500 nm test spots were flashed in Maxwellian view at 5 deg eccentricity, both on steady 10.4 deg fields of intensities (I) from 0.00001 to 1.0 scotopic troland (sc td) and from 0.2 s to 1 s after extinguishing the field. On dim fields, thresholds of tiny (5') tests were proportional to √I (Rose-DeVries law), while thresholds after extinction fell within 0.6 s to the fully dark-adapted absolute threshold. Thresholds of large (1.3 deg) tests were proportional to I (Weber law) and extinction thresholds, to √I. rod thresholds are elevated by photon-driven noise from dim fields that disappears at field extinction; large spot thresholds are additionally elevated by neural light adaptation proportional to √I. At night, recovery from dimly lit fields is fast, not slow.
Dasgupta, Amitava; Wahed, Amer; Wells, Alice
2002-02-01
Several adulterants are used to mask tests for abused drugs in urine. Adulterants such as "Klear" and "Whizzies" contain potassium nitrite, and "Urine Luck" contains pyridinium chlorochromate (PCC). The presence of these adulterants cannot be detected by routine specimen integrity checks (pH, specific gravity, and temperature). We developed rapid spot tests for detecting these adulterants in urine. Addition of 3% hydrogen peroxide in urine adulterated with PCC caused rapid formation of a dark brown color. In contrast, unadulterated urine turned colorless when hydrogen peroxide was added. When urine contaminated with nitrite and 2 to 3 drops of 2N hydrochloric acid were added to 2% aqueous potassium permanganate solution, the dark pink permanganate solution turned colorless immediately with effervescence. Urine contaminated with nitrite liberated iodine from potassium iodide solution in the presence of 2N hydrochloric acid. Urine adulterated with PCC also liberated iodine from potassium iodide in acid medium but did not turn potassium permanganate solution colorless. Urine specimens from volunteers and random urine samples that tested negative for drugs did not cause false-positive results. These rapid spot tests are useful for detecting adulterated urine to avoid false-negative drug tests.
NASA Technical Reports Server (NTRS)
2007-01-01
New Horizons took this montage of images of Jupiter's volcanic moon Io, glowing in the dark of Jupiter's shadow, as the Pluto-bound spacecraft sped through the Jupiter system on Feb. 27, 2007. (A): In this picture from the Long-Range Reconnaissance Imager (LORRI), dark blotches and straight lines are artifacts. The brightest spots (including the volcanoes Pele [P] and East Girru [EG]) are incandescent lava from active volcanoes. The more diffuse glows, and the many faint spots, are from gas in the plumes and atmosphere, glowing due to bombardment by plasma in Jupiter's magnetosphere, in a display similar to the Earth's aurorae. (B): The same image with a latitude/longitude grid, showing that the cluster of faint spots is centered near longitude 0 degrees, the point on Io that faces Jupiter. The image also shows the locations of the plumes seen in sunlit images (indicated by red diamonds), which glow with auroral emission in eclipse. (C): Simulated sunlit view of Io with the same geometry, based on sunlit LORRI images. (D): A combination of the sunlit image (in cyan) and the eclipse image (in red), showing that all point-like glows in the eclipse image arise from dark volcanoes in the eclipse image. (E): This infrared image, at a wavelength of 2.3 microns, obtained by New Horizons Linear Etalon Spectral Imaging Array (LEISA) an hour after the LORRI image, showing thermal emission from active volcanoes. Elongation of the hot spots is an artifact. (F): Combined visible albedo (cyan) and LEISA thermal emission (red) image, showing the sources of the volcanic emission. That most of the faint point-like glows near longitude zero, seen in visible light in images A, B, and D, do not appear in the infrared view of volcanic heat radiation, is one reason scientists believe that these glows are due to auroral emission, not heat radiation. This image appears in the Oct. 12, 2007, issue of Science magazine, in a paper by John Spencer, et al.Automatic Mexico Gulf Oil Spill Detection from Radarsat-2 SAR Satellite Data Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Marghany, Maged
2016-10-01
In this work, a genetic algorithm is exploited for automatic detection of oil spills of small and large size. The route is achieved using arrays of RADARSAT-2 SAR ScanSAR Narrow single beam data obtained in the Gulf of Mexico. The study shows that genetic algorithm has automatically segmented the dark spot patches related to small and large oil spill pixels. This conclusion is confirmed by the receiveroperating characteristic (ROC) curve and ground data which have been documented. The ROC curve indicates that the existence of oil slick footprints can be identified with the area under the curve between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. The small oil spill sizes represented 30% of the discriminated oil spill pixels in ROC curve. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills of either small or large size and the ScanSAR Narrow single beam mode serves as an excellent sensor for oil spill patterns detection and surveying in the Gulf of Mexico.
A marvelous new glassfrog (Centrolenidae, Hyalinobatrachium) from Amazonian Ecuador
Guayasamin, Juan M.; Cisneros-Heredia, Diego F.; Maynard, Ross J.; Lynch, Ryan L.; Culebras, Jaime; Hamilton, Paul S.
2017-01-01
Abstract Hyalinobatrachium is a behaviorally and morphologically conserved genus of Neotropical anurans, with several pending taxonomic problems. Using morphology, vocalizations, and DNA, a new species from the Amazonian lowlands of Ecuador is described and illustrated. The new species, Hyalinobatrachium yaku sp. n., is differentiated from all other congenerics by having small, middorsal, dark green spots on the head and dorsum, a transparent pericardium, and a tonal call that lasts 0.27–0.4 s, with a dominant frequency of 5219.3–5329.6 Hz. Also, a mitochondrial phylogeny for the genus is presented that contains the new species, which is inferred as sister to H. pellucidum. Conservation threats to H. yaku sp. n. include habitat destruction and/or pollution mainly because of oil and mining activities. PMID:28769670
View of Callisto at Increasing Resolutions
NASA Technical Reports Server (NTRS)
1998-01-01
These four views of Jupiter's second largest moon, Callisto, highlight how increasing resolutions enable interpretation of the surface. In the global view (top left) the surface is seen to have many small bright spots, while the regional view (top right) reveals the spots to be the larger craters. The local view (bottom right) not only brings out smaller craters and detailed structure of larger craters, but also shows a smooth dark layer of material that appears to cover much of the surface. The close-up frame (bottom left) presents a surprising smoothness in this highest resolution (30 meters per picture element) view of Callisto's surface.
North is to the top of these frames which were taken by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft between November 1996 and November 1997. Even higher resolution images (better than 20 meters per picture element) of Callisto will be taken on June 30, 1999 during the 21st orbit of the spacecraft around Jupiter.The top left frame is scaled to 10 kilometers (km) per picture element (pixel) and covers an area about 4400 by 2500 km. The moon Callisto, which has a diameter of 4806 km, appears to be peppered with many bright spots. Images at this resolution of other cratered moons in the Solar System indicate that the bright spots could be impact craters. The ring structure of Valhalla, the largest impact structure on Callisto, is visible in the center of the frame. This color view combines images obtained in November 1997 taken through the green, violet, and 1 micrometer filters of the SSI system.The top right frame is ten times higher resolution (about 1 km per pixel) and covers an area approximately 440 by 250 km. Craters, which are clearly recognizable, appear to be the dominant landform on Callisto. The crater rims appear bright, while the adjacent area and the crater interiors are dark. This resolution is comparable to the best data available from the 1979 flyby's of NASA's two Voyager spacecraft; it reflects the understanding of Callisto prior to new data from Galileo. This Galileo image was taken in November 1996.The resolution of the bottom right image is again ten times better (100 meters per pixel) and covering an area of about 44 by 25 km. This resolution reveals that some crater rims are not complete rings, but are composed of bright isolated segments. Steep slopes near crater rims reveal dark material that appears to have slid down to reveal bright material. The thickness of the dark layer could be tens of meters. The image was taken in June 1997.The bottom left image at about 29 meters per pixel is the highest resolution available for Callisto. It covers an area about 4.4 by 2.5 km and is somewhat oblique. Craters are visible but no longer dominate the surface. The image was taken in November 1996.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoIn Situ observation of dark current emission in a high gradient rf photocathode gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.
Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less
In Situ observation of dark current emission in a high gradient rf photocathode gun
Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.; ...
2016-08-15
Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less
1989-08-21
This picture of Neptune was produced from images taken through the ultraviolet, violet and green filters of the Voyager 2 wide-angle camera. This 'false' color image has been made to show clearly details of the cloud structure and to paint clouds located at different altitudes with different colors. Dark, deeplying clouds tend to be masked in the ultraviolet wavelength since overlying air molecules are particularly effective in scattering sunlight there which brightens the sky above them. Such areas appear dark blue in this photo. The Great Dark Spot (GDS) and the high southern latitudes have a deep bluish cast in this image, indication they are regions where visible light (but not ultraviolet light) may penetrate to a deeper layer of dark cloud or haze in Neptune's atmosphere. Conversely, the pinkish clouds may be positioned at high altitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, J; Lindsay, P; University of Toronto, Toronto
Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mmmore » circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations. Funding Support: this work is supported by funding the National Sciences and Engineering Research Council of Canada, and a Mitacs-accelerate fellowship. Conflict of Interest: Dr. Lindsay and Dr. Jaffray are listed as inventors of the small animal microirradiator described herein. This system has been licensed for commercial development.« less
Find and correctly identify an infestation early before it becomes widespread. Look for rusty or reddish stains and pinpoint dark spots on bed sheets or mattresses, and search for bugs near the piping, seams and tags of the mattress and box spring.
2017-02-13
Find and correctly identify an infestation early before it becomes widespread. Look for rusty or reddish stains and pinpoint dark spots on bed sheets or mattresses, and search for bugs near the piping, seams and tags of the mattress and box spring.
Huang, Yong-Ju; Evans, Neal; Li, Zi-Qin; Eckert, Maria; Chèvre, Anne-Marie; Renard, Michel; Fitt, Bruce D L
2006-01-01
Near-isogenic Brassica napus lines carrying/lacking resistance gene Rlm6 were used to investigate the effects of temperature and leaf wetness duration on phenotypic expression of Rlm6-mediated resistance. Leaves were inoculated with ascospores or conidia of Leptosphaeria maculans carrying the effector gene AvrLm6. Incubation period to the onset of lesion development, number of lesions and lesion diameter were assessed. Symptomless growth of L. maculans from leaf lesions to stems was investigated using a green fluorescent protein (GFP) expressing isolate carrying AvrLm6. L. maculans produced large grey lesions on Darmor (lacking Rlm6) at 5-25 degrees C and DarmorMX (carrying Rlm6) at 25 degrees C, but small dark spots and 'green islands' on DarmorMX at 5-20 degrees C. With increasing temperature/wetness duration, numbers of lesions/spots generally increased. GFP-expressing L. maculans grew from leaf lesions down leaf petioles to stems on DarmorMX at 25 degrees C but not at 15 degrees C. We conclude that temperature and leaf wetness duration affect the phenotypic expression of Rlm6-mediated resistance in leaves and subsequent L. maculans spread down petioles to produce stem cankers.
Size of the foveal blue scotoma related to the shape of the foveal pit but not to macular pigment.
Chen, Yun; Lan, Weizhong; Schaeffel, Frank
2015-01-01
When the eye is covered with a filter that transmits light below 480 nm and a blue field is observed on a computer screen that is modulated in brightness at about 1 Hz, the fovea is perceived as small irregular dark spot. It was proposed that the "foveal blue scotoma" results from the lack of S-cones in the foveal center. The foveal blue scotoma is highly variable among subjects. Possible factors responsible for the variability include differences in S-cone distribution, in foveal shape, and in macular pigment distribution. Nine young adult subjects were instructed to draw their foveal blue scotomas on a clear foil that was attached in front of the computer screen. The geometry of their foveal pit was measured in OCT images in two dimensions. Macular pigment distribution was measured in fundus camera images. Finally, blue scotomas were compared with Maxwell's spot which was visualized with a dichroic filter and is commonly assumed to reflect the macular pigment distribution. The diameters of the foveal blue scotomas varied from 15.8 to 76.4 arcmin in the right eyes and 15.5 to 84.7 arcmin in the left and were highly correlated in both eyes. It was found that the steeper the foveal slopes and the narrower the foveal pit, the larger the foveal blue scotoma. There was no correlation between foveal blue scotoma and macular pigment distribution or Maxwell's spot. The results are therefore in line with the assumption that the foveal blue scotoma is a consequence of the lack of S-cones in the foveal center. Unlike the foveal blue scotoma, Maxwell's spot is based on macular pigment as previously proposed. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Barla, Lindi; Verdaasdonk, Rudolf M.; Rustemeyer, Thomas; Klaessens, John; van der Veen, Albert
2016-02-01
Allergy testing is usually performed by exposing the skin to small quantities of potential allergens on the inner forearm and scratching the protective epidermis to increase exposure. After 15 minutes the dermatologist performs a visual check for swelling and erythema which is subjective and difficult for e.g. dark skin types. A small smart phone based thermo camera (FLIR One) was used to obtain quantitative images in a feasibility study of 17 patients Directly after allergen exposure on the forearm, thermal images were captured at 30 seconds interval and processed to a time lapse movie over 15 minutes. Considering the 'subjective' reading of the dermatologist as golden standard, in 11/17 pts (65%) the evaluation of dermatologist was confirmed by the thermo camera including 5 of 6 patients without allergic response. In 7 patients thermo showed additional spots. Of the 342 sites tested, the dermatologist detected 47 allergies of which 28 (60%) were confirmed by thermo imaging while thermo imaging showed 12 additional spots. The method can be improved with user dedicated acquisition software and better registration between normal and thermal images. The lymphatic reaction seems to shift from the original puncture site. The interpretation of the thermal images is still subjective since collecting quantitative data is difficult due to motion patient during 15 minutes. Although not yet conclusive, thermal imaging shows to be promising to improve the sensitivity and selectivity of allergy testing using a smart phone based camera.
Space Radar Image of Oil Slicks
1999-04-15
This is a radar image of an offshore drilling field about 150 km 93 miles west of Bombay, India, in the Arabian Sea. The dark streaks are extensive oil slicks surrounding many of the drilling platforms, which appear as bright white spots.
2004-06-04
Two pairs of dark spots, or storms, in Saturn atmosphere squeeze past each other as they dance around the planet. In this group of four storms, the top left and lower right storms are fringed with white clouds as seen by NASA Cassini spacecraft.
Liu, Chenbin; Schild, Steven E; Chang, Joe Y; Liao, Zhongxing; Korte, Shawn; Shen, Jiajian; Ding, Xiaoning; Hu, Yanle; Kang, Yixiu; Keole, Sameer R; Sio, Terence T; Wong, William W; Sahoo, Narayan; Bues, Martin; Liu, Wei
2018-06-01
To investigate how spot size and spacing affect plan quality, robustness, and interplay effects of robustly optimized intensity modulated proton therapy (IMPT) for lung cancer. Two robustly optimized IMPT plans were created for 10 lung cancer patients: first by a large-spot machine with in-air energy-dependent large spot size at isocenter (σ: 6-15 mm) and spacing (1.3 σ), and second by a small-spot machine with in-air energy-dependent small spot size (σ: 2-6 mm) and spacing (5 mm). Both plans were generated by optimizing radiation dose to internal target volume on averaged 4-dimensional computed tomography scans using an in-house-developed IMPT planning system. The dose-volume histograms band method was used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effects with randomized starting phases for each field per fraction. Patient anatomy voxels were mapped phase-to-phase via deformable image registration, and doses were scored using in-house-developed software. Dose-volume histogram indices, including internal target volume dose coverage, homogeneity, and organs at risk (OARs) sparing, were compared using the Wilcoxon signed-rank test. Compared with the large-spot machine, the small-spot machine resulted in significantly lower heart and esophagus mean doses, with comparable target dose coverage, homogeneity, and protection of other OARs. Plan robustness was comparable for targets and most OARs. With interplay effects considered, significantly lower heart and esophagus mean doses with comparable target dose coverage and homogeneity were observed using smaller spots. Robust optimization with a small spot-machine significantly improves heart and esophagus sparing, with comparable plan robustness and interplay effects compared with robust optimization with a large-spot machine. A small-spot machine uses a larger number of spots to cover the same tumors compared with a large-spot machine, which gives the planning system more freedom to compensate for the higher sensitivity to uncertainties and interplay effects for lung cancer treatments. Copyright © 2018 Elsevier Inc. All rights reserved.
Large- and small-scale constraints on power spectra in Omega = 1 universes
NASA Technical Reports Server (NTRS)
Gelb, James M.; Gradwohl, Ben-Ami; Frieman, Joshua A.
1993-01-01
The CDM model of structure formation, normalized on large scales, leads to excessive pairwise velocity dispersions on small scales. In an attempt to circumvent this problem, we study three scenarios (all with Omega = 1) with more large-scale and less small-scale power than the standard CDM model: (1) cold dark matter with significantly reduced small-scale power (inspired by models with an admixture of cold and hot dark matter); (2) cold dark matter with a non-scale-invariant power spectrum; and (3) cold dark matter with coupling of dark matter to a long-range vector field. When normalized to COBE on large scales, such models do lead to reduced velocities on small scales and they produce fewer halos compared with CDM. However, models with sufficiently low small-scale velocities apparently fail to produce an adequate number of halos.
Movie of High Clouds on Jupiter
NASA Technical Reports Server (NTRS)
2000-01-01
Jupiter's high-altitude clouds are seen in this brief movie made from seven frames taken by the narrow-angle camera of NASA's Cassini spacecraft. This is the first time a movie sequence of Jupiter has been made that illustrates the motions of the high-altitude clouds on a global scale.
The images were taken at a wavelength that is absorbed by methane, one chemical in Jupiter's lower clouds. So, dark areas are relatively free of high clouds, and the camera sees through to the methane in a lower level. Bright areas are places with high, thick clouds that shield the methane below.Jupiter's equator and Great Red Spot are covered with high-altitude, hazy clouds.The movie covers the time period between Oct. 1 and Oct. 5, 2000, latitudes from 50 degrees north to 50 degrees south, and a 100-degree sweep of longitude. Those factors were the same for a Cassini movie of cloud motions previously released (PIA02829), but that movie used frames taken through a blue filter, which showed deeper cloud levels and sharper detail. Features in this methane-filter movie appear more diffuse.Among the nearly stationary features are the Red Spot and some bright ovals at mid-latitudes in both hemispheres. These are anticyclonic (counter-clockwise rotating) storms. They are bright in the methane band because of their high clouds associated with rising gas. They behave differently from terrestrial cyclones, which swirl in the opposite direction. The mechanism making the Red Spot and similar spots stable apparently has no similarity to the mechanism which feeds terrestrial cyclones.Some small-scale features are fascinating because of their brightness fluctuations. Such fluctuations observed in the methane band are probably caused by strong vertical motions, which form clouds rapidly, as in Earth's thunderstorms. Near the upper left corner in this movie, a number of smaller clouds appear to circulate counterclockwise around a dark spot, and these clouds fluctuate in brightness, so they may be candidates for lightning storms.A pattern of lighter areas between darker patches can be seen in the darkest band a little north of the bright equatorial region. This may be tied to a wave-like temperature variation across the planet. If confirmed, this would be the first time such large-scale stratospheric temperature waves have been visibly linked to variations in haze thickness.Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.Closer Look at Schiaparelli Impact Site on Mars
2016-10-27
This Oct. 25, 2016, image shows the area where the European Space Agency's Schiaparelli test lander reached the surface of Mars, with magnified insets of three sites where components of the spacecraft hit the ground. It is the first view of the site from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter taken after the Oct. 19, 2016, landing event. The Schiaparelli test lander was one component of ESA's ExoMars 2016 project, which placed the Trace Gas Orbiter into orbit around Mars on the same arrival date. This HiRISE observation adds information to what was learned from observation of the same area on Oct. 20 by the Mars Reconnaissance Orbiter's Context Camera (CTX). Of these two cameras, CTX covers more area and HiRISE shows more detail. A portion of the HiRISE field of view also provides color information. The impact scene was not within that portion for the Oct. 25 observation, but an observation with different pointing to add color and stereo information is planned. This Oct. 25 observation shows three locations where hardware reached the ground, all within about 0.9 mile (1.5 kilometer) of each other, as expected. The annotated version includes insets with six-fold enlargement of each of those three areas. Brightness is adjusted separately for each inset to best show the details of that part of the scene. North is about 7 degrees counterclockwise from straight up. The scale bars are in meters. At lower left is the parachute, adjacent to the back shell, which was its attachment point on the spacecraft. The parachute is much brighter than the Martian surface in this region. The smaller circular feature just south of the bright parachute is about the same size and shape as the back shell, (diameter of 7.9 feet or 2.4 meters). At upper right are several bright features surrounded by dark radial impact patterns, located about where the heat shield was expected to impact. The bright spots may be part of the heat shield, such as insulation material, or gleaming reflections of the afternoon sunlight. According to the ExoMars project, which received data from the spacecraft during its descent through the atmosphere, the heat shield separated as planned, the parachute deployed as planned but was released (with back shell) prematurely, and the lander hit the ground at a velocity of more than 180 miles per hour (more than 300 kilometers per hour). At mid-upper left are markings left by the lander's impact. The dark, approximately circular feature is about 7.9 feet (2.4 meters) in diameter, about the size of a shallow crater expected from impact into dry soil of an object with the lander's mass -- about 660 pounds (300 kilograms) -- and calculated velocity. The resulting crater is estimated to be about a foot and a half (half a meter) deep. This first HiRISE observation does not show topography indicating the presence of a crater. Stereo information from combining this observation with a future one may provide a way to check. Surrounding the dark spot are dark radial patterns expected from an impact event. The dark curving line to the northeast of the dark spot is unusual for a typical impact event and not yet explained. Surrounding the dark spot are several relatively bright pixels or clusters of pixels. They could be image noise or real features, perhaps fragments of the lander. A later image is expected to confirm whether these spots are image noise or actual surface features. http://photojournal.jpl.nasa.gov/catalog/PIA21131
Are the circular, dark features on Comet Borrelly's surface albedo variations or pits?
Nelson, R.M.; Soderblom, L.A.; Hapke, B.W.
2004-01-01
The highest resolution images of Comet 19P/Borrelly show many dark features which, upon casual inspection, appear to be low albedo markings, but which may also be shadows or other photometric variations caused by a depression in the local topography. In order to distinguish between these two possible interpretations we conducted a photometric analysis of three of the most prominent of these features using six of the highest quality images from the September 22, 2001 Deep Space 1 (DS1) flyby. We find that: 1. The radiance in the darkest parts of each feature increases as phase angle decreases, similarly to the radiance behavior of the higher albedo surrounding terrain. The dark features could be either fully illuminated low albedo spots or, alternatively, they could be depressions. No part of any of the three regions was in full shadow. 2. One of the regions has a radiance profile consistent with a rimmed depression, the second, with a simple depression with no rim, and the third with a low albedo spot. 3. The regolith particles are backscattering and carbon black is one of the few candidate regolith materials that might explain this low albedo. We conclude that Borrelly's surface is geologically complex to the limit of resolution of the images with a combination complex topography, pits, troughs, peaks and ridges, and some very dark albedo markings, perhaps a factor of two to three darker than the average 3-4% albedo of the surrounding terrains. Our technique utilizing measured radiance profiles through the dark regions is able to discriminate between rimmed depressions, rimless depressions and simple albedo changes not associated with topography. ?? 2003 Elsevier Inc. All rights reserved.
Concentrated dark matter: Enhanced small-scale structure from codecaying dark matter
NASA Astrophysics Data System (ADS)
Dror, Jeff A.; Kuflik, Eric; Melcher, Brandon; Watson, Scott
2018-03-01
We study the cosmological consequences of codecaying dark matter—a recently proposed mechanism for depleting the density of dark matter through the decay of nearly degenerate particles. A generic prediction of this framework is an early dark matter dominated phase in the history of the Universe, that results in the enhanced growth of dark matter perturbations on small scales. We compute the duration of the early matter dominated phase and show that the perturbations are robust against washout from free streaming. The enhanced small-scale structure is expected to survive today in the form of compact microhalos and can lead to significant boost factors for indirect-detection experiments, such as FERMI, where dark matter would appear as point sources.
"Hot spots" growth on single nanowire controlled by electric charge.
Xi, Shaobo; Liu, Xuehua; He, Ting; Tian, Lei; Wang, Wenhui; Sun, Rui; He, Weina; Zhang, Xuetong; Zhang, Jinping; Ni, Weihai; Zhou, Xiaochun
2016-06-09
"Hot spots" - a kind of highly active site, which are usually composed of some unique units, such as defects, interfaces, catalyst particles or special structures - can determine the performance of nanomaterials. In this paper, we study a model system, i.e. "hot spots" on a single Ag nanowire in the galvanic replacement reaction (GRR), by dark-field microscopy. The research reveals that electric charge can be released by the formation reaction of AgCl, and consequently the electrochemical potential on Ag nanowire drops. The electric charge could induce the reduction of Ag(+) to form the "hot spots" on the nanowire during the GRR. The appearance probability of "hot spots" is almost even along the Ag nanowire, while it is slightly lower near the two ends. The spatial distance between adjacent "hot spots" is also controlled by the charge, and obeys a model based on Boltzmann distribution. In addition, the distance distribution here has an advantage in electron transfer and energy saving. Therefore, it's necessary to consider the functions of electric charge during the synthesis or application of nanomaterials.
LEOPARD syndrome: what are café noir spots?
Rodríguez-Bujaldón, Alfonso; Vazquez-Bayo, Carmen; Jimenez-Puya, Rafael; Galan-Gutierrez, Manuel; Moreno-Gimenez, José; Rodriguez-Garcia, Alfonso; Tercedor, Jesus; Velez-Garcia, Antonio
2008-01-01
Lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary stenosis, abnormalities of genitalia, retarded growth, and deafness syndrome (multiple lentigines syndrome) is most often characterized by multiple lentigines and cardiac conduction defects. Café noir spot is a term proposed, by analogy to café au lait spots, for the larger and darkly pigmented patches that are frequently observed in patients with this syndrome. Although presumed by some authors to represent lentigines, the histologic features of café noir spots have not been well documented in the literature. Only two previous cases have been reported in which a biopsy of the café noir spots than melanocytic nevi. We describe the histologic characteristics of seven café noir spots in six patients with lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary stenosis, abnormalities of genitalia, retarded growth, and deafness syndrome. Three lesions represented melanocytic nevi (one with dysplastic features), and four were compatible with lentigo simplex. These findings help our understanding of the histologic spectrum of pigmented lesions in lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary stenosis, abnormalities of genitalia, retarded growth, and deafness syndrome.
Analytical modeling of the temporal evolution of hot spot temperatures in silicon solar cells
NASA Astrophysics Data System (ADS)
Wasmer, Sven; Rajsrima, Narong; Geisemeyer, Ino; Fertig, Fabian; Greulich, Johannes Michael; Rein, Stefan
2018-03-01
We present an approach to predict the equilibrium temperature of hot spots in crystalline silicon solar cells based on the analysis of their temporal evolution right after turning on a reverse bias. For this end, we derive an analytical expression for the time-dependent heat diffusion of a breakdown channel that is assumed to be cylindrical. We validate this by means of thermography imaging of hot spots right after turning on a reverse bias. The expression allows to be used to extract hot spot powers and radii from short-term measurements, targeting application in inline solar cell characterization. The extracted hot spot powers are validated at the hands of long-term dark lock-in thermography imaging. Using a look-up table of expected equilibrium temperatures determined by numerical and analytical simulations, we utilize the determined hot spot properties to predict the equilibrium temperatures of about 100 industrial aluminum back-surface field solar cells and achieve a high correlation coefficient of 0.86 and a mean absolute error of only 3.3 K.
Neptune Through a Clear Filter
1999-07-25
On July 23, 1989, NASA Voyager 2 spacecraft took this picture of Neptune through a clear filter on its narrow-angle camera. The image on the right has a latitude and longitude grid added for reference. Neptune Great Dark Spot is visible on the left.
Volcan, Matheus Vieira; Klotzel, Bruno; Lanés, Luis Esteban Krause
2017-02-21
Two new species of the genus Melanorivulus are herein described from the middle Rio Verde drainage, upper Rio Paraná basin, Mato Grosso do Sul, Brazil. Both new species are members of the Melanorivulus pictus clade, diagnosed by having ventral process of angulo-articular vestigial and flanks intense greenish blue or greenish golden to purplish blue above anal fin base in males. Melanorivulus nigropunctatus, new species, from wetlands of a small drainage tributary of right side of the Rio Verde, differs from all other congeners by possessing black dots over the head and body in both sexes and pectoral fin orange with a dark grey margin in males. Melanorivulus ofaie, new species, is found in a similar environment, but at the opposite margin of the Rio Verde. It is distinguished by males presenting flank greenish blue to light blue, with seven to nine oblique chevron-like red bars, ventral portion of head whitish with dark brown spots, dorsal fin yellow with two to three transverse broad red oblique stripes and distal region red, anal fin light orangish yellow, basal area light blue with short red bars and distal portion with a dark red margin, and caudal fin yellow or orangish yellow with three to four vertical red bars in the dorsal and middle portions, sometimes with a orange distal margin. Both new species are considered endangered due to the loss and degradation of their habitat.
Experimental generation of partially coherent beams with different complex degrees of coherence.
Wang, Fei; Liu, Xianlong; Yuan, Yangsheng; Cai, Yangjian
2013-06-01
We established an experimental setup for generating partially coherent beams with different complex degrees of coherence, and we report experimental generation of an elliptical Gaussian Schell-model (GSM) beam and a Laguerre-GSM beam for the first time. It has been demonstrated experimentally that an elliptical GSM beam and a Laguerre-GSM beam produce an elliptical beam spot and a dark hollow beam spot in the focal plane (or in the far field), respectively, which agrees with theoretical predictions. Our results are useful for beam shaping and particle trapping.
Transmission electron microscopy study of precipitates in an artificially aged Al–12.7Si–0.7Mg alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fang; Yu, Fuxiao, E-mail: fxyu@mail.neu.edu.cn; Zhao, Dazhi
2015-09-15
An investigation of Al–12.7Si–0.7Mg alloy aged at 160 °C, 180 °C and 200 °C for 3 h was carried out in order to identify the precipitating phases. Regular transmission and high resolution electron microscopy (TEM and HREM) were employed for this purpose. The studies were focused on the dark spots and needle-shaped precipitates lying in (001){sub Al} plane. Based on the HREM observations, dark spots and needle-shaped precipitates have different characteristics. The results revealed that the ellipsoidal and needle-shaped precipitates along <100> direction of the matrix coexist in the alloy by tilting experiments at given aging condition. The ellipsoidal darkmore » spot precipitates viewing along [001]{sub Al} is not cross-sectional image of needle-shaped precipitates along <001>{sub Al}. Needle-shaped precipitate is coherent with the matrix. The diffraction pattern associated with the ellipsoidal precipitates is consistent with β″ reported in literature. - Highlights: • Wrought Al–Si–Mg alloy has been investigated to identify the precipitating phases. • The ellipsoidal and needle-shaped precipitates coexist in wrought Al–Si–Mg alloy. • The needle-shaped and ellipsoidal precipitates exhibit different characteristics.« less
Parametric Simulations of the Great Dark Spots of Neptune
NASA Astrophysics Data System (ADS)
Deng, Xiaolong; Le Beau, R.
2006-09-01
Observations by Voyager II and the Hubble Space Telescope of the Great Dark Spots (GDS) of Neptune suggest that large vortices with lifespans of years are not uncommon occurrences in the atmosphere of Neptune. The variability of these features over time, in particular the complex motions of GDS-89, make them challenging candidates to simulate in atmospheric models. Previously, using the Explicit Planetary Isentropic-Coordinate (EPIC) General Circulation Model, LeBeau and Dowling (1998) simulated the GDS-like vortex features. Qualitatively, the drift, oscillation, and tail-like features of GDS-89 were recreated, although precise numerical matches were only achieved for the meridional drift rate. In 2001, Stratman et al. applied EPIC to simulate the formation of bright companion clouds to the Great Dark Spots. In 2006, Dowling et al. presented a new version of EPIC, which includes hybrid vertical coordinate, cloud physics, advanced chemistry, and new turbulence models. With the new version of EPIC, more observation results, and more powerful computers, it is the time to revisit CFD simulations of the Neptune's atmosphere and do more detailed work on GDS-like vortices. In this presentation, we apply the new version of EPIC to simulate GDS-89. We test the influences of different parameters in the EPIC model: potential vorticity gradient, wind profile, initial latitude, vortex shape, and vertical structure. The observed motions, especially the latitudinal drift and oscillations in orientation angle and aspect ratio, are used as diagnostics of these unobserved atmospheric conditions. Increased computing power allows for more refined and longer simulations and greater coverage of the parameter space than previous efforts. Improved quantitative results have been achieved, including voritices with near eight-day oscillations and comparable variations in shape to GDS-89. This research has been supported by Kentucky NASA EPSCoR.
Gravitational waves in cold dark matter
NASA Astrophysics Data System (ADS)
Flauger, Raphael; Weinberg, Steven
2018-06-01
We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.
ANALYSIS OF SUNSPOT AREA OVER TWO SOLAR CYCLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Toma, G.; Chapman, G. A.; Preminger, D. G.
2013-06-20
We examine changes in sunspots and faculae and their effect on total solar irradiance during solar cycles 22 and 23 using photometric images from the San Fernando Observatory. We find important differences in the very large spots between the two cycles, both in their number and time of appearance. In particular, there is a noticeable lack of very large spots in cycle 23 with areas larger than 700 millionths of a solar hemisphere which corresponds to a decrease of about 40% relative to cycle 22. We do not find large differences in the frequencies of small to medium spots betweenmore » the two cycles. There is a decrease in the number of pores and very small spots during the maximum phase of cycle 23 which is largely compensated by an increase during other phases of the solar cycle. The decrease of the very large spots, in spite of the fact that they represent only a few percent of all spots in a cycle, is primarily responsible for the observed changes in total sunspot area and total sunspot deficit during cycle 23 maximum. The cumulative effect of the decrease in the very small spots is an order of magnitude smaller than the decrease caused by the lack of large spots. These data demonstrate that the main difference between cycles 22 and 23 was in the frequency of very large spots and not in the very small spots, as previously concluded. Analysis of the USAF/NOAA and Debrecen sunspot areas confirms these findings.« less
Park, Sung-Hee; Choi, In-Young; Seo, Kyoung-Won; Kim, Jin-Ho; Galea, Victor; Shin, Hyeon-Dong
2017-03-01
Leaf spot disease on black chokeberry ( Aronia melanocarpa ) was observed at several locations in Korea during 2014-2015. Leaf spots were distinct, scattered over the leaf surface and along the leaf border, subcircular to irregular and brown surrounded by a distinct dark color, and were expanded and coalesced into irregularly shaped lesions. Severely infected leaves became dry and fell off eventually. The causative agent was identified as Pseudocercospora pyricola . Morphological observations and phylogenetic analyses of multiple genes, including internal transcribed spacer, translation elongation factor 1-alpha, actin, and the large subunit ribosomal DNA were conducted. The pathogenicity test was conducted twice yielding similar results, fulfilling Koch's postulates. To our knowledge, this is the first report on P. pyricola infection of A. melanocarpa globally.
NASA Astrophysics Data System (ADS)
Mallonn, M.; Herrero, E.; Juvan, I. G.; Essen, C. von; Rosich, A.; Ribas, I.; Granzer, T.; Alexoudi, X.; Strassmeier, K. G.
2018-06-01
Aims: Brightness inhomogeneities in the stellar photosphere (dark spots or bright regions) affect the measurements of the planetary transmission spectrum. To investigate the star spots of the M dwarf GJ 1214, we conducted a multicolor photometric monitoring from 2012 to 2016. Methods: The time-series photometry was analyzed with the light curve inversion tool StarSim. Using the derived stellar surface properties from the light curve inversion, we modeled the impact of the star spots when unocculted by the transiting planet. We compared the photometric variability of GJ 1214 to published results of mid- to late M dwarfs from the MEarth sample. Results: The measured variability shows a periodicity of 125 ± 5 days, which we interpret as the signature of the stellar rotation period. This value overrules previous suggestions of a significantly shorter stellar rotation period. A light curve inversion of the monitoring data yields an estimation of the flux dimming of a permanent spot filling factor not contributing to the photometric variability, a temperature contrast of the spots of 370 K and persistent active longitudes. The derived surface maps over all five seasons were used to estimate the influence of the star spots on the transmission spectrum of the planet from 400 to 2000 nm. The monitoring data presented here do not support a recent interpretation of a measured transmission spectrum of GJ 1214b as to be caused by bright regions in the stellar photosphere. Instead, we list arguments as to why the effect of dark spots likely dominated over bright regions in the period of our monitoring. Furthermore, our photometry proves an increase in variability over at least four years, indicative for a cyclic activity behavior. The age of GJ 1214 is likely between 6 and 10 Gyr. Conclusions: The long-term photometry allows for a correction of unocculted spots. For an active star such as GJ 1214, there remains a degeneracy between occulted spots and the transit parameters used to build the transmission spectrum. This degeneracy can only be broken by high-precision transit photometry resolving the spot crossing signature in the transit light curve. Based on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC.The photometry tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A35
Electron Micrographs of Quail Limb Bones formed in microgravity
NASA Technical Reports Server (NTRS)
2003-01-01
Electron micrographs of quail limb bones that formed under the influence of microgravity show decreased mineralization compared to bones formed in normal gravity. The letters B and C indicate bone and cartilage sides of the sample, respectively, with the arrows marking the junction between bone and cartilage cells. The asterisks indicate where mineralization begins. The bone that developed during spaceflight (top) shows less mineral compared to the control sample (bottom); the control sample clearly shows mineral deposits (dark spots) that are absent in the flight sample. Quail eggs are small and develop quickly, making them ideal for space experiments. In late 2001, the Avian Development Facility (ADF) made its first flight and carried eggs used in two investigations, development and function of the irner-ear balance system in normal and altered gravity environments, and skeletal development in embryonic quail.
NASA Technical Reports Server (NTRS)
1998-01-01
Using powerful ground-and space-based telescopes, scientists have obtained a moving look at some of the wildest, weirdest weather in the solar system.
Combining simultaneous observations of Neptune made with the Hubble Space Telescope and NASA's Infrared Telescope Facility on Mauna Kea, Hawaii, a team of scientists led by Lawrence A. Sromovsky of the University of Wisconsin-Madison has captured the most insightful images to date of a planet whose blustery weather -- monster storms and equatorial winds of 900 miles per hour -- bewilders scientists.Blending a series of Hubble images, Sromovsky's team constructed a time-lapse rotation movie of Neptune, permitting scientists to watch the ebb and flow of the distant planet's weather. And while the observations, presented here at a meeting of the American Astronomical Society's Division of Planetary Science, are helping scientists tease out clues to the planet's stormy weather, they also are deepening some of Neptune's mysteries, said Sromovsky.The weather on Neptune, the eighth planet from the sun, is an enigma to begin with. The mechanism that drives its near-supersonic winds and giant storms has yet to be discerned.On Earth, weather is driven by energy from the sun as it heats the atmosphere and oceans. On Neptune, the sun is 900 times dimmer and scientists have yet to understand how Neptune's weather-generating machinery can be so efficient.'It's an efficient weather machine compared to Earth,' said Sromovsky. 'It seems to run on almost no energy.'In an effort to dissect the distant planet's atmosphere and monitor its bizarre weather, Sromovsky and his colleagues obtained a series of measurements and images over the span of three of Neptune's rotations.From those observations, Sromovsky said it is possible to measure Neptune's circulation and view a 'strange menagerie of variable, discrete cloud features and zonal bands' of weather. Moreover, the new observations enabled Sromovsky's team to probe some of the deeper features of the atmosphere and to map Neptune's cloud tops.'We can show some clouds are higher than others, that altitudes vary,' he said. Knowing something about the topography of Neptune's clouds, provides a direct way to measure Neptune's powerful winds.A looming mystery, he said, is the fate of huge dark spots, possibly giant storms. When the planetary probe Voyager visited Neptune in 1989, it detected the Great Dark Spot, a pulsating feature nearly the size of the Earth itself. Two years ago, Hubble observations showed the spot had disappeared, and that another, smaller spot had emerged. But instead of growing to a large-scale storm like the Great Dark Spot, the new spot appears to be trapped at a fixed latitude and may be declining in intensity, said Sromovsky, a senior scientist at UW-Madison's Space Science and Engineering Center.'They behave like storms, and the Great Dark Spot was an exaggerated features we haven't seen on any other planet. They seem to come and go, and rather than an exciting development of these dark spots, they dissipate.'Another strange aspect of the distant planet's weather are distinct bands of weather that run parallel to the Neptunian equator. The weather bands encircle the planet and, in some respects, may be similar to the equatorial region of the Earth where tropical heat provides abundant energy to make clouds.'We can see regions of latitude where Neptune consistently generates bright clouds,' said Sromovsky. The regions are both above and below the planet's equator, but he added that it was uncertain what their explanation is in terms of atmospheric circulation.Sromovsky said that compared to the look provided by the Voyager spacecraft, Neptune is a different place: 'The character of Neptune is different from what it was at the time of Voyager. The planet seems stable, yet different.'Sromovsky's Hubble observations were made with Wide Field Planetary Camera 2 and the Near Infrared Camera and Multi-Object Spectrometer. The different instruments allowed observations to be made in a variety of wavelengths, each providing a different set of information about Neptune's clouds, their structures and how they circulate.HCIT Contrast Performance Sensitivity Studies: Simulation Versus Experiment
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Shaklan, Stuart; Krist, John; Cady, Eric J.; Kern, Brian; Balasubramanian, Kunjithapatham
2013-01-01
Using NASA's High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory, we have experimentally investigated the sensitivity of dark hole contrast in a Lyot coronagraph for the following factors: 1) Lateral and longitudinal translation of an occulting mask; 2) An opaque spot on the occulting mask; 3) Sizes of the controlled dark hole area. Also, we compared the measured results with simulations obtained using both MACOS (Modeling and Analysis for Controlled Optical Systems) and PROPER optical analysis programs with full three-dimensional near-field diffraction analysis to model HCIT's optical train and coronagraph.
Skin Conditions during Pregnancy
... by an increase in the body’s melanin—a natural substance that gives color to the skin and hair. Dark spots and melasma usually fade on their ... of female reproductive organs. Immune System: The body’s natural defense ... pubic hair that darkens during pregnancy. Melasma: A common skin ...
Jupiter with Satellites Io and Europa
1996-01-29
NASA's Voyager 1 took this photo of Jupiter and two of its satellites Io, left, and Europa on Feb. 13, 1979. Io is above Jupiter Great Red Spot; Europa is above Jupiter clouds. The poles are dark and reddish. http://photojournal.jpl.nasa.gov/catalog/PIA00144
1989-08-23
P-34666 This false color photograph of Neptune was reconstructed from two images taken by Voyager 2's wide angle camera, through the orange and two different methane filters. Objects that deep in the atmosphere are blue, while those at higher altitudes are white. Light at methane wavelengths is mostly absorbed in the deeper atmosphere. The bright, white feature is a high altitude cloud just south of the Great dark Spot. The hard, sharp inner boundary within the bright cloud is an artifact of computer processing on Earth. Other, smaller clouds associated with the Great Dark Spot are white or pink, and are also at high altitudes. Neptune's limb looks reddish because Voyager 2 is viewing it tangentially, and the sunlight is scattered back to space before it can be absorbed by methane. A long, narrow band of high-altitude clouds near the top of the image is located at 25 degrees north latitude, and faint hazes mark the equator and polor regions
Poyarkov, Nikolay A; Kropachev, Ivan I; Gogoleva, Svetlana S; Orlov, Nikolai L
2018-04-20
A new species of small tree frog from a primary montane tropical forest of central Vietnam, Tay Nguyen Plateau, is described based on morphological, molecular, and acoustic evidence. The Golden Bug-Eyed Frog, Theloderma auratum sp. nov., is distinguishable from its congeners and other small rhacophorid species based on a combination of the following morphological attributes: (1) bony ridges on head absent; (2) smooth skin completely lacking calcified warts or asperities; (3) pointed elongated tapering snout; (4) vocal opening in males absent; (5) vomerine teeth absent; (6) males of small body size (SVL 21.8-26.4 mm); (7) head longer than wide; ED/SVL ratio 13%-15%; ESL/SVL ratio 16%-20%; (8) small tympanum (TD/EL ratio 50%-60%) with few tiny tubercles; (9) supratympanic fold absent; (10) ventral surfaces completely smooth; (11) webbing between fingers absent; (12) outer and inner metacarpal tubercles present, supernumerary metacarpal tubercle single, medial, oval in shape; (13) toes half-webbed: I 2-2¼ II 1½-2¾ III 2-3¼ IV 3-1½ V; (14) inner metatarsal tubercle present, oval; outer metatarsal tubercle absent; (15) iris bicolored; (16) dorsal surfaces golden-yellow with sparse golden-orange speckling or reticulations and few small dark-brown spots; (17) lateral sides of head and body with wide dark reddish-brown to black lateral stripes, clearly separated from lighter dorsal coloration by straight contrasting edge; (18) ventral surfaces of body, throat, and chest greyish-blue with indistinct brown confluent blotches; (19) upper eyelids with few (3-5) very small flat reddish superciliary tubercles; (20) limbs dorsally reddish-brown, ventrally brown with small bluish-white speckles. The new species is also distinct from all congeners in 12S rRNA to 16S rRNA mitochondrial DNA fragment sequences (uncorrected genetic distance P>8.9%). Advertisement call and tadpole morphology of the new species are described. Our molecular data showed Theloderma auratum sp. nov. to be a sister species of Th. palliatum from Langbian Plateau in southern Vietnam.
Poyarkov, Nikolay A.; Kropachev, Ivan I.; Gogoleva, Svetlana S.; Orlov, Nikolai L.
2018-01-01
A new species of small tree frog from a primary montane tropical forest of central Vietnam, Tay Nguyen Plateau, is described based on morphological, molecular, and acoustic evidence. The Golden Bug-Eyed Frog, Theloderma auratum sp. nov., is distinguishable from its congeners and other small rhacophorid species based on a combination of the following morphological attributes: (1) bony ridges on head absent; (2) smooth skin completely lacking calcified warts or asperities; (3) pointed elongated tapering snout; (4) vocal opening in males absent; (5) vomerine teeth absent; (6) males of small body size (SVL 21.8–26.4 mm); (7) head longer than wide; ED/SVL ratio 13%–15%; ESL/SVL ratio 16%–20%; (8) small tympanum (TD/EL ratio 50%–60%) with few tiny tubercles; (9) supratympanic fold absent; (10) ventral surfaces completely smooth; (11) webbing between fingers absent; (12) outer and inner metacarpal tubercles present, supernumerary metacarpal tubercle single, medial, oval in shape; (13) toes half-webbed: I 2–2¼ II 1½–2¾ III 2–3¼ IV 3–1½ V; (14) inner metatarsal tubercle present, oval; outer metatarsal tubercle absent; (15) iris bicolored; (16) dorsal surfaces golden-yellow with sparse golden-orange speckling or reticulations and few small dark-brown spots; (17) lateral sides of head and body with wide dark reddish-brown to black lateral stripes, clearly separated from lighter dorsal coloration by straight contrasting edge; (18) ventral surfaces of body, throat, and chest greyish-blue with indistinct brown confluent blotches; (19) upper eyelids with few (3–5) very small flat reddish superciliary tubercles; (20) limbs dorsally reddish-brown, ventrally brown with small bluish-white speckles. The new species is also distinct from all congeners in 12S rRNA to 16S rRNA mitochondrial DNA fragment sequences (uncorrected genetic distance P>8.9%). Advertisement call and tadpole morphology of the new species are described. Our molecular data showed Theloderma auratum sp. nov. to be a sister species of Th. palliatum from Langbian Plateau in southern Vietnam. PMID:29683110
Koana, Takao; Takahashi, Takashi; Tsujimura, Hidenobu
2012-03-01
The third instar larvae of Drosophila were irradiated with X rays, and the somatic mutation frequency in their wings was measured after their eclosion. In the flies with normal DNA repair and apoptosis functions, 0.2 Gy irradiation at 0.05 Gy/min reduced the frequency of the so-called small spot (mutant cell clone with reduced reproductive activity) compared with that in the sham-irradiated flies. When apoptosis was suppressed using the baculovirus p35 gene, the small spot frequency increased four times in the sham-irradiated control group, but the reduction by the 0.2-Gy irradiation was still evident. In a non-homologous end joining-deficient mutant, the small spot frequency was also reduced by 0.2 Gy radiation. In a mutant deficient in single-strand break repair, no reduction in the small spot frequency by 0.2 Gy radiation was observed, and the small spot frequency increased with the radiation dose. Large spot (mutant cell clone with normal reproductive activity) frequency was not affected by suppression of apoptosis and increased monotonically with radiation dose in wild-type larvae and in mutants for single- or double-strand break repair. It is hypothesized that some of the small spots resulted from single-strand damage and, in wild-type larvae, 0.2 Gy radiation activated the normal single-strand break repair gene, which reduced the background somatic mutation frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russ, M; Shankar, A; Lau, A
Purpose: Demonstrate and quantify the augmented resolution due to focalspot size decrease in images acquired on the anode side of the field, for both small and medium (0.3 and 0.6mm) focal-spot sizes using the experimental task-based GM-ROD metric. Theoretical calculations have shown that a medium focal-spot can achieve the resolution of a small focal-spot if acquired with a tilted anode, effectively providing a higher-output small focal-spot. Methods: The MAF-CMOS (micro-angiographic fluoroscopic complementary-metal-oxide semiconductor) detector (75µm pixel pitch) imaged two copper wire segments of different diameter and a pipeline stent at the central axis and on the anode side of themore » beam, achieved by tilting the x-ray C-arm (Toshiba Infinix) to 6° and realigning the detector with the perpendicular ray to correct for x-ray obliquity. The relative gain in resolution was determined using the GM-ROD metric, which compares images on the basis of the Fourier transform of the image and the measured NNPS. To emphasize the geometric unsharpness, images were acquired at a magnification of two. Results: Images acquired on the anode side were compared to those acquired on the central axis with the same target-area focal-spot to consider the effect of an angled tube, and for all three objects the advantage of the smaller effective focal-spot was clear, showing a maximum improvement of 36% in GM-ROD. The images obtained with the small focal-spot at the central axis were compared to those of the medium focal-spot at the anode side and, for all objects, the relative performance was comparable. Conclusion: For three objects, the GM-ROD demonstrated the advantage of the anode side focal-spot. The comparable performance of the medium focal-spot on the anode side will allow for a high-output small focal-spot; a necessity in endovascular image-guided interventions. Partial support from an NIH grant R01EB002873 and an equipment grant from Toshiba Medical Systems Corp.« less
Pyrenophora teres: profile of an increasingly damaging barley pathogen.
Liu, Zhaohui; Ellwood, Simon R; Oliver, Richard P; Friesen, Timothy L
2011-01-01
Pyrenophora teres, causal agent of net blotch of barley, exists in two forms, designated P. teres f. teres and P. teres f. maculata, which induce net form net blotch (NFNB) and spot form net blotch (SFNB), respectively. Significantly more work has been performed on the net form than on the spot form although recent activity in spot form research has increased because of epidemics of SFNB in barley-producing regions. Genetic studies have demonstrated that NFNB resistance in barley is present in both dominant and recessive forms, and that resistance/susceptibility to both forms can be conferred by major genes, although minor quantitative trait loci have also been identified. Early work on the virulence of the pathogen showed toxin effector production to be important in disease induction by both forms of pathogen. Since then, several laboratories have investigated effectors of virulence and avirulence, and both forms are complex in their interaction with the host. Here, we assemble recent information from the literature that describes both forms of this important pathogen and includes reports describing the host-pathogen interaction with barley. We also include preliminary findings from a genome sequence survey. Pyrenophora teres Drechs. Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Dothideomycete; Order Pleosporales; Family Pleosporaceae; Genus Pyrenophora, form teres and form maculata. To date, no clear morphological or life cycle differences between the two forms of P. teres have been identified, and therefore they are described collectively. Towards the end of the growing season, the fungus produces dark, globosely shaped pseudothecia, about 1-2mm in diameter, on barley. Ascospores measuring 18-28µm × 43-61µm are light brown and ellipsoidal and often have three to four transverse septa and one or two longitudinal septa in the median cells. Conidiophores usually arise singly or in groups of two or three and are lightly swollen at the base. Conidia measuring 30-174µm × 15-23µm are smoothly cylindrical and straight, round at both ends, subhyaline to yellowish brown, often with four to six pseudosepta. Morphologically, P. teres f. teres and P. teres f. maculata are indistinguishable. Comprehensive work on the host range of P. teres f. teres has been performed; however, little information on the host range of P. teres f. maculata is available. Hordeum vulgare and H. vulgare ssp. spontaneum are considered to be the primary hosts for P. teres. However, natural infection by P. teres has been observed in other wild Hordeum species and related species from the genera Bromus, Avena and Triticum, including H. marinum, H. murinum, H. brachyantherum, H. distichon, H. hystrix, B. diandrus, A. fatua, A. sativa and T. aestivum (Shipton et al., 1973, Rev. Plant Pathol. 52:269-290). In artificial inoculation experiments under field conditions, P. teres f. teres has been shown to infect a wide range of gramineous species in the genera Agropyron, Brachypodium, Elymus, Cynodon, Deschampsia, Hordelymus and Stipa (Brown et al., 1993, Plant Dis. 77:942-947). Additionally, 43 gramineous species were used in a growth chamber study and at least one of the P. teres f. teres isolates used was able to infect 28 of the 43 species tested. However, of these 28 species, 14 exhibited weak type 1 or 2 reactions on the NFNB 1-10 scale (Tekauz, 1985). These reaction types are small pin-point lesions and could possibly be interpreted as nonhost reactions. In addition, the P. teres f. teres host range was investigated under field conditions by artificially inoculating 95 gramineous species with naturally infected barley straw. Pyrenophora teres f. teres was re-isolated from 65 of the species when infected leaves of adult plants were incubated on nutrient agar plates; however, other than Hordeum species, only two of the 65 host species exhibited moderately susceptible or susceptible field reaction types, with most species showing small dark necrotic lesions indicative of a highly resistant response to P. teres f. teres. Although these wild species have the potential to be alternative hosts, the high level of resistance identified for most of the species makes their role as a source of primary inoculum questionable. Two types of symptom are caused by P. teres. These are net-type lesions caused by P. teres f. teres and spot-type lesions caused by P. teres f. maculata. The net-like symptom, for which the disease was originally named, has characteristic narrow, dark-brown, longitudinal and transverse striations on infected leaves. The spot form symptom consists of dark-brown, circular to elliptical lesions surrounded by a chlorotic or necrotic halo of varying width. Molecular Plant Pathology © 2010 BSPP and Blackwell Publishing Ltd. No claim to original US Government Works.
Propagation of various dark hollow beams in a turbulent atmosphere
NASA Astrophysics Data System (ADS)
Cai, Yangjian; He, Sailing
2006-02-01
Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry in a turbulent atmosphere is investigated. Analytical formulas for the average intensity of various DHBs propagating in a turbulent atmosphere are derived in a tensor form based on the extended Huygens-Fresnel integral. The intensity and spreading properties of the DHBs in a turbulent atmosphere are studied numerically. It is found that after a long propagation distance a dark hollow beam of circular or noncircular eventually becomes a circular Gaussian beam (without dark hollow) in a turbulent atmosphere, which is much different from its propagation properties in free space. The conversion from a DHB to a circular Gaussian beam becomes quicker and the beam spot in the far field spreads more rapidly for a larger structure constant, a shorter wavelength, a lower beam order and a smaller waist size of the initial beam.
Propagation of various dark hollow beams in a turbulent atmosphere.
Cai, Yangjian; He, Sailing
2006-02-20
Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry in a turbulent atmosphere is investigated. Analytical formulas for the average intensity of various DHBs propagating in a turbulent atmosphere are derived in a tensor form based on the extended Huygens-Fresnel integral. The intensity and spreading properties of the DHBs in a turbulent atmosphere are studied numerically. It is found that after a long propagation distance a dark hollow beam of circular or noncircular eventually becomes a circular Gaussian beam (without dark hollow) in a turbulent atmosphere, which is much different from its propagation properties in free space. The conversion from a DHB to a circular Gaussian beam becomes quicker and the beam spot in the far field spreads more rapidly for a larger structure constant, a shorter wavelength, a lower beam order and a smaller waist size of the initial beam.
The Spot 42 RNA: A regulatory small RNA with roles in the central metabolism.
Bækkedal, Cecilie; Haugen, Peik
2015-01-01
The Spot 42 RNA is a 109 nucleotide long (in Escherichia coli) noncoding small regulatory RNA (sRNA) encoded by the spf (spot fourty-two) gene. spf is found in gamma-proteobacteria and the majority of experimental work on Spot 42 RNA has been performed using E. coli, and recently Aliivibrio salmonicida. In the cell Spot 42 RNA plays essential roles as a regulator in carbohydrate metabolism and uptake, and its expression is activated by glucose, and inhibited by the cAMP-CRP complex. Here we summarize the current knowledge on Spot 42, and present the natural distribution of spf, show family-specific secondary structural features of Spot 42, and link highly conserved structural regions to mRNA target binding.
Dark Areas in Cratered Terrain on Vesta
2011-10-14
In this image from NASA Dawn spacecraft, a number of small dark areas, mostly clustered in the center and left of the image, are visible in asteroid Vesta cratered landscape. A lot of these dark patches are small impact craters.
NASA Astrophysics Data System (ADS)
Badano, Aldo
1999-11-01
This thesis addresses the characterization of light scattering processes that degrade image quality in high performance electronic display devices for digital radiography. Using novel experimental and computational tools, we study the lateral diffusion of light in emissive display devices that causes extensive veiling glare and significant reduction of the physical contrast. In addition, we examine the deleterious effects of ambient light reflections that affect the contrast of low luminance regions, and superimpose unwanted structured signal. The analysis begins by introducing the performance limitations of the human visual system to define high fidelity requirements. It is noted that current devices severely suffer from image quality degradation due to optical transport processes. To model the veiling glare and reflectance characteristics of display devices, we introduce a Monte Carlo light transport simulation code, DETECT-II, that tracks individual photons through multiple scattering events. The simulation accounts for the photon polarization state at each scattering event, and provides descriptions for rough surfaces and thin film coatings. A new experimental method to measure veiling glare is described next, based on a conic collimated probe that minimizes contamination from bright areas. The measured veiling glare ratio is taken to be the luminance in the surrounding bright field divided by the luminance in the dark circle. We show that veiling glare ratios in the order of a few hundreds can be measured with an uncertainty of a few percent. The veiling glare response function is obtained by measuring the small spot contrast ratio of test patterns having varying dark spot radius. Using DETECT-II, we then estimate the ring response functions for a high performance medical imaging monitor of current design, and compare the predictions of the model with the experimentally measured response function. The data presented in this thesis demonstrate that although absorption in the faceplate of high performance monochrome cathode-ray tube monitors have reduced glare, a black matrix design is needed for high fidelity applications. For a high performance medical imaging monitor with anti-reflective coating, the glare ratio for a 1 cm diameter dark spot was measured to be 240. Finally, we introduce experimental techniques for measurements of specular and diffuse display reflectance, and we compare measured reflection coefficients with Monte Carlo estimates. A specular reflection coefficient of 0.0012, and a diffuse coefficient of 0.005 nits/lux are required to minimize degradation from ambient light in rooms with 100 lux illumination. In spite of having comparable reflection coefficients, the low maximum luminance of current devices worsens the effect of ambient light reflections when compared to radiographic film. Flat panel technologies with optimized designs can perform even better than film due to a thin faceplate, increased light absorption, and high brightness.
Hot spot-based design of small-molecule inhibitors for protein-protein interactions.
Guo, Wenxing; Wisniewski, John A; Ji, Haitao
2014-06-01
Protein-protein interactions (PPIs) are important targets for the development of chemical probes and therapeutic agents. From the initial discovery of the existence of hot spots at PPI interfaces, it has been proposed that hot spots might provide the key for developing small-molecule PPI inhibitors. However, there has been no review on the ways in which the knowledge of hot spots can be used to achieve inhibitor design, nor critical examination of successful examples. This Digest discusses the characteristics of hot spots and the identification of druggable hot spot pockets. An analysis of four examples of hot spot-based design reveals the importance of this strategy in discovering potent and selective PPI inhibitors. A general procedure for hot spot-based design of PPI inhibitors is outlined. Copyright © 2014 Elsevier Ltd. All rights reserved.
NICMOS PEERS THROUGH DUST TO REVEAL YOUNG STELLAR DISKS
NASA Technical Reports Server (NTRS)
2002-01-01
The following images were taken by NASA Hubble Space Telescope's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). All of the objects are extremely young stars, 450 light-years away in the constellation Taurus. Most of the nebulae represent small dust particles around the stars, which are seen because they are reflecting starlight. In the color-coding, regions of greatest dust concentration appear red. All photo credits: D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA [Top left]: CoKu Tau/1. This image shows a newborn binary star system, CoKu Tau/1, lying at the center of four 'wings' of light extending as much as 75 billion miles from the pair. The 'wings' outline the edges of a region in the stars' dusty surroundings, which have been cleared by outflowing gas. A thin, dark lane extends to the left and to right of the binary, suggesting that a disk or ring of dusty material encircles the two young stars. [Top center]: DG Tau B - An excellent example of the complementary nature of Hubble's instruments may be found by comparing the infrared NICMOS image of DG Tau B to the visible-light Wide Field and Planetary Camera 2 (WFPC2) image of the same object. WFPC2 highlights the jet emerging from the system, while NICMOS penetrates some of the dust near the star to more clearly outline the 50 billion-mile-long dust lane (the horizontal dark band, which indicates the presence of a large disk forming around the infant star). The young star itself appears as the bright red spot at the corner of the V-shaped nebula. [Top right]: Haro 6-5B - This image of the young star Haro 6-5B shows two bright regions separated by a dark lane. As seen in the WFPC2 image of the same object, the bright regions represent starlight reflecting from the upper and lower surfaces of the disk, which is thicker at its edges than its center. However, the infrared view reveals the young star just above the dust lane. [Bottom left]: I04016 - A very young star still deep within the dusty cocoon from which it formed is shown in this image of IRAS 04016+2610. The star is visible as a bright reddish spot at the base of a bowl-shaped nebula about 100 billion miles across at the widest point. The nebula arises from dusty material falling onto a forming circumstellar disk, seen as a partial dark band to the left of the star. The necklace of bright spots above the star is an image artifact. [Bottom center]: I04248 - In this image of IRAS 04248+2612, the infrared eyes of NICMOS peer through a dusty cloud to reveal a double-star system in formation. A nebula extends at least 65 billion miles in opposite directions from the twin stars, and is illuminated by them. This nebula was formed from material ejected by the young star system. The apparent 'pinching' of this nebula close to the binary suggests that a ring or disk of dust and gas surrounds the two stars. [Bottom right]: I04302 - This image shows IRAS 04302+2247, a star hidden from direct view and seen only by the nebula it illuminates. Dividing the nebula in two is a dense, edge-on disk of dust and gas which appears as the thick, dark band crossing the center of the image. The disk has a diameter of 80 billion miles (15 times the diameter of Neptune's orbit), and has a mass comparable to the Solar Nebula, which gave birth to our planetary system. Dark clouds and bright wisps above and below the disk suggest that it is still building up from infalling dust and gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauböck, Michi; Psaltis, Dimitrios; Özel, Feryal, E-mail: mbaubock@email.arizona.edu
We calculate the effects of spot size on pulse profiles of moderately rotating neutron stars. Specifically, we quantify the bias introduced in radius measurements from the common assumption that spots are infinitesimally small. We find that this assumption is reasonable for spots smaller than 10°–18° and leads to errors that are ≤10% in the radius measurement, depending on the location of the spot and the inclination of the observer. We consider the implications of our results for neutron star radius measurements with the upcoming and planned X-ray missions NICER and LOFT. We calculate the expected spot size for different classesmore » of sources and investigate the circumstances under which the assumption of a small spot is justified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisessar, S.; Palmer, K.T.; Kuja, A.L.
Ambient rain in southern Ontario has a volume-weighted average pH of approximately 4.2. Tomato (Lycopersicon esculentum Mill var. 'Chico III') seedlings were exposed to simulated acidic rain in specially designed chambers. The inoculum of Pseudomonas tomato (Okabe) Alstatt, causal agent of bacterial speck, was sprayed on plants before or after exposure to acidic rain of pH 2.5, 3.5, and 4.5, as well as on plants not exposed to the simulated acidic rain. Speck symptoms (small, dark, brown spots with yellow halos) were found on all inoculated plants. Exposure of plants to simulted acidic rain inhibited speck development, but the inhibitionmore » was greater on plants exposed to acidic rain after inoculation. Spot necrosis, a typical response to acid rain, occurred on up to 15 to 20% of the leaf area on all tomato plants treated with acidic rain at pH 2.5. Plants alos showed a decrease in growth (height and fresh and dry weights) with an increase in rain acidity. Leaves injured by simulated acidic rain and examined histopathologically displayed cellular malformations including hyperplasia and hypertrophy. Pseudomonas tomato failed to grow on acidified King B medium or Difco nutrient broth adjusted to pH 3.5 or lower.« less
The epistellar body and what followed from its discovery.
Young, J Z
1990-07-01
The sequence of discoveries that has followed the investigation of this small yellow spot shows the value of studies begun out of "mere curiosity". The spot occurs on the stellate ganglion of octopods. It proved to be an enclosed sac, perhaps a gland. The search for it in squids and cuttlefishes led to the discovery of the giant nerve fibres. At first they were thought to be veins but we soon showed that they were nerve fibres concerned with jet propulsion. Their action potentials, membranes and synapses have been used for thousand of studies, including those that led to the Hodkin Huxley equations. They have been the basis of much of modern neuroscience. The epistellar body itself proved not to be a gland but a photoreceptor. Comparable photosensitive vesicles are especially large in the heads of deep-sea squids. In the mesopelagic ones they allow the squid to conceal itself by counterillumination, matching its own light output to the light coming from above. In bathypelagic squids the vesicles are enormous and probably keep the animals in the dark, where they breed. The function of the epistellar body, lying within the mantle of octopods is still unknown. It may act in the transparent larval stage to trigger the ejection of luminous plankton, which would be a hazard.
Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.
Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima
2012-08-27
In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.
Genèse d'un horizon tacheté par déferruginisation dans une couverture à latérite du Bassin amazonien
NASA Astrophysics Data System (ADS)
Rosolen, Vania; Lamotte, Mathieu; Boulet, René; Trichet, Jean; Rouer, Olivier; José Melfi, Adolpho
A mottled horizon in a laterite cover (without any duricrust) was studied by microscopy and quantitative chemical microanalysis. Apart from the voids, light red spots consisting of Fe-rich particles (≈2 μm) are set in clayey plasma. Dark red spots consisted of concentrations of Fe-rich particles. These patterns are inherited. On the border of structural or biological voids, where Fe-depletion features are systematic, gray or yellow spots result from dissolution of the Fe-rich particles and impregnation of the plasma by iron, respectively. The present Fe-depletion is the dominant process that explains the mottled differentiation and the absence of lateritic duricrust. To cite this article: V. Rosolen et al., C. R. Geoscience 334 (2002) 187-195.
Park, Sung-Hee; Choi, In-Young; Seo, Kyoung-Won; Kim, Jin-Ho; Galea, Victor
2017-01-01
Leaf spot disease on black chokeberry (Aronia melanocarpa) was observed at several locations in Korea during 2014–2015. Leaf spots were distinct, scattered over the leaf surface and along the leaf border, subcircular to irregular and brown surrounded by a distinct dark color, and were expanded and coalesced into irregularly shaped lesions. Severely infected leaves became dry and fell off eventually. The causative agent was identified as Pseudocercospora pyricola. Morphological observations and phylogenetic analyses of multiple genes, including internal transcribed spacer, translation elongation factor 1-alpha, actin, and the large subunit ribosomal DNA were conducted. The pathogenicity test was conducted twice yielding similar results, fulfilling Koch's postulates. To our knowledge, this is the first report on P. pyricola infection of A. melanocarpa globally. PMID:28435353
Pereira, Edson H L; Lehmann, Pablo A; Reis, Roberto E
2016-07-28
A new species of Pareiorhaphis is described from the upper Rio Doce basin. The description is based on a series of specimens recently collected in small headwater tributaries to the Rio Guanhães, a tributary of the Rio Santo Antonio, left bank of the Rio Doce in Minas Gerais State, eastern Brazil. Pareiorhaphis vetula, new species, is a small loricariid catfish with dark brown spots irregularly scattered over a brown background on the dorsal surface of body and along flanks. The new species differs from all other Pareiorhaphis species by having the maxillary barbel completely adnate to the lower lip and by adult males possessing a particularly elongate, sharply pointed, conical urogenital papilla. In addition, Pareiorhaphis vetula is further distinguished from most congeners by having a shorter pelvic-fin spine, or by possessing more numerous premaxillary teeth, and by lacking a dorsal-fin spinelet. A comparison with congeners P. nasuta, P. scutula and P. proskynita, which also occur in headwater streams of the Rio Doce basin is also presented.
The Spot 42 RNA: A regulatory small RNA with roles in the central metabolism
Bækkedal, Cecilie; Haugen, Peik
2015-01-01
The Spot 42 RNA is a 109 nucleotide long (in Escherichia coli) noncoding small regulatory RNA (sRNA) encoded by the spf (spot fourty-two) gene. spf is found in gamma-proteobacteria and the majority of experimental work on Spot 42 RNA has been performed using E. coli, and recently Aliivibrio salmonicida. In the cell Spot 42 RNA plays essential roles as a regulator in carbohydrate metabolism and uptake, and its expression is activated by glucose, and inhibited by the cAMP-CRP complex. Here we summarize the current knowledge on Spot 42, and present the natural distribution of spf, show family-specific secondary structural features of Spot 42, and link highly conserved structural regions to mRNA target binding. PMID:26327359
A Possible Solution to the Smallness Problem of Dark Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; /SLAC; Gu, Je-An
2005-07-08
The smallness of the dark energy density has been recognized as the most crucial difficulty in understanding dark energy and also one of the most important questions in the new century. In a recent paper[1], we proposed a new dark energy model in which the smallness of the cosmological constant is naturally achieved by invoking the Casimir energy in a supersymmetry-breaking brane-world. In this paper we review the basic notions of this model. Various implications, perspectives, and subtleties of this model are briefly discussed.
7 CFR 51.1323 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... limbrubs or dark brown or black discoloration caused by limbrubs which exceeds an aggregate area of three... under the definition of russeting. (7) Insects: (i) Worm holes. More than three healed codling moth... or disfigures the fruit. 2 (8) Disease: (i) Scab spots which are black, and which cover an aggregate...
7 CFR 51.1323 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
... limbrubs or dark brown or black discoloration caused by limbrubs which exceeds an aggregate area of three... under the definition of russeting. (7) Insects: (i) Worm holes. More than three healed codling moth... or disfigures the fruit. 2 (8) Disease: (i) Scab spots which are black, and which cover an aggregate...
Perceived Shrinkage of Motion Paths
ERIC Educational Resources Information Center
Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart
2009-01-01
We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require…
Influence of skin ageing features on Chinese women's perception of facial age and attractiveness
Porcheron, A; Latreille, J; Jdid, R; Tschachler, E; Morizot, F
2014-01-01
Objectives Ageing leads to characteristic changes in the appearance of facial skin. Among these changes, we can distinguish the skin topographic cues (skin sagging and wrinkles), the dark spots and the dark circles around the eyes. Although skin changes are similar in Caucasian and Chinese faces, the age of occurrence and the severity of age-related features differ between the two populations. Little is known about how the ageing of skin influences the perception of female faces in Chinese women. The aim of this study is to evaluate the contribution of the different age-related skin features to the perception of age and attractiveness in Chinese women. Methods Facial images of Caucasian women and Chinese women in their 60s were manipulated separately to reduce the following skin features: (i) skin sagging and wrinkles, (ii) dark spots and (iii) dark circles. Finally, all signs were reduced simultaneously (iv). Female Chinese participants were asked to estimate the age difference between the modified and original images and evaluate the attractiveness of modified and original faces. Results Chinese women perceived the Chinese faces as younger after the manipulation of dark spots than after the reduction in wrinkles/sagging, whereas they perceived the Caucasian faces as the youngest after the manipulation of wrinkles/sagging. Interestingly, Chinese women evaluated faces with reduced dark spots as being the most attractive whatever the origin of the face. The manipulation of dark circles contributed to making Caucasian and Chinese faces being perceived younger and more attractive than the original faces, although the effect was less pronounced than for the two other types of manipulation. Conclusion This is the first study to have examined the influence of various age-related skin features on the facial age and attractiveness perception of Chinese women. The results highlight different contributions of dark spots, sagging/wrinkles and dark circles to their perception of Chinese and Caucasian faces. Résumé Objectifs Le vieillissement entraine des changements caractéristiques de l'apparence de la peau du visage. Parmi ces changements on distingue les éléments topographiques (relâchement de la peau et rides), les taches brunes et les cernes sur le contour de l'œil. Bien que ces modifications cutanées avec l'âge soient similaires pour les visages caucasiens et chinois; leur âge d'apparition et leur degré de sévérité varient entre ces deux populations. Il y a très peu d'informations disponibles liées à l'influence du vieillissement cutané sur la perception des visages féminins par les femmes chinoises. L'objectif de cette étude est d'évaluer la contribution des différents signes de vieillissement à la perception de l'âge et d'attirance chez ces femmes. Methodes Des photos de visages de femmes caucasiennes et chinoises d'environ 60 ans ont été manipulées de façon à réduire séparément les signes suivants: (i) le relâchement de la peau et les rides, (ii) les taches brunes, et (iii) les cernes. Enfin, tous les signes ont été atténués ensemble (iv). Des participantes chinoises ont estimé, à partir de ces photos, l'écart d'âge entre la version originale et chaque version modifiée; elles ont également évalué l'attirance des visages originaux et modifiés. Resultats Les femmes chinoises ont jugé les visages chinois plus jeunes après correction des taches qu'après correction des rides/relâchement, alors que les visages caucasiens ont été perçus les plus jeunes après correction des rides/relâchement. Les femmes chinoises ont jugé que les visages avec correction des taches étaient les plus attirants quelle que soit l'origine du visage. La manipulation des cernes a entraîné un rajeunissement des 2 types de visages et les a rendus plus attirants, même si l'effet observé était moindre que pour les autres corrections. Conclusion Il s'agit de première étude qui examine l'influence de plusieurs signes de vieillissement cutanés sur la perception de l'âge et de l'attirance des visages par les femmes chinoises. Les résultats mettent en évidence que les taches, les rides/relâchement et les cernes contribuent différemment à leur perception des visages chinois et caucasiens. PMID:24712710
NASA Technical Reports Server (NTRS)
1997-01-01
The Near-Infrared Mapping Spectrometer (NIMS) on Galileo obtained this image of half of Io's disk in darkness on September 19, 1997. This image, at 5 microns, shows several hot spots on Io, which are volcanic regions of enhanced thermal emission. The area shown is part of the leading hemisphere of Io.
Two new hot spots are shown and indicated in the image (New, and Shamshu). Neither of these hot spots were seen by NIMS or the Solid State Imaging Experiment, (SSI) prior to this observation, becoming only recently active. Several other previously known hot spots are labelled in the image. Galileo was at a distance of 342,000 km from Io when this observation was made.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.NASA Astrophysics Data System (ADS)
Santos-Sanz, P.; Lellouch, E.; Groussin, O.; Lacerda, P.; Müller, T. G.; Ortiz, J. L.; Kiss, C.; Vilenius, E.; Stansberry, J.; Duffard, R.; Fornasier, S.; Jorda, L.; Thirouin, A.
2017-08-01
Context. Time series observations of the dwarf planet Haumea and the Plutinos 2003 VS2 and 2003 AZ84 with Herschel/PACS are presented in this work. Thermal emission of these trans-Neptunian objects (TNOs) were acquired as part of the "TNOs are Cool" Herschel Space Observatory key programme. Aims: We search for the thermal light curves at 100 and 160 μm of Haumea and 2003 AZ84, and at 70 and 160 μm for 2003 VS2 by means of photometric analysis of the PACS data. The goal of this work is to use these thermal light curves to obtain physical and thermophysical properties of these icy Solar System bodies. Methods: When a thermal light curve is detected, it is possible to derive or constrain the object thermal inertia, phase integral and/or surface roughness with thermophysical modeling. Results: Haumea's thermal light curve is clearly detected at 100 and 160 μm. The effect of the reported dark spot is apparent at 100 μm. Different thermophysical models were applied to these light curves, varying the thermophysical properties of the surface within and outside the spot. Although no model gives a perfect fit to the thermal observations, results imply an extremely low thermal inertia (<0.5 J m-2 s-1/2 K-1, hereafter MKS) and a high phase integral (>0.73) for Haumea's surface. We note that the dark spot region appears to be only weakly different from the rest of the object, with modest changes in thermal inertia and/or phase integral. The thermal light curve of 2003 VS2 is not firmly detected at 70 μm and at 160 μm but a thermal inertia of (2 ± 0.5) MKS can be derived from these data. The thermal light curve of 2003 AZ84 is not firmly detected at 100 μm. We apply a thermophysical model to the mean thermal fluxes and to all the Herschel/PACS and Spitzer/MIPS thermal data of 2003 AZ84, obtaining a close to pole-on orientation as the most likely for this TNO. Conclusions: For the three TNOs, the thermal inertias derived from light curve analyses or from the thermophysical analysis of the mean thermal fluxes confirm the generally small or very small surface thermal inertias of the TNO population, which is consistent with a statistical mean value Γmean = 2.5 ± 0.5 MKS. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. PACS: The Photodetector Array Camera and Spectrometer is one of Herschel's instruments.
Delrieu-Trottin, Erwan; Williams, Jeffrey T; Planes, Serge
2014-08-29
A new species of wrasse, Macropharyngodon pakoko, is described from the Marquesas Islands, bringing the total number of species of the genus Macropharyngodon to 12. Macropharyngodon pakoko was found at depths from 0-42 m and is endemic to the Marquesas Islands. Macropharyngodon pakoko is similar to M. meleagris, which is widely distributed from the central and western Pacific to Cocos-Keeling in the Indian Ocean, but differs genetically and in several coloration characters: males with irregularly curved black humeral blotch with incomplete iridescent blue border; inverted irregular "U"- shaped band on the cheek; a small black spot at the upper base of the pectoral fin; and background color of the body greenish with faint bluish black spots on each scale. Females lack black pigment on the chest posterior to the ventral attachment of the gill membranes; reddish black blotches on the body are widely spaced, particularly on the head where they are more reddish and half the size of those on body; caudal fin with small, bright yellow spots arranged in narrow vertical bands with pale interspaces; pelvic fins pale with three reddish yellow cross-bands; a small black spot at the upper base of the pectoral fin; and small reddish spots along the base of the anal fin. Juveniles have irregular black blotches on the body, a small black spot instead of an ocellus posteriorly on the dorsal fin and lack large black spots and ocellus on the anal fin.
Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona
2015-01-01
Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern formation of trout are proposed. PMID:26467239
Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona
2015-11-01
Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern formation of trout are proposed. © 2015 Anatomical Society.
Relationship between Hot Spot Residues and Ligand Binding Hot Spots in Protein-Protein Interfaces
Zerbe, Brandon S.; Hall, David R.
2013-01-01
In the context of protein-protein interactions, the term “hot spot” refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening. PMID:22770357
2015-02-04
Although the season is late spring, carbon dioxide ice still covers much of the surface at this high latitude site. It is still a chilly -128 degrees Celsius. The weak boundaries of the polygonal structure of the surface have been eroded by spring sublimation of carbon dioxide as energy from the Sun turns ice to gas. The larger troughs in this image accentuate the surface polygonal structure, while the narrow cracks show the erosion caused when carbon dioxide gas escapes from under the seasonal ice layer carrying fine material from the surface. The dark fans in this image are made up of small particles from the surface deposited on top of the seasonal layer of ice. The fans originate at a crack, a weak spot that allows the gas to escape. The material is deposited in a direction determined by the direction of the wind as the gas was escaping. http://photojournal.jpl.nasa.gov/catalog/PIA19292
NASA Technical Reports Server (NTRS)
2004-01-01
This image composite shows two of the Mars Exploration Rover Opportunity's magnets, the 'capture' magnet (upper portion of left panel) and the 'filter' magnet (lower portion of left panel). Scientists use these tools to study the origins of martian dust in the atmosphere. The left panel was taken by the rover's panoramic camera. The four panels to the right, taken by the microscopic imager, show close-up views of the two magnets. The bull's-eye appearance of the capture magnet is a result of alternating magnetic fields, which are used to increase overall magnetic force. The filter magnet lacks these alternating fields and consequently produces a weaker magnetic force. This weaker force selectively attracts only strong magnetic particles.
Scientists were surprised by the large dark particles on the magnets because airborne particles are smaller in size. They theorize that these spots might be aggregates of small particles that clump together in a magnetic field.High-power AlGaInN lasers for Blu-ray disc system
NASA Astrophysics Data System (ADS)
Takeya, Motonubu; Ikeda, Shinroh; Sasaki, Tomomi; Fujimoto, Tsuyoshi; Ohfuji, Yoshio; Mizuno, Takashi; Oikawa, Kenji; Yabuki, Yoshifumi; Uchida, Shiro; Ikeda, Masao
2003-07-01
This paper describes an improved laser structure for AlGaInN based blue-violet lasers (BV-LDs). The design realizes a small beam divergence angle perpendicular to the junction plane and high characteristic temperature wihtout significant increase in threshold current density (Jth) by optimizing the position of the Mg-doped layer and introducing an undoped AlGaN layer between the active layer and the Mg-doped electron-blocking layer. The mean time to failure (MTTF) of devices based on this design was found to be closely related to the dislocation density of ELO-GaN basal layer. Under 50 mW CW operation at 70°C, a MTTF of over 5000 h was realized whenthe dark spot density (indicative of dislocation density) is less than ~5×106 cm-2. Power consumption under 50mW CW operation at 70°C was approximately 0.33 W, independent of the dislocation density.
Humoral immune response of the small-spotted catshark, Scyliorhinus canicula.
Crouch, Kathryn; Smith, Lauren E; Williams, Rebecca; Cao, Wei; Lee, Mike; Jensen, Allan; Dooley, Helen
2013-05-01
Cartilaginous fishes are the oldest group in which an adaptive immune system based on immunoglobulin-superfamily members is found. This manuscript compares humoral immune function in small-spotted catshark (Scyliorhinus canicula) with that described for spiny dogfish (Squalus acanthias), another member of the Squalomorphi superorder, and nurse shark, the model for humoral immunity in elasmobranchs and a member of the Galeomorphi superorder. Although small-spotted catshark and nurse shark are separated by over 200 million years we found that immunoglobulin isoforms are well conserved between the two species. However, the plasma protein profile of small-spotted catshark was most similar to that of spiny dogfish, with low levels of pentameric IgM, and IgNAR present as a multimer in plasma rather than a monomer. We show that an antigen-specific monomeric IgM response, with a profile similar to that described previously for nurse sharks, can be raised in small-spotted catshark. Lacking polyclonal or monoclonal antibody reagents for detecting catshark IgNAR we investigated phage-display and recombinant Fc-fusion protein expression as alternative methods to look for an antigen-specific response for this isotype. However, we could find no evidence of an antigen-specific IgNAR in the animals tested using either of these techniques. Thus, unlike nurse sharks where antigen-specific monomeric IgM and IgNAR appear together, it seems there may be a temporal or complete 'uncoupling' of these isotypes during a humoral response in the small-spotted catshark. Copyright © 2013 Elsevier Ltd. All rights reserved.
Russ, M; Shankar, A; Setlur Nagesh, S V; Ionita, C N; Bednarek, D R; Rudin, S
2017-02-11
The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.
NASA Astrophysics Data System (ADS)
Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.
2017-03-01
The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.
Prospects for detecting supersymmetric dark matter in the Galactic halo.
Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A
2008-11-06
Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.
On the Use of Line Depth Ratios to Measure Starspot Properties on Magnetically Active Stars
NASA Astrophysics Data System (ADS)
O'Neal, Douglas
2006-07-01
Photometric and spectroscopic techniques have proven to be effective ways to measure the properties of dark, cool starspots on magnetically active stars. Recently, a technique was introduced using atomic line depth ratios (LDRs) to measure starspot properties. Carefully reproducing this technique using a new set of spectroscopic observations of active stars, we find that the LDR technique encounters difficulties, specifically by overestimating spot temperatures (because the atomic lines blend with titanium oxide absorption in cooler spots) and by not tightly constraining the filling factor of spots. While the use of LDRs for active star studies has great promise, we believe that these concerns need to be addressed before the technique is more widely applied. This paper includes data taken at McDonald Observatory of the University of Texas at Austin.
When Darkness Falls: A Journey into Visual Disability
ERIC Educational Resources Information Center
Jay, Karla
2006-01-01
Choroidal neovascularization is a rare condition where aberrant blood vessels behind the retina grow and then bleed, eventually becoming blind areas called Fuchs' spots. A woman suffering from this rare eye disease speaks about the challenges of coping with the visual disability and her determination to make the best of what life has to offer.
Phomalactone from a phytopathogenic fungus infecting Zinnia elegans (Asteraceae) leaves
USDA-ARS?s Scientific Manuscript database
Zinnia elegans plants are infected by a fungus that causes necrosis with dark red spots particularly in late spring to the middle of summer in the Mid-South part of the United States. This fungal disease when untreated causes the leaves to wilt and eventually kills the plant. The fungus was isolated...
Factors affecting the efficacy of a vinegar trap for Drosophila suzukii (Diptera: Drosophilidae)
USDA-ARS?s Scientific Manuscript database
Studies were conducted to develop an optimized, economical trap for monitoring the spotted wing fruit fly, Drosophila suzukii Matsumura. Flies were attracted to dark colors ranging from red to black compared with low attraction to white, yellow, and light blue. Similarly, fly catches in 237 ml plast...
Three New Species of Shoot Fly, Atherigona spp., from Northern Thailand
Moophayak, Kittikhun; Kurahashi, Hiromu; Sukontason, Kabkaew L.
2011-01-01
Three new species of shoot fly, Atherigona Rondani (subgenus Acritochaeta Grimshaw) (Diptera: Muscidae), are described from northern Thailand, based on morphological characteristics of males. Unique features of A. komi sp. n. include a distinct spiral groove on the dorsal aspect of the fore femur and two dark apical wing spots, whereas A. chiangmaiensis sp. n. is recognized by the presence of one large patch on the apical wing spot, appearing as a large and smaller wave-shaped patch, and no distinct pattern on tergites. A. thailandica sp. n. displays a remarkable dark boomerang-shaped patch along the wing margin and fore femur, with two rows of long hairs on the dorsal surface. Male terminalia are also different in the new species, showing distinctive characteristics. This paper also presents five newly recorded species in Thailand; Atherigona maculigera Stein, Atherigona ovatipennis vietnamensis Shinonaga et Thinh, Atherigona pallidipalpis Malloch, Atherigona seticauda Malloch, and Atherigona setitarsus Shinonaga et Thinh. A key is provided for the adult males of Atherigona recorded in Thailand, all belonging to the subgenus Acritochaeta, except for A. soccata Rondani. PMID:22233520
Exposed Bedrock in the Koval'sky Impact Basin
2017-06-27
This image shows partially exposed bedrock within the Koval'sky impact basin, which is on the outskirts of the extensive lava field of Daedalia Planum. Daedalia Planum is located southwest of Arsia Mons, which may be the source responsible for filling the crater with lava flows and ash deposits. On one side, bright bedrock with scattered dark blue spots are seen. The dark blue spots are boulders shedding from the outcrops. The color range of the bedrock provides some information on its composition. The blue color is indicative of the presence of iron-rich minerals that are generally not oxidized (i.e., rusted), unlike most of the ruddy Martian surface. Volcanic rocks are common on Mars. Possible candidate minerals for the bluish materials are often consistent with iron-rich minerals, such as pyroxene and olivine. The ridges may represent remnants of the original surface of the lava flows that filled the Koval'sky impact basin. NB: The region is named for M. A. Koval'sky, a Russian astronomer. https://photojournal.jpl.nasa.gov/catalog/PIA21765
Dark trions and biexcitons in WS2 and WSe2 made bright by e-e scattering
NASA Astrophysics Data System (ADS)
Danovich, Mark; Zólyomi, Viktor; Fal'Ko, Vladimir I.
2017-04-01
The direct band gap character and large spin-orbit splitting of the valence band edges (at the K and K’ valleys) in monolayer transition metal dichalcogenides have put these two-dimensional materials under the spot-light of intense experimental and theoretical studies. In particular, for Tungsten dichalcogenides it has been found that the sign of spin splitting of conduction band edges makes ground state excitons radiatively inactive (dark) due to spin and momentum mismatch between the constituent electron and hole. One might similarly assume that the ground states of charged excitons and biexcitons in these monolayers are also dark. Here, we show that the intervalley (K ⇆ K‧) electron-electron scattering mixes bright and dark states of these complexes, and estimate the radiative lifetimes in the ground states of these “semi-dark” trions and biexcitons to be ~10 ps, and analyse how these complexes appear in the temperature-dependent photoluminescence spectra of WS2 and WSe2 monolayers.
The effects of sunspots on solar irradiance
NASA Technical Reports Server (NTRS)
Hudson, H. S.; Silva, S.; Woodard, M.; Willson, R. C.
1982-01-01
It is pointed out that the darkness of a sunspot on the visible hemisphere of the sun will reduce the solar irradiance on the earth. Approaches are discussed for obtaining a crude estimate of the irradiance deficit produced by sunspots and of the total luminosity reduction for the whole global population of sunspots. Attention is given to a photometric sunspot index, a global measure of spot flux deficit, and models for the compensating flux excess. A model is shown for extrapolating visible-hemisphere spot areas to the invisible hemisphere. As an illustration, this extrapolation is used to calculate a very simple model for the reradiation necessary to balance the flux deficit.
NASA Astrophysics Data System (ADS)
Du, Xiangli; Yin, Yaling; Zheng, Gongjue; Guo, Chaoxiu; Sun, Yu; Zhou, Zhongneng; Bai, Shunjie; Wang, Hailing; Xia, Yong; Yin, Jianping
2014-07-01
A new nonlinear optical method to generate a dark hollow beam (DHB) with a dielectric ZnSe crystal is proposed. From Huygens-Fresnel diffraction theory, we calculate the intensity distributions of the DHB and its propagating properties in free space, and study the dependences of the optimal propagation position and the dark-spot size (DSS) of the hollow beam on the waist radius of the incident Gaussian laser beam. Our study shows that the intensity distribution of the DHB presents symmetrical distribution with increasing the propagation distance, the optimal distance zopt becomes farther and the DSS becomes larger with the increase of the waist radius w of the incident Gaussian laser beam. This generated DHB will have applications in the optical guiding and trapping of macroscopic objects, atoms or molecules.
1979-07-09
P-21751 C Range: 1.2 million kilometers This Voyager 2 color photo of Ganymede, the largest Galilean satellite, shows a large dark circular feature about 3200 kilometers in diameter with narrow closely-spaced light bands traversing its surface. The bright spots dotting the surface are relatively recent impact craters, while the lighter circular areas may be older impact areas. The light branching bands are ridged and grooved terrain first seen on Voyager 1 and are younger than the more heavily cratered dark regions. The nature of the brightish region covering the northern part of the dark circular fature is uncertain, but it may be some type of condensate. Most of the features seen on the surface of Ganymede are probably both internal and external responses of the very thick icy layer which comprises the crust of this satellite.
Spot distribution and fast surface evolution on Vega
NASA Astrophysics Data System (ADS)
Petit, P.; Hébrard, E. M.; Böhm, T.; Folsom, C. P.; Lignières, F.
2017-11-01
Spectral signatures of surface spots were recently discovered from high cadence observations of the A star Vega. We aim at constraining the surface distribution of these photospheric inhomogeneities and investigating a possible short-term evolution of the spot pattern. Using data collected over five consecutive nights, we employ the Doppler imaging method to reconstruct three different maps of the stellar surface, from three consecutive subsets of the whole time series. The surface maps display a complex distribution of dark and bright spots, covering most of the visible fraction of the stellar surface. A number of surface features are consistently recovered in all three maps, but other features seem to evolve over the time span of observations, suggesting that fast changes can affect the surface of Vega within a few days at most. The short-term evolution is observed as emergence or disappearance of individual spots, and may also show up as zonal flows, with low- and high-latitude belts rotating faster than intermediate latitudes. It is tempting to relate the surface brightness activity to the complex magnetic field topology previously reconstructed for Vega, although strictly simultaneous brightness and magnetic maps will be necessary to assess this potential link.
Bueeler, Michael; Mrochen, Michael
2005-01-01
The aim of this theoretical work was to investigate the robustness of scanning spot laser treatments with different laser spot diameters and peak ablation depths in case of incomplete compensation of eye movements due to eye-tracker latency. Scanning spot corrections of 3rd to 5th Zernike order wavefront errors were numerically simulated. Measured eye-movement data were used to calculate the positioning error of each laser shot assuming eye-tracker latencies of 0, 5, 30, and 100 ms, and for the case of no eye tracking. The single spot ablation depth ranged from 0.25 to 1.0 microm and the spot diameter from 250 to 1000 microm. The quality of the ablation was rated by the postoperative surface variance and the Strehl intensity ratio, which was calculated after a low-pass filter was applied to simulate epithelial surface smoothing. Treatments performed with nearly ideal eye tracking (latency approximately 0) provide the best results with a small laser spot (0.25 mm) and a small ablation depth (250 microm). However, combinations of a large spot diameter (1000 microm) and a small ablation depth per pulse (0.25 microm) yield the better results for latencies above a certain threshold to be determined specifically. Treatments performed with tracker latencies in the order of 100 ms yield similar results as treatments done completely without eye-movement compensation. CONCWSIONS: Reduction of spot diameter was shown to make the correction more susceptible to eye movement induced error. A smaller spot size is only beneficial when eye movement is neutralized with a tracking system with a latency <5 ms.
Infrared Telescopes Spy Small, Dark Asteroids
2011-09-29
This chart based on data from NASA Wide-field Infrared Survey Explorer illustrates why infrared-sensing telescopes are more suited to finding small, dark asteroids than telescopes that detect visible light.
NASA Astrophysics Data System (ADS)
Kereszturi, A.; Berczi, Sz.; Horvath, A.; Ganti, T.; Kuti, A.; Pocs, T.; Sik, A.; Szathmary, E.
2008-09-01
Introduction Various polar seasonal surface albedo structures were analyzed by several authors in the past [1, 2, 3, 4, 5, 6, 7, 8, 8, 9], partly in connection with the possibility of liquid water. In our previous work [10] we identified two groups of slope streaks emanating form Dark Dune Spots of polar dunes, which grow in size and number during spring with the advancement of the season. The diffuse shaped group appears earlier and formed probably by CO2 geysers [8]. The confine shaped group appears in a later seasonal phase, when the temperature is higher. They are probably connected with exposed water-ice on the surface, and may formed by the seepage of undercooled interfacial water on microscopic scale [11]. Methods For the analysis of northern slope structures we used MGS MOC, MRO HiRISE images, and MRG TES data [12] using the "vanilla" software. Temperature data show annual trend, and were derived for daytime. Note that the surface temperature values have spatial resolution around 3 km, and they can be taken only as a rough approach of the surface temperature of the whole dune complex, and not different parts of it. Discussion The target area of the analysis was (84N 233E) in the northern circumpolar sand sea, with 300-500 m diameter overlapping dunes. We searched for springtime confined and elongated dark slope streaks, similar to those, which we observed at south. Basic similarities between northern and southern structures are: 1. streaks always emanate from Dark Dune Spots in downward direction, 2. streaks are present in local spring, when the temperature is above the CO2 buffered level, suggesting there are parts of the surface without CO2 ice, where possibly H2O ice is exposed (Fig. 1.), 4. the streaks show branching pattern (Fig. 2.). Basic differences between the northern and southern structures: 1. at north there is a dark annulus around the Dark Dune Spots, which is absent at south, 2. there are fewer and fainter diffuse streaks of gas jet activity at north, 3. there are fewer pond-like accumulated structures at the streaks' end at north. Conclusion The branching dark pattern suggests the movement of liquid-like material, while the temperature data suggest these dark features are formed possibly in connection with H2O ice. The moving material may be composed of dry or adsorbed water [13] lubricated grains also. Based on the probably presence of waterice, and the model of adsorbed water, northern DDSslope structures may be the result of seepage by interfacial water around solar heated dune grains, as well as the southern ones. This situation may have astrobiological consequences [14] too. Acknowledgment This work was supported by the ESA ECS-project No. 98004 and the Pro Renovanda Cultura Hungariae Foundation. References [1] Kieffer H. et al. (2000) 2nd Conf. Mars Pol. Sci. 93., [2] Ness & Orme JBIS (2002) 55, 85-109. [3] Piqueux S. et al. (2003) JGR 108, 5084. [4] Christensen et al. (2005) AGU, Fall Meeting #P23C- 04. [5] Malin M.C. et al., (1998) Science 279, 1681-1685. [6] Malin M.C. and Edgett K.S. (2000) XXXIth LPSC #1056. [7] Zuber T.M. (2003) Science 302, 1694-1695. [8] Kieffer H.H. et al.
Blaho, Miklos; Egri, Adam; Bahidszki, Lea; Kriska, Gyorgy; Hegedus, Ramon; Akesson, Susanne; Horvath, Gabor
2012-01-01
During blood-sucking, female members of the family Tabanidae transmit pathogens of serious diseases and annoy their host animals so strongly that they cannot graze, thus the health of the hosts is drastically reduced. Consequently, a tabanid-resistant coat with appropriate brightness, colour and pattern is advantageous for the host. Spotty coats are widespread among mammals, especially in cattle (Bos primigenius). In field experiments we studied the influence of the size and number of spots on the attractiveness of test surfaces to tabanids that are attracted to linearly polarized light. We measured the reflection-polarization characteristics of living cattle, spotty cattle coats and the used test surfaces. We show here that the smaller and the more numerous the spots, the less attractive the target (host) is to tabanids. We demonstrate that the attractiveness of spotty patterns to tabanids is also reduced if the target exhibits spottiness only in the angle of polarization pattern, while being homogeneous grey with a constant high degree of polarization. Tabanid flies respond strongly to linearly polarized light, and we show that bright and dark parts of cattle coats reflect light with different degrees and angles of polarization that in combination with dark spots on a bright coat surface disrupt the attractiveness to tabanids. This could be one of the possible evolutionary benefits that explains why spotty coat patterns are so widespread in mammals, especially in ungulates, many species of which are tabanid hosts.
Blaho, Miklos; Egri, Adam; Bahidszki, Lea; Kriska, Gyorgy; Hegedus, Ramon; Åkesson, Susanne; Horvath, Gabor
2012-01-01
During blood-sucking, female members of the family Tabanidae transmit pathogens of serious diseases and annoy their host animals so strongly that they cannot graze, thus the health of the hosts is drastically reduced. Consequently, a tabanid-resistant coat with appropriate brightness, colour and pattern is advantageous for the host. Spotty coats are widespread among mammals, especially in cattle (Bos primigenius). In field experiments we studied the influence of the size and number of spots on the attractiveness of test surfaces to tabanids that are attracted to linearly polarized light. We measured the reflection-polarization characteristics of living cattle, spotty cattle coats and the used test surfaces. We show here that the smaller and the more numerous the spots, the less attractive the target (host) is to tabanids. We demonstrate that the attractiveness of spotty patterns to tabanids is also reduced if the target exhibits spottiness only in the angle of polarization pattern, while being homogeneous grey with a constant high degree of polarization. Tabanid flies respond strongly to linearly polarized light, and we show that bright and dark parts of cattle coats reflect light with different degrees and angles of polarization that in combination with dark spots on a bright coat surface disrupt the attractiveness to tabanids. This could be one of the possible evolutionary benefits that explains why spotty coat patterns are so widespread in mammals, especially in ungulates, many species of which are tabanid hosts. PMID:22876282
High-Speed Edge-Detecting Line Scan Smart Camera
NASA Technical Reports Server (NTRS)
Prokop, Norman F.
2012-01-01
A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..
Photographic Assessment of Dark Spots in Night Vision Device Images
1998-01-01
Ronchi, V., (1957), Optics, the science of vision, New York: New York University Press. BIOGRAPHY Peter L. Marasco came to the U.S. Air Force in 1991 as a...optical test methods. Mr. Marasco received a BS degree from the University of Rochester in 1991 and an MS degree from the University of Arizona in 1993
Low Level (Sub Threshold), Large Spot Laser Irradiations of the Foveas of Macaca Mulatta.
1981-11-01
light period of the light-dark cycle. GrUn (1980) reported that in adult larval Xenopus and the larvae of the fish, Tilapia , 24 hours of continuous...pulses. Exp. Eye Res. 21 : 457 - 469. 1975. GrUn, G. Developmental dynamic in synaptic ribbons of retinal receptor cells. ( Tilapia , Xenopus). Cell
4. VIEW OF EMPIRE, STONE CABIN AND TIP TOP MINES. ...
4. VIEW OF EMPIRE, STONE CABIN AND TIP TOP MINES. EMPIRE TAILING PILE IS VISIBLE IN LOWER CENTER (SLOPE WITH ORE CHUTE IS HIDDEN BY TREES ABOVE TAILINGS), TIP TOP IS VISIBLE IN RIGHT THIRD AND SLIGHTLY UPHILL IN ELEVATION FROM UPPER EMPIRE TAILINGS,(TO LOCATE, FIND THE V-SHAPED SPOT OF SNOW JUST BELOW THE RIDGE LINE ON FAR RIGHT OF IMAGE. TIP TOP BUILDING IS VISIBLE IN THE LIGHT AREA BELOW AND SLIGHTLY LEFT OF V-SHAPED SNOW SPOT), AND STONE CABIN II IS ALSO VISIBLE, (TO LOCATE, USE A STRAIGHT EDGE AND ALIGN WITH EMPIRE TAILINGS. THIS WILL DIRECT ONE THROUGH THE EDGE OF STONE CABIN II, WHICH IS THE DARK SPOT JUST BELOW THE POINT WHERE THE RIDGE LINE TREES STOP). STONE CABIN I IS LOCATED IN GENERAL VICINITY OF THE LONE TREE ON FAR LEFT RIDGE LINE. ... - Florida Mountain Mining Sites, Silver City, Owyhee County, ID
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub
2017-08-01
Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whose charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and bar X, with a small asymmetric component made up of X and C. As the universe cools, it undergoes asymmetric recombination binding the free Cs into (XC) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa
Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whosemore » charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and X-bar , with a small asymmetric component made up of X and C . As the universe cools, it undergoes asymmetric recombination binding the free C s into ( XC ) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.« less
High-temperature hot spots on Io as seen by the Galileo solid state imaging (SSI) experiment
McEwen, A.S.; Simonelli, D.P.; Senske, D.R.; Klaasen, K.P.; Keszthelyi, L.; Johnson, T.V.; Geissler, P.E.; Carr, M.H.; Belton, M.J.S.
1997-01-01
High-temperature hot spots on Io have been imaged at ???50 km spatial resolution by Galileo's CCD imaging system (SSI). Images were acquired during eclipses (Io in Jupiter's shadow) via the SSI clear filter (???0.4-1.0 ??m), detecting emissions from both small intense hot spots and diffuse extended glows associated with Io's atmosphere and plumes. A total of 13 hot spots have been detected over ???70% of Io's surface. Each hot spot falls precisely on a low-albedo feature corresponding to a caldera floor and/or lava flow. The hot-spot temperatures must exceed ???700 K for detection by SSI. Observations at wavelengths longer than those available to SSI require that most of these hot spots actually have significantly higher temperatures (???1000 K or higher) and cover small areas. The high-temperature hot spots probably mark the locations of active silicate volcanism, supporting suggestions that the eruption and near-surface movement of silicate magma drives the heat flow and volcanic activity of Io. Copyright 1997 by the American Geophysical Union.
Top-philic dark matter within and beyond the WIMP paradigm
NASA Astrophysics Data System (ADS)
Garny, Mathias; Heisig, Jan; Hufnagel, Marco; Lülf, Benedikt
2018-04-01
We present a comprehensive analysis of top-philic Majorana dark matter that interacts via a colored t -channel mediator. Despite the simplicity of the model—introducing three parameters only—it provides an extremely rich phenomenology allowing us to accommodate the relic density for a large range of coupling strengths spanning over 6 orders of magnitude. This model features all "exceptional" mechanisms for dark matter freeze-out, including the recently discovered conversion-driven freeze-out mode, with interesting signatures of long-lived colored particles at colliders. We constrain the cosmologically allowed parameter space with current experimental limits from direct, indirect and collider searches, with special emphasis on light dark matter below the top mass. In particular, we explore the interplay between limits from Xenon1T, Fermi-LAT and AMS-02 as well as limits from stop, monojet and Higgs invisible decay searches at the LHC. We find that several blind spots for light dark matter evade current constraints. The region in parameter space where the relic density is set by the mechanism of conversion-driven freeze-out can be conclusively tested by R -hadron searches at the LHC with 300 fb-1 .
Small intracerebral hemorrhages have a low spot sign prevalence and are less likely to expand.
Dowlatshahi, Dar; Yogendrakumar, Vignan; Aviv, Richard I; Rodriguez-Luna, David; Molina, Carlos A; Silva, Yolanda; Dzialowski, Imanuel; Czlonkowska, Anna; Boulanger, Jean-Martin; Lum, Cheemun; Gubitz, Gord; Padma, Vasantha; Roy, Jayanta; Kase, Carlos S; Bhatia, Rohit; Hill, Michael D; Demchuk, Andrew M
2016-02-01
Hematoma expansion is a major predictor of morbidity and mortality after intracerebral hemorrhage (ICH). Both baseline hematoma volume and the CT-angiogram (CTA) spot sign predict hematoma expansion. Because the CTA spot sign may represent foci of active hemorrhage, we hypothesized that patients with smaller baseline hematoma volumes are less likely to be spot sign positive, and therefore less likely to expand. We sought to validate our prior finding that small hematomas are unlikely to expand, and to determine the relationship between baseline hematoma volume, spot sign status, and risk of hematoma expansion. Data were from the prospective PREDICT ICH study. Patients presenting within 6 h of symptom onset with completed baseline CT, CTA, and follow-up CT were included. Baseline hematoma volume was categorized a priori (<3 mL, 3-10 mL, 10-20 mL, >20 mL). The primary outcome was significant hematoma expansion (≥6 mL, ≥12.5 mL or ≥33%) and secondary outcomes were early neurological worsening, good clinical outcome (modified Rankin Scale 0-3), and mortality at 90 days. Among 315 patients meeting the inclusion criteria, baseline hematoma volume category predicted absolute hematoma expansion (p < 0.001), spot sign prevalence (p < 0.001), early neurologic worsening (p = 0.002), clinical outcome (p < 0.001), and mortality (p < 0.001). Very small hematomas (<3 mL) were unlikely to be spot positive (7.7%), unlikely to expand (2.6%), and were associated with a 73% chance of good clinical outcome. Spot sign appeared to be most predictive of expansion in the 3-10 mL baseline hematoma volume category. Very small hematomas are unlikely to expand and have a low spot sign prevalence. Hemostatic therapy trials may be best targeted at hemorrhages >3 mL in volume. © 2016 World Stroke Organization.
Laser damage tests on InSb photodiodes at 1.064 micron and 0.532 micron
NASA Technical Reports Server (NTRS)
Bearman, G. H.; Staller, C.; Mahoney, C.
1992-01-01
InSb photodiodes were examined for performance degradation after pulsed laser illumination at 0.532 micron and 1.064 micron. Incident laser powers ranged from 6 x 10 exp-18 micron-watts to 16 micron-watts in a 50 pm diameter spot. Dark current and spectral response were both measured before and after illumination. Dark current measurements were taken with the diode blanked off and viewing only 77 K surfaces. Long term stability tests demonstrated that the blackbody did not exhibit long term drifts. Other tests showed that room temperature variations did not affect the diode signal chain or the digitization electronics used in data acquisition. Results of the experiment show that the diodes did not exhibit changes in dark current or spectral response performance as a result of the laser illumination. A typical change in diode spectral response (before/after laser exposure) was about 0.2 percent +/- 0.2 percent.
Dreiss, Amélie N; Séchaud, Robin; Béziers, Paul; Villain, Nicolas; Genoud, Michel; Almasi, Bettina; Jenni, Lukas; Roulin, Alexandre
2016-02-01
Endothermic animals vary in their physiological ability to maintain a constant body temperature. Since melanin-based coloration is related to thermoregulation and energy homeostasis, we predict that dark and pale melanic individuals adopt different behaviours to regulate their body temperature. Young animals are particularly sensitive to a decrease in ambient temperature because their physiological system is not yet mature and growth may be traded-off against thermoregulation. To reduce energy loss, offspring huddle during periods of cold weather. We investigated in nestling barn owls (Tyto alba) whether body temperature, oxygen consumption and huddling were associated with melanin-based coloration. Isolated owlets displaying more black feather spots had a lower body temperature and consumed more oxygen than those with fewer black spots. This suggests that highly melanic individuals display a different thermoregulation strategy. This interpretation is also supported by the finding that, at relatively low ambient temperature, owlets displaying more black spots huddled more rapidly and more often than those displaying fewer spots. Assuming that spot number is associated with the ability to thermoregulate not only in Swiss barn owls but also in other Tytonidae, our results could explain geographic variation in the degree of melanism. Indeed, in the northern hemisphere, barn owls and allies are less spotted polewards than close to the equator, and in the northern American continent, barn owls are also less spotted in colder regions. If melanic spots themselves helped thermoregulation, we would have expected the opposite results. We therefore suggest that some melanogenic genes pleiotropically regulate thermoregulatory processes.
Vicente, J G; Everett, B; Roberts, S J
2006-07-01
ABSTRACT Twenty-five Xanthomonas isolates, including some isolates received as either X. campestris pv. armoraciae or pv. raphani, caused discrete leaf spot symptoms when spray-inoculated onto at least one Brassica oleracea cultivar. Twelve of these isolates and four other Xanthomonas isolates were spray- and pin-inoculated onto 21 different plant species/cultivars including horseradish (Armoracia rusticana), radish (Raphanus sativus), and tomato (Lycopersicon esculentum). The remaining 13 leaf spot isolates were spray-inoculated onto a subset of 10 plant species/cultivars. The leaf spot isolates were very aggressive on several Brassica spp., radish, and tomato causing leaf spots and dark sunken lesions on the middle vein, petiole, and stem. Based on the differential reactions of several Brassica spp. and radish cultivars, the leaf spot isolates were divided into three races, with races 1 and 3 predominating. A differential series was established to determine the race-type of isolates and a gene-for-gene model based on the interaction of two avirulence genes in the pathogen races and two matching resistance genes in the differential hosts is proposed. Repetitive-DNA polymerase chain reaction-based fingerprinting was used to assess the genetic diversity of the leaf spot isolates and isolates of closely related Xanthomonas pathovars. Although there was variability within each race, the leaf spot isolates were clustered separately from the X. campestris pv. campestris isolates. We propose that X. campestris isolates that cause a nonvascular leaf spot disease on Brassica spp. should be identified as pv. raphani and not pv. armoraciae. Race-type strains and a neopathotype strain for X. campestris pv. raphani are proposed.
High Performance Seed Based Optical Computing.
1998-05-01
distances of the lenses must be large to allow space for elements needed for align- ment, such as an afocal pair, a pair of wedges , and a pellicle...minute wedges . Each of the wedges can be rotated independently to bring the spots onto the proper win- 78 dows. Because the wedges have such a small... wedge angle, a large rotation of the wedges causes only a small movement of the spots; a 180 degree rotation of one wedge moves the spots by 74 U\\m
Solving the small-scale structure puzzles with dissipative dark matter
NASA Astrophysics Data System (ADS)
Foot, Robert; Vagnozzi, Sunny
2016-07-01
Small-scale structure is studied in the context of dissipative dark matter, arising for instance in models with a hidden unbroken Abelian sector, so that dark matter couples to a massless dark photon. The dark sector interacts with ordinary matter via gravity and photon-dark photon kinetic mixing. Mirror dark matter is a theoretically constrained special case where all parameters are fixed except for the kinetic mixing strength, epsilon. In these models, the dark matter halo around spiral and irregular galaxies takes the form of a dissipative plasma which evolves in response to various heating and cooling processes. It has been argued previously that such dynamics can account for the inferred cored density profiles of galaxies and other related structural features. Here we focus on the apparent deficit of nearby small galaxies (``missing satellite problem"), which these dissipative models have the potential to address through small-scale power suppression by acoustic and diffusion damping. Using a variant of the extended Press-Schechter formalism, we evaluate the halo mass function for the special case of mirror dark matter. Considering a simplified model where Mbaryons propto Mhalo, we relate the halo mass function to more directly observable quantities, and find that for epsilon ≈ 2 × 10-10 such a simplified description is compatible with the measured galaxy luminosity and velocity functions. On scales Mhalo lesssim 108 Msolar, diffusion damping exponentially suppresses the halo mass function, suggesting a nonprimordial origin for dwarf spheroidal satellite galaxies, which we speculate were formed via a top-down fragmentation process as the result of nonlinear dissipative collapse of larger density perturbations. This could explain the planar orientation of satellite galaxies around Andromeda and the Milky Way.
Effects of spot parameters in pencil beam scanning treatment planning.
Kraan, Aafke Christine; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M
2018-01-01
Spot size σ (in air at isocenter), interspot spacing d, and spot charge q influence dose delivery efficiency and plan quality in Intensity Modulated Proton Therapy (IMPT) treatment planning. The choice and range of parameters varies among different manufacturers. The goal of this work is to demonstrate the influence of the spot parameters on dose quality and delivery in IMPT treatment plans, to show their interdependence, and to make practitioners aware of the spot parameter values for a certain facility. Our study could help as a guideline to make the trade-off between treatment quality and time in existing PBS centers and in future systems. We created plans for seven patients and a phantom, with different tumor sites and volumes, and compared the effect of small-, medium-, and large-spot widths (σ = 2.5, 5, and 10 mm) and interspot distances (1σ, 1.5σ, and 1.75σ) on dose, spot charge, and treatment time. Moreover, we quantified how postplanning charge threshold cuts affect plan quality and the total number of spots to deliver, for different spot widths and interspot distances. We show the effect of a minimum charge (or MU) cutoff value for a given proton delivery system. Spot size had a strong influence on dose: larger spots resulted in more protons delivered outside the target region. We observed dose differences of 2-13 Gy (RBE) between 2.5 mm and 10 mm spots, where the amount of extra dose was due to dose penumbra around the target region. Interspot distance had little influence on dose quality for our patient group. Both parameters strongly influence spot charge in the plans and thus the possible impact of postplanning charge threshold cuts. If such charge thresholds are not included in the treatment planning system (TPS), it is important that the practitioner validates that a given combination of lower charge threshold, interspot spacing, and spot size does not result in a plan degradation. Low average spot charge occurs for small spots, small interspot distances, many beam directions, and low fractional dose values. The choice of spot parameters values is a trade-off between accelerator and beam line design, plan quality, and treatment efficiency. We recommend the use of small spot sizes for better organ-at-risk sparing and lateral interspot distances of 1.5σ to avoid long treatment times. We note that plan quality is influenced by the charge cutoff. Our results show that the charge cutoff can be sufficiently large (i.e., 10 6 protons) to accommodate limitations on beam delivery systems. It is, therefore, not necessary per se to include the charge cutoff in the treatment planning optimization such that Pareto navigation (e.g., as practiced at our institution) is not excluded and optimal plans can be obtained without, perhaps, a bias from the charge cutoff. We recommend that the impact of a minimum charge cut impact is carefully verified for the spot sizes and spot distances applied or that it is accommodated in the TPS. © 2017 American Association of Physicists in Medicine.
Monitoring the Softening of Aluminum-Alloy V95ochT2 Shapes by a Nondestructive Method
NASA Astrophysics Data System (ADS)
Shigapov, A. I.; Klimova, T. A.; Il'inkova, T. A.
2015-09-01
Correlation relations between the strength and the electrical conductivity of aluminum shapes are determined. The properties of alloy V95ochT2 are studied after different temperature-and-time actions. It is shown that the "dark spots" appearing on the surface of such shapes can be evaluated by a nondestructive eddy-current method.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
... coloration, where males of the listed subspecies have predominantly red elytra with four dark spots, whereas... groups, on the leaves or stems of living elderberry shrubs (Barr 1991, p. 4). The larvae hatch in a few... occurrences do not necessarily indicate the number and size of interbreeding populations (defined as groups of...
NASA Astrophysics Data System (ADS)
Yin, Jianping; Kim, Kihwan; Shim, Wooshik; Zhu, Yifu; Jhe, Wonho
1998-08-01
We report a far-field micro-imaging technique that is used for the observation and discrimination of the mode patterns in a micron-sized hollow optical fiber as well as for the synthetic measurement of the fiber. By using an M-20X microscope objective lens, we obtained images, magnified by a factor of about 460, from the mode patterns at an output end facet of the hollow fiber with relative measurement accuracy better than 3%. This method can be used for clear identification of the mode patterns in the hollow fiber and detailed study of the relationship between the excitation conditions and the excited modes in the hollow fiber. Moreover, it is useful for the measurement of the geometrical sizes of the hollow fiber end and for testing the coupling efficiencies of the core and cladding modes in their mixed mode pattern. In addition, this method can be also used in the generation of a dark hollow laser beam with 10-micrometers dark-spot size and the measurement of the focused- spot size of a Gaussian laser beam with about 1-micrometers diameter.
Detection of sub-MeV dark matter with three-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Zurek, Kathryn M.; Grushin, Adolfo G.; Ilan, Roni; Griffin, Sinéad M.; Liu, Zhen-Fei; Weber, Sophie F.; Neaton, Jeffrey B.
2018-01-01
We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of O (meV ) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculate the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.
Dynamics of dark hollow Gaussian laser pulses in relativistic plasma.
Sharma, A; Misra, S; Mishra, S K; Kourakis, I
2013-06-01
Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport.
Dynamics of dark hollow Gaussian laser pulses in relativistic plasma
NASA Astrophysics Data System (ADS)
Sharma, A.; Misra, S.; Mishra, S. K.; Kourakis, I.
2013-06-01
Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport.
2008-02-01
with atypical head anthropometry . A limited number of current users have anecdotally cited the TPL® as causing hot spots. Hot spots are defined as...6) is available in sizes: extra-extra-small (XXS), extra- small (XS), small(S), medium (M), large (L), and extra-large ( XL ). Each helmet is made up...head anthropometries than the small HGU-56/P. This is accomplished by 6 thickening the polystyrene energy-absorbing liners (EALs) in the XS and XXS
The small-comet hypothesis: An upper limit to the current impact rate on the moon
NASA Astrophysics Data System (ADS)
Grier, Jennifer A.; McEwen, Alfred S.
Frank et al. [1986b] and Frank and Sigwarth [1993] hypothesized the intense bombardment of the terrestrial atmosphere by small comets. Their model requires that the Moon is impacted by small comets (107-108 g) at a rate of almost one per minute. We calculate that an object of this mass, even with an exceedingly low density and relatively low velocity, will nevertheless produce a crater at least 50 m in diameter. These craters will excavate immature lunar soil and produce a very bright spot with a diameter of at least 150 m. If low-density comets exist that might not create deep craters [O'Keefe and Ahrens, 1982], they will nevertheless disturb the regolith sufficiently to create detectable bright spots. If the small-comet hypothesis is correct then the near-global lunar imaging returned by Clementine in 1994 should reveal ∼107 bright spots in locations where craters are not present in images acquired in the 1960's and early 1970's. We find no new bright spots in a carefully-studied area of 5.2×104 km², so an upper limit to the current cratering rate by small comets is 33/yr, ∼104 below that expected if the small-comet hypothesis were valid.
Liu, Degang; Xu, David; Liu, Min; Knabe, William Eric; Yuan, Cai; Zhou, Donghui; Huang, Mingdong; Meroueh, Samy O
2017-03-28
Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.
Adaptive optics without altering visual perception.
Koenig, D E; Hart, N W; Hofer, H J
2014-04-01
Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer et al., 2012). Here we describe a simple strategy employing a longer wavelength (980nm) beacon that, in conjunction with appropriate restriction on timing and placement, allowed us to perform psychophysics when dark adapted without altering visual perception. The method was verified by comparing detection and color appearance of foveally presented small spot stimuli with and without the wavefront beacon present in 5 subjects. As an important caution, we found that significant perceptual interference can occur even with a subliminal beacon when additional measures are not taken to limit exposure. Consequently, the lack of perceptual interference should be verified for a given system, and not assumed based on invisibility of the beacon. Copyright © 2014 Elsevier B.V. All rights reserved.
Modelling the RV jitter of early-M dwarfs using tomographic imaging
NASA Astrophysics Data System (ADS)
Hébrard, É. M.; Donati, J.-F.; Delfosse, X.; Morin, J.; Moutou, C.; Boisse, I.
2016-09-01
In this paper, we show how tomographic imaging (Zeeman-Doppler imaging, ZDI) can be used to characterize stellar activity and magnetic field topologies, ultimately allowing us to filter out the radial velocity (RV) activity jitter of M dwarf moderate rotators. This work is based on spectropolarimetric observations of a sample of five weakly active early-M dwarfs (GJ 205, GJ 358, GJ 410, GJ 479, GJ 846) with HARPS-Pol and NARVAL. These stars have v sin I and RV jitters in the range 1-2 km s-1 and 2.7-10.0 m s-1 rms, respectively. Using a modified version of ZDI applied to sets of phase-resolved least-squares deconvolved profiles of unpolarized spectral lines, we are able to characterize the distribution of active regions at the stellar surfaces. We find that dark spots cover less than 2 per cent of the total surface of the stars of our sample. Our technique is efficient at modelling the rotationally modulated component of the activity jitter, and succeeds at decreasing the amplitude of this component by typical factors of 2-3 and up to 6 in optimal cases. From the rotationally modulated time series of circularly polarized spectra and with ZDI, we also reconstruct the large-scale magnetic field topology. These fields suggest that bistability of dynamo processes observed in active M dwarfs may also be at work for moderately active M dwarfs. Comparing spot distributions with field topologies suggest that dark spots causing activity jitter concentrate at the magnetic pole and/or equator, to be confirmed with future data on a larger sample.
The part and the whole: voids, supervoids, and their ISW imprint
NASA Astrophysics Data System (ADS)
Kovács, András
2018-04-01
The integrated Sachs-Wolfe (ISW) imprint of extreme structures in the cosmic web probes the dynamical nature of dark energy. Looking through typical cosmic voids, no anomalous signal has been reported. On the contrary, supervoids, associated with large-scale fluctuations in the gravitational potential, have shown potentially disturbing excess signals. In this study, we used the Jubilee ISW simulation to demonstrate how the stacked signal depends on the void definition. We found that large underdensities, with at least ≈5 merged sub-voids, show a peculiar ISW imprint shape with central cold spots and surrounding hot rings, offering a natural way to define supervoids in the cosmic web. We then inspected the real-world Baryon Oscillations Spectroscopic Survey data release 12 (BOSS DR12) data using the simulated imprints as templates. The imprinted profile of BOSS supervoids appears to be more compact than in simulations, requiring an extra α ≈ 0.7 re-scaling of filter sizes. The data reveal an excess ISW-like signal with AISW ≈ 9 amplitude at the ≈2.5σ significance level, unlike previous studies that used isolated voids and reported good consistency with AISW = 1. The tension with the Jubilee-based Λ cold dark matter predictions is ≳2σ, in consistency with independent analyses of supervoids in Dark Energy Survey data. We show that such a very large enhancement of the AISW parameter hints at a possible causal relation between the cosmic microwave background Cold Spot and the Eridanus supervoid. The origin of these findings remains unclear.
Li, Xiao-xin; Tao, Yong
2012-12-01
Idiopathic choroidal neovascularization (ICNV) affects young patients and thus may have a significant impact on vision and life quality over a patient's lifespan. This study was designed to compare the visual outcome and retinal pigment epithelium (RPE) damage after photodynamic therapy (PDT) with small laser spot and PDT with standard laser spot for idiopathic choroidal neovascularization (ICNV). This was a randomized controlled study. Fifty-two patients with ICNV were enrolled and randomly divided into a study group (small laser spot PDT, n = 27) and a control group (standard laser spot PDT, n = 25). Best corrected visual acuity (BCVA), optic coherence tomography (OCT) and fluorescein angiography (FA) findings were the main measurements. The patients were followed up 1 week, 1, 3, 6, 9 months and 1 year after PDT. BCVA improvement was statistically significantly higher in the study group than the control group at 6-month ((25.53 ± 15.01) letters vs. (14.71 ± 11.66) letters, P = 0.025) and 9-month follow-ups ((27.53 ± 17.78) letters vs. (15.59 ± 12.21) letters, P = 0.039). At 3- and 6-month follow-ups, the quadrants of RPE damage between the two groups varied significantly (P < 0.001 and P = 0.023, respectively). In each follow-up, the number of cases with decreased or unchanged leakage of choroidal neovascularization by FA and reduced subretinal fluid by OCT did not vary significantly between the two groups. Ten cases (37.0%) in the study group and eight cases (32.0%) in the control group suffered from recurrent CNV (P = 0.703). Better visual improvements, less RPE damage, a similar recurrent rate of CNV and change of subretinal fluid were observed in the small laser spot PDT group than in the standard laser spot PDT group for ICNV.
Report on the search for atmospheric holes using airs image data
NASA Technical Reports Server (NTRS)
Reinleitner, Lee A.
1991-01-01
Frank et al (1986) presented a very controversial hypothesis which states that the Earth is being bombarded by water-vapor clouds resulting from the disruption and vaporization of small comets. This hypothesis was based on single-pixel intensity decreases in the images of the earth's dayglow emissions at vacuum-ultraviolet (VUV) wavelengths using the DE-1 imager. These dark spots, or atmospheric holes, are hypothesized to be the result of VUV absorption by a water-vapor cloud between the imager and the dayglow-emitting region. Examined here is the VUV data set from the Auroral Ionospheric Remote Sensor (AIRS) instrument that was flown on the Polar BEAR satellite. AIRS was uniquely situated to test this hypothesis. Due to the altitude of the sensor, the holes should show multi-pixel intensity decreases in a scan line. A statistical estimate indicated that sufficient 130.4-nm data from AIRS existed to detect eight to nine such holes, but none was detected. The probability of this occurring is less than 1.0 x 10(exp -4). A statistical estimate indicated that sufficient 135.6-nm data from AIRS existed to detect approx. 2 holes, and two ambiguous cases are shown. In spite of the two ambiguous cases, the 135.6-nm data did not show clear support for the small-comet hypothesis. The 130.4-nm data clearly do not support the small-comet hypothesis.
Hubble Chases a Small Stellar Galaxy in the Hunting Dog
2017-12-08
On a clear evening in April of 1789, the renowned astronomer William Herschel continued his unrelenting survey of the night sky, hunting for new cosmic objects — and found cause to celebrate! He spotted this bright spiral galaxy, named NGC 4707, lurking in the constellation of Canes Venatici or The Hunting Dog. NGC 4707 lies roughly 22 million light-years from Earth. Over two centuries later, the NASA/ESA Hubble Space Telescope is able to "chase down" and view the same galaxy in far greater detail than Herschel could, allowing us to appreciate the intricacies and characteristics of NGC 4707 as never before. This striking image comprises observations from Hubble’s Advanced Camera for Surveys (ACS), one of a handful of high-resolution instruments currently aboard the space telescope. Herschel himself reportedly described NGC 4707 as a “small, stellar” galaxy; while it is classified as a spiral (type Sm), its overall shape, center, and spiral arms are very loose and undefined, and its central bulge is either very small or non-existent. It instead appears as a rough sprinkling of stars and bright flashes of blue on a dark canvas. The blue smudges seen across the frame highlight regions of recent or ongoing star formation, with newborn stars glowing in bright, intense shades of cyan and turquoise. Image credit: ESA/Hubble & NASA
Kuwait City, Kuwait as seen from STS-59
NASA Technical Reports Server (NTRS)
1994-01-01
The radiating transportation pattern of this 20th-Century urban plan is nicely displayed in this high-resolution photograph. Light-toned spots in the desrt mark oil well sites; along the south edge of the scene, some dark residue remains from the fires set during the recent Gulf War. Blown sand has nearly hidden the soot and thick oil that were deposited on the surface.
Bertoni, Bridget; Ipek, Seyda; McKeen, David; ...
2015-04-30
Here, cold dark matter explains a wide range of data on cosmological scales. However, there has been a steady accumulation of evidence for discrepancies between simulations and observations at scales smaller than galaxy clusters. One promising way to affect structure formation on small scales is a relatively strong coupling of dark matter to neutrinos. We construct an experimentally viable, simple, renormalizable model with new interactions between neutrinos and dark matter and provide the first discussion of how these new dark matter-neutrino interactions affect neutrino phenomenology. We show that addressing the small scale structure problems requires asymmetric dark matter with amore » mass that is tens of MeV. Generating a sufficiently large dark matter-neutrino coupling requires a new heavy neutrino with a mass around 100 MeV. The heavy neutrino is mostly sterile but has a substantial τ neutrino component, while the three nearly massless neutrinos are partly sterile. This model can be tested by future astrophysical, particle physics, and neutrino oscillation data. Promising signatures of this model include alterations to the neutrino energy spectrum and flavor content observed from a future nearby supernova, anomalous matter effects in neutrino oscillations, and a component of the τ neutrino with mass around 100 MeV.« less
Rickettsial Infections of Fleas Collected From Small Mammals on Four Islands in Indonesia
2010-01-01
cheopis from shrews ( Suncus murinus). X. cheopis were pooled and tested for DNA from rickettsial agents Rickettsia typhi, Rickettsia felis, and spotted...fever group rickettsiae . R. typhi, the agent of murine typhus, was detected in X. cheopis collected from small mammals in West Java and East...Kalimantan. R.felis was detected in X. cheopis collected from small mammals in Manado, North Sulawesi. R. felis and spotted fever group rickettsiae were
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W; Ding, X; Hu, Y
Purpose: To investigate how spot size and spacing affect plan quality, especially, plan robustness and the impact of interplay effect, of robustly-optimized intensity-modulated proton therapy (IMPT) plans for lung cancer. Methods: Two robustly-optimized IMPT plans were created for 10 lung cancer patients: (1) one for a proton beam with in-air energy dependent large spot size at isocenter (σ: 5–15 mm) and spacing (1.53σ); (2) the other for a proton beam with small spot size (σ: 2–6 mm) and spacing (5 mm). Both plans were generated on the average CTs with internal-gross-tumor-volume density overridden to irradiate internal target volume (ITV). Themore » root-mean-square-dose volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under RVH curves were used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Dose-volume-histogram indices including ITV coverage, homogeneity, and organs-at-risk (OAR) sparing were compared using Student-t test. Results: Compared to large spots, small spots resulted in significantly better OAR sparing with comparable ITV coverage and homogeneity in the nominal plan. Plan robustness was comparable for ITV and most OARs. With interplay effect considered, significantly better OAR sparing with comparable ITV coverage and homogeneity is observed using smaller spots. Conclusion: Robust optimization with smaller spots significantly improves OAR sparing with comparable plan robustness and similar impact of interplay effect compare to larger spots. Small spot size requires the use of larger number of spots, which gives optimizer more freedom to render a plan more robust. The ratio between spot size and spacing was found to be more relevant to determine plan robustness and the impact of interplay effect than spot size alone. This research was supported by the National Cancer Institute Career Developmental Award K25CA168984, by the Fraternal Order of Eagles Cancer Research Fund Career Development Award, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, by Mayo Arizona State University Seed Grant, and by The Kemper Marley Foundation.« less
Detection of sub-MeV dark matter with three-dimensional Dirac materials
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; ...
2018-01-08
Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less
Detection of sub-MeV dark matter with three-dimensional Dirac materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela
Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less
Babinet’s principle for scalar complex objects in the far field
NASA Astrophysics Data System (ADS)
Rodriguez-Zurita, G.; Rickenstorff, C.; Pastrana-Sánchez, R.; Vázquez-Castillo, J. F.; Robledo-Sanchez, C.; Meneses-Fabian, C.; Toto-Arellano, N. I.
2014-10-01
Babinet’s principle is briefly reviewed, especially regarding the zeroth diffraction order of the far field diffraction pattern associated with a given aperture. The pattern is basically described by the squared modulus of the Fourier transform of its amplitude distribution (scalar case). In this paper, complementary objects are defined with respect to complex values and not only with respect to unity in order to include phase objects and phase modulation. It is shown that the difference in complementary patterns can be sometimes a bright spot at the zero order location as is widely known, but also, it can be a gray spot or even a dark one. Conditions of occurrence for each case are given as well as some numerical and experimental examples.
Ongoing Analysis of Jupiter's Equatorial Hotspots and Plumes from Cassini
NASA Technical Reports Server (NTRS)
Choi, D. S.; Showmwn, A. P.; Vasavada, A. R.; Simon-Miller, A. A.
2012-01-01
We present updated results from our ongoing analysis of Cassini observations of Jupiter's equatorial meteorology. For two months preceding the spacecraft's closest approach of the planet, the ISS instrument onboard Cassini regularly imaged the atmosphere of Jupiter. We created time-lapse movies from this period that show the complex activity and interactions of the equatorial atmosphere. During this period, hot spots exhibited significant variations in size and shape over timescales of days and weeks. Some of these changes appear to be a result of interactions with passing vortex systems in adjacent latitudes. Strong anticyclonic gyres to the southeast of the dark areas converge with flow from the west and appear to circulate into a hot spot at its southwestern corner.
Higgs seesaw mechanism as a source for dark energy.
Krauss, Lawrence M; Dent, James B
2013-08-09
Motivated by the seesaw mechanism for neutrinos which naturally generates small neutrino masses, we explore how a small grand-unified-theory-scale mixing between the standard model Higgs boson and an otherwise massless hidden sector scalar can naturally generate a small mass and vacuum expectation value for the new scalar which produces a false vacuum energy density contribution comparable to that of the observed dark energy dominating the current expansion of the Universe. This provides a simple and natural mechanism for producing the correct scale for dark energy, even if it does not address the long-standing question of why much larger dark energy contributions are not produced from the visible sector. The new scalar produces no discernible signatures in existing terrestrial experiments so that one may have to rely on other cosmological tests of this idea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchis-Ojeda, Roberto; Winn, Joshua N.
We present the analysis of four months of Kepler photometry of the K4V star HAT-P-11, including 26 transits of its 'super-Neptune' planet. The transit data exhibit numerous anomalies which we interpret as passages of the planet over dark starspots. These spot-crossing anomalies preferentially occur at two specific phases of the transit. These phases can be understood as the intersection points between the transit chord and the active latitudes of the host star, where starspots are most abundant. Based on the measured characteristics of spot-crossing anomalies and previous observations of the Rossiter-McLaughlin effect, we find two solutions for the stellar obliquitymore » {psi} and active latitude l: either {psi} = 106{sup +15}{sub -11} and l = 19.7{sup +1.5}{sub -2.2}, or {psi} = 97{sup +8}{sub -4} and l = 67{sup +2}{sub -4} (all in degrees). If the active latitude changes with time analogous to the 'butterfly diagram' of the Sun's activity cycle, future observations should reveal changes in the preferred phases of spot-crossing anomalies.« less
Sleep and vigilance linked to melanism in wild barn owls.
Scriba, M F; Rattenborg, N C; Dreiss, A N; Vyssotski, A L; Roulin, A
2014-10-01
Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin-based colour. We show here that wild, cross-fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non-REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep-wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin-based coloration. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
SOAP: A Tool for the Fast Computation of Photometry and Radial Velocity Induced by Stellar Spots
NASA Astrophysics Data System (ADS)
Boisse, I.; Bonfils, X.; Santos, N. C.; Figueira, P.
2013-04-01
Dark spots and bright plages are present on the surface of dwarf stars from spectral types F to M, even in their low-active phase (like the Sun). Their appearance and disappearance on the stellar photosphere, combined with the stellar rotation, may lead to errors and uncertainties in the characterization of planets both in radial velocity (RV) and photometry. Spot Oscillation and Planet (SOAP) is a tool offered to the community that enables to simulate spots and plages on rotating stars and computes their impact on RV and photometric measurements. This tool will help to understand the challenges related to the knowledge of stellar activity for the next decade: detect telluric planets in the habitable zone of their stars (from G to M dwarfs), understand the activity in the low-mass end of M dwarf (on which future projects, like SPIRou or CARMENES, will focus), limitation to the characterization of the exoplanetary atmosphere (from the ground or with Spitzer, JWST), search for planets around young stars. These can be simulated with SOAP in order to search for indices and corrections to the effect of activity.
Strongly self-interacting vector dark matter via freeze-in
NASA Astrophysics Data System (ADS)
Duch, Mateusz; Grzadkowski, Bohdan; Huang, Da
2018-01-01
We study a vector dark matter (VDM) model in which the dark sector couples to the Standard Model sector via a Higgs portal. If the portal coupling is small enough the VDM can be produced via the freeze-in mechanism. It turns out that the electroweak phase transition have a substantial impact on the prediction of the VDM relic density. We further assume that the dark Higgs boson which gives the VDM mass is so light that it can induce strong VDM self-interactions and solve the small-scale structure problems of the Universe. As illustrated by the latest LUX data, the extreme smallness of the Higgs portal coupling required by the freeze-in mechanism implies that the dark matter direct detection bounds are easily satisfied. However, the model is well constrained by the indirect detections of VDM from BBN, CMB, AMS-02, and diffuse γ/X-rays. Consequently, only when the dark Higgs boson mass is at most of O (keV) does there exist a parameter region which leads to a right amount of VDM relic abundance and an appropriate VDM self-scattering while satisfying all other constraints simultaneously.
ALPO Observations of Saturn During the 2005-2006 Apparition
NASA Astrophysics Data System (ADS)
Benton, Julius L., Jr.
2008-12-01
For the 2005-2006 apparition (from August 23, 2005 through June 12, 2006) the ALPO Saturn Section received 414 visual observations and digital images submitted by 50 observers in the USA, Germany, Romania, Japan, France, Canada, Philippines, Italy, UK, Spain, and The Netherlands. Apertures used to perform observations ranged from 12.5cm up to 76.2cm. Saturn observers occasionally reported discrete, short-lived dark features in the South Equatorial Belt during the observing season, as well as small enduring white spots in the South Polar Region (SPR), the South Equatorial Belt Zone (SEBZ) and South Tropical Zone (STrZ). The SEBZ and STrZ white spots, first detected in November and December 2005, exhibited notable changes in morphology as the apparition progressed. A few recurring central meridian transit timings were submitted for some of these features. The inclination of Saturn's ring system towards Earth attained a maximum value of -20.21° on April 4, 2006, so observers could view and image considerable portions of Saturn's Southern Hemisphere and South face of the rings throughout the observing season. With the diminishing ring tilt, regions of the Northern Hemisphere, such as the North Polar Cap and North Polar Region were becoming accessible to our Earth-based telescope. A summary of visual observations and digital images of Saturn contributed during the apparition are discussed, including the results of continuing efforts to image the bicolored aspect and azimuthal brightness asymmetries of the rings. Accompanying the report are references, drawings, photographs, digital images, graphs, and tables.
Small-animal dark-field radiography for pulmonary emphysema evaluation
NASA Astrophysics Data System (ADS)
Yaroshenko, Andre; Meinel, Felix G.; Hellbach, Katharina; Bech, Martin; Velroyen, Astrid; Müller, Mark; Bamberg, Fabian; Nikolaou, Konstantin; Reiser, Maximilian F.; Yildirim, Ali Ã.-.; Eickelberg, Oliver; Pfeiffer, Franz
2014-03-01
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide and emphysema is one of its main components. The disorder is characterized by irreversible destruction of the alveolar walls and enlargement of distal airspaces. Despite the severe changes in the lung tissue morphology, conventional chest radiographs have only a limited sensitivity for the detection of mild to moderate emphysema. X-ray dark-field is an imaging modality that can significantly increase the visibility of lung tissue on radiographic images. The dark-field signal is generated by coherent, small-angle scattering of x-rays on the air-tissue interfaces in the lung. Therefore, morphological changes in the lung can be clearly visualized on dark-field images. This is demonstrated by a preclinical study with a small-animal emphysema model. To generate a murine model of pulmonary emphysema, a female C57BL/6N mouse was treated with a single orotracheal application of porcine pancreatic elastase (80 U/kg body weight) dissolved in phosphate-buffered saline (PBS). Control mouse received PBS. The mice were imaged using a small-animal dark-field scanner. While conventional x-ray transmission radiography images revealed only subtle indirect signs of the pulmonary disorder, the difference between healthy and emphysematous lungs could be clearly directly visualized on the dark-field images. The dose applied to the animals is compatible with longitudinal studies. The imaging results correlate well with histology. The results of this study reveal the high potential of dark-field radiography for clinical lung imaging.
A small amount of mini-charged dark matter could cool the baryons in the early Universe.
Muñoz, Julian B; Loeb, Abraham
2018-05-01
The dynamics of our Universe is strongly influenced by pervasive-albeit elusive-dark matter, with a total mass about five times the mass of all the baryons 1,2 . Despite this, its origin and composition remain a mystery. All evidence for dark matter relies on its gravitational pull on baryons, and thus such evidence does not require any non-gravitational coupling between baryons and dark matter. Nonetheless, some small coupling would explain the comparable cosmic abundances of dark matter and baryons 3 , as well as solving structure-formation puzzles in the pure cold-dark-matter models 4 . A vast array of observations has been unable to find conclusive evidence for any non-gravitational interactions of baryons with dark matter 5-9 . Recent observations by the EDGES collaboration, however, suggest that during the cosmic dawn, roughly 200 million years after the Big Bang, the baryonic temperature was half of its expected value 10 . This observation is difficult to reconcile with the standard cosmological model but could be explained if baryons are cooled down by interactions with dark matter, as expected if their interaction rate grows steeply at low velocities 11 . Here we report that if a small fraction-less than one per cent-of the dark matter has a mini-charge, a million times smaller than the charge on the electron, and a mass in the range of 1-100 times the electron mass, then the data 10 from the EDGES experiment can be explained while remaining consistent with all other observations. We also show that the entirety of the dark matter cannot have a mini-charge.
Mars Immunoassay Life Detection Instrument (MILDI)
NASA Technical Reports Server (NTRS)
McKay, David; Steele, Andrew; Allen, Carlton; Thomas-Kepta, Kathie; Schweitzer, Mary; Priscu, John; Sears, Joe; Avci, Recep; Firman, Keith
2000-01-01
The direct detection of organic biomarkers for living or fossil microbes on Mars by an in situ instrument is a worthy goal for future lander missions. We have proposed an instrument based on immunological reactions to specific antibodies to cause activation of fluorescent stains. Antibodies are raised or acquired to a variety of general and specific substances that might be in Mars soil. These antibodies are then combined with various fluorescent stains and applied to small numbered spots on a small (two to three centimeters) test plate where they become firmly attached after drying. On Mars, a sample of soil from a trench or drill core is extracted with water and/or an organic solvent that is then applied to the test plate. Any substance, which has an antibody on the test plate, will react with its antibody and activate its fluorescent stain. A small ultraviolet light source will illuminate the test plate, which is observed with a small CCD camera. The numbered spots that fluoresce indicate the presence of the tested-for substance, and the intensity indicates relative amounts. The entire instrument can be quite small and light, on the order of ten cm in each dimension. A possible choice for light source may be small UV lasers at several wavelengths. Up to 1000 different sample spots can be placed on a plate 3 cm on a side, but a more practical number might be 100. Each antibody can have a redundant position for independent verification of reaction. Some of the wells or spots can contain simply standard fluorescent stains used to detect live cells, dead cells, DNA, etc. These the stains in these spots may be directly activated; no antibodies are necessary.
NASA Astrophysics Data System (ADS)
Nakama, Tomohiro; Suyama, Teruaki; Kohri, Kazunori; Hiroshima, Nagisa
2018-01-01
We revisit constraints on small-scale primordial power from annihilation signals from dark matter minihalos. Using gamma rays and neutrinos from extragalactic minihalos and assuming the delta-function primordial spectrum, we show the dependence of the constraints on annihilation modes, the mass of dark matter, and the annihilation cross section. We report conservative constraints by assuming minihalos are fully destructed when becoming part of halos originating from the standard almost-scale invariant primordial spectrum and optimistic constraints by neglecting destruction.
Berents, Teresa Løvold; Rønnevig, Jørgen; Søyland, Elisabeth; Gaustad, Peter; Nylander, Gro; Løland, Beate Fossum
2015-05-04
Public health nurses report on effects of fresh human milk as treatment for conjunctivitis, rhinitis and atopic eczema (AE), the latter being highly prevalent in early childhood. Emollients and topical corticosteroids are first line treatment of AE. As many caregivers have steroid phobia, alternative treatment options for mild AE are of interest. The aim of this small pilot study was to assess the potential effects and risks of applying fresh human milk locally on eczema spots in children with AE. This was a split body, controlled, randomized and physician blinded pilot study, of children with AE with two similar contralateral eczema spots having a mother breastfeeding the child or a sibling. Fresh expressed milk and emollient was applied on the intervention spot and emollient alone on the control area, three times a day for four weeks. The severity and area of the eczema spots was evaluated weekly, and samples from milk and the spots were analysed weekly with respect to bacterial colonisation. Of nine patients included, six completed the study. Mean age at inclusion was 18.5 months. The spots examined were localized on the arms, legs or cheeks. The spots were similar in severity, but differed in area. In one patient the eczema ceased after inclusion. In four patients both control and intervention areas increased during the intervention. The relative change in eczema area compared to baseline showed less increase in the intervention spots in two patients, whereas the opposite was observed in three. In four children Staphylococcus aureus was found in their eczema once or more. In three of the 28 human milk samples, Staphylococcus aureus, alfa haemolytic streptococci or coagulase negative staphylococci were detected. Staphylococcus aureus was found once both in human milk and in the eczema spots, no clinical signs of infection were however observed. No secondary infection due to milk application was detected. In this small pilot study, no effect was found on eczema spots treated with topical application of fresh human milk. (ClinicalTrials.gov Identifier, NCT02381028 ).
Orientational imaging of a single plasmonic nanoparticle using dark-field hyperspectral imaging
NASA Astrophysics Data System (ADS)
Mehta, Nishir; Mahigir, Amirreza; Veronis, Georgios; Gartia, Manas Ranjan
2017-08-01
Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as catalyst, biosensors DNA interactions, protein detections, hotspot of surface enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. However, due to diffraction limit, it is challenging to obtain the exact orientation of the nanostructure using standard optical microscope. Hyperspectral Imaging Microscopy is a state-of-the-art visualization technology that combines modern optics with hyperspectral imaging and computer system to provide the identification and quantitative spectral analysis of nano- and microscale structures. In this work, initially we use transmitted dark field imaging technique to locate single nanoparticle on a glass substrate. Then we employ hyperspectral imaging technique at the same spot to investigate orientation of single nanoparticle. No special tagging or staining of nanoparticle has been done, as more likely required in traditional microscopy techniques. Different orientations have been identified by carefully understanding and calibrating shift in spectral response from each different orientations of similar sized nanoparticles. Wavelengths recorded are between 300 nm to 900 nm. The orientations measured by hyperspectral microscopy was validated using finite difference time domain (FDTD) electrodynamics calculations and scanning electron microscopy (SEM) analysis. The combination of high resolution nanometer-scale imaging techniques and the modern numerical modeling capacities thus enables a meaningful advance in our knowledge of manipulating and fabricating shaped nanostructures. This work will advance our understanding of the behavior of small nanoparticle clusters useful for sensing, nanomedicine, and surface sciences.
NASA Astrophysics Data System (ADS)
Barucci, M. A.; Fornasier, S.; Filacchione, G.; Deshapriya, J. D. P.; Raponi, A.; Tosi, F.; Feller, C.; Ciarniello, M.; Fulchignoni, M.; Sierks, H.; Capaccioni, F.:
2017-04-01
During more than two years of observations on board of Rosetta spacecraft orbiting close to the comet 67P/Churyumov-Gerasimenko, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) camera acquired a huge quantity of resolved images of the comet, producing the most detailed maps at the highest spatial resolution ever made of a cometary nucleus surface. Comet 67P shows a body with a dark, dehydrated surface, rich in hetereogeneous geological structures [1]. The morphologically complex surface shows color and albedo variations with local time and perihelion distance. Numerous bright spots of different size with high visible albedo and flat visible slope have been identified by OSIRIS high resolution images [2, 3, 4, 5]. The detected bright spots are mostly situated on consolidated dust free areas distributed on the two lobes of 67P in locations which stay longer in shadow, mostly concentrated at equatorial latitudes Some of them have been observed also by VIRTIS (Visible InfraRed Thermal Imaging Spectrometer) which has detected the diagnostic absorption bands of ice in at 1.5 and 2.05 μm [6, 7]. Comparing the image data with near- infrared spectra and modeling the spectra as a mixture of H2O ice and the ubiquitious "Dark Material" associated to complex organic material present on the nucleus' surface [8, 9], we were able to study at the same time the morphological, thermal and compositional properties of these areas. With this complementary study we are able to confirm the presence of H2O ice on many brighter areas distributed on the two lobes of 67P. We analysed in detail the OSIRIS images in the areas where the spots have been identified. The majority of the detected H2O ice spots are located in the vicinity of previously detected cometary outbursts source areas. We investigated all the available observations of the selected areas to evaluate the lifetime of the ice spots. Some spots are stable for several months and others show temporal changes connected to diurnal and seasonal variations. The temporal variation of these spots will be presented and discussed as well as their stability in general, well corroborated by the temperature retrieved at the surface. References: [1] Sierks H. et al. (2015) Science, 347, 1044. [2] Pommerol A. et al. (2015) A&A, 583, A25. [3] Barucci M. A. et al. (2016) A&A., 595, A102. [4] Oklay N. et al. (2016) MNRAS, in press. [5] Fornasier S. et al. (2016) Science in press, DOI : 10.1126/science.aag2671. [6] Filacchione et al. (2016) Nature, 529, 368. [7] Filacchione et al. (2016) Icarus 274, 334- 349. [8] Capaccioni F. et al. (2015) Science, 347, 0628. [9] Quirico, E. et al. (2016) Icarus, 272, 32.
Featured Image: A New Dark Vortex on Neptune
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-03-01
This remarkable series of images by the Hubble Space Telescope (click for the full view) track a dark vortex only the fifth ever observed on Neptune as it evolves in Neptunes atmosphere. These Hubble images, presented in a recent study led by Michael Wong (University of California, Berkeley), were taken in 2015 September, 2016 May, 2016 October, and 2017 October; the observations have monitored the evolution of the vortex as it has gradually weakened and drifted polewards. Confirmation of the vortex solved a puzzle that arose in 2015, when astronomers spotted an unexplained outburst of cloud activity on Neptune. This outburst was likely a group of bright companion clouds that form as air flows over high-pressure dark vortices, causing gases to freeze into methane ice crystals. To learn more about what the authors have since learned by studying this vortex, check out the paper below.CitationMichael H. Wong et al 2018 AJ 155 117. doi:10.3847/1538-3881/aaa6d6
Variation of the period and light curves of the solar-type contact binary EQ Tauri
NASA Astrophysics Data System (ADS)
Yuan, Jinzhao; Qian, Shengbang
2007-10-01
We present two new sets of complete light curves of EQ Tauri (EQ Tau) observed in 2000 October and 2004 December. These were analysed, together with the light curves obtained by Yang & Liu in 2001 December, with the 2003 version of the Wilson-Devinney code. In the three observing seasons, the light curves show a noticeable variation in the time-scale of years. The more massive component of EQ Tau is a solar-type star (G2) with a very deep convective envelope, which rotates about 80 times as fast as the Sun. Therefore, the change can be explained by dark-spot activity on the common convective envelope. The assumed unperturbed part of the light curve and the radial velocities published by Rucinski et al. were used to determine the basic parameters of the system, which were kept fixed for spot modelling in the three sets of light curves. The results reveal that the total spotted area on the more massive component covers 18, 3 and 20 per cent of the photospheric surface in the three observing seasons, respectively. Polar spots and high-latitude spots are found. The analysis of the orbital period has demonstrated that it undergoes cyclical oscillation, which is due to either a tertiary component or periodic magnetic activity in the more massive component.
Tomaso-Peterson, Maria; Jo, Young-Ki; Vines, Phillip L; Hoffmann, Federico G
2016-09-01
A novel species of Curvularia was identified as a foliar pathogen of Cynodon dactylon (bermudagrass) and Zoysia matrella (zoysiagrass), two important warm-season turfgrasses in the southeastern United States. Field symptoms were conspicuous chocolate brown to black spots in turf of both species on golf course putting greens and fairways. Leaves of plants within these spots exhibited prominent, black eyespot lesions from which a darkly pigmented fungus was consistently isolated. The fungus produced gray- to black-olivaceous mycelium within 10 d on potato dextrose agar at 25 C but never produced conidia despite numerous attempts to induce them. Field symptoms were reproduced in inoculated plants of both grasses, and re-isolation of the pathogen from symptomatic tissues confirmed its pathogenicity in fulfillment of Koch's postulates. A phylogenetic analysis was performed using sequence markers of internal nuclear ribosomal transcribed spacer region (ITS), glyceralde-hyde-3-phosphate dehydrogenase (GPD1) and translation elongation factor 1-α (TEF 1). The concatenated phylogenetic tree showed strong support for a new species within Curvularia that is distinctly divergent from other Curvularia spp. Therefore, the darkly pigmented pathogen of warm-season turfgrasses is described and illustrated as a new species, Curvularia malina. © 2016 by The Mycological Society of America.
A DARK SPOT ON A MASSIVE WHITE DWARF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilic, Mukremin; Gianninas, Alexandros; Curd, Brandon
We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips mustmore » be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope.« less
Small but mighty: Dark matter substructures
NASA Astrophysics Data System (ADS)
Cyr-Racine, Francis-Yan; Keeton, Charles; Moustakas, Leonidas
2018-01-01
The fundamental properties of dark matter, such as its mass, self-interaction, and coupling to other particles, can have a major impact on the evolution of cosmological density fluctuations on small length scales. Strong gravitational lenses have long been recognized as powerful tools to study the dark matter distribution on these small subgalactic scales. In this talk, we discuss how gravitationally lensed quasars and extended lensed arcs could be used to probe non minimal dark matter models. We comment on the possibilities enabled by precise astrometry, deep imaging, and time delays to extract information about mass substructures inside lens galaxies. To this end, we introduce a new lensing statistics that allows for a robust diagnostic of the presence of perturbations caused by substructures. We determine which properties of mass substructures are most readily constrained by lensing data and forecast the constraining power of current and future observations.
Lee, Seungah; Nan, He; Yu, Hyunung; Kang, Seong Ho
2016-05-15
A nanoimmunosensor based on wavelength-dependent dark-field illumination with enhanced sensitivity was used to detect a disease-related protein molecule at zeptomolar (zM) concentrations. The assay platform of 100-nm gold nanospots could be selectively acquired using the wavelength-dependence of enhanced scattering signals from antibody-conjugated plasmonic silver nanoparticles (NPs) with on-off switching using optical filters. Detection of human thyroid-stimulating hormone (hTSH) at a sensitivity of 100 zM, which corresponds to 1-2 molecules per gold spot, was possible within a linear range of 100 zM-100 fM (R=0.9968). A significantly enhanced sensitivity (~4-fold) was achieved with enhanced dark-field illumination compared to using a total internal reflection fluorescence immunosensor. Immunoreactions were confirmed via optical axial-slicing based on the spectral characteristics of two plasmonic NPs. This method of using wavelength-dependent dark-field illumination had an enhanced sensitivity and a wide, linear dynamic range of 100 zM-100 fM, and was an effective tool for quantitatively detecting a single molecule on a nanobiochip for molecular diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.
2015-07-06
New Horizons' Long Range Reconnaissance Imager (LORRI) obtained these three images of Pluto between July 1-3 ,2015, as the spacecraft closed in on its July 14 encounter with the dwarf planet and its moons. The left image shows, on the right side of the disk, a large bright area on the hemisphere opposite Charon; this is the side of Pluto that will be seen in close-up by New Horizons on July 14. The three images together show the full extent of a continuous swath of dark terrain that wraps around Pluto's equatorial region between longitudes 40° and 160°. The western end of the swath, west of longitude 40°, breaks up into a series of striking dark regularly-spaced spots on the anti-Charon hemisphere (right image) that were first noted in New Horizons images taken on Pluto's previous rotation. Intriguing details are beginning to emerge in the bright material north of the dark region, in particular a series of bright and dark patches that are conspicuous just below the center of the disk in the right-hand image. In all three black-and-white views, the apparent jagged bottom edge of Pluto is the result of image processing. http://photojournal.jpl.nasa.gov/catalog/PIA19698
The effect of starspots on the radii of low-mass pre-main-sequence stars
NASA Astrophysics Data System (ADS)
Jackson, R. J.; Jeffries, R. D.
2014-07-01
A polytropic model is used to investigate the effects of dark photospheric spots on the evolution and radii of magnetically active, low-mass (M < 0.5 M⊙), pre-main-sequence (PMS) stars. Spots slow the contraction along Hayashi tracks and inflate the radii of PMS stars by a factor of (1 - β)-N compared to unspotted stars of the same luminosity, where β is the equivalent covering fraction of dark starspots and N ≃ 0.45 ± 0.05. This is a much stronger inflation than predicted by Spruit & Weiss for main-sequence stars with the same β, where N ˜ 0.2-0.3. These models have been compared to radii determined for very magnetically active K- and M-dwarfs in the young Pleiades and NGC 2516 clusters, and the radii of tidally locked, low-mass eclipsing binary components. The binary components and zero-age main-sequence K-dwarfs have radii inflated by ˜10 per cent compared to an empirical radius-luminosity relation that is defined by magnetically inactive field dwarfs with interferometrically measured radii; low-mass M-type PMS stars, that are still on their Hayashi tracks, are inflated by up to ˜40 per cent. If this were attributable to starspots alone, we estimate that an effective spot coverage of 0.35 < β < 0.51 is required. Alternatively, global inhibition of convective flux transport by dynamo-generated fields may play a role. However, we find greater consistency with the starspot models when comparing the loci of active young stars and inactive field stars in colour-magnitude diagrams, particularly for the highly inflated PMS stars, where the large, uniform temperature reduction required in globally inhibited convection models would cause the stars to be much redder than observed.
Reality of the G-spot and its relation to female circumcision and vaginal surgery.
Thabet, Saeed Mohamad Ahmad
2009-10-01
To clarify the reality of the G-spot anatomically, functionally and histologically, and to determine the possible effect of female circumcision and anterior vaginal wall surgery on the integrity and function of the G-spot. A controlled descriptive and comparative cohort prospective study was conducted at Kasr El Aini School of Medicine, Cairo University, Cairo, Egypt, of 50 uncircumcised and 125 circumcised women with small to moderate anterior vaginal wall descent. Preoperative sexual examination was performed to map the site of the G-spot and other anatomical landmarks on the anterior vaginal wall and to verify the associated circumcision state. Pre- and postoperative sexual assessment and histological examination of different mapped sites in the anterior vagina were also conducted. Histological findings, results of the anatomical and sexual mapping of the anterior vaginal wall and sexual scores were recorded. The G-spot was proved functionally in 144 (82.3%) of women and anatomically in 95 (65.9%). The latter appeared as two small flaccid balloon-like masses on either side of the lower third of the urethra and were named 'the sexual bodies of the G-spot'. These bodies were significantly detected in all histo-positive cases in the circumcised women and in the uncircumcised women who had small or average clitorises. The G-spot was also proved histologically in 47.4% of all cases and was formed of epithelial, glandular and erectile tissue. Sex scores were significantly higher in the histo-positive cases with sexual bodies but significantly dropped after anterior vaginal wall surgery. In contrast, female circumcision rarely alters the scores. The G-spot is functional reality in 82.3% of women, an anatomical reality in 54.3% and a histological reality in 47.4%. Anterior vaginal wall surgery usually affects the G-spot and female sexuality, but female circumcision rarely affects them.
Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Mori, Shigeo
2018-04-09
We construct an electron optical system to investigate Bragg diffraction (the crystal lattice plane, 10-2 to 10-3 rad) with the objective lens turned off by adjusting the current in the intermediate lenses. A crossover was located on the selected-area aperture plane. Thus, the dark-field imaging can be performed by using a selected-area aperture to select Bragg diffraction spots. The camera length can be controlled in the range of 0.8-4 m without exciting the objective lens. Furthermore, we can observe the magnetic-field dependence of electron diffraction using the objective lens under weak excitation conditions. The diffraction mode for Bragg diffraction can be easily switched to a small-angle electron diffraction mode having a camera length of more than 100 m. We propose this experimental method to acquire electron diffraction patterns that depict an extensive angular range from 10-2 to 10-7 rad. This method is applied to analyze the magnetic microstructures in three distinct magnetic materials, i.e. a uniaxial magnetic structure of BaFe10.35Sc1.6Mg0.05O19, a martensite of a Ni-Mn-Ga alloy, and a helical magnetic structure of Ba0.5Sr1.5Zn2Fe12O22.
Lyman-α forest constraints on decaying dark matter
NASA Astrophysics Data System (ADS)
Wang, Mei-Yu; Croft, Rupert A. C.; Peter, Annika H. G.; Zentner, Andrew R.; Purcell, Chris W.
2013-12-01
We present an analysis of high-resolution N-body simulations of decaying dark matter cosmologies focusing on the statistical properties of the transmitted Lyman-α (Lyα) forest flux in the high-redshift intergalactic medium (IGM). In this type of model a dark matter particle decays into a slightly less massive stable dark matter daughter particle and a comparably light particle. The small mass splitting provides a nonrelativistic kick velocity Vk=cΔM/M to the daughter particle resulting in free-streaming and subsequent damping of small-scale density fluctuations. Current Lyα forest power spectrum measurements probe comoving scales up to ˜2-3h-1Mpc at redshifts z˜2-4, providing one of the most robust ways to probe cosmological density fluctuations on relatively small scales. The suppression of structure growth due to the free-streaming of dark matter daughter particles also has a significant impact on the neutral hydrogen cloud distribution, which traces the underlying dark matter distribution well at high redshift. We exploit Lyα forest power spectrum measurements to constrain the amount of free-streaming of dark matter in such models and thereby place limits on decaying dark matter based only on the dynamics of cosmological perturbations without any assumptions about the interactions of the decay products. We use a suite of dark-matter-only simulations together with the fluctuating Gunn-Peterson approximation to derive the Lyα flux distribution. We argue that this approach should be sufficient for our main purpose, which is to demonstrate the power of the Lyα forest to constrain decaying dark matter models. We find that Sloan Digital Sky Survey 1D Lyα forest power spectrum data place a lifetime-dependent upper limit Vk≲30-70km/s for decay lifetimes ≲10Gyr. This is the most stringent model-independent bound on invisible dark matter decays with small mass splittings. For larger mass splittings (large Vk), Lyα forest data restrict the dark matter lifetime to Γ-1≳40Gyr. We leave the calibration of IGM properties using high-resolution hydrodynamic simulations for future work, which might become necessary if we consider data with higher precision such as the Baryon Oscillation and Spectroscopic Survey (BOSS) Lyα data. Forthcoming BOSS data should be able to provide more stringent constraints on exotic dark matter, mainly because the larger BOSS quasar spectrum sample will significantly reduce statistical errors.
Infrared sensor for hot spot recognition for a small satellite mission
NASA Astrophysics Data System (ADS)
Skrbek, W.; Bachmann, K.; Lorenz, E.; Neidhardt, M.; Peschel, M.; Walter, I.; Zender, B.
1996-11-01
High temperature events strongly influence the environmental processes. Therefore, their observation is an important constituent of the global monitoring network. Unfortunately the current remote sensing systems are not able to deliver the necessary information about the world wide burn out of vegetation and its consequences. For global observations a dedicated system of small satellites is required. The main components of the corresponding instrumentation are the infrared channels. The proposed HSRS (HOT SPOT RECOGNITION SENSOR) has to demonstrate the possibilities of an such instrumentation and its feasibility for small satellites. The main drawbacks of the HSRS design are the handling of the hot spot recognition in the subpixel area and of the saturation in the case of larger hot areas by a suitable signal processing hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiuchi, Shunsaku, E-mail: horiuchi@vt.edu
2016-06-21
The cold dark matter paradigm has been extremely successful in explaining the large-scale structure of the Universe. However, it continues to face issues when confronted by observations on sub-Galactic scales. A major caveat, now being addressed, has been the incomplete treatment of baryon physics. We first summarize the small-scale issues surrounding cold dark matter and discuss the solutions explored by modern state-of-the-art numerical simulations including treatment of baryonic physics. We identify the too big to fail in field galaxies as among the best targets to study modifications to dark matter, and discuss the particular connection with sterile neutrino warm darkmore » matter. We also discuss how the recently detected anomalous 3.55 keV X-ray lines, when interpreted as sterile neutrino dark matter decay, provide a very good description of small-scale observations of the Local Group.« less
The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion
NASA Astrophysics Data System (ADS)
Sarkar, Abir; Sethi, Shiv. K.; Das, Subinoy
2017-07-01
After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc < k < 104 Mpc-1, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as a probe of the small-scale power. We consider four suggested alternative dark matter candidates—Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y-parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift zf = 105 (7%); WDM for mass mwdm = 1 keV (2%); CHDM for decay redshift zdecay = 105 (5%); ULA for mass ma = 10-24 eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y-distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from the pre-recombination phase.
The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Abir; Sethi, Shiv K.; Das, Subinoy, E-mail: abir@rri.res.in, E-mail: sethi@rri.res.in, E-mail: subinoy@iiap.res.in
After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc < k < 10{sup 4} Mpc{sup −1}, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as amore » probe of the small-scale power. We consider four suggested alternative dark matter candidates—Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y -parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift z {sub f} = 10{sup 5} (7%); WDM for mass m {sub wdm} = 1 keV (2%); CHDM for decay redshift z {sub decay} = 10{sup 5} (5%); ULA for mass m {sub a} = 10{sup −24} eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y -distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from the pre-recombination phase.« less
Davies, Nigel P; Morland, Antony B
2002-02-01
The Hermann-Hering grid illusion consists of dark illusory spots perceived at the intersections of horizontal and vertical white bars viewed against a dark background. The dark spots originate from lateral inhibition processing. This illusion was used to investigate the hypothesis that lateral inhibition may be disrupted in diabetes mellitus. A computer monitor based psychophysical test was developed to measure the threshold of perception of the illusion for different bar widths. The contrast threshold for illusion perception at seven bar widths (range 0.09 degrees to 0.60 degrees) was measured using a randomly interleaved double staircase. Convolution of Hermann-Hering grids with difference of Gaussian receptive fields was used to generate model sensitivity functions. The method of least squares was used to fit these to the experimental data. 14 diabetic patients and 12 control subjects of similar ages performed the test. The sensitivity to the illusion was significantly reduced in the diabetic group for bar widths 0.22 degrees, 0.28 degrees, and 0.35 degrees (p = 0.01). The mean centre:surround ratio for the controls was 1:9.1 (SD 1.6) with a mean correlation coefficient of R(2) = 0.80 (SD 0.16). In the diabetic group, two subjects were unable to perceive the illusion. The mean centre:surround ratio for the 12 remaining diabetic patients was 1:8.6 (SD 2.1). However, the correlation coefficients were poor with a mean of R(2) = 0.54 (SD 0.27), p = 0.04 in comparison with the control group. A difference of Gaussian receptive field model fits the experimental data well for the controls but does not fit the data obtained for the diabetics. This indicates dysfunction of the lateral inhibition processes in the post-receptoral pathway.
Self-interacting dark matter constraints in a thick dark disk scenario
NASA Astrophysics Data System (ADS)
Vattis, Kyriakos; Koushiappas, Savvas M.
2018-05-01
A thick dark matter disk is predicted in cold dark matter simulations as the outcome of the interaction between accreted satellites and the stellar disk in Milky Way-sized halos. We study the effects of a self-interacting thick dark disk on the energetic neutrino flux from the Sun. We find that for particle masses between 100 GeV and 1 TeV and dark matter annihilation to τ+τ-, either the self-interaction may not be strong enough to solve the small-scale structure motivation or a dark disk cannot be present in the Milky Way.
Ongoing Cerebral Vasculitis During Treatment of Rocky Mountain Spotted Fever.
Sun, Lisa R; Huisman, Thierry A G M; Yeshokumar, Anusha K; Johnston, Michael V
2015-11-01
Rocky Mountain spotted fever is a tickborne infection that produces a systemic small-vessel vasculitis; its prognosis is excellent if appropriate treatment is initiated early. Because the advent of effective antirickettsial therapies predates the widespread use of brain magnetic resonance imaging, there are limited data on the effect of untreated Rocky Mountain spotted fever infection on neuroimaging studies. We describe a 7-year-old girl with delayed treatment of Rocky Mountain spotted fever who suffered severe neurological impairment. Serial brain magnetic resonance images revealed a progressive "starry sky appearance," which is proposed to result from the same small vessel vasculitis that causes the characteristic skin rash of this infection. Neurological injury can continue to occur despite specific antirickettsial therapy in Rocky Mountain spotted fever. This child's clinical features raise questions about the optimal management of this infection, particularly the utility of immune modulating therapies in cases of delayed treatment and neurological involvement. Copyright © 2015 Elsevier Inc. All rights reserved.
School Consolidation: A Silver Lining in a Dark Cloud
ERIC Educational Resources Information Center
Waldfogel, Dean
2011-01-01
Everyone--board members, parents, and staff--loves small schools, bur it's no secret that small schools cost more to operate, particularly if administrative and teaching staff cannot be assigned efficiently. If there is a silver lining in this dark contextual cloud, it's that political support for consolidating schools has rarely been better. The…
2012-01-01
Background Spot 42 was discovered in Escherichia coli nearly 40 years ago as an abundant, small and unstable RNA. Its biological role has remained obscure until recently, and is today implicated in having broader roles in the central and secondary metabolism. Spot 42 is encoded by the spf gene. The gene is ubiquitous in the Vibrionaceae family of gamma-proteobacteria. One member of this family, Aliivibrio salmonicida, causes cold-water vibriosis in farmed Atlantic salmon. Its genome encodes Spot 42 with 84% identity to E. coli Spot 42. Results We generated a A. salmonicida spf deletion mutant. We then used microarray and Northern blot analyses to monitor global effects on the transcriptome in order to provide insights into the biological roles of Spot 42 in this bacterium. In the presence of glucose, we found a surprisingly large number of ≥ 2X differentially expressed genes, and several major cellular processes were affected. A gene encoding a pirin-like protein showed an on/off expression pattern in the presence/absence of Spot 42, which suggests that Spot 42 plays a key regulatory role in the central metabolism by regulating the switch between fermentation and respiration. Interestingly, we discovered an sRNA named VSsrna24, which is encoded immediately downstream of spf. This new sRNA has an expression pattern opposite to that of Spot 42, and its expression is repressed by glucose. Conclusions We hypothesize that Spot 42 plays a key role in the central metabolism, in part by regulating the pyruvat dehydrogenase enzyme complex via pirin. PMID:22272603
Dark-field imaging in coronary atherosclerosis.
Hetterich, Holger; Webber, Nicole; Willner, Marian; Herzen, Julia; Birnbacher, Lorenz; Auweter, Sigrid; Schüller, Ulrich; Bamberg, Fabian; Notohamiprodjo, Susan; Bartsch, Harald; Wolf, Johannes; Marschner, Mathias; Pfeiffer, Franz; Reiser, Maximilian; Saam, Tobias
2017-09-01
Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability. Copyright © 2017 Elsevier B.V. All rights reserved.
Camisão, Beatriz M; Cavichioli, Rodney R; Takiya, Daniela M
2014-07-29
The thirty known species of Oragua are distributed from southern Mexico to Argentina. Seventeen species are recorded from Brazil, but only O. elegantula Young, 1977, O. insipida Young, 1977, and O. jurua Young, 1977 are recorded from Amazonas State. Oragua partitula (Jacobi, 1905) is herein firstly recorded from Brazil, ocurring in Amazonas State. The aim of the study was to describe eight new species of Oragua, to provide a key to males of the species of the genus that are recorded from Amazonas State and to study in detail the female terminalia of these new species. Also, the female of O. jurua Young, 1977 is herein described for the first time. Oragua alerochae sp. nov. has the external color pattern similar to O. bifasciata Cavichioli, 2000, however, the head is darker, the forewings are paler and the stripes are thinner, aedeagus is much more curved with long apical processes, and apex of paraphyses rami are curved. Oragua aurantimaculata sp. nov. is similar externally to O. elegantula and Oragua jau sp. nov. as they share the body brown with three orange maculae on crown and orange maculae on forewings, but it has the aedeagus with shaft enlarged medially with a pair of apical processes curved anteriorly and connective more slender. Oragua bella sp. nov. is dark with orange spots, aedeagus with basal elongated processes extending to the apex of the pygofer, with the basal portion enlarged and narrowing toward the apex. Oragua copiosa sp. nov. is dark with small pale dots all over the body, paraphyses rami are slender and their apices expanded, and styles with hooked apex, extending posteriorly beyond the connective apex. Oragua gracilenta sp. nov. has the external color similar to O. galerula, but it can be distinguished by the brown ground color, absence of two maculae near median line just before posterior margin on pronotum and apex of rami of paraphyses bifurcate and not truncate. Oragua jau sp. nov. has the external color similar to O. elegantula, but the aedeagus is curved and slender with a pair of small lateral processes at the apex and very thin paraphyses rami bifurcating only in the final portion, with the length of the rami just one third of the total length. Oragua schwertineri sp. nov. has the external color similar to O. insipida, however the male genitalia differs from the latter by the lack of paraphyses and aedeagus with pair of basal processes curved dorsally and shaft with pair of apical lateral processes. Oragua unifasciata sp. nov. is dark brown with pale spots over the body with a pale transverse stripe over the anteapical cells and paraphyses stem slender and abruptly broadened at apical two thirds, with rami robust and flattened with posterior margin serrate with large and irregular tooth-like projections. This work raises the number of Oragua species occurring in Amazonas State from three to twelve.
1979-07-03
Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot from Voyager 2, shows the equator to the southern polar latitudes, near the Great Red Spot. The white oval that appears here is different from the one seen in a similiar position when voyager 1 passed years before. The region of white clouds now extends from east of The Red Spot and around it's northern boundary, preventing small cloud vortices from circling the feature. The disturbed region west of The Red Spot has also changed since Voyager1. It shows more small scale structure and cloud vortices being formed out of the wave structures.
Laser furnace and method for zone refining of semiconductor wafers
NASA Technical Reports Server (NTRS)
Griner, Donald B. (Inventor); zur Burg, Frederick W. (Inventor); Penn, Wayne M. (Inventor)
1988-01-01
A method of zone refining a crystal wafer (116 FIG. 1) comprising the steps of focusing a laser beam to a small spot (120) of selectable size on the surface of the crystal wafer (116) to melt a spot on the crystal wafer, scanning the small laser beam spot back and forth across the surface of the crystal wafer (116) at a constant velocity, and moving the scanning laser beam across a predetermined zone of the surface of the crystal wafer (116) in a direction normal to the laser beam scanning direction and at a selectible velocity to melt and refine the entire crystal wafer (116).
Alternative beam configuration for a Canadian Ka-band satellite system
NASA Technical Reports Server (NTRS)
Hindson, Daniel J.; Caron, Mario
1995-01-01
Satellite systems operating in the Ka-band have been proposed to offer wide band personal communications services to fixed earth terminals employing small aperture antennas as well as to mobile terminals. This requirement to service a small aperture antenna leads to a satellite system utilizing small spot beams. The traditional approach is to cover the service area with uniform spot beams which have been sized to provide a given grade of service at the worst location over the service area and to place them in a honeycomb pattern. In the lower frequency bands this approach leads to a fairly uniform grade of service over the service area due to the minimal effects of rain on the signals. At Ka-band, however, the effects of rain are quite significant. Using this approach over a large service area (e.g. Canada) where the geographic distribution of rain impairment varies significantly yields an inefficient use of satellite resources to provide a uniform grade of service. An alternative approach is to cover the service area using more than one spot beam size in effect linking the spot beam size to the severity of the rain effects in a region. This paper demonstrates how for a Canadian Ka-band satellite system, that the use of two spot beam sizes can provide a more uniform grade of service across the country as well as reduce the satellite payload complexity over a design utilizing a single spot beam size.
Taira, Wataru; Otaki, Joji M
2016-01-01
Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.
Taira, Wataru; Otaki, Joji M.
2016-01-01
Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns. PMID:26731532
Florida and Bahamas in Sunglint
1992-04-02
STS045-78-016 (24 March-2 April 1992) --- This view is of the Bahamas and Florida looking westward into the sunglint. The Bahama Banks are in the foreground; from left to right, Andros Island, the Berry Islands, and Grand Bahama Island are surrounded by shallow limestone banks. Bimini is the double dark spot on the edge of the Straits of Florida, with the peninsula of Florida within the sunglint. Cuba can be seen to the upper left.
Two new fish species of the subfamily Anthiinae (Perciformes, Serranidae) from the Marquesas.
Williams, Jeffrey T; Delrieu-Trottin, Erwan; Planes, Serge
2013-01-01
Two new species of anthiine fishes are described from the Marquesas Islands, French Polynesia. Plectranthias flammeus was found at depths from 20-45 m and is characterized by dorsal rays X, 14 or 15, with spines 1-6 bearing fleshy white tabs at their tips, longest fleshy tab on spine 4; 14 unbranched pectoral rays; lateral line incomplete with 16-17 tubed scales; preopercle with 8-10 small spines along posterior margin and 2 antrorse spines on ventral margin; broad, fiery red-orange streak across lower cheek; head and body with irregularly spaced maroon-ringed yellow blotches on a white background; pair of small dark oblong spots (red with black centers in life) on the bases of the middle rays of the caudal fin. Pseudanthias oumati was found on the outer reef slope of Fatu Hiva at a depth of 50-55 m and is characterized by 3rd dorsal spine elongate and tipped with fleshy yellow filament extending beyond tip of spine; lateral-line scales 43; gill rakers 10 + 28; no papillae on posterior edge of orbit; front of upper lip not thickened (male condition unknown); caudal fin lunate; color of female yellow, all fins yellow with narrow magenta margin (except pectoral fin, which lacks magenta); no stripe from snout to pectoral base; small scales located on basal quarter of soft-dorsal fin from segmented rays 1-12; dorsal profile of head slightly concave.
One dark matter mystery: halos in the cosmic web
NASA Astrophysics Data System (ADS)
Gaite, Jose
2015-01-01
The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted.
QCD Axion Dark Matter with a Small Decay Constant
NASA Astrophysics Data System (ADS)
Co, Raymond T.; Hall, Lawrence J.; Harigaya, Keisuke
2018-05-01
The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant fa˜O (1011) GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires fa˜(108- 1011) GeV . The axions may be warm enough to give deviations from cold dark matter in large scale structure.
NASA Technical Reports Server (NTRS)
Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.
1995-01-01
We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.
Kim, Robert Y; Dragovic, Alek F; Whitley, Alexander C; Shen, Sui
2014-01-01
To analyze the D2 cc hot spot in three-dimensional CT and anatomic factors affecting the D2 cc hot spot in organs at risk (OARs). Thirty-one patients underwent pelvic CT scan after insertion of the applicator. High-dose-rate treatment planning was performed with standard loading patterns. The D2 cc structures in OARs were generated in three dimensional if the total equivalent dose in 2 Gy exceeded our defined dose limits (hot spot). The location of D2 cc hot spot was defined as the center of the largest D2 cc fragment. The relationship between the hot spot and the applicator position was reported in Digital Imaging and Communication in Medicine coordinates. The location of sigmoid, small bowel, and bladder D2 cc hot spots was around the endocervix: The mean location of sigmoid hot spot for lateral view was 1.6 cm posteriorly and 2.3 cm superiorly (Y, 1.6 and Z, 2.3), small bowel was 1.6 cm anteriorly and 2.7 cm superiorly (Y, -1.6 and Z, 2.7). The mean location of bladder hot spot was 1.6 cm anteriorly and 1.6 cm superiorly (Y, -1.6 and Z, 1.6). These hot spots were near the plane of Point A (X, 2.0 or -2.0; Y, 0; and Z, 2.0). The mean location of rectal hot spot was 1.6 cm posteriorly and 1.9 cm inferiorly (Y, 1.6 and Z, -1.9). D2 cc hot spot was affected by uterine wall thickness, uterine tandem position, fibroids, bladder fullness, bowel gas, and vaginal packing. Because of the location of the D2 cc hot spots, larger tumors present a challenge for adequate tumor coverage with a conventional brachytherapy applicator without an interstitial implant. Additionally, anatomic factors were identified which affect the D2 cc hot spot in OARs. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
New Observations and Studies of Saturn's Long-Lived North Polar SPOT
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, Agustin; Rojas, Jose Félix; Acarreta, Juan Ramón; Lecacheux, Jean; Colas, François; Sada, Pedro V.
1997-08-01
We report on a new series of ground-based CCD observations at visual wavelengths, covering a period of 1255 days between May 1992 and November 1995, of the longest-lived asymmetric feature known in Saturn's atmosphere: the north polar spot (NPS). This completes our previous analysis of this feature during the period 1990-1991 (A. Sanchez-Lavega, J. Lecacheux, F. Colas, and P. Lagues, 1993,Science260,329-332). Longitude measurements of the NPS indicate an averaged longitudinal drift of -0.030 deg/day for the whole period 1990-1995 corresponding to a zonal velocity of 0.11 msec-1. These data, when combined with previous and new measurements of the NPS position on Voyager 1 and 2 images obtained in 1980 and 1981, indicate a long-term drift in longitude of the NPS with a constant angular acceleration of 1.1 × 10-5deg/(day)2. High-resolution Voyager 2 violet, blue, green, and orange images were used to measure the size and reflectivity of the NPS. Its structure is characterized by a bright elliptical core surrounded by a dark ring and a large uniform area. The contrast between all these features changes appreciably from violet to orange: the spot is dark in violet but bright in orange relative to its surroundings. The spot is embedded within a region seeded by a “field of bright clouds” with characteristic size 1000 km reminiscent of a cellular convection pattern. The NPS's east-west apparent size is shorter at violet-blue (about 7000 km as limited by a dark ring at these wavelengths) than at green-orange (about 11,000 km corresponding to the large uniform area). Green processed images show apparent spiral patterns within the NPS consistent with anticyclonic vorticity. The results of ground-based photometry of the north polar region (NPR) and the NPS in the red methane absorption bands and their adjacent continuum are consistent with a radiative transfer model of the cloud vertical structure consisting of a clear gas layer, a haze layer, and a semi-infinite cloud. In the context of this model the NPS cloud tops are slightly higher than neighboring clouds reaching a pressure level of 45 mbar. Calculations of the seasonal insolation at the north pole, together with a simple linear radiative response of the atmosphere to this heating at different altitudes, suggest temperature changes at the level of the NPS cloud tops which should influence the NPS dynamics. Because of the long lifetime of the NPS, and because its motions did not vary appreciably during the long observing period, we suggest that the main properties and dynamics of the NPS are insensitive to the external solar forcing.
A programmable light engine for quantitative single molecule TIRF and HILO imaging.
van 't Hoff, Marcel; de Sars, Vincent; Oheim, Martin
2008-10-27
We report on a simple yet powerful implementation of objective-type total internal reflection fluorescence (TIRF) and highly inclined and laminated optical sheet (HILO, a type of dark-field) illumination. Instead of focusing the illuminating laser beam to a single spot close to the edge of the microscope objective, we are scanning during the acquisition of a fluorescence image the focused spot in a circular orbit, thereby illuminating the sample from various directions. We measure parameters relevant for quantitative image analysis during fluorescence image acquisition by capturing an image of the excitation light distribution in an equivalent objective backfocal plane (BFP). Operating at scan rates above 1 MHz, our programmable light engine allows directional averaging by circular spinning the spot even for sub-millisecond exposure times. We show that restoring the symmetry of TIRF/HILO illumination reduces scattering and produces an evenly lit field-of-view that affords on-line analysis of evanescnt-field excited fluorescence without pre-processing. Utilizing crossed acousto-optical deflectors, our device generates arbitrary intensity profiles in BFP, permitting variable-angle, multi-color illumination, or objective lenses to be rapidly exchanged.
Low-dark current 1024×1280 InGaAs PIN arrays
NASA Astrophysics Data System (ADS)
Yuan, Ping; Chang, James; Boisvert, Joseph C.; Karam, Nasser
2014-06-01
Photon counting imaging applications requires low noise from both detector and readout integrated circuit (ROIC) arrays. In order to retain the photon-counting-level sensitivity, a long integration time has to be employed and the dark current has to be minimized. It is well known that the PIN dark current is sensitive to temperature and a dark current density of 0.5 nA/cm2 was demonstrated at 7 °C previously. In order to restrain the size, weight, and power consumption (SWaP) of cameras for persistent large-area surveillance on small platforms, it is critical to develop large format PIN arrays with small pitch and low dark current density at higher operation temperatures. Recently Spectrolab has grown, fabricated and tested 1024x1280 InGaAs PIN arrays with 12.5 μm pitch and achieved 0.7 nA/cm2 dark current density at 15 °C. Based on our previous low-dark-current PIN designs, the improvements were focused on 1) the epitaxial material design and growth control; and 2) PIN device structure to minimize the perimeter leakage current and junction diffusion current. We will present characterization data and analyses that illustrate the contribution of various dark current mechanisms.
Blind spot monitoring in light vehicles -- system performance.
DOT National Transportation Integrated Search
2014-07-01
This report summarizes findings of a small population study of blind spot monitoring systems (BSM) installed by : original vehicle manufacturers on standard production vehicles. The primary goals of these tests were to simulate real-world driving sce...
NASA Technical Reports Server (NTRS)
Piaget, A.
1973-01-01
The author has identified the following significant results. Three examples of cloud-interpretation from ERTS-1 pictures are presented. When the wind speed is large enough, the cumuli are found arranged in lines that are in average two kilometers apart from each other. These lines are grouped in lines made of small cumuli and in lines made up of well developed ones. These last lines are fused on the APT picture and appear as single lines. Fog-mapping for a given region is possible if the topography of the region is known. The stratified clouds lying over mountains or in valleys begin to dissolve above the middle of the valleys and not against the slopes. As water shows a weak albedo in the near infrared, wet surfaces will appear darker than their neighborhoods. This feature seems to be confirmed by the dark spot in the north of Bozen (Southern Tyrol) that can be seen on the ERTS-1 picture taken on 31 August 1972.
... flat or raised, large or small, light or dark, and can appear anywhere on our bodies. Sometimes, ... can still get melanoma even if they're dark skinned, young, and have no family history. Even ...
Photographer : JPL Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot
NASA Technical Reports Server (NTRS)
1979-01-01
Photographer : JPL Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot from Voyager 2, shows the equator to the southern polar latitudes, near the Great Red Spot. The white oval that appears here is different from the one seen in a similiar position when voyager 1 passed years before. The region of white clouds now extends from east of The Red Spot and around it's northern boundary, preventing small cloud vortices from circling the feature. The disturbed region west of The Red Spot has also changed since Voyager1. It shows more small scale structure and cloud vortices being formed out of the wave structures.
Sensitivity in MALDI MS with small spot sizes
NASA Astrophysics Data System (ADS)
Yamchuk, Andriy
In MALDI, for laser fluences below the saturation point the ion yield per shot follows a cubic dependence on the irradiated area, leading to a conclusion that smaller spots produce overall less ions and therefore are less viable. However, Qiao et al. showed that by decreasing the laser spot size it is possible to raise the saturation point, and thus increase the ion yield per unit area, also known as sensitivity. Here we explore laser spots below 10 micrometer diameter to determine whether they offer any practical advantage. We show that sensitivity is greater for a flat-top 3--4 micrometer spot than for a 10 micrometer spot. The sensitivity is greater for a Gaussian-like 3--5 micrometer spot than for flat-top 5--25 micrometer spots. We also report for the first time sensitivity versus theoretical fluence profile for a Gaussian-like beam focu
Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation.
Weber, C R; Clark, D S; Cook, A W; Busby, L E; Robey, H F
2014-05-01
Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10-100.
Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
NASA Astrophysics Data System (ADS)
Weber, C. R.; Clark, D. S.; Cook, A. W.; Busby, L. E.; Robey, H. F.
2014-05-01
Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10--100.
NASA Astrophysics Data System (ADS)
Wang, Mei-Yu; Peter, Annika H. G.; Strigari, Louis E.; Zentner, Andrew R.; Arant, Bryan; Garrison-Kimmel, Shea; Rocha, Miguel
2014-11-01
We present a set of N-body simulations of a class of models in which an unstable dark matter particle decays into a stable dark matter particle and a non-interacting light particle with decay lifetime comparable to the Hubble time. We study the effects of the recoil kick velocity (Vk) received by the stable dark matter on the structures of dark matter haloes ranging from galaxy-cluster to Milky Way-mass scales. For Milky Way-mass haloes, we use high-resolution, zoom-in simulations to explore the effects of decays on Galactic substructure. In general, haloes with circular velocities comparable to the magnitude of kick velocity are most strongly affected by decays. We show that models with lifetimes Γ-1 ˜ H_0^{-1} and recoil speeds Vk ˜ 20-40 km s-1 can significantly reduce both the abundance of Galactic subhaloes and their internal densities. We find that decaying dark matter models that do not violate current astrophysical constraints can significantly mitigate both the `missing satellites problem' and the more recent `too big to fail problem'. These decaying models predict significant time evolution of haloes, and this implies that at high redshifts decaying models exhibit the similar sequence of structure formation as cold dark matter. Thus, decaying dark matter models are significantly less constrained by high-redshift phenomena than warm dark matter models. We conclude that models of decaying dark matter make predictions that are relevant for the interpretation of small galaxies observations in the Local Group and can be tested as well as by forthcoming large-scale surveys.
Dynamic field theory and equations of motion in cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu; Petrov, Alexander N., E-mail: alex.petrov55@gmail.com
2014-11-15
We discuss a field-theoretical approach based on general-relativistic variational principle to derive the covariant field equations and hydrodynamic equations of motion of baryonic matter governed by cosmological perturbations of dark matter and dark energy. The action depends on the gravitational and matter Lagrangian. The gravitational Lagrangian depends on the metric tensor and its first and second derivatives. The matter Lagrangian includes dark matter, dark energy and the ordinary baryonic matter which plays the role of a bare perturbation. The total Lagrangian is expanded in an asymptotic Taylor series around the background cosmological manifold defined as a solution of Einstein’s equationsmore » in the form of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric tensor. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the series expansion is gauge-invariant and all of them together form a basis for the successive post-Friedmannian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Friedmannian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background FLRW metric. The temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large scale inhomogeneities in these two components as those generated by the primordial cosmological perturbations with an effective matter density contrast δρ/ρ≤1. The small scale inhomogeneities are generated by the condensations of baryonic matter considered as the bare perturbations of the background manifold that admits δρ/ρ≫1. Mathematically, the large scale perturbations are given by the homogeneous solution of the linearized field equations while the small scale perturbations are described by a particular solution of these equations with the bare stress–energy tensor of the baryonic matter. We explicitly work out the covariant field equations of the successive post-Friedmannian approximations of Einstein’s equations in cosmology and derive equations of motion of large and small scale inhomogeneities of dark matter and dark energy. We apply these equations to derive the post-Friedmannian equations of motion of baryonic matter comprising stars, galaxies and their clusters.« less
... wine stain, because of its resemblance to a dark red wine. If this birthmark involves the eye, ... examined by an ophthalmologist shortly after birth. Small dark moles, called nevi, on the eyelids or on ...
Experimental study of the focusing properties of a Gaussian Schell-model vortex beam
NASA Astrophysics Data System (ADS)
Wang, Fei; Zhu, Shijun; Cai, Yangjian
2011-08-01
We carry out an experimental and theoretical study of the focusing properties of a Gaussian Schell-model (GSM) vortex beam. It is found that we can shape the beam profile of the focused GSM vortex beam by varying its initial spatial coherence width. Focused dark hollow, flat-topped, and Gaussian beam spots can be obtained in our experiment, which will be useful for trapping particles. The experimental results agree well with the theoretical results.
Investigation on partially coherent vector beams and their propagation and focusing properties.
Hu, Kelei; Chen, Ziyang; Pu, Jixiong
2012-11-01
The propagation and focusing properties of partially coherent vector beams including radially polarized and azimuthally polarized (AP) beams are theoretically and experimentally investigated. The beam profile of a partially coherent radially or AP beam can be shaped by adjusting the initial spatial coherence length. The dark hollow, flat-topped, and Gaussian beam spots can be obtained, which will be useful in trapping particles. The experimental observations are consistent with the theoretical results.
Earth observations taken by the STS-59 crew
1994-04-14
STS059-306-034 (9-20 April 1994) --- The radiating transportation pattern of this 20th-Century urban plan is nicely displayed in this high-resolution photograph. Light-toned spots in the desert mark oil well sites; along the south edge of the scene, some dark residue remains from the fires set during the recent Gulf War. Blown sand has nearly hidden the soot and thick oil that were deposited on the surface. Nikon photograph, 300mm lens.
Zhao, Huanhuan; Young, Ashley K; James, Bryony J
2018-04-01
This study aims to understand the bloom process in untempered chocolate by investigating the polymorphic transformation of cocoa butter and changes in chocolate surface. Cocoa mass with varying particle size distributions (PSD) were used to produce untempered model chocolate. Optical microscopy showed that during 25 d of storage, the chocolate surface gradually became honeycombed in appearance with dark spots surrounded by white sandy bloom areas. In conjunction with X-ray diffraction this indicates that the polymorphic transformation of form IV cocoa butter to more stable form V crystals caused the observed surface changes with the most significant changes occurring within 6 d. As bloom developed the surface whiteness increased, but the PSD of nonfat particles showed limited impact on the changes in whiteness. Moreover, scanning electron microscopy showed separated fat crystals on fat-rich dark spots and empty spaces between particles in bloom areas suggesting redistribution of fat in the chocolate matrix. The results reported in this work can facilitate the understanding of fat bloom formation in untempered chocolate with respect to the changes in microstructure and surface appearances. It also contributes to show the details of IV-to-V polymorphic transformation in the fat phase as time went by. © 2018 Institute of Food Technologists®.
Analysis of dark albedo features on a southern polar dune field of Mars.
Horváth, András; Kereszturi, Akos; Bérczi, Szaniszló; Sik, András; Pócs, Tamás; Gánti, Tibor; Szathmáry, Eörs
2009-01-01
We observed 20-200 m sized low-albedo seepage-like streaks and their annual change on defrosting polar dunes in the southern hemisphere of Mars, based on the Mars Orbiter Camera (MOC), High Resolution Stereo Camera (HRSC), and High Resolution Imaging Science Experiment (HiRISE) images. The structures originate from dark spots and can be described as elongated or flowlike and, at places, branching streaks. They frequently have another spotlike structure at their end. Their overall appearance and the correlation between their morphometric parameters suggest that some material is transported downward from the spots and accumulates at the bottom of the dune's slopes. Here, we present possible scenarios for the origin of such streaks, including dry avalanche, liquid CO(2), liquid H(2)O, and gas-phase CO(2). Based on their morphology and the currently known surface conditions of Mars, no model interprets the streaks satisfactorily. The best interpretation of only the morphology and morphometric characteristics is only given by the model that implies some liquid water. The latest HiRISE images are also promising and suggest liquid flow. We suggest, with better knowledge of sub-ice temperatures that result from extended polar solar insolation and the heat insulator capacity of water vapor and water ice, future models and measurements may show that ephemeral water could appear and flow under the surface ice layer on the dunes today.
Work, Thierry M.; Aeby, G.S.; Stanton, F.G.; Fenner, D.
2008-01-01
Coral disease surveys in American Samoa and Hawai‘i revealed colonies with a distinct dark discoloration affecting 20–60% of the colony surface (Fig. 1a). In some cases, tissue loss with algal infiltration was present within discolored areas. On microscopy, these lesions had marked overgrowth of the coral skeleton and tissues with septate branching structures that stained positive with Grocott’s Methenamine Silver (fungal hyphae) accompanied by necrosis and fragmentation of coral tissues (Fig. 1b). We have observed this condition grossly and microscopically in Pavona varians, Psammocora nierstraszi, and Montipora sp. in American Samoa and in Pavona maldivensis and P. varians in Hawai‘i. This condition resembles Dark Spots Disease from the Caribbean (Solano et al. 1993) that also shows endolithic hypermycosis (Galloway et al. 2007), suggesting that the association between dark discoloration of corals and overgrowth of endolithic fungi may be common (Western Atlantic, Indo-Pacific). Based on gross and microscopic morphology, tissue atrophy may precede overgrowth of endolithic fungi, but this awaits confirmation through systematic studies that monitor the development of lesions over time (pathogenesis). Using standardized terminology (Work and Aeby 2006) to describe lesions facilitates regional comparisons of coral disease.
Research Progress on Dark Matter Model Based on Weakly Interacting Massive Particles
NASA Astrophysics Data System (ADS)
He, Yu; Lin, Wen-bin
2017-04-01
The cosmological model of cold dark matter (CDM) with the dark energy and a scale-invariant adiabatic primordial power spectrum has been considered as the standard cosmological model, i.e. the ΛCDM model. Weakly interacting massive particles (WIMPs) become a prominent candidate for the CDM. Many models extended from the standard model can provide the WIMPs naturally. The standard calculations of relic abundance of dark matter show that the WIMPs are well in agreement with the astronomical observation of ΩDM h2 ≈0.11. The WIMPs have a relatively large mass, and a relatively slow velocity, so they are easy to aggregate into clusters, and the results of numerical simulations based on the WIMPs agree well with the observational results of cosmic large-scale structures. In the aspect of experiments, the present accelerator or non-accelerator direct/indirect detections are mostly designed for the WIMPs. Thus, a wide attention has been paid to the CDM model based on the WIMPs. However, the ΛCDM model has a serious problem for explaining the small-scale structures under one Mpc. Different dark matter models have been proposed to alleviate the small-scale problem. However, so far there is no strong evidence enough to exclude the CDM model. We plan to introduce the research progress of the dark matter model based on the WIMPs, such as the WIMPs miracle, numerical simulation, small-scale problem, and the direct/indirect detection, to analyze the criterion for discriminating the ;cold;, ;hot;, and ;warm; dark matter, and present the future prospects for the study in this field.
Interacting dark sector and precision cosmology
NASA Astrophysics Data System (ADS)
Buen-Abad, Manuel A.; Schmaltz, Martin; Lesgourgues, Julien; Brinckmann, Thejs
2018-01-01
We consider a recently proposed model in which dark matter interacts with a thermal background of dark radiation. Dark radiation consists of relativistic degrees of freedom which allow larger values of the expansion rate of the universe today to be consistent with CMB data (H0-problem). Scattering between dark matter and radiation suppresses the matter power spectrum at small scales and can explain the apparent discrepancies between ΛCDM predictions of the matter power spectrum and direct measurements of Large Scale Structure LSS (σ8-problem). We go beyond previous work in two ways: 1. we enlarge the parameter space of our previous model and allow for an arbitrary fraction of the dark matter to be interacting and 2. we update the data sets used in our fits, most importantly we include LSS data with full k-dependence to explore the sensitivity of current data to the shape of the matter power spectrum. We find that LSS data prefer models with overall suppressed matter clustering due to dark matter - dark radiation interactions over ΛCDM at 3–4 σ. However recent weak lensing measurements of the power spectrum are not yet precise enough to clearly distinguish two limits of the model with different predicted shapes for the linear matter power spectrum. In two appendices we give a derivation of the coupled dark matter and dark radiation perturbation equations from the Boltzmann equation in order to clarify a confusion in the recent literature, and we derive analytic approximations to the solutions of the perturbation equations in the two physically interesting limits of all dark matter weakly interacting or a small fraction of dark matter strongly interacting.
Vig, B K
1973-04-01
Glycine max (soybean) is the only known higher plant with a definitely established occurrence of somatic crossing over. This material lends itself to the analysis of somatic crossing over, gross chromosomal aberrations and mutations, all of which may be induced by the same treatment of the mutagen given to seeds. This is made possible because gene Y(11) for chlorophyll development in the variety L65-1237 is incompletely dominant over its allele y(11), so that twin or double spots composed of a dark green (Y(11)Y(11)) and a yellow (y(11)y(11)) component can be observed adjacent to and as mirror images of each other on the light green Y(11)y(11) leaves in the areas of complementary exchange for these genes. Lack of growth of either component of this double spot as well as several types of chromosomal disturbances give rise to single spots resembling phenotypes of y(11)y(11) or Y(11)Y(11) leaves. Point mutations can be studied by looking for green sectors originating from Y(11)y(11) genotype on the y(11)y(11) plants. Seeds obtained from heterozygous plants were treated with caffeine, cytosine arabinoside, actinomycin D and 5-fluoro-deoxyuridine, all known inhibitors of DNA synthesis, and puromycin, an inhibitor of synthesis of proteins. The treatments with caffeine and actinomycin D increased the frequency of somatic crossing over as measured by the frequency of double spots on Y(11)y(11) leaves, but cytosine arabinoside, 5-fluorodeoxyuridine and puromycin did not. Thus somatic crossing over was induced only by those chemicals which are known to allow rejoining of chromosomes, thereby suggesting a correlation between the two phenomena. These observations indicate that it is not the mere inhibition of DNA synthesis, but some rather more specific event in DNA repair which is responsible for complementary exchanges. Some of these results differ from studies carried out with fungi. The main effect of all chemicals tested, except caffeine and actinomycin D, was inferred to be the production of deletions in Y(11)y(11) plants which raised the frequency of single (dark green or yellow) spots relative to the doubles. Caffeine was the only chemical which constantly increased the frequency of specific point mutations. In the control material, the great majority of spots are found on the upper surface of the leaf. This picture could not be changed in any of the treated materials, thus indicating uniform resistance of spongy mesophyll tissue to the mutagens applied.
NASA Technical Reports Server (NTRS)
Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Nakato, A.; Kilcoyne, A. L. D.; Takeichi, Y.; Suga, H.; Miyamoto, C.; Rahman, Z.; Kobayashi, K.;
2016-01-01
Zag and Monahans meteorites (H5) contains xenolithic dark clasts and halite (NaCl) crystals [e.g., 1]. The proposed source of the H chondrites is asteroid 6 Hebe [2]. The modern orbits of 1 Ceres and 6 Hebe essentially cross, with aphelion/perihelion of Ceres and Hebe of 2.99/2.55 and 2.91/1.94 AU (Astronomical Units), respectively. Therefore, Ceres might be the source of the clasts and halite in Zag and Monahans meteorites. Recent results from NASA's Dawn mission shows that bright spots in Ceres's crater may be hydrated magnesium sulfate with some water ice, and an average global surface contains ammoniated phyllosilicates that is likely of outer Solar System origin. One dark clast and all halite crystals in Zag and Monahans meteorites contain carbon-rich particles. We report organic analyses of these carbon-rich particles using carbon, nitrogen, and oxygen X-ray absorption near edge structure (C-, N-, and O-XANES), in order to constrain the origin of the clast and halite crystals.
Temperatures and Composition in the Saturn System from Cassini CIRS
NASA Technical Reports Server (NTRS)
Flasar, F. Michael
2008-01-01
We summarize recent observations by the Composite Infrared Spectrometer of Saturn, its rings, Titan, and the icy satellites. Limb observations of Saturn show vertical oscillations of temperatures and zonal-wind shears in the equatorial region that may be related to a temporal oscillation similar to the terrestrial QBO and Jupiter's QQO. There is also evidence of subsidence at mid-northern latitudes driven by the equatorial activity. Nadir-viewing observations show compact warm spots in the troposphere and stratosphere at both (summer and winter) poles, likely associated with subsidence. Observations of Titan have defined better the characteristics of the northern winter polar vortex, with 190 m/s winds surrounding a cold atmosphere at 1 microbar. The very warm polar stratopause at 10 microbar and the enhanced abundances of organic compounds suggest subsidence within the vortex. Analysis of the zonal structure in temperature indicates that the stratospheric zonal winds rotate about an axis that is displaced approximately 4.1 deg from the IAU pole. Additional flybys, including a close one in March 2008, continue to characterize the endogenic activity in Enceladus s south polar region. Temperature maps of bright and dark terrains on Iapetus indicate that its ice is approximately stable to sublimation in the bright regions and highly unstable in the dark regions. Thermal mapping of Saturn s rings continues to constrain their composition, and observations at different solar phase angles, spacecraft elevations, solar elevations, and local hour angles have elucidated the effects of ring-particle shadowing and vertical motions on the thermal structure, and revealed the presence of small-scale structure associated with self-gravity wakes.
QCD Axion Dark Matter with a Small Decay Constant.
Co, Raymond T; Hall, Lawrence J; Harigaya, Keisuke
2018-05-25
The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant f_{a}∼O(10^{11}) GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires f_{a}∼(10^{8}-10^{11}) GeV. The axions may be warm enough to give deviations from cold dark matter in large scale structure.
A comprehensive search for sunspots without the aid of a telescope, 1981-1982
NASA Astrophysics Data System (ADS)
Mossman, J. E.
1989-03-01
Results are presented from a daily sunspot survey conducted in Crosby, UK between February 1, 1981 and Febrary 28, 1982. It is found that spots or spot groups as small as 0.4 arcmin can be detected without the aid of a telescope. A total of 278 spots or spot groups corresponding to 72 long-lived active regions were observed. It is shown that periods of high sunspot activity are visible to the naked eye, suggesting that ancient Chinese observations of solar activity might be accurate.
Active Volcanism on Io: Global Distribution and Variations in Activity
Lopes-Gautier, R.; McEwen, A.S.; Smythe, W.B.; Geissler, P.E.; Kamp, L.; Davies, A.G.; Spencer, J.R.; Keszthelyi, L.; Carlson, R.; Leader, F.E.; Mehlman, R.; Soderblom, L.
1999-01-01
Io's volcanic activity has been monitored by instruments aboard the Galileo spacecraft since June 28, 1996. We present results from observations by the near-infrared mapping spectrometer (NIMS) for the first 10 orbits of Galileo, correlate them with results from the Solid State Imaging System (SSI) and from groundbased observations, and compare them to what was known about Io's volcanic activity from observations made during the two Voyager flybys in 1979. A total of 61 active volcanic centers have been identified from Voyager, groundbased, and Galileo observations. Of these, 41 are hot spots detected by NIMS and/or SSI. Another 25 locations were identified as possible active volcanic centers, mostly on the basis of observed surface changes. Hot spots are correlated with surface colors, particularly dark and red deposits, and generally anti-correlated with white, SO2-rich areas. Surface features corresponding to the hot spots, mostly calderas or flows, were identified from Galileo and Voyager images. Hot spot temperatures obtained from both NIMS and SSI are consistent with silicate volcanism, which appears to be widespread on Io. Two types of hot spot activity are present: persistent-type activity, lasting from months to years, and sporadic events, which may represent either short-lived activity or low-level activity that occasionally flares up. Sporadic events are not often detected, but may make an important contribution to Io's heat flow and resurfacing. The distribution of active volcanic centers on the surface does not show any clear correlation with latitude, longitude, Voyager-derived global topography, or heat flow patterns predicted by the asthenosphere and deep mantle tidal dissipation models. However, persistent hot spots and active plumes are concentrated toward lower latitudes, and this distribution favors the asthenosphere rather than the deep mantle tidal dissipation model. ?? 1999 Academic Press.
The Emergence of Kinked Flux Tubes as the Source of Delta-Spots on the Photosphere
NASA Astrophysics Data System (ADS)
Knizhnik, K. J.; Linton, M.; Norton, A. A.; DeVore, C. R.
2017-12-01
It has been observationally well established that the magnetic configurations most favorable to producing energetic flaring events reside in so called delta-spots. These delta-spots are a subclass of sunspots, and are classified as sunspots which have umbrae (dark regions in the interior of sunspots) with opposite magnetic polarities that share a common penumbra. They are characterized by strong rotation and an extremely compact magnetic configuration, and are observed to follow an inverse-Hale law. They are also observed to have strong twist. It has been shown that over 90% of X-class flares that occurred during solar cycles 22 and 23 originated in delta-spots (Guo, Lin & Deng, 2014). Understanding the origin of delta-spots, therefore, is a crucial step towards the ultimate goal of space weather forecasting. In this work, we argue that delta-spots arise during the emergence of kinked flux tubes into the corona, and that their unique properties are due to the emergence of knots present in the kink mode of twisted flux tubes. We present numerical simulations that study the emergence of both kink-stable and unstable flux tubes into the solar corona, and demonstrate quantitatively that their photospheric signatures are drastically different, with the latter flux tubes demonstrating strong coherent rotation and a very tight flux distribution on the photosphere. We show that the coronal magnetic field resulting from the emergence of a kinked flux tube contains more free energy than the unkinked case, potentially leading to more energetic flares. We discuss the implications of our simulations for observations. This work was supported by the Chief of Naval Research through the National Research Council.
Cassini First-Look Images of Jupiter
2000-10-05
This image of Jupiter was taken by the Cassini Imaging Science narrow angle camera through the blue filter (centered at 445 nanometers) on October 1, 2000, 15:26 UTC at a distance of 84.1million km from Jupiter. The smallest features that can be seen are 500 kilometers across. The contrast between bright and dark features in this region of the spectrum is determined by the different light absorbing properties of the particles composing Jupiter's clouds. Ammonia ice particles are white, reflecting all light that falls on them. But some particles are red, and absorb mostly blue light. The composition of these red particles and the processes which determine their distribution are two of the long-standing mysteries of Jovian meteorology and chemistry. Note that the Great Red Spot contains a dark core of absorbing particles. http://photojournal.jpl.nasa.gov/catalog/PIA02666
Degradation sources in GaAs--AlGaAs double-heterostructure lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, R.; Nakashima, H.; Kishino, S.
1975-07-01
Several sources of the dark-line defect (DLD) that causes rapid degradation of GaAs-AlGaAs double-heterostructure (DH) lasers have been identified by means of photoluminescence (PL) topography and a laser-induced degradation technique. All the sources that have been identified correspond to crystal defects, among which dark-spot defects (DSD) that are native to as-grown wafers are found to be most important. The growth and propagation processes of DLDs and DSDs have also been investigated. These defects are found to be highly mobile under high-intensity laser pumping. The correlation between the substrate dislocations and the DSDs has been examined by etching and x-ray topography.more » Although most DSDs correspond to etch-pits in epilayers, they are not always correlated with substrate dislocations. (auth)« less
African hot spot volcanism: small-scale convection in the upper mantle beneath cratons.
King, S D; Ritsema, J
2000-11-10
Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere.
Tests of Rock Cores Scott Study Area, Missouri
1970-05-01
porphyry with some granodiorite and small amounts of dolomite, acid metavolcanics, and dark gray volcanic breccia. Specific gravity, * Schmidt...petrographically identified as predominantly rhyolite and dacite porphyry with some granodiorite and small amounts of dolomite, acid metavolcanics, and dark...exhibit- ing little, if any, hysteresis. 9. Direct and indirect tensile strengths exhibited by tne rhyro- lite and dacite porphyry and granite are very high
Adding Spice to Vanilla LCDM simulations: From Alternative Cosmologies to Lighting up Galaxies
NASA Astrophysics Data System (ADS)
Jahan Elahi, Pascal
2015-08-01
Cold Dark Matter simulations have formed the backbone of our theoretical understanding of cosmological structure formation. Predictions from the Lambda Cold Dark Matter (LCDM) cosmology, in which the Universe contains two major dark components, namely Dark Matter and Dark Energy, are in excellent agreement with the Large-Scale Structures observed, i.e., the distribution of galaxies across cosmic time. However, this paradigm is in tension with observations at small-scales, from the number and properties of satellite galaxies around galaxies such as the Milky Way and Andromeda, to the lensing statistics of massive galaxy clusters. I will present several alternative models of cosmology (from Warm Dark Matter to coupled Dark Matter-Dark Energy models) and how they compare to vanilla LCDM by studying formation of groups and clusters dark matter only and adiabatic hydrodynamical zoom simulations. I will show how modifications to the dark sector can lead to some surprising results. For example, Warm Dark Matter, so often examined on small satellite galaxies scales, can be probed observationally using weak lensing at cluster scales. Coupled dark sectors, where dark matter decays into dark energy and experiences an effective gravitational potential that differs from that experienced by normal matter, is effectively hidden away from direct observations of galaxies. Studies like these are vital if we are to pinpoint observations which can look for unique signatures of the physics that governs the hidden Universe. Of course, all of these predictions are unfortunately affected by uncertain galaxy formation physics. I will end by presenting results from a comparison study of numerous hydrodynamical codes, the nIFTY cluster comparison project, and how even how purely adiabatic simulations run with different codes give in quite different galaxy populations. The galaxies that form in these simulations, which all attempt to reproduce the observed galaxy population via not unreasonable subgrid physics, can and do vary in stellar mass, morphology and gas fraction.
Ultralight Axion Dark Matter and Its Impact on Dark Halo Structure in N-body Simulations
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Sming Tsai, Yue-Lin; Kuo, Jui-Lin; Cheung, Kingman; Chu, Ming-Chung
2018-01-01
Ultralight axion is a dark matter candidate with mass { O }({10}-22){eV} and de Broglie wavelength of order kiloparsec. Such an axion, also called fuzzy dark matter (FDM), thermalizes via gravitational force and forms a Bose–Einstein condensate. Recent studies suggested that the quantum pressure from FDM can significantly affect structure formation in small scales, thus alleviating the so-called “small-scale crisis.” In this paper, we develop a new technique to discretize the quantum pressure and illustrate the interactions among FDM particles in an N-body simulation that accurately simulates the formation of the dark matter halo and its inner structure in the region outside the softening length. In a self-gravitationally bound virialized halo, we find a constant density solitonic core, which is consistent with theoretical prediction. The existence of the solitonic core reveals the nonlinear effect of quantum pressure and impacts structure formation in the FDM model.
PQ-symmetry for a small Dirac neutrino mass, dark radiation and cosmic neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Wan-Il, E-mail: wipark@kias.re.kr
2014-06-01
We propose a supersymmetric scenario in which the small Yukawa couplings for the Dirac neutrino mass term are generated by the spontaneous-breaking of Pecci-Quinn symmetry. In this scenario, a right amount of dark matter relic density can be obtained by either right-handed sneutrino or axino LSP, and a sizable amount of axion dark radiation can be obtained. Interestingly, the decay of right-handed sneutrino NLSP to axino LSP is delayed to around the present epoch, and can leave an observable cosmological background of neutrinos at the energy scale of O(10−100) GeV.
Higgs exotic decays in general NMSSM with self-interacting dark matter
NASA Astrophysics Data System (ADS)
Wang, Wenyu; Zhang, Mengchao; Zhao, Jun
2018-04-01
Under current LHC and dark matter constraints, the general NMSSM can have self-interacting dark matter to explain the cosmological small structure. In this scenario, the dark matter is the light singlino-like neutralino (χ) which self-interacts through exchanging the light singlet-like scalars (h1,a1). These light scalars and neutralinos inevitably interact with the 125 GeV SM-like Higgs boson (hSM), which cause the Higgs exotic decays hSM → h1h1, a1a1, χχ. We first demonstrate the parameter space required by the explanation of the cosmological small structure and then display the Higgs exotic decays. We find that in such a parameter space the Higgs exotic decays can have branching ratios of a few percent, which should be accessible in the future e+e‑ colliders.
Cold dark matter: Controversies on small scales.
Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G
2015-10-06
The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.
Damage threshold from large retinal spot size repetitive-pulse laser exposures.
Lund, Brian J; Lund, David J; Edsall, Peter R
2014-10-01
The retinal damage thresholds for large spot size, multiple-pulse exposures to a Q-switched, frequency doubled Nd:YAG laser (532 nm wavelength, 7 ns pulses) have been measured for 100 μm and 500 μm retinal irradiance diameters. The ED50, expressed as energy per pulse, varies only weakly with the number of pulses, n, for these extended spot sizes. The previously reported threshold for a multiple-pulse exposure for a 900 μm retinal spot size also shows the same weak dependence on the number of pulses. The multiple-pulse ED50 for an extended spot-size exposure does not follow the n dependence exhibited by small spot size exposures produced by a collimated beam. Curves derived by using probability-summation models provide a better fit to the data.
A Dark Asteroid Family in the Phocaea Region
NASA Astrophysics Data System (ADS)
Novaković, Bojan; Tsirvoulis, Georgios; Granvik, Mikael; Todović, Ana
2017-06-01
We report the discovery of a new asteroid family among the dark asteroids residing in the Phocaea region the Tamara family. We make use of available physical data to separate asteroids in the region according to their surface reflectance properties, and establish the membership of the family. We determine the slope of the cumulative magnitude distribution of the family, and find it to be significantly steeper than the corresponding slope of all the asteroids in the Phocaea region. This implies that subkilometer dark Phocaeas are comparable in number to bright S-type objects, shedding light on an entirely new aspect of the composition of small Phocaea asteroids. We then use the Yarkovsky V-shape based method and estimate the age of the family to be 264 ± 43 Myr. Finally, we carry out numerical simulations of the dynamical evolution of the Tamara family. The results suggest that up to 50 Tamara members with absolute magnitude H< 19.4 may currently be found in the near-Earth region. Despite their relatively small number in the near-Earth space, the rate of Earth impacts by small, dark Phocaeas is non-negligible.
NASA Astrophysics Data System (ADS)
Orton, Glenn S.; Hansen, Candice; Janssen, Michael A.; Bolton, Scott; Brown, Shannon; Eichstaedt, Gerald; Rogers, John; Ingersoll, Andrew P.; Li, Cheng; Momary, Thomas W.; Tabataba-Vakili, Fachreddin; Fletcher, Leigh; Fujiyoshi, Takuya; Greathouse, Thomas K.; Kasaba, Yasumasa; Simon, Amy A.; Sinclair, James Andrew; Stephens, Andrew W.; Wong, Michael H.; Donnelley, Padraig; Sanchez-Lavega, Agustin M.; Hueso, Ricardo; Juno-Support Observing Team
2017-10-01
On July 11, 2017, the Juno spacecraft made a close approach to Jupiter, passing over the center of Jupiter’s Great Red Spot (GRS). We summarize some of the results from Juno and supporting Earth-based measurements over a broad spectral range. Near-infrared images show that the GRS has higher-altitude particles than anywhere else outside polar regions, and that the darkest red center has the highest-altitude particles within the GRS. This region has darker swirl-like features and little detectable rotational motion. The red region forming the bulk of the GRS has both dark and light swirls and counter-clockwise winds that peak toward its periphery. JunoCam images, resolving down to ~6-7 km per pixel, shows very small, pink features that look like thunderstorm clouds in clusters on top of the brighter swirls. They are similar in morphology to whitish features that can be seen in zones north and south of the GRS. Close to the terminator, shadows some 7-12 km in length associated with these features can be resolved. A train of mesoscale gravity waves with ~70 km spacing spans a length of over 1,000 km near the northern periphery of the GRS between 15.8° and 15.9°S (planetocentric). Thermal-emission images in 5-µm and 8.7-µm spectral windows show most of the GRS as cold with high clouds, surrounded by a visibly-dark warm periphery that is consistent with being relatively clear. Longer-wavelength thermal observations indicate that the GRS is one of the coldest regions on the planet in the upper troposphere with indirect chemical indicators of vertical motions (e.g. para-H2, PH3) consistent with prevailing upwelling motion. NH3 is not enhanced with respect to the regions outside the GRS, most likely because its colder temperatures cause it to condense deeper than it does outside the GRS. A region immediately south of the GRS is anomalously warmer than elsewhere at the same latitude. The Microwave Radiometer (MWR) data are consistent with shorter-wavelength thermal-emission observations sensitive to the NH3 condensation level; they are currently being examined for indications of deep structure and depth.
A Model of the Domestic Commercial Satellite Industry: A Different Perspective.
1981-03-01
question that one must ask is, what will be the tradeoffs? In a book written years ago, George Orwell prophesized three fateful developments in our...out of the dark ages of relative community isolation, to a world where integration of values and cultures from all 40 corners of the earth would soon...satellite’ at the correct distance from the earth would make one revolution every 24 hours: i.e., it would remain stationary above the same spot and would
Experimental study of the focusing properties of a Gaussian Schell-model vortex beam.
Wang, Fei; Zhu, Shijun; Cai, Yangjian
2011-08-15
We carry out an experimental and theoretical study of the focusing properties of a Gaussian Schell-model (GSM) vortex beam. It is found that we can shape the beam profile of the focused GSM vortex beam by varying its initial spatial coherence width. Focused dark hollow, flat-topped, and Gaussian beam spots can be obtained in our experiment, which will be useful for trapping particles. The experimental results agree well with the theoretical results. © 2011 Optical Society of America
The appearance of highly relativistic, spherically symmetric stellar winds
NASA Technical Reports Server (NTRS)
Abramowicz, Marek A.; Novikov, Igor D.; Paczynski, Bohdan
1991-01-01
A nonluminous, steady state, spherically symmetric, relativistic wind, with the opacity dominated by electron scattering appears against a bright background as a dark circle with the radius rd. A luminous wind would appear as a bright spot with a radius rl = rd/2 pi gamma exp 3, where gamma is the Lorentz factor of the wind. The bright wind photosphere is convex for v equal to or less than 2c/3, and appears concave for higher outflow velocities.
Ray tracing analysis of overlapping objects in refraction contrast imaging.
Hirano, Masatsugu; Yamasaki, Katsuhito; Okada, Hiroshi; Sakurai, Takashi; Kondoh, Takeshi; Katafuchi, Tetsuro; Sugimura, Kazuro; Kitazawa, Sohei; Kitazawa, Riko; Maeda, Sakan; Tamura, Shinichi
2005-08-01
We simulated refraction contrast imaging in overlapping objects using the ray tracing method. The easiest case, in which two columnar objects (blood vessels) with a density of 1.0 [g/cm3], run at right angles in air, was calculated. For absorption, we performed simulation using the Snell law adapted to the object's boundary. A pair of bright and dark spot results from the interference of refracted X-rays where the blood vessels crossed. This has the possibility of increasing the visibility of the image.
Unexpected Effect of Propranolol and Prednisolone on Infantile Facial Rhabdomyosarcoma.
Shilpakar, Rojina; Lemperle, Gottfried; Mentzel, Thomas; Shakya, Jaswan; Bhandari, Santosh Bikram
2017-11-01
A 14-month-old Nepalese infant had developed a rapidly growing facial tumor originating from a dark spot on her upper eyelid. A cavernous hemangioma was suspected and treated with high doses of propranolol and prednisolone. Remission was dramatic. Histology confirmed alveolar rhabdomyosarcoma. Chemotherapy was planned but not carried out due to complicated logistics. The girl died at the age of 3. We present this case for discussion as to whether propranolol and prednisolone might be effective in rapidly growing rhabdomyosarcomas.
1988-03-04
this point, only one dark spot remains: How and where to find the 3,600 billion lire that must go into the Defense budget for fiscal year 1988. "We... escudo " continues to divide the members of the panel. As a matter of fact, while 21.4 percent mention it as the factor that most positively...Demand ^y Exchange Rate 6^ 28,9% of the Escudo OUTUBRO 87 410/y^i Government’s i!^0 2S°yL Economic Policy Domestic "S?/^. Demand Cost
A new species of Liriomyza Mik (Diptera, Agromyzidae) on okra in Brazil.
De Sousa, Viviane Rodrigues; Couri, MÁrcia Souto
2018-04-18
Liriomyza okrae sp. n. is a new species from Brazil that does not have the yellow thoracic spots usually characteristic of the genus. The specimens were collected in Rondônia state (Brazil), reared from okra-Abelmoschus esculentus (L.) Moench (Malvaceae). Detailed descriptions of adult male, larva and puparium are made, and images of the male, male terminalia, larva, puparium and host-plant are given. A key is provided for Neotropical Liriomyza with an entirely dark thorax.
SOF in Unlit Spaces: Understanding the World’s Dark Spots in the Context of SOF Operational Planning
2013-05-23
incident in 1993. Moreover, entering 52 Bowden, Mark, Killing Pablo: The Hunt for The World’s Greatest Outlaw , New York: Atlantic Monthly Press...D.C.: Congressional Research Service, 2013. Bowden, Mark. Killing Pablo: The Hunt for The World’s Greatest Outlaw . New York: Atlantic Monthly Press...CARL), this monograph would seriously lack abundant documentation. His meticulous hunt for sources fed the bulk of this monograph’s references. I
Inheritance of coat colour in the Anatolian shepherd dog.
Robinson, R
1989-01-01
The predominant colour of the Anatolian Shepherd dog varies from a dark fawn to light red, with a variable black muzzle and face (mask). Evidence is presented that the colour is due to the dominant yellow allele (Ay) of the agouti locus. Two other frequent colours are white spotting, due to the piebald allele (sp), and the chinchilla allele (ch). Two rarer colours are the agouti wolf-grey wild type (A+) and a light fawn with a blue facial mask, due to the dilution allele (d).
Magnetic Particles Are Found In The Martian Atmosphere
NASA Technical Reports Server (NTRS)
1976-01-01
The dark bullseye pattern seen at the top of Viking l's camera calibration chart indicates the presence of magnetic particles in the fine dust in the Martian atmosphere. A tiny magnet is mounted at that spot to catch wind-borne magnetic particles. The particles may have been tossed into the atmosphere surrounding the spacecraft at the time of landing and during the digging and delivery of the Mars soil sample by the surface sampler scoop. This picture was taken August 4.
Variability of Jupiter's Five-Micron Hot Spot Inventory
NASA Technical Reports Server (NTRS)
Yanamandra-Fisher, Padma A.; Orton, G. S.; Wakefield, L.; Rogers, J. H.; Simon-Miller, A. A.; Boydstun, K.
2012-01-01
Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. We track the variability of the discrete equatorial 5-micron hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5degN (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images. Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-microns thermal radiance. Ortiz et al. (1998, GRL, 103) characterized the latitude and drift rates of the hot spots, including the descent of the Galileo probe at the southern edge of a 5-micron hot spot, as the superposition of equatorial Rossby waves, with phase speeds between 99 - 103m/s, relative to System III. We note that the high 5-micron radiances correlate well but not perfectly with high 8.57-micron radiances. Because the latter are modulated primarily by changes in the upper ammonia (NH3) ice cloud opacity, this correlation implies that changes in the ammonia ice cloud field may be responsible for the variability seen in the 5-m maps. During the NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were absent, an atmospheric state not seen in decades. The ongoing NEB revival indicates nascent 5-m hot spots as early as April 2012, with corresponding visible dark spots. Their continuing growth through July 2012 indicates the possit.le re-establishment of Rossby waves. The South Equatorial Belt (SEB) and NEB revivals began similarly with an instability that developed into a major outbreak, and many similarities in the observed propagation of clear regions.
Medical Surveillance Monthly Report (MSMR). Volume 22, Number 1, February 2015
2015-02-01
Japan was character- ized in relation to the gender , age group, race/ethnicity, military service branch, military occupational group, calendar year...symptoms (fever, cough, runny nose, con- junctivitis, sore throat) lasting 2–3 days; tiny white spots (Koplik spots) may also develop inside the...mouth. Th is stage is fol- lowed by the development of a maculopap- ular rash (small, slightly raised red spots) and a high fever. Complications of
Upper bounds on asymmetric dark matter self annihilation cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellwanger, Ulrich; Mitropoulos, Pantelis, E-mail: ulrich.ellwanger@th.u-psud.fr, E-mail: pantelis.mitropoulos@th.u-psud.fr
2012-07-01
Most models for asymmetric dark matter allow for dark matter self annihilation processes, which can wash out the asymmetry at temperatures near and below the dark matter mass. We study the coupled set of Boltzmann equations for the symmetric and antisymmetric dark matter number densities, and derive conditions applicable to a large class of models for the absence of a significant wash-out of an asymmetry. These constraints are applied to various existing scenarios. In the case of left- or right-handed sneutrinos, very large electroweak gaugino masses, or very small mixing angles are required.
Implications for the missing low-mass galaxies (satellites) problem from cosmic shear
NASA Astrophysics Data System (ADS)
Jimenez, Raul; Verde, Licia; Kitching, Thomas D.
2018-06-01
The number of observed dwarf galaxies, with dark matter mass ≲ 1011 M⊙ in the Milky Way or the Andromeda galaxy does not agree with predictions from the successful ΛCDM paradigm. To alleviate this problem a suppression of dark matter clustering power on very small scales has been conjectured. However, the abundance of dark matter halos outside our immediate neighbourhood (the Local Group) seem to agree with the ΛCDM-expected abundance. Here we connect these problems to observations of weak lensing cosmic shear, pointing out that cosmic shear can make significant statements about the missing satellites problem in a statistical way. As an example and pedagogical application we use recent constraints on small-scales power suppression from measurements of the CFHTLenS data. We find that, on average, in a region of ˜Gpc3 there is no significant small-scale power suppression. This implies that suppression of small-scale power is not a viable solution to the `missing satellites problem' or, alternatively, that on average in this volume there is no `missing satellites problem' for dark matter masses ≳ 5 × 109 M⊙. Further analysis of current and future weak lensing surveys will probe much smaller scales, k > 10h Mpc-1 corresponding roughly to masses M < 109M⊙.
... Size Small Text Medium Text Large Text Contrast Dark on Light Light on Dark Donate Search Menu Donate What is Glaucoma? Care ... Low Vision Resources Medication Guide Resources on the Web » See All Articles Where the Money Goes Have ...
... Size Small Text Medium Text Large Text Contrast Dark on Light Light on Dark Donate Search Menu Donate What is Glaucoma? Care ... Low Vision Resources Medication Guide Resources on the Web » See All Articles Where the Money Goes Have ...
Tying dark matter to baryons with self-interactions.
Kaplinghat, Manoj; Keeley, Ryan E; Linden, Tim; Yu, Hai-Bo
2014-07-11
Self-interacting dark matter (SIDM) models have been proposed to solve the small-scale issues with the collisionless cold dark matter paradigm. We derive equilibrium solutions in these SIDM models for the dark matter halo density profile including the gravitational potential of both baryons and dark matter. Self-interactions drive dark matter to be isothermal and this ties the core sizes and shapes of dark matter halos to the spatial distribution of the stars, a radical departure from previous expectations and from cold dark matter predictions. Compared to predictions of SIDM-only simulations, the core sizes are smaller and the core densities are higher, with the largest effects in baryon-dominated galaxies. As an example, we find a core size around 0.3 kpc for dark matter in the Milky Way, more than an order of magnitude smaller than the core size from SIDM-only simulations, which has important implications for indirect searches of SIDM candidates.
Cosmological explosions from cold dark matter perturbations
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.
1992-01-01
The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.
Bose-Einstein condensation of dark matter axions.
Sikivie, P; Yang, Q
2009-09-11
We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.
Yoneyama, Takeshi; Watanabe, Tetsuyo; Kagawa, Hiroyuki; Hayashi, Yutaka; Nakada, Mitsutoshi
2017-03-01
In photodynamic diagnosis using 5-aminolevulinic acid (5-ALA), discrimination between the tumor and normal tissue is very important for a precise resection. However, it is difficult to distinguish between infiltrating tumor and normal regions in the boundary area. In this study, fluorescent intensity and bright spot analyses using a confocal microscope is proposed for the precise discrimination between infiltrating tumor and normal regions. From the 5-ALA-resected brain tumor tissue, the red fluorescent and marginal regions were sliced for observation under a confocal microscope. Hematoxylin and eosin (H&E) staining were performed on serial slices of the same tissue. According to the pathological inspection of the H&E slides, the tumor and infiltrating and normal regions on confocal microscopy images were investigated. From the fluorescent intensity of the image pixels, a histogram of pixel number with the same fluorescent intensity was obtained. The fluorescent bright spot sizes and total number were compared between the marginal and normal regions. The fluorescence intensity distribution and average intensity in the tumor were different from those in the normal region. The probability of a difference from the dark enhanced the difference between the tumor and the normal region. The bright spot size and number in the infiltrating tumor were different from those in the normal region. Fluorescence intensity analysis is useful to distinguish a tumor region, and a bright spot analysis is useful to distinguish between infiltrating tumor and normal regions. These methods will be important for the precise resection or photodynamic therapy of brain tumors. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis Of The 2009 July Impact Debris In Jupiter'S Atmosphere
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, Agustin; Hueso, R.; Legarreta, J.; Pérez-Hoyos, S.; García-Melendo, E.; Gómez, J. M.; Rojas, J. F.; Orton, G. S.; Wesley, A.; IOPW International Outer Planet Watch Team
2009-09-01
We report the analysis of images obtained by the contributors to the International Outer Planet Watch (IOPW) of the debris left in the atmosphere of Jupiter by the object that impacted the planet between 18 and 19 July 2009. The discovery images by Anthony Wesley in July 19.625 and the first two days of its tracking, shows a dark debris spot (continuum wavelength) located at planetocentric latitude -55.1 deg and 304.5 deg System III longitude. The imaging survey indicates that the spot was not present in July 18.375, so the impact occurred during a window between both dates. The main spot had a size of about 4,500 km and to its Northwest a thin debris halo of similar size was initially observed. Methane band images at a wavelength of 890 nm shows the spot to be bright indicating that the debris aerosols are highly placed in the atmosphere relative to surrounding clouds. At the central latitude of the impact, the Jovian flow has nearly zero speed but anticyclonic vorticity bounded by jets at -51.5 deg (directed westward with velocity -10 m/s) and at -57.5 deg (directed eastward with velocity 25 m/s). The morphology in the continuum and the spot brightness in the methane band strongly suggest that the feature was caused by a cometary or asteroidal impact, similar in behaviour to the SL9 impacts of 1994. This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07. RH acknowledges a "Ramón y Cajal” contract from MEC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoudjehbaklou, H.; Puttgen, H.B.
This paper outlines an optimum spot price determination procedure in the general context of the Public Utility Regulatory Policies Act, PURPA, provisions. PURPA stipulates that local utilities must offer to purchase all available excess electric energy from Qualifying Facilities, QF, at fair market prices. As a direct consequence of these PURPA regulations, a growing number of owners are installing power producing facilities and optimize their operational schedules to minimize their utility related costs or, in some cases, actually maximize their revenues from energy sales to the local utility. In turn, the utility strives to use spot prices which maximize itsmore » revenues from any given Small Power Producing Facility, SPPF, a schedule while respecting the general regulatory and contractual framework. the proposed optimum spot price determination procedure fully models the SPPF operation, it enforces the contractual and regulatory restrictions, and it ensures the uniqueness of the optimum SPPF schedule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoudjehbaklou, H.; Puttgen, H.B.
The present paper outlines an optimum spot price determination procedure in the general context of the Public Utility Regulatory Policies Act, PURPA, provisions. PURPA stipulates that local utilities must offer to purchase all available excess electric energy from Qualifying Facilities, QF, at fair market prices. As a direct consequence of these PURPA regulations, a growing number of owners are installing power producing facilities and optimize their operational schedules to minimize their utility related costs or, in some cases, actually maximize their revenues from energy sales to the local utility. In turn, the utility will strive to use spot prices whichmore » maximize its revenues from any given Small Power Producing Facility, SPPF, schedule while respecting the general regulatory and contractual framework. The proposed optimum spot price determination procedure fully models the SPPF operation, it enforces the contractual and regulatory restrictions, and it ensures the uniqueness of the optimum SPPF schedule.« less
Caputo, Regina; Buckley, Matthew R.; Martin, Pierrick; ...
2016-03-22
The Small Magellanic Cloud (SMC) is the second-largest satellite galaxy of the Milky Way and is only 60 kpc away. As a nearby, massive, and dense object with relatively low astrophysical backgrounds, it is a natural target for dark matter indirect detection searches. In this work, we use six years of Pass 8 data from the Fermi Large Area Telescope to search for gamma-ray signals of dark matter annihilation in the SMC. Using data-driven fits to the gamma-ray backgrounds, and a combination of N-body simulations and direct measurements of rotation curves to estimate the SMC DM density profile, we found that themore » SMC was well described by standard astrophysical sources, and no signal from dark matter annihilation was detected. We set conservative upper limits on the dark matter annihilation cross section. Furthermore, these constraints are in agreement with stronger constraints set by searches in the Large Magellanic Cloud and approach the canonical thermal relic cross section at dark matter masses lower than 10 GeV in the bb¯ and τ +τ - channels.« less
Dark Matter and the elusive Z' in a dynamical Inverse Seesaw scenario
De Romeri, Valentina; Fernandez-Martinez, Enrique; Gehrlein, Julia; ...
2017-10-24
The Inverse Seesaw naturally explains the smallness of neutrino masses via an approximate $B-L$ symmetry broken only by a correspondingly small parameter. In this work the possible dynamical generation of the Inverse Seesaw neutrino mass mechanism from the spontaneous breaking of a gauged $U(1)$ $B-L$ symmetry is investigated. Interestingly, the Inverse Seesaw pattern requires a chiral content such that anomaly cancellation predicts the existence of extra fermions belonging to a dark sector with large, non-trivial, charges under the $U(1)$ $B-L$. We investigate the phenomenology associated to these new states and find that one of them is a viable dark mattermore » candidate with mass around the TeV scale, whose interaction with the Standard Model is mediated by the $Z'$ boson associated to the gauged $U(1)$ $B-L$ symmetry. Given the large charges required for anomaly cancellation in the dark sector, the $B-L$ $Z'$ interacts preferentially with this dark sector rather than with the Standard Model. This suppresses the rate at direct detection searches and thus alleviates the constraints on $Z'$-mediated dark matter relic abundance. Furthermore, the collider phenomenology of this elusive $Z'$ is also discussed.« less
Dark Matter and the elusive Z' in a dynamical Inverse Seesaw scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Romeri, Valentina; Fernandez-Martinez, Enrique; Gehrlein, Julia
The Inverse Seesaw naturally explains the smallness of neutrino masses via an approximate $B-L$ symmetry broken only by a correspondingly small parameter. In this work the possible dynamical generation of the Inverse Seesaw neutrino mass mechanism from the spontaneous breaking of a gauged $U(1)$ $B-L$ symmetry is investigated. Interestingly, the Inverse Seesaw pattern requires a chiral content such that anomaly cancellation predicts the existence of extra fermions belonging to a dark sector with large, non-trivial, charges under the $U(1)$ $B-L$. We investigate the phenomenology associated to these new states and find that one of them is a viable dark mattermore » candidate with mass around the TeV scale, whose interaction with the Standard Model is mediated by the $Z'$ boson associated to the gauged $U(1)$ $B-L$ symmetry. Given the large charges required for anomaly cancellation in the dark sector, the $B-L$ $Z'$ interacts preferentially with this dark sector rather than with the Standard Model. This suppresses the rate at direct detection searches and thus alleviates the constraints on $Z'$-mediated dark matter relic abundance. Furthermore, the collider phenomenology of this elusive $Z'$ is also discussed.« less
NASA Astrophysics Data System (ADS)
Nath, Debraj; Gao, Yali; Babu Mareeswaran, R.; Kanna, T.; Roy, Barnana
2017-12-01
We explore different nonlinear coherent structures, namely, bright-dark (BD) and dark-dark (DD) solitons in a coupled nonlinear Schrödinger/Gross-Pitaevskii equation with defocusing/repulsive nonlinearity coefficients featuring parity-time ( P T )-symmetric potentials. Especially, for two choices of P T -symmetric potentials, we obtain the exact solutions for BD and DD solitons. We perform the linear stability analysis of the obtained coherent structures. The results of this linear stability analysis are well corroborated by direct numerical simulation incorporating small random noise. It has been found that there exists a parameter regime which can support stable BD and DD solitons.
New LUX result constrains exotic quark mediators with the vector dark matter
NASA Astrophysics Data System (ADS)
Chen, Chuan-Ren; Li, Ming-Jie
2016-12-01
The scenario of the compressed mass spectrum between heavy quark and dark matter is a challenge for LHC searches. However, the elastic scattering cross-section between dark matter and nuclei in dark matter direct detection experiments can be enhanced with nearly degenerate masses between heavy quarks and dark matter. In this paper, we illustrate such scenario with a vector dark matter, using the latest result from LUX 2016. The mass constraints on heavy quarks can be more stringent than current limits from LHC, unless the coupling strength is very small. However, the compress mass spectrum with allowed tiny coupling strength makes the decay lifetime of heavy quarks longer than the timescale of QCD hadronization.
Fractional Fourier transform of Lorentz-Gauss vortex beams
NASA Astrophysics Data System (ADS)
Zhou, GuoQuan; Wang, XiaoGang; Chu, XiuXiang
2013-08-01
An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.
Europa Plumes Located near Warm Spot on Europa
2017-04-13
These images of the surface of the Jovian moon Europa, taken by NASA's Galileo spacecraft, focus on a "region of interest" on the icy moon. The image at left traces the location of the erupting plumes of material, observed by NASA's Hubble Space Telescope in 2014 and again in 2016. The plumes are located inside the area surrounded by the green oval. The green oval also corresponds to a warm region on Europa's surface, as identified by the temperature map at right. The map is based on observations by the Galileo spacecraft. The warmest area is colored bright red. Researchers speculate these data offer circumstantial evidence for unusual activity that may be related to a subsurface ocean on Europa. The dark circle just below center in both images is a crater and is not thought to be related to the warm spot or the plume activity. https://photojournal.jpl.nasa.gov/catalog/PIA21444
NASA Technical Reports Server (NTRS)
2007-01-01
The first images returned to Earth by New Horizons during its close encounter with Jupiter feature the Galilean moon Io, snapped with the Long Range Reconnaissance Imager (LORRI) at 0840 UTC on February 26, while the moon was 2.5 million miles (4 million kilometers) from the spacecraft. Io is intensely heated by its tidal interaction with Jupiter and is thus extremely volcanically active. That activity is evident in these images, which reveal an enormous dust plume, more than 150 miles high, erupting from the volcano Tvashtar. The plume appears as an umbrella-shaped feature of the edge of Io's disk in the 11 o'clock position in the right image, which is a long-exposure (20-millisecond) frame designed specifically to look for plumes like this. The bright spots at 2 o'clock are high mountains catching the setting sun; beyond them the night side of Io can be seen, faintly illuminated by light reflected from Jupiter itself. The left image is a shorter exposure -- 3 milliseconds -- designed to look at surface features. In this frame, the Tvashtar volcano shows as a dark spot, also at 11 o'clock, surrounded by a large dark ring, where an area larger than Texas has been covered by fallout from the giant eruption. This is the clearest view yet of a plume from Tvashtar, one of Io's most active volcanoes. Ground-based telescopes and the Galileo Jupiter orbiter first spotted volcanic heat radiation from Tvashtar in November 1999, and the Cassini spacecraft saw a large plume when it flew past Jupiter in December 2000. The Keck telescope in Hawaii picked up renewed heat radiation from Tvashtar in spring 2006, and just two weeks ago the Hubble Space Telescope saw the Tvashtar plume in ultraviolet images designed to support the New Horizons flyby. Most of those images will be stored onboard the spacecraft for downlink to Earth in March and April.Adding Spice to Vanilla LCDM simulations: Alternative Cosmologies & Lighting up Simulations
NASA Astrophysics Data System (ADS)
Jahan Elahi, Pascal
2015-08-01
Cold Dark Matter simulations have formed the backbone of our theoretical understanding of cosmological structure formation. Predictions from the Lambda Cold Dark Matter (LCDM) cosmology, where the Universe contains two dark components, namely Dark Matter & Dark Energy, are in excellent agreement with the Large-Scale Structures observed, i.e., the distribution of galaxies across cosmic time. However, this paradigm is in tension with observations at small-scales, from the number and properties of satellite galaxies around galaxies such as the Milky Way and Andromeda, to the lensing statistics of massive galaxy clusters. I will present several alternative models of cosmology (from Warm Dark Matter to coupled Dark Matter-Dark Energy models) and how they compare to vanilla LCDM by studying formation of groups and clusters dark matter only and adiabatic hydrodynamical zoom simulations. I will show how modifications to the dark sector can lead to some surprising results. For example, Warm Dark Matter, so often examined on small satellite galaxies scales, can be probed observationally using weak lensing at cluster scales. Coupled dark sectors, where dark matter decays into dark energy and experiences an effective gravitational potential that differs from that experienced by normal matter, is effectively hidden away from direct observations of galaxies. Studies like these are vital if we are to pinpoint observations which can look for unique signatures of the physics that governs the hidden Universe. Finally, I will discuss how all of these predictions are affected by uncertain galaxy formation physics. I will present results from a major comparison study of numerous hydrodynamical codes, the nIFTY cluster comparison project. This comparison aims to understand the code-to-code scatter in the properties of dark matter haloes and the galaxies that reside in them. We find that even in purely adiabatic simulations, different codes form clusters with very different X-ray profiles. The galaxies that form in these simulations, which all use codes that attempt to reproduce the observed galaxy population via not unreasonable subgrid physics, vary in stellar mass, morphology and gas fraction, sometimes by an order of magnitude. I will end with a discussion of precision cosmology in light of these results.
Enceladus' Geysers and Small-scale Thermal Hot Spots: Spatial Correlations and Implications
NASA Astrophysics Data System (ADS)
Porco, C.; Helfenstein, P.; Goguen, J.
2016-12-01
The geysering south polar terrain (SPT) of Enceladus has been a major focus of the Cassini mission ever since Cassini's first sighting of it in images taken in early 2005 (1). A high resolution imaging survey of the region conducted over the course of seven years resulted in the identification of 100 geysers erupting from the four main fractures crossing the SPT (2). The Cassini Visual and Infrared Mapping Spectrometer (VIMS) detected enhanced thermal emission arising from these fractures and taking the form of small-scale ( ≤ 10 meter) discrete spots (3,4). Four of these hot spot observations have already been spatially associated with four geysers on the Baghdad Sulcus fracture (2). The inferred spatial correlation and small size of each hot spot eliminated shear heating along the near-surface walls of the fractures as the source of the heat and erupting materials. Instead, it was concluded that condensation of vapor (and liquid), and the deposition of latent heat, on the near-surface vent walls, and the subsequent conduction of that heat to the surface, was the source of the observed thermal emission. This indicated that the hot spots are the secondary signature of a geyser eruption process deeply rooted in the moon's sub-surface liquid water reservoir (2). We extend the examination of these relationships to include seven additional VIMS observations of hot spots. At the present time, we have associated a total of 11 VIMS hot spot observations with 13 (maybe 14) geysers distributed over all four tiger stripe fractures. It's not uncommon for the locations of multiple (often two but sometimes three) surveyed geysers to overlap within estimated uncertainties. This can occur when they have different 3D orientations, making them identifiable in our 2014 survey as distinct features; However, the raw, thermally unmodeled VIMS maps, with their (relatively) coarse resolution, may register at that location only one corresponding hot spot. It is also possible that closely overlapping clusters of geysers in the survey represent a single geyser that changes its direction over the course of an Enceladus orbit as its vent widens and narrows with the diurnally varying normal stresses. Nonetheless, future thermal modeling of these VIMS hot spots should help constrain the conditions in the near-surface vents from which the geysers erupt.
... Size Small Text Medium Text Large Text Contrast Dark on Light Light on Dark Donate Search Menu Donate What is Glaucoma? Care ... Low Vision Resources Medication Guide Resources on the Web » See All Articles Where the Money Goes Have ...
Cosmic Visions Dark Energy: Small Projects Portfolio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Kyle; Frieman, Josh; Heitmann, Katrin
Understanding cosmic acceleration is one of the key science drivers for astrophysics and high-energy physics in the coming decade (2014 P5 Report). With the Large Synoptic Survey Telescope (LSST) and the Dark Energy Spectroscopic Instrument (DESI) and other new facilities beginning operations soon, we are entering an exciting phase during which we expect an order of magnitude improvement in constraints on dark energy and the physics of the accelerating Universe. This is a key moment for a matching Small Projects portfolio that can (1) greatly enhance the science reach of these flagship projects, (2) have immediate scientific impact, and (3)more » lay the groundwork for the next stages of the Cosmic Frontier Dark Energy program. In this White Paper, we outline a balanced portfolio that can accomplish these goals through a combination of observational, experimental, and theory and simulation efforts.« less
NASA Astrophysics Data System (ADS)
Clark, Hamish A.; Lewis, Geraint F.; Scott, Pat
2016-02-01
Ultracompact minihaloes (UCMHs) have been proposed as a type of dark matter substructure seeded by large-amplitude primordial perturbations and topological defects. UCMHs are expected to survive to the present era, allowing constraints to be placed on their cosmic abundance using observations within our own Galaxy. Constraints on their number density can be linked to conditions in the early Universe that impact structure formation, such as increased primordial power on small scales, generic weak non-Gaussianity, and the presence of cosmic strings. We use new constraints on the abundance of UCMHs from pulsar timing to place generalized limits on the parameters of each of these cosmological scenarios. At some scales, the limits are the strongest to date, exceeding those from dark matter annihilation. Our new limits have the added advantage of being independent of the particle nature of dark matter, as they are based only on gravitational effects.
Possible resonance effect of axionic dark matter in Josephson junctions.
Beck, Christian
2013-12-06
We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11 meV and a local galactic axionic dark-matter density of 0.05 GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.
Design and experimental research on a self-magnetic pinch diode under MV
NASA Astrophysics Data System (ADS)
Pengfei, ZHANG; Yang, HU; Jiang, SUN; Yan, SONG; Jianfeng, SUN; Zhiming, YAO; Peitian, CONG; Mengtong, QIU; Aici, QIU
2018-01-01
A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was developed in accordance with the principle of pinhole imaging. The designed SMPD and the corresponding measuring system were tested under ∼MV, with 1.75 × 2 mm2 oval x-ray spots (AWE defined) and forward directed dose 1.6 rad at 1 m. Results confirmed that the anode foil can significantly strengthen the electron beam pinch focus, and the focal spot measuring system can collect clear focal spot images. This finding indicated that the principle and method are feasible.
Radmanesh, Farid; Falcone, Guido J; Anderson, Christopher D; Battey, Thomas W K; Ayres, Alison M; Vashkevich, Anastasia; McNamara, Kristen A; Schwab, Kristin; Romero, Javier M; Viswanathan, Anand; Greenberg, Steven M; Goldstein, Joshua N; Rosand, Jonathan; Brouwers, H Bart
2014-06-01
Patients with intracerebral hemorrhage (ICH) who present with a spot sign on computed tomography angiography are at increased risk of hematoma expansion and poor outcome. Because primary ICH is the acute manifestation of chronic cerebral small vessel disease, we investigated whether different clinical or imaging characteristics predict spot sign presence, using ICH location as a surrogate for arteriolosclerosis- and cerebral amyloid angiopathy-related ICH. Patients with primary ICH and available computed tomography angiography at presentation were included. Predictors of spot sign were assessed using uni- and multivariable regression, stratified by ICH location. Seven hundred forty-one patients were eligible, 335 (45%) deep and 406 (55%) lobar ICH. At least one spot sign was present in 76 (23%) deep and 102 (25%) lobar ICH patients. In multivariable regression, warfarin (odds ratio [OR], 2.42; 95% confidence interval [CI], 1.01-5.71; P=0.04), baseline ICH volume (OR, 1.20; 95% CI, 1.09-1.33, per 10 mL increase; P<0.001), and time from symptom onset to computed tomography angiography (OR, 0.89; 95% CI, 0.80-0.96, per hour; P=0.009) were associated with the spot sign in deep ICH. Predictors of spot sign in lobar ICH were warfarin (OR, 3.95; 95% CI, 1.87-8.51; P<0.001) and baseline ICH volume (OR, 1.20; 95% CI, 1.10-1.31, per 10 mL increase; P<0.001). The most potent associations with spot sign are shared between deep and lobar ICH, suggesting that the acute bleeding process that arises in the setting of different chronic small vessel diseases shares commonalities. © 2014 American Heart Association, Inc.
Is Self-Interacting Dark Matter Undergoing Dark Fusion?
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, Samuel D.
2017-11-02
We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v^n ~ [10^{-(2-3)}]^n, where n=1,2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be sigma ~ 0.1-1 barn, moderately larger than for Standard Model deuteron fusion, indicating a dark nuclear scale Lambda ~ O(100 MeV).more » Dark fusion firmly predicts constant sigma v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometer per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.« less
Is Self-Interacting Dark Matter Undergoing Dark Fusion?
NASA Astrophysics Data System (ADS)
McDermott, Samuel D.
2018-06-01
We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than vn˜(10-(2 -3 ))n , where n =1 , 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be σ˜0.1 - 1 barn, moderately larger than for standard model deuteron fusion, indicating a dark nuclear scale Λ ˜O (100 MeV ) . Dark fusion firmly predicts constant σ v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometers per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.
NASA Astrophysics Data System (ADS)
Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N.; Westhoff, Guido
2013-05-01
The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV - near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.
Bichuette, Maria Elina
2017-01-01
Aspidoras mephisto n. sp. is described from the Anésio-Russão cave system, upper Tocantins River basin, Goiás, Brazil. The species can be readily distinguished from its congeners by troglomorphic features and also by presenting the following combination of features: infraorbital 1 generally with well-developed ventral laminar; or moderately developed; poorly-developed serrations on posterior margin of pectoral spine; nuchal plate not externally visible; dorsal fin, even in conspicuously colored specimens, with only dark brown or black chromatophores concentrated on rays, forming spots in some specimens; membranes hyaline; or sparse dark brown or black chromatophores on membranes, not forming any conspicuous pattern; and inner laminar expansion of infraorbital 1 moderately developed. Information about its habitat, ecology, behaviour and conservation status are provided and also a brief description of the juvenile stage. PMID:28248959
Padgett, Miles [University of Glasgow, Glasgow, Scotland
2017-12-09
Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?
NASA Technical Reports Server (NTRS)
Loeffler, B. M.; Burns, R. G.; Tossell, J. A.
1975-01-01
Prominent bands in the spectral profiles of Fe-Ti phases in lunar samples have been attributed to charge-transfer transitions between Fe and Ti cations, and a model is presented for calculating charge transfer energies from energy levels computed by the SCF-X(alpha) scattered wave molecular orbital method for isolated MO6 octahedral coordination clusters containing Fe(2+), Fe(3+), Ti(3+), and Ti(4+) cations. The calculated charge transfer energy for the Fe(2+) to Ti(4+) transition correlates well with a measured spectral feature around 0.6 micron in ilmenite, and, since ilmenite is a major constituent of mare basalts and dark-mantling material, the observed darkness and blueness of the regolith in lunar black spots is attributed primarily to this transition. The Ti(3+) to Ti(4+) transition is thought to contribute to some phases.
Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N; Westhoff, Guido
2013-01-01
The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV-near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.
Román-Valencia, César; Ruiz-C, Raquel I; Taphorn, Donald C; Mancera-Rodriguez, Néstor J; García-Alzate, Carlos A
2013-09-01
Fish biodiversity of aquatic ecosystems is highly threatened by different economic activities driven by human populations, and its description is increasingly a priority. For the Cauca-Magdalena River system we have described 14 species, and the purpose of this paper was to describe three new species belonging to the same genus Hemibrycon from the Nare and Guatapé River drainages of the middle Magdalena River, Colombia. The description was based on a series of 200 specimens, and the use of morphometric, meristic and osteological characters, as well as fish distribution and morphogeometric analytical methods. We have found that Hemibrycon fasciatus n. sp. (n = 54) differs from other species of Hemibrycon (that also have a vertical humeral spot) in having: melanophores outlining the posterior margins of the scales along sides of body; humeral spot extending onto posterior margin of opercle; a dark lateral stripe, formed by deep pigment that is continuous with the peduncular spot; the toothed portion of the maxilla not reaching the dorsal margin of the dentary (vs. toothed portion of maxilla extending beyond dorsal margin of dentary); all maxillary teeth tricuspid (vs. some unicuspid teeth present on maxilla). H. cardalensis n. sp. (n = 64) differs in having: a vertically elongate humeral spot that extends one or two scales below the lateral line canal. H. cardalensis n. sp. differs from all congeners in having the pigment of the caudal spot restricted to the ventral half of the caudal peduncle, and in having melanophores around the anterior scales of the lateral line. Hemibrycon antioquiae n. sp. (n = 82) differs in having a circular humeral spot. It differs from the other species with a circular humeral spot, like H. mikrostiktos, in having a projection of disperse melanophores extending from the dorsal margin of the humeral spot to below the lateral stripe. Habitat data and environmental impacts caused by the construction of reservoirs for hydroelectric projects and other threats in the area are included, as well as a key to all species Hemibrycon present in the Magdalena River Basin. The synonymy of H. pautensis with H. polyodon is discussed and H. pautensis is revalidated.
Use of a Small Unmanned Aircraft System for Autonomous Fire Spotting at the Great Dismal Swamp
NASA Technical Reports Server (NTRS)
Logan, Michael J.; Glaab, Louis J.; Craig, Timothy
2016-01-01
This paper describes the results of a set of experiments and analyses conducted to evaluate the capability of small unmanned aircraft systems (sUAS) to spot nascent fires in the Great Dismal Swamp (GDS) National Wildlife Refuge. This work is the result of a partnership between the National Aeronautics and Space Administration and the US Fish and Wildlife service specifically to investigate sUAS usage for fire-spotting. The objectives of the current effort were to: 1) Determine suitability and utility of low-cost Small Unmanned Aircraft Systems (sUAS) to detect nascent fires at GDS; 2) Identify and assess the necessary National Airspace System (NAS) integration issues; and 3) Provide information to GDS and the community on system requirements and concepts-of-operation (CONOPS) for conducting fire detection/support mission in the National Airspace and (4) Identify potential applications of intelligent autonomy that would enable or benefit this high-value mission. In addition, data on the ability of various low-cost sensors to detect smoke plumes and fire hot spots was generated during the experiments as well as identifying a path towards a future practical mission utility by using sUAS in beyond visual-line-of-sight operation in the National Airspace System (NAS).
Temple, P A; Lowdermilk, W H; Milam, D
1982-09-15
Mechanically polished fused silica surfaces were heated with continuous-wave CO(2) laser radiation. Laser-damage thresholds of the surfaces were measured with 1064-nm 9-nsec pulses focused to small spots and with large-spot, 1064-nm, 1-nsec irradiation. A sharp transition from laser-damage-prone to highly laser-damage-resistant took place over a small range in CO(2) laser power. The transition to high damage resistance occurred at a silica surface temperature where material softening began to take place as evidenced by the onset of residual strain in the CO(2) laser-processed part. The small-spot damage measurements show that some CO(2) laser-treated surfaces have a local damage threshold as high as the bulk damage threshold of SiO(2). On some CO(2) laser-treated surfaces, large-spot damage thresholds were increased by a factor of 3-4 over thresholds of the original mechanically polished surface. These treated parts show no obvious change in surface appearance as seen in bright-field, Nomarski, or total internal reflection microscopy. They also show little change in transmissive figure. Further, antireflection films deposited on CO(2) laser-treated surfaces have thresholds greater than the thresholds of antireflection films on mechanically polished surfaces.
Cold dark matter: Controversies on small scales
Weinberg, David H.; Bullock, James S.; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H. G.
2015-01-01
The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464
Neutrinos from the terrestrial passage of supersymmetric dark-matter Q-balls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusenko, Alexander; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568; Shoemaker, Ian M.
2009-07-15
Supersymmetry implies that stable nontopological solitons, Q-balls, could form in the early universe and could make up all or part of dark matter. We show that the relic Q-balls passing through Earth can produce a detectable neutrino flux. The peculiar zenith angle dependence and a small annual modulation of this flux can be used as signatures of dark-matter Q-balls.
Primordial Black Holes as Generators of Cosmic Structures
NASA Astrophysics Data System (ADS)
Carr, Bernard; Silk, Joseph
2018-05-01
Primordial black holes (PBHs) could provide the dark matter in various mass windows below 102M⊙ and those of 30M⊙ might explain the LIGO events. PBHs much larger than this might have important consequences even if they provide only a small fraction of the dark matter. In particular, they could generate cosmological structure either individually through the `seed' effect or collectively through the `Poisson' effect, thereby alleviating some problems associated with the standard CDM scenario. If the PBHs all have a similar mass and make a small contribution to the dark matter, then the seed effect dominates on small scales, in which case PBHs could generate the supermassive black holes in galactic nuclei or even galaxies themselves. If they have a similar mass and provide the dark matter, the Poisson effect dominates on all scales and the first bound clouds would form earlier than in the usual scenario, with interesting observational consequences. If the PBHs have an extended mass spectrum, which is more likely, they could fulfill all three roles - providing the dark matter, binding the first bound clouds and generating galaxies. In this case, the galactic mass function naturally has the observed form, with the galaxy mass being simply related to the black hole mass. The stochastic gravitational wave background from the PBHs in this scenario would extend continuously from the LIGO frequency to the LISA frequency, offering a potential goal for future surveys.
Rabin, Jeff C; Karunathilake, Nirmani; Patrizi, Korey
2018-04-26
Consumption of dark chocolate can improve blood flow, mood, and cognition in the short term, but little is known about the possible effects of dark chocolate on visual performance. To compare the short-term effects of consumption of dark chocolate with those of milk chocolate on visual acuity and large- and small-letter contrast sensitivity. A randomized, single-masked crossover design was used to assess short-term visual performance after consumption of a dark or a milk chocolate bar. Thirty participants without pathologic eye disease each consumed dark and milk chocolate in separate sessions, and within-participant paired comparisons were used to assess outcomes. Testing was conducted at the Rosenberg School of Optometry from June 25 to August 15, 2017. Visual acuity (in logMAR units) and large- and small-letter contrast sensitivity (in the log of the inverse of the minimum detectable contrast [logCS units]) were measured 1.75 hours after consumption of dark and milk chocolate bars. Among the 30 participants (9 men and 21 women; mean [SD] age, 26 [5] years), small-letter contrast sensitivity was significantly higher after consumption of dark chocolate (mean [SE], 1.45 [0.04] logCS) vs milk chocolate (mean [SE], 1.30 [0.05] logCS; mean improvement, 0.15 logCS [95% CI, 0.08-0.22 logCS]; P < .001). Large-letter contrast sensitivity was slightly higher after consumption of dark chocolate (mean [SE], 2.05 [0.02] logCS) vs milk chocolate (mean [SE], 2.00 [0.02] logCS; mean improvement, 0.05 logCS [95% CI, 0.00-0.10 logCS]; P = .07). Visual acuity improved slightly after consumption of dark chocolate (mean [SE], -0.22 [0.01] logMAR; visual acuity, approximately 20/12) and milk chocolate (mean [SE], -0.18 [0.01] logMAR; visual acuity, approximately 20/15; mean improvement, 0.04 logMAR [95% CI, 0.02-0.06 logMAR]; P = .05). Composite scores combining results from all tests showed significant improvement after consumption of dark compared with milk chocolate (mean improvement, 0.20 log U [95% CI, 0.10-0.30 log U]; P < .001). Contrast sensitivity and visual acuity were significantly higher 2 hours after consumption of a dark chocolate bar compared with a milk chocolate bar, but the duration of these effects and their influence in real-world performance await further testing. clinicaltrials.gov Identifier: NCT03326934.
Test set up description and performances for HAWAII-2RG detector characterization at ESTEC
NASA Astrophysics Data System (ADS)
Crouzet, P.-E.; ter Haar, J.; de Wit, F.; Beaufort, T.; Butler, B.; Smit, H.; van der Luijt, C.; Martin, D.
2012-07-01
In the frame work of the European Space Agency's Cosmic Vision program, the Euclid mission has the objective to map the geometry of the Dark Universe. Galaxies and clusters of galaxies will be observed in the visible and near-infrared wavelengths by an imaging and spectroscopic channel. For the Near Infrared Spectrometer instrument (NISP), the state-of-the-art HAWAII-2RG detectors will be used, associated with the SIDECAR ASIC readout electronic which will perform the image frame acquisitions. To characterize and validate the performance of these detectors, a test bench has been designed, tested and validated. This publication describes the pre-tests performed to build the set up dedicated to dark current measurements and tests requiring reasonably uniform light levels (such as for conversion gain measurements). Successful cryogenic and vacuum tests on commercial LEDs and photodiodes are shown. An optimized feed through in stainless steel with a V-groove to pot the flex cable connecting the SIDECAR ASIC to the room temperature board (JADE2) has been designed and tested. The test set up for quantum efficiency measurements consisting of a lamp, a monochromator, an integrating sphere and set of cold filters, and which is currently under construction will ensure a uniform illumination across the detector with variations lower than 2%. A dedicated spot projector for intra-pixel measurements has been designed and built to reach a spot diameter of 5 μm at 920nm with 2nm of bandwidth [1].
Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death
Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Jockusch, Steffen; Turro, Nicholas J.; Kräutler, Bernhard
2009-01-01
Breakdown of chlorophyll is a major contributor to the diagnostic color changes in fall leaves, and in ripening apples and pears, where it commonly provides colorless, nonfluorescent tetrapyrroles. In contrast, in ripening bananas (Musa acuminata) chlorophylls fade to give unique fluorescent catabolites (FCCs), causing yellow bananas to glow blue, when observed under UV light. Here, we demonstrate the capacity of the blue fluorescent chlorophyll catabolites to signal symptoms of programmed cell death in a plant. We report on studies of bright blue luminescent rings on the peel of very ripe bananas, which arise as halos around necrotic areas in ‘senescence associated’ dark spots. These dark spots appear naturally on the peel of ripe bananas and occur in the vicinity of stomata. Wavelength, space, and time resolved fluorescence measurements allowed the luminescent areas to be monitored on whole bananas. Our studies revealed an accumulation of FCCs in luminescent rings, within senescing cells undergoing the transition to dead tissue, as was observable by morphological textural cellular changes. FCCs typically are short lived intermediates of chlorophyll breakdown. In some plants, FCCs are uniquely persistent, as is seen in bananas, and can thus be used as luminescent in vivo markers in tissue undergoing senescence. While FCCs still remain to be tested for their own hypothetical physiological role in plants, they may help fill the demand for specific endogenous molecular reporters in noninvasive assays of plant senescence. Thus, they allow for in vivo studies, which provide insights into critical stages preceding cell death. PMID:19805212
Polarization-resolved optical response of plasmonic particle-on-film nanocavities
NASA Astrophysics Data System (ADS)
Zhang, Q.; Li, G.-C.; Lo, T. W.; Lei, D. Y.
2018-02-01
Placing a metal nanoparticle atop a metal film forms a plasmonic particle-on-film nanocavity. Such a nanocavity supports strong plasmonic coupling that results in rich hybridized plasmon modes, rendering the cavity a versatile platform for exploiting a wide range of plasmon-enhanced spectroscopy applications. In this paper, we fully address the polarization-resolved, orientation-dependent far-field optical responses of plasmonic monomer- and dimer-on-film nanocavities by numerical simulations and experiments. With polarization-resolved dark-field spectroscopy, the distinct plasmon resonances of these nanocavities are clearly determined from their scattering spectra. Moreover, the radiation patterns of respective plasmon modes, which are often mixed together in common dark-field imaging, can be unambiguously resolved with our proposed quasi-multispectral imaging method. Explicitly, the radiation pattern of the monomer-on-film nanocavity gradually transitions from a solid spot in the green imaging channel to a doughnut ring in the red channel when tuning the excitation polarization from parallel to perpendicular to the sample surface. This observation holds true for the plasmonic dimer-on-film nanocavity with the dimer axis aligned in the incidence plane; when the dimer axis is normal to the incidence plane, the pattern transitions from a solid spot to a doughnut ring both in the red channel. These studies not only demonstrate a flexible polarization control over the optical responses of plasmonic particle-on-film nanostructures but also enrich the optical tool kit for far-field imaging and spectroscopy characterization of various plasmonic nanostructures.
Generic Medications: Are They the Same?
... Size Small Text Medium Text Large Text Contrast Dark on Light Light on Dark Donate Search Menu Donate What is Glaucoma? Care ... Low Vision Resources Medication Guide Resources on the Web » See All Articles Where the Money Goes Have ...
Jupiter's Northern Hemisphere in a Methane Band (Time Set 3)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.
Light at 889 nanometers is strongly absorbed by atmospheric methane. This mosaic shows the features of a hazy cloud layer tens of kilometers above Jupiter's main visible cloud deck. This haze varies in height but appears to be present over the entire region. Small patches of very bright clouds may be similar to terrestrial thunderstorms.North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoJupiter's Northern Hemisphere in a Methane Band (Time Set 2)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.
Light at 889 nanometers is strongly absorbed by atmospheric methane. This mosaic shows the features of a hazy cloud layer tens of kilometers above Jupiter's main visible cloud deck. This haze varies in height but appears to be present over the entire region. Small patches of very bright clouds may be similar to terrestrial thunderstorms.North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoUSDA-ARS?s Scientific Manuscript database
Spotted wing drosophila (SWD), Drosophila suzukii, is an invasive insect that attacks ripe, small fruit such as raspberries, blackberries, and blueberries. Little is known about SWD foraging ecology, and current trapping and monitoring systems are ineffective at commercial scales. In caged foragin...
Regulation of Mammary Tumor Formation and Lipid Biosynthesis by Spot 14
2013-10-01
1 Introduction: THRSP/Spot14/S14 is a small cytoplasmic protein that is highly expressed in tissues that synthesize fatty acids de novo...cycle regulation and also with various metabolic pathways, including glycolysis /gluconeogenesis and the pentose phosphate pathway (Table 1). The
Europa Imaging Highlights during GEM
NASA Technical Reports Server (NTRS)
1998-01-01
During the two year Galileo Europa Mission (GEM), NASA's Galileo spacecraft will focus intensively on Jupiter's intriguing moon, Europa. This montage shows samples of some of the features that will be imaged during eight successive orbits. The images in this montage are in order of increasing orbit from the upper left (orbit 11) to the lower right (orbit 19).
DESCRIPTIONS AND APPROXIMATE RESOLUTIONSTriple bands and dark spots1.6 kilometers/pixelConamara Chaos1.6 kilometers/pixelMannan'an Crater1.6 kilometers/ pixelCilix1.6 kilometers/pixelAgenor Linea and Thrace Macula2 kilometers/pixelSouth polar terrain2 kilometers/pixelRhadamanthys Linea1.6 kilometers/pixelEuropa plume search7 kilometers/pixel1. Triple bands and dark spots were the focus of some images from Galileo's eleventh orbit of Jupiter. Triple bands are multiple ridges with dark deposits along the outer margins. Some extend for thousands of kilometers across Europa's icy surface. They are cracks in the ice sheet and indicate the great stresses imposed on Europa by tides raised by Jupiter, as well as Europa's neighboring moons, Ganymede and Io. The dark spots or 'lenticulae' are spots of localized disruption.2. The Conamara Chaos region reveals icy plates which have broken up, moved, and rafted into new positions. This terrain suggests that liquid water or ductile ice was present near the surface. On Galileo's twelfth orbit of Jupiter, sections of this region with resolutions as high as 10 meters per picture element will be obtained.3. Mannann'an Crater is a feature newly discovered by Galileo in June 1996. Color and high resolution images (to 40 meters per picture element) from Galileo's fourteenth orbit of Jupiter will offer a close look at the crater and help characterize how impacts affect the icy surface of this moon.4. Cilix, a large mound about 1.5 kilometers high, is the center of Europa's coordinate system. Its concave top and what may be flow like features to the southwest of the mound are especially intriguing. The origin of this feature is unknown at present. Color, stereo, and high resolution images (to 65 meters per picture element) from Galileo's fifteenth orbit of Jupiter will offer new insights and resolve questions about its origin.5. Images of Agenor Linea (white arrow) and Thrace Macula (black arrow) with resolutions as high as 30 meters per picture element will be obtained during Galileo's sixteenth orbit of Jupiter. Agenor is an unusually bright lineament on Europa. Is the brightness due to new ice, and if so, does it represent recent activity? Could the dark region of Thrace Macula be a flow from ice volcanism?6. Images of Europa's south polar terrain obtained during Galileo's seventeenth orbit of Jupiter will offer insights into the processes which are active in this region. Is the ice crust thicker near Europa's poles than near the equator? The prominent dark line running from upper left to lower right through the center of this image is Astypalaea Linea. It is a fault about the length of the San Andreas fault in California and is the largest such fault known on Europa. Images with resolutions of 48 meters per picture element will be obtained to examine its geologic structure.7. This long lineament, Rhadamanthys Linea. is spotted with dark 'freckles'. Are these freckle features formed by icy volcanism? Is this an early form of a triple band? Stereo and high resolution (to 46 meters per picture element) obtained during Galileo's eighteenth orbit of Jupiter may indicate whether the lineament is the result of volcanic processes or is formed by other surface processes.8. During Galileo's nineteenth orbit of Jupiter, images of Europa will be taken with very low sun illuminations, similar to taking a picture at sunset or sunrise. The object will be to search for backlit plumes issuing from icy volcanic vents. Such plumes would be direct evidence of a liquid ocean beneath the ice. Resolutions will be as high as 40 meters per picture element. This picture was simulated image from Galileo data obtained during the spacecraft's second orbit of Jupiter in September 1996.North is to the top of the pictures. During orbit 13, the Galileo spacecraft was behind the sun from our vantage point on Earth so it did not obtain or transmit data from that orbit. The left two images in the bottom row were obtained by NASA's Voyager 2 spacecraft in 1979; the remaining images were obtained by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft in 1996.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoReconciling large- and small-scale structure in Twin Higgs models
Prilepina, Valentina; Tsai, Yuhsin
2017-09-08
Here, we study possible extensions of the Twin Higgs model that solve the Hierarchy problem and simultaneously address problems of the large- and small-scale structures of the Universe. Besides naturally providing dark matter (DM) candidates as the lightest charged twin fermions, the twin sector contains a light photon and neutrinos, which can modify structure formation relative to the prediction from the ΛCDM paradigm. We focus on two viable scenarios. First, we study a Fraternal Twin Higgs model in which the spin-3/2 baryonmore » $$\\hat{Ω}$$~($$\\hat{b}$$$\\hat{b}$$$\\hat{b}$$) and the lepton twin tau $$\\hat{τ}$$ contribute to the dominant and subcomponent dark matter densities. A non-decoupled scattering between the twin tau and twin neutrino arising from a gauged twin lepton number symmetry provides a drag force that damps the density inhomogeneity of a dark matter subcomponent. Next, we consider the possibility of introducing a twin hydrogen atom $$\\hat{H}$$ as the dominant DM component. After recombination, a small fraction of the twin protons and leptons remains ionized during structure formation, and their scattering to twin neutrinos through a gauged U(1) B-L force provides the mechanism that damps the density inhomogeneity. Both scenarios realize the Partially Acoustic dark matter (PAcDM) scenario and explain the σ 8 discrepancy between the CMB and weak lensing results. Moreover, the self-scattering neutrino behaves as a dark fluid that enhances the size of the Hubble rate H 0 to accommodate the local measurement result while satisfying the CMB constraint. For the small-scale structure, the scattering of $$\\hat{Ω}$$ ’s and $$\\hat{H}$$’s through the twin photon exchange generates a self-interacting dark matter (SIDM) model that solves the mass deficit problem from dwarf galaxy to galaxy cluster scales. Furthermore, when varying general choices of the twin photon coupling, bounds from the dwarf galaxy and the cluster merger observations can set an upper limit on the twin electric coupling.« less
Reconciling large- and small-scale structure in Twin Higgs models
NASA Astrophysics Data System (ADS)
Prilepina, Valentina; Tsai, Yuhsin
2017-09-01
We study possible extensions of the Twin Higgs model that solve the Hierarchy problem and simultaneously address problems of the large- and small-scale structures of the Universe. Besides naturally providing dark matter (DM) candidates as the lightest charged twin fermions, the twin sector contains a light photon and neutrinos, which can modify structure formation relative to the prediction from the ΛCDM paradigm. We focus on two viable scenarios. First, we study a Fraternal Twin Higgs model in which the spin-3/2 baryon \\widehat{Ω}˜ (\\widehat{b}\\widehat{b}\\widehat{b}) and the lepton twin tau \\widehat{τ} contribute to the dominant and subcomponent dark matter densities. A non-decoupled scattering between the twin tau and twin neutrino arising from a gauged twin lepton number symmetry provides a drag force that damps the density inhomogeneity of a dark matter subcomponent. Next, we consider the possibility of introducing a twin hydrogen atom Ĥ as the dominant DM component. After recombination, a small fraction of the twin protons and leptons remains ionized during structure formation, and their scattering to twin neutrinos through a gauged U(1) B-L force provides the mechanism that damps the density inhomogeneity. Both scenarios realize the Partially Acoustic dark matter (PAcDM) scenario and explain the σ 8 discrepancy between the CMB and weak lensing results. Moreover, the self-scattering neutrino behaves as a dark fluid that enhances the size of the Hubble rate H 0 to accommodate the local measurement result while satisfying the CMB constraint. For the small-scale structure, the scattering of \\widehat{Ω} 's and Ĥ's through the twin photon exchange generates a self-interacting dark matter (SIDM) model that solves the mass deficit problem from dwarf galaxy to galaxy cluster scales. Furthermore, when varying general choices of the twin photon coupling, bounds from the dwarf galaxy and the cluster merger observations can set an upper limit on the twin electric coupling.
High resolution optical surface metrology with the slope measuring portable optical test system
NASA Astrophysics Data System (ADS)
Maldonado, Alejandro V.
New optical designs strive to achieve extreme performance, and continually increase the complexity of prescribed optical shapes, which often require wide dynamic range and high resolution. SCOTS, or the Software Configurable Optical Test System, can measure a wide range of optical surfaces with high sensitivity using surface slope. This dissertation introduces a high resolution version of SCOTS called SPOTS, or the Slope measuring Portable Optical Test System. SPOTS improves the metrology of surface features on the order of sub-millimeter to decimeter spatial scales and nanometer to micrometer level height scales. Currently there is no optical surface metrology instrument with the same utility. SCOTS uses a computer controlled display (such as an LCD monitor) and camera to measure surface slopes over the entire surface of a mirror. SPOTS differs in that an additional lens is placed near the surface under test. A small prototype system is discussed in general, providing the support for the design of future SPOTS devices. Then the SCOTS instrument transfer function is addressed, which defines the way the system filters surface heights. Lastly, the calibration and performance of larger SPOTS device is analyzed with example measurements of the 8.4-m diameter aspheric Large Synoptic Survey Telescope's (LSST) primary mirror. In general optical systems have a transfer function, which filters data. In the case of optical imaging systems the instrument transfer function (ITF) follows the modulation transfer function (MTF), which causes a reduction of contrast as a function of increasing spatial frequency due to diffraction. In SCOTS, ITF is shown to decrease the measured height of surface features as their spatial frequency increases, and thus the SCOTS and SPOTS ITF is proportional to their camera system's MTF. Theory and simulations are supported by a SCOTS measurement of a test piece with a set of lithographically written sinusoidal surface topographies. In addition, an example of a simple inverse filtering technique is provided. The success of a small SPOTS proof of concept instrument paved the way for a new larger prototype system, which is intended to measure subaperture regions on large optical mirrors. On large optics, the prototype SPOTS is light weight and it rests on the surface being tested. One advantage of this SPOTS is stability over time in maintaining its calibration. Thus the optician can simply place SPOTS on the mirror, perform a simple alignment, collect measurement data, then pick the system up and repeat at a new location. The entire process takes approximately 5 to 10 minutes, of which 3 minutes is spent collecting data. SPOTS' simplicity of design, light weight, robustness, wide dynamic range, and high sensitivity make it a useful tool for optical shop use during the fabrication and testing process of large and small optics.
Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion
NASA Technical Reports Server (NTRS)
Zivotofsky, A. Z.; Rottach, K. G.; Averbuch-Heller, L.; Kori, A. A.; Thomas, C. W.; Dell'Osso, L. F.; Leigh, R. J.
1996-01-01
1. Measurements were made in four normal human subjects of the accuracy of saccades to remembered locations of targets that were flashed on a 20 x 30 deg random dot display that was either stationary or moving horizontally and sinusoidally at +/-9 deg at 0.3 Hz. During the interval between the target flash and the memory-guided saccade, the "memory period" (1.4 s), subjects either fixated a stationary spot or pursued a spot moving vertically sinusoidally at +/-9 deg at 0.3 Hz. 2. When saccades were made toward the location of targets previously flashed on a stationary background as subjects fixated the stationary spot, median saccadic error was 0.93 deg horizontally and 1.1 deg vertically. These errors were greater than for saccades to visible targets, which had median values of 0.59 deg horizontally and 0.60 deg vertically. 3. When targets were flashed as subjects smoothly pursued a spot that moved vertically across the stationary background, median saccadic error was 1.1 deg horizontally and 1.2 deg vertically, thus being of similar accuracy to when targets were flashed during fixation. In addition, the vertical component of the memory-guided saccade was much more closely correlated with the "spatial error" than with the "retinal error"; this indicated that, when programming the saccade, the brain had taken into account eye movements that occurred during the memory period. 4. When saccades were made to targets flashed during attempted fixation of a stationary spot on a horizontally moving background, a condition that produces a weak Duncker-type illusion of horizontal movement of the primary target, median saccadic error increased horizontally to 3.2 deg but was 1.1 deg vertically. 5. When targets were flashed as subjects smoothly pursued a spot that moved vertically on the horizontally moving background, a condition that induces a strong illusion of diagonal target motion, median saccadic error was 4.0 deg horizontally and 1.5 deg vertically; thus the horizontal error was greater than under any other experimental condition. 6. In most trials, the initial saccade to the remembered target was followed by additional saccades while the subject was still in darkness. These secondary saccades, which were executed in the absence of visual feedback, brought the eye closer to the target location. During paradigms involving horizontal background movement, these corrections were more prominent horizontally than vertically. 7. Further measurements were made in two subjects to determine whether inaccuracy of memory-guided saccades, in the horizontal plane, was due to mislocalization at the time that the target flashed, misrepresentation of the trajectory of the pursuit eye movement during the memory period, or both. 8. The magnitude of the saccadic error, both with and without corrections made in darkness, was mislocalized by approximately 30% of the displacement of the background at the time that the target flashed. The magnitude of the saccadic error also was influenced by net movement of the background during the memory period, corresponding to approximately 25% of net background movement for the initial saccade and approximately 13% for the final eye position achieved in darkness. 9. We formulated simple linear models to test specific hypotheses about which combinations of signals best describe the observed saccadic amplitudes. We tested the possibilities that the brain made an accurate memory of target location and a reliable representation of the eye movement during the memory period, or that one or both of these was corrupted by the illusory visual stimulus. Our data were best accounted for by a model in which both the working memory of target location and the internal representation of the horizontal eye movements were corrupted by the illusory visual stimulus. We conclude that extraretinal signals played only a minor role, in comparison with visual estimates of the direction of gaze, in planning eye movements to remembered targ.
Self-interacting inelastic dark matter: a viable solution to the small scale structure problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juan.herrero-garcia@adelaide.edu.au
2017-03-01
Self-interacting dark matter has been proposed as a solution to the small-scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution tomore » reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schrödinger equation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.« less
Carbon-Dioxide Frost Settling from Seasonal Outbursts on Mars (Movie)
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Frame #1 FRT00004959, Ls 195 Frame #2 FRT000049C2, Ls 196 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Frame #3 FRT00004B45, Ls 199 Frame #4 FRT000059E2, Ls 226
Mars' seasonal caps consist of frozen carbon dioxide mixed with smaller amounts of water ice frost and dust. The different composition of Mars' seasonal caps than Earth's seasonal caps (water-ice snow), plus the lower pressure of the Martian atmosphere, inevitably make springtime recession of the seasonal cap different than the snowmelt that characterizes retreat of Earth's seasonal cap. To monitor Mars' seasonal changes, CRISM repeatedly targets specific regions as Mars' seasons change. Results shown here are evidence that as warming carbon-dioxide ice vaporizes, some is trapped under the ice slab from which pressurized outbursts occur. The released gas expands, cools, and some of it refreezes and falls back to the surface as bright fans. The region shown in this movie, known informally as Manhattan, is located at 86.3 degrees south latitude, 99 degrees east longitude. To represent the content of the spectral images, two versions of the data are shown side-by-side. The left image was constructed from extended visible wavelengths, to look similar to color images from the High Resolution Imaging Science Experiment (HiRISE) camera. The right image is infrared false-color, with red being the reflectance at 1.30 micrometers, green being depth of the water ice absorption centered at 1.5 micrometers, and blue being depth of the carbon dioxide ice absorption centered at 1.435 micrometers. In this color scheme, surfaces with higher water ice content will appear greenish, while bright carbon dioxide ice will appear magenta. Areas covered by dust will appear dark. In both images, north is to the right. The four time steps in the movie were taken at solar longitudes (Ls) ranging from 195 through 226. (Solar longitude is a measure of seasons, where 180 is southern spring equinox and 270 is southern summer solstice.) The first frame (image FRT00004959, Ls 195) shows a number of spots and dark fan-shaped features, with a higher concentration of spots on a slope in the middle of the scene. The dark fans show multiple directions, generally indicating wind coming out of the east. The second frame (image FRT000049C2, Ls 196) was taken just a few days after the prior one and starts to show color variations in the fans. The third frame (image FRT00004B45, Ls 199) records appearance of bright (bluish) fans in addition to the dark fans. The bright fans are slightly more bluish in the false-color image at right, indicating enrichment in carbon dioxide ice. The tails of the dark fans are more greenish, indicated a slight enhancement of water ice. The fourth and final frame (image FRT000059E2, Ls 226) shows distinct bright fans that appear magenta in the false-color image, indicating carbon dioxide ice with little evidence of water ice. However the surrounding surface is greenish, suggesting small amounts of water ice contamination. The tails of the dark fans appear to be more greenish in the infrared than the surrounding ice, suggesting a slight enhancement of the water ice contamination. The difference between the directions of dark and bright fans suggests changes in the wind direction, perhaps as part of a diurnal cycle or pattern. CRISM science team members working with these data believe that they are seeing evidence for a process first proposed based on data from the Thermal Imaging System (THEMIS) instrument on Mars Odyssey. In this hypothesis, sunlight penetrating the ice warms the underling soil and causes carbon dioxide frost to vaporize at its base. At first the gas is trapped under the frost; when it is released, the expanding gas cools and part of it refreezes to form carbon dioxide frost in the magenta-colored fans. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials leading to new understanding of the climate.Akram, Usman M; Khan, Shoab A
2012-10-01
There is an ever-increasing interest in the development of automatic medical diagnosis systems due to the advancement in computing technology and also to improve the service by medical community. The knowledge about health and disease is required for reliable and accurate medical diagnosis. Diabetic Retinopathy (DR) is one of the most common causes of blindness and it can be prevented if detected and treated early. DR has different signs and the most distinctive are microaneurysm and haemorrhage which are dark lesions and hard exudates and cotton wool spots which are bright lesions. Location and structure of blood vessels and optic disk play important role in accurate detection and classification of dark and bright lesions for early detection of DR. In this article, we propose a computer aided system for the early detection of DR. The article presents algorithms for retinal image preprocessing, blood vessel enhancement and segmentation and optic disk localization and detection which eventually lead to detection of different DR lesions using proposed hybrid fuzzy classifier. The developed methods are tested on four different publicly available databases. The presented methods are compared with recently published methods and the results show that presented methods outperform all others.
Less-simplified models of dark matter for direct detection and the LHC
NASA Astrophysics Data System (ADS)
Choudhury, Arghya; Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J.
2016-04-01
We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳ 10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators' mass. We derive the strongest limits for combinations of vector + scalar, vector + "squark", and "squark" + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.
Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Shao-Wen; Liu, Yu-Xiao, E-mail: weishw@lzu.edu.cn, E-mail: liuyx@lzu.edu.cn
In this paper, the shadows cast by Einstein-Maxwell-Dilaton-Axion black hole and naked singularity are studied. The shadow of a rotating black hole is found to be a dark zone covered by a deformed circle. For a fixed value of the spin a, the size of the shadow decreases with the dilaton parameter b. The distortion of the shadow monotonically increases with b and takes its maximal when the black hole approaches to the extremal case. Due to the optical properties, the area of the black hole shadow is supposed to equal to the high-energy absorption cross section. Based on thismore » assumption, the energy emission rate is investigated. For a naked singularity, the shadow has a dark arc and a dark spot or straight, and the corresponding observables are obtained. These results show that there is a significant effect of the spin a and dilaton parameter b on these shadows. Moreover, we examine the observables of the shadow cast by the supermassive black hole at the center of the Milky Way, which is very useful for us to probe the nature of the black hole through the astronomical observations in the near future.« less
Bai, Mingsian R; Wen, Jheng-Ciang; Hsu, Hoshen; Hua, Yi-Hsin; Hsieh, Yu-Hao
2014-10-01
A sound reconstruction system is proposed for audio reproduction with extended sweet spot and reduced reflections. An equivalent source method (ESM)-based sound field synthesis (SFS) approach, with the aid of dark zone minimization is adopted in the study. Conventional SFS that is based on the free-field assumption suffers from synthesis error due to boundary reflections. To tackle the problem, the proposed system utilizes convex optimization in designing array filters with both reproduction performance and acoustic contrast taken into consideration. Control points are deployed in the dark zone to minimize the reflections from the walls. Two approaches are employed to constrain the pressure and velocity in the dark zone. Pressure matching error (PME) and acoustic contrast (AC) are used as performance measures in simulations and experiments for a rectangular loudspeaker array. Perceptual Evaluation of Audio Quality (PEAQ) is also used to assess the audio reproduction quality. The results show that the pressure-constrained (PC) method yields better acoustic contrast, but poorer reproduction performance than the pressure-velocity constrained (PVC) method. A subjective listening test also indicates that the PVC method is the preferred method in a live room.
NASA Astrophysics Data System (ADS)
Martin, Nicholas J.; Bunch, Josephine; Cooper, Helen J.
2013-08-01
Dried blood spots offer many advantages as a sample format including ease and safety of transport and handling. To date, the majority of mass spectrometry analyses of dried blood spots have focused on small molecules or hemoglobin. However, dried blood spots are a potentially rich source of protein biomarkers, an area that has been overlooked. To address this issue, we have applied an untargeted bottom-up proteomics approach to the analysis of dried blood spots. We present an automated and integrated method for extraction of endogenous proteins from the surface of dried blood spots and sample preparation via trypsin digestion by use of the Advion Biosciences Triversa Nanomate robotic platform. Liquid chromatography tandem mass spectrometry of the resulting digests enabled identification of 120 proteins from a single dried blood spot. The proteins identified cross a concentration range of four orders of magnitude. The method is evaluated and the results discussed in terms of the proteins identified and their potential use as biomarkers in screening programs.
The Butterfly diagram leopard skin pattern
NASA Astrophysics Data System (ADS)
Ternullo, Maurizio
2011-08-01
A time-latitude diagram where spotgroups are given proportional relevance to their area is presented. The diagram reveals that the spotted area distribution is higly dishomogeneous, most of it being concentrated in few, small portions (``knots'') of the Butterfly Diagram; because of this structure, the BD may be properly described as a cluster of knots. The description, assuming that spots scatter around the ``spot mean latitude'' steadily drifting equatorward, is challenged. Indeed, spots cluster around at as many latitudes as knots; a knot may appear at either lower or higher latitudes than previous ones, in a seemingly random way; accordingly, the spot mean latitude abruptly drifts equatorward or even poleward at any knot activation, in spite of any smoothing procedure. Preliminary analyses suggest that the activity splits, in any hemisphere, into two or more distinct ``activity waves'', drifting equatorward at a rate higher than the spot zone as a whole.
MeV dark matter complementarity and the dark photon portal
NASA Astrophysics Data System (ADS)
Dutra, Maíra; Lindner, Manfred; Profumo, Stefano; Queiroz, Farinaldo S.; Rodejohann, Werner; Siqueira, Clarissa
2018-03-01
We discuss the phenomenology of an MeV-scale Dirac fermion coupled to the Standard Model through a dark photon with kinetic mixing with the electromagnetic field. We compute the dark matter relic density and explore the interplay of direct detection and accelerator searches for dark photons. We show that precise measurements of the temperature and polarization power spectra of the Cosmic Microwave Background Radiation lead to stringent constraints, leaving a small window for the thermal production of this MeV dark matter candidate. The forthcoming MeV gamma-ray telescope e-ASTROGAM will offer important and complementary opportunities to discover dark matter particles with masses below ~ 10 MeV . Lastly, we discuss how a late-time inflation episode and freeze-in production could conspire to yield the correct relic density while being consistent with existing and future constraints.
NASA Astrophysics Data System (ADS)
MacAyeal, D. R.
2013-12-01
The effectiveness of cryospheric science in addressing its main purpose (predicting and assessing response to climate change) is powerfully, but intangibly enhanced by the mysterious nature and the remote locations of ice and snow phenomena. Study of the cryosphere, in essence, depends as much on the universal human desire to satisfy curiosity as it does on the fact that cryospheric science informs humanity about the consequences of the environmental changes now clearly visible in all realms of the cryosphere. In my presentation, I shall consider the study of ice-shelf dynamics and stability, and shall draw on the perspective of my 37 years of involvement in this small, but important corner of glaciology, to show where curiosity has, and continues to be, a major driver of understanding. Joyful moments within the development of ice-shelf glaciology include examples where complete misunderstandings and blind alleys have ironically led to unexpected insight into how related phenomena operate, including: the flow of ice streams, the role of sticky spots, styles and drivers of iceberg calving, tidewater glacier terminus behavior, the source mechanisms and interpretations of cryospheric related seismic signals, and the dynamics of iceberg-drift-steering ocean circulation in basins separated by mid-ocean ridges. The familiar joke, "Why did the man who lost his keys on a dark night only search underneath the streetlamp?", is apt for cryospheric science--but with a perverse twist: We cryospheric scientists are more akin to the man who is driven to also grope for the key in the darkness because of the chance that in addition to the key, the car that the key will start might also be found somewhere beyond the glow of the streetlamp.
Anastasopoulos, D; Mandellos, D; Kostadima, V; Pettorossi, V E
2002-08-01
We studied the amplitude, latency, and probability of occurrence of fast phases (FP) in darkness to unpredictable vestibular and/or cervical yaw stimulation in normal human subjects. The rotational stimuli were smoothed trapezoidal motion transients of 14 degrees amplitude and 1.25 s duration. Eye position before stimulus application (initial eye position, IEP) was introduced as a variable by asking the subjects to fixate a spot appearing either straight ahead or at 7 degrees eccentric positions. The recordings demonstrated that the generation of FP during vestibular stimulation was facilitated when the whole-body rotation was directed opposite the eccentric IEP. Conversely, FP were attenuated if the whole-body rotation was directed toward the eccentric IEP; i.e., the FP attenuated if they were made to further eccentric positions. Cervical stimulation-induced FP were small and variable in direction when IEP was directed straight ahead before stimulus onset. Eccentric IEPs resulted in large FP, the direction of which was essentially independent of the neck-proprioceptive stimulus. They tended to move the eye toward the primary position, both when the trunk motion under the stationary head was directed toward or away from the IEP. FP dependence on IEP was evident also during head-on-trunk rotations. No consistent interaction between vestibularly and cervically induced FP was found. We conclude that extraretinal eye position signals are able to modify vestibularly evoked reflexive FP in darkness, aiming at minimizing excursions of the eyes away from the primary position. However, neck-induced FP do not relate to specific tasks of stabilization or visual search. By keeping the eyes near the primary position, FP may permit flexibility of orienting responses to incoming stimuli. This recentering bias for both vestibularly and cervically generated FP may represent a visuomotor optimizing strategy.