Sample records for small deep hemispheric

  1. MRI markers of small vessel disease in lobar and deep hemispheric intracerebral hemorrhage

    PubMed Central

    Smith, Eric E.; Nandigam, Kaveer R.N.; Chen, Yu-Wei; Jeng, Jed; Salat, David; Halpin, Amy; Frosch, Matthew; Wendell, Lauren; Fazen, Louis; Rosand, Jonathan; Viswanathan, Anand; Greenberg, Steven M.

    2014-01-01

    Background MRI evidence of small vessel disease is common in intracerebral hemorrhage (ICH). We hypothesized that ICH caused by cerebral amyloid angiopathy (CAA) or hypertensive vasculopathy would have different distributions of MRI T2 white matter hyperintensity (WMH) and microbleeds (MB). Methods Data were analyzed from 133 consecutive patients with primary supratentorial ICH and adequate MRI sequences. CAA was diagnosed using the Boston criteria. WMH segmentation was performed using a validated semi-automated method. WMH and MB were compared according to site of symptomatic hematoma origin (lobar vs. deep) or by pattern of hemorrhages, including both hematomas and MB, on MRI GRE sequence (grouped as lobar only--probable CAA, lobar only--possible CAA, deep hemispheric only, or mixed lobar and deep hemorrhages). Results Lobar and deep hemispheric hematoma patients had similar median nWMH volumes (19.5 cm vs. 19.9 cm3, p=0.74) and prevalence of ≥1 MB (54% vs. 52%, p=0.99). The supratentorial WMH distribution was similar according to hemorrhage location category, however the prevalence of brainstem T2 hyperintensity was lower in lobar hematoma vs. deep hematoma (54% vs. 70%, p=0.004). Mixed ICH was common (23%). Mixed ICH patients had large nWMH volumes and a posterior distribution of cortical hemorrhages similar to that seen in CAA. Conclusions WMH distribution is largely similar between CAA-related and non-CAA-related ICH. Mixed lobar and deep hemorrhages are seen on MRI GRE in up to one quarter of patients; in these patients both hypertension and CAA may be contributing to the burden of WMH. PMID:20689084

  2. MRI markers of small vessel disease in lobar and deep hemispheric intracerebral hemorrhage.

    PubMed

    Smith, Eric E; Nandigam, Kaveer R N; Chen, Yu-Wei; Jeng, Jed; Salat, David; Halpin, Amy; Frosch, Matthew; Wendell, Lauren; Fazen, Louis; Rosand, Jonathan; Viswanathan, Anand; Greenberg, Steven M

    2010-09-01

    MRI evidence of small vessel disease is common in intracerebral hemorrhage (ICH). We hypothesized that ICH caused by cerebral amyloid angiopathy (CAA) or hypertensive vasculopathy would have different distributions of MRI T2 white matter hyperintensity (WMH) and microbleeds. Data were analyzed from 133 consecutive patients with primary supratentorial ICH and adequate MRI sequences. CAA was diagnosed using the Boston criteria. WMH segmentation was performed using a validated semiautomated method. WMH and microbleeds were compared according to site of symptomatic hematoma origin (lobar versus deep) or by pattern of hemorrhages, including both hematomas and microbleeds, on MRI gradient recalled echo sequence (grouped as lobar only-probable CAA, lobar only-possible CAA, deep hemispheric only, or mixed lobar and deep hemorrhages). Patients with lobar and deep hemispheric hematoma had similar median normalized WMH volumes (19.5 cm versus 19.9 cm(3), P=0.74) and prevalence of >or=1 microbleed (54% versus 52%, P=0.99). The supratentorial WMH distribution was similar according to hemorrhage location category; however, the prevalence of brain stem T2 hyperintensity was lower in lobar hematoma versus deep hematoma (54% versus 70%, P=0.004). Mixed ICH was common (23%). Patients with mixed ICH had large normalized WMH volumes and a posterior distribution of cortical hemorrhages similar to that seen in CAA. WMH distribution is largely similar between CAA-related and non-CAA-related ICH. Mixed lobar and deep hemorrhages are seen on MRI gradient recalled echo sequence in up to one fourth of patients; in these patients, both hypertension and CAA may be contributing to the burden of WMH.

  3. Impact of opening of the Central America Seaway on climate in a coupled atmosphere-ocean-sea-ice model

    NASA Astrophysics Data System (ADS)

    Barrier, N.; Ferreira, D.; Marshall, J.

    2012-04-01

    We investigate the climatic impact of opening the Central America Seaway (CAS) in a coupled atmosphere-ocean-sea-ice model. A highly idealized land distribution is employed in which two meridional barriers extend from the North Pole in to the southern hemisphere, thus dividing the ocean in to a large basin, a small basin and a circumpolar flow around the South Pole. Such a configuration captures the essential zonal and inter-hemispheric asymmetries of the current climate. These simple geometrical constraints are sufficient to localize the deep-reaching meridional overturning circulation (MOC) to the northern extremity of the small basin. Given this reference experiment, we open up an analogue of the Central America Seaway on the western margin of the small basin north of the equator. Both deep and shallow passageways are considered. We find that although a major reorganization of ocean circulation occurs, along with significant local water-mass changes, global heat and freshwater meridional transports are largely unchanged, as are temperatures over the North Pole. In particular we do not observe a weakening of the MOC in the small basin, with salinity exchange between the large basin playing only a minor role. The simplicity of the geometrical configuration used in our experiments enables us to tease apart exactly what is going on. Experiments in which the salinity and temperature states of the small and large basins are interchanged, for example, show that our solutions are robust, with deep convection returning to the small basin after 800 years or so. Our experiments suggest to us that the closing of the CAS alone is not sufficient to lead to the onset of northern hemisphere glaciations 2 Ma years or so ago.

  4. THE MINIMUM OF SOLAR CYCLE 23: AS DEEP AS IT COULD BE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz-Jaramillo, Andrés; Longcope, Dana W.; Senkpeil, Ryan R.

    2015-05-01

    In this work we introduce a new way of binning sunspot group data with the purpose of better understanding the impact of the solar cycle on sunspot properties and how this defined the characteristics of the extended minimum of cycle 23. Our approach assumes that the statistical properties of sunspots are completely determined by the strength of the underlying large-scale field and have no additional time dependencies. We use the amplitude of the cycle at any given moment (something we refer to as activity level) as a proxy for the strength of this deep-seated magnetic field. We find that themore » sunspot size distribution is composed of two populations: one population of groups and active regions and a second population of pores and ephemeral regions. When fits are performed at periods of different activity level, only the statistical properties of the former population, the active regions, are found to vary. Finally, we study the relative contribution of each component (small-scale versus large-scale) to solar magnetism. We find that when hemispheres are treated separately, almost every one of the past 12 solar minima reaches a point where the main contribution to magnetism comes from the small-scale component. However, due to asymmetries in cycle phase, this state is very rarely reached by both hemispheres at the same time. From this we infer that even though each hemisphere did reach the magnetic baseline, from a heliospheric point of view the minimum of cycle 23 was not as deep as it could have been.« less

  5. Influence of tropical atmospheric variability on Weddell Sea deep water convection

    NASA Astrophysics Data System (ADS)

    Kleppin, H.

    2016-02-01

    Climate reconstructions from ice core records in Greenland and Antarctica have revealed a series of abrupt climate transitions, showing a distinct relationship between northern and southern hemisphere climate during the last glacial period. The recent ice core records from West Antarctica (WAIS) point towards an atmospheric teleconnection as a possible trigger for the interhemispheric climate variability (Markle et al., 2015). An unforced simulation of the Community Climate System Model, version 4 (CCSM4) reveals Greenland warming and cooling events, caused by stochastic atmospheric forcing, that resemble Dansgaard-Oeschger cycles in pattern and magnitude (Kleppin et al., 2015). Anti-phased temperature changes in the Southern Hemisphere are small in magnitude and have a spatially varying pattern. We argue that both north and south high latitude climate variability is triggered by changes in tropical atmospheric deep convection in the western tropical Pacific. The atmospheric wave guide provides a fast communication pathway connecting the deep tropics and the polar regions. In the Southern Hemisphere this is manifested as a distinct pressure pattern over West Antarctica. These altered atmospheric surface conditions over the convective region can lead to destabilization of the water column and thus to convective overturning in the Weddell Sea. However, opposed to what is seen in the Northern Hemisphere no centennial scale variability can establish, due to the absence of a strong feedback mechanism between ocean, atmosphere and sea ice. Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., & Yeager, S. (2015). Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions. Journal of Climate, (2015). Markle, B. and Coauthors (2015, April). Atmospheric teleconnections between the tropics and high southern latitudes during millennial climate change. In EGU General Assembly Conference Abstracts (Vol. 17, p. 2569).

  6. Assessing the deep drilling potential of Lago de Tota, Colombia, with a seismic survey

    NASA Astrophysics Data System (ADS)

    Bird, B. W.; Wattrus, N. J.; Fonseca, H.; Velasco, F.; Escobar, J.

    2015-12-01

    Reconciling orbital-scale patterns of inter-hemispheric South American climate during the Quaternary requires continuous, high-resolution paleoclimate records that span multiple glacial cycles from both hemispheres. Southern Andean Quaternary climates are represented by multi-proxy results from Lake Titicaca (Peru-Bolivia) spanning the last 400 ka and by pending results from the Lago Junin Drilling Project (Peru). Although Northern Andean sediment records spanning the last few million years have been retrieved from the Bogota and Fúquene Basins in the Eastern Cordillera of the Colombian Andes, climatic reconstructions based on these cores have thus far been limited to pollen-based investigations. When viewed together with the Southern Hemisphere results, these records suggest an anti-phased hemispheric climatic response during glacial cycles. In order to better assess orbital-scale climate responses, however, independent temperature and hydroclimate proxies from the Northern Hemisphere are needed in addition to vegetation histories. As part of this objective, an effort is underway to develop a paleoclimate record from Lago de Tota (3030 m asl), the largest lake in Colombia and the third largest lake in the Andes. One of 17 highland tectonic basins in Eastern Cordillera, Lago de Tota formed during Tertiary uplift that deformed pre-foreland megasequences, synrift and back-arc megasequences. The precise age and thickness of sediments in the Lago de Tota basin has not previously been established. Here, we present results from a recent single-channel seismic reflection survey collected with a small (5 cubic inch) air gun and high-resolution CHIRP sub-bottom data. With these data, we examine the depositional history and sequence stratigraphy of Lago de Tota and assess its potential as a deep drilling target.

  7. Recent NASA/GSFC cryogenic measurements of the total hemispheric emissivity of black surface preparations

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Canavan, E.

    2015-12-01

    High-emissivity (black) surfaces are commonly used on deep-space radiators and thermal radiation absorbers in test chambers. Since 2011 NASA Goddard Space Flight Center has measured the total hemispheric emissivity of such surfaces from 20 to 300 K using a test apparatus inside a small laboratory cryostat. We report the latest data from these measurements, including Aeroglaze Z307 paint, Black Kapton, and a configuration of painted aluminum honeycomb that was not previously tested. We also present the results of batch-to- batch reproducibility studies in Ball Infrared BlackTM and painted aluminum honeycomb. Finally, we describe a recently-adopted temperature control method which significantly speeds the data acquisition, and we discuss efforts to reduce the noise in future data.

  8. Geometrical constraint on the localization of deep water formation

    NASA Astrophysics Data System (ADS)

    Ferreira, D.; Marshall, J.

    2008-12-01

    That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and a large basin in the northern hemisphere).

  9. Real time coarse orientation detection in MR scans using multi-planar deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Bhatia, Parmeet S.; Reda, Fitsum; Harder, Martin; Zhan, Yiqiang; Zhou, Xiang Sean

    2017-02-01

    Automatically detecting anatomy orientation is an important task in medical image analysis. Specifically, the ability to automatically detect coarse orientation of structures is useful to minimize the effort of fine/accurate orientation detection algorithms, to initialize non-rigid deformable registration algorithms or to align models to target structures in model-based segmentation algorithms. In this work, we present a deep convolution neural network (DCNN)-based method for fast and robust detection of the coarse structure orientation, i.e., the hemi-sphere where the principal axis of a structure lies. That is, our algorithm predicts whether the principal orientation of a structure is in the northern hemisphere or southern hemisphere, which we will refer to as UP and DOWN, respectively, in the remainder of this manuscript. The only assumption of our method is that the entire structure is located within the scan's field-of-view (FOV). To efficiently solve the problem in 3D space, we formulated it as a multi-planar 2D deep learning problem. In the training stage, a large number coronal-sagittal slice pairs are constructed as 2-channel images to train a DCNN to classify whether a scan is UP or DOWN. During testing, we randomly sample a small number of coronal-sagittal 2-channel images and pass them through our trained network. Finally, coarse structure orientation is determined using majority voting. We tested our method on 114 Elbow MR Scans. Experimental results suggest that only five 2-channel images are sufficient to achieve a high success rate of 97.39%. Our method is also extremely fast and takes approximately 50 milliseconds per 3D MR scan. Our method is insensitive to the location of the structure in the FOV.

  10. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    NASA Astrophysics Data System (ADS)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  11. Breakup of last glacial deep stratification in the South Pacific

    NASA Astrophysics Data System (ADS)

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-01

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.

  12. Further studies on the cortical connections of the Tegu lizard.

    PubMed

    Lohman, A H; Van Woerden-Verkley, I

    1976-02-13

    The efferent fiber connections of the caudal half of the cerebral cortex, the lateral cortex and the pallial thickening were studied using the Nauta-Gygax and Fink-Heimer techniques. The following observations were made, (1) In the caudal half of the hemisphere corticoseptal and corticohypothalamic fibers originate from the small-celled part of the mediodorsal cortex and the thickened caudal part of the dorsal cortex in its whole mediolateral extent. (2) The dorsal cortex in the middle of the hemisphere projects by way of both the pre- and postcommissural fornices. Its rostral pole distributes its fibers solely to the postcommissural fornix, whereas its caudal part projects via the precommissural fornix. (3) The posterior pallial commissure carries fibers that arise caudally in the small-celled part of the mediodorsal cortex and terminate in the contralateral ventral cortex. (4) Projections to the dorsal striatum originate from the lateral cortex, the dorsal cortex and the superficial portion of the pallial thickening. In addition, the latter two zones project to the nucleus accumbens. (5) The deep portion of the pallial thickening projects to the ventral striatum.

  13. EARTHS (Earth Albedo Radiometer for Temporal Hemispheric Sensing)

    NASA Astrophysics Data System (ADS)

    Ackleson, S. G.; Bowles, J. H.; Mouroulis, P.; Philpot, W. D.

    2018-02-01

    We propose a concept for measuring the hemispherical Earth albedo in high temporal and spectral resolution using a hyperspectral imaging sensor deployed on a lunar satellite, such as the proposed NASA Deep Space Gateway.

  14. Analysis of EEG activity during sleep - brain hemisphere symmetry of two classes of sleep spindles

    NASA Astrophysics Data System (ADS)

    Smolen, Magdalena M.

    2009-01-01

    This paper presents automatic analysis of some selected human electroencephalographic patterns during deep sleep using the Matching Pursuit (MP) algorithm. The periodicity of deep sleep EEG patterns was observed by calculating autocorrelation functions of their percentage contributions. The study confirmed the increasing trend of amplitude-weighted average frequency of sleep spindles from frontal to posterior derivations. The dominant frequencies from the left and the right brain hemisphere were strongly correlated.

  15. Breakup of last glacial deep stratification in the South Pacific.

    PubMed

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-23

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO 2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO 2 through upwelling. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Insight to Marine Isotope Stage 13 using Late Pleistocene relaxation models of ice volume and carbon cycle change

    NASA Astrophysics Data System (ADS)

    Lisiecki, L. E.; Herrero, C.; García-Olivares, A.

    2016-12-01

    The Marine Isotope Stage (MIS) 13 interglacial is unusual in that warm Northern Hemisphere conditions were accompanied by relatively cool Southern Hemisphere conditions and because it was preceded by a mild glaciation (MIS 14) with less ice volume and higher CO2 levels than the two preceding glacial maxima. Here we investigate Late Pleistocene glacial cycles, and MIS 13 in particular, using two relaxation models from García-Olivares & Herrero [2013] that describe the relationships between global ice volume (V), atmospheric CO2 (C) and the extent of the Antarctic ice shelves (A). The two models differ in parameterizing deep ocean stratification as either a function of V and A (model 3τ) or as a function of C and A (model LS). Note that global ice volume, V, is most closely related to Northern hemisphere climate, whereas C and A are most closely related to Antarctic climate. Here we present the results of using a sea level stack [Spratt & Lisiecki, 2016] as the ice volume tuning target instead of benthic δ18O. We find that tuning to the sea level stack dramatically improves the simulation of MIS 13 in the 3τ model. With the sea level stack, 3τ correctly reproduces the weak amplitudes of MIS 13 and 14 and a double peak in CO2 during MIS 13, whereas the LS model does not reproduce these features using either tuning target. The first peak in CO2 follows a minor ice volume decrease at 530 kyr but significantly precedes a second, larger sea level rise at 500 kyr. The later sea level rise coincides with a second benthic δ18O decrease and likely triggered the second CO2 peak. This two-step transition to peak interglacial conditions might be caused by deep ocean stratification and Antarctic ice cover acting out of phase: weakened stratification produced an initial pulse of CO2 from the deep ocean, but because Antarctic warming was unusually weak, the Antarctic ice shelf remained relatively wide and less CO2 than usual was released from the deep ocean. Because ocean stratification in the 3τ model is affected by both hemispheres, hemispheric asymmetry during MIS 13 produced a less stable stratification that allowed for a second CO2 pulse. Thus, the unusual hemispheric asymmetry during MIS 13 allows us to identify the influences of both Northern and Southern hemisphere climate on deep ocean stratification and its role in regulating atmospheric CO2.

  17. [Evolution of superolateral surface of the cerebral hemisphere on 16-21 weeks fetus].

    PubMed

    Varlam, H; St Antohe, D

    2002-01-01

    Edification of neocortex is accompanied by the development and growth of the cerebral hemisphere, both processes being part of the more complex one, known under the name of telencephalization. The expression of this process is more acute on the superolateral surface of the cerebral hemisphere that expands laterally by growth of the frontal, temporal and parietal lobes. We describe the modifications of shape and deepness of the lateral cerebral fossa including the stages of its closure. We consider this event as the beginning of the appearance of gyri and sulci on the superolateral surface of the cerebral hemisphere.

  18. Global Ocean Circulation During Cretaceous Time

    NASA Astrophysics Data System (ADS)

    Haupt, B. J.; Seidov, D.

    2001-12-01

    Present--day global thermohaline ocean circulation (TOC) is usually associated with high--latitude deep-water formation due to surface cooling. In this understanding of the TOC driven by the deep--water production, the warm deep ocean during Mesozoic--Cenozoic time is a challenge. It may be questioned whether warm deep--ocean water, which is direct geologic evidence, does reflect warm polar surface--ocean regions. For the warm Cretaceous, it is difficult to maintain strong poleward heat transport in the case of reduced oceanic thermal contrasts. Usually, atmospheric feedbacks, in conjunction with the increase of atmospheric concentrations of greenhouse gases, are employed in order to explain the warm equable Cretaceous--Eocene climate. However, there is no feasible physical mechanism that could maintain warm subpolar surface oceans in both hemispheres, an assumption often used in atmospheric modeling. Our numerical experiments indicate that having a relatively cool but saltier high--latitude sea surface in at least one hemisphere is sufficient for driving a strong meridional overturning. Thus freshwater impacts in the high latitudes may be responsible for a vigorous conveyor capable of maintaining sufficient poleward oceanic heat transport needed to keep the polar oceans ice--free. These results imply that evaporation-precipitation patterns during warm climates are especially important climatic factors that can redistribute freshwater to create hemispheric asymmetry of sea surface conditions capable of generating a sufficiently strong TOC, otherwise impossible in warm climates.

  19. Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand: 1954-2014

    NASA Astrophysics Data System (ADS)

    Turnbull, Jocelyn C.; Mikaloff Fletcher, Sara E.; Ansell, India; Brailsford, Gordon W.; Moss, Rowena C.; Norris, Margaret W.; Steinkamp, Kay

    2017-12-01

    We present 60 years of Δ14CO2 measurements from Wellington, New Zealand (41° S, 175° E). The record has been extended and fully revised. New measurements have been used to evaluate the existing record and to replace original measurements where warranted. This is the earliest direct atmospheric Δ14CO2 record and records the rise of the 14C bomb spike and the subsequent decline in Δ14CO2 as bomb 14C moved throughout the carbon cycle and increasing fossil fuel CO2 emissions further decreased atmospheric Δ14CO2. The initially large seasonal cycle in the 1960s reduces in amplitude and eventually reverses in phase, resulting in a small seasonal cycle of about 2 ‰ in the 2000s. The seasonal cycle at Wellington is dominated by the seasonality of cross-tropopause transport and differs slightly from that at Cape Grim, Australia, which is influenced by anthropogenic sources in winter. Δ14CO2 at Cape Grim and Wellington show very similar trends, with significant differences only during periods of known measurement uncertainty. In contrast, similar clean-air sites in the Northern Hemisphere show a higher and earlier bomb 14C peak, consistent with a 1.4-year interhemispheric exchange time. From the 1970s until the early 2000s, the Northern and Southern Hemisphere Δ14CO2 were quite similar, apparently due to the balance of 14C-free fossil fuel CO2 emissions in the north and 14C-depleted ocean upwelling in the south. The Southern Hemisphere sites have shown a consistent and marked elevation above the Northern Hemisphere sites since the early 2000s, which is most likely due to reduced upwelling of 14C-depleted and carbon-rich deep waters in the Southern Ocean, although an underestimate of fossil fuel CO2 emissions or changes in biospheric exchange are also possible explanations. This developing Δ14CO2 interhemispheric gradient is consistent with recent studies that indicate a reinvigorated Southern Ocean carbon sink since the mid-2000s and suggests that the upwelling of deep waters plays an important role in this change.

  20. The calculating hemispheres: studies of a split-brain patient.

    PubMed

    Funnell, Margaret G; Colvin, Mary K; Gazzaniga, Michael S

    2007-06-11

    The purpose of the study was to investigate simple calculation in the two cerebral hemispheres of a split-brain patient. In a series of four experiments, the left hemisphere was superior to the right in simple calculation, confirming the previously reported left hemisphere specialization for calculation. In two different recognition paradigms, right hemisphere performance was at chance for all arithmetic operations, with the exception of subtraction in a two-alternative forced choice paradigm (performance was at chance when the lure differed from the correct answer by a magnitude of 1 but above chance when the magnitude difference was 4). In a recall paradigm, the right hemisphere performed above chance for both addition and subtraction, but performed at chance levels for multiplication and division. The error patterns in that experiment suggested that for subtraction and addition, the right hemisphere does have some capacity for approximating the solution even when it is unable to generate the exact solution. Furthermore, right hemisphere accuracy in addition and subtraction was higher for problems with small operands than with large operands. An additional experiment assessed approximate and exact addition in the two hemispheres for problems with small and large operands. The left hemisphere was equally accurate in both tasks but the right hemisphere was more accurate in approximate addition than in exact addition. In exact addition, right hemisphere accuracy was higher for problems with small operands than large, but the opposite pattern was found for approximate addition.

  1. Improved Impact Hazard Assessment with Existing Radar Sites and a New 70-m Southern Hemisphere Radar Installation

    NASA Technical Reports Server (NTRS)

    Giorgini, J. D.; Slade, M. A.; Silva, A.; Preston, R. A.; Brozovic, M.; Taylor, P. A.; Magri, C.

    2009-01-01

    Add radar capability to the existing southern hemisphere 70-m Deep Space Network (DSN) site at Canberra, Australia, thereby increasing by 1.5-2x the observing time available for high-precision NEO trajectory refinement and characterization. Estimated cost: approx.$16 million over 3 years, $2.5 million/year for operations (FY09).

  2. The delusion of the Master: the last days of Henry James.

    PubMed

    Bartolomeo, Paolo

    2013-11-01

    The novelist Henry James shared with his brother William, the author of the Principles of Psychology, a deep interest in the ways in which personal identity is built through one's history and experiences. At the end of his life, Henry James suffered a vascular stroke in the right hemisphere and developed a striking identity delusion. He dictated in a perfectly clear and coherent manner two letters as if they were written by Napoleon Bonaparte. He also showed signs of reduplicative paramnesia. Negative symptoms resulting from right hemisphere damage may disrupt the feelings of "warmth and intimacy and immediacy" and the "resemblance among the parts of a continuum of feelings (especially bodily feelings)", which are the foundation of personal identity according to William James. On the other hand, a left hemisphere receiving inadequate input from the damaged right hemisphere may produce positive symptoms such as delusional, confabulatory narratives. Other fragments dictated during Henry James's final disease reveal some form of insight, if partial and disintegrated, into his condition. Thus, even when consciousness is impaired by brain damage, something of its deep nature may persist, as attested by the literary characteristics of the last fragments of the Master.

  3. Automated EEG-based screening of depression using deep convolutional neural network.

    PubMed

    Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adeli, Hojjat; Subha, D P

    2018-07-01

    In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI). Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Determining the Sun's Deep Meridional Flow Speed Using Active Latitude Drift Rates Since 1874

    NASA Astrophysics Data System (ADS)

    Hathaway, D. H.; Wilson, R. M.

    2005-05-01

    Dynamo models that incorporate a deep meridional return flow indicate that this flow regulates both the period and the amplitude of the sunspot cycle (Dikpati & Charbonneau 1999, ApJ, 518, 508 and Charbonneau & Dikpati 2000, ApJ, 543, 1027). We recently examined the equatorward drift of the active latitudes (as given by the centroid of the sunspot areas in each hemisphere) and found evidence supporting this view (Hathaway et al. 2003, ApJ, 589, 665 and Hathaway et al. 2004, ApJ, 602, 543). In those studies we fit the equatorward drift in each hemisphere for each sunspot cycle with a simple parabola - giving us a drift rate and its deceleration for each hemisphere/cycle. Here we analyze the same data (the Royal Greenwich Observatory/USAF/NOAA daily active region summaries) to determine the drift rates in each hemisphere on a yearly basis (rotation-by-rotation measurements smoothed to remove high frequencies) and fit them with a simple model for the meridional flow that provides the meridional flow speed as a function of latitude and time from 1874 to 2005. These flow speeds can be used to test dynamo models -- some of which have predictive capabilities.

  5. Atmospheric Motion in Jupiter Northern Hemisphere

    NASA Image and Video Library

    2000-09-25

    True-color (left) and false-color (right) mosaics of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric motions are controlled by alternating eastward and westward bands of air between Jupiter's equator and polar regions. The direction and speed of these bands influences the color and texture of the clouds seen in this mosaic. The high and thin clouds are represented by light blue, deep clouds are reddish, and high and thick clouds are white. A high haze overlying a clear, deep atmosphere is represented by dark purple. This image was taken by NASA's Galileo spacecraft on April 3, 1997 at a distance of 1.4 million kilometers (.86 million miles). http://photojournal.jpl.nasa.gov/catalog/PIA03000

  6. Improved Spacecraft Tracking and Navigation Using a Portable Radio Science Receiver

    NASA Technical Reports Server (NTRS)

    Soriano, Melissa; Jacobs, Christopher; Navarro, Robert; Naudet, Charles; Rogstad, Stephen; White, Leslie; Finley, Susan; Goodhart, Charles; Sigman, Elliott; Trinh, Joseph

    2013-01-01

    The Portable Radio Science Receiver (PRSR) is a suitcase-sized open-loop digital receiver designed to be small and easy to transport so that it can be deployed quickly and easily anywhere in the world. The PRSR digitizes, downconverts, and filters using custom hardware, firmware, and software. Up to 16 channels can be independently configured and recorded with a total data rate of up to 256 Mbps. The design and implementation of the system's hardware, firmware, and software is described. To minimize costs and time to deployment, our design leveraged elements of the hardware, firmware, and software designs from the existing full-sized operational (non-portable) Radio Science Receivers (RSR) and Wideband VLBI Science Receivers (WVSR), which have successfully supported flagship NASA deep space missions at all Deep Space Network (DSN) sites. We discuss a demonstration of the PRSR using VLBI, with one part per billion angular resolution: 1 nano-radian / 200 ?as synthesized beam. This is the highest resolution astronomical instrument ever operated solely from the Southern Hemisphere. Preliminary results from two sites are presented, including the European Space Agency (ESA) sites at Cebreros, Spain and Malargue, Argentina. Malargue's South American location is of special interest because it greatly improves the geometric coverage for spacecraft navigation in the Southern Hemisphere and will for the first time provide coverage to the 1/4 of the range of declination that has been excluded from reference frame work at Ka-band.

  7. Functional Long-Term Outcome after Left- versus Right-Sided Intracerebral Hemorrhage.

    PubMed

    Beuscher, Vanessa D; Kuramatsu, Joji B; Gerner, Stefan T; Köhn, Julia; Lücking, Hannes; Kloska, Stephan P; Huttner, Hagen B

    2017-01-01

    Hemispheric location might influence outcome after intracerebral hemorrhage (ICH). INTERACT suggested higher short-term mortality in right hemispheric ICH, yet statistical imbalances were not addressed. This study aimed at determining the differences in long-term functional outcome in patients with right- vs. left-sided ICH with a priori-defined sub-analysis of lobar vs. deep bleedings. Data from a prospective hospital registry were analyzed including patients with ICH admitted between January 2006 and August 2014. Data were retrieved from institutional databases. Outcome was assessed using the modified Rankin Scale (mRS) score. Outcome measures (long-term mortality and functional outcome at 12 months) were correlated with ICH location and hemisphere, and the imbalances of baseline characteristics were addressed by propensity score matching. A total of 831 patients with supratentorial ICH (429 left and 402 right) were analyzed. Regarding clinical baseline characteristics in the unadjusted overall cohort, there were differences in disfavor of right-sided ICH (antiplatelets: 25.2% in left ICH vs. 34.3% in right ICH; p < 0.01; previous ischemic stroke: 14.7% in left ICH vs. 19.7% in right ICH; p = 0.057; and presence/extent of intraventricular hemorrhage: 45.0% in left ICH vs. 53.0% in right ICH; p = 0.021; Graeb-score: 0 [0-4] in left ICH vs. 1 [0-5] in right ICH; p = 0.017). While there were no differences in mortality and in the proportion of patients with favorable vs. unfavorable outcome (mRS 0-3: 142/375 [37.9%] in left ICH vs. 117/362 [32.3%] in right ICH; p = 0.115), patients with left-sided ICH showed excellent outcome more frequently (mRS 0-1: 64/375 [17.1%] in left ICH vs. 43/362 [11.9%] in right ICH; p = 0.046) in the unadjusted analysis. After adjusting for confounding variables, a well-balanced group of patients (n = 360/hemisphere) was compared showing no differences in long-term functional outcome (mRS 0-3: 36.4% in left ICH vs. 33.9% in right ICH; p = 0.51). Sub-analyses of patients with deep vs. lobar ICH revealed also no differences in outcome measures (mRS 0-3: 53/151 [35.1%] in left deep ICH vs. 53/165 [32.1%] in right deep ICH; p = 0.58). Previously described differences in clinical end points among patients with left- vs. right-hemispheric ICH may be driven by different baseline characteristics rather than by functional deficits emerging from different hemispheric functions affected. After statistical corrections for confounding variables, there was no impact of hemispheric location on functional outcome after ICH. © 2017 S. Karger AG, Basel.

  8. The Deep South Clouds & Aerosols project: Improving the modelling of clouds in the Southern Ocean region

    NASA Astrophysics Data System (ADS)

    Morgenstern, Olaf; McDonald, Adrian; Harvey, Mike; Davies, Roger; Katurji, Marwan; Varma, Vidya; Williams, Jonny

    2016-04-01

    Southern-Hemisphere climate projections are subject to persistent climate model biases affecting the large majority of contemporary climate models, which degrade the reliability of these projections, particularly at the regional scale. Southern-Hemisphere specific problems include the fact that satellite-based observations comparisons with model output indicate that cloud occurrence above the Southern Ocean is substantially underestimated, with consequences for the radiation balance, sea surface temperatures, sea ice, and the position of storm tracks. The Southern-Ocean and Antarctic region is generally characterized by an acute paucity of surface-based and airborne observations, further complicating the situation. In recognition of this and other Southern-Hemisphere specific problems with climate modelling, the New Zealand Government has launched the Deep South National Science Challenge, whose purpose is to develop a new Earth System Model which reduces these very large radiative forcing problems associated with erroneous clouds. The plan is to conduct a campaign of targeted observations in the Southern Ocean region, leveraging off international measurement campaigns in this area, and using these and existing measurements of cloud and aerosol properties to improve the representation of clouds in the nascent New Zealand Earth System Model. Observations and model development will target aerosol physics and chemistry, particularly sulphate, sea salt, and non-sulphate organic aerosol, its interactions with clouds, and cloud microphysics. The hypothesis is that the cloud schemes in most GCMs are trained on Northern-Hemisphere data characterized by substantial anthropogenic or terrestrial aerosol-related influences which are almost completely absent in the Deep South.

  9. Observations of ozone-poor air in the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Newton, Richard; Vaughan, Geraint; Hintsa, Eric; Filus, Michal T.; Pan, Laura L.; Honomichl, Shawn; Atlas, Elliot; Andrews, Stephen J.; Carpenter, Lucy J.

    2018-04-01

    Ozonesondes reaching the tropical tropopause layer (TTL) over the west Pacific have occasionally measured layers of very low ozone concentrations - less than 15 ppbv - raising the question of how prevalent such layers are and how they are formed. In this paper, we examine aircraft measurements from the Airborne Tropical Tropopause Experiment (ATTREX), the Coordinated Airborne Studies in the Tropics (CAST) and the Convective Transport of Active Species in the Tropics (CONTRAST) experiment campaigns based in Guam in January-March 2014 for evidence of very low ozone concentrations and their relation to deep convection. The study builds on results from the ozonesonde campaign conducted from Manus Island, Papua New Guinea, as part of CAST, where ozone concentrations as low as 12 ppbv were observed between 100 and 150 hPa downwind of a deep convective complex. TTL measurements from the Global Hawk unmanned aircraft show a marked contrast between the hemispheres, with mean ozone concentrations in profiles in the Southern Hemisphere between 100 and 150 hPa of between 10.7 and 15.2 ppbv. By contrast, the mean ozone concentrations in profiles in the Northern Hemisphere were always above 15.4 ppbv and normally above 20 ppbv at these altitudes. The CAST and CONTRAST aircraft sampled the atmosphere between the surface and 120 hPa, finding very low ozone concentrations only between the surface and 700 hPa; mixing ratios as low as 7 ppbv were regularly measured in the boundary layer, whereas in the free troposphere above 200 hPa concentrations were generally well in excess of 15 ppbv. These results are consistent with uplift of almost-unmixed boundary-layer air to the TTL in deep convection. An interhemispheric difference was found in the TTL ozone concentrations, with values < 15 ppbv measured extensively in the Southern Hemisphere but seldom in the Northern Hemisphere. This is consistent with a similar contrast in the low-level ozone between the two hemispheres found by previous measurement campaigns. Further evidence of a boundary-layer origin for the uplifted air is provided by the anticorrelation between ozone and halogenated hydrocarbons of marine origin observed by the three aircraft.

  10. The nucleus of 19/P Borrelly as revealed by deep space 1

    USGS Publications Warehouse

    Buratti, B.; Hicks, M.; Soderblom, L.; Britt, D.; Boice, D.; Brown, R.; Nelson, R.; Oberst, J.; Owen, Timothy W.; Sandel, B.; Stern, S.A.; Thomas, N.; Yelle, R.

    2002-01-01

    The Deep Space 1 encounter with comet 19/P Borrelly offered the first close-up view of a comet unobscured by dust. The geometric albedo of the comet is 0.029±0.006 (with a size of 8.0 × 3.15 km), comparable to the low-albedo hemisphere of Iapetus, the lowest albedo C-type asteroids, and the Uranian rings. Albedo variegations on the body are substantial, far greater than on the handful of asteroids so far scrutinized by spacecraft. The Bond albedo of Borrelly is 0.009 ± 0.002, the lowest of any object in the Solar System. The physical photometric parameters of the comet are similar to asteroids, but the optically active portion of its regolith may be fluffier. Differences in macroscopic roughness exist on its surface: the older regions appear to be slightly less rough, as if low-lying regions are infilled with native dust. Regional differences in the single particle phase function exist, with small regions exhibiting almost isotropic functions.

  11. Forming Limit Diagram of Titanium and Stainless Steel Alloys to Study the Formability of Hydro-Mechanical Deep Drawing Parts

    NASA Astrophysics Data System (ADS)

    Shirizly, A.

    2005-08-01

    The increase demand for stronger, lighter and economic sheet metal products, make the Hydromecanical deep drawing process lately more and more popular. The Hydromecanical process is used in almost all types of sheet metal parts from home appliances and kitchenware to automotive and aviation industries. Therefore, many common materials were tested and characterized by their ability to sustain large strains via the well known Forming Limit Diagram (FLD). The aim of this work is to examine the forming capability if the Hydromecanical process in production of hemisphere parts made of materials commonly used in the aviation and aerospace industries. Experimental procedures were carried out to assess their ductility through FLD and the Forming Limit Carve (FLC).Two type of material sheets were tested herewith for demonstrating the procedure: commercial pure titanium and stainless steel 316L. A numerical simulation of the Hydromecanical process was examined and compared to self made Hydromecanical deep drawing of hemispherical parts.

  12. The Once and Future Battles of Thor and the Midgard Serpent (or the Southern Ocean's Role in Climate)

    NASA Astrophysics Data System (ADS)

    Russell, J. L.

    2017-12-01

    Floats deployed by oceanographers are giving us all ringside seats to the epic battle between the wind and the deep ocean around Antarctica which will determine the rate of global atmospheric warming over the next century. The poleward-shift and intensification of the Southern Hemisphere westerly winds has been shown to maintain the connection between the surface ocean and the atmosphere with the deep ocean even as the surface ocean warms. This "doorway" allows the vast deep ocean reservoir to play a significant role in the transient global climate response to increasing atmospheric greenhouse gases. Coupled climate and earth system models at low and high resolution all simulate poleward-shifted and intensified Southern Hemisphere surface westerly winds when subjected to an atmospheric carbon dioxide doubling. Comparisons of these simulations reveal how stratification, resolution and eddies affect the transient global climate response to increasing atmospheric greenhouse gases - and our collective fate.

  13. Interhemispheric ice-sheet synchronicity during the last glacial maximum

    USGS Publications Warehouse

    Weber, Michael E.; Clark, Peter U.; Ricken, Werner; Mitrovica, Jerry X.; Hostetler, Steven W.; Kuhn, Gerhard

    2011-01-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  14. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum.

    PubMed

    Weber, Michael E; Clark, Peter U; Ricken, Werner; Mitrovica, Jerry X; Hostetler, Steven W; Kuhn, Gerhard

    2011-12-02

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  15. Saturn's tropospheric composition and clouds from Cassini/VIMS 4.6-5.1 μm nightside spectroscopy

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Baines, Kevin H.; Momary, Thomas W.; Showman, Adam P.; Irwin, Patrick G. J.; Orton, Glenn S.; Roos-Serote, Maarten; Merlet, C.

    2011-08-01

    The latitudinal variation of Saturn's tropospheric composition (NH 3, PH 3 and AsH 3) and aerosol properties (cloud altitudes and opacities) are derived from Cassini/VIMS 4.6-5.1 μm thermal emission spectroscopy on the planet's nightside (April 22, 2006). The gaseous and aerosol distributions are used to trace atmospheric circulation and chemistry within and below Saturn's cloud decks (in the 1- to 4-bar region). Extensive testing of VIMS spectral models is used to assess and minimise the effects of degeneracies between retrieved variables and sensitivity to the choice of aerosol properties. Best fits indicate cloud opacity in two regimes: (a) a compact cloud deck centred in the 2.5-2.8 bar region, symmetric between the northern and southern hemispheres, with small-scale opacity variations responsible for numerous narrow light/dark axisymmetric lanes; and (b) a hemispherically asymmetric population of aerosols at pressures less than 1.4 bar (whose exact altitude and vertical structure is not constrained by nightside spectra) which is 1.5-2.0× more opaque in the summer hemisphere than in the north and shows an equatorial maximum between ±10° (planetocentric). Saturn's NH 3 spatial variability shows significant enhancement by vertical advection within ±5° of the equator and in axisymmetric bands at 23-25°S and 42-47°N. The latter is consistent with extratropical upwelling in a dark band on the poleward side of the prograde jet at 41°N (planetocentric). PH 3 dominates the morphology of the VIMS spectrum, and high-altitude PH 3 at p < 1.3 bar has an equatorial maximum and a mid-latitude asymmetry (elevated in the summer hemisphere), whereas deep PH 3 is latitudinally-uniform with off-equatorial maxima near ±10°. The spatial distribution of AsH 3 shows similar off-equatorial maxima at ±7° with a global abundance of 2-3 ppb. VIMS appears to be sensitive to both (i) an upper tropospheric circulation (sensed by NH 3 and upper-tropospheric PH 3 and hazes) and (ii) a lower tropospheric circulation (sensed by deep PH 3, AsH 3 and the lower cloud deck).

  16. Ocean science: Radiocarbon variability in the western North Atlantic during the last deglaciation

    USGS Publications Warehouse

    Robinson, L.F.; Adkins, J.F.; Keigwin, L.D.; Southon, J.; Fernandez, D.P.; Wang, S.-L.; Scheirer, D.S.

    2005-01-01

    We present a detailed history of glacial to Holocene radiocarbon in the deep western North Atlantic from deep-sea corals and paired benthic-planktonic foraminifera. The deglaciation is marked by switches between radiocarbon-enriched and -depleted waters, leading to large radiocarbon gradients in the water column. These changes played an important role in modulating atmospheric radiocarbon. The deep-ocean record supports the notion of a bipolar seesaw with increased Northern-source deep-water formation linked to Northern Hemisphere warming and the reverse. In contrast, the more frequent radiocarbon variations in the intermediate/deep ocean are associated with roughly synchronous changes at the poles.

  17. Hemispheric dissociation of reward processing in humans: insights from deep brain stimulation.

    PubMed

    Palminteri, Stefano; Serra, Giulia; Buot, Anne; Schmidt, Liane; Welter, Marie-Laure; Pessiglione, Mathias

    2013-01-01

    Rewards have various effects on human behavior and multiple representations in the human brain. Behaviorally, rewards notably enhance response vigor in incentive motivation paradigms and bias subsequent choices in instrumental learning paradigms. Neurally, rewards affect activity in different fronto-striatal regions attached to different motor effectors, for instance in left and right hemispheres for the two hands. Here we address the question of whether manipulating reward-related brain activity has local or general effects, with respect to behavioral paradigms and motor effectors. Neuronal activity was manipulated in a single hemisphere using unilateral deep brain stimulation (DBS) in patients with Parkinson's disease. Results suggest that DBS amplifies the representation of reward magnitude within the targeted hemisphere, so as to affect the behavior of the contralateral hand specifically. These unilateral DBS effects on behavior include both boosting incentive motivation and biasing instrumental choices. Furthermore, using computational modeling we show that DBS effects on incentive motivation can predict DBS effects on instrumental learning (or vice versa). Thus, we demonstrate the feasibility of causally manipulating reward-related neuronal activity in humans, in a manner that is specific to a class of motor effectors but that generalizes to different computational processes. As these findings proved independent from therapeutic effects on parkinsonian motor symptoms, they might provide insight into DBS impact on non-motor disorders, such as apathy or hypomania. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The middle and high latitude winter ionosphere at the Ariel 4 satellite altitude

    NASA Technical Reports Server (NTRS)

    Tulunay, Y. K.; Grebowsky, J. M.

    1983-01-01

    The electron (0+) density variations over the northern and southern winter high latitude ionosphere are comprehensively analyzed using the technique of Brinton et al. (1978). Two-hour Magnetic Local Time (MLT) arithmetic means of electron densities are studied in terms of invariant magnetic latitude and in terms of magnetic activity as classified by the three-hour planetary magnetic activity index. It is found that the southern hemisphere densities are significantly lower than those in the northern hemisphere. Further, the maximum electron densities observed in the northern hemisphere are located in a MLT range symmetrical about the 14-02 MLT meridian, whereas in the southern hemisphere the maxima are observed about the noon midnight magnetic meridian. A deep localized ionization hole on the nightside of the polar cap is not observed although the polar cavity is apparent.

  19. Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis.

    PubMed

    Slatyer, Rachel A; Nash, Michael A; Miller, Adam D; Endo, Yoshinori; Umbers, Kate D L; Hoffmann, Ary A

    2014-10-02

    Mountain landscapes are topographically complex, creating discontinuous 'islands' of alpine and sub-alpine habitat with a dynamic history. Changing climatic conditions drive their expansion and contraction, leaving signatures on the genetic structure of their flora and fauna. Australia's high country covers a small, highly fragmented area. Although the area is thought to have experienced periods of relative continuity during Pleistocene glacial periods, small-scale studies suggest deep lineage divergence across low-elevation gaps. Using both DNA sequence data and microsatellite markers, we tested the hypothesis that genetic partitioning reflects observable geographic structuring across Australia's mainland high country, in the widespread alpine grasshopper Kosciuscola tristis (Sjösted). We found broadly congruent patterns of regional structure between the DNA sequence and microsatellite datasets, corresponding to strong divergence among isolated mountain regions. Small and isolated mountains in the south of the range were particularly distinct, with well-supported divergence corresponding to climate cycles during the late Pliocene and Pleistocene. We found mixed support, however, for divergence among other mountain regions. Interestingly, within areas of largely contiguous alpine and sub-alpine habitat around Mt Kosciuszko, microsatellite data suggested significant population structure, accompanied by a strong signature of isolation-by-distance. Consistent patterns of strong lineage divergence among different molecular datasets indicate genetic breaks between populations inhabiting geographically distinct mountain regions. Three primary phylogeographic groups were evident in the highly fragmented Victorian high country, while within-region structure detected with microsatellites may reflect more recent population isolation. Despite the small area of Australia's alpine and sub-alpine habitats, their low topographic relief and lack of extensive glaciation, divergence among populations was on the same scale as that detected in much more extensive Northern hemisphere mountain systems. The processes driving divergence in the Australian mountains might therefore differ from their Northern hemisphere counterparts.

  20. The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Daniel, M. K.; CTA Consortium

    2015-04-01

    The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23 m), Medium (12 m) and Small (4 m) sized telescopes spread over an area of order ~km2. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of the candidate sites and the atmospheric calibration strategy. CTA will utilise a suite of instrumentation and analysis techniques for atmospheric modelling and monitoring regarding pointing forecasts, intelligent pointing selection for the observatory operations and for offline data correction.

  1. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    PubMed

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Distribution and evolution of scalloped terrain in the southern hemisphere, Mars

    NASA Astrophysics Data System (ADS)

    Zanetti, Michael; Hiesinger, Harald; Reiss, Dennis; Hauber, Ernst; Neukum, Gerhard

    2010-04-01

    Scalloped depressions are a unique martian surface morphology found in the northern and southern hemisphere latitude-dependent dust and ice-rich surface mantles. These features exhibit a distinct asymmetric north-south slope profile, characterized by steep pole-facing scarps, flat floors and gentle equator-facing slopes. We examined High Resolution Stereo Camera (HRSC) images of the southern hemisphere to determine their longitudinal distribution, which revealed that a majority of scalloped terrain is located in the region of the southern wall of the Hellas Basin and northern Malea Planum. A detailed map of this area was produced where scallops were found to contour the southern wall of the basin, and where the ice-rich mantle was seen to be thickest. Scalloped terrain is concentrated along the topographic highs near the Amphitrites and Peneus Paterae and areal extent and depth decreases with increasing depth into the basin. We also examined existing hypothesis for the formation and evolution of scalloped depressions using High Resolution Imaging Science Experiment (HiRISE) images and data from the Thermal Emission Imaging System-Infrared (THEMIS-IR) and the Thermal Emission Spectrometer (TES). Our approach provides regional context for the development of scalloped terrains within the southern hemisphere, and offers detailed evidence of scallop depressions forming around small cracks, presumably caused by thermal contraction. Morphometric measurements show that scalloped depressions can be as much as 40 m deep, with typical depths of between 10 and 20 m. Our observations of scallop formation and development in the southern hemisphere support a solar-insolation model proposed by previous researchers (e.g. [Morgenstern, A., Hauber, E., Reiss, D., van Gasselt, S., Grosse, G., Schirrmeister, L., 2007. J. Geophys. Res. 112, CiteID E06010; Lefort, A., Russell, P.S., Thomas, N., McEwen, A.S., Dundas, C.M., Kirk, R.L., 2009a. J. Geophys. Res. 114, E04005; Lefort, A., Russell, P.S., Thomas, N., 2009b. Icarus, in press]). Observations made using HiRISE images suggest that scalloped depressions most likely form from small cracks in the mantle, which become larger and deeper through sublimation of interstitial ice from within the mantle. Sublimation is likely enhanced on equator-facing slopes because of increased solar insolation, which accounts for the asymmetric slope profile and hemispherical orientation and is demonstrated by THEMIS-IR images. We suggest that sublimation lag deposits can possibly be removed by dust devils or strong slope winds related to the Hellas Basin, offering an explanation as to why scalloped terrain is so abundant only in this area of the southern hemisphere. Daytime maximum summer temperatures suggest that sublimation in the study area of Malea Planum is possible under current conditions if the sublimation lag is removed. While it cannot be ruled out that scalloped terrain in Malea Planum is presently evolving, we attribute the extensive distribution to geologically recent obliquity excursions when conditions were more conducive to mesoscale modification of the ice-rich mantle.

  3. A two-dimensional ocean model for long-term climatic simulations: Stability and coupling to atmospheric and sea ice models

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny

    1992-06-01

    A two-dimensional (latitude-depth) deep ocean model is presented which is coupled to a sea ice model and an Energy Balance Climate Model (EBCM), the latter having land-sea and surface-air resolution. The processes which occur in the ocean model are thermohaline overturning driven by the horizontal density gradient, shallow wind-driven overturning cells, convective overturning, and vertical and horizontal diffusion of heat and salt. The density field is determined from the temperature and salinity fields using a nonlinear equation of state. Mixed layer salinity is affected by evaporation, precipitation, runoff from continents, and sea ice freezing and melting, as well as by advective, convective, and diffusive exchanges with the deep ocean. The ocean model is first tested in an uncoupled mode, in which hemispherically symmetric mixed layer temperature and salinity, or salinity flux, are specified as upper boundary conditions. An experiment performed with previous models is repeated in which a mixed layer salinity perturbation is introduced in the polar half of one hemisphere after switching from a fixed salinity to a fixed salinity flux boundary condition. For small values of the vertical diffusion coefficient KV, the model undergoes self-sustained oscillations with a period of about 1500 years. With larger values of KV, the model locks into either an asymmetric mode with a single overturning cell spanning both hemispheres, or a symmetric quiescent state with downwelling near the equator, upwelling at high latitudes, and a warm deep ocean (depending on the value of KV). When the ocean model is forced with observed mixed layer temperature and salinity, no oscillations occur. The model successfully simulates the very weak meridional overturning and strong Antarctic Circumpolar Current at the latitudes of the Drake Passage. The coupled EBCM-deep ocean model displays internal oscillations with a period of 3000 years if the ocean fraction is uniform with latitude and KV and the horizontal diffusion coefficient in the mixed layer are not too large. Globally averaged atmospheric temperature changes of 2 K are driven by oscillations in the heat flux into or out of the deep ocean, with the sudden onset of a heat flux out of the deep ocean associated with the rapid onset of thermohaline overturning after a quiescent period, and the sudden onset of a heat flux into the deep ocean associated with the collapse of thermohaline overturning. When the coupled model is run with prescribed parameters (such as land-sea fraction and precipitation) varying with latitude based on observations, the model does not oscillate and produces a reasonable deep ocean temperature field but a completely unrealistic salinity field. Resetting the mixed layer salinity to observations on each time step (equivalent to the "flux correction" method used in atmosphere-ocean general circulation models) is sufficient to give a realistic salinity field throughout the ocean depth, but dramatically alters the flow field and associated heat transport. Although the model is highly idealized, the finding that the maximum perturbation in globally averaged heat flux from the deep ocean to the surface over a 100-year period is 1.4 W m-2 suggests that effect of continuing greenhouse gas increases, which could result in a heating perturbation of 10 W m-2 by the end of the next century, will swamp possible surface heating perturbations due to changes in oceanic circulation. On the other hand, the extreme sensitivity of the oceanic flow field to variations in precipitation and evaporation suggests that it will not be possible to produce accurate projections of regional climatic change in the near term, if at all.

  4. Cysticercal encephalitis presenting with a "starry sky" appearance on neuroimaging.

    PubMed

    Patil, Tushar B; Gulhane, Ragini V

    2015-01-01

    A lady in her early forties was brought to our hospital in an unconscious state with history of generalized tonic-clonic seizures for last 6 h. She had multiple episodes of seizures in last 4 months, but did not receive any treatment. Relatives also gave a history of fever, headache, and vomiting for last 1 week. Her seizures were controlled with intravenous lorazepam and valproate. Clinical examination revealed a delirious patient with bilateral papilledema, brisk deep tendon reflexes, and extensor plantars. She had aspirated and had bilateral coarse crepitations on chest auscultation. Computed tomography (CT) of brain showed multiple small hyperdense calcific lesions extending throughout both the cerebral hemispheres leading to a "starry sky" appearance, suggestive of cysticercal encephalitis. The patient succumbed to progressive aspiration pneumonitis on the 6(th) day after hospitalization.

  5. Deep cytoplasmic rearrangements in ventralized Xenopus embryos

    NASA Technical Reports Server (NTRS)

    Brown, E. E.; Denegre, J. M.; Danilchik, M. V.

    1993-01-01

    Following fertilization in Xenopus, dramatic rearrangements of the egg cytoplasm relocalize maternally synthesized egg components. During the first cell cycle the vegetal yolk mass rotates relative to the egg surface, toward the sperm entry point (SEP) (J. P. Vincent, G. F. Oster, and J. C. Gerhart, 1986, Dev. Biol. 113, 484-500), while concomitant deep cytoplasmic rearrangements occur in the animal hemisphere (M. V. Danilchik and J. M. Denegre, 1991, Development 111, 845-856). In this paper we examine the role of vegetal yolk mass rotation in producing the animal cytoplasmic rearrangements. We inhibited rotation by uv-irradiating embryos during the first cell cycle, a treatment that yields an extremely ventralized phenotype. Both uv-irradiated embryos and unirradiated control embryos show cytoplasmic rearrangements in the animal hemisphere during the first cell cycle. Cytoplasmic rearrangements on the SEP side of the embryo associated with the path of the sperm pronucleus, plus a swirl on the anti-SEP (dorsal) side, are seen, whether or not yolk mass rotation has occurred. This result suggests a role for the expanding sperm aster in directing animal hemisphere cytoplasmic movements. In unirradiated control embryos the anti-SEP (dorsal) swirl is larger than that in uv-irradiated embryos and often extends into the vegetal hemisphere, consistent with the animal cytoplasm having been pulled dorsally and vegetally by the sliding vegetal yolk mass. Thus the yolk mass rotation may normally enhance the dorsalward cytoplasmic movement, begun by the sperm aster, enough to induce normal axis formation. We extended our observations of unirradiated control and uv-irradiated embryos through early cleavages. The vegetal extent of the anti-SEP (dorsal) swirl pattern seen in control embryos persists through the early cleavage period, such that labeled animal cytoplasm extends deep into dorsal third-tier blastomeres at the 32-cell stage. Significantly, in uv-irradiated embryos, which have not undergone vegetal rotation, most of this labeled material remains more equatorial.

  6. Geological Structures in the WaIls of Vestan Craters

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David; Nathues, A.; Beck, A. W.; Hoffmann, M.; Schaefer, M.; Williams, D. A.

    2014-01-01

    A compelling case can be made that Vesta is the parent asteroid for the howardite, eucrite and diogenite (HED) meteorites [1], although this interpretation has been questioned [2]. Generalized models for the structure of the crust of Vesta have been developed based on petrologic studies of basaltic eucrites, cumulate eucrites and diogenites. These models use inferred cooling rates for different types of HEDs and compositional variations within the clan to posit that the lower crust is dominantly diogenitic in character, cumulate eucrites occur deep in the upper crust, and basaltic eucrites dominate the higher levels of the upper crust [3-5]. These models lack fine-scale resolution and thus do not allow for detailed predictions of crustal structure. Geophysical models predict dike and sill intrusions ought to be present, but their widths may be quite small [6]. The northern hemisphere of Vesta is heavily cratered, and the southern hemisphere is dominated by two 400-500 km diameter basins that excavated deep into the crust [7-8]. Physical modeling of regolith formation on 300 km diameter asteroids predicts that debris layers would reach a few km in thickness, while on asteroids of Vesta's diameter regolith thicknesses would be less [9]. This agrees well with the estimated =1 km thickness of local debris excavated by a 45 km diameter vestan crater [10]. Large craters and basins may have punched through the regolith/megaregolith and exposed primary vestan crustal structures. We will use Dawn Framing Camera (FC) [11] images and color ratio maps from the High Altitude and Low Altitude Mapping Orbits (HAMO, 65 m/pixel; LAMO, 20 m/pixel) to evaluate structures exposed on the walls of craters: two examples are discussed here.

  7. Hemispheric lateralization in top-down attention during spatial relation processing: a Granger causal model approach.

    PubMed

    Falasca, N W; D'Ascenzo, S; Di Domenico, A; Onofrj, M; Tommasi, L; Laeng, B; Franciotti, R

    2015-04-01

    Magnetoencephalography was recorded during a matching-to-sample plus cueing paradigm, in which participants judged the occurrence of changes in either categorical (CAT) or coordinate (COO) spatial relations. Previously, parietal and frontal lobes were identified as key areas in processing spatial relations and it was shown that each hemisphere was differently involved and modulated by the scope of the attention window (e.g. a large and small cue). In this study, Granger analysis highlighted the patterns of causality among involved brain areas--the direction of information transfer ran from the frontal to the visual cortex in the right hemisphere, whereas it ran in the opposite direction in the left side. Thus, the right frontal area seems to exert top-down influence, supporting the idea that, in this task, top-down signals are selectively related to the right side. Additionally, for CAT change preceded by a small cue, the right frontal gyrus was not involved in the information transfer, indicating a selective specialization of the left hemisphere for this condition. The present findings strengthen the conclusion of the presence of a remarkable hemispheric specialization for spatial relation processing and illustrate the complex interactions between the lateralized parts of the neural network. Moreover, they illustrate how focusing attention over large or small regions of the visual field engages these lateralized networks differently, particularly in the frontal regions of each hemisphere, consistent with the theory that spatial relation judgements require a fronto-parietal network in the left hemisphere for categorical relations and on the right hemisphere for coordinate spatial processing. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Global deformation on the surface of Venus

    NASA Technical Reports Server (NTRS)

    Bilotti, Frank; Connors, Chris; Suppe, John

    1992-01-01

    Large-scale mapping of tectonic structures on Venus shows that there is an organized global distribution to deformation. The structures we emphasize are linear compressive mountain belts, extensional rafted zones, and the small-scale but widely distributed wrinkle ridges. Ninety percent of the area of the planet's compressive mountain belts are concentrated in the northern hemisphere whereas the southern hemisphere is dominated by extension and small-scale compression. We propose that this striking concentration of fold belts in the northern hemisphere, along with the globe-encircling equatorial rift system, represents a global organization to deformation on Venus.

  9. New Inquiry into Distribution and Mechanism of Deep Moonquakes with Recently Identified Seismic Events

    NASA Technical Reports Server (NTRS)

    Nakamura, Yosio

    2005-01-01

    The objectives of the project were (1) to complete our preceding effort, supported by NASA grant NAGS-1 1619, of searching for deep moonquakes in the far hemisphere of the Moon among the seismic events detected by the Apollo seismic array; and (2) to re-examine the distribution and mechanism of deep moonquakes in the light of the newly identified deep moonquakes. The project was originally planned for completion in three years, of which only the first year, covered by this report, was funded. As a result, we were able to address only the first objective during the period, and the major part of the second objective was left for the future.

  10. Animation Sequence of Comet Wild2 Once More Demonstrates Shape Peculiarities of Small Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    The outstanding success of the Stardust mission having acquired in January 2004 images of Comet Wild2 allows us to compare them with images of some other small objects: satellites, asteroids, comets and confirm the earlier conclusion about prevailing shaping forces [1, 2]. The excellent images of the Comet Wild2 core (the best up to date among comets, Internet) show that it is not ``a ball of dirty ice and rock'' but rather a convexo-concave object resembling other small bodies. They all, independently of their nature, sizes, compositions, demonstrate oblong ``banana''-type style. This is a result of pressing in one side and bulging out another antipodean one (the fundamental wave action). Comet Wild2 (5.4 km long core) in this sense can be perfectly compared with asteroid Mathilde (60 km) and satellite Thebe (˜ 116 km). All three have deeply concave hemisphere opposed by clearly convex one. Bulging out friable material often induces deep fracturing of convex hemispheres. This is well visible in comet Borrelli (8 km long core) and especially pronounced in asteroids Eros (33 km) and Annefrank (`˜ 6 km). Deep ``saddle'' at the convex side of both makes their images rather similar. Another characteristic of small oblong bodies is a principal shape difference of two elongated ends: one is blunt, another sharp. Principally, it is the same process which makes the ``banana''-shape (wave1) but of a smaller scale (wave2). The blunt end is made by pressing in, the sharp end by bulging out. Obviously, an impact sculpturing cannot give similar complex forms in so different bodies. The main principal shaping is done by standing inertia-gravity waves arising in celestial bodies in response to their movement in elliptical orbits with periodically changing accelerations. The fundamental wave1 makes convexo-concave shape, the first overtone wave2 sharp-blunt ends. Larger celestial bodies: satellites, planets, stars react to these waves by universal tectonic dichotomy and sectoring [3]. The arctic-antarctic symptom (after Earth) is typical manifestation of sectoring with two antepodean sectors: one pressed in, another bulged out. References: [1] Kochemasov G.G. (1999) On convexo-concave shape of small celestial bodies // ``Asteroids, Comets, Meteors'' conference, Cornell Univ., U.S.A., July 1999, Abstract # 24. 22; [2] Kochemasov G.G. (2002) ``Dirty snowball'' -- now is too primitive for a scientific description of comets // 34th COSPAR Scientific Assembly at the World Space Congress 2002, 10-19 Oct. 2002, Houston, Texas, USA, (CD-ROM); [3] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., Vol. 1, # 3, 700.

  11. Estimating the recharge properties of the deep ocean using noble gases and helium isotopes

    NASA Astrophysics Data System (ADS)

    Loose, Brice; Jenkins, William J.; Moriarty, Roisin; Brown, Peter; Jullion, Loic; Naveira Garabato, Alberto C.; Torres Valdes, Sinhue; Hoppema, Mario; Ballentine, Chris; Meredith, Michael P.

    2016-08-01

    The distribution of noble gases and helium isotopes in the dense shelf waters of Antarctica reflects the boundary conditions near the ocean surface: air-sea exchange, sea ice formation, and subsurface ice melt. We use a nonlinear least squares solution to determine the value of the recharge temperature and salinity, as well as the excess air injection and glacial meltwater content throughout the water column and in the precursor to Antarctic Bottom Water. The noble gas-derived recharge temperature and salinity in the Weddell Gyre are -1.95°C and 34.95 psu near 5500 m; these cold, salty recharge values are a result of surface cooling as well as brine rejection during sea ice formation in Antarctic polynyas. In comparison, the global value for deep water recharge temperature is -0.44°C at 5500 m, which is 1.5°C warmer than the southern hemisphere deep water recharge temperature, reflecting a distinct contribution from the north Atlantic. The contrast between northern and southern hemisphere recharge properties highlights the impact of sea ice formation on setting the gas properties in southern sourced deep water. Below 1000 m, glacial meltwater averages 3.5‰ by volume and represents greater than 50% of the excess neon and argon found in the water column. These results indicate glacial melt has a nonnegligible impact on the atmospheric gas content of Antarctic Bottom Water.

  12. Diversity in deep-sea benthic macrofauna: the importance of local ecology, the larger scale, history and the Antarctic

    NASA Astrophysics Data System (ADS)

    Gage, John D.

    2004-07-01

    High diversity in macrobenthos in the deep sea still lacks satisfactory explanation, even if this richness may not be exceptional compared to that in coastal soft sediments. Explanations have assumed a highly ecologically interactive, saturated local community with co-existence controlled by either niche heterogeneity, or spatio-temporal heterogeneity embodying disturbance. All have failed to provide convincing support. Local/regional scale biodiversity relationships support the idea of local richness in macrobenthos being predominantly dependent on the larger, rather local scale. Local-scale ecological interactions seem unlikely to have overriding importance in co-existence of species in the deep sea, even for relatively abundant, 'core' species with wide distributions. Variety in observed larger-scale pattern and the strong inter-regional pattern, particularly in the poorly known southern hemisphere, seem to have a pluralistic causation. These include regional-scale barriers and extinctions (e.g., Arctic), and ongoing adaptive zone re-colonisation (e.g., Mediterranean), along with other historical constraints on speciation and migration of species caused by changes in ocean and ocean-basin geometry. At the global scale lack of knowledge of the Antarctic deep sea, for example, blocks coherent understanding of latitudinal species diversity gradients. We need to reconcile emerging understanding of large-scale historical variability in the deep-sea environment—with massive extinctions among microfossil indicators as recently as the Pliocene—to results from cladistic studies indicating ancient lineages, such as asellote isopods, that have evolved entirely within the deep sea. The degree to which the great age, diversity, and high degree of endemism in Antarctic shelf benthos might have enriched biodiversity in the adjacent deep seas basins remains unclear. Basin confluence with the Atlantic, Indian and Pacific Oceans may have encouraged northwards dispersion of species from and into the deep Antarctic basins so that any regional identity is superficial. Interpretation of the Antarctic deep sea as a diversity pump for global deep-sea biodiversity may simply reflect re-colonisation, via basin confluence, of northern hemisphere areas impoverished by the consequences of rapid environmental change during the Quaternary.

  13. Possible seasonality in large deep-focus earthquakes

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongwen; Shearer, Peter M.

    2015-09-01

    Large deep-focus earthquakes (magnitude > 7.0, depth > 500 km) have exhibited strong seasonality in their occurrence times since the beginning of global earthquake catalogs. Of 60 such events from 1900 to the present, 42 have occurred in the middle half of each year. The seasonality appears strongest in the northwest Pacific subduction zones and weakest in the Tonga region. Taken at face value, the surplus of northern hemisphere summer events is statistically significant, but due to the ex post facto hypothesis testing, the absence of seasonality in smaller deep earthquakes, and the lack of a known physical triggering mechanism, we cannot rule out that the observed seasonality is just random chance. However, we can make a testable prediction of seasonality in future large deep-focus earthquakes, which, given likely earthquake occurrence rates, should be verified or falsified within a few decades. If confirmed, deep earthquake seasonality would challenge our current understanding of deep earthquakes.

  14. Optical Measurements with Related Chemical, Biological, and Physical Parameters from the Central Equatorial Pacific Ocean: NOAA Ship Discoverer Cruise RP-9-DI-84

    DTIC Science & Technology

    1986-09-01

    stations one and two, separate casts were made for Freon sampling and deep geochemistry sampling with either Freon syringes or 30-liter bottles. On...subsequent stations, deep geochemistry and Freon sampling were done on one cast. A separate cast for chlorophyll using 10-liter bottles on the Rosette...vertical to horizontal. The deck sensor used was a Biospherical Instruments, Inc., Solar Reference Hemispherical Irradiance Sensor which monitors the

  15. The role of the right hemisphere in form perception and visual gnosis organization.

    PubMed

    Belyi, B I

    1988-06-01

    Peculiarities of series of picture interpretations and Rorschach test results in patients with unilateral benign hemispheric tumours are discussed. It is concluded that visual perception in the right hemisphere has hierarchic structure, i.e., each successive area from the occipital lobe towards the frontal having a more complicated function. Visual engrams are distributed over the right hemisphere in a manner similar to the way the visual information is recorded in holographic systems. In any impairment of the right hemisphere a tendency towards whole but unclear vision arises. The preservation of lower levels of visual perception provides for clear vision only of small parts of the image. Thus, confabulatory phenomena arises, which are specific for right hemispheric lesions.

  16. Comparison of thin-film resistance heat-transfer gages with thin-skin transient calorimeter gages in conventional hypersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1981-01-01

    Thin film gages deposited at the stagnation region of small (8.1-mm-diameter) hemispheres and gages mounted flush with the surface of a sharp-leading-edge flat plate were tested in the Langley continuous-flow hypersonic tunnel and in the Langley hypersonic CF4 tunnel. Two substrate materials were tested, quartz and a machinable glass-ceramic. Small hemispheres were also tested utilizing the thin-skin transient calorimeter technique usually employed in conventional tunnels. One transient calorimeter model was a thin shell of stainless steel, and the other was a thin-skin insert of stainless steel mounted into a hemisphere fabricated from a machinable-glass-ceramic. Measured heat-transfer rates from the various hemispheres were compared with one another and with predicted rates. The results demonstrate the feasibility and advantages of using-film resistance heat-transfer gages in conventional hypersonic wind tunnels over a wide range of conditions.

  17. Iapetus: Major discoveries from the Cassini imaging experiment

    NASA Astrophysics Data System (ADS)

    Denk, T.; Neukum, G.; Schmedemann, N.; Roatsch, Th.; Thomas, P. C.; Helfenstein, P.; Turtle, E. P.; Porco, C. C.

    2008-09-01

    Over the course of more than three years orbiting Saturn, the Imaging Subsystem (ISS) [1] of the Cassini spacecraft has acquired high-resolution images of the Saturnian moon Iapetus during a number of flybys. The most recent and only targeted Iapetus flyby occured on 10 September 2007, and allowed a >50x closer look at the surface than any previous observation. The surface of Iapetus is heavily cratered down to the resolution limit of ~10 meters per pixel. The crater size-frequency distribution shows no measurable difference between the leading and the trailing hemisphere, arguing for planetocentric projectiles as the main impactor source. The equatorial ridge can now be clearly tracked along half of Iapetus's circumference, from ~50°W to ~245°W; it is mainly absent on the other hemisphere. However, we argue that it presumably spanned the full globe shortly after formation. Very small bright-ray and bright-rim craters have been detected deep within the dark hemisphere, suggestive for a dark blanket with a thickness in the order of decimeters to meters only. On the trailing side at low and mid-latitudes, very dark terrain is located immediately adjacent to bright terrain, with almost no gray shading in between. In many cases, crater walls facing towards the equator are dark, while poleward-facing walls and slopes are bright. This effect vanishes at both north and south high latitudes. We interpret these observations to indicate that thermal segregation of water ice is responsible for these complex small-scale dark-bright patterns. On the trailing side, a bright polar cap has been observed at high latitudes on both hemispheres (north and south). A global color dichotomy has been detected in addition to the long-known global brightness dichotomy, with the leading side showing a significantly redder color than the trailing side. Unlike the more ellipsoidal-shaped brightness dichotomy, the color dichotomy is quite well separated into two different hemispheres, with the sub-Saturn (~0°W) and anti-Saturn (~180°W) meridians as the approximate boundaries [2]. This global pattern indicates an exogenic origin. Earlier hypotheses for the origin of the brightness dichotomy, like the infall of dust from retrograde outer moons, might actually offer a better explanation for the color dichotomy than for the brightness dichotomy. We propose that this so far unknown process forming the color dichotomy has also reddened and somewhat darkened Hyperion, another moon of Saturn. The color dichotomy also provides a key element to the explanation of the brightness dichotomy in the model of Spencer et al. [3]. References [1] Porco, C.C. et al. (2004) Space Sci. Rev.115, 363. [2] Denk, T. et al. (2006) EGU06-A-08352. [3] Spencer, J.R. et al. (2005) 37th DPS, abstract 39.08.

  18. The influence of visual and phonological features on the hemispheric processing of hierarchical Navon letters.

    PubMed

    Aiello, Marilena; Merola, Sheila; Lasaponara, Stefano; Pinto, Mario; Tomaiuolo, Francesco; Doricchi, Fabrizio

    2018-01-31

    The possibility of allocating attentional resources to the "global" shape or to the "local" details of pictorial stimuli helps visual processing. Investigations with hierarchical Navon letters, that are large "global" letters made up of small "local" ones, consistently demonstrate a right hemisphere advantage for global processing and a left hemisphere advantage for local processing. Here we investigated how the visual and phonological features of the global and local components of Navon letters influence these hemispheric advantages. In a first study in healthy participants, we contrasted the hemispheric processing of hierarchical letters with global and local items competing for response selection, to the processing of hierarchical letters in which a letter, a false-letter conveying no phonological information or a geometrical shape presented at the unattended level did not compete for response selection. In a second study, we investigated the hemispheric processing of hierarchical stimuli in which global and local letters were both visually and phonologically congruent (e.g. large uppercase G made of smaller uppercase G), visually incongruent and phonologically congruent (e.g. large uppercase G made of small lowercase g) or visually incongruent and phonologically incongruent (e.g. large uppercase G made of small lowercase or uppercase M). In a third study, we administered the same tasks to a right brain damaged patient with a lesion involving pre-striate areas engaged by global processing. The results of the first two experiments showed that the global abilities of the left hemisphere are limited because of its strong susceptibility to interference from local letters even when these are irrelevant to the task. Phonological features played a crucial role in this interference because the interference was entirely maintained also when letters at the global and local level were presented in different uppercase vs. lowercase formats. In contrast, when local features conveyed no phonological information, the left hemisphere showed preserved global processing abilities. These findings were supported by the study of the right brain damaged patient. These results offer a new look at the hemispheric dominance in the attentional processing of the global and local levels of hierarchical stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Postmortem volumetric analysis of the nucleus accumbens in male heroin addicts: implications for deep brain stimulation.

    PubMed

    Müller, Ulf J; Truebner, Kurt; Schiltz, Kolja; Kuhn, Jens; Mawrin, Christian; Dobrowolny, Henrik; Bernstein, Hans-Gert; Bogerts, Bernhard; Steiner, Johann

    2015-12-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is increasingly investigated in neuropsychiatric disorders. DBS requires computer-assisted 3D planning to implant the stimulation electrode precisely. Recently, there has been a debate about the true dimensions of NAc in healthy as well as in mentally ill individuals. Knowing its true dimensions in different neuropsychiatric disorders may improve even more precise targeting of NAc for therapeutic DBS. Volumes of NAc of heroin addicts (n = 14) and healthy controls (n = 12) were calculated by using morphometry of serial whole-brain sections. Total brain volume was larger in the heroin group (mean 1478.85 ± 62.34 vs. mean 1352.38 ± 103.24 cm(3)), as the heroin group was more than 10 years younger (p = 0.001). However, the mean volume of the NAc in heroin addicts was smaller than in controls (0.528 ± 0.166 vs. 0.623 ± 0.196 cm(3); p = 0.019). This group effect did not significantly differ between the hemispheres. When assessed separately, left-hemispheric NAc volume was 15 % lower (p = 0.020), while right-hemispheric NAc volume was 16 % lower (p = 0.047) in the heroin-addicted group compared to controls. Based on these diagnosis-related differences, we believe it is important to further analyze NAc volumes in different psychiatric disorders to further improve precise targeting and electrode placement.

  20. Late Pleistocene variations in Antarctic sea ice II: effect of interhemispheric deep-ocean heat exchange

    NASA Astrophysics Data System (ADS)

    Crowley, Thomas J.; Parkinson, Claire L.

    1988-10-01

    Variations in production rates of warm North Atlantic Deep Water (NADW) have been proposed as a mechanism for linking climate fluctuations in the northern and southern hemispheres during the Pleistocene. We have tested this hypothesis by examining the sensitivity of a thermodynamic/dynamic model for Antarctic sea ice to changes in vertical ocean heat flux and comparing the simulations with modified CLIMAP sea-ice maps for 18 000 B.P. Results suggest that changes in NADW production rates, and the consequent changes in the vertical ocean heat flux in the Antarctic, can only account for about 20% 30% of the overall variance in Antarctic sea-ice extent. This conclusion has been validated against an independent geological data set involving a time series of sea-surface temperatures from the subantarctic. The latter comparison suggests that, although the overall influence of NADW is relatively minor, the linkage may be much more significant at the 41 000-year obliquity period. Despite some limitations in the models and geological data, we conclude that NADW variations may have played only a modest role in causing late Pleistocene climate change in the high latitudes of the southern hemisphere. Our conclusion is consistent with calculations by Manabe and Broccoli (1985) suggesting that atmospheric CO2 changes may be more important for linking the two hemispheres.

  1. Late Pleistocene Magnitude Glacial Incursions of Southern Component Water to the Deep North Atlantic Resolved Using Nd Isotopes during the Intensification of Northern Hemisphere Glaciation (3.3 to 2.4 Ma)

    NASA Astrophysics Data System (ADS)

    Lang, D.; Bailey, I.; Wilson, P. A.; Foster, G. L.; Gutjahr, M.

    2014-12-01

    The ocean, through its ability to globally redistribute heat and partition carbon dioxide, is believed to play a key role in driving and amplifying climate change during Quaternary glaciations on orbital to millennial timescales. Relatively little is known, however, about changes in Atlantic Meridional Overturning Circulation (AMOC) associated with the Pliocene intensification of Northern Hemisphere glaciation (iNHG). To help fill this gap in our knowledge we present a new high resolution (~6 ka) record of the Nd isotope composition of the deep North Atlantic between ~3.3 and 2.4 Ma, measured on fish debris at IODP Site U1313 (3426 m, 41°N, 32.5°W). This record represents the first orbital-resolution record of variations in watermass mixing in this region for iNHG independent of changes in the carbon cycle and, in contrast to existing benthic foraminiferal δ13C records for this time interval, our Nd dataset contains evidence for late Pleistocene magnitude incursions of Southern Component Waters to the deep North Atlantic Ocean during key glacial periods through this time. We therefore infer an important role for AMOC variability in amplifying Quaternary glacial-interglacial cycles

  2. Small-worldness characteristics and its gender relation in specific hemispheric networks.

    PubMed

    Miraglia, F; Vecchio, F; Bramanti, P; Rossini, P M

    2015-12-03

    Aim of this study was to verify whether the topological organization of human brain functional networks is different for males and females in resting state EEGs. Undirected and weighted brain networks were computed by eLORETA lagged linear connectivity in 130 subjects (59 males and 71 females) within each hemisphere and in four resting state networks (Attentional Network (AN), Frontal Network (FN), Sensorimotor Network (SN), Default Mode Network (DMN)). We found that small-world (SW) architecture in the left hemisphere Frontal network presented differences in both delta and alpha band, in particular lower values in delta and higher in alpha 2 in males respect to females while in the right hemisphere differences were found in lower values of SW in males respect to females in gamma Attentional, delta Sensorimotor and delta and gamma DMNs. Gender small-worldness differences in some of resting state networks indicated that there are specific brain differences in the EEG rhythms when the brain is in the resting-state condition. These specific regions could be considered related to the functions of behavior and cognition and should be taken into account both for research on healthy and brain diseased subjects. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. A small hemispherical helical antenna array for two-dimensional GPS beam-forming

    NASA Astrophysics Data System (ADS)

    Hui, H. T.; Aditya, S.; Mohamed, F. Bin S.; Hafiedz-Ul, A. Bin T.

    2005-02-01

    A small hemispherical helical antenna array with multibeam output for GPS beam-forming is designed and characterized. A Butler matrix beam-forming network is designed to provide four spatial beams in a two-dimensional directional space. The original design of the hemispherical helical antenna elements is modified in order to match it to the system impedance. Our study shows that even after an ˜30° scan from the normal direction, the maximum change in beam width is only 6°, the maximum change in axial ratio is 1.4 dB, and the maximum change in power gain is 1.1 dB. These characteristics indicate that the array can be potentially used for GPS beam-forming.

  4. The intracellular responses of frog eggs to novel orientations to gravity

    NASA Technical Reports Server (NTRS)

    Radice, G. P.; Neff, A. W.; Malacinski, G. M.

    1982-01-01

    It is found that multiple short doses of ultraviolet light are as effective as a single large dose in producing neural defects. In addition, 180 deg rotation (inversion) of irradiated eggs reduces the ultraviolet effect. Since yolk platelets may be the gravity sensing mechanism, their size, density, and distribution in normal and inverted eggs are investigated. Large platelets are denser and for the most part are in a distinct zone in the vegetal hemisphere, whereas small platelets are less dense and occur in the animal hemisphere. When inverted, the large platelets flow into the animal hemisphere as a coherent mass and partially displace the small platelets. Inversion is thought to rearrange cytoplasmic components necessary for later neural development into an appropriate configuration.

  5. Hemispheric lateralization of topological organization in structural brain networks.

    PubMed

    Caeyenberghs, Karen; Leemans, Alexander

    2014-09-01

    The study on structural brain asymmetries in healthy individuals plays an important role in our understanding of the factors that modulate cognitive specialization in the brain. Here, we used fiber tractography to reconstruct the left and right hemispheric networks of a large cohort of 346 healthy participants (20-86 years) and performed a graph theoretical analysis to investigate this brain laterality from a network perspective. Findings revealed that the left hemisphere is significantly more "efficient" than the right hemisphere, whereas the right hemisphere showed higher values of "betweenness centrality" and "small-worldness." In particular, left-hemispheric networks displayed increased nodal efficiency in brain regions related to language and motor actions, whereas the right hemisphere showed an increase in nodal efficiency in brain regions involved in memory and visuospatial attention. In addition, we found that hemispheric networks decrease in efficiency with age. Finally, we observed significant gender differences in measures of global connectivity. By analyzing the structural hemispheric brain networks, we have provided new insights into understanding the neuroanatomical basis of lateralized brain functions. Copyright © 2014 Wiley Periodicals, Inc.

  6. Isotropically etched radial micropore for cell concentration, immobilization, and picodroplet generation.

    PubMed

    Perroud, Thomas D; Meagher, Robert J; Kanouff, Michael P; Renzi, Ronald F; Wu, Meiye; Singh, Anup K; Patel, Kamlesh D

    2009-02-21

    To enable several on-chip cell handling operations in a fused-silica substrate, small shallow micropores are radially embedded in larger deeper microchannels using an adaptation of single-level isotropic wet etching. By varying the distance between features on the photolithographic mask (mask distance), we can precisely control the overlap between two etch fronts and create a zero-thickness semi-elliptical micropore (e.g. 20 microm wide, 6 microm deep). Geometrical models derived from a hemispherical etch front show that micropore width and depth can be expressed as a function of mask distance and etch depth. These models are experimentally validated at different etch depths (25.03 and 29.78 microm) and for different configurations (point-to-point and point-to-edge). Good reproducibility confirms the validity of this approach to fabricate micropores with a desired size. To illustrate the wide range of cell handling operations enabled by micropores, we present three on-chip functionalities: continuous-flow particle concentration, immobilization of single cells, and picoliter droplet generation. (1) Using pressure differentials, particles are concentrated by removing the carrier fluid successively through a series of 44 shunts terminated by 31 microm wide, 5 microm deep micropores. Theoretical values for the concentration factor determined by a flow circuit model in conjunction with finite volume modeling are experimentally validated. (2) Flowing macrophages are individually trapped in 20 microm wide, 6 microm deep micropores by hydrodynamic confinement. The translocation of transcription factor NF-kappaB into the nucleus upon lipopolysaccharide stimulation is imaged by fluorescence microscopy. (3) Picoliter-sized droplets are generated at a 20 microm wide, 7 microm deep micropore T-junction in an oil stream for the encapsulation of individual E. coli bacteria cells.

  7. Identifying regions of strong scattering at the core-mantle boundary from analysis of PKKP precursor energy

    USGS Publications Warehouse

    Rost, S.; Earle, P.S.

    2010-01-01

    We detect seismic scattering from the core-mantle boundary related to the phase PKKP (PK. KP) in data from small aperture seismic arrays in India and Canada. The detection of these scattered waves in data from small aperture arrays is new and allows a better characterization of the fine-scale structure of the deep Earth especially in the southern hemisphere. Their slowness vector is determined from array processing allowing location of the heterogeneities at the core-mantle boundary using back-projection techniques through 1D Earth models. We identify strong scattering at the core-mantle boundary (CMB) beneath the Caribbean, Patagonia and the Antarctic Peninsula as well as beneath southern Africa. An analysis of the scattering regions relative to sources and receivers indicates that these regions represent areas of increased scattering likely due to increased heterogeneities close to the CMB. The 1. Hz array data used in this study is most sensitive to heterogeneity with scale lengths of about 10. km. Given the small size of the scatterers, a chemical origin of the heterogeneities is likely. By comparing the location of the fine-scale heterogeneity to geodynamical models and tomographic images, we identify different scattering mechanisms in regions related to subduction (Caribbean and Patagonia) and dense thermo chemical piles (Southern Africa). ?? 2010 Elsevier B.V.

  8. Reduced hemispheric asymmetry of brain anatomical networks in attention deficit hyperactivity disorder.

    PubMed

    Li, Dandan; Li, Ting; Niu, Yan; Xiang, Jie; Cao, Rui; Liu, Bo; Zhang, Hui; Wang, Bin

    2018-05-11

    Despite many studies reporting a variety of alterations in brain networks in patients with attention deficit hyperactivity disorder (ADHD), alterations in hemispheric anatomical networks are still unclear. In this study, we investigated topology alterations in hemispheric white matter in patients with ADHD and the relationship between these alterations and clinical features of the illness. Weighted hemispheric brain anatomical networks were first constructed for each of 40 right-handed patients with ADHD and 53 matched normal controls. Then, graph theoretical approaches were utilized to compute hemispheric topological properties. The small-world property was preserved in the hemispheric network. Furthermore, a significant group-by-hemisphere interaction was revealed in global efficiency, local efficiency and characteristic path length, attributed to the significantly reduced hemispheric asymmetry of global and local integration in patients with ADHD compared with normal controls. Specifically, reduced asymmetric regional efficiency was found in three regions. Finally, we found that the abnormal asymmetry of hemispheric brain anatomical network topology and regional efficiency were both associated with clinical features (the Adult ADHD Self-Report Scale and Wechsler Adult Intelligence Scale) in patients. Our findings provide new insights into the lateralized nature of hemispheric dysconnectivity and highlight the potential for using brain network measures of hemispheric asymmetry as neural biomarkers for ADHD and its clinical features.

  9. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.

    PubMed

    Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F

    2014-07-03

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the Bølling-Allerød interstadial.

  10. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Aquila, Valentina; Oman, Luke D.; Stolarski, R.; Douglass, A. R.; Newman, P. A.

    2012-01-01

    Observations have shown that the global mass of nitrogen dioxide decreased in both hemispheres in the year following the eruption of Mt. Pinatubo. In contrast, the observed ozone response was largely asymmetrical with respect to the equator, with a decrease in the northern hemisphere and little change and even a small increase in the southern hemisphere. Simulations including enhanced heterogeneous chemistry due to the presence of the volcanic aerosol reproduce a decrease of ozone in the northern hemisphere, but also produce a comparable ozone decrease in the southern hemisphere, contrary to observations. Our simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and the extratropical downwelling. The enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer-Dobson circulation, increased the ozone in the southern hemisphere and counteracted the ozone depletion due to heterogeneous chemistry on volcanic aerosol.

  11. Iapetus and Phoebe as Measured by the Cassini UVIS

    NASA Technical Reports Server (NTRS)

    Hendrix, A. R.; Hansen, C. J.

    2005-01-01

    The bizarre appearance of Iapetus has long intrigued researchers of this Saturnian moon. The leading hemisphere is very dark and reddish in color at visible-near-IR wavelengths. In contrast, the trailing hemisphere is relatively bright and its near-IR spectrum is dominated by water ice. The severe hemispherical brightness dichotomy has been explained by both endogenic and exogenic models. The primary endogenic model involves eruption of dark material onto the leading hemisphere from the interior of Iapetus. Exogenic models include exposure of dark underlying material by micrometeorite bombardment, contamination of Iapetus leading hemisphere by Titan tholin material, and the coating of the leading hemisphere by Phoebe dust. It has been shown that the dark material on Iapetus leading hemisphere is redder in color at visible wavelengths than Phoebe, which is spectrally gray at visible wavelengths. An additional exogenic model involves the coating of both Iapetus leading hemisphere and Hyperion with material from small retrograde satellites, which are reddish in color at visible wavelengths. We present the first FUV spectra of Iapetus and Phoebe to investigate whether the UV wavelength range can contribute to solving the puzzle of Iapetus.

  12. Hemispheric Differences in Processing Handwritten Cursive

    ERIC Educational Resources Information Center

    Hellige, Joseph B.; Adamson, Maheen M.

    2007-01-01

    Hemispheric asymmetry was examined for native English speakers identifying consonant-vowel-consonant (CVC) non-words presented in standard printed form, in standard handwritten cursive form or in handwritten cursive with the letters separated by small gaps. For all three conditions, fewer errors occurred when stimuli were presented to the right…

  13. Emotional words can be embodied or disembodied: the role of superficial vs. deep types of processing

    PubMed Central

    Abbassi, Ensie; Blanchette, Isabelle; Ansaldo, Ana I.; Ghassemzadeh, Habib; Joanette, Yves

    2015-01-01

    Emotional words are processed rapidly and automatically in the left hemisphere (LH) and slowly, with the involvement of attention, in the right hemisphere (RH). This review aims to find the reason for this difference and suggests that emotional words can be processed superficially or deeply due to the involvement of the linguistic and imagery systems, respectively. During superficial processing, emotional words likely make connections only with semantically associated words in the LH. This part of the process is automatic and may be sufficient for the purpose of language processing. Deep processing, in contrast, seems to involve conceptual information and imagery of a word’s perceptual and emotional properties using autobiographical memory contents. Imagery and the involvement of autobiographical memory likely differentiate between emotional and neutral word processing and explain the salient role of the RH in emotional word processing. It is concluded that the level of emotional word processing in the RH should be deeper than in the LH and, thus, it is conceivable that the slow mode of processing adds certain qualities to the output. PMID:26217288

  14. Emotional words can be embodied or disembodied: the role of superficial vs. deep types of processing.

    PubMed

    Abbassi, Ensie; Blanchette, Isabelle; Ansaldo, Ana I; Ghassemzadeh, Habib; Joanette, Yves

    2015-01-01

    Emotional words are processed rapidly and automatically in the left hemisphere (LH) and slowly, with the involvement of attention, in the right hemisphere (RH). This review aims to find the reason for this difference and suggests that emotional words can be processed superficially or deeply due to the involvement of the linguistic and imagery systems, respectively. During superficial processing, emotional words likely make connections only with semantically associated words in the LH. This part of the process is automatic and may be sufficient for the purpose of language processing. Deep processing, in contrast, seems to involve conceptual information and imagery of a word's perceptual and emotional properties using autobiographical memory contents. Imagery and the involvement of autobiographical memory likely differentiate between emotional and neutral word processing and explain the salient role of the RH in emotional word processing. It is concluded that the level of emotional word processing in the RH should be deeper than in the LH and, thus, it is conceivable that the slow mode of processing adds certain qualities to the output.

  15. Brain activity monitoring by compressed spectral array during deep hypothermic circulatory arrest in acute aortic dissection surgery.

    PubMed

    Urbanowicz, Tomasz K; Budniak, Wiktor; Buczkowski, Piotr; Perek, Bartłomiej; Walczak, Maciej; Tomczyk, Jadwiga; Katarzyński, Sławomir; Jemielity, Marek

    2014-12-01

    Monitoring the central nervous system during aortic dissection repair may improve the understanding of the intraoperative changes related to its bioactivity. The aim of the study was to evaluate the influence of deep hypothermia on intraoperative brain bioactivity measured by the compressed spectral array (CSA) method and to assess the influence of the operations on postoperative cognitive function. The study enrolled 40 patients (31 men and 9 women) at the mean age of 60.2 ± 8.6 years, diagnosed with acute aortic dissection. They underwent emergency operations in deep hypothermic circulatory arrest (DHCA). During the operations, brain bioactivity was monitored with the compressed spectral array method. There were no intraoperative deaths. Electrocerebral silence during DHCA was observed in 31 patients (74%). The lowest activity was observed during DHCA: it was 0.01 ± 0.05 nW in the left hemisphere and 0.01 ± 0.03 nW in the right hemisphere. The postoperative results of neurological tests deteriorated statistically significantly (26.9 ± 1.7 points vs. 22.0 ± 1.7 points; p < 0.001), especially among patients who exhibited brain activity during DHCA. The compressed spectral array method is clinically useful in monitoring brain bioactivity during emergency operations of acute aortic dissections. Electrocerebral silence occurs in 75% of patients during DHCA. The cognitive function of patients deteriorates significantly after operations with DHCA.

  16. Hemisphere, gender and age-related effects on iron deposition in deep gray matter revealed by quantitative susceptibility mapping.

    PubMed

    Gong, Nan-Jie; Wong, Chun-Sing; Hui, Edward S; Chan, Chun-Chung; Leung, Lam-Ming

    2015-10-01

    The purpose of this work was to investigate the effects of hemispheric location, gender and age on susceptibility value, as well as the association between susceptibility value and diffusional metrics, in deep gray matter. Iron content was estimated in vivo using quantitative susceptibility mapping. Microstructure was probed using diffusional kurtosis imaging. Regional susceptibility and diffusional metrics were measured for the putamen, caudate nucleus, globus pallidus, thalamus, substantia nigra and red nucleus in 42 healthy adults (age range 25-78 years). Susceptibility value was significantly higher in the left than the right side of the caudate nucleus (P = 0.043) and substantia nigra (P < 0.001). Women exhibited lower susceptibility values than men in the thalamus (P < 0.001) and red nucleus (P = 0.032). Significant age-related increases of susceptibility were observed in the putamen (P < 0.001), red nucleus (P < 0.001), substantia nigra (P = 0.004), caudate nucleus (P < 0.001) and globus pallidus (P = 0.017). The putamen exhibited the highest rate of iron accumulation with aging (slope of linear regression = 0.73 × 10(-3) ppm/year), which was nearly twice those in substantia nigra (slope = 0.40 × 10(-3) ppm/year) and caudate nucleus (slope = 0.39 × 10(-3) ppm/year). Significant positive correlations between the susceptibility value and diffusion measurements were observed for fractional anisotropy (P = 0.045) and mean kurtosis (P = 0.048) in the putamen without controlling for age. Neither correlation was significant after controlling for age. Hemisphere, gender and age-related differences in iron measurements were observed in deep gray matter. Notably, the putamen exhibited the highest rate of increase in susceptibility with aging. Correlations between susceptibility value and microstructural measurements were inconclusive. These findings could provide new clues for unveiling mechanisms underlying iron-related neurodegenerative diseases. Copyright © 2015 John Wiley & Sons, Ltd.

  17. The total hemispheric emissivity of painted aluminum honeycomb at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Canavan, E.; DiPirro, M.; Li, X.; Knollenberg, P.

    2014-01-01

    NASA uses high-emissivity surfaces on deep-space radiators and thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and compare the results with predictions from a detailed thermal model of each honeycomb configuration.

  18. The Total Hemispheric Emissivity of Painted Aluminum Honeycomb at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Tuttle, J.; Canavan, E.; DiPirro, M.; Li, X.; Knollenberg, K.

    2013-01-01

    NASA uses high-emissivity surfaces on deep-space radiators or thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and compare the results with predictions from a detailed thermal model of each honeycomb configuration.

  19. Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance

    PubMed Central

    Hill, Daniel J.; Bolton, Kevin P.; Haywood, Alan M.

    2017-01-01

    The Earth underwent a major transition from the warm climates of the Pliocene to the Pleistocene ice ages between 3.2 and 2.6 million years ago. The intensification of Northern Hemisphere Glaciation is the most obvious result of the Plio-Pleistocene transition. However, recent data show that the ocean also underwent a significant change, with the convergence of deep water mass properties in the North Pacific and North Atlantic Ocean. Here we show that the lack of coastal ice in the Pacific sector of Antarctica leads to major reductions in Pacific Ocean overturning and the loss of the modern North Pacific Deep Water (NPDW) mass in climate models of the warmest periods of the Pliocene. These results potentially explain the convergence of global deep water mass properties at the Plio-Pleistocene transition, as Circumpolar Deep Water (CDW) became the common source. PMID:28252023

  20. Acute infarction limited to the lenticular nucleus: clinical, etiologic, and topographic features.

    PubMed

    Russmann, Heike; Vingerhoets, François; Ghika, Joseph; Maeder, Philippe; Bogousslavsky, Julien

    2003-03-01

    Chronic diseases involving the putamen and globus pallidus induce parkinsonism and other movement disorders. Sensory and motor dysfunction from deep middle cerebral artery infarction is usually due to an involvement of the internal capsule. The clinical picture associated with isolated infarction of the lenticular nucleus is less well established. To analyze clinical features, topographic correlations, and cause of purely lenticular ischemic infarction. We reviewed 820 consecutive patients with deep hemispheral infarct included in the Lausanne Stroke Registry between 1986 and 1998 and selected those with isolated lenticular involvement on computed tomography or magnetic resonance imaging. Thirteen patients had pure lenticular infarction. All had faciobrachiocrural hemisyndrome, while none showed acute or delayed parkinsonism or abnormal movement. Nine patients had a lesion restricted to the putamen. Two of them had ataxic motor hemisyndrome and 7 had sensorimotor hemisyndrome (with ataxia in 4, left hemineglect in 1, and deep pain in the arm and leg in 1). Four patients had a lesion of putamen and globus pallidus externus. Three of them had motor hemisyndrome (with nonfluent aphasia in 2 and ataxia in 1) and 1 had ataxic sensorimotor hemisyndrome. All infarcts were in the territory of the medial perforating branches of the medial cerebral artery. Presumed cause of stroke was small-artery disease in 5, artery-to-artery embolism in 4, cardioembolism in 3 and undetermined in 1. Acute lenticular infarction induces mainly hemiparesis but no movement disorder. Associated sensory deficits, aphasia, and hemineglect underline clinically the function of the lenticular nucleus in connection with the prefrontal, temporal, and parietal cortices.

  1. Observations of equatorial ionization anomaly over Africa and Middle East during a year of deep minimum

    NASA Astrophysics Data System (ADS)

    Bolaji, Olawale; Owolabi, Oluwafisayo; Falayi, Elijah; Jimoh, Emmanuel; Kotoye, Afolabi; Odeyemi, Olumide; Rabiu, Babatunde; Doherty, Patricia; Yizengaw, Endawoke; Yamazaki, Yosuke; Adeniyi, Jacob; Kaka, Rafiat; Onanuga, Kehinde

    2017-01-01

    In this work, we investigated the veracity of an ion continuity equation in controlling equatorial ionization anomaly (EIA) morphology using total electron content (TEC) of 22 GPS receivers and three ground-based magnetometers (Magnetic Data Acquisition System, MAGDAS) over Africa and the Middle East (Africa-Middle East) during the quietest periods. Apart from further confirmation of the roles of equatorial electrojet (EEJ) and integrated equatorial electrojet (IEEJ) in determining hemispheric extent of EIA crest over higher latitudes, we found some additional roles played by thermospheric meridional neutral wind. Interestingly, the simultaneous observations of EIA crests in both hemispheres of Africa-Middle East showed different morphology compared to that reported over Asia. We also observed interesting latitudinal twin EIA crests domiciled at the low latitudes of the Northern Hemisphere. Our results further showed that weak EEJ strength associated with counter electrojet (CEJ) during sunrise hours could also trigger twin EIA crests over higher latitudes.

  2. Postoperative hematoma involving brainstem, peduncles, cerebellum, deep subcortical white matter, cerebral hemispheres following chronic subdural hematoma evacuation

    PubMed Central

    Patibandla, Mohana Rao; Thotakura, Amit K.; Shukla, Dinesh; Purohit, Anirudh K.; Addagada, Gokul Chowdary; Nukavarapu, Manisha

    2017-01-01

    Among the intracranial hematomas, chronic subdural hematomas (CSDH) are the most benign with a mortality rate of 0.5-4.0%. The elderly and alcoholics are commonly affected by CSDH. Even though high percentage of CSDH patients improves after the evacuation, there are some unexpected potential complications altering the postoperative course with neurological deterioration. Poor outcome in postoperative period is due to complications like failure of brain to re-expand, recurrence of hematoma and tension pneumocephalus. We present a case report with multiple intraparenchymal hemorrhages in various locations like brainstem, cerebral and cerebellar peduncles, right cerebellar hemisphere, right thalamus, right capsulo-ganglionic region, right corona radiata and cerebral hemispheres after CSDH evacuation. Awareness of this potential problem and the immediate use of imaging if the patient does not awake from anesthesia or if he develops new onset focal neurological deficits, are the most important concerns to the early diagnosis of this rare complication. PMID:28484546

  3. Changes in regional blood flow induced by unilateral subthalamic nucleus stimulation in patients with Parkinson's disease.

    PubMed

    Tanei, Takafumi; Kajita, Yasukazu; Nihashi, Takashi; Kaneoke, Yoshiki; Takebayashi, Shigenori; Nakatsubo, Daisuke; Wakabayashi, Toshihiko

    2009-11-01

    Changes in regional cerebral blood flow (rCBF) induced by unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) were investigated in 7 consecutive patients with Parkinson's disease, 4 men and 3 women (mean age 62.3 +/- 8.1 years), who underwent rCBF measurement by N-isopropyl-p-(iodine-123)-iodoamphetamine single photon emission computed tomography at rest before and after unilateral STN DBS preoperatively in the on-drug condition, and postoperatively in the on-drug and on-stimulation condition. Statistical parametric mapping was used to identify significant changes in rCBF from the preoperative to the postoperative conditions. rCBF was increased in the bilateral cingulate cortices and bilateral cerebellar hemispheres. rCBF was decreased in the bilateral medial frontal cortices and left superior temporal cortex. Unilateral STN DBS produced rCBF changes in the bilateral cingulate cortices, cerebellar hemispheres, and medial frontal cortices. These findings indicate that unilateral STN DBS affects rCBF in both hemispheres.

  4. Spectral sideband produced by a hemispherical concave multilayer on the African shield-bug Calidea panaethiopica (Scutelleridae)

    NASA Astrophysics Data System (ADS)

    Vigneron, Jean Pol; Ouedraogo, Moussa; Colomer, Jean-François; Rassart, Marie

    2009-02-01

    The African shield-backed bug Calidea panaethiopica is a very colorful insect which produces a range of iridescent yellow, green, and blue reflections. The cuticle of the dorsal side of the insect, on the shield, the prothorax and part of the head, is pricked of uniformly distributed hemispherical hollow cavities a few tens micrometers deep. Under normal illumination and viewing the insect’s muffin-tin shaped surface gives rise to two distinct colors: a yellow spot arising from the bottom of the well and a blue annular cloud that appears to float around the yellow spot. This effect is explained by multiple reflections on a hemispherical Bragg mirror with a mesoscopic curvature. A multiscale computing methodology was found to be needed to evaluate the reflection spectrum for such a curved multilayer. This multiscale approach is very general and should be useful for dealing with visual effects in many natural and artificial systems.

  5. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?

    PubMed

    Hummel, Friedhelm C; Cohen, Leonardo G

    2006-08-01

    Motor impairment resulting from chronic stroke can have extensive physical, psychological, financial, and social implications despite available neurorehabilitative treatments. Recent studies in animals showed that direct epidural stimulation of the primary motor cortex surrounding a small infarct in the lesioned hemisphere (M1(lesioned hemisphere)) elicits improvements in motor function. In human beings, proof of principle studies from different laboratories showed that non-invasive transcranial magnetic stimulation and direct current stimulation that upregulate excitability within M1(lesioned hemisphere) or downregulate excitability in the intact hemisphere (M1(intact hemisphere)) results in improvement in motor function in patients with stroke. Possible mechanisms mediating these effects can include the correction of abnormally persistent interhemispheric inhibitory drive from M1(intact hemisphere) to M1(lesioned hemisphere) in the process of generation of voluntary movements by the paretic hand, a disorder correlated with the magnitude of impairment. In this paper we review these mechanistically oriented interventional approaches. WHAT NEXT?: These findings suggest that transcranial magnetic stimulation and transcranial direct current stimulation could develop into useful adjuvant strategies in neurorehabilitation but have to be further assessed in multicentre clinical trials.

  6. Mars Ionosphere Meteoritic Ion Distributions -A Mixture of Earth and Venus Characteristics

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Benna, M.; Collinson, G.; Mahaffy, P. R.

    2016-12-01

    The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution mission repeatedly observes metallic ions on MAVEN's traversals below 155 kilometers during special deep-dipping orbital campaigns. On such orbits which sample the topside of the main metal ion peak in the ablation region, three of the major metal ions seen at Earth (Na+, Mg+ and Fe+) are always detected. The relative composition of these species varies with the planetary locations of the deep-dip orbits as does the complexity of the altitude profiles of the metal ion concentrations. Quite frequently the decrease of the concentrations with altitude (observed on inbound or outbound legs of the orbit relative to periapsis) tracks the atmospheric density scale height, but only in the average sense. The individual concentration altitude profiles themselves typically have large coherent oscillations indicative of atmospheric gravity wave effects. The monotonically decreasing altitude trends are most characteristic of observations in the northern hemisphere, but there are orbits that encounter large concentration disturbances in the metal ion profiles. The latter are more prevalent in the southern hemisphere. The major background environment differences between the northern and southern hemispheres are the existence of large remanent magnetic fields in the southern hemisphere atmosphere, but not the north. It appears that there are two types of metal ion distributions. One type is associated with vertical diffusion profiles from the main metal ion peak arising in weak or no-magnetic field regions (like Venus). The other type exhibits the complex disturbances. The latter occur in regions where transport of the metal ions is controlled by the magnetic fields, through externally imposed electric fields and/or neutral wind-driven electrodynamic processes as at Earth. A comparison is made between the onset of the disturbed metal ion profiles with the ambient magnetic fields to isolate the underlying physics in the context of what is known of the terrestrial processes.

  7. A preliminary study of the impact of the ERS 1 C band scatterometer wind data on the European Centre for Medium-Range Weather Forecasts global data assimilation system

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.

    1993-01-01

    A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.

  8. Transitional changes in microfossil assemblages in the Japan Sea from the Late Pliocene to Early Pleistocene related to global climatic and local tectonic events

    NASA Astrophysics Data System (ADS)

    Itaki, Takuya

    2016-12-01

    Many micropaleontological studies based on data from on-land sections, oil wells, and deep-sea drilling cores have provided important information about environmental changes in the Japan Sea that are related to the global climate and the local tectonics of the Japanese Islands. Here, major changes in the microfossil assemblages during the Late Pliocene to Early Pleistocene are reviewed. Late Pliocene (3.5-2.7 Ma) surface-water assemblages were characterized mainly by cold-temperate planktonic flora and fauna (nannofossils, diatoms, radiolarians, and planktonic foraminifera), suggesting that nutrient-rich North Pacific surface waters entered the Japan Sea via northern straits. The common occurrence of Pacific-type deep-water radiolarians during this period also suggests that deep water from the North Pacific entered the Japan Sea via the northern straits, indicating a sill depth >500 m. A weak warm-water influence is recognized along the Japanese coast, suggesting a small inflow of warm water via a southern strait. Nannofossil and sublittoral ostracod assemblages record an abrupt cooling event at 2.75 Ma that correlates with the onset of the Northern Hemisphere glaciation. Subsequently, cold intermediate- and deep-water assemblages of ostracods and radiolarians increased in abundance, suggesting active ventilation and the formation of the Japan Sea Proper Water, associated with a strengthened winter monsoon. Pacific-type deep-water radiolarians also disappeared around 2.75 Ma, which is attributed to the intermittent occurrence of deep anoxic environments and limited migration from the North Pacific, resulting from the near-closure or shallowing of the northern strait by a eustatic fall in sea level and tectonic uplift of northeastern Japan. A notable reduction in primary productivity from 2.3 to 1.3 Ma also suggests that the nutrient supply from the North Pacific was restricted by the near-closure of the northern strait. An increase in the abundance of subtropical surface fauna suggests that the inflow of the Tsushima Warm Current into the Japan Sea via a southern strait began at 1.7 Ma. The opening of the southern strait may have occurred after the subsidence of southwestern Japan.

  9. Ventilation of the Subtropical North Atlantic: Locations and Times of Last Ventilation Estimated Using Tracer Constraints From GEOTRACES Section GA03

    NASA Astrophysics Data System (ADS)

    Holzer, Mark; Smethie, William M.; Ting, Yu-Heng

    2018-04-01

    The ventilation of the subtropical North Atlantic along GEOTRACES section GA03 is quantified in terms of where and how long ago water was last in the mixed layer. Measurements of T, S, PO4∗, CFC-11, CFC-12, SF6, and estimates of prebomb 14C are deconvolved for the boundary propagator G using a maximum-entropy approach. From G, we calculate the fractions of water last ventilated in specified surface regions Ωw. We estimate that (56 ± 13)% of the water deeper than 1,000 m was ventilated in northern high latitudes, (15 ± 5)% in the Mediterranean, and (27 ± 12)% in the Southern Ocean. Below the thermocline and outside the deep western boundary current, mean ages of Ωw-ventilated water exceed a century. Consequently, memory of where last ventilation occurred tends to get lost and the deep mean-age patterns of Ωw-ventilated water are broadly similar for all Ωw. The mean ventilation ages, averaged over the section with Ωw-fraction weights, are roughly 200 years for all deep water masses except for water last ventilated south of the Antarctic divergence, which is about twice as old. The uncertainties in the section-mean profiles of the Ωw fractions and their mean ages are ˜50% and ˜20%, respectively. The Ωw fractions have vertically diffuse overlapping patterns suggesting significant diapycnal mixing, consistent with century-scale mean ages. We quantify the seasonal cycle of ventilation and find that in both hemispheres peak ventilation occurs during late winter and early spring, but Northern Hemisphere ventilated deep waters have a more pronounced seasonal cycle with nearly zero summertime ventilation.

  10. In vivo rat deep brain imaging using photoacoustic computed tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Li; Li, Lei; Zhu, Liren; Hu, Peng; Wang, Lihong V.

    2017-03-01

    The brain has been likened to a great stretch of unknown territory consisting of a number of unexplored continents. Small animal brain imaging plays an important role charting that territory. By using 1064 nm illumination from the side, we imaged the full coronal depth of rat brains in vivo. The experiment was performed using a real-time full-ring-array photoacoustic computed tomography (PACT) imaging system, which achieved an imaging depth of 11 mm and a 100 μm radial resolution. Because of the fast imaging speed of the full-ring-array PACT system, no animal motion artifact was induced. The frame rate of the system was limited by the laser repetition rate (50 Hz). In addition to anatomical imaging of the blood vessels in the brain, we continuously monitored correlations between the two brain hemispheres in one of the coronal planes. The resting states in the coronal plane were measured before and after stroke ligation surgery at a neck artery.

  11. A super-resolution ultrasound method for brain vascular mapping

    PubMed Central

    O'Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    Purpose: High-resolution vascular imaging has not been achieved in the brain due to limitations of current clinical imaging modalities. The authors present a method for transcranial ultrasound imaging of single micrometer-size bubbles within a tube phantom. Methods: Emissions from single bubbles within a tube phantom were mapped through an ex vivo human skull using a sparse hemispherical receiver array and a passive beamforming algorithm. Noninvasive phase and amplitude correction techniques were applied to compensate for the aberrating effects of the skull bone. The positions of the individual bubbles were estimated beyond the diffraction limit of ultrasound to produce a super-resolution image of the tube phantom, which was compared with microcomputed tomography (micro-CT). Results: The resulting super-resolution ultrasound image is comparable to results obtained via the micro-CT for small tissue specimen imaging. Conclusions: This method provides superior resolution to deep-tissue contrast ultrasound and has the potential to be extended to provide complete vascular network imaging in the brain. PMID:24320408

  12. Nitride microlens arrays for blue and ultraviolet wavelength applications

    NASA Astrophysics Data System (ADS)

    Oder, T. N.; Shakya, J.; Lin, J. Y.; Jiang, H. X.

    2003-05-01

    Nitride microlens arrays with sizes as small as 10 μm in diameter have been fabricated on GaN and AlN epilayers using the method of photoresist reflow and inductively coupled plasma dry etching. The focal lengths of the microlenses varied from 7-30 μm as determined by theoretical fitting as well as by the near-field scanning optical microscopy measurement. Scanning electron and atomic force microscopies were used to obtain the surface profile of the microlenses which were found to match very well with hemispherical fitting and a surface roughness value around 1 nm was obtained. Nitride microlens arrays would be naturally chosen for green/blue to deep ultraviolet wavelength applications. In addition, nitride microlenses offer the possibility of integrating nitride-based microsize photonic devices as well as of coupling light into, out of, and between arrays of III-nitride emitters for other applications, such as spatially resolved fluorescence spectroscopy studies of biological and medical systems and optical links, thereby further expanding the applications of III nitrides.

  13. Determination of Martian Northern Polar Insolation Levels Using a Geodetic Elevation Model

    NASA Technical Reports Server (NTRS)

    Arrell, J. R.; Zuber, M. T.

    2000-01-01

    Solar insolation levels at the Martian polar caps bear significantly on the seasonal and climatic cycling of volatiles on that planet. In the northern hemisphere, the Martian surface slopes downhill from the equator to the pole such that the north polar cap is situated in a 5-km-deep hemispheric-scale depression. This large-scale topographic setting plays an important role in the insolation of the northern polar cap. Elevations measured by the Mars Orbiter Laser Altimeter (MOLA) provide comprehensive, high-accuracy topographical information required to precisely determine polar insolation. In this study, we employ a geodetic elevation model to quantify the north polar insolation and consider implications for seasonal and climatic changes. Additional information is contained in original extended abstract.

  14. The total hemispheric emissivity of painted aluminum honeycomb at cryogenic temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuttle, J.; Canavan, E.; DiPirro, M.

    NASA uses high-emissivity surfaces on deep-space radiators and thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and comparemore » the results with predictions from a detailed thermal model of each honeycomb configuration.« less

  15. Common Variants within Oxidative Phosphorylation Genes Influence Risk of Ischemic Stroke and Intracerebral Hemorrhage

    PubMed Central

    Anderson, Christopher D.; Biffi, Alessandro; Nalls, Michael A.; Devan, William J.; Schwab, Kristin; Ayres, Alison M.; Valant, Valerie; Ross, Owen A.; Rost, Natalia S.; Saxena, Richa; Viswanathan, Anand; Worrall, Bradford B.; Brott, Thomas G.; Goldstein, Joshua N.; Brown, Devin; Broderick, Joseph P.; Norrving, Bo; Greenberg, Steven M.; Silliman, Scott L.; Hansen, Björn M.; Tirschwell, David L.; Lindgren, Arne; Slowik, Agnieszka; Schmidt, Reinhold; Selim, Magdy; Roquer, Jaume; Montaner, Joan; Singleton, Andrew B.; Kidwell, Chelsea S.; Woo, Daniel; Furie, Karen L.; Meschia, James F.; Rosand, Jonathan

    2013-01-01

    Background and Purpose Prior studies demonstrated association between mitochondrial DNA variants and ischemic stroke (IS). We investigated whether variants within a larger set of oxidative phosphorylation (OXPHOS) genes encoded by both autosomal and mitochondrial DNA were associated with risk of IS and, based on our results, extended our investigation to intracerebral hemorrhage (ICH). Methods This association study employed a discovery cohort of 1643 individuals, a validation cohort of 2432 individuals for IS, and an extension cohort of 1476 individuals for ICH. Gene-set enrichment analysis (GSEA) was performed on all structural OXPHOS genes, as well as genes contributing to individual respiratory complexes. Gene-sets passing GSEA were tested by constructing genetic scores using common variants residing within each gene. Associations between each variant and IS that emerged in the discovery cohort were examined in validation and extension cohorts. Results IS was associated with genetic risk scores in OXPHOS as a whole (odds ratio (OR)=1.17, p=0.008) and Complex I (OR=1.06, p=0.050). Among IS subtypes, small vessel (SV) stroke showed association with OXPHOS (OR=1.16, p=0.007), Complex I (OR=1.13, p=0.027) and Complex IV (OR 1.14, p=0.018). To further explore this SV association, we extended our analysis to ICH, revealing association between deep hemispheric ICH and Complex IV (OR=1.08, p=0.008). Conclusions This pathway analysis demonstrates association between common genetic variants within OXPHOS genes and stroke. The associations for SV stroke and deep ICH suggest that genetic variation in OXPHOS influences small vessel pathobiology. Further studies are needed to identify culprit genetic variants and assess their functional consequences. PMID:23362085

  16. Phase matters: A role for the subthalamic network during gait.

    PubMed

    Arnulfo, Gabriele; Pozzi, Nicolò Gabriele; Palmisano, Chiara; Leporini, Alice; Canessa, Andrea; Brumberg, Joachim; Pezzoli, Gianni; Matthies, Cordula; Volkmann, Jens; Isaias, Ioannis Ugo

    2018-01-01

    The role of the subthalamic nucleus in human locomotion is unclear although relevant, given the troublesome management of gait disturbances with subthalamic deep brain stimulation in patients with Parkinson's disease. We investigated the subthalamic activity and inter-hemispheric connectivity during walking in eight freely-moving subjects with Parkinson's disease and bilateral deep brain stimulation. In particular, we compared the subthalamic power spectral densities and coherence, amplitude cross-correlation and phase locking value between resting state, upright standing, and steady forward walking. We observed a phase locking value drop in the β-frequency band (≈13-35Hz) during walking with respect to resting and standing. This modulation was not accompanied by specific changes in subthalamic power spectral densities, which was not related to gait phases or to striatal dopamine loss measured with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane and single-photon computed tomography. We speculate that the subthalamic inter-hemispheric desynchronization in the β-frequency band reflects the information processing of each body side separately, which may support linear walking. This study also suggests that in some cases (i.e. gait) the brain signal, which could allow feedback-controlled stimulation, might derive from network activity.

  17. Seismic velocity and attenuation structures at the top 400 km of the inner core

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wen, L.; Niu, F.

    2002-12-01

    Recent seismic studies reveal an ``east-west" hemispherical difference in seismic velocity and attenuation in the top of the inner core [Niu and Wen, 2001, Wen and Niu, 2002]. The PKiKP-PKIKP observations they used only allowed them to constrain the seismic structure in the top 80 km of the inner core. The question now arises as such to what depth this hemispherical difference persists. To answer this question, we combine the PKiKP-PKIKP dataset and the PKPbc-PKIKP observations at the distance range of 147o-160o to study seismic velocity and attenuation structures in the top 400 km of the inner core along the ``equatorial paths" (the paths whose ray angles > 35o from the polar direction). We select PKPbc-PKIKP waveforms from recordings in the Global Seismic Network (GSN) and several dense regional seismic arrays. We choose recordings for events from 1990 to 2000 with simple source time functions, so only those of intermediate and deep earthquakes are used. The observed PKPbc-PKIKP differential travel times and PKIKP/PKPbc amplitude ratios exhibit an ``east-west" hemispherical difference. The PKPbc-PKIKP travel time residuals are about 0.7 second larger for those sampling the ``eastern" hemisphere than those sampling the ``western" hemisphere. The PKIKP/PKPbc amplitude ratios are generally smaller for those sampling the ``eastern" hemisphere. We construct two seismic velocity and attenuation models, with one for each ``hemisphere", by iteratively modeling the observed PKiKP-PKIKP waveforms, the PKPbc-PKIKP differential travel times and the PKIKP/PKPbc amplitude ratios. For the ``eastern" hemisphere, the observations indicate that the E1 velocity gradient and Q structure, inferred from the PKiKP-PKIKP observations sampling the top 80 km of the inner core, extend at least to 230 km inside the inner core. A change of velocity gradient and Q value is required in the deeper portion of the inner core. For the ``western" hemisphere, on the other hand, W2 velocity gradient and Q structure, obtained from modeling the PKiKP-PKIKP observations, explain the PKPbc-PKIKP observations well.

  18. Reinterpretation of the Burmester core, Bonneville basin, Utah

    USGS Publications Warehouse

    Oviatt, Charles G.; Thompson, R.S.; Kaufman, D.S.; Bright, Jordon; Forester, R.M.

    1999-01-01

    Initial interpretation of the sediments from the Burmester core (Eardley et al. (1973). Geological Society of America Bulletin 84, 211-216) indicated that 17 deep-lake cycles, separated by shallow-lake and soil-forming intervals, occurred in the Bonneville basin during the Brunhes Chron (the last 780 x 103 yr). Our re-examination of the core, along with new sedimentological, geochronological, and paleontological data, indicate that only four deep-lake cycles occurred during this period, apparently correlative with marine oxygen-isotope stages 2, 6, 12, and 16. This interpretation suggests that large lakes formed in the Bonneville basin only during the most extensive of the Northern Hemisphere glaciations.

  19. Stratospheric Impact of Varying Sea Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  20. Phylogeography of the California sheephead, Semicossyphus pulcher: the role of deep reefs as stepping stones and pathways to antitropicality

    PubMed Central

    Poortvliet, Marloes; Longo, Gary C; Selkoe, Kimberly; Barber, Paul H; White, Crow; Caselle, Jennifer E; Perez-Matus, Alejandro; Gaines, Steven D; Bernardi, Giacomo

    2013-01-01

    In the past decade, the study of dispersal of marine organisms has shifted from focusing predominantly on the larval stage to a recent interest in adult movement. Antitropical distributions provide a unique system to assess vagility and dispersal. In this study, we have focused on an antitropical wrasse genus, Semicossyphus, which includes the California sheephead, S. pulcher, and Darwin's sheephead, S. darwini. Using a phylogenetic approach based on mitochondrial and nuclear markers, and a population genetic approach based on mitochondrial control region sequences and 10 microsatellite loci, we compared the phylogenetic relationships of these two species, as well as the population genetic characteristics within S. pulcher. While S. pulcher and S. darwini are found in the temperate eastern Pacific regions of the northern and southern hemispheres, respectively, their genetic divergence was very small (estimated to have occurred between 200 and 600 kya). Within S. pulcher, genetic structuring was generally weak, especially along mainland California, but showed weak differentiation between Sea of Cortez and California, and between mainland California and Channel Islands. We highlight the congruence of weak genetic differentiation both within and between species and discuss possible causes for maintenance of high gene flow. In particular, we argue that deep and cooler water refugia are used as stepping stones to connect distant populations, resulting in low levels of genetic differentiation. PMID:24340195

  1. Photometric properties of Titan's surface from Cassini VIMS: Relevance to titan's hemispherical albedo dichotomy and surface stability

    USGS Publications Warehouse

    Nelson, R.M.; Brown, R.H.; Hapke, B.W.; Smythe, W.D.; Kamp, L.; Boryta, M.D.; Leader, F.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe

    2006-01-01

    The Visual and Infrared Mapping Spectrometer (VIMS) instrument on the Cassini Saturn Orbiter returned spectral imaging data as the spacecraft undertook six close encounters with Titan beginning 7 July, 2004. Three of these flybys each produced overlapping coverage of two distinct regions of Titan's surface. Twenty-four points were selected on approximately opposite hemispheres to serve as photometric controls. Six points were selected in each of four reflectance classes. On one hemisphere each control point was observed at three distinct phase angles. From the derived phase coefficients, preliminary normal reflectances were derived for each reflectance class. The normal reflectance of Titan's surface units at 2.0178 ??m ranged from 0.079 to 0.185 for the most absorbing to the most reflective units assuming no contribution from absorbing haze. When a modest haze contribution of ??=0.1 is considered these numbers increase to 0.089-0.215. We find that the lowest three reflectance classes have comparable normal reflectance on either hemisphere. However, for the highest brightness class the normal reflectance is higher on the hemisphere encompassing longitude 14-65?? compared to the same high brightness class for the hemisphere encompassing 122-156?? longitude. We conclude that an albedo dichotomy observed in continental sized units on Titan is due not only to one unit having more areal coverage of reflective material than the other but the material on the brighter unit is intrinsically more reflective than the most reflective material on the other unit. This suggests that surface renewal processes are more widespread on Titan's more reflective units than on its less reflective units. We note that one of our photometric control points has increased in reflectance by 12% relative to the surrounding terrain from July of 2004 to April and May of 2005. Possible causes of this effect include atmospheric processes such as ground fog or orographic clouds; the suggestion of active volcanism cannot be ruled out. Several interesting circular features which resembled impact craters were identified on Titan's surface at the time of the initial Titan flyby in July of 2004. We traced photometric profiles through two of these candidate craters and attempted to fit these profiles to the photometric properties expected from model depressions. We find that the best-fit attempt to model these features as craters requires that they be unrealistically deep, approximately 70 km deep. We conclude that despite their appearance, these circular features are not craters, however, the possibility that they are palimpsests cannot be ruled out. We used two methods to test for the presence of vast expanses of liquids on Titan's surface that had been suggested to resemble oceans. Specular reflection of sunlight would be indicative of widespread liquids on the surface; we found no evidence of this. A large liquid body should also show uniformity in photometric profile; we found the profiles to be highly variable. The lack of specular reflection and the high photometric variability in the profiles across candidate oceans is inconsistent with the presence of vast expanses of flat-lying liquids on Titan's surface. While liquid accumulation may be present as small, sub-pixel-sized bodies, or in areas of the surface which still remain to be observed by VIMS, the presence of large ocean-sized accumulations of liquids can be ruled out. The Cassini orbital tour offers the opportunity for VIMS to image the same parts of Titan's surface repeatedly at many different illumination and observation geometries. This creates the possibility of understanding the properties of Titan's atmosphere and haze by iteratively adapting models to create a best fit to the surface reflectance properties. ?? 2006 Elsevier Ltd. All rights reserved.

  2. Comparison of solar wind driving of the aurora in the two hemispheres due to the solar wind dynamo

    NASA Astrophysics Data System (ADS)

    Reistad, Jone Peter; Østgaard, Nikolai; Magnus Laundal, Karl; Haaland, Stein; Tenfjord, Paul; Oksavik, Kjellmar

    2014-05-01

    Event studies of simultaneous global imaging of the aurora in both hemispheres have suggested that an asymmetry of the solar wind driving between the two hemispheres could explain observations of non-conjugate aurora during specific driving conditions. North-South asymmetries in energy transfer from the solar wind across the magnetopause is believed to depend upon the dipole tilt angle and the x-component of the interplanetary magnetic field (IMF). Both negative tilt (winter North) and negative IMF Bx is expected to enhance the efficiency of the solar wind dynamo in the Northern Hemisphere. By the same token, positive tilt and IMF Bx is expected to enhance the solar wind dynamo efficiency in the Southern Hemisphere. We show a statistical study of the auroral response from both hemispheres using global imaging where we compare results during both favourable and not favourable conditions in each hemisphere. By this study we will address the question of general impact on auroral hemispheric asymmetries by this mechanism - the asymmetric solar wind dynamo. We use data from the Wideband Imaging Camera on the IMAGE spacecraft which during its lifetime from 2000-2005 covered both hemispheres. To ease comparison of the two hemispheres, seasonal differences in auroral brightness is removed as far as data coverage allows by only using events having small dipole tilt angles. Hence, the IMF Bx is expected to be the controlling parameter for the hemispheric preference of strongest solar wind dynamo efficiency in our dataset. Preliminary statistical results indicate the expected opposite behaviour in the two hemispheres, however, the effect is believed to be weak.

  3. Organic photodetectors and their applications for hemispherical imaging focal plane arrays

    NASA Astrophysics Data System (ADS)

    Xu, Xin

    Softness of organic semiconducting materials holds promise for fabricating optoelectronic devices and circuits on nonplanar surfaces. The low growth temperature of organic small molecules also allows for the deposition onto a plastic substrate, which has the potential for significantly lowering the fabrication cost. However, the softness of organic small molecules can become problematic. Most of the well-established patterning techniques in the semiconductor industry are not suitable for patterning organic-based devices. High temperatures, high pressures, exposure to wet chemicals or high-energy particles that may exist in the conventional patterning approaches can damage the organic active layers. Although methods for large area patterning of organic electronics onto planar substrates have been demonstrated, in this thesis we extend the patterning capability to curved surfaces by using a novel three dimensional (3D) cold welding method. We use 3D cold welding to fabricate a hemispherical focal plane array (FPA) for compact imaging systems that mimic the architecture and function of the human eye. A 10 kilopixel organic photodetector FPA is thus demonstrated on a 1 cm radius hemisphere. By patterning brittle yet transparent indium tin oxide anodes instead of semitransparent metal anodes on the hemispheres, the detectivity of the FPA is improved. We introduce a sensitive hybrid photodetector employing a carbon nanotube/small molecular organic junction with a broad spectral response extending into the near infrared. Since the photodetector array shows an increased noise level with the array size, integrated arrays of organic photodetectors and thin film transistors as switches are demonstrated.

  4. Method of simulating spherical voids for use as a radiographic standard

    DOEpatents

    Foster, Billy E.

    1977-01-01

    A method of simulating small spherical voids in metal is provided. The method entails drilling or etching a hemispherical depression of the desired diameter in each of two sections of metal, the sections being flat plates or different diameter cylinders. A carbon bead is placed in one of the hemispherical voids and is used as a guide to align the second hemispherical void with that in the other plate. The plates are then bonded together with epoxy, tape or similar material and the two aligned hemispheres form a sphere within the material; thus a void of a known size has been created. This type of void can be used to simulate a pore in the development of radiographic techniques of actual voids (porosity) in welds and serve as a radiographic standard.

  5. Left hemispheric dominance of vestibular processing indicates lateralization of cortical functions in rats.

    PubMed

    Best, Christoph; Lange, Elena; Buchholz, Hans-Georg; Schreckenberger, Mathias; Reuss, Stefan; Dieterich, Marianne

    2014-11-01

    Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the "handedness" of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species.

  6. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    NASA Astrophysics Data System (ADS)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  7. The UKIRT Infrated Deep Sky Survey : data access

    NASA Astrophysics Data System (ADS)

    2005-09-01

    ESO - the European Organisation for Astronomical Research in the Southern Hemisphere - and the Sociedad Chilena de Astronomía (SOCHIAS) are organising a Latin American Astronomy Summer School. It will take place from December 8-10, 2005, the week before the Regional Meeting of the International Astronomical Union to be held on December 12-16, 2005 in Pucon, Chile (~ 800 km South of Santiago).

  8. Northern Hemisphere extratropical winter cyclones variability over the 20th century derived from ERA-20C reanalysis

    NASA Astrophysics Data System (ADS)

    Varino, Filipa; Arbogast, Philippe; Joly, Bruno; Riviere, Gwendal; Fandeur, Marie-Laure; Bovy, Henry; Granier, Jean-Baptiste

    2018-03-01

    The multi-decadal variations of wintertime extra-tropical cyclones during the last century are studied using a vorticity-based tracking algorithm applied to the long-term ERA-20C reanalysis from ECMWF. The variability of moderate-to-deep extra-tropical winter cyclones in ERA-20C show three distinct periods. Two at the beginning and at the end of the century (1900-1935 and 1980-2010) present weak or no significant trends in the Northern Hemisphere as a whole and only some regional trends. The period in between (1935-1980) is marked by a significant increase in Northern Hemisphere moderate-to-deep cyclones frequency. During the latter period, polar regions underwent a significant cooling over the whole troposphere that increased and shifted poleward the mid-latitude meridional temperature gradient and the baroclinicity. This is linked to positive-to-negative shifts of the PDO between 1935 and 1957 and of the AMO between 1957 and 1980 which mainly reinforced the storm-track eddy generation in the North Pacific and North Atlantic regions respectively, as seen from baroclinic conversion from mean to eddy potential energy. As a result, both the North Pacific and North Atlantic extra-tropical storms increase in frequency during the two subperiods (1935-1957 and 1957-1980), together with other storm-track quantities such as the high-frequency eddy kinetic energy. In contrast, the first and third periods are characterized by a warming of the polar temperatures. However, as the stronger warming is confined to the lower troposphere, the baroclinicity do not uniformly increase in the whole troposphere. This may explain why the recent rapid increase in polar temperatures has not affected the behaviour of extratropical cyclones very much. Finally, the large magnitude of the positive trend found in moderate-to-deep cyclone frequency during the second period is still questioned as the period is marked by an important increase in the number of assimilated observations. However, the dynamical link between changes in cyclone frequency, changes in large-scale baroclinicity and ocean decadal variability found in the present study makes us confident on the sign of the detected cyclone trend.

  9. Equality of hemisphere soft functions for e + e - , DIS and pp collisions at O ( α s 2 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Daekyoung; Labun, Ou Z.; Lee, Christopher

    We present a simple observation about soft amplitudes and soft functions appearing in factorizable cross sections in ee, ep, and pp collisions that has not clearly been made in previous literature, namely, that the hemisphere soft functions that appear in event shape distributions in e +e - → dijets, deep inelastic scattering (DIS), and in Drell–Yan (DY) processes are equal in perturbation theory up to O(α s 2), even though individual amplitudes may have opposite sign imaginary parts due to changing complex pole prescriptions in eikonal propagators for incoming vs. outgoing lines. We also explore potential generalizations of this observationmore » to soft functions for other observables or with more jets in the final state.« less

  10. Multifractality as a Measure of Complexity in Solar Flare Activity

    NASA Astrophysics Data System (ADS)

    Sen, Asok K.

    2007-03-01

    In this paper we use the notion of multifractality to describe the complexity in H α flare activity during the solar cycles 21, 22, and 23. Both northern and southern hemisphere flare indices are analyzed. Multifractal behavior of the flare activity is characterized by calculating the singularity spectrum of the daily flare index time series in terms of the Hölder exponent. The broadness of the singularity spectrum gives a measure of the degree of multifractality or complexity in the flare index data. The broader the spectrum, the richer and more complex is the structure with a higher degree of multifractality. Using this broadness measure, complexity in the flare index data is compared between the northern and southern hemispheres in each of the three cycles, and among the three cycles in each of the two hemispheres. Other parameters of the singularity spectrum can also provide information about the fractal properties of the flare index data. For instance, an asymmetry to the left or right in the singularity spectrum indicates a dominance of high or low fractal exponents, respectively, reflecting a relative abundance of large or small fluctuations in the total energy emitted by the flares. Our results reveal that in the even (22nd) cycle the singularity spectra are very similar for the northern and southern hemispheres, whereas in the odd cycles (21st and 23rd) they differ significantly. In particular, we find that in cycle 21, the northern hemisphere flare index data have higher complexity than its southern counterpart, with an opposite pattern prevailing in cycle 23. Furthermore, small-scale fluctuations in the flare index time series are predominant in the northern hemisphere in the 21st cycle and are predominant in the southern hemisphere in the 23rd cycle. Based on these findings one might suggest that, from cycle to cycle, there exists a smooth switching between the northern and southern hemispheres in the multifractality of the flaring process. This new observational result may bring an insight into the mechanisms of the solar dynamo operation and may also be useful for forecasting solar cycles.

  11. Damage to white matter bottlenecks contributes to language impairments after left hemispheric stroke.

    PubMed

    Griffis, Joseph C; Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2017-01-01

    Damage to the white matter underlying the left posterior temporal lobe leads to deficits in multiple language functions. The posterior temporal white matter may correspond to a bottleneck where both dorsal and ventral language pathways are vulnerable to simultaneous damage. Damage to a second putative white matter bottleneck in the left deep prefrontal white matter involving projections associated with ventral language pathways and thalamo-cortical projections has recently been proposed as a source of semantic deficits after stroke. Here, we first used white matter atlases to identify the previously described white matter bottlenecks in the posterior temporal and deep prefrontal white matter. We then assessed the effects of damage to each region on measures of verbal fluency, picture naming, and auditory semantic decision-making in 43 chronic left hemispheric stroke patients. Damage to the posterior temporal bottleneck predicted deficits on all tasks, while damage to the anterior bottleneck only significantly predicted deficits in verbal fluency. Importantly, the effects of damage to the bottleneck regions were not attributable to lesion volume, lesion loads on the tracts traversing the bottlenecks, or damage to nearby cortical language areas. Multivariate lesion-symptom mapping revealed additional lesion predictors of deficits. Post-hoc fiber tracking of the peak white matter lesion predictors using a publicly available tractography atlas revealed evidence consistent with the results of the bottleneck analyses. Together, our results provide support for the proposal that spatially specific white matter damage affecting bottleneck regions, particularly in the posterior temporal lobe, contributes to chronic language deficits after left hemispheric stroke. This may reflect the simultaneous disruption of signaling in dorsal and ventral language processing streams.

  12. Effects of Southern Hemispheric Wind Changes on Global Oxygen and the Pacific Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Getzlaff, J.; Dietze, H.; Oschlies, A.

    2016-02-01

    We use a coupled ocean biogeochemistry-circulation model to compare the impact of changes in southern hemispheric winds with that of warming induced buoyancy fluxes on dissolved oxygen. Changes in the southern hemispheric wind fields, which are in line with an observed shift of the southern annual mode, are a combination of a strengthening and poleward shift of the southern westerlies. We differentiate between effects caused by a strengthening of the westerlies and effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our results confirm that the Southern Ocean plays an important role for the marine oxygen supply: a strengthening of the southern westerlies, that leads to an increase of the water formation rates of the oxygen rich deep and intermediate water masses, can counteract part of the warming-induced decline in marine oxygen levels. The wind driven intensification of the Southern Ocean meridional overturning circulation drives an increase of the global oxygen supply. Furthermore the results show that the shift of the boundary between westerlies and trades results in an increase of subantarctic mode water and an anti-correlated decrease of deep water formation and reduces the oceanic oxygen supply. In addition we find that the increased meridional extension of the southern trade winds, results in a strengthening and southward shift of the subtropical wind stress curl. This alters the subtropical gyre circulation (intensification and southward shift) and with it decreases the water mass transport into the oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-to-westerlies boundary is as important for the future evolution of the suboxic volume as direct warming-induced changes.

  13. Models of hemispheric specialization in facial emotion perception--a reevaluation.

    PubMed

    Najt, Pablo; Bayer, Ulrike; Hausmann, Markus

    2013-02-01

    A considerable amount of research on functional cerebral asymmetries (FCAs) for facial emotion perception has shown conflicting support for three competing models: (i) the Right Hemisphere Hypothesis, (ii) the Valence-Specific Hypothesis, and (iii) the Approach/Withdrawal model. However, the majority of studies evaluating the Right Hemisphere or the Valence-Specific Hypotheses are rather limited by the small number of emotional expressions used. In addition, it is difficult to evaluate the Approach/Withdrawal Hypothesis due to insufficient data on anger and FCAs. The aim of the present study was (a) to review visual half field (VHF) studies of hemispheric specialization in facial emotion perception and (b) to reevaluate empirical evidence with respect to all three partly conflicting hypotheses. Results from the present study revealed a left visual field (LVF)/right hemisphere advantage for the perception of angry, fearful, and sad facial expressions and a right visual field (RVF)/left hemisphere advantage for the perception of happy expressions. Thus, FCAs for the perception of specific facial emotions do not fully support the Right Hemisphere Hypothesis, the Valence-Specific Hypothesis, or the Approach/Withdrawal model. A systematic literature review, together with the results of the present study, indicate a consistent LVF/right hemisphere advantage only for a subset of negative emotions including anger, fear and sadness, rather suggesting a "negative (only) valence model." PsycINFO Database Record (c) 2013 APA, all rights reserved.

  14. Carbon-14 in methane sources and in atmospheric methane - The contribution from fossil carbon

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Tanaka, N.; Henry, R.; Deck, B.; Zeglen, J.

    1989-01-01

    Measurements of carbon-14 in small samples of methane from major biogenic sources, from biomass burning, and in clean air samples from both the Northern and Southern hemispheres reveal that methane from ruminants contains contemporary carbon, whereas that from wetlands, peat bogs, rice fields, and tundra, is somewhat depleted in carbon-14. Atmospheric (C-14)H4 seems to have increased from 1986 to 1987, and levels at the end of 1987 were 123.3 + or - 0.8 percent modern carbon in the Northern Hemisphere and 120.0 + or - 0.7 percent modern carbon in the Southern Hemisphere.

  15. WWLLN lightning and satellite microwave radiometrics at 37 to 183 GHz: Thunderstorms in the broad tropics

    NASA Astrophysics Data System (ADS)

    Solorzano, N. N.; Thomas, J. N.; Hutchins, M. L.; Holzworth, R. H.

    2016-10-01

    We investigate lightning strokes and deep convection through the examination of cloud-to-ground (CG) lightning from the World Wide Lightning Location Network (WWLLN) and passive microwave radiometer data. Microwave channels at 37 to 183.3 GHz are provided by the Tropical Rainfall Measuring Mission satellite (TRMM) Microwave Imager (TMI) and the Special Sensor Microwave Imager/Sounder (SSMIS) on the Defense Meteorological Satellite Program (DMSP) satellite F16. The present study compares WWLLN stroke rates and minimum radiometer brightness temperatures (Tbs) for two Northern Hemisphere and Southern Hemisphere summers (2009-2011) in the broad tropics (35°S to 35°N). To identify deep convection, we use lightning data and Tbs derived from all channels and differences in the Tbs (ΔTbs) of the three water vapor channels near 183.3 GHz. We find that stroke probabilities increase with increasing Tb depressions for all frequencies examined. Moreover, we apply methods that use the 183.3 GHz channels to pinpoint deep convection associated with lightning. High lightning stroke probabilities are found over land regions for both intense and relatively weak convective systems, although the TMI 85 GHz results should be used with caution as they are affected by a 7 km gap between the conical scans. Over the ocean, lightning is associated mostly with larger Tb depressions. Generally, our results support the noninductive thundercloud charging mechanism but do not rule out the inductive mechanism during the mature stages of storms. Lastly, we present a case study in which lightning stroke rates are used to reconstruct microwave radiometer Tbs.

  16. Simultaneous T1 and T2 Brain Relaxometry in Asymptomatic Volunteers using Magnetic Resonance Fingerprinting.

    PubMed

    Badve, Chaitra; Yu, Alice; Rogers, Matthew; Ma, Dan; Liu, Yiying; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Gulani, Vikas

    2015-12-01

    Magnetic resonance fingerprinting (MRF) is a method of image acquisition that produces multiple MR parametric maps from a single scan. Here, we describe the normal range and progression of MRF-derived relaxometry values with age in healthy individuals. 56 normal volunteers (ages 11-71 years, M:F 24:32) were scanned. Regions of interest were drawn on T 1 and T 2 maps in 38 areas, including lobar and deep white matter, deep gray nuclei, thalami and posterior fossa structures. Relaxometry differences were assessed using a forward stepwise selection of a baseline model including either gender, age, or both, where variables were included if they contributed significantly (p<0.05). Additionally, differences in regional anatomy, including comparisons between hemispheres and between anatomical subcomponents, were assessed by paired t-tests. Using this protocol, MRF-derived T 1 and T 2 in frontal WM regions were found to increase in with age, while occipital and temporal regions remained relatively stable. Deep gray nuclei, including substantia nigra, were found to have age-related decreases in relaxometry. Gender differences were observed in T 1 and T 2 of temporal regions, cerebellum and pons. Males were also found to have more rapid age-related changes in frontal and parietal WM. Regional differences were identified between hemispheres, between genu and splenium of corpus callosum, and between posteromedial and anterolateral thalami. In conclusion, MRF quantification can measure relaxometry trends in healthy individuals that are in agreement with current understanding of neuroanatomy and neurobiology, and has the ability to uncover additional patterns that have not yet been explored.

  17. Simultaneous T1 and T2 Brain Relaxometry in Asymptomatic Volunteers using Magnetic Resonance Fingerprinting

    PubMed Central

    Badve, Chaitra; Yu, Alice; Rogers, Matthew; Ma, Dan; Liu, Yiying; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Gulani, Vikas

    2016-01-01

    Magnetic resonance fingerprinting (MRF) is a method of image acquisition that produces multiple MR parametric maps from a single scan. Here, we describe the normal range and progression of MRF-derived relaxometry values with age in healthy individuals. 56 normal volunteers (ages 11-71 years, M:F 24:32) were scanned. Regions of interest were drawn on T1 and T2 maps in 38 areas, including lobar and deep white matter, deep gray nuclei, thalami and posterior fossa structures. Relaxometry differences were assessed using a forward stepwise selection of a baseline model including either gender, age, or both, where variables were included if they contributed significantly (p<0.05). Additionally, differences in regional anatomy, including comparisons between hemispheres and between anatomical subcomponents, were assessed by paired t-tests. Using this protocol, MRF-derived T1 and T2 in frontal WM regions were found to increase in with age, while occipital and temporal regions remained relatively stable. Deep gray nuclei, including substantia nigra, were found to have age-related decreases in relaxometry. Gender differences were observed in T1 and T2 of temporal regions, cerebellum and pons. Males were also found to have more rapid age-related changes in frontal and parietal WM. Regional differences were identified between hemispheres, between genu and splenium of corpus callosum, and between posteromedial and anterolateral thalami. In conclusion, MRF quantification can measure relaxometry trends in healthy individuals that are in agreement with current understanding of neuroanatomy and neurobiology, and has the ability to uncover additional patterns that have not yet been explored. PMID:26824078

  18. Spectral distinctions between the leading and trailing hemispheres of Callisto - New observations

    NASA Technical Reports Server (NTRS)

    Calvin, Wendy M.; Clark, Roger N.

    1993-01-01

    Recent spectral observations of both the leading and trailing hemispheres of Callisto confirm the conclusions of Calvin and Clark (1991) that the water ice is typically large-grained, and the general spectral trend from 3 to 43 microns is caused by an adsorbed water band associated with hydrous minerals. On the leading hemisphere, a broad absorption near 3.4 microns was definitively identified and interpreted as being caused by fine-grained water ice. This band, coupled with the slope in the region from 2 to 2.5 microns, is indicative of a small amount, on the order of 1 to 2 percent, of fine-grained ice on the leading side. It is suggested that in the longer wavelength spectral region on the leading hemisphere an additional band correlated with NH4-bearing clays may be indicated.

  19. Investigation of Planets and Small Bodies Using Decameter Wavelength Radar Sounders

    NASA Astrophysics Data System (ADS)

    Safaeinili, A.

    2003-12-01

    Decameter wavelength radar sounders provide a unique capability for the exploration of subsurface of planets and internal structure of small bodies. Recently, a number of experimental radar sounding instruments have been proposed and/or are planned to become operational in the near future. The first of these radar sounders is MARSIS (Picardi et al.) that is about to arrive at Mars on ESA's Mars Express for a two-year mission. The second radar sounder, termed SHARAD (Seu et. al), will fly on NASA's Mars Reconnaissance orbiter in 2005. MARSIS and SHARAD have complementary science objectives in that MARSIS (0.1-5.5 MHz) is designed to explore the deep subsurface with a depth resolution of ˜100 m while SHARAD (15-25 MHz) focuses its investigation to near-surface (< 1000 m) with a higher depth resolution of ˜ 10-15 m. In addition to its subsurface exploration goals, MARSIS, that has a frequency range between 0.1 to 5.5 MHz, will study the ionosphere of Mars and providing a wealth of new information on Martian ionosphere. Both MARSIS and SHARAD have the potential of providing answers to a number of questions such as depth of ice-layers in the polar region and recently discovered ice-rich regions in both northern and southern hemispheres of Mars. The next generation of radar sounders will benefit from high power and high data rate capability that is made available through the use of Nuclear Electric generators. An example of such high-capability mission is the Jovian Icy Moons Orbiter (JIMO) where, for example, the radar sounder can be used to explore beneath the icy surfaces of Europa in search of the ice/ocean interface. The decameter wave radar sounder is probably the only instrument that has the potential of providing an accurate estimate for the ocean depth. Another exciting and rewarding area of application for planetary radar sounding is the investigation of the deep interior of small bodies (asteroids and comets). The small size of asteroids and comets provides the opportunity to collect data in a manner that enables Radio Reflection Tomographic (RRT) reconstruction of the body in the same manner that a medical ultrasound probe can image the interior of our body. This paper provides an overview of current technical capabilities and challenges and the potential of radio sounders in the investigation of planets and small bodies.

  20. The simulated climate of the Last Glacial Maximum and insights into the global carbon cycle.

    NASA Astrophysics Data System (ADS)

    Buchanan, P. J.; Matear, R.; Lenton, A.; Phipps, S. J.; Chase, Z.; Etheridge, D. M.

    2016-12-01

    The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL Earth System Model to test the contribution of key biogeochemical processes to ocean carbon storage. For the coupled LGM simulation, we find that significant cooling (3.2 °C), expanded minimum (Northern Hemisphere: 105 %; Southern Hemisphere: 225 %) and maximum (Northern Hemisphere: 145 %; Southern Hemisphere: 120 %) sea ice cover, and a reorganisation of the overturning circulation caused significant changes in ocean biogeochemical fields. The coupled LGM simulation stores an additional 322 Pg C in the deep ocean relative to the Pre-Industrial (PI) simulation. However, 839 Pg C is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration, causing a net loss of 517 Pg C relative to the PI simulation. The LGM deep ocean also experiences an oxygenation (>100 mmol O2 m-3) and deepening of the aragonite saturation depth (> 2,000 m deeper) at odds with proxy reconstructions. Hence, these physical changes cannot in isolation produce plausible biogeochemistry nor the required drawdown of atmospheric CO2 of 80-100 ppm at the LGM. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content in the glacial oceanic reservoir can be increased (326 Pg C) to a level that is sufficient to explain the reduction in atmospheric and terrestrial carbon at the LGM (520 ± 400 Pg C). These modifications also go some way to reconcile simulated export production, aragonite saturation state and oxygen fields with those that have been reconstructed by proxy measurements, thereby implicating past changes in ocean biogeochemistry as an essential driver of the climate system.

  1. Diffusion tensor imaging of early changes in corpus callosum after acute cerebral hemisphere lesions in newborns.

    PubMed

    Righini, Andrea; Doneda, Chiara; Parazzini, Cecilia; Arrigoni, Filippo; Matta, Ursula; Triulzi, Fabio

    2010-11-01

    The main purpose was to investigate any early diffusion tensor imaging (DTI) changes in corpus callosum (CC) associated with acute cerebral hemisphere lesions in term newborns. We retrospectively analysed 19 cases of term newborns acutely affected by focal or multi-focal lesions: hypoxic-ischemic encephalopathy, hypoglycaemic encephalopathy, focal ischemic stroke and deep medullary vein associated lesions. DTI was acquired at 1.5 Tesla with dedicated neonatal coil. DTI metrics (apparent diffusion coefficient (ADC), fractional anisotropy (FA), axial λ(∐) and radial λ(⟂) diffusivity) were measured in the hemisphere lesions and in the CC. The control group included seven normal newborns. The following significant differences were found between patients and normal controls in the CC: mean ADC was lower in patients (0.88 SD 0.23 versus 1.18 SD 0.07 μm(2)/s) and so was mean FA (0.50 SD 0.1 versus 0.67 SD 0.05) and mean λ(∐) value (1.61 SD 0.52 versus 2.36 SD 0.14 μm(2)/s). In CC the percentage of ADC always diminished independently of lesion age (with one exception), whereas in hemisphere lesions, it was negative in earlier lesions, but exceeded normal values in the older lesions. CC may undergo early DTI changes in newborns with acute focal or multi-focal hemisphere lesions of different aetiology. Although a direct insult to CC cannot be totally ruled out, DTI changes in CC (in particular λ(∐)) may also be compatible with very early Wallerian degeneration or pre-Wallerian degeneration.

  2. Turning off artistic ability: the influence of left DBS in art production.

    PubMed

    Drago, V; Foster, P S; Okun, M S; Cosentino, F I I; Conigliaro, R; Haq, I; Sudhyadhom, A; Skidmore, F M; Heilman, K M

    2009-06-15

    The influence of Parkinson's disease (PD) as well as deep brain stimulation (DBS) on visual-artistic production of people who have been artists is unclear. We systematically assessed the artistic-creative productions of a patient with PD who was referred to us for management of a left subthalamic region (STN) DBS. The patient was an artist before her disease started, permitting us to analyze changes in her artistic-creative production over the course of the illness and during her treatment with DBS. We collected her paintings from four time periods: Time 1 (Early Pre-Presymptomatic), Time 2 (Later Presymptomatic), Time 3 (Symptomatic), and Time 4 (DBS Symptomatic). A total of 59 paintings were submitted to a panel of judges, who rated the paintings on 6 different artistic qualities including: aesthetics, closure, evocative impact, novelty, representation, technique. Aesthetics and evocative impact significantly declined from Time 2 to Time 4. Representation and technique indicated a curvilinear relationship, with initial improvement from Time 1 to Time 2 followed by a decline from Time 2 to Time 4. These results suggest that left STN/SNR-DBS impacted artistic performances in our patient. The reason for these alterations is not known, but it might be that alterations of left hemisphere functions induce a hemispheric bias reducing the influence the right hemisphere which is important for artistic creativity. The left hemisphere itself plays a critical role in artistic creativity and DBS might have altered left hemisphere functions or altered the mesolimbic system which might have also influenced creativity. Future studies will be required to learn how PD and DBS influence creativity.

  3. Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica.

    PubMed

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A; Kriwet, Jürgen

    2017-10-01

    Rare remains of predominantly deep-water sharks of the families Hexanchidae, Squalidae, Dalatiidae, Centrophoridae, and Squatinidae are described from the Eocene La Meseta Formation, Seymour Island, Antarctic Peninsula, which has yielded the most abundant chondrichthyan assemblage from the Southern Hemisphere to date. Previously described representatives of Hexanchus sp., Squalus weltoni , Squalus woodburnei , Centrophorus sp., and Squatina sp. are confirmed and dental variations are documented. Although the teeth of Squatina sp. differ from other Palaeogene squatinid species, we refrain from introducing a new species. A new dalatiid taxon, Eodalatias austrinalis gen. et sp. nov. is described. This new material not only increases the diversity of Eocene Antarctic elasmobranchs but also allows assuming that favourable deep-water habitats were available in the Eocene Antarctic Ocean off Antarctica in the Eocene. The occurrences of deep-water inhabitants in shallow, near-coastal waters of the Antarctic Peninsula agrees well with extant distribution patterns.

  4. Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A.; Kriwet, Jürgen

    2017-10-01

    Rare remains of predominantly deep-water sharks of the families Hexanchidae, Squalidae, Dalatiidae, Centrophoridae, and Squatinidae are described from the Eocene La Meseta Formation, Seymour Island, Antarctic Peninsula, which has yielded the most abundant chondrichthyan assemblage from the Southern Hemisphere to date. Previously described representatives of Hexanchus sp., Squalus weltoni, Squalus woodburnei, Centrophorus sp., and Squatina sp. are confirmed and dental variations are documented. Although the teeth of Squatina sp. differ from other Palaeogene squatinid species, we refrain from introducing a new species. A new dalatiid taxon, Eodalatias austrinalis gen. et sp. nov. is described. This new material not only increases the diversity of Eocene Antarctic elasmobranchs but also allows assuming that favourable deep-water habitats were available in the Eocene Antarctic Ocean off Antarctica in the Eocene. The occurrences of deep-water inhabitants in shallow, near-coastal waters of the Antarctic Peninsula agrees well with extant distribution patterns.

  5. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming.

    PubMed

    Stott, Lowell; Timmermann, Axel; Thunell, Robert

    2007-10-19

    Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine core collected in the western tropical Pacific. Deep-sea temperatures warmed by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean warming by approximately 1000 years. The cause of this deglacial deep-water warming does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this warming.

  6. Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica

    PubMed Central

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A.; Kriwet, Jürgen

    2017-01-01

    Rare remains of predominantly deep-water sharks of the families Hexanchidae, Squalidae, Dalatiidae, Centrophoridae, and Squatinidae are described from the Eocene La Meseta Formation, Seymour Island, Antarctic Peninsula, which has yielded the most abundant chondrichthyan assemblage from the Southern Hemisphere to date. Previously described representatives of Hexanchus sp., Squalus weltoni, Squalus woodburnei, Centrophorus sp., and Squatina sp. are confirmed and dental variations are documented. Although the teeth of Squatina sp. differ from other Palaeogene squatinid species, we refrain from introducing a new species. A new dalatiid taxon, Eodalatias austrinalis gen. et sp. nov. is described. This new material not only increases the diversity of Eocene Antarctic elasmobranchs but also allows assuming that favourable deep-water habitats were available in the Eocene Antarctic Ocean off Antarctica in the Eocene. The occurrences of deep-water inhabitants in shallow, near-coastal waters of the Antarctic Peninsula agrees well with extant distribution patterns. PMID:29118464

  7. CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets

    Treesearch

    R. A. Sommerfeld; A. R. Mosier; R. C. Musselman

    1993-01-01

    Increasing atmospheric concentrations of the three main greenhouse gases-carbon dioxide, methane, and nitrous oxide account for about 70% of anticipated global warming, but the production-consumption budgets are not balanced for any of these gases2. Snow can cover between 44 and 53% of the land area of the Northern Hemisphere3 and may be several metres deep in alpine...

  8. Immediate, irreversible, posttraumatic coma: a review indicating that bilateral brainstem injury rather than widespread hemispheric damage is essential for its production.

    PubMed

    Rosenblum, William I

    2015-03-01

    Traumatic brain injury may result in immediate long-lasting coma. Much attention has been given to predicting this outcome from the initial examination because these predictions can guide future treatment and interactions with the patient's family. Reports of diffuse axonal injury in these cases have ascribed the coma to widespread damage in the deep white matter that disconnects the hemispheres from the ascending arousal system (AAS). However, brainstem lesions are also present in such cases, and the AAS may be interrupted at the brainstem level. This review examines autopsy and imaging literature that assesses the presence, extent, and predictive value of lesions in both sites. The evidence suggests that diffuse injury to the deep white matter is not the usual cause of immediate long-lasting posttraumatic coma. Instead, brainstem lesions in the rostral pons or midbrain are almost always the cause but only if the lesions are bilateral. Moreover, recovery is possible if critical brainstem inputs to the AAS are spared. The precise localization of the latter is subject to ongoing investigation with advanced imaging techniques using magnets of very high magnetic gradients. Limited availability of this equipment plus the need to verify the findings continue to require meticulous autopsy examination.

  9. Identification of Deep Earthquakes

    DTIC Science & Technology

    2010-09-01

    discriminants that will reliably separate small, crustal earthquakes (magnitudes less than about 4 and depths less than about 40 to 50 km) from small...characteristics on discrimination plots designed to separate nuclear explosions from crustal earthquakes. Thus, reliably flagging these small, deep events is...Further, reliably identifying subcrustal earthquakes will allow us to eliminate deep events (previously misidentified as crustal earthquakes) from

  10. Structural connectivity asymmetry in the neonatal brain.

    PubMed

    Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2013-07-15

    Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-world characteristics were exhibited, but did not differ between the two hemispheres, suggesting that neighboring brain regions connect tightly with each other, and that one region is only a few paths away from any other region within each hemisphere. Moreover, the neonatal brain showed greater structural efficiency in the left hemisphere than that in the right. In neonates, brain regions involved in motor, language, and memory functions play crucial roles in efficient communication in the left hemisphere, while brain regions involved in emotional processes play crucial roles in efficient communication in the right hemisphere. These findings suggest that even at birth, the topology of each cerebral hemisphere is organized in an efficient and compact manner that maps onto asymmetric functional specializations seen in adults, implying lateralized brain functions in infancy. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. The impact of lesion side on acute stroke treatment.

    PubMed

    Di Legge, Silvia; Fang, Jiming; Saposnik, Gustavo; Hachinski, Vladimir

    2005-07-12

    Only a small percentage of patients with acute stroke are treated with recombinant tissue plasminogen activator (rt-PA). To investigate why patients with right-hemisphere strokes seem at high risk of not receiving rt-PA. This study includes two phases. Phase 1: the authors compared demographic, clinical, and outcome measures between patients with right- and left-hemisphere strokes in the rt-PA Registry of Southwestern Ontario (RSWO); Phase 2: the authors tested the hypotheses generated in Phase 1 using the Registry of the Canadian Stroke Network (RCSN). A multiple logistic analysis was applied to detect independent predictors of rt-PA administration. Phase 1: of 179 rt-PA-treated patients, 39% had right-hemisphere syndrome. Patients with right-hemisphere strokes had a longer hospital stay (15 vs 9 days; p = 0.03). Phase 2: of 990 stroke patients in the RCSN, 505 (51%) had a right- and 485 (49%) a left-hemisphere syndrome. Of 110 rt-PA-treated patients, 37 (34%) had a right-hemisphere syndrome (p = 0.0001). Negative independent predictors of rt-PA administration were right-hemisphere stroke (OR, 0.55; CI: 0.31 to 0.96; p = 0.037), onset-to-emergency department time (OR, 0.99; CI 0.98 to 0.99; p = 0.04), and CNS score (OR, 0.78; CI 0.71 to 0.86; p < 0.0001). Neglect predicted rt-PA administration (OR, 2.32; CI 1.29 to 4.16; p = 0.004). Patients with right-hemisphere strokes are 45% less likely to be treated with recombinant tissue plasminogen activator (rt-PA) compared to patients with left-hemisphere strokes. The presence of neglect confers a twofold increased likelihood of rt-PA administration. Prehospital delay and lack of standardized scores for the neglect syndrome may limit accessibility of patients with right-hemisphere stroke to thrombolysis.

  12. Asymmetry of Hemispheric Network Topology Reveals Dissociable Processes between Functional and Structural Brain Connectome in Community-Living Elders

    PubMed Central

    Sun, Yu; Li, Junhua; Suckling, John; Feng, Lei

    2017-01-01

    Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging. PMID:29209197

  13. Molecular evidence for the Southern Hemisphere origin and deep-sea diversification of spiny lobsters (Crustacea: Decapoda: Palinuridae).

    PubMed

    Tsang, L M; Chan, T-Y; Cheung, M K; Chu, K H

    2009-05-01

    Spiny lobsters (family Palinuridae) are economically important marine animals that have been the subject of a considerable amount of research. However, the phylogeny of this group remains disputed. Morphological analyses have not been able to resolve the relationships of the various members of the group, and no agreement has yet been reached on its phylogeny as indicated by the different gene trees reported to date. In the present study, we attempt to reconstruct the phylogeny of Palinuridae and its allies using sequences from three nuclear protein-coding genes (phosphoenolpyruvate carboxykinase, sodium-potassium ATPase alpha-subunit and histone 3). The inferred topology receives strong nodal support for most of the branches. The family Palinuridae is found to be paraphyletic with the polyphyletic Synaxidae nested within it. Stridentes forms a monophyletic assemblage, indicating that the stridulating sound producing organ evolved only once in the spiny lobsters. By contrast, Silentes is paraphyletic, as Palinurellus is more closely related to Stridentes than to other Silentes genera. The three genera restricted to the southern high latitudes (Jasus, Projasus and Sagmariasus) constitute the basal lineages in the spiny lobsters, suggesting a Southern Hemisphere origin for the group. Subsequent diversification appears to have been driven by the closure of the Tethys Sea and the formation of the Antarctic circumpolar current, which isolated the northern and southern taxa. Contrary to an earlier hypothesis that postulated evolution from a deep-sea ancestral stock, the shallow-water genus Panulirus is the basal taxon in Stridentes, while the deep-sea genera Puerulus and Linuparus are found to be derived. This indicates that the spiny lobsters invaded deep-sea habitats from the shallower water rocky reefs and then radiated. Our results suggest that Synaxidae is not a valid family, and should be considered to be synonymous with Palinuridae. We also found that the previously proposed subgenera Sagmariasus and Nupalirus are genetically highly diverged, and both warrant a generic status.

  14. Activity of respiratory system during laser irradiation of brain structures

    NASA Astrophysics Data System (ADS)

    Merkulova, N. A.; Sergeyeva, L. I.

    1984-06-01

    The performance of one of the principal links of the respiratory system, the respiratory center, was studied as a function of the exposure of the medulla oblongata and the sensomotor zone of the cerebral hemisphere cortex to low level laser irradiation in the red wavelength of the spectrum. Experiments were done on white rats under barbital anesthesia. Under such conditions a substantial effect was observed on the activity of the respiratory center. Laser light may display activating or inhibitory influences, in some cases the bilateral symmetry of the activity of the respiratory center is affected indicating deep changes in the integrative mechanism of the functioning of the right and left sides of the hemispheres. The laser beam effect depends on many factors: specific light properties, duration of the exposure, repetition of exposures, initial functional state of the CNS, etc.

  15. Spectrally Resolved Fiber Photometry for Multi-component Analysis of Brain Circuits.

    PubMed

    Meng, Chengbo; Zhou, Jingheng; Papaneri, Amy; Peddada, Teja; Xu, Karen; Cui, Guohong

    2018-04-25

    To achieve simultaneous measurement of multiple cellular events in molecularly defined groups of neurons in vivo, we designed a spectrometer-based fiber photometry system that allows for spectral unmixing of multiple fluorescence signals recorded from deep brain structures in behaving animals. Using green and red Ca 2+ indicators differentially expressed in striatal direct- and indirect-pathway neurons, we were able to simultaneously monitor the neural activity in these two pathways in freely moving animals. We found that the activities were highly synchronized between the direct and indirect pathways within one hemisphere and were desynchronized between the two hemispheres. We further analyzed the relationship between the movement patterns and the magnitude of activation in direct- and indirect-pathway neurons and found that the striatal direct and indirect pathways coordinately control the dynamics and fate of movement. Published by Elsevier Inc.

  16. The canonical semantic network supports residual language function in chronic post-stroke aphasia

    PubMed Central

    Griffis, Joseph C.; Nenert, Rodolphe; Allendorfer, Jane B.; Vannest, Jennifer; Holland, Scott; Dietz, Aimee; Szaflarski, Jerzy P.

    2016-01-01

    Current theories of language recovery after stroke are limited by a reliance on small studies. Here, we aimed to test predictions of current theory and resolve inconsistencies regarding right hemispheric contributions to long-term recovery. We first defined the canonical semantic network in 43 healthy controls. Then, in a group of 43 patients with chronic post-stroke aphasia, we tested whether activity in this network predicted performance on measures of semantic comprehension, naming, and fluency while controlling for lesion volume effects. Canonical network activation accounted for 22–33% of the variance in language test scores. Whole-brain analyses corroborated these findings, and revealed a core set of regions showing positive relationships to all language measures. We next evaluated the relationship between activation magnitudes in left and right hemispheric portions of the network, and characterized how right hemispheric activation related to the extent of left hemispheric damage. Activation magnitudes in each hemispheric network were strongly correlated, but four right frontal regions showed heightened activity in patients with large lesions. Activity in two of these regions (inferior frontal gyrus pars opercularis and supplementary motor area) was associated with better language abilities in patients with larger lesions, but poorer language abilities in patients with smaller lesions. Our results indicate that bilateral language networks support language processing after stroke, and that right hemispheric activations related to extensive left hemisphere damage occur outside of the canonical semantic network and differentially relate to behavior depending on the extent of left hemispheric damage. PMID:27981674

  17. Stroke rehabilitation using noninvasive cortical stimulation: aphasia.

    PubMed

    Mylius, Veit; Zouari, Hela G; Ayache, Samar S; Farhat, Wassim H; Lefaucheur, Jean-Pascal

    2012-08-01

    Poststroke aphasia results from the lesion of cortical areas involved in the motor production of speech (Broca's aphasia) or in the semantic aspects of language comprehension (Wernicke's aphasia). Such lesions produce an important reorganization of speech/language-specific brain networks due to an imbalance between cortical facilitation and inhibition. In fact, functional recovery is associated with changes in the excitability of the damaged neural structures and their connections. Two main mechanisms are involved in poststroke aphasia recovery: the recruitment of perilesional regions of the left hemisphere in case of small lesion and the acquisition of language processing ability in homotopic areas of the nondominant right hemisphere when left hemispheric language abilities are permanently lost. There is some evidence that noninvasive cortical stimulation, especially when combined with language therapy or other therapeutic approaches, can promote aphasia recovery. Cortical stimulation was mainly used to either increase perilesional excitability or reduce contralesional activity based on the concept of reciprocal inhibition and maladaptive plasticity. However, recent studies also showed some positive effects of the reinforcement of neural activities in the contralateral right hemisphere, based on the potential compensatory role of the nondominant hemisphere in stroke recovery.

  18. Semitransparent cirrus clouds in the upper troposphere and their contribution to the particulate scattering in the tropical UTLS region

    NASA Astrophysics Data System (ADS)

    Thampi, Bijoy V.; Parameswaran, K.; Sunilkumar, S. V.

    2012-01-01

    Contribution of semitransparent cirrus (STC) to the scattering properties of particulates in the UTLS region is examined over the Indian region using the lidar data from Gadanki (13.5°N, 79.2°E) and SAGE-II measurements from 30°S to 30°N in the longitude region 70-90°E within the feasibility of these measurements. While the contribution of STC to particulate optical depth (τp) in UT is found to be quite significant in the equatorial and off-equatorial regions in both the hemispheres during summer, this is very small during winter in the off-equatorial regions. Dense STCs in UT also influences the aerosol scattering below the cloud-base and above the cloud-top (LS). This STC influence in LS is quite significant in the northern hemisphere and almost insignificant over the southern hemisphere, where the STC-cover as well as its optical depth is relatively low. This hemispheric difference is attributed to relatively strong tropospheric convection in the northern hemisphere.

  19. Cassini Visual and Infrared Mapping Spectrometer observations of Iapetus: Detection of CO2

    USGS Publications Warehouse

    Buratti, B.J.; Cruikshank, D.P.; Brown, R.H.; Clark, R.N.; Bauer, J.M.; Jaumann, R.; McCord, T.B.; Simonelli, D.P.; Hibbitts, C.A.; Hansen, G.B.; Owen, T.C.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Roush, T.L.; Soderlund, K.; Muradyan, A.

    2005-01-01

    The Visual and Infrared Mapping Spectrometer (VIMS) instrument aboard the Cassini spacecraft obtained its first spectral map of the satellite lapetus in which new absorption bands are seen in the spectra of both the low-albedo hemisphere and the H2O ice-rich hemisphere. Carbon dioxide is identified in the low-albedo material, probably as a photochemically produced molecule that is trapped in H2O ice or in some mineral or complex organic solid. Other absorption bands are unidentified. The spectrum of the low-albedo hemisphere is satisfactorily modeled with a combination of organic tholin, poly-HCN, and small amounts of H2O ice and Fe 2O3. The high-albedo hemisphere is modeled with H 2O ice slightly darkened with tholin. The detection of CO2 in the low-albedo material on the leading hemisphere supports the contention that it is carbon-bearing material from an external source that has been swept up by the satellite's orbital motion. ?? 2005. The American Astronomical Society. All rights reserved.

  20. Depth extent of hemispherical difference in equatorial path velocities in the upper inner core

    NASA Astrophysics Data System (ADS)

    Tanaka, S.

    2010-12-01

    So far, the hypothesis of hemispherical inner core is likely to be robust through many studies of body waves and free oscillations. Its fine structure, however, is still unknown. Here I focus on the thickness of hemispherical difference seen in the equatorial path velocities. Previously, the depth extent is examined with PKP(BC)-PKP(DF) and PKP(CD)-PKP(DF) times as a function of epicentral distance because PKP(AB)-PKP(DF) times are too noisy to detect a very small difference that is expected to be about 0.5 s. To extend the available depth (distance) range for PKP(DF), I choose PKP(Cdiff) as a reference, partly including PKP(BC). Broadband seismic arrays or dense networks is needed for the identification of small and vague PKP(Cdiff) signal. After grouping by the combinations of seismic arrays and hypocenter regions in the distance range between 150° and 160°, 5 sampled areas are collected, which are North Africa, Central Africa, the Indian Ocean, Northeastern Asia, and the western coast of North America. In this study, I analyze short period waveforms through the band-pass filter with cut off frequencies of 1 and 5 Hz because this frequency range is more sensitive to the structure. As the ray theory is not valid for diffracted waves, I calculate theoretical PKP waves using the reflectivity method and apply the same filter as used in the observed waveforms for comparison. The travel time differences of PKP(Cdiff)-PKP(DF) are well explained by ak135 as an average, and the geographical pattern of the data scatter is consistent with the hemispherical distribution defined by Tanaka and Hamaguchi [1997]. To explain the scatter of differential travel times, thickness of hemispherical heterogeneity in the upper inner core is required to be approximately 500 km rather than 200 km that is previously proposed. The velocity perturbation is assumed to have the maximum at the top of the inner core and reduce with depth. Tentatively, the maximum velocity perturbations of +0.3% and -0.4% is proposed for eastern and western hemispheres, respectively. The data scatter in the western hemisphere is larger than that in eastern hemisphere, suggesting the existence of complex structure in the western.

  1. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: an in vivo microdialysis study.

    PubMed

    Qureshi, Adnan I; Ali, Zulfiqar; Suri, M Fareed K; Shuaib, Asfhaq; Baker, Glen; Todd, Kathryn; Guterman, Lee R; Hopkins, L Nelson

    2003-05-01

    To determine whether extracellular concentrations of glutamate and other amino acids are significantly elevated after intracerebral hemorrhage and, if so, the temporal characteristics of these changes. Although the role of excitotoxic amino acids, particularly that of glutamate, has been described in ischemic stroke and head trauma, no information exists regarding their possible contribution to the pathogenesis of neuronal injury in intracerebral hemorrhage. Prospective, controlled, laboratory trial. Animal research laboratory. Sixteen anesthetized New Zealand rabbits. We introduced intracerebral hemorrhage in each of eight anesthetized New Zealand rabbits by injecting 0.4 mL of autologous blood under arterial pressure into the deep gray matter of the cerebrum. Extracellular fluid samples were collected from the perihematoma region and contralateral (right) hemisphere by in vivo microdialysis at 30-min intervals for 6 hrs. Corresponding samples were similarly collected from both hemispheres in each of eight control animals that underwent needle placement without introduction of a hematoma. Concentrations of amino acids (glutamate, aspartate, asparagine, glycine, taurine, and gamma-aminobutyric acid) in the samples were measured by use of high-pressure liquid chromatography with fluorescence detection. Glutamate concentrations (mean +/- sem) were significantly higher in the hemisphere ipsilateral to the hematoma than in the contralateral hemisphere (92 +/- 22 pg/microL vs. 22 +/- 6 pg/microL) at 30 mins after hematoma creation. A significant increase was observed at 30 mins posthematoma creation in the hemisphere ipsilateral to the hematoma compared with the baseline value. A nonsignificant increase in glutamate concentration persisted in the hemisphere ipsilateral to the hematoma, ranging from 134% to 187% of baseline value between 1 and 5 hrs after hematoma creation. In the hemisphere ipsilateral to the hematoma, a three-fold increase in the concentration of glycine was observed at 30 mins after hematoma creation compared with the baseline level (890 +/- 251 pg/microL vs. 291 +/- 73 pg/microL). There was a significant difference between the hemisphere ipsilateral to the hematoma compared with the ipsilateral (corresponding) hemisphere of the control group at 30 mins posthematoma (890 +/- 251 pg/microL vs. 248 +/- 66 pg/microL). A similar transient increase was observed in taurine and asparagine concentrations at 30 mins after hematoma creation, compared with baseline measurements. Taurine concentrations in the hemisphere ipsilateral to the hematoma were significantly higher than the ipsilateral hemisphere of the control group (622 +/- 180 pg/microL vs. 202 +/- 64 pg/microL) at 30 mins after hematoma creation. The present study suggests that glutamate and other amino acids accumulate transiently in extracellular fluids in the perihematoma region during the early period of intracerebral hemorrhage. The exact role of these amino acids in the pathogenesis of neuronal injury observed in intracerebral hemorrhage needs to be defined.

  2. The ANDES Deep Underground Laboratory in South America: status and prospects

    NASA Astrophysics Data System (ADS)

    Bertou, Xavier

    2017-01-01

    The construction of the Agua Negra tunnel through the Andes between Argentina and Chile is a unique opportunity to build a world class deep underground laboratory in the southern hemisphere, with 1750 m of rock overburden. At 30 degrees latitude south, far from nuclear power plants, it provides a unique site for Dark Matter searches and Neutrino experiments, and can host multidisciplinary experiments with a specific focus on Earth sciences given its location in a peculiar geoactive region. Its operation is foreseen to be coordinated by an international consortium and to start in 2026. In this presentation the current status of the Agua Negra tunnel and the ANDES initiative will be reviewed, and the scientific programme of the planned laboratory will be discussed.

  3. Western Hemisphere Conference on Persons with Disabilities. Conference Proceedings (Washington, D.C., March 14-18, 1993) = Conferencia Hemisferica Occidental sobre Personas con Discapacidades. Actas de la Conferencia. (Washington, D.C., 14 al 18 de Marzo de 1993).

    ERIC Educational Resources Information Center

    Kelley, Jerry D., Ed.; And Others

    This document presents the proceedings of a conference which brought together delegates and First Ladies representing western hemisphere nations to address needs and issues affecting people with disabilities in the Americas. It presents the texts of two keynote addresses: "Small Triumphs, Big Victories: A Global View of Persons with…

  4. Semantic, perceptual and number space: relations between category width and spatial processing.

    PubMed

    Brugger, Peter; Loetscher, Tobias; Graves, Roger E; Knoch, Daria

    2007-05-17

    Coarse semantic encoding and broad categorization behavior are the hallmarks of the right cerebral hemisphere's contribution to language processing. We correlated 40 healthy subjects' breadth of categorization as assessed with Pettigrew's category width scale with lateral asymmetries in perceptual and representational space. Specifically, we hypothesized broader category width to be associated with larger leftward spatial biases. For the 20 men, but not the 20 women, this hypothesis was confirmed both in a lateralized tachistoscopic task with chimeric faces and a random digit generation task; the higher a male participant's score on category width, the more pronounced were his left-visual field bias in the judgement of chimeric faces and his small-number preference in digit generation ("small" is to the left of "large" in number space). Subjects' category width was unrelated to lateral displacements in a blindfolded tactile-motor rod centering task. These findings indicate that visual-spatial functions of the right hemisphere should not be considered independent of the same hemisphere's contribution to language. Linguistic and spatial cognition may be more tightly interwoven than is currently assumed.

  5. The USNO-UKIRT K-band Hemisphere Survey

    NASA Astrophysics Data System (ADS)

    Dahm, Scott; Bruursema, Justice; Munn, Jeffrey A.; Vrba, Fred J.; Dorland, Bryan; Dye, Simon; Kerr, Tom; Varricatt, Watson; Irwin, Mike; Lawrence, Andy; McLaren, Robert; Hodapp, Klaus; Hasinger, Guenther

    2018-01-01

    We present initial results from the United States Naval Observatory (USNO) and UKIRT K-band Hemisphere Survey (U2HS), currently underway using the Wide Field Camera (WFCAM) installed on UKIRT on Maunakea. U2HS is a collaborative effort undertaken by USNO, the Institute for Astronomy, University of Hawaii, the Cambridge Astronomy Survey Unit (CASU) and the Wide Field Astronomy Unit (WFAU) in Edinburgh. The principal objective of the U2HS is to provide continuous northern hemisphere K-band coverage over a declination range of δ=0o – +60o by combining over 12,700 deg2 of new imaging with the existing UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Galactic Plane Survey (GPS) and Galactic Cluster Survey (GCS). U2HS will achieve a 5-σ point source sensitivity of K~18.4 mag (Vega), over three magnitudes deeper than the Two Micron All Sky Survey (2MASS). In this contribution we discuss survey design, execution, data acquisition and processing, photometric calibration and quality control. The data obtained by the U2HS will be made publicly available through the Wide Field Science Archive (WSA) maintained by the WFAU.

  6. The vorticity of Solar photospheric flows on the scale of granulation

    NASA Astrophysics Data System (ADS)

    Pevtsov, A. A.

    2016-12-01

    We employ time sequences of images observed with a G-band filter (λ4305Å) by the Solar Optical Telescope (SOT) on board of Hinode spacecraft at different latitude along solar central meridian to study vorticity of granular flows in quiet Sun areas during deep minimum of solar activity. Using a feature correlation tracking (FCT) technique, we calculate the vorticity of granular-scale flows. Assuming the known pattern of vertical flows (upward in granules and downward in intergranular lanes), we infer the sign of kinetic helicity of these flows. We show that the kinetic helicity of granular flows and intergranular vortices exhibits a weak hemispheric preference, which is in agreement with the action of the Coriolis force. This slight hemispheric sign asymmetry, however, is not statistically significant given large scatter in the average vorticity. The sign of the current helicity density of network magnetic fields computed using full disk vector magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) does not show any hemispheric preference. The combination of these two findings suggests that the photospheric dynamo operating on the scale of granular flows is non-helical in nature.

  7. Quantitative EEG abnormalities in major depressive disorder with basal ganglia stroke with lesions in different hemispheres.

    PubMed

    Wang, Chunfang; Chen, Yuanyuan; Zhang, Ying; Chen, Jin; Ding, Xiaojing; Ming, Dong; Du, Jingang

    2017-06-01

    This study aimed to examine the aberrant EEG oscillation in major depressive subjects with basal ganglia stroke with lesions in different hemispheres. Resting EEG of 16 electrodes in 58 stroke subjects, 26 of whom had poststroke depression (13 with left-hemisphere lesion and 13 with right) and 32 of whom did not (18 with left lesion and 14 with right), was recorded to obtain spectral power analysis for several frequency bands. Multiple analysis of variance and receiver operating characteristic (ROC) curves were used to identify differences between poststroke depression (PSD) and poststroke non-depression (PSND), treating the different lesion hemispheres separately. Moreover, Pearson linear correlation analysis was conducted to test the severity of depressive symptoms and EEG indices. PSD with left-hemisphere lesion showed increased beta2 power in frontal and central areas, but PSD with right-hemisphere lesion showed increased theta and alpha power mainly in occipital and temporal regions. Additionally, for left-hemisphere lesions, beta2 power in central and right parietal regions provided high discrimination between PSD and PSND, and for right-hemisphere lesions, theta power was similarly discriminative in most regions, especially temporal regions. We also explored the association between symptoms of depression and the power of abnormal bands, but we found no such relationship. The sample size was relatively small and included subjects with different lesions of the basal ganglia. The aberrant EEG oscillation in subjects with PSD differs between subjects with lesions of the left and right hemispheres, suggesting a complex association between depression and lesion location in stroke patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The MEarth Project: Finding the Best Targets for Atmospheric Characterization with JWST

    NASA Astrophysics Data System (ADS)

    Berta-Thompson, Z.

    2014-04-01

    If we want to directly observe the radius, orbit, mass, and atmosphere of a small, cool, habitable exoplanet, our best opportunity is to find such a planet transiting a small, cool, nearby M dwarf star. The MEarth Project is an ongoing all-sky survey for Earth-like planets transiting the closest, smallest M dwarfs in the Galaxy. MEarth aims to find good targets for atmospheric characterization with JWST and the next generation of enormous ground-based telescopes. This poster provides a status update on the MEarth Project, including the progress we've made over the past five years with 8 telescopes in the Northern hemisphere and promising early results from our new installation of 8 more telescopes in the Southern hemisphere.

  9. Parcellations and Hemispheric Asymmetries of Human Cerebral Cortex Analyzed on Surface-Based Atlases

    PubMed Central

    Glasser, Matthew F.; Dierker, Donna L.; Harwell, John; Coalson, Timothy

    2012-01-01

    We report on surface-based analyses that enhance our understanding of human cortical organization, including its convolutions and its parcellation into many distinct areas. The surface area of human neocortex averages 973 cm2 per hemisphere, based on cortical midthickness surfaces of 2 cohorts of subjects. We implemented a method to register individual subjects to a hybrid version of the FreeSurfer “fsaverage” atlas whose left and right hemispheres are in precise geographic correspondence. Cortical folding patterns in the resultant population-average “fs_LR” midthickness surfaces are remarkably similar in the left and right hemispheres, even in regions showing significant asymmetry in 3D position. Both hemispheres are equal in average surface area, but hotspots of surface area asymmetry are present in the Sylvian Fissure and elsewhere, together with a broad pattern of asymmetries that are significant though small in magnitude. Multiple cortical parcellation schemes registered to the human atlas provide valuable reference data sets for comparisons with other studies. Identified cortical areas vary in size by more than 2 orders of magnitude. The total number of human neocortical areas is estimated to be ∼150 to 200 areas per hemisphere, which is modestly larger than a recent estimate for the macaque. PMID:22047963

  10. Is the treatment of the small saphenous veins with foam sclerotherapy at risk of deep vein thrombosis?

    PubMed

    Gillet, J L; Lausecker, M; Sica, M; Guedes, J M; Allaert, F A

    2014-10-01

    To assess the deep vein thrombosis risk of the treatment of the small saphenous veins depending on the anatomical pattern of the veins. A multicenter, prospective and controlled study was carried out in which small saphenous vein trunks were treated with ultrasound-guided foam sclerotherapy. The anatomical pattern (saphenopopliteal junction, perforators) was assessed by Duplex ultrasound before the treatment. All patients were systematically checked by Duplex ultrasound 8 to 30 days after the procedure to identify a potential deep vein thrombosis. Three hundred and thirty-one small saphenous veins were treated in 22 phlebology clinics. No proximal deep vein thrombosis occurred. Two (0.6%) medial gastrocnemius veins thrombosis occurred in symptomatic patients. Five medial gastrocnemius veins thrombosis and four cases of extension of the small saphenous vein sclerosis into the popliteal vein, which all occurred when the small saphenous vein connected directly into the popliteal vein, were identified by systematic Duplex ultrasound examination in asymptomatic patients. Medial gastrocnemius veins thrombosis were more frequent (p = 0.02) in patients with medial gastrocnemius veins perforator. A common outlet or channel between the small saphenous vein and the medial gastrocnemius veins did not increase the risk of deep vein thrombosis. Deep vein thrombosis after foam sclerotherapy of the small saphenous vein are very rare. Only 0.6% medial gastrocnemius veins thrombosis occurred in symptomatic patients. However, the anatomical pattern of the small saphenous vein should be taken into account and patients with medial gastrocnemius veins perforators and the small saphenous vein connected directly into the popliteal vein should be checked by Duplex ultrasound one or two weeks after the procedure. Recommendations based on our everyday practice and the findings of this study are suggested to prevent and treat deep vein thrombosis. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. Schizophrenia as Failure of Left Hemispheric Dominance for the Phonological Component of Language

    PubMed Central

    Angrilli, Alessandro; Spironelli, Chiara; Elbert, Thomas; Crow, Timothy J.; Marano, Gianfranco; Stegagno, Luciano

    2009-01-01

    Background T. J. Crow suggested that the genetic variance associated with the evolution in Homo sapiens of hemispheric dominance for language carries with it the hazard of the symptoms of schizophrenia. Individuals lacking the typical left hemisphere advantage for language, in particular for phonological components, would be at increased risk of the typical symptoms such as auditory hallucinations and delusions. Methodology/Principal Findings Twelve schizophrenic patients treated with low levels of neuroleptics and twelve matched healthy controls participated in an event-related potential experiment. Subjects matched word-pairs in three tasks: rhyming/phonological, semantic judgment and word recognition. Slow evoked potentials were recorded from 26 scalp electrodes, and a laterality index was computed for anterior and posterior regions during the inter stimulus interval. During phonological processing individuals with schizophrenia failed to achieve the left hemispheric dominance consistently observed in healthy controls. The effect involved anterior (fronto-temporal) brain regions and was specific for the Phonological task; group differences were small or absent when subjects processed the same stimulus material in a Semantic task or during Word Recognition, i.e. during tasks that typically activate more widespread areas in both hemispheres. Conclusions/Significance We show for the first time how the deficit of lateralization in the schizophrenic brain is specific for the phonological component of language. This loss of hemispheric dominance would explain typical symptoms, e.g. when an individual's own thoughts are perceived as an external intruding voice. The change can be interpreted as a consequence of “hemispheric indecision”, a failure to segregate phonological engrams in one hemisphere. PMID:19223971

  12. Schizophrenia as failure of left hemispheric dominance for the phonological component of language.

    PubMed

    Angrilli, Alessandro; Spironelli, Chiara; Elbert, Thomas; Crow, Timothy J; Marano, Gianfranco; Stegagno, Luciano

    2009-01-01

    T. J. Crow suggested that the genetic variance associated with the evolution in Homo sapiens of hemispheric dominance for language carries with it the hazard of the symptoms of schizophrenia. Individuals lacking the typical left hemisphere advantage for language, in particular for phonological components, would be at increased risk of the typical symptoms such as auditory hallucinations and delusions. Twelve schizophrenic patients treated with low levels of neuroleptics and twelve matched healthy controls participated in an event-related potential experiment. Subjects matched word-pairs in three tasks: rhyming/phonological, semantic judgment and word recognition. Slow evoked potentials were recorded from 26 scalp electrodes, and a laterality index was computed for anterior and posterior regions during the inter stimulus interval. During phonological processing individuals with schizophrenia failed to achieve the left hemispheric dominance consistently observed in healthy controls. The effect involved anterior (fronto-temporal) brain regions and was specific for the Phonological task; group differences were small or absent when subjects processed the same stimulus material in a Semantic task or during Word Recognition, i.e. during tasks that typically activate more widespread areas in both hemispheres. We show for the first time how the deficit of lateralization in the schizophrenic brain is specific for the phonological component of language. This loss of hemispheric dominance would explain typical symptoms, e.g. when an individual's own thoughts are perceived as an external intruding voice. The change can be interpreted as a consequence of "hemispheric indecision", a failure to segregate phonological engrams in one hemisphere.

  13. Anomalous top layer in the inner core beneath the eastern hemisphere

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wen, L.; Niu, F.

    2003-12-01

    Recent studies reported hemispheric variations in seismic velocity and attenuation in the top of the inner core. It, however, remains unclear how the inner core hemisphericity extends deep in the inner core. Here, we analyze PKPbc-PKIKP and PKiKP-PKIKP waveforms collected from the Global Seismographic Network (GSN), regional recordings from the German Regional Seismic Network (GRSN) and Graefenberg (GRF) sampling along the equatorial path (the ray path whose ray angle is larger than 35o from the Earth's rotation axis). The observed global and regional PKPbc-PKIKP differential traveltimes and PKIKP/PKPbc amplitude ratios suggest a simple W2 model (Wen/Niu:2002) in the western hemisphere with a constant velocity gradient of 0.049(km/sec)/100km and a Q value of 600 in the top 400 km of the inner core. In the eastern hemisphere, the data require a change of velocity gradient and Q value at about 235 km below the inner core boundary (ICB). Based on forward modeling, we construct radial velocity and attenuation models in the eastern hemisphere which can explain both the PKiKP-PKIKP and PKPbc-PKIKP observations. The inner core in the eastern hemisphere has a flat velocity gradient extending to about 235 km below the ICB. We test two solutions for the velocity models in the deeper portion of the inner core, with one having a first-order discontinuity at 235 km below the ICB with a velocity jump of 0.07(km/sec) followed by the PREM gradient, and the other having a gradual velocity transition with 0.1(km/sec)/100km gradient extended from 235 km to 375 km below the ICB followed by the PREM gradient. The observed traveltimes exclude the sharp discontinuity velocity model, as it predicts a kink in differential traveltimes at distance of 151o-152o which is not observed in the global and regional datasets. The observed PKIKP/PKPbc amplitude ratios can be best explained by a step function of attenuation with a Q value of 250 at the top 300 km and a Q value of 600 at 300-400 km below the ICB. The top portion of the inner core in the eastern hemisphere is anomalous compared to the rest of the inner core, in having a flat velocity gradient, higher velocities and higher attenuation.

  14. An evaluation of bilateral monitoring of cerebral oxygen saturation during pediatric cardiac surgery.

    PubMed

    Kussman, Barry D; Wypij, David; DiNardo, James A; Newburger, Jane; Jonas, Richard A; Bartlett, Jodi; McGrath, Ellen; Laussen, Peter C

    2005-11-01

    Cerebral oximetry is a technique that enables monitoring of regional cerebral oxygenation during cardiac surgery. In this study, we evaluated differences in bi-hemispheric measurement of cerebral oxygen saturation using near-infrared spectroscopy in 62 infants undergoing biventricular repair without aortic arch reconstruction. Left and right regional cerebral oxygen saturation index (rSO2i) were recorded continuously after the induction of anesthesia, and data were analyzed at 12 time points. Baseline rSO2i measurements were left 65 +/- 13 and right 66 +/- 13 (P = 0.17). Mean left and right rSO2i measurements were similar (< or =2 percentage points/absolute scale units) before, during, and after cardiopulmonary bypass, irrespective of the use of deep hypothermic circulatory arrest. Further longitudinal neurological outcome studies are required to determine whether uni- or bi-hemispheric monitoring is required in this patient population.

  15. Entire Western Hemisphere visible from Apollo 8 spacecraft

    NASA Image and Video Library

    1968-12-22

    AS08-16-2593 (21-27 Dec. 1968) --- A striking view from the Apollo 8 spacecraft showing nearly the entire Western Hemisphere, from the mouth of the St. Lawrence River, including nearby Newfoundland, extending to Tierra del Fuego at the southern tip of South America. Central America is clearly outlined. Nearly all of South America is covered by clouds, except the high Andes Mountain chain along the west coast. A small portion of the bulge of West Africa shows along the sunset terminator.

  16. Search for Open binaries in the Southern Celestial Hemisphere using SPM4

    NASA Astrophysics Data System (ADS)

    Dávila, E.; Vieira, K.; Rosales, K.

    2018-01-01

    Open binaries' weak gravitational binding makes them vulnerable to any perturbation, turning them into excellent probes of the gravitational field where they are located. Currently there are only a few hundreds known or suspected open binaries, therefore a search for more of these systems is highly encouraging by looking for pairs of stars with common proper motions in an extensive, deep, and high quality astrometric catalog such as the SPM4 (Girard et al. 2011).

  17. Passive Acoustic Thermometry Using Low-Frequency Deep Water Noise

    DTIC Science & Technology

    2014-09-30

    M. Fowler, S. Salo, Antarctic icebergs : A significant natural ocean sound source in the Southern Hemisphere. Geochem. Geophys. DOI: 10.1002...1974). 24. J. Tournadre, F. Girard-Ardhuin, B. Legrésy, Antarctic icebergs distributions, 2002-2010. J. Geophys. Res: Oceans 117, C05004, (2012...surface in the Polar Regions (e.g. due to loud iceberg cracking events with levels up to 245 dB re 1 μPa at 1 m) can efficiently couple directly to the

  18. Formation of Antarctic Intermediate Water during the Plio-Pleistocene

    NASA Astrophysics Data System (ADS)

    Karas, C.; Goldstein, S. L.; deMenocal, P. B.

    2017-12-01

    Antarctic Intermediate Water (AAIW) plays a fundamental role in modern climate change. It is an important sink for anthropogenic CO2, it represents an important source water in several (sub)tropical upwelling regions and it is the coldwater route from the Southern Hemisphere to the North Atlantic Ocean replacing North Atlantic Deep Water (NADW). During the last 4 million years, which marks the transition from the warm Pliocene climate towards icehouse conditions, the formation of this watermass is still largely unknown. We here present a multi-proxy approach using neodymium isotopes (ɛNd) on Fe-Mn encrusted foraminifera and coupled benthic Mg/Ca and stable isotopes from South Atlantic Site 516, within AAIW, to reconstruct its variability. Our data show that the modern formation of AAIW started about 3 million years ago, indicated by a distinct drop of ɛNd by 1.5, a cooling and freshening of benthic TMg/Ca by 8°C and a drop in benthic d13C values towards modern times. We interpret these changes as a reduced inflow of Pacific waters into the South Atlantic and the onset of modern deep vertical mixing at the source regions of AAIW near the polar front. These processes had significant effects on the CO2 storage of the ocean that supported global cooling and the intensification of the Northern Hemisphere Glaciation.

  19. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.

    PubMed

    Jaccard, Samuel L; Galbraith, Eric D; Martínez-García, Alfredo; Anderson, Robert F

    2016-02-11

    No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial-interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting--at least in part--a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration.

  20. Glacial CO2 Cycles: A Composite Scenario

    NASA Astrophysics Data System (ADS)

    Broecker, W. S.

    2015-12-01

    There are three main contributors to the glacial drawdown of atmospheric CO2 content: starvation of the supply of carbon to the ocean-atmosphere reservoir, excess CO2 storage in the deep sea, and surface-ocean cooling. In this talk, I explore a scenario in which all three play significant roles. Key to this scenario is the assumption that deep ocean storage is related to the extent of nutrient stratification of the deep Atlantic. The stronger this stratification, the larger the storage of respiration CO2. Further, it is my contention that the link between Milankovitch insolation cycles and climate is reorganizations of the ocean's thermohaline circulation leading to changes in the deep ocean's CO2 storage. If this is the case, the deep Atlantic d13C record kept in benthic foraminifera shells tells us that deep ocean CO2 storage follows Northern Hemisphere summer insolation cycles and thus lacks the downward ramp so prominent in the records of sea level, benthic 18O and CO2. Rather, the ramp is created by the damping of planetary CO2 emissions during glacial time intervals. As it is premature to present a specific scenario, I provide an example as to how these three contributors might be combined. As their magnitudes and shapes remain largely unconstrained, the intent of this exercise is to provoke creative thinking.

  1. Tailoring sphere density for high pressure physical property measurements on liquids

    NASA Astrophysics Data System (ADS)

    Secco, R. A.; Tucker, R. F.; Balog, S. P.; Rutter, M. D.

    2001-04-01

    We present a new method of tailoring the density of a sphere for use as a probe in high pressure-temperature physical property experiments on liquids. The method consists of a composite sphere made of an inner, high density, metallic, spherical core and an exterior, low density, refractory, spherical shell or mantle. Micromechanical techniques are used to fabricate the composite sphere. We describe a relatively simple mechanical device that can grind hemispherical recesses as small as 200 μm in diameter in sapphire and as small as 500 μm in diameter in ruby hemispheres. Examples of composite spheres made with a Pt or WC core and Al2O3 shell used in metallic liquids pressurized to 16 GPa and 1900 K are shown.

  2. Ionization processes in a local analogue of distant clumpy galaxies: VLT MUSE IFU spectroscopy and FORS deep images of the TDG NGC 5291N

    NASA Astrophysics Data System (ADS)

    Fensch, J.; Duc, P.-A.; Weilbacher, P. M.; Boquien, M.; Zackrisson, E.

    2016-01-01

    Context. We present Integral Field Unit (IFU) observations with MUSE and deep imaging with FORS of a dwarf galaxy recently formed within the giant collisional HI ring surrounding NGC 5291. This Tidal Dwarf Galaxy (TDG) -like object has the characteristics of typical z = 1-2 gas-rich spiral galaxies: a high gas fraction, a rather turbulent clumpy interstellar medium, the absence of an old stellar population, and a moderate metallicity and star formation efficiency. Aims: The MUSE spectra allow us to determine the physical conditions within the various complex substructures revealed by the deep optical images and to scrutinize the ionization processes at play in this specific medium at unprecedented spatial resolution. Methods: Starburst age, extinction, and metallicity maps of the TDG and the surrounding regions were determined using the strong emission lines Hβ, [OIII], [OI], [NII], Hα, and [SII] combined with empirical diagnostics. Different ionization mechanisms were distinguished using BPT-like diagrams and shock plus photoionization models. Results: In general, the physical conditions within the star-forming regions are homogeneous, in particular with a uniform half-solar oxygen abundance. On small scales, the derived extinction map shows narrow dust lanes. Regions with atypically strong [OI] emission line immediately surround the TDG. The [OI]/ Hα ratio cannot be easily accounted for by the photoionization by young stars or shock models. At greater distances from the main star-foming clumps, a faint diffuse blue continuum emission is observed, both with the deep FORS images and the MUSE data. It does not have a clear counterpart in the UV regime probed by GALEX. A stacked spectrum towards this region does not exhibit any emission line, excluding faint levels of star formation, or stellar absorption lines that might have revealed the presence of old stars. Several hypotheses are discussed for the origin of these intriguing features. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile: ESO MUSE programme 60.A-9320(A) and FORS programme 382.B-0213(A).

  3. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene.

    PubMed

    Burls, Natalie J; Fedorov, Alexey V; Sigman, Daniel M; Jaccard, Samuel L; Tiedemann, Ralf; Haug, Gerald H

    2017-09-01

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400-ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.

  4. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Liu, Z.; Brady, E. C.; Oppo, D.; Clark, P. U.; Jahn, A.; Marcott, S. A.; Lindsay, K. T.

    2017-12-01

    The large-scale reorganization of deep-ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties due to freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by 1.4°C while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong mid-depth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way ocean circulation affects heat, a dynamic tracer, is considerably different than how it affects passive tracers like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.

  5. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; Oppo, Delia W.; Clark, Peter U.; Jahn, Alexandra; Marcott, Shaun A.; Lindsay, Keith

    2017-10-01

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ˜1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.

  6. DEWS (DEep White matter hyperintensity Segmentation framework): A fully automated pipeline for detecting small deep white matter hyperintensities in migraineurs.

    PubMed

    Park, Bo-Yong; Lee, Mi Ji; Lee, Seung-Hak; Cha, Jihoon; Chung, Chin-Sang; Kim, Sung Tae; Park, Hyunjin

    2018-01-01

    Migraineurs show an increased load of white matter hyperintensities (WMHs) and more rapid deep WMH progression. Previous methods for WMH segmentation have limited efficacy to detect small deep WMHs. We developed a new fully automated detection pipeline, DEWS (DEep White matter hyperintensity Segmentation framework), for small and superficially-located deep WMHs. A total of 148 non-elderly subjects with migraine were included in this study. The pipeline consists of three components: 1) white matter (WM) extraction, 2) WMH detection, and 3) false positive reduction. In WM extraction, we adjusted the WM mask to re-assign misclassified WMHs back to WM using many sequential low-level image processing steps. In WMH detection, the potential WMH clusters were detected using an intensity based threshold and region growing approach. For false positive reduction, the detected WMH clusters were classified into final WMHs and non-WMHs using the random forest (RF) classifier. Size, texture, and multi-scale deep features were used to train the RF classifier. DEWS successfully detected small deep WMHs with a high positive predictive value (PPV) of 0.98 and true positive rate (TPR) of 0.70 in the training and test sets. Similar performance of PPV (0.96) and TPR (0.68) was attained in the validation set. DEWS showed a superior performance in comparison with other methods. Our proposed pipeline is freely available online to help the research community in quantifying deep WMHs in non-elderly adults.

  7. Wind-tunnel investigation of the descent characteristics of bodies of revolution simulating anti-personnel bombs

    NASA Technical Reports Server (NTRS)

    Sher, S. H.

    1951-01-01

    An investigation has been conducted in the Langley 20-foot free spinning tunnel to study the relative behavior in descent of a number of homogeneous balsa bodies of revolution simulating anti-personnel bombs with a small cylindrical exploding device suspended approximately 10 feet below the bomb. The bodies of revolution included hemispherical, near-hemispherical, and near-paraboloid shapes. The ordinates of one near-paraboloid shape were specified by the Office of the Chief of Ordnance, U. S. Army. The behavior of the various bodies without the cylinder was also investigated. The results of the investigation indicated that several of the bodies descended vertically with their longitudinal axis, suspension line, and small cylinder in a vertical attitude,. However, the body, the ordinates of which had been specified by the Office of the Chief of Ordnance, U. S. Army, oscillated considerably from a vertical attitude while descending and therefore appeared unsuitable for its intended use. The behavior of this body became satisfactory when its center of gravity was moved well forward from its original position. In general, the results indicated that the descent characteristics of the bodies of revolution become more favorable as their shapes approached that of a hemisphere.

  8. Effect of Gravity Waves from Small Islands in the Southern Ocean on the Southern Hemisphere Atmospheric Circulation

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Oman, L. D.

    2018-01-01

    The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.

  9. KM3NeT/ARCA sensitivity to point-like neutrino sources

    NASA Astrophysics Data System (ADS)

    Trovato, A.; KM3NeT Collaboration

    2017-09-01

    KM3NeT is network of deep-sea neutrino telescopes in the Mediterranean Sea aiming at the discovery of cosmic neutrino sources (ARCA) and the determination of the neutrino mass hierarchy (ORCA). The geographical location of KM3NeT in the Northern hemisphere allows to observe most of the Galactic Plane, including the Galactic Centre. Thanks to its good angular resolution, prime targets of KM3NeT/ARCA are point-like neutrino sources and in particular galactic sources.

  10. Meridional flow in the solar convection zone. I. Measurements from gong data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholikov, S.; Serebryanskiy, A.; Jackiewicz, J., E-mail: kholikov@noao.edu

    2014-04-01

    Large-scale plasma flows in the Sun's convection zone likely play a major role in solar dynamics on decadal timescales. In particular, quantifying meridional motions is a critical ingredient for understanding the solar cycle and the transport of magnetic flux. Because the signal of such features can be quite small in deep solar layers and be buried in systematics or noise, the true meridional velocity profile has remained elusive. We perform time-distance helioseismology measurements on several years worth of Global Oscillation Network Group Doppler data. A spherical harmonic decomposition technique is applied to a subset of acoustic modes to measure travel-timemore » differences to try to obtain signatures of meridional flows throughout the solar convection zone. Center-to-limb systematics are taken into account in an intuitive yet ad hoc manner. Travel-time differences near the surface that are consistent with a poleward flow in each hemisphere and are similar to previous work are measured. Additionally, measurements in deep layers near the base of the convection zone suggest a possible equatorward flow, as well as partial evidence of a sign change in the travel-time differences at mid-convection zone depths. This analysis on an independent data set using different measurement techniques strengthens recent conclusions that the convection zone may have multiple 'cells' of meridional flow. The results may challenge the common understanding of one large conveyor belt operating in the solar convection zone. Further work with helioseismic inversions and a careful study of systematic effects are needed before firm conclusions of these large-scale flow structures can be made.« less

  11. Automatic classification of cardioembolic and arteriosclerotic ischemic strokes from apparent diffusion coefficient datasets using texture analysis and deep learning

    NASA Astrophysics Data System (ADS)

    Villafruela, Javier; Crites, Sebastian; Cheng, Bastian; Knaack, Christian; Thomalla, Götz; Menon, Bijoy K.; Forkert, Nils D.

    2017-03-01

    Stroke is a leading cause of death and disability in the western hemisphere. Acute ischemic strokes can be broadly classified based on the underlying cause into atherosclerotic strokes, cardioembolic strokes, small vessels disease, and stroke with other causes. The ability to determine the exact origin of an acute ischemic stroke is highly relevant for optimal treatment decision and preventing recurrent events. However, the differentiation of atherosclerotic and cardioembolic phenotypes can be especially challenging due to similar appearance and symptoms. The aim of this study was to develop and evaluate the feasibility of an image-based machine learning approach for discriminating between arteriosclerotic and cardioembolic acute ischemic strokes using 56 apparent diffusion coefficient (ADC) datasets from acute stroke patients. For this purpose, acute infarct lesions were semi-atomically segmented and 30,981 geometric and texture image features were extracted for each stroke volume. To improve the performance and accuracy, categorical Pearson's χ2 test was used to select the most informative features while removing redundant attributes. As a result, only 289 features were finally included for training of a deep multilayer feed-forward neural network without bootstrapping. The proposed method was evaluated using a leave-one-out cross validation scheme. The proposed classification method achieved an average area under receiver operator characteristic curve value of 0.93 and a classification accuracy of 94.64%. These first results suggest that the proposed image-based classification framework can support neurologists in clinical routine differentiating between atherosclerotic and cardioembolic phenotypes.

  12. Upper atmosphere differences between northern and southern high latitudes: The role of magnetic field asymmetry

    NASA Astrophysics Data System (ADS)

    Förster, Matthias; Cnossen, Ingrid

    2013-09-01

    The nondipolar portions of the Earth's main magnetic field constitute substantial differences between the two hemispheres. Beside the magnetic flux densities and patterns being different in the Northern Hemisphere (NH) and Southern Hemisphere (SH), also the offset between the invariant magnetic and the geographic poles is larger in the SH than in the NH. We investigated the effects of this magnetic field asymmetry on the high-latitude thermosphere and ionosphere using global numerical simulations and compared our results with recent observations. While the effects on the high-latitude plasma convection are small, the consequences for the neutral wind circulation are substantial. The cross-polar neutral wind and ion drift velocities are generally larger in the NH than the SH, and the hemispheric difference shows a semidiurnal variation. The neutral wind vorticity is likewise larger in the NH than in the SH, with the difference probably becoming larger for higher solar activity. In contrast, the spatial variance of the neutral wind is considerably larger in the SH polar region, with the hemispheric difference showing a strong semidiurnal variation. Its phase is similar to the phase of the semidiurnal variation of the hemispheric magnitude differences. Hemispheric differences in ion drift and neutral wind magnitude are most likely caused partly by the larger magnetic flux densities in the near-polar regions of the SH and partly by the larger offset between the invariant and geographic pole in the SH, while differences in spatial variance are probably just caused by the latter. We conclude that the asymmetry of the magnetic field, both in strength and in orientation, establishes substantial hemispheric differences in the neutral wind and plasma drift in the high-latitude upper atmosphere, which can help to explain observed hemispheric differences found with the Cluster/Electron Drift Instrument (EDI) and the Challenging Minisatellite Payload (CHAMP).

  13. Pliocene oceanic seaways and global climate.

    PubMed

    Karas, Cyrus; Nürnberg, Dirk; Bahr, André; Groeneveld, Jeroen; Herrle, Jens O; Tiedemann, Ralf; deMenocal, Peter B

    2017-01-05

    Tectonically induced changes in oceanic seaways had profound effects on global and regional climate during the Late Neogene. The constriction of the Central American Seaway reached a critical threshold during the early Pliocene ~4.8-4 million years (Ma) ago. Model simulations indicate the strengthening of the Atlantic Meridional Overturning Circulation (AMOC) with a signature warming response in the Northern Hemisphere and cooling in the Southern Hemisphere. Subsequently, between ~4-3 Ma, the constriction of the Indonesian Seaway impacted regional climate and might have accelerated the Northern Hemisphere Glaciation. We here present Pliocene Atlantic interhemispheric sea surface temperature and salinity gradients (deduced from foraminiferal Mg/Ca and stable oxygen isotopes, δ 18 O) in combination with a recently published benthic stable carbon isotope (δ 13 C) record from the southernmost extent of North Atlantic Deep Water to reconstruct gateway-related changes in the AMOC mode. After an early reduction of the AMOC at ~5.3 Ma, we show in agreement with model simulations of the impacts of Central American Seaway closure a strengthened AMOC with a global climate signature. During ~3.8-3 Ma, we suggest a weakening of the AMOC in line with the global cooling trend, with possible contributions from the constriction of the Indonesian Seaway.

  14. [Sex differences of spatial-temporal organization of biopotentials of the brain in adults and child 5-6 years old].

    PubMed

    Panasevich, E A; Tsitseroshin, M N

    2011-01-01

    Research of topical features of spatial structure of EEG distant relationships has been performed with correlation and coherent analyses of EEG for 26 children of 5-6 years old (12 boys and 14 girls) in comparison to the data at 33 adult subjects (15 men and 18 women). Men have much higher level of EEG intrahemispherical relations of posttemporal and frontal regions of the left hemisphere whereas women have the higher level prevalence of interhemispheric interactions, especially of bilateral-symmetrical arials of both hemispheres. Preschoolers have another character of sex differences in the system organization of inter-regional interactions of brain biopotentials than adults. In particularly the girls have exceeding of EEG distant relations in the same zones of left hemispheres, where at men such relations have exceeding in comparison with woman. The obtained data shows that the pronounced sexual dimorphism of inter-regional interactions of cortical biopotentials at adults and at children is formed, first of all, owing to of EEG distant relations topology differing in males and females subject. Investigation sex differences of spatial-temporal organization of biopotentials of the brain in children can promote forming of more hole and deep understanding of role of sex factor in development of human brain system activity.

  15. Complex Trajectories of Brain Development in the Healthy Human Fetus.

    PubMed

    Andescavage, Nickie N; du Plessis, Adre; McCarter, Robert; Serag, Ahmed; Evangelou, Iordanis; Vezina, Gilbert; Robertson, Richard; Limperopoulos, Catherine

    2017-11-01

    This study characterizes global and hemispheric brain growth in healthy human fetuses during the second half of pregnancy using three-dimensional MRI techniques. We studied 166 healthy fetuses that underwent MRI between 18 and 39 completed weeks gestation. We created three-dimensional high-resolution reconstructions of the brain and calculated volumes for left and right cortical gray matter (CGM), fetal white matter (FWM), deep subcortical structures (DSS), and the cerebellum. We calculated the rate of growth for each tissue class according to gestational age and described patterns of hemispheric growth. Each brain region demonstrated major increases in volume during the second half of gestation, the most pronounced being the cerebellum (34-fold), followed by FWM (22-fold), CGM (21-fold), and DSS (10-fold). The left cerebellar hemisphere, CGM, and DSS had larger volumes early in gestation, but these equalized by term. It has been increasingly recognized that brain asymmetry evolves throughout the human life span. Advanced quantitative MRI provides noninvasive measurements of early structural asymmetry between the left and right fetal brain that may inform functional and behavioral laterality differences seen in children and young adulthood. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Hemispheric specialization in quantification processes.

    PubMed

    Pasini, M; Tessari, A

    2001-01-01

    Three experiments were carried out to study hemispheric specialization for subitizing (the rapid enumeration of small patterns) and counting (the serial quantification process based on some formal principles). The experiments consist of numerosity identification of dot patterns presented in one visual field, with a tachistoscopic technique, or eye movements monitored through glasses, and comparison between centrally presented dot patterns and lateralized tachistoscopically presented digits. Our experiments show left visual field advantage in the identification and comparison tasks in the subitizing range, whereas right visual field advantage has been found in the comparison task for the counting range.

  17. The Southern Glacial Maximum 65,000 years ago and its Unfinished Termination

    NASA Astrophysics Data System (ADS)

    Schaefer, Joerg M.; Putnam, Aaron E.; Denton, George H.; Kaplan, Michael R.; Birkel, Sean; Doughty, Alice M.; Kelley, Sam; Barrell, David J. A.; Finkel, Robert C.; Winckler, Gisela; Anderson, Robert F.; Ninneman, Ulysses S.; Barker, Stephen; Schwartz, Roseanne; Andersen, Bjorn G.; Schluechter, Christian

    2015-04-01

    Glacial maxima and their terminations provide key insights into inter-hemispheric climate dynamics and the coupling of atmosphere, surface and deep ocean, hydrology, and cryosphere, which is fundamental for evaluating the robustness of earth's climate in view of ongoing climate change. The Last Glacial Maximum (LGM, ∼26-19 ka ago) is widely seen as the global cold peak during the last glacial cycle, and its transition to the Holocene interglacial, dubbed 'Termination 1 (T1)', as the most dramatic climate reorganization during this interval. Climate records show that over the last 800 ka, ice ages peaked and terminated on average every 100 ka ('100 ka world'). However, the mechanisms pacing glacial-interglacial transitions remain controversial and in particular the hemispheric manifestations and underlying orbital to regional driving forces of glacial maxima and subsequent terminations remain poorly understood. Here we show evidence for a full glacial maximum in the Southern Hemisphere 65.1 ± 2.7 ka ago and its 'Unfinished Termination'. Our 10Be chronology combined with a model simulation demonstrates that New Zealand's glaciers reached their maximum position of the last glacial cycle during Marine Isotope Stage-4 (MIS-4). Southern ocean and greenhouse gas records indicate coeval peak glacial conditions, making the case for the Southern Glacial Maximum about halfway through the last glacial cycle and only 15 ka after the last warm period (MIS-5a). We present the hypothesis that subsequently, driven by boreal summer insolation forcing, a termination began but remained unfinished, possibly because the northern ice sheets were only moderately large and could not supply enough meltwater to the North Atlantic through Heinrich Stadial 6 to drive a full termination. Yet the Unfinished Termination left behind substantial ice on the northern continents (about 50% of the full LGM ice volume) and after another 45 ka of cooling and ice sheet growth the earth was at inter-hemispheric Last Glacial Maximum configuration, when similar orbital forcing hit maximum-size northern ice sheets and ushered in T1 and thus the ongoing interglacial. This argument highlights the critical role of full glacial conditions in both hemispheres for terminations and implies that the Southern Hemisphere climate could transition from interglacial to full glacial conditions in about 15,000 years, while the Northern Hemisphere and its continental ice-sheets required half a glacial cycle.

  18. A New Model of Orbital Pacing for Pliocene Glaciations

    NASA Astrophysics Data System (ADS)

    Herbert, T.; Dowsett, H. J.; Caballero-Gill, R. P.

    2015-12-01

    The earth's climate system has gone through major changes over time that serve as natural experiments to test our understanding of linkages and feedbacks that may come into play if the Earth continues to warm, as expected from greenhouse gas forcing. Our project investigates patterns of climate change between the northern and southern hemispheres during the mid-Pliocene epoch (~3-4 Myr ago) when the overall climate state was warmer than today. Critically, evidence suggests that the amount of ice on Antarctica was similar to today, but that there was little or no permanent ice on land in the northern hemisphere. Most climate scientists have therefore supposed that orbitally-paced climate change would initiate in the region around the Antarctic, and be driven primarily by the 41,000 year obliquity cycle. Using distributed data sets on both sea surface temperature and the combination of deep sea temperature and global ice volume recorded by ð18O, we find a pervasive influence of eccentricity/precession on Pliocene paleoclimate that has been under-appreciated. We tentatively constrain the phase of the climate response by calibrating temperature patterns to the precessional "clock" of the Mediterranean sapropel sequence. Large Pliocene glacial events were paced by precession, and coincide with minimum northern hemisphere summer insolation. This mode is in many ways the opposite of the late Pleistocene, where climate positively follows the envelope of northern hemisphere precession. In the Pliocene case, glacial periods instead followed the lower envelope of precession and nodes of low precessional variance supported peak interglacial conditions. The observations can be explained by positing that during the warmer Pliocene, the high latitudes of the northern hemisphere could only support cryosphere expansion during times of minimal summer insolation. While the presence of ice-rafted debris in the North Atlantic and North Pacific unambiguously confirm a northern hemisphere component to peak Pliocene glaciations, the amplitude of the ð18O excursions in features such as isotope stage M2 almost certainly requires a significant coupling to Antarctic ice volume as well.

  19. Global ice-sheet system interlocked by sea level

    NASA Astrophysics Data System (ADS)

    Denton, George H.; Hughes, Terence J.; Karlén, Wibjörn

    1986-07-01

    Denton and Hughes (1983, Quaternary Research20, 125-144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results ( Manabe and Broccoli, 1985, Journal of Geophysical Research90, 2167-2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate ( Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In "The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present" (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303-318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This permitted renewed formation of North Atlantic Deep Water, which could well have controlled atmospheric carbon dioxide ( W. S. Broecker, D. M. Peteet, and D. Rind, 1985, Nature ( London) 315, 21-26). Combined melting and consequent sea-level rise from the three warming factors initiated irreversible collapse of the interlocked global ice-sheet system, which was at its largest but most vulnerable configuration.

  20. BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data.

    PubMed

    Guo, Yang; Liu, Shuhui; Li, Zhanhuai; Shang, Xuequn

    2018-04-11

    The classification of cancer subtypes is of great importance to cancer disease diagnosis and therapy. Many supervised learning approaches have been applied to cancer subtype classification in the past few years, especially of deep learning based approaches. Recently, the deep forest model has been proposed as an alternative of deep neural networks to learn hyper-representations by using cascade ensemble decision trees. It has been proved that the deep forest model has competitive or even better performance than deep neural networks in some extent. However, the standard deep forest model may face overfitting and ensemble diversity challenges when dealing with small sample size and high-dimensional biology data. In this paper, we propose a deep learning model, so-called BCDForest, to address cancer subtype classification on small-scale biology datasets, which can be viewed as a modification of the standard deep forest model. The BCDForest distinguishes from the standard deep forest model with the following two main contributions: First, a named multi-class-grained scanning method is proposed to train multiple binary classifiers to encourage diversity of ensemble. Meanwhile, the fitting quality of each classifier is considered in representation learning. Second, we propose a boosting strategy to emphasize more important features in cascade forests, thus to propagate the benefits of discriminative features among cascade layers to improve the classification performance. Systematic comparison experiments on both microarray and RNA-Seq gene expression datasets demonstrate that our method consistently outperforms the state-of-the-art methods in application of cancer subtype classification. The multi-class-grained scanning and boosting strategy in our model provide an effective solution to ease the overfitting challenge and improve the robustness of deep forest model working on small-scale data. Our model provides a useful approach to the classification of cancer subtypes by using deep learning on high-dimensional and small-scale biology data.

  1. Waves and tides responsible for the intermittent closure of the entrance of a small, sheltered tidal wetland at San Francisco, CA

    USGS Publications Warehouse

    Hanes, D.M.; Ward, K.; Erikson, L.H.

    2011-01-01

    Crissy Field Marsh (CFM; http://www.nps.gov/prsf/planyourvisit/crissy-field-marsh-and-beach.htm) is a small, restored tidal wetland located in the entrance to San Francisco Bay just east of the Golden Gate. The marsh is small but otherwise fairly typical of many such restored wetlands worldwide. The marsh is hydraulically connected to the bay and the adjacent Pacific Ocean by a narrow sandy channel. The channel often migrates and sometimes closes completely, which effectively blocks the tidal connection to the ocean and disrupts the hydraulics and ecology of the marsh. Field measurements of waves and tides have been examined in order to evaluate the conditions responsible for the intermittent closure of the marsh entrance. The most important factor found to bring about the entrance channel closure is the occurrence of large ocean waves. However, there were also a few closure events during times with relatively small offshore waves. Examination of the deep-water directional wave spectra during these times indicates the presence of a small secondary peak corresponding to long period swell from the southern hemisphere, indicating that CFM and San Francisco Bay in general may be more susceptible to long period ocean swell emanating from the south or southwest than the more common ocean waves coming from the northwest. The tidal records during closure events show no strong relationship between closures and tides, other than that closures tend to occur during multi-day periods with successively increasing high tides. It can be inferred from these findings that the most important process to the intermittent closure of the entrance to CFM is littoral sediment transport driven by the influence of ocean swell waves breaking along the CFM shoreline at oblique angles. During periods of large, oblique waves the littoral transport of sand likely overwhelms the scour potential of the tidal flow in the entrance channel. ?? 2011.

  2. KECK II OBSERVATIONS OF HEMISPHERICAL DIFFERENCES IN H{sub 2}O{sub 2} ON EUROPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, K. P.; Brown, M. E., E-mail: khand@jpl.nasa.gov

    We present results from Keck II observations of Europa over four consecutive nights using the near-infrared spectrograph. Spectra were collected in the 3.14-4.0 {mu}m range, enabling detection and monitoring of the 3.5 {mu}m feature due to hydrogen peroxide. Galileo Near-Infrared Mapping Spectrometer results first revealed hydrogen peroxide on Europa in the anti-Jovian region of the leading hemisphere at a percent by number abundance of 0.13% {+-} 0.07% relative to water. We find comparable results for the two nights over which we observed the leading hemisphere. Significantly, we observed a small amount of hydrogen peroxide ({approx}0.04%) during observations of Europa's anti-Jovianmore » and sub-Jovian hemispheres. Almost no hydrogen peroxide was detected during observations of just the trailing hemisphere. We conclude that the Galileo observations likely represent the maximum hydrogen peroxide concentration, the exception potentially being the cold water ice regions of the poles, which are not readily observable from the ground. Our mapping of the peroxide abundance across Europa requires revisions to previous estimates for Europa's global surface abundance of oxidants and leads to a reduction in the total oxidant delivery expected for the subsurface ocean if an exchange of surface material with the ocean occurs.« less

  3. Mapping number to space in the two hemispheres of the avian brain.

    PubMed

    Rugani, Rosa; Vallortigara, Giorgio; Regolin, Lucia

    2016-09-01

    Pre-verbal infants and non-human animals associate small numbers with the left space and large numbers with the right space. Birds and primates, trained to identify a given position in a sagittal series of identical positions, whenever required to respond on a left/right oriented series, referred the given position starting from the left end. Here, we extended this evidence by selectively investigating the role of either cerebral hemisphere, using the temporary monocular occlusion technique. In birds, lacking the corpus callosum, visual input is fed mainly to the contralateral hemisphere. We trained 4-day-old chicks to identify the 4th element in a sagittal series of 10 identical elements. At test, the series was identical but left/right oriented. Test was conducted in right monocular, left monocular or binocular condition of vision. Right monocular chicks pecked at the 4th right element; left monocular and binocular chicks pecked at the 4th left element. Data on monocular chicks demonstrate that both hemispheres deal with an ordinal (sequential) task. Data on binocular chicks indicate that the left bias is linked to a right hemisphere dominance, that allocates the attention toward the left hemispace. This constitutes a first step towards understanding the neural basis of number space mapping. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Measurement of event shape variables in deep inelastic e p scattering

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Bassler, U.; Beck, H. P.; Beck, M.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Borras, K.; Botterweck, F.; Boudry, V.; Bourov, S.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brown, D. P.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; de Roeck, A.; de Wolf, E. A.; Delcourt, B.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Dollfus, C.; Donovan, K. T.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; İşsever, Ç.; Itterbeck, H.; Jacquet, M.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Laforge, B.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Levonian, S.; Lindstroem, M.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Reimer, P.; Rick, H.; Reiss, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vandenplas, D.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wollatz, H.; Wünsch, E.; ŽáČek, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zurnedden, M.

    1997-02-01

    Deep inelastic e p scattering data, taken with the H1 detector at HERA, are used to study the event shape variables thrust, jet broadening and jet mass in the current hemisphere of the Breit frame over a large range of momentum transfers Q between 7 GeV and 100 GeV. The data are compared with results from e+e- experiments. Using second order QCD calculations and an approach to relate hadronisation effects to power corrections an analysis of the Q dependences of the means of the event shape parameters is presented, from which both the power corrections and the strong coupling constant are determined without any assumption on fragmentation models. The power corrections of all event shape variables investigated follow a 1/Q behaviour and can be described by a common parameter α0.

  5. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld’s largest ocean,where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanyingmore » pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redoxsensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.« less

  6. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene

    PubMed Central

    Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; Jaccard, Samuel L.; Tiedemann, Ralf; Haug, Gerald H.

    2017-01-01

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world’s largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming. PMID:28924606

  7. Asynchronous warming and δ 18O evolution of deep Atlantic water masses during the last deglaciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18O of benthic foraminiferal calcite (δ 18Oc). Here in this study, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18O evolution. Model results suggest that, in response tomore » North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18O c likely reflects early warming of the deep northern North Atlantic by ~1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18O, and call for caution when inferring water mass changes from δ 18O c records while assuming uniform changes in deep temperatures.« less

  8. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene

    DOE PAGES

    Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; ...

    2017-09-13

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld’s largest ocean,where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanyingmore » pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redoxsensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.« less

  9. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation.

    PubMed

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C; Oppo, Delia W; Clark, Peter U; Jahn, Alexandra; Marcott, Shaun A; Lindsay, Keith

    2017-10-17

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18 O of benthic foraminiferal calcite (δ 18 O c ). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18 O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18 O c likely reflects early warming of the deep northern North Atlantic by ∼1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18 O, and call for caution when inferring water mass changes from δ 18 O c records while assuming uniform changes in deep temperatures.

  10. Asynchronous warming and δ 18O evolution of deep Atlantic water masses during the last deglaciation

    DOE PAGES

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; ...

    2017-10-02

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18O of benthic foraminiferal calcite (δ 18Oc). Here in this study, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18O evolution. Model results suggest that, in response tomore » North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18O c likely reflects early warming of the deep northern North Atlantic by ~1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18O, and call for caution when inferring water mass changes from δ 18O c records while assuming uniform changes in deep temperatures.« less

  11. Nature of the South Pole on Mars Determined by Topographic Forcing of Atmosphere Dynamics

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Barnes, Jeffrey R.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Kieffer, Hugh H.; Titus, Timothy N.

    2005-01-01

    Introduction: The observed Springtime (Ls approx. 200) surface albedo in the Martian southern polar region is shown in Figure 1. In general, the hemisphere west of Hellas is marked by relatively high values of surface albedo. In contrast, the hemisphere east of Hellas contains extensive regions of very low surface albedo. One of the brightest features within the western hemisphere is the South Pole Residual Cap (SPRC). The dark region, which dominates the eastern hemisphere, is the "Cryptic" region[1]. The nature of the SPRC has been the source of considerable debate since its identification as CO2 ice by the Viking spacecraft. Two fundamental questions still exist regarding the SPRC s formation, location and stability. First, why is the SPRC offset from the geographic pole? There are no local topographic features or surface properties that can account for the offset in the SPRC. Second, does the SPRC represent a large or a small reservoir of CO2? If the former, then it could possibly buffer the surface pressure. If the latter, then the SPRC may not survive every year.

  12. The Mediterranean Sea regime shift at the end of the 1980s, and intriguing parallelisms with other European basins.

    PubMed

    Conversi, Alessandra; Fonda Umani, Serena; Peluso, Tiziana; Molinero, Juan Carlos; Santojanni, Alberto; Edwards, Martin

    2010-05-19

    Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin) anthropogenic drivers, such as eutrophication or fishing, from larger scale (hemispheric) climate drivers.

  13. MJO Signals in Latent Heating: Results from TRMM Retrievals

    NASA Technical Reports Server (NTRS)

    Zhang, Chidong; Ling, Jian; Hagos, Samson; Tao, Wei-Kuo; Lang, Steve; Takayabu, Yukari N.; Shige, Shoichi; Katsumata, Masaki; Olson, William S.; L'Ecuyer, Tristan

    2010-01-01

    The Madden-Julian Oscillation (MJO) is the dominant intraseasonal signal in the global tropical atmosphere. Almost all numerical climate models have difficulty to simulate realistic MJO. Four TRMM datasets of latent heating were diagnosed for signals in the MJO. In all four datasets, vertical structures of latent heating are dominated by two components, one deep with its peak above the melting level and one shallow with its peak below. Profiles of the two components are nearly ubiquitous in longitude, allowing a separation of the vertical and zonal/temporal variations when the latitudinal dependence is not considered. All four datasets exhibit robust MJO spectral signals in the deep component as eastward propagating spectral peaks centered at period of 50 days and zonal wavenumber 1, well distinguished from lower- and higher-frequency power and much stronger than the corresponding westward power. The shallow component shows similar but slightly less robust MJO spectral peaks. MJO signals were further extracted from a combination of band-pass (30 - 90 day) filtered deep and shallow components. Largest amplitudes of both deep and shallow components of the MJO are confined to the Indian and western Pacific Oceans. There is a local minimum in the deep components over the Maritime Continent. The shallow components of the MJO differ substantially among the four TRMM datasets in their detailed zonal distributions in the eastern hemisphere. In composites of the heating evolution through the life cycle of the MJO, the shallow components lead the deep ones in some datasets and at certain longitudes. In many respects, the four TRMM datasets agree well in their deep components, but not in their shallow components and the phase relations between the deep and shallow components. These results indicate that caution must be exercised in applications of these latent heating data.

  14. A right hemisphere safety backup at work: hypotheses for deep hypnosis, post-traumatic stress disorder, and dissociation identity disorder.

    PubMed

    Burnand, Gordon

    2013-09-01

    Problem theory points to an a priori relation between six key problems of living, to which people have adapted through evolution. Children are guided through the problems one by one, learning to switch between them automatically and unawares. The first problem of raising hope of certainty (about the environment), is dealt with in the right hemisphere (RH). The second of raising hope of freedom (or power to control), is dealt with in the left hemisphere (LH). Here adventurousness and ignoring the goodness of outcomes potentially create recklessness. When uncertainty rises the RH activates a backup with an override that substitutes immobility, takes over sensory inputs, but allows obedience to parental commands, and a cut-out that stops new work on the freedom problem. Support for the use of the backup by infants is found in the immobility that precedes the crying in strange conditions, and in childhood EEGs. The hypothesis that the backup is active in deep hypnosis imposes accord on findings that appear contradictory. For example it accounts for why observations during deep hypnosis emphasize the activity of the RH, but observations of responsive people not under hypnosis emphasize the activity of the LH. The hypothesis that the backup is active in post-traumatic stress disorder (PTSD) is supported by (a) fMRI observations that could reflect the cut-out, in that part of the precuneus has low metabolism, (b) the recall of motionlessness at the time of the trauma, (c) an argument that playing dead as a defence against predators is illogical, (d) the ease of hypnosis. With dissociative identity disorder (DID), the theory is consistent with up to six alters that have executive control and one trauma identity state where childhood traumas are re-experienced. Support for the cut-out affecting the trauma identity state comes from suppression of part of the precuneus and other parts of the parietal lobe when the trauma identity state is salient and a general script about a trauma is listened to. Support also comes from the ease of hypnosis. The cut-out acts independently of the override. It is linked to low metabolism at the same point in the left precuneus by evidence from all three conditions, hypnosis, PTSD and DID. The concept of dissociation is not required with any of the hypotheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The non-linear development of the right hemispheric specialization for human face perception.

    PubMed

    Lochy, Aliette; de Heering, Adélaïde; Rossion, Bruno

    2017-06-24

    The developmental origins of human adults' right hemispheric specialization for face perception remain unclear. On the one hand, infant studies have shown a right hemispheric advantage for face perception. On the other hand, it has been proposed that the adult right hemispheric lateralization for face perception slowly emerges during childhood due to reading acquisition, which increases left lateralized posterior responses to competing written material (e.g., visual letters and words). Since methodological approaches used in infant and children typically differ when their face capabilities are explored, resolving this issue has been difficult. Here we tested 5-year-old preschoolers varying in their level of visual letter knowledge with the same fast periodic visual stimulation (FPVS) paradigm leading to strongly right lateralized electrophysiological occipito-temporal face-selective responses in 4- to 6-month-old infants (de Heering and Rossion, 2015). Children's face-selective response was quantitatively larger and differed in scalp topography from infants', but did not differ across hemispheres. There was a small positive correlation between preschoolers' letter knowledge and a non-normalized index of right hemispheric specialization for faces. These observations show that previous discrepant results in the literature reflect a genuine nonlinear development of the neural processes underlying face perception and are not merely due to methodological differences across age groups. We discuss several factors that could contribute to the adult right hemispheric lateralization for faces, such as myelination of the corpus callosum and reading acquisition. Our findings point to the value of FPVS coupled with electroencephalography to assess specialized face perception processes throughout development with the same methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Seasonal variation of the global mixed layer depth: comparison between Argo data and FIO-ESM

    NASA Astrophysics Data System (ADS)

    Zhang, Yutong; Xu, Haiming; Qiao, Fangli; Dong, Changming

    2018-03-01

    The present study evaluates a simulation of the global ocean mixed layer depth (MLD) using the First Institute of Oceanography-Earth System Model (FIOESM). The seasonal variation of the global MLD from the FIO-ESM simulation is compared to Argo observational data. The Argo data show that the global ocean MLD has a strong seasonal variation with a deep MLD in winter and a shallow MLD in summer, while the spring and fall seasons act as transitional periods. Overall, the FIO-ESM simulation accurately captures the seasonal variation in MLD in most areas. It exhibits a better performance during summer and fall than during winter and spring. The simulated MLD in the Southern Hemisphere is much closer to observations than that in the Northern Hemisphere. In general, the simulated MLD over the South Atlantic Ocean matches the observation best among the six areas. Additionally, the model slightly underestimates the MLD in parts of the North Atlantic Ocean, and slightly overestimates the MLD over the other ocean basins.

  17. New high-precision deep concave optical surface manufacturing capability

    NASA Astrophysics Data System (ADS)

    Piché, François; Maloney, Chris; VanKerkhove, Steve; Supranowicz, Chris; Dumas, Paul; Donohue, Keith

    2017-10-01

    This paper describes the manufacturing steps necessary to manufacture hemispherical concave aspheric mirrors for high- NA systems. The process chain is considered from generation to final figuring and includes metrology testing during the various manufacturing steps. Corning Incorporated has developed this process by taking advantage of recent advances in commercially available Satisloh and QED Technologies equipment. Results are presented on a 100 mm concave radius nearly hemispherical (NA = 0.94) fused silica sphere with a better than 5 nm RMS figure. Part interferometric metrology was obtained on a QED stitching interferometer. Final figure was made possible by the implementation of a high-NA rotational MRF mode recently developed by QED Technologies which is used at Corning Incorporated for production. We also present results from a 75 mm concave radius (NA = 0.88) Corning ULE sphere that was produced using sub-aperture tools from generation to final figuring. This part demonstrates the production chain from blank to finished optics for high-NA concave asphere.

  18. First data from DM-Ice17

    DOE PAGES

    Cherwinka, J.; Grant, D.; Halzen, F.; ...

    2014-11-10

    We report the first analysis of background data from DM-Ice17, a direct-detection dark matter experiment consisting of 17 kg of NaI(Tl) target material. It was codeployed with IceCube 2457 m deep in the South Pole glacial ice in December 2010 and is the first such detector operating in the Southern Hemisphere. The background rate in the 6.5–8.0 keV ee region is measured to be 7.9 ± 0.4 counts/day/keV/kg. This is consistent with the expected background from the detector assemblies with negligible contributions from the surrounding ice. The successful deployment and operation of DM-Ice17 establishes the South Pole ice as amore » viable location for future underground, low-background experiments in the Southern Hemisphere. Furthermore, the detector assembly and deployment are described here, as well as the analysis of the DM-Ice17 backgrounds based on data from the first two years of operation after commissioning, July 2011–June 2013.« less

  19. Observations of the north polar region of Mars from the Mars orbiter laser altimeter.

    PubMed

    Zuber, M T; Smith, D E; Solomon, S C; Abshire, J B; Afzal, R S; Aharonson, O; Fishbaugh, K; Ford, P G; Frey, H V; Garvin, J B; Head, J W; Ivanov, A B; Johnson, C L; Muhleman, D O; Neumann, G A; Pettengill, G H; Phillips, R J; Sun, X; Zwally, H J; Banerdt, W B; Duxbury, T C

    1998-12-11

    Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.

  20. Forced Climate Changes in West Antarctica and the Indo-Pacific by Northern Hemisphere Ice Sheet Topography

    NASA Astrophysics Data System (ADS)

    Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.

    2017-12-01

    The behavior of the Indo-Pacific climate system across the last deglaciation is widely debated. Resolving these debates requires long term and continuous climate proxy records. Here, we use an ultra-high resolution and continuous water isotope record from an ice core in the Pacific sector of West Antarctica. In conjunction with the HadCM3 coupled ocean-atmosphere GCM, we demonstrate that the climate of both West Antarctica and the Indo-Pacific were substantially altered during the last deglaciation by the same forcing mechanism. Critically, these changes are not dependent on ENSO strength, but rather the location of deep tropical convection, which shifts at 16 ka in response to climate perturbations induced by the Laurentide Ice Sheet. The changed rainfall patterns in the tropics explain the deglacial shift from expanded-grasslands to rainforest-dominated ecosystems in Indonesia. High-frequency climate variability in the Southern Hemisphere is also changed, through a tropical Pacific teleconnection link dependent on the propogration of Rossby Waves.

  1. Driving the Heliospheric Jellyfish

    NASA Astrophysics Data System (ADS)

    Leamon, R. J.; Mcintosh, S. W.

    2016-12-01

    Recent observational work has demonstrated that the enigmatic sunspotcycle and global magnetic environment of the Sun which source theeruptive events and modulate the solar wind, respectively, can beexplained in terms of the intra- and extra-hemispheric interaction ofmagnetic activity bands that belong to the 22-year magnetic polaritycycle. Those activity bands appear to be anchored deep in the Sun'sconvective interior and governed by the rotation of our star's radiativezone. We have also observed that those magnetic bands exhibit strongquasi-annual variability in the rotating convecting system which resultsin a significant local modulation of solar surface magnetism, forcingthe production of large eruptive events in each hemisphere that mouldsthe global-scale solar magnetic field and the solar-wind-inflatedheliosphere. Together with significant changes in the Sun's ultraviolet(UV), extreme ultraviolet (EUV), and X-Ray irradiance, these eruptivefluctuations ensnare all the Heliosphere (all of Heliophysics) like thetentacles of a jellyfish, and can be inferred in variations of suchwide-ranging phenomena as the South Atlantic Anomaly, the thermosphere,the radiation belts, and the can address ``Has Voyager left theHeliosphere?''

  2. A comparison of observed (HALOE) and modeled (CCM2) methane and stratospheric water vapor

    NASA Technical Reports Server (NTRS)

    Mote, Philip W.; Holton, James R.; Russell, James M., III; Boville, Byron A.

    1993-01-01

    Recent measurements (21 September-15 October 1992) of methane and water vapor by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) are compared with model results for the same season from a troposphere-middle atmosphere version of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2). Several important features of the two constituent fields are well reproduced by the CCM2, despite the use of simplified methane photochemistry in the CCM2 and some notable differences between the model's zonal mean circulation and climatology. Observed features simulated by the model include the following: 1) subsidence over a deep layer in the Southern Hemisphere polar vortex; 2) widespread dehydration in the polar vortex; and 3) existence of a region of low water vapor mixing ratios extending from the Antarctic into the Northern Hemisphere tropics, which suggests that Antarctic dehydration contributes to midlatitude and tropical dryness in the stratosphere.

  3. CT Evolution of Hematoma and Surrounding Hypodensity in a Cadaveric Model of Intracerebral Hemorrhage.

    PubMed

    Majidi, Shahram; Rahim, Basit; Gilani, Sarwat I; Gilani, Waqas I; Adil, Malik M; Qureshi, Adnan I

    2016-05-01

    The evolution of intracerebral hematoma and perihematoma edema in the ultra-early period on computed tomographic (CT) scans in patients with intracerebral hemorrhage (ICH) is not well understood. We aimed to investigate hematoma and perihematoma changes in "neutral brain" models of ICH. One human and five goat cadaveric heads were used as "neutral brains" to provide physical properties of brain without any biological activity or new bleeding. ICH was induced by slow injection of 4 ml of fresh human blood into the right basal ganglia of the goat brains. Similarly, 20 ml of fresh blood was injected deep into the white matter of the human cadaver head in each hemisphere. Serial CT scans of the heads were obtained immediately after hematoma induction and then 1, 3, and 5 hours afterward. Analyze software (AnalyzeDirect, Overland Park, KS, USA) was used to measure hematoma and perihematoma hypodensity volumes in the baseline and follow-up CT scans. The initial hematoma volumes of 11.6 ml and 10.5 ml in the right and left hemispheres of the cadaver brains gradually decreased to 6.6 ml and 5.4 ml at 5 hours, showing 43% and 48% retraction of hematoma, respectively. The volume of the perihematoma hypodensity in the right and left hemisphere increased from 2.6 ml and 2.2 ml in the 1-hour follow-up CT scans to 4.9 ml and 4.4 ml in the 5-hour CT scan, respectively. Hematoma retraction was also observed in all five goat brains ICH models with the mean ICH volume decreasing from 1.49 ml at baseline scan to 1.01 ml at the 5-hour follow-up CT scan (29.6% hematoma retraction). Perihematoma hypodensity was visualized in 70% of ICH in goat brains, with an increasing mean hypodensity volume of 0.4 ml in the baseline CT scan to 0.8 ml in the 5-hour follow-up CT scan. Our study demonstrated that substantial hematoma retraction and perihematoma hypodensity occurs in ICH in the absence of any new bleeding or biological activity of surrounding brain. Such observations suggest that active bleeding is underestimated in patients with no or small hematoma expansion and our understanding of perihematoma hypodensity needs to be reconsidered. Copyright © 2015 by the American Society of Neuroimaging.

  4. Topographic Mapping of Pluto and Charon Using New Horizons Data

    NASA Astrophysics Data System (ADS)

    Schenk, P. M.; Beyer, R. A.; Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Howard, A. D.; White, O. M.; Umurhan, O. M.; Singer, K.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico Smith, K.; Olkin, C.; Horizons Geology, New; Geophysics Imaging Team

    2016-06-01

    New Horizons 2015 flyby of the Pluto system has resulted in high-resolution topographic maps of Pluto and Charon, the most distant objects so mapped. DEM's over ~30% of each object were produced at 100-300 m vertical and 300-800 m spatial resolutions, in hemispheric maps and high-resolution linear mosaics. Both objects reveal more relief than was observed at Triton. The dominant 800-km wide informally named Sputnik Planum bright ice deposit on Pluto lies in a broad depression 3 km deep, flanked by dispersed mountains 3-5 km high. Impact craters reveal a wide variety of preservation states from pristine to eroded, and long fractures are several km deep with throw of 0-2 km. Topography of this magnitude suggests the icy shell of Pluto is relatively cold and rigid. Charon has global relief of at least 10 km, including ridges of 2-3 km and troughs of 3-5 km of relief. Impact craters are up to 6 km deep. Vulcan Planum consists of rolling plains and forms a topographic moat along its edge, suggesting viscous flow.

  5. Encoding-related brain activity during deep processing of verbal materials: a PET study.

    PubMed

    Fujii, Toshikatsu; Okuda, Jiro; Tsukiura, Takashi; Ohtake, Hiroya; Suzuki, Maki; Kawashima, Ryuta; Itoh, Masatoshi; Fukuda, Hiroshi; Yamadori, Atsushi

    2002-12-01

    The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.

  6. Astronomy Education and Research With Digital Viewing: Forming a New Network of Small Observatories

    NASA Astrophysics Data System (ADS)

    Bogard, Arthur; Hamilton, T. S.

    2011-01-01

    Small observatories face two major hindrances in teaching astronomy to students: weather and getting students to recognize what they're seeing. The normal astronomy class use of a single telescope with an eyepiece is restricted to good skies, and it allows only one viewer at a time. Since astronomy labs meet at regular times, bad weather can mean the loss of an entire week. As for the second problem, students often have difficulties recognizing what they are seeing through an eyepiece, and the instructor cannot point out the target's features. Commercial multimedia resources, although structured and easy to explain to students, do not give students the same level of interactivity. A professor cannot improvise a new target nor can he adjust the image to view different features of an object. Luckily, advancements in technology provide solutions for both of these limitations without breaking the bank. Astronomical video cameras can automatically stack, align, and integrate still frames, providing instructors with the ability to explain things to groups of students in real time under actual seeing conditions. Using Shawnee State University's Mallincam on an 8" Cassegrain, our students are now able to understand and classify both planetary and deep sky objects better than they can through an eyepiece. To address the problems with weather, SSU proposes forming a network among existing small observatories. With inexpensive software and cameras, telescopes can be aligned and operated over the web, and with reciprocal viewing agreements, users who are clouded out could view from another location. By partnering with institutions in the eastern hemisphere, even daytime viewing would be possible. Not only will this network aid in instruction, but the common user interface will make student research projects much easier.

  7. Topographic distribution of brain iron deposition and small cerebrovascular lesions in amyotrophic lateral sclerosis and in frontotemporal lobar degeneration: a post-mortem 7.0-tesla magnetic resonance imaging study with neuropathological correlates.

    PubMed

    De Reuck, Jacques; Devos, David; Moreau, Caroline; Auger, Florent; Durieux, Nicolas; Deramecourt, Vincent; Pasquier, Florence; Maurage, Claude-Alain; Cordonnier, Charlotte; Leys, Didier; Bordet, Regis

    2017-12-01

    Amyotrophic lateral sclerosis (ALS) is associated with frontotemporal lobar degeneration (FTLD) in 15% of the cases. A neuropathological continuity between ALS and FTLD-TDP is suspected. The present post-mortem 7.0-tesla magnetic resonance imaging (MRI) study compares the topographic distribution of iron (Fe) deposition and the incidence of small cerebrovascular lesions in ALS and in FTLD brains. Seventy-eight post-mortem brains underwent 7.0-tesla MRI. The patients consisted of 12 with ALS, 38 with FTLD, and 28 controls. Three ALS brains had minor FTLD features. Three coronal sections of a cerebral hemisphere were submitted to T2 and T2* MRI sequences. The amount of Fe deposition in the deep brain structures and the number of small cerebrovascular lesions was determined in ALS and the subtypes of FTLD compared to control brains, with neuropathological correlates. A significant increase of Fe deposition was observed in the claustrum, caudate nucleus, globus pallidus, thalamus, and subthalamic nucleus of the FTLD-FUS and FTLD-TDP groups, while in the ALS one, the Fe increase was only observed in the caudate and the subthalamic nuclei. White matter changes were only significantly more severe in the FTLD compared to those in ALS and in controls brains. Cortical micro-bleeds were increased in the frontal and temporal lobes of FTLD as well as of ALS brains compared to controls. Cortical micro-infarcts were, on the other hand, more frequent in the control compared to the ALS and FTLD groups. The present study supports the assumption of a neuropathological continuity between ALS and FTLD and illustrates the favourable vascular risk profile in these diseases.

  8. Dirty snowball - now is too primitive for a scientific description of comets

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Success of the "Deep Space 1" scientists which acquired excellent pictures of comet Borrelli, brings comets into the family of small celestial bodies with common regularities of shaping. Often attracted accidental impact process never can explain constantly repeated shapes of small bodies. Understanding their shaping is important in view of coming missions to small bodies. "Orbits make structures". This fundamental notion is unfolded into 4 theorems of planetary tectonics [1]: 1. Celestial bodies are dichotomic; 2. -" - are sectoral; 3. -"- are granular; 4. Angular momenta of different level blocks tend to be equal. All these general rules of shaping and structurization are a consequence of interferences of warping any body standing planetary waves due to inertia forces acting in any moving in non-circular orbit body. Dichotomy is the most global tectonic feature due to the fundamental waves (wave 1). It is typical to all planetary spheres. In Earth it is in the core, mantle, crust, atmosphere. At Venus it is very pronounced in the crust and in atmosphere: lying Y-feature and inverse C-feature in the cloud layer. Coherent martian lithosphere- atmosphere dichotomies are well known. In small bodies the dichotomy is specifically pronounced as ubiquitous convexo -concave shape. Most detailed studied at Eros this shape was also observed at comet Halley and recently at Borrelli. Borrelli's convex extended half is strongly jagged (not easy to find a place for landing!), the contracted concave half spits out tremendous tail. Surface areas around the tail outlets are whitish and lighter than surroundings. It seems that the gas-dust material squeezed out of interiors not only disappears in space but leaves traces on the concave surface. The concave hemisphere has shorter radius than the convex one and tends to compensate loosing angular momentum by denser material extracted from interiors (Theorem 4 [1];compare with the basaltic Pacific hemisphere opposed by the granitic continental one). The arctic-antarctic symptom - an opposition of sharp and blunt ends (Theorem 2) - is perfectly presented at Borrelli. It seems that the blunt end is rather smooth and whiter than the sharp end: again denser material from interiors tends to be on surface (compare basic Arctic and granitic Antarctic). This kind of cometary surfaces probably is m ore suitable for landing and sampling because of relative smoothness and the deeper material exposed on surface. A granular structurization (Theorem 3) is distinguished almost on the whole surface. Crossing lineaments marking rows of equidimensional dark and light spots ("craters") are distinct mainly on the darker areas. Ref.: [1] Kochemasov G. (1999) Geophys. Res. Abstr.,v.1, #3, 700.

  9. Possible slow periglacial mass wasting at the Southern Hemisphere on Mars.

    NASA Astrophysics Data System (ADS)

    Johnsson, Andreas; Reiss, Dennis; Hauber, Ernst; Hiesinger, Harald

    2014-05-01

    Small-scale lobate landforms which are strikingly similar to terrestrial solifluction lobes are cataloged at the Southern Hemisphere on Mars. Terrestrial periglacial solifluction lobes are formed by frost creep, a combination of repeated frost heave and thaw consolidation, and gelifluction (visco-plastic deformation of near saturated soil) in the active layer on top of the permafrost table (e.g., Matsuoka, 2001). All publically available HiRISE images between latitudes 40°S and 80°S on Mars are being used in this study. Compared to previous studies of small-scale lobes in the northern mid and high latitudes (e.g., Gallagher et al., 2011; Johnsson et al., 2012; Barrett et al., 2013), these landforms also occur, in most cases, in close spatial proximity to fluvial gullies and polygonal terrain. This study aims to investigate whether the southern small-scale lobes differ from the northern counterparts in terms of morphology and distribution. Furthermore, spatio-temporal relationships to landforms with ground-ice affinity, such as gullies and polygonal terrain, are investigated. Solifluction-like small-scale lobes have been studied in detail at the northern hemisphere on Mars (Gallagher et al., 2011), where they are widely distributed at high latitudes between 59°N and 80°N (Johnsson et al., 2012). Small-scale lobes are proposed to represent freeze-thaw activity late in Martian climate history (Gallagher et al., 2011; Balme and Gallagher, 2011; Johnsson et al, 2012; Balme et al., 2013). Small-scale lobes differ from permafrost creep (i.e. rock glaciers) in having low fronts, decimeters to less than <5 m meters in height. They also lack compression ridges and furrows and are not confined to topographic niches (i.e. valley confinement). The presence of small-scale lobes raises the question whether they have formed by a warmer-than-thought-climate, or by the influence of soil salts (i.e. perchlorates) under sub-freezing conditions (e.g., Gallagher et al., 2011). Preliminary results indicate that the small-scale lobes are distributed more equatorward than in the north. Morphometry and morphology suggest that they are distinct from permafrost creep. Even though the southern hemisphere have more impact crater slopes fewer lobes have been observed so far in this study. The project is on-going and more work is required to firmly establish their distribution and their association to gullies and polygonal terrain. Though landforms indicative of freeze-thaw activity may be rare on flat terrain on Mars, there is growing evidence that freeze-thaw conditions may have been met on mid and high latitude slopes in recent climate history on Mars. References: Matsuoka, 2001. Earth Sci. Rev. Gallagher et al., 2011. Icarus 211, Balme and Gallagher, 2011. GSL. Johnsson et al., 2012. Icarus 218, Balme et al., 2013. Prog. Phys. Geogr. 1-36. Barrett et al., 2013. EPSC2013-159.

  10. Directional statistics-based reflectance model for isotropic bidirectional reflectance distribution functions.

    PubMed

    Nishino, Ko; Lombardi, Stephen

    2011-01-01

    We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.

  11. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control.

    PubMed

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2014-01-01

    To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical) adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN). The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf) input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz) with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi-hemispheric structure and adequate spontaneous activity of cf inputs are critical for cerebellar asymmetrical motor learning.

  12. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control

    PubMed Central

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2014-01-01

    To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical) adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN). The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf) input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz) with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi-hemispheric structure and adequate spontaneous activity of cf inputs are critical for cerebellar asymmetrical motor learning. PMID:25414644

  13. Cerebral Proliferative Angiopathy (CPA): Imaging Findings and Response to Therapy.

    PubMed

    Lopci, Egesta; Olivari, Laura; Bello, Lorenzo; Navarria, Pierina; Chiti, Arturo

    2016-12-01

    We report the case of a 55-year-old woman with cerebral proliferative angiopathy (CPA). Her medical history included brain surgery for small vascular lesions and suspicion of cerebral malignancy. C methionine PET (C-METH PET) demonstrated a diffusely increased uptake on the right hemisphere. Contrast-enhanced MRI documented a massive lesion with a diffuse "nidus" appearance, involving the right cerebral hemisphere (sparing the inferior frontal gyrus and the anterior frontal lobe), the brainstem, and the middle cerebellar peduncle. Pathology confirmed the diagnosis of CPA and, after radiation treatment, the patient presented with clinical and radiological response.

  14. Circular single domains in hemispherical Permalloy nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Clodoaldo I. L de, E-mail: dearaujo@ufv.br; Fonseca, Jakson M.; Sinnecker, João P.

    2014-11-14

    We have studied ferromagnetic Permalloy clusters obtained by electrodeposition on n-type silicon. Magnetization measurements reveal hysteresis loops almost independent on temperature and very similar in shape to those obtained in nanodisks with diameter bigger than 150 nm. The spin configuration for the ground state, obtained by micromagnetic simulation, shows topological vortices with random chirality and polarization. This behavior in the small diameter clusters (∼80 nm) is attributed to the Dzyaloshinskii-Moriya interaction that arises in its hemispherical geometries. This magnetization behavior can be utilized to explain the magnetoresistance measured with magnetic field in plane and out of sample plane.

  15. You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers

    PubMed Central

    Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H.; Pulvermüller, Friedemann

    2012-01-01

    The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. PMID:22133748

  16. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mount Pinatubo at Southern and Northern Midlatitudes

    NASA Technical Reports Server (NTRS)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2013-01-01

    Observations have shown that the mass of nitrogen dioxide decreased at both southern and northern midlatitudes in the year following the eruption of Mt. Pinatubo, indicating that the volcanic aerosol had enhanced nitrogen dioxide depletion via heterogeneous chemistry. In contrast, the observed ozone response showed a northern midlatitude decrease and a small southern midlatitude increase. Previous simulations that included an enhancement of heterogeneous chemistry by the volcanic aerosol but no other effect of this aerosol produce ozone decreases in both hemispheres, contrary to observations. The authors simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and Southern Hemisphere extratropical downwelling. This enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer Dobson circulation, increased Southern Hemisphere ozone via advection, counteracting the ozone depletion due to heterogeneous chemistry on the Pinatubo aerosol.

  17. Stratospheric Polar Freezing Belt Causes Denitrification

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Jensen, E. J.; Toon, O. B.; Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Trajectory cloud model calculations are presented to show that homogeneous freezing of nitric acid hydrates can produce a polar freezing belt in both hemispheres that can cause denitrification. While hydrate cloud microphysical properties are similar over both poles, the shorter persistence of clouds in the Arctic prevents the depth of the denitrified layers from growing beyond a few kilometers. The 1999-2000 Arctic winter is unique in showing a distinct denitrification profile with a depth of approx. 4.5 km that is nearly half as deep as that computed for a typical Antarctic winter.

  18. An Eye on Mimas: Endo- and Exogenic Effects on the Surface Evolution of Mimas (Invited)

    NASA Astrophysics Data System (ADS)

    Schenk, P.

    2010-12-01

    The first (Cassini orbiter-based) global mapping, color and topographic maps of the innermost of Saturn’s classical midsize icy moons have radically changed our Voyager-based perspectives. Geologically, the 125x145-km-wide, ~12-km-deep Herschel impact crater still dominates the moon. Recent observations confirm this crater in essentially unrelaxed, and is not ancient (possibly less than 1 Gyr). The crater population in the region antipodal to Herschel is now seen to have depths less than half that of normal craters and a disorganized topographic signature. This is provisionally interpreted as evidence for seismic disruption similar to that seen for Caloris Basin on Mercury. A global network of grooves (first detected by Voyager) has been mapped. These are 2 to 3 km deep and appear to be located preferentially in equatorial regions (pending north polar mapping). Many of these grooves may be radial to Herschel although they could also represent extensional cracks due to orbital contraction. The colors of Mimas are dominated E-ring dust deposition on the trailing hemisphere and by the recently discovered (Schenk et al., 2009) equatorial lens extending across the entire leading hemisphere. This lens is distinctly bright in the UV (~0l34 micron) and thus bluish in color and extends from ~30 S to 30 N at its maximum width in the center of the hemisphere. This pattern is very similar to that observed (originally by Voyager) on Tethys. Although the Mimas Equatorial Band (MEB) extends further north in latitude, it is actually narrower when measured on the ground. Both features match the surface patterns expected for irradiation of the surface by incident very energetic MeV electrons that drift in a direction opposite to the plasma flow. These electrons spiral in and preferentially impact the leading hemispheres. Their flux is strongest in the inner Saturn system, explaining the absence of banding on the more distant moons. Enceladus itself is shielded by the densest part of the E-ring, in which it resides, and by the ongoing deposition of plume fallout. The mechanism of surface alteration is uncertain but the recent detection by CIRS (Spencer et al., 2010) of a temperature anomaly in spatial association with the bluish MEB indicates that the surface microstructure is being altered in such a way as to significantly change both the UV signature and the thermal inertia. The bands on both Tethys and Mimas thus record the impact of major components of Saturn’s magnetosphere and help confirm their behavior.

  19. Cryptic outgassing from the Southern Ocean during the Holocene

    NASA Astrophysics Data System (ADS)

    Nichols, J. E.; Moy, C. M.; Peteet, D. M.; Vandergoes, M.; Curtin, L.; Gilmer, G.

    2017-12-01

    The Southern Ocean is an important pre-anthropogenic source of carbon to the atmosphere. When Southern Hemisphere Westerly Winds are shifted poleward, wind-driven upwelling brings carbon-rich deep water to the surface. Multiple studies have shown that this mechanism is particularly important during the last deglaciation and is partly influenced by climate and oceanographic change triggered by the Northern Hemisphere high latitudes and the tropics. Here we show that the middle Holocene, too, was an important time for increased upwelling. New paleoecological reconstructions, inorganic and organic geochemical data, and stable isotope data from lakes and peatlands on New Zealand's South Island and Subantarctic Islands show strong evidence for poleward-shifted Southern Hemisphere Westerly Winds during the middle Holocene. Warming in the northern hemisphere either weakens westerlies or shifts them southward, reinvigorating the CO2 outgassing from the Southern Ocean. However, if, like in the deglacial period, the Southern Ocean was a source of carbon to the atmosphere in the middle Holocene, why do we not see ice-core evidence for increased pCO2 of the atmosphere? To answer this question, we look north, to the peatlands of the sub-Boreal, Boreal, and Arctic regions. We find, using a new compilation of peatland carbon accumulation rate data, that the northern peatland carbon sink, which was not a factor in the deglacial carbon cycle, could be strong enough in the mid Holocene to counterbalance the increased outgassing. The peatland carbon sink is strongest at the same time as our records from the subantarctic show that the SHWW are in a weakened or poleward-shifted state. Our work shows how the subantarctic has revealed a globally important mechanism impacting the carbon cycle of the Holocene.

  20. The Great Observatories Origins Deep Survey

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark

    2008-05-01

    Observing the formation and evolution of ordinary galaxies at early cosmic times requires data at many wavelengths in order to recognize, separate and analyze the many physical processes which shape galaxies' history, including the growth of large scale structure, gravitational interactions, star formation, and active nuclei. Extremely deep data, covering an adequately large volume, are needed to detect ordinary galaxies in sufficient numbers at such great distances. The Great Observatories Origins Deep Survey (GOODS) was designed for this purpose as an anthology of deep field observing programs that span the electromagnetic spectrum. GOODS targets two fields, one in each hemisphere. Some of the deepest and most extensive imaging and spectroscopic surveys have been carried out in the GOODS fields, using nearly every major space- and ground-based observatory. Many of these data have been taken as part of large, public surveys (including several Hubble Treasury, Spitzer Legacy, and ESO Large Programs), which have produced large data sets that are widely used by the astronomical community. I will review the history of the GOODS program, highlighting results on the formation and early growth of galaxies and their active nuclei. I will also describe new and upcoming observations, such as the GOODS Herschel Key Program, which will continue to fill out our portrait of galaxies in the young universe.

  1. Representations in learning new faces: evidence from prosopagnosia.

    PubMed

    Polster, M R; Rapcsak, S Z

    1996-05-01

    We report the performance of a prosopagnosic patient on face learning tasks under different encoding instructions (i.e., levels of processing manipulations). R.J. performs at chance when given no encoding instructions or when given "shallow" encoding instruction to focus on facial features. By contrast, he performs relatively well with "deep" encoding instructions to rate faces in terms of personality traits or when provided with semantic and name information during the study phase. We propose that the improvement associated with deep encoding instructions may be related to the establishment of distinct visually derived and identity-specific semantic codes. The benefit associated with deep encoding in R.J., however, was found to be restricted to the specific view of the face presented at study and did not generalize to other views of the same face. These observations suggest that deep encoding instructions may enhance memory for concrete or pictorial representations of faces in patients with prosopagnosia, but that these patients cannot compensate for the inability to construct abstract structural codes that normally allow faces to be recognized from different orientations. We postulate further that R.J.'s poor performance on face learning tasks may be attributable to excessive reliance on a feature-based left hemisphere face processing system that operates primarily on view-specific representations.

  2. The First Deep WSRT 150~MHz Full Polarization Observations

    NASA Astrophysics Data System (ADS)

    de Bruyn, A. G.; Bernardi, G.; Lofar Eor-Team

    2009-09-01

    We present the first deep total intensity and full polarization observations with the WSRT at frequencies from 116-162 MHz. Under stable ionospheric conditions we can image regions as large as 20°diameter with a single direction independent selfcalibration without detectable non-isoplanaticity effects. Deep imaging at low frequencies, however, requires removal of the brightest northern hemisphere radio sources (the A-team). A noise level of about 3 mJy, limited by classical confusion, can be achieved in Stokes I with the WSRT within a single 12 h synthesis in this frequency band. Thermal noise levels of 0.5 mJy have been reached in 6×12 h syntheses. These images have dynamic range in excess of about 20,000:1. In one such deep synthesis of the FAN region we have detected strong linear polarization over a range of Faraday depths from -6 to +2 rad m-2. The properties of a 3°diameter ring-like structure, first studied in detail by \\citeauthor{hav2003} (\\citeyear{hav2003}), suggest that we are dealing with a spherical `Faraday bubble', a region with strongly enhanced Faraday rotation. We have also detected, for the first time, structure on a scale of about 10 arcmin in the diffuse Galactic synchrotron foreground.

  3. Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source

    NASA Astrophysics Data System (ADS)

    Xu, Shaosui; Mitchell, David; Liemohn, Michael; Dong, Chuanfei; Bougher, Stephen; Fillingim, Matthew; Lillis, Robert; McFadden, James; Mazelle, Christian; Connerney, Jack; Jakosky, Bruce

    2016-09-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission samples the Mars ionosphere down to altitudes of ˜150 km over a wide range of local times and solar zenith angles. On 5 January 2015 (Orbit 520) when the spacecraft was in darkness at high northern latitudes (solar zenith angle, SZA >120° latitude >60°), the Solar Wind Electron Analyzer (SWEA) instrument observed photoelectrons at altitudes below 200 km. Such observations imply the presence of closed crustal magnetic field loops that cross the terminator and extend thousands of kilometers to the deep nightside. This occurs over the weak northern crustal magnetic source regions, where the magnetic field has been thought to be dominated by draped interplanetary magnetic fields (IMF). Such a day-night magnetic connectivity also provides a source of plasma and energy to the deep nightside. Simulations with the SuperThermal Electron Transport (STET) model show that photoelectron fluxes measured by SWEA precipitating onto the nightside atmosphere provide a source of ionization that can account for the O2+ density measured by the Suprathermal and Thermal Ion Composition (STATIC) instrument below 200 km. This finding indicates another channel for Martian energy redistribution to the deep nightside and consequently localized ionosphere patches and potentially aurora.

  4. Deglacial temperature history of West Antarctica

    PubMed Central

    Clow, Gary D.; Steig, Eric J.; Buizert, Christo; Fudge, T. J.; Koutnik, Michelle; Waddington, Edwin D.; Alley, Richard B.

    2016-01-01

    The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth’s climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes’ sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3±1.8∘C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted. PMID:27911783

  5. Northern Hemisphere Gullies on Mars: Analysis of Spacecraft Data and Implications for Formation Mechanisms

    NASA Technical Reports Server (NTRS)

    Heldmann, J. L.; Johansson, H.; Carlsson, E.; Mellon, M. T.

    2005-01-01

    The origin of geologically recent gullies on Mars has remained controversial since the discovery of these features by Malin and Edgett in 2000. Numerous models have been proposed which invoke various physical processes as well as various agents of erosion to explain the origin of the Martian gullies. Hypotheses to explain the formation of the gullies invoke shallow liquid water aquifers, deep liquid water aquifers, melting ground ice, snowmelt, dry landslides, and carbon dioxide aquifers. We test the validity of such gully formation mechanisms by analyzing data from the Mars Global Surveyor and Mars Odyssey spacecrafts to uncover trends in the dimensional and physical properties of the gullies and their surrounding terrain. A similar study has previously been completed for gullies located in the southern hemisphere of Mars. The work presented here focuses exclusively on gullies in the northern hemisphere based on the identification of 136 Mars Orbiter Camera (MOC) images containing clear evidence of gully landforms, distributed in the northern mid and high latitudes. These sites have been analyzed in combination with Mars Orbiter Laser Altimeter (MOLA), Thermal Emission Spectrometer (TES), and Gamma Ray Spectrometer (GRS) data to provide quantitative measurements of numerous gully characteristics. Parameters measured include apparent source depth and distribution, vertical and horizontal dimensions, slopes, compass orientations, near-surface ice content, and factors controlling present-day climatic conditions.

  6. The Broadband Anti-reflection Coated Extended Hemispherical Silicon Lenses for Polarbear-2 Experiment

    NASA Astrophysics Data System (ADS)

    Siritanasak, P.; Aleman, C.; Arnold, K.; Cukierman, A.; Hazumi, M.; Kazemzadeh, K.; Keating, B.; Matsumura, T.; Lee, A. T.; Lee, C.; Quealy, E.; Rosen, D.; Stebor, N.; Suzuki, A.

    2016-08-01

    Polarbear-2 (PB-2) is a next-generation receiver that is part of the Simons Array cosmic microwave background (CMB) polarization experiment which is located in the Atacama desert in Northern Chile. The primary scientific goals of the Simons Array are a deep search for the CMB B-mode signature of gravitational waves from inflation and the characterization of large-scale structure using its effect on CMB polarization. The PB-2 receiver will deploy with 1897 dual-polarization sinuous antenna-coupled pixels, each with a directly contacting extended hemispherical silicon lens. Every pixel has dual polarization sensitivity in two spectral bands centered at 95 and 150 GHz, for a total of 7588 transition edge sensor bolometers operating at 270 mK. To achieve the PB-2 detector requirements, we developed a broadband anti-reflection (AR) coating for the extended hemispherical lenses that uses two molds to apply two layers of epoxy, Stycast 1090 and Stycast 2850FT. Our measurements of the absorption loss from the AR coating on a flat surface at cryogenic temperatures show less than 1 % absorption, and the coating has survived multiple thermal cycles. We can control the diameter of the coating within 25 {\\upmu }m and translation errors are within 25 {\\upmu }m in all directions, which results in less than 1 % decrease in transmittance. We also find the performance of the AR-coated lens matches very well with simulations.

  7. The UKIRT Hemisphere Survey: definition and J-band data release

    NASA Astrophysics Data System (ADS)

    Dye, S.; Lawrence, A.; Read, M. A.; Fan, X.; Kerr, T.; Varricatt, W.; Furnell, K. E.; Edge, A. C.; Irwin, M.; Hambly, N.; Lucas, P.; Almaini, O.; Chambers, K.; Green, R.; Hewett, P.; Liu, M. C.; McGreer, I.; Best, W.; Zhang, Z.; Sutorius, E.; Froebrich, D.; Magnier, E.; Hasinger, G.; Lederer, S. M.; Bold, M.; Tedds, J. A.

    2018-02-01

    This paper defines the UK Infra-Red Telescope (UKIRT) Hemisphere Survey (UHS) and release of the remaining ∼12 700 deg2 of J-band survey data products. The UHS will provide continuous J- and K-band coverage in the Northern hemisphere from a declination of 0° to 60° by combining the existing Large Area Survey, Galactic Plane Survey and Galactic Clusters Survey conducted under the UKIRT Infra-red Deep Sky Survey (UKIDSS) programme with this new additional area not covered by UKIDSS. The released data include J-band imaging and source catalogues over the new area, which, together with UKIDSS, completes the J-band UHS coverage over the full ∼17 900 deg2 area. 98 per cent of the data in this release have passed quality control criteria. The remaining 2 per cent have been scheduled for re-observation. The median 5σ point source sensitivity of the released data is 19.6 mag (Vega). The median full width at half-maximum of the point spread function across the data set is 0.75 arcsec. In this paper, we outline the survey management, data acquisition, processing and calibration, quality control and archiving as well as summarizing the characteristics of the released data products. The data are initially available to a limited consortium with a world-wide release scheduled for 2018 August.

  8. Deglacial temperature history of West Antarctica.

    PubMed

    Cuffey, Kurt M; Clow, Gary D; Steig, Eric J; Buizert, Christo; Fudge, T J; Koutnik, Michelle; Waddington, Edwin D; Alley, Richard B; Severinghaus, Jeffrey P

    2016-12-13

    The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth's climate responds to various forcings, including a rise in atmospheric CO 2 This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes' sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was [Formula: see text]C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.

  9. Dome and Barchan Dunes in Newton Crater

    NASA Image and Video Library

    2014-10-01

    This observation from NASA Mars Reconnaissance Orbiter shows both dome and barchan dunes in a small sand dune field on the floor of Newton Crater, an approximately 300 kilometer 130 mile wide crater in the Southern hemisphere of Mars.

  10. North Atlantic ocean circulation and abrupt climate change during the last glaciation.

    PubMed

    Henry, L G; McManus, J F; Curry, W B; Roberts, N L; Piotrowski, A M; Keigwin, L D

    2016-07-29

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change. Copyright © 2016, American Association for the Advancement of Science.

  11. Late Pleistocene variations in Antarctica sea ice. I - Effect of orbital isolation changes. II - Effect of interhemispheric deep-ocean heat exchange

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.; Parkinson, Claire L.

    1988-01-01

    A dynamic-thermodynamic sea-ice model is presently used to ascertain the effects of orbitally-induced insolation changes on Antarctic sea-ice cover; the results thus obtained are compared with modified CLIMAP reconstructions of sea-ice 18,000 years ago. The minor influence exerted by insolation on Pleistocene sea-ice distributions is attributable to a number of factors. In the second part of this investigation, variations in the production of warm North Atlantic Deep Water are proposed as a mechanism constituting the linkage between climate fluctuations in the Northern and Southern hemispheres during the Pleistocene; this hypothesis is tested by examining the sensitivity of the dynamic-thermodynamic model for Antarctic sea-ice changes in vertical ocean heat flux, and comparing the simulations with modified CLIMAP sea-ice maps for 18,000 years ago.

  12. On the possibility of using multi-element phased arrays for shock-wave action on deep brain structures

    NASA Astrophysics Data System (ADS)

    Rosnitskiy, P. B.; Gavrilov, L. R.; Yuldashev, P. V.; Sapozhnikov, O. A.; Khokhlova, V. A.

    2017-09-01

    A noninvasive ultrasound surgery method that relies on using multi-element focused phased arrays is being successfully used to destroy tumors and perform neurosurgical operations in deep structures of the human brain. However, several drawbacks that limit the possibilities of the existing systems in their clinical use have been revealed: a large size of the hemispherical array, impossibility of its mechanical movement relative to the patient's head, limited volume of dynamic focusing around the center of curvature of the array, and side effect of overheating skull. Here we evaluate the possibility of using arrays of smaller size and aperture angles to achieve shock-wave formation at the focus for thermal and mechanical ablation (histotripsy) of brain tissue taking into account current intensity limitations at the array elements. The proposed approach has potential advantages to mitigate the existing limitations and expand the possibilities of transcranial ultrasound surgery.

  13. Differential effects of deep brain stimulation on verbal fluency.

    PubMed

    Ehlen, Felicitas; Schoenecker, Thomas; Kühn, Andrea A; Klostermann, Fabian

    2014-07-01

    We aimed at gaining insights into principles of subcortical lexical processing. Therefore, effects of deep brain stimulation (DBS) in different target structures on verbal fluency (VF) were tested. VF was assessed with active vs. inactivated DBS in 13 and 14 patients with DBS in the vicinity of the thalamic ventral intermediate nucleus (VIM) and, respectively, of the subthalamic nucleus (STN). Results were correlated to electrode localizations in postoperative MRI, and compared to those of 12 age-matched healthy controls. Patients' VF performance was generally below normal. However, while activation of DBS in the vicinity of VIM provoked marked VF decline, it induced subtle phonemic VF enhancement in the vicinity of STN. The effects correlated with electrode localizations in left hemispheric stimulation sites. The results show distinct dependencies of VF on DBS in the vicinity of VIM vs. STN. Particular risks for deterioration occur in patients with relatively ventromedial thalamic electrodes. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Non-invasive transmission of sensorimotor information in humans using an EEG/focused ultrasound brain-to-brain interface

    PubMed Central

    Lee, Wonhye; Kim, Suji; Kim, Byeongnam; Lee, Chungki; Chung, Yong An; Kim, Laehyun; Yoo, Seung-Schik

    2017-01-01

    We present non-invasive means that detect unilateral hand motor brain activity from one individual and subsequently stimulate the somatosensory area of another individual, thus, enabling the remote hemispheric link between each brain hemisphere in humans. Healthy participants were paired as a sender and a receiver. A sender performed a motor imagery task of either right or left hand, and associated changes in the electroencephalogram (EEG) mu rhythm (8–10 Hz) originating from either hemisphere were programmed to move a computer cursor to a target that appeared in either left or right of the computer screen. When the cursor reaches its target, the outcome was transmitted to another computer over the internet, and actuated the focused ultrasound (FUS) devices that selectively and non-invasively stimulated either the right or left hand somatosensory area of the receiver. Small FUS transducers effectively allowed for the independent administration of stimulatory ultrasonic waves to somatosensory areas. The stimulation elicited unilateral tactile sensation of the hand from the receiver, thus establishing the hemispheric brain-to-brain interface (BBI). Although there was a degree of variability in task accuracy, six pairs of volunteers performed the BBI task in high accuracy, transferring approximately eight commands per minute. Linkage between the hemispheric brain activities among individuals suggests the possibility for expansion of the information bandwidth in the context of BBI. PMID:28598972

  15. Add-on high frequency deep transcranial magnetic stimulation (dTMS) to bilateral prefrontal cortex reduces cocaine craving in patients with cocaine use disorder.

    PubMed

    Rapinesi, Chiara; Del Casale, Antonio; Di Pietro, Simone; Ferri, Vittoria Rachele; Piacentino, Daria; Sani, Gabriele; Raccah, Ruggero Nessim; Zangen, Abraham; Ferracuti, Stefano; Vento, Alessandro Emiliano; Angeletti, Gloria; Brugnoli, Roberto; D Kotzalidis, Georgios; Girardi, Paolo

    2016-08-26

    Cocaine dependence is a substantial public health problem. The aim of this study is to evaluate the effect of high frequency deep transcranial magnetic stimulation (dTMS) on craving in patients with cocaine use disorder (CUD). Seven men (mean age, 48.71 years; standard deviation [SD], 9.45; range 32-60 years) with CUD and no concurrent axis 1 or 2 disorder save nicotine abuse, underwent three sessions of alternate day 20Hz dTMS in 20 trains delivered to the dorsolateral prefrontal cortex (DLPFC) preferentially to the left hemisphere, for 12 sessions spread over one month, added to unchanged prior drug treatment. We used a visual analogue scale (VAS) to measure cocaine craving the week before, each week during, and one month after dTMS treatment. DLPFC stimulation significantly reduced craving over time: within-subjects main effect of time of treatment (ANOVA, F[3,18]=46.154; p<0.001; η(2)=0.88). The reduction of craving from baseline was significant at two weeks (p<0.001), and four weeks (p<0.001) of treatment, and at the week eight, four weeks after treatment interruption (p=0.003), although the increase of craving was significant from week four and eight (p=0.014). dTMS over left DLPFC reduced craving in CUD patients in a small sample that is to be considered preliminary. However, maintenance sessions would be needed to maintain the achieved results. Our findings highlight the potential of noninvasive neuromodulation as a therapeutic tool for cocaine addiction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Enhanced deep ocean ventilation and oxygenation with global warming

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  17. Three-Dimensional Analysis of Deep Space Network Antenna Coverage

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah; Fuentes, Michael; Meyer, Nicholas; Sil, Amy

    2012-01-01

    There is a need to understand NASA s Deep Space Network (DSN) coverage gaps and any limitations to provide redundant communication coverage for future deep space missions, especially for manned missions to Moon and Mars. The DSN antennas are required to provide continuous communication coverage for deep space flights, interplanetary missions, and deep space scientific observations. The DSN consists of ground antennas located at three sites: Goldstone in USA, Canberra in Australia, and Madrid in Spain. These locations are not separated by the exactly 120 degrees and some DSN antennas are located in the bowl-shaped mountainous terrain to shield against radiofrequency interference resulting in a coverage gap in the southern hemisphere for the current DSN architecture. To analyze the extent of this gap and other coverage limitations, simulations of the DSN architecture were performed. In addition to the physical properties of the DSN assets, the simulation incorporated communication forward link calculations and azimuth/elevation masks that constrain the effects of terrain for each DSN antenna. Analysis of the simulation data was performed to create coverage profiles with the receiver settings at a deep space altitudes ranging from 2 million to 10 million km and a spherical grid resolution of 0.25 degrees with respect to longitude and latitude. With the results of these simulations, two- and three-dimensional representations of the area without communication coverage and area with coverage were developed, showing the size and shape of the communication coverage gap projected in space. Also, the significance of this communication coverage gap is analyzed from the simulation data.

  18. The roles of stimulus repetition and hemispheric activation in visual half-field asymmetries.

    PubMed

    Sullivan, K F; McKeever, W F

    1985-10-01

    Hardyck, Tzeng, and Wang (1978, Brain and Language, 5, 56-71) hypothesized that ample repetition of a small number of stimuli is required in order to obtain VHF differences in tachistoscopic tasks. Four experiments, with varied levels of repetition, were conducted to test this hypothesis. Three experiments utilized the general task of object-picture naming and one utilized a word-naming task. Naming latencies constituted the dependent measure. The results demonstrate that for the object-naming paradigm repetition is required for RVF superiority to emerge. Repetition was found to be unnecessary for RVF superiority in the word-naming paradigm, with repetition actually reducing RVF superiority. Experiment I suggested the possibility that RVF superiority developed for the second half of the trials as a function of practice or hemispheric activation, regardless of repetition level. Subsequent experiments, better designed to assess this possibility, clearly refuted it. It was concluded that the effect of repetition depends on the processing requirements of the task. We propose that, for tasks which can be processed efficiently by one hemisphere, the effect of repetition will be to reduce VHF asymmetries; but tasks requiring substantial processing by both hemispheres will show shifts to RVF superiority as a function of repetition.

  19. Lunar Tectonic Triad Joining Both Hemispheres and Its Terrestrial Analogue

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2018-06-01

    "Orbits make structures" — This three word notion explains similarities of fundamental tectonic features of the small satellite and much larger massive Earth. Very impressive are geoids of two bodies — similarity of SPA Basin and Indian depressions.

  20. Coupled climate impacts of the Drake Passage and the Panama Seaway

    NASA Astrophysics Data System (ADS)

    Yang, Simon; Galbraith, Eric; Palter, Jaime

    2014-07-01

    Tectonically-active gateways between ocean basins have modified ocean circulation over Earth history. Today, the Atlantic and Pacific are directly connected via the Drake Passage, which forms a barrier to the time-mean geostrophic transport between the subtropics and Antarctica. In contrast, during the warm early Cenozoic era, when Antarctica was ice-free, the Drake Passage was closed. Instead, at that time, the separation of North and South America provided a tropical seaway between the Atlantic and Pacific that remained open until the Isthmus of Panama formed in the relatively recent geological past. Ocean circulation models have previously been used to explore the individual impacts of the Drake Passage and the Panama Seaway, but rarely have the two gateways been considered together, and most explorations have used very simple atmospheric models. Here we use a coupled ocean-ice-atmosphere model (GFDL's CM2Mc), to simulate the impacts of a closed Drake Passage both with and without a Panama Seaway. We find that the climate response to a closed Drake Passage is relatively small when the Panama Seaway is absent, similar to prior studies, although the coupling to a dynamical atmosphere does increase the temperature change. However, with a Panama Seaway, closing Drake Passage has a much larger effect, due to the cessation of deep water formation in the northern hemisphere. Both gateways alter the transport of salt by ocean circulation, with the Panama Seaway allowing fresh Pacific water to be imported to the North Atlantic, and the Drake Passage preventing the flow of saline subtropical water to the circum-Antarctic, a flow that is particularly strong when the Panama Seaway is open. Thus, with a Panama Seaway and a closed Drake Passage, the Southern Ocean tends to be relatively salty, while the North Atlantic tends to be relatively fresh, such that the deep ocean is ventilated from the circum-Antarctic. Ensuing changes in the ocean heat transport drive a bi-polar shift of surface ocean temperatures, and the Intertropical Convergence Zone migrates toward the warmer southern hemisphere. The response of clouds to changes in surface ocean temperatures amplifies the climate response, resulting in temperature changes of up to 9 °C over Antarctica, even in the absence of land-ice feedbacks. These results emphasize the importance of tectonic gateways to the climate history of the Cenozoic, and support a role for ocean circulation changes in the glaciation of Antarctica.

  1. Ventral pallidum deep brain stimulation attenuates acute partial, generalized and tonic-clonic seizures in two rat models.

    PubMed

    Mahoney, Emily C; Zeng, Andrew; Yu, Wilson; Rowe, Mackenzie; Sahai, Siddhartha; Feustel, Paul J; Ramirez-Zamora, Adolfo; Pilitsis, Julie G; Shin, Damian S

    2018-05-01

    Approximately 30% of individuals with epilepsy are refractory to antiepileptic drugs and currently approved neuromodulatory approaches fall short of providing seizure freedom for many individuals with limited utility for generalized seizures. Here, we expand on previous findings and investigate whether ventral pallidum deep brain stimulation (VP-DBS) can be efficacious for various acute seizure phenotypes. For rats administered pilocarpine, we found that VP-DBS (50 Hz) decreased generalized stage 4/5 seizure median frequency from 9 to 6 and total duration from 1667 to 264 s even after generalized seizures emerged. The transition to brainstem seizures was prevented in almost all animals. VP-DBS immediately after rats exhibited their first partial forebrain stage 3 seizure did not affect the frequency of partial seizures but reduced median partial seizure duration from 271 to 54 s. Stimulation after partial seizures also reduced the occurrence and duration of secondarily generalized stage 4/5 seizures. VP-DBS prior to pilocarpine administration prevented the appearance of partial seizures in almost all animals. Lastly, VP-DBS delayed the onset of generalized tonic-clonic seizures (GTCSs) from 111 to 823 s in rats administered another chemoconvulsant, pentylenetetrazol (PTZ, 90 mg/kg). In this particular rat seizure model, stimulating electrodes placed more laterally in both VP hemispheres and more posterior in the left VP hemisphere provided greatest efficacy for GTCSs. In conclusion, our findings posit that VP-DBS can serve as an effective novel neuromodulatory approach for a variety of acute seizure phenotypes. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Association of subdural hematoma with increased mortality in lobar intracerebral hemorrhage.

    PubMed

    Patel, Pratik V; FitzMaurice, Emilie; Nandigam, R N Kaveer; Auluck, Pavan; Viswanathan, Anand; Goldstein, Joshua N; Rosand, Jonathan; Greenberg, Steven M; Smith, Eric E

    2009-01-01

    To determine the prevalence of subdural hematoma (SDH) in patients presenting with primary nontraumatic lobar intracerebral hemorrhage (ICH) and characteristics associated with the presence of SDH. Retrospective analysis of data collected in a prospective cohort study. Hospital. Consecutive sample of 200 patients with primary lobar ICH and 75 patients with deep hemispheric ICH. Presence of SDH and mortality. Subdural hematoma was present in 40 of 200 patients (20%) with primary lobar ICH. By contrast, SDH was not present in any of 75 consecutive patients with deep hemispheric ICH (P < .001 for comparison with lobar ICH). Intracerebral hemorrhage volume higher than 60 cm3 was the only independent predictor of SDH (odds ratio [OR], 2.69; 95% confidence interval [CI], 1.14-6.34; P = .02). Subdural hematoma thickness more than 5 mm was an independent predictor of increased 30-day mortality (OR, 7.60; 95% CI, 1.86-30.99; P = .005) after controlling for other factors including ICH volume. Further analysis showed that the effect of SDH on mortality depended on ICH volume, with larger odds for mortality in those with low ICH volume (OR, 12.85; 95% CI, 2.42-68.23; P = .003 for those with ICH volume <30 cm3). Cerebral amyloid angiopathy was present in 8 of 9 patients with pathological specimens. Nontraumatic SDH frequently accompanies primary lobar ICH and is associated with higher 30-day mortality, particularly when the ICH volume is relatively low. Rupture of an amyloid-laden leptomeningeal vessel, with extravasation into the brain parenchyma and subdural space, may be the pathogenic mechanism.

  3. Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerji, M.; Jouvel, S.; Lin, H.

    2014-11-25

    We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near-infrared (NIR) data from the European Southern Observatory VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint seven-band ( grizYJK) photometric catalogues are produced in a single 3 sq-deg dedicated camera field centred at 02h26m-04d36m where the availability of ancillary multiwavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factormore » of ~4.5 relative to a simple catalogue level matching and results in a ~1.5 mag increase in the 80 per cent completeness limit of the NIR data. Almost 70 per cent of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z < 0.5 and z > 1. We present example DES+VHS colour selection criteria for high-redshift luminous red galaxies (LRGs) at z ~ 0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <10 per cent contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5 per cent contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS data set, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.« less

  4. Southern ocean winds during past (and future) warm periods and their affect on Agulhas Leakage and the Atlantic Merdional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Patel, N. P.; Deconto, R. M.; Condron, A.

    2013-12-01

    The leakage of Agulhas Current water into the South Atlantic is now thought to be a major player in global climate change. The volume of Agulhas Leakage is linked to the strength and position of southern westerlies. Past changes in the westerly winds over the southern ocean have been noted on glacial-interglacial timescales, in response to both Northern Hemispheric conditions and more proximal changes in Antarctic ice volume. Over recent decades, a southward shift in the southern ocean westerlies has been observed and is expected to continue with projected climate warming. The resulting increase in Agulhas Leakage is thought to allow more warm, salty water from the Indian Ocean into the Atlantic, with the potential to impact the Atlantic Meridional Overturning circulation (AMOC). Some climate models have predicted global warming will result in a slowdown and weakening of the AMOC. A strengthening of the Agulhas Leakage therefore has the potential to counteract that slowdown. Much of the Agulhas leakage is carried in small eddies rotating off the main flow south of Cape Horn. High ocean model resolution (< 1/2°) is therefore required to simulate their response to the overlying wind field. However the majority of previous model studies have been too coarse in resolution to quantify the link between the Agulhas Leakage the AMOC. Here we run a series of global high-resolution ocean model (1/6°) experiments using the MITgcm to test the effect of a shift in the southern hemisphere westerlies on the Agulhas Leakage. A prescribed perturbation of the winds near South Africa shows a significant increase in Agulhas eddies into the Atlantic. Following this, we have conducted longer simulations with the winds over the Southern Ocean perturbed to reflect both past and possible future shifts in the wind field to quantify changes in North Atlantic Deep Water formation and the overall response of the AMOC to this perturbation.

  5. Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerji, M.; Jouvel, S.; Lin, H.

    2014-11-25

    We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near-infrared (NIR) data from the European Southern Observatory VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint seven-band (grizYJK) photometric catalogues are produced in a single 3 sq-deg dedicated camera field centred at 02h26m-04d36m where the availability of ancillary multiwavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factor ofmore » similar to 4.5 relative to a simple catalogue level matching and results in a similar to 1.5 mag increase in the 80 per cent completeness limit of the NIR data. Almost 70 per cent of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z < 0.5 and z > 1. We present example DES VHS colour selection criteria for high-redshift luminous red galaxies (LRGs) at z similar to 0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <10 per cent contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5 per cent contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS data set, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.« less

  6. Postglacial Records of Southern Hemisphere Climate and Oceanographic Change From the New Zealand Subantarctic Auckland Islands

    NASA Astrophysics Data System (ADS)

    Moy, C. M.; Gilmer, G.; Nichols, J. E.; Browne, I. M.; Curtin, L.; Vandergoes, M.; Aebig, C.; Wilson, G. S.

    2017-12-01

    The strength and latitudinal position of the Southern Hemisphere westerly winds (SHWW) play a fundamental role in influencing mid-latitude climate and CO2 exchange between the Southern Ocean and the atmosphere along seasonal to glaicial-interglacial timescales. Despite their importance, our understanding of past SHWW change is limited by the small number of paleoclimate records from the modern wind maximum, which are often not in agreement. The New Zealand subantarctic Auckland Islands are located within the core of the modern wind belt (50°S), a key latitude where ocean-atmospheric linkages between the Antarctic and mid-latitudes are strong. In contrast to other subantarctic islands on the Campbell Plateau, the Auckland Islands have multiple protected fjord sub-basins, deep lakes, and peatlands that are advantageous for the development of high-resolution paleoclimate records. We will present ongoing work towards the establishment of multi-proxy and multi-site reconstructions of past SHWW variability from the Auckland Islands. Modern process and paleoclimate studies suggest that in lacustrine and fjord settings, the degree of water column mixing, the stable isotopic composition of n-alkanes and benthic foraminifera, and the influx of terrestrial organic matter are good indicators of wind-induced mixing of the water column or precipitation-driven erosion within catchments. During the Late Glacial and early Holocene (15 to 9 ka), elevated long-chain n-alkane δD values from ombrotrophic peatlands and an increase in the concentration of redox-sensitive elements in fjord sediment cores, signal weakening of the SHWW that appears to be coincident with periods of rapid deglacial warming of West Antarctica. Since 5.5 ka, we interpret declining n-alkane δD values to indicate enhanced westerly flow. These interpretations are in broad agreement with terrestrial paleoclimate records developed from southern South America and argue for a symmetrical response of the SHWW during the last 15,000 years along multi-millennial timescales.

  7. Supercontinent Formation in 3-D Spherical Mantle Convection Models With Multiple Continental Blocks

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Zhong, S.; McNamara, A.

    2007-12-01

    Much of the large-scale tectonics on the Earth in the last Ga is predominated by the assembly and breakup of supercontinents Rodinia and Pangea. However, the mechanism that is responsible for supercontinent formation remains poorly understood. Zhong et al [2007] recently showed that mantle convection with moderately strong lithosphere and lower mantle is characterized by a largely degree-1 planform in which one hemisphere is predominated by upwellings while the other by downwellings. They further suggested that the downwellings should attract all the continental blocks to merge in the downwelling hemisphere, thus leading to supercontinent formation there. However, Zhong et al. [2007] did not consider drifting and collision processes of continents. In this study, we explore the supercontinent formation mechanisms by including drifting and collision processes of multiple continental blocks in 3-D spherical mantle convection models. We use thermochemical CitcomS code to model 3-D spherical mantle convection with continental blocks. In our models, particles are used to represent continents and to track their motions. We found that for models with mantle viscosity (i.e., moderately strong lithosphere and lower mantle) that leads to degree-1 convection as reported in Zhong et al. [2007], initially evenly- distributed continental blocks always merge to form a supercontinent on a time-scale of about 6 transit times (i.e., corresponding to about 300 Ma). The hemisphere where a supercontinent is formed is predominated by downwellings as continents merge towards there, while the other hemisphere by upwellings. However, after the supercontinent formation, upwellings are generated beneath the supercontinent. This scenario is qualitatively consistent with what Zhong et al. [2007] proposed. We also found that while some convection models with intrinsically small-scale planforms may also lead to formation of a supercontinent, some other models may fail to produce a supercontinent. For these models with intrinsically small-scale planforms, the merged continental blocks promote long-wavelength mantle structure near the continents. However, in non-continental regions, convective wavelengths remain relatively small. We suggest that time-scales for supercontinent formation and convective wavelengths in non-continental area are important parameters that help constrain mechanisms for supercontinent formation.

  8. Rainy Periods and Bottom Water Stagnation Initiating Brine Accumulation and Metal Concentrations: 1. The Late Quaternary

    NASA Astrophysics Data System (ADS)

    Rossignol-Strick, Martine

    1987-06-01

    A working hypothesis is proposed to account for the present accumulation of brines in isolated pockets of the ocean floor and for the formation of the underlying organic and metal-rich sediments. These are the Tyro and Bannock basins in the East Mediterranean, the Red Sea Deeps, and the Orca Basin in the northern Gulf of Mexico. Initiation of brine-derived deposition in the Red Sea Deeps and Orca Basin occurred between 12,000 and 8000 years B.P. This time bracket also encompasses the formation of the latest East Mediterranean sapropel and the wettest global climate since the last glacial maximum. This wet period first appeared in the tropics around 12,000 years B.P, then in the subtropical and middle latitudes. During the same period, the 23,000 year precession cycle brought the summer insolation of the northern hemisphere to its peak at 11,000 years B.P. with retreating northern hemisphere ice sheets. The Red Sea Deeps and the Orca Basin became anoxic during this humid period, and metal-rich sapropel deposition then began. In contrast, the Tyro and Bannock basins began accumulating a brine long before and persisted beyond this climatic stage. The hypothesis involves two propositions: (1) As in the Eastern Mediterranean Sea, marine anoxia was mainly the consequence of the large influx of continental runoff and local precipitation. Longer residence time of bottom waters, so-called "stagnation," in silled rimmed basins would have resulted from lower salinity at the sea surface in areas of deep water formation in the Eastern Mediterranean, the Red Sea, and the Gulf of Mexico and (2) Miocene or older evaporites underlie these basins or outcrop on their flanks. Leaching from these evaporites was an ongoing process before the quasi-stagnation phase, but the initial leachate, much less saline than the present brines, was continuously flushed by bottom circulation. The climate-induced quiescence of bottom waters in these basins enabled the leachate to accumulate. The feedback of stagnation by increased density progressively raised the salinity of entrapped bottom waters to the present brine concentration. The high density has resisted brine removal by bottom circulation until present time, long after cessation of the initiating wet period. The brines therefore are stagnant, fossil waters.

  9. Changes of migraine-related white matter hyperintensities after 3 years: a longitudinal MRI study.

    PubMed

    Erdélyi-Bótor, Szilvia; Aradi, Mihály; Kamson, David Olayinka; Kovács, Norbert; Perlaki, Gábor; Orsi, Gergely; Nagy, Szilvia Anett; Schwarcz, Attila; Dóczi, Tamás; Komoly, Sámuel; Deli, Gabriella; Trauninger, Anita; Pfund, Zoltán

    2015-01-01

    The aim of this longitudinal study was to investigate changes of migraine-related brain white matter hyperintensities 3 years after an initial study. Baseline quantitative magnetic resonance imaging (MRI) studies of migraine patients with hemispheric white matter hyperintensities performed in 2009 demonstrated signs of tissue damage within the hyperintensities. The hyperintensities appeared most frequently in the deep white matter of the frontal lobe with a similar average hyperintensity size in all hemispheric lobes. Since in this patient group the repeated migraine attacks were the only known risk factors for the development of white matter hyperintensities, the remeasurements of migraineurs after a 3-year long follow-up may show changes in the status of these structural abnormalities as the effects of the repeated headaches. The same patient group was reinvestigated in 2012 using the same MRI scanner and acquisition protocol. MR measurements were performed on a 3.0-Tesla clinical MRI scanner. Beyond the routine T1-, T2-weighted, and fluid-attenuated inversion recovery imaging, diffusion and perfusion-weighted imaging, proton magnetic resonance spectroscopy, and T1 and T2 relaxation time measurements were also performed. Findings of the baseline and follow-up studies were compared with each other. The follow-up proton magnetic resonance spectroscopy studies of white matter hyperintensities showed significantly decreased N-acetyl-aspartate (median values 8.133 vs 7.153 mmol/L, P=.009) and creatine/phosphocreatine (median values 4.970 vs 4.641 mmol/L, P=.015) concentrations compared to the baseline, indicating a more severe axonal loss and glial hypocellularity with decreased intracellular energy production. The diffusion values, the T1 and T2 relaxation times, and the cerebral blood flow and volume measurements presented only mild changes between the studies. The number (median values 21 vs 25, P<.001) and volume (median values 0.896 vs 1.140 mL, P<.001) of hyperintensities were significantly higher in the follow-up study. No changes were found in the hemispheric and lobar distribution of hyperintensities. An increase in the hyperintensity size of preexisting lesions was much more common than a decrease (median values 14 vs 5, P=.004). A higher number of newly developed hyperintensities were detected than disappeared ones (130 vs 22), and most of them were small (<.034 mL). Small white matter hyperintensities in patients with a low migraine attack frequency had a higher chance to disappear than large white matter hyperintensities or white matter hyperintensities in patients with a high attack frequency (coefficient: -0.517, P=.034). This longitudinal MRI study found clinically silent brain white matter hyperintensities to be predominantly progressive in nature. The absence of a control group precludes definitive conclusions about the nature of these changes or if their degree is beyond normal aging. © 2014 American Headache Society.

  10. Inner Core Imaging Using P'P'

    NASA Astrophysics Data System (ADS)

    Day, E. A.; Ward, J. A.; Bastow, I. D.; Irving, J. C. E.

    2016-12-01

    The Earth's inner core is a surprisingly complex region of our planet. Simple models of inner core solidification and evolution would lead us to expect a layered structure, which has "frozen in" in information about the state of the core at the time of solidification. However, seismic observations of Earth's inner core are not dominated by a radial "tree-ring" like pattern, but instead have revealed a hemispherical dichotomy in addition to depth dependent variations. There is a degree-one structure in isotropic and anisotropic velocities and in attenuation between the so-called eastern and western hemispheres of the inner core, with different depth distributions proposed for these varying phenomena. A range of mechanisms have been proposed to explain the hemispherical differences. These include models that require differences between the two hemispheres at the time of formation, post-solidification texturing, convection in the inner core, or hybrid mechanisms. Regional observations of the inner core suggest that a simple division between East and West may not be able to fully capture the structure present in the inner core. More detailed seismic observations will help us to understand the puzzle of the inner core's evolution. In this study we focus on updating observations of the seismic phase P'P', an inner core sensitive body wave with a more complex path than those typically used to study the inner core. By making new measurements of P'P' we illuminate new regions of the core with a high frequency phase that is sensitive to small scale structures. We examine the differential travel times of the different branches of P'P' (PKIKPPKIKP and PKPPKP), comparing the arrival time of inner core turning branch, P'P'df, with the arrival times of branches that turn in the outer core. P'P' is a relatively small amplitude phase, so we use both linear and non-linear stacking methods to make observations of the P'P' signals. These measurements are sensitive to the broad scale hemispherical pattern of anisotropy in the inner core as well as smaller scale variations.

  11. Morphological divergence between three Arctic charr morphs - the significance of the deep-water environment.

    PubMed

    Skoglund, Sigrid; Siwertsson, Anna; Amundsen, Per-Arne; Knudsen, Rune

    2015-08-01

    Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow-, deep-water resource axis in a subarctic postglacial lake (Norway). The two deep-water (profundal) spawning morphs, a benthivore (PB-morph) and a piscivore (PP-morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep-water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small-sized PB-morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep-water sediments. The PP-morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO-morph) predominantly utilizes the shallow benthic-pelagic habitat and food resources. Compared to the deep-water morphs, the LO-morph had smaller head relative to body size. The LO-morph exhibited traits typical for both shallow-water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep-water habitat for the PB- and PP-morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep-water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep-water piscivore morph has to our knowledge not been described elsewhere.

  12. Inner Core Anisotropy in Attenuation

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wen, L.

    2004-12-01

    It is now well established that the compressional velocity in the Earth's inner core varies in both direction and geographic location. The compressional waves travel faster along the polar directions than along the equatorial directions. Such polar-equatorial difference is interpreted as a result of inner core anisotropy in velocity (with a magnitude of about 3%) and such anisotropy appears to be stronger in the ``western hemisphere" (180oW -40oE) than in the ``eastern hemisphere" (40oE-180oE). Along the equatorial paths, the compressional velocity also exhibits a hemispheric pattern with the eastern hemisphere being about 1% higher than the western hemisphere. Possible explanations for the causes of the velocity in anisotropy and the hemispheric difference in velocity along the equatorial paths include different geometric inclusions of melt or different alignments of iron crystals which are known to be anisotropic in velocities. Here, we report an observation of ubiquitous correlation between small (large) amplitude and fast (slow) travel time of the PKIKP waves sampling the top 300 km of the inner core. We study this correlation by jointly analyzing the differential travel times and amplitude ratios of the PKiKP-PKIKP and the PKPbc-PKIKP phases recorded by the Global Seismographic Network (1990-2001), various regional seismic networks (BANJO, BLSP, FREESIA, GEOFON, GEOSCOPE, Kazakhstan, Kyrgyz, MEDNET, and OHP), and several PASSCAL Networks deployed in Alaska and Antarctica (XE: 1999-2001, XF: 1995-1996, and YI: 1998-1999). Our dataset consists of 310 PKiKP-PKIKP and 240 PKPbc-PKIKP phases, selected from a total of more than 16,000 observations. PKIKP waves exhibit relatively smaller amplitudes for those sampling the eastern hemisphere along the equatorial paths and even smaller amplitudes for those sampling the polar paths in the western hemisphere. One simple explanation for the velocity-attenuation relation is that the inner core is anisotropic in attenuation and the direction of high attenuation correlates with that of high P velocity. Different anisotropic behaviors in velocity and attenuation can be best explained by different alignments of iron crystals under the hypothesis that iron crystals are anisotropic in both velocity and attenuation and their axes of high P velocity correspond to those of high attenuation.

  13. Search for Trends and Periodicities in Inter-hemispheric Sea Surface Temperature Difference

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; Tiwari, R. K.

    2018-02-01

    Understanding the role of coupled solar and internal ocean dynamics on hemispheric climate variability is critical to climate modelling. We have analysed here 165 year long annual northern hemispheric (NH) and southern hemispheric (SH) sea surface temperature (SST) data employing spectral and statistical techniques to identify the imprints of solar and ocean-atmospheric processes, if any. We reconstructed the eigen modes of NH-SST and SH-SST to reveal non-linear oscillations superimposed on the monotonic trend. Our analysis reveals that the first eigen mode of NH-SST and SH-SST representing long-term trend of SST variability accounts for 15-23% variance. Interestingly, these components are matching with first eigen mode (99% variance) of the total solar irradiance (TSI) suggesting possible impact of solar activity on long-term SST variation. Furthermore, spectral analysis of SSA reconstructed signal revealed statistically significant periodicities of 63 ± 5, 22 ± 2, 10 ± 1, 7.6, 6.3, 5.2, 4.7, and 4.2 years in both NH-SST and SH-SST data. The major harmonics centred at 63 ± 5, 22 ± 2, and 10 ± 1 years are similar to solar periodicities and hence may represent solar forcing, while the components peaking at around 7.6, 6.3, 5.2, 4.7, and 4.2 years apparently falls in the frequency bands of El-Nino-Southern Oscillations linked to the oceanic internal processes. Our analyses also suggest evidence for the amplitude modulation of 9-11 and 21-22 year solar cycles, respectively, by 104 and 163 years in northern and southern hemispheric SST data. The absence of the above periodic oscillations in CO2 fails to suggest its role on observed inter-hemispheric SST difference. The cross-plot analysis also revealed strong influence of solar activity on linear trend of NH- and SH-SST in addition to small contribution from CO2. Our study concludes that (1) the long-term trends in northern and southern hemispheric SST variability show considerable synchronicity with cyclic warming and cooling phases and (2) the difference in cyclic forcing and non-linear modulations stemming from solar variability as a possible source of hemispheric SST differences.

  14. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression

    PubMed Central

    Ishima, Rieko

    2016-01-01

    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having −Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1H-15N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0–28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution. PMID:27524944

  15. Lateralization of spatial information processing in response monitoring

    PubMed Central

    Stock, Ann-Kathrin; Beste, Christian

    2014-01-01

    The current study aims at identifying how lateralized multisensory spatial information processing affects response monitoring and action control. In a previous study, we investigated multimodal sensory integration in response monitoring processes using a Simon task. Behavioral and neurophysiologic results suggested that different aspects of response monitoring are asymmetrically and independently allocated to the hemispheres: while efference-copy-based information on the motor execution of the task is further processed in the hemisphere that originally generated the motor command, proprioception-based spatial information is processed in the hemisphere contralateral to the effector. Hence, crossing hands (entering a “foreign” spatial hemifield) yielded an augmented bilateral activation during response monitoring since these two kinds of information were processed in opposing hemispheres. Because the traditional Simon task does not provide the possibility to investigate which aspect of the spatial configuration leads to the observed hemispheric allocation, we introduced a new “double crossed” condition that allows for the dissociation of internal/physiological and external/physical influences on response monitoring processes. Comparing behavioral and neurophysiologic measures of this new condition to those of the traditional Simon task setup, we could demonstrate that the egocentric representation of the physiological effector's spatial location accounts for the observed lateralization of spatial information in action control. The finding that the location of the physical effector had a very small influence on response monitoring measures suggests that this aspect is either less important and/or processed in different brain areas than egocentric physiological information. PMID:24550855

  16. You can count on the motor cortex: finger counting habits modulate motor cortex activation evoked by numbers.

    PubMed

    Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H; Pulvermüller, Friedemann

    2012-02-15

    The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Moon - Western Hemisphere

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This image of the western hemisphere of the Moon was taken through a green filter by the Galileo spacecraft at 9:35 a.m. PST Dec. 9 at a range of about 350,000 miles. In the center is the Orientale Basin, 600 miles in diameter, formed about 3.8 billion years ago by the impact of an asteroid-size body. Orientale's dark center is a small mare. To the right is the lunar nearside with the great, dark Oceanus Procellarum above and the small, circular, dark Mare Humorum below. Maria are broad plains formed mostly over 3 billion years ago as vast basaltic lava flows. To the left is the lunar far side with fewer maria but, at lower left, the South-Pole-Aitken basin, about 1200 miles in diameter, which resembles Orientale but is much older and more weathered and battered by cratering. The intervening cratered highlands of both sides, as well as the maria, are dotted with bright, young craters. This image was 'reprojected' so as to center the Orientale Basin, and was filtered to enhance the visibility of small features. The digital image processing was done by DLR, the German Aerospace Research Establishment near Munich, an international collaborator in the Galileo mission.

  18. Hotspots and sunspots - Surface tracers of deep mantle convection in the earth and sun

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1993-01-01

    The evolution of the hot-spot distribution on earth in time and space is investigated using available age data. The statistics of continental flood basalt eruptions suggests the formation of a total of about 40 hot spots worldwide during the Cenozoic and Mesozoic, with no true antipodal pairs found. It was found that hot spots tend to concentrate mainly in mid-latitudes, but the pattern of new appearances of hot spots may migrate from high to low latitudes in both hemispheres in long cycles, and may also drift in longitude, although much more slowly prograde.

  19. Global latitudinal species diversity gradient in deep-sea benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Culver, Stephen J.; Buzas, Martin A.

    2000-02-01

    Global scale patterns of species diversity for modern deep-sea benthic foraminifera, an important component of the bathyal and abyssal meiofauna, are examined using comparable data from five studies in the Atlantic, ranging over 138° of latitude from the Norwegian Sea to the Weddell Sea. We show that a pattern of decreasing diversity with increasing latitude characterises both the North and South Atlantic. This pattern is confirmed for the northern hemisphere by independent data from the west-central North Atlantic and the Arctic basin. Species diversity in the North Atlantic northwards from the equator is variable until a sharp fall in the Norwegian Sea (ca. 65°N). In the South Atlantic species diversity drops from a maximum in latitudes less than 30°S and then decreases slightly from 40 to 70°S. For any given latitude, North Atlantic diversity is generally lower than in the South Atlantic. Both ecological and historical factors related to food supply are invoked to explain the formation and maintenance of the latitudinal gradient of deep-sea benthic foraminiferal species diversity. The gradient formed some 36 million years ago when global climatic cooling led to seasonally fluctuating food supply in higher latitudes.

  20. The Great Observatories Origins Deep Survey (GOODS) Spitzer Legacy Science Program

    NASA Astrophysics Data System (ADS)

    Dickinson, M.; GOODS Team

    2004-12-01

    The Great Observatories Origins Deep Survey (GOODS) is an anthology of observing programs that are creating a rich, public, multiwavelength data set for studying galaxy formation and evolution. GOODS is observing two fields, one in each hemisphere, with extremely deep imaging and spectroscopy using the most powerful telescopes in space and on the ground. The GOODS Spitzer Legacy Science Program completes the trio of observations from NASA's Great Observatories, joining already-completed GOODS data from Chandra and Hubble. Barring unforeseen difficulties, the GOODS Spitzer observing program will have been completed by the end of 2004, and the first data products will have been released to the astronomical community. In this Special Oral Session, and in an accompanying poster session, the GOODS team presents early scientific results from this Spitzer Legacy program, as well as new research based on other GOODS data sets. I will introduce the session with a brief description of the Legacy observations and data set. Support for this work, part of the Spitzer Space Telescope Legacy Science Program, was provided by NASA through Contract Number 1224666 issued by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  1. Pluto in 3-D

    NASA Image and Video Library

    2015-10-23

    Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032

  2. Novel techniques and insights into the deployment of pop-up satellite archival tags on a small-bodied deep-water chondrichthyan

    NASA Astrophysics Data System (ADS)

    Shipley, Oliver N.; Howey, Lucy A.; Tolentino, Emily R.; Jordan, Lance K. B.; Brooks, Edward J.

    2017-01-01

    Acquiring movement data for small-bodied, deep-water chondrichthyans is challenged by extreme effects of capture and handling stress, and post-release predation, however, it is urgently required to examine important fisheries interactions and assess the ecological role of these species within deep-water food webs. Here we suggest a novel release-cage mechanism to deploy pop-up satellite archival tags, as well as present vertical habitat data for a data-deficient, small-bodied, deep-water bycatch species, the Cuban dogfish (Squalus cubensis). Data were gathered from seven of eight High Rate X-Tags deployed on mature Cuban dogfish in the Exuma Sound, The Bahamas. Recovery periods appeared variable between individuals and are likely driven by capture-and-handling stress and tag burden. Application of the cross-correlation function to time-series depth and temperature data indicated three of the seven individuals suffered mortality through predation, which occurred during daytime, and suggests Cuban dogfish may constitute a proportion of deep-water apex predator diet in the Exuma Sound. Two animals were successfully released via a novel release-cage mechanism and displayed either no, or rapid (<15 mins) vertically stationary recovery periods and were not consumed by predators; data for these individuals were recorded for the entire deployment duration (14 days). Vertical habitat data suggests Cuban dogfish are diel-vertical migrators, similar to other deep-water taxa, and exhibit a relatively broad temperature and depth range, which may be driven by preference for specific bathymetric structures. These techniques provide an important first step into acquiring and presenting vertical habitat data for small-bodied, deep-water chondrichthyans, which can be directly applied to fisheries and ecosystem-based management approaches.

  3. Effects of radiator shapes on the bubble diving and dispersion of ultrasonic argon process.

    PubMed

    Liu, Xuan; Xue, Jilai; Zhao, Qiang; Le, Qichi; Zhang, Zhiqiang

    2018-03-01

    In this work, three ultrasonic radiators in different shapes have been designed in order to investigate the effects of radiator shapes on the argon bubble dispersion and diving as well as the degassing efficiency on magnesium melt. The radiator shape has a strong influence on the bubble diving and dispersion by ultrasound. A massive argon bubble slowly flows out from the radiator with the hemispherical cap, due to the covering hemispherical cap. Using a concave radiator can intensively crush the argon bubbles and drive them much deep into the water/melt, depending on the competition between the argon flow and opposite joint shear force from the concave surface. The evolution of wall bubbles involves the ultrasonic cavities carrying dissolved gas, migrating to the vessel wall, and escaping from the liquid. Hydrogen removal can be efficiently achieved using a concave radiator. The hydrogen content can be reduced from 22.3 μg/g down to 8.7 μg/g. Mechanical properties are significantly promoted, due to the structure refinement and efficient hydrogen removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Wave-driven Equatorial Annual Oscillation Induced and Modulated by the Solar Cycle

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Mengel, John G.; Wolff, Charles

    2005-01-01

    Our model for the solar cycle (SC) modulation of the Quasi-Biennial Oscillation (QBO) produces a hemispherically symmetric 12-month Annual Oscillation (AO) in the zonal winds, which is confined to low latitudes. This Equatorial Annual Oscillation (EAO) is produced by interaction between the anti-symmetric component of SC forcing and the dominant anti-symmetric AO. The EA0 is amplified by the upward propagating small- scale gravity waves (GW), and the oscillation propagates down through the stratosphere like the QBO. The amplitude of the EA0 is relatively small, but its SC modulation contributes significantly to extend the effect to lower altitudes. Although the energy of the EA0 is concentrated at low latitudes, prominent signatures appear in the Polar Regions where the SC produces measurable temperature variations. At lower altitudes, the SC effects are significantly different in the two hemispheres because of the EAO, and due to its GW driven downward propagation the phase of the annual cycle is delayed.

  5. [Applied anatomy of small saphenous vein and its distally-based sural nerve nutrient].

    PubMed

    Zhang, Fahui; Lin, Songqing; Zheng, Heping

    2005-07-01

    To investigate the origin of small saphenous vein of distally-based of sural nerve nutrient vessels flap and its clinical application. The origins of nutrient vessels of small saphenous vein and communicating branches of superficial-deep vein were observed on specimens of 30 adult cadaveric low limbs by perfusing red gelatin to dissect the artery. The nutrient vessels of small saphenous vein originated from the heel lateral artery, the terminal perforator branches of peroneal artery and intermuscular septum perforating branches of peroneal artery. There were 2 to 5 branches of such distally-based perforating branches whose diameters ranged from 0.6 to 1.0 mm. Those perforating branches included fascia branches, cutaneous branches nerve and vein nutrient branches. Those nutrient vessels formed a longitudinal vessel chain of clinical nerve shaft, vessel chain of vein side and vessel network of deep superficial fascia. The small saphenous vein had 1 to 2 communicating branches of superficial-deep vein whose diameter was 1.7+/-0.5 mm, 3.4+/-0.9 cm to the level of cusp of lateral malleolus, and converged into the fibular vein. Distally-based sural nerve, small saphenous vein, and nutrient vessels of fascia skin have the same region. The communicating branches of superficial-deep vein is 3 to 4 cm to the level of cusp lateral malleolus. These communicating branches could improve the venous drainage of the flap.

  6. Deglacial temperature history of West Antarctica

    USGS Publications Warehouse

    Cuffey, Kurt M.; Clow, Gary D.; Steig, Eric J.; Buizert, Christo; Fudge, T.J.; Koutnik, Michelle; Waddington, Edwin D.; Alley, Richard B.; Severinghaus, Jeffrey P.

    2016-01-01

    The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth’s climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes’ sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3±1.8∘">11.3±1.8∘11.3±1.8∘C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.

  7. Mars Gravity Field Model Development from Mars Global Surveyor Tracking Data

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Zuber, M. T.

    1999-01-01

    Since Feb. 99 the MGS spacecraft has been in a near circular orbit at about 400 km altitude. The MGS has been regularly tracked by the Deep Space Network (DSN) at X-band and for a 3 week period in February was tracked almost continuously for an intensive gravity modeling activity that would form the basis of the orbital computations for the rest of the mission. The data collected during this calibration period and the earlier SPO and Hiatus periods have now been used to develop a new gravity field model for Mars that is showing considerable new detail in both the northern and southern hemispheres. Until February no data at 400 km altitude or lower had been acquired on any previous mission south of about 35S and all the previous data were of significantly lower quality. Low altitude data (-170 km) were obtained over the higher latitudes of the northern hemisphere during the SPO periods but because of the high eccentricity of the orbit nothing of similar quality was obtainable for the southern hemisphere. The new models are of spherical harmonic degree and order 70 or higher and are suggesting large anomalies are often associated with the large impact features. Gravity data have also been obtained over both the northern and southern polar ice caps. The MGS orbit quality resulting from the use of these newer models is better than any previous Mars missions and is approaching the ten's of meter level that had been hoped would be eventually realizable.

  8. Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall

    NASA Astrophysics Data System (ADS)

    Lau, William Ka-Ming; Kim, Kyu-Myong

    2017-05-01

    In this paper, we have compared and contrasted competing influences of greenhouse gases (GHG) warming and aerosol forcing on Asian summer monsoon circulation and rainfall based on CMIP5 historical simulations. Under GHG-only forcing, the land warms much faster than the ocean, magnifying the pre-industrial climatological land-ocean thermal contrast and hemispheric asymmetry, i.e., warmer northern than southern hemisphere. A steady increasing warm-ocean-warmer-land (WOWL) trend has been in effect since the 1950's substantially increasing moisture transport from adjacent oceans, and enhancing rainfall over the Asian monsoon regions. However, under GHG warming, increased atmospheric stability due to strong reduction in mid-tropospheric and near surface relative humidity coupled to an expanding subsidence areas, associated with the Deep Tropical Squeeze (DTS, Lau and Kim, 2015b) strongly suppress monsoon convection and rainfall over subtropical and extratropical land, leading to a weakening of the Asian monsoon meridional circulation. Increased anthropogenic aerosol emission strongly masks WOWL, by over 60% over the northern hemisphere, negating to a large extent the rainfall increase due to GHG warming, and leading to a further weakening of the monsoon circulation, through increasing atmospheric stability, most likely associated with aerosol solar dimming and semi-direct effects. Overall, we find that GHG exerts stronger positive rainfall sensitivity, but less negative circulation sensitivity in SASM compared to EASM. In contrast, aerosols exert stronger negative impacts on rainfall, but less negative impacts on circulation in EASM compared to SASM.

  9. Effect of Global Warming and Increased Freshwater Flux on Northern Hemispheric Cooling

    NASA Astrophysics Data System (ADS)

    Girihagama, L. N.; Nof, D.

    2016-02-01

    We wish to answer the, fairly complicated, question of whether global warming and an increased freshwater flux can cause Northern Hemispheric warming or cooling. Starting from the assumption that the ocean is the primary source of variability in the Northern hemispheric ocean-atmosphere coupled system, we employed a simple non-linear one-dimensional coupled ocean-atmosphere model. The simplicity of the model allows us to analytically predict the evolution of many dynamical variables of interest such as, the strength of the Atlantic Meridional overturning circulation (AMOC), temperatures of the ocean and atmosphere, mass transports, salinity, and ocean-atmosphere heat fluxes. The model results show that a reduced AMOC transport due to an increased freshwater flux causes cooling in both the atmosphere and ocean in the North Atlantic (NA) deep-water formation region. Cooling in both the ocean and atmosphere can cause reduction of the ocean-atmosphere temperature difference, which in turn reduces heat fluxes in both the ocean and atmosphere. For present day climate parameters, the calculated critical freshwater flux needed to arrest AMOC is 0.08 Sv. For a constant atmospheric zonal flow, there is minimal reduction in the AMOC strength, as well as minimal warming of the ocean and atmosphere. This model provides a conceptual framework for a dynamically sound response of the ocean and atmosphere to AMOC variability as a function of increased freshwater flux. The results are qualitatively consistent with numerous realistic coupled numerical models of varying complexity.

  10. Determination of Process Parameters in Multi-Stage Hydro-Mechanical Deep Drawing by FE Simulation

    NASA Astrophysics Data System (ADS)

    Kumar, D. Ravi; Manohar, M.

    2017-09-01

    In this work, analysis has been carried to simulate manufacturing of a near hemispherical bottom part with large depth by hydro-mechanical deep drawing with an aim to reduce the number of forming steps and to reduce the extent of thinning in the dome region. Inconel 718 has been considered as the material due to its importance in aerospace industry. It is a Ni-based super alloy and it is one of the most widely used of all super alloys primarily due to large-scale applications in aircraft engines. Using Finite Element Method (FEM), numerical simulations have been carried out for multi-stage hydro-mechanical deep drawing by using the same draw ratios and design parameters as in the case of conventional deep drawing in four stages. The results showed that the minimum thickness in the final part can be increased significantly when compared to conventional deep drawing. It has been found that the part could be deep drawn to the desired height (after trimming at the final stage) without any severe wrinkling. Blank holding force (BHF) and peak counter pressure have been found to have a strong influence on thinning in the component. Decreasing the coefficient of friction has marginally increased the minimum thickness in the final component. By increasing the draw ratio and optimizing BHF, counter pressure and die corner radius in the simulations, it has been found that it is possible to draw the final part in three stages. It has been found that thinning can be further reduced by decreasing the initial blank size without any reduction in the final height. This reduced the draw ratio at every stage and optimum combination of BHF and counter pressure have been found for the 3-stage process also.

  11. Adaptive scaling model of the main pycnocline and the associated overturning circulation

    NASA Astrophysics Data System (ADS)

    Fuckar, Neven-Stjepan

    This thesis examines a number of crucial factors and processes that control the structure of the main pycnocline and the associated overturning circulation that maintains the ocean stratification. We construct an adaptive scaling model: a semi-empirical low-order theory based on the total transformation balance that linearly superimposes parameterized transformation rate terms of various mechanisms that participate in the water-mass conversion between the warm water sphere and the cold water sphere. The depth of the main pycnocline separates the light-water domain from the dense-water domain beneath the surface, hence we introduce a new definition in an integral form that is dynamically based on the large-scale potential vorticity (i.e., vertical density gradient is selected for the kernel function of the normalized vertical integral). We exclude the abyssal pycnocline from our consideration and limit our domain of interest to the top 2 km of water column. The goal is to understand the controlling mechanisms, and analytically predict and describe a wide spectrum of ocean steady states in terms of key large-scale indices relevant for understanding the ocean's role in climate. A devised polynomial equation uses the average depth of the main pycnocline as a single unknown (the key vertical scale of the upper ocean stratification) and gives us an estimate for the northern hemisphere deep water production and export across the equator from the parts of this equation. The adaptive scaling model aims to elucidate the roles of a limited number of dominant processes that determine some key upper ocean circulation and stratification properties. Additionally, we use a general circulation model in a series of simplified single-basin ocean configurations and surface forcing fields to confirm the usefulness of our analytical model and further clarify several aspects of the upper ocean structure. An idealized numerical setup, containing all the relevant physical and dynamical properties, is key to obtaining a clear understanding, uncomplicated by the effect of the real world geometry or intricacy of realistic surface radiative and turbulent fluxes. We show that wind-driven transformation processes can be decomposed into two terms separately driven by the mid-latitude westerlies and the low-latitude easterlies. Our analytical model smoothly connects all the classical limits describing different ocean regimes in a single-basin single-hemisphere geometry. The adjective "adaptive" refers to a simple and quantitatively successful adjustment to the description of a single-basin two-hemisphere ocean, with and without a circumpolar channel under the hemispherically symmetric surface buoyancy. For example, our water-mass conversion framework, unifying wind-driven and thermohaline processes, provides us with further insight into the "Drake Passage effect without Drake Passage". The modification of different transformation pathways in the Southern Hemisphere results in the equivalent net conversion changes. The introduction of hemispheric asymmetry in the surface density can lead to significant hemispheric differences in the main pycnocline structure. This demonstrates the limitations of our analytical model based on only one key vertical scale. Also, we show a strong influence of the northern hemisphere surface density change in high latitudes on the southern hemisphere stratification and circumpolar transport.

  12. The last dance of the bashful ballerina?

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Virtanen, I.

    2011-01-01

    Aims: The heliospheric magnetic field (HMF) has long been hemispherically asymmetric so that the field in the northern hemisphere is weaker and the area larger than in the south. This asymmetry, also called the bashful ballerina, has existed during roughly three-year intervals of the late declining to minimum phase of solar cycles 16-22. We study the HMF and its hemispheric asymmetry during the exceptional solar cycle 23. Methods: We use NASA National Space Science Data Center OMNI database, which contains all solar wind and HMF observations at the Earth's orbit, and coronal field predictions by Wilcox Solar Observatory. We present a new method to study the global hemispheric asymmetry by using the power n of the radial decrease of the radial field from the coronal source surface to 1 AU. Results: We find that the HMF is exceptional at low latitudes in solar cycle 23: while the typical latitudinal variation was attained in the north in 2008, it did not take place in the south until Spring 2009. Thus, the Rosenberg-Coleman rule is abnormally delayed or broken for the first time in 50 years. The n-values verify the clear northern dominance in cycles 21-22. However, the low-latitude observations depict a considerably smaller asymmetry in cycle 23, although Ulysses observations at high latitudes show an equally large asymmetry in 2007 and in 1994-1995. We argue that the weak low-latitude visibility of the asymmetry in cycle 23 is due to the exceptionally weak polar fields, leading to large tilt angle and a wide current sheet. Conclusions: We note that the exceptional properties of cycle 23 (weak dynamo, large tilt, small asymmetry) agree with the long-term evolution of hemispheric asymmetry viewed at the Earth. The active Sun is seen as more asymmetric at the Earth than the quiet Sun because the polar coronal holes with unipolar fields extend closer to the equator, allowing their asymmetry to be viewed even at low latitudes. We suggest that, after the period of weak activity and small asymmetry at 1 AU that started with cycle 23, the hemispheric asymmetry will again, with the increasingly active cycles, become better visible at 1 AU but the asymmetry will be oppositely oriented, including a northward shifted current sheet, and larger areas but weaker intensities in the south. Thus, the ballerina should no longer be systematically bashful for some 100-150 years. Figure 4 is only available in electronic form at http://www.aanda.org

  13. Deep inelastic scattering as a probe of entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharzeev, Dmitri E.; Levin, Eugene M.

    Using nonlinear evolution equations of QCD, we compute the von Neumann entropy of the system of partons resolved by deep inelastic scattering at a given Bjorken x and momentum transfer q 2 = - Q 2 . We interpret the result as the entropy of entanglement between the spatial region probed by deep inelastic scattering and the rest of the proton. At small x the relation between the entanglement entropy S ( x ) and the parton distribution x G ( x ) becomes very simple: S ( x ) = ln [ x G ( x ) ] .more » In this small x , large rapidity Y regime, all partonic microstates have equal probabilities—the proton is composed by an exponentially large number exp ( Δ Y ) of microstates that occur with equal and exponentially small probabilities exp ( - Δ Y ) , where Δ is defined by x G ( x ) ~ 1 / x Δ . For this equipartitioned state, the entanglement entropy is maximal—so at small x , deep inelastic scattering probes a maximally entangled state. Here, we propose the entanglement entropy as an observable that can be studied in deep inelastic scattering. This will then require event-by-event measurements of hadronic final states, and would allow to study the transformation of entanglement entropy into the Boltzmann one. We estimate that the proton is represented by the maximally entangled state at x ≤ 10 -3 ; this kinematic region will be amenable to studies at the Electron Ion Collider.« less

  14. ChemNet: A Transferable and Generalizable Deep Neural Network for Small-Molecule Property Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Garrett B.; Siegel, Charles M.; Vishnu, Abhinav

    With access to large datasets, deep neural networks through representation learning have been able to identify patterns from raw data, achieving human-level accuracy in image and speech recognition tasks. However, in chemistry, availability of large standardized and labelled datasets is scarce, and with a multitude of chemical properties of interest, chemical data is inherently small and fragmented. In this work, we explore transfer learning techniques in conjunction with the existing Chemception CNN model, to create a transferable and generalizable deep neural network for small-molecule property prediction. Our latest model, ChemNet learns in a semi-supervised manner from inexpensive labels computed frommore » the ChEMBL database. When fine-tuned to the Tox21, HIV and FreeSolv dataset, which are 3 separate chemical tasks that ChemNet was not originally trained on, we demonstrate that ChemNet exceeds the performance of existing Chemception models, contemporary MLP models that trains on molecular fingerprints, and it matches the performance of the ConvGraph algorithm, the current state-of-the-art. Furthermore, as ChemNet has been pre-trained on a large diverse chemical database, it can be used as a universal “plug-and-play” deep neural network, which accelerates the deployment of deep neural networks for the prediction of novel small-molecule chemical properties.« less

  15. Deep inelastic scattering as a probe of entanglement

    DOE PAGES

    Kharzeev, Dmitri E.; Levin, Eugene M.

    2017-06-03

    Using nonlinear evolution equations of QCD, we compute the von Neumann entropy of the system of partons resolved by deep inelastic scattering at a given Bjorken x and momentum transfer q 2 = - Q 2 . We interpret the result as the entropy of entanglement between the spatial region probed by deep inelastic scattering and the rest of the proton. At small x the relation between the entanglement entropy S ( x ) and the parton distribution x G ( x ) becomes very simple: S ( x ) = ln [ x G ( x ) ] .more » In this small x , large rapidity Y regime, all partonic microstates have equal probabilities—the proton is composed by an exponentially large number exp ( Δ Y ) of microstates that occur with equal and exponentially small probabilities exp ( - Δ Y ) , where Δ is defined by x G ( x ) ~ 1 / x Δ . For this equipartitioned state, the entanglement entropy is maximal—so at small x , deep inelastic scattering probes a maximally entangled state. Here, we propose the entanglement entropy as an observable that can be studied in deep inelastic scattering. This will then require event-by-event measurements of hadronic final states, and would allow to study the transformation of entanglement entropy into the Boltzmann one. We estimate that the proton is represented by the maximally entangled state at x ≤ 10 -3 ; this kinematic region will be amenable to studies at the Electron Ion Collider.« less

  16. Low pressure system off Ireland

    NASA Image and Video Library

    2015-06-16

    In early June, 2015 a strong low pressure system over the North Atlantic Ocean brought rain and gusty winds to Ireland and the United Kingdom. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of the spiraling system on June 5. A very deep low pressure area lies in the center of the spiral, just off the northwestern shore of emerald-green Ireland. Bands of cloud, containing rain and thunderstorms, swirl into the center of the low, and extend over the British Isles. A low pressure system will pull in air from the surrounding area, creating spiraling winds. Winds around the center of a low pressure spiral counterclockwise in the Northern Hemisphere, as we see here (clockwise in the Southern Hemisphere) and towards the center of the system. Although the system was impressive on June 5, it intensified over the next several days. According to MarkVoganWeather.com, by June 7 the pressure in the unusually deep Atlantic low, which had been hanging around 980mb, was expected to drop lower to about 978mb off of Anglesey, brining northwest gales along the Atlantic west and south coasts of Ireland, England and Wales. Winds gust of up to 80 mph were possible, along with heavy rains. Credit: Jeff Schmaltz, MODIS Land Rapid Response Team, NASA GSFC NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Probabilistic vs. deterministic fiber tracking and the influence of different seed regions to delineate cerebellar-thalamic fibers in deep brain stimulation.

    PubMed

    Schlaier, Juergen R; Beer, Anton L; Faltermeier, Rupert; Fellner, Claudia; Steib, Kathrin; Lange, Max; Greenlee, Mark W; Brawanski, Alexander T; Anthofer, Judith M

    2017-06-01

    This study compared tractography approaches for identifying cerebellar-thalamic fiber bundles relevant to planning target sites for deep brain stimulation (DBS). In particular, probabilistic and deterministic tracking of the dentate-rubro-thalamic tract (DRTT) and differences between the spatial courses of the DRTT and the cerebello-thalamo-cortical (CTC) tract were compared. Six patients with movement disorders were examined by magnetic resonance imaging (MRI), including two sets of diffusion-weighted images (12 and 64 directions). Probabilistic and deterministic tractography was applied on each diffusion-weighted dataset to delineate the DRTT. Results were compared with regard to their sensitivity in revealing the DRTT and additional fiber tracts and processing time. Two sets of regions-of-interests (ROIs) guided deterministic tractography of the DRTT or the CTC, respectively. Tract distances to an atlas-based reference target were compared. Probabilistic fiber tracking with 64 orientations detected the DRTT in all twelve hemispheres. Deterministic tracking detected the DRTT in nine (12 directions) and in only two (64 directions) hemispheres. Probabilistic tracking was more sensitive in detecting additional fibers (e.g. ansa lenticularis and medial forebrain bundle) than deterministic tracking. Probabilistic tracking lasted substantially longer than deterministic. Deterministic tracking was more sensitive in detecting the CTC than the DRTT. CTC tracts were located adjacent but consistently more posterior to DRTT tracts. These results suggest that probabilistic tracking is more sensitive and robust in detecting the DRTT but harder to implement than deterministic approaches. Although sensitivity of deterministic tracking is higher for the CTC than the DRTT, targets for DBS based on these tracts likely differ. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Willeit, M.; Ganopolski, A.

    2015-09-01

    Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.

  19. Outgassing of the Eastern Equatorial Pacific during the Pliocene period.

    NASA Astrophysics Data System (ADS)

    Guillermic, M.; Tripati, A.

    2016-12-01

    The transition from the warm, ice-free conditions of the early Cenozoic to present-day glacial state with ice sheets in both hemispheres has been ascribed to long- and short-term changes in atmospheric CO2. The processes causing long-term changes in atmospheric CO2 levels are of debate. One possible explanation for changes in atmospheric CO2 relates to changes in air-sea exchange due to fluctuations in ocean carbon sources and sinks, as modulated by the stratification of surface waters. While nutrient consumption in low-latitude environments and associated export of CO2 to the deep sea works to sequester CO2 in the ocean interior, the return of deep water to the surface in the high latitudes and upwelling at the equator and in the eastern portion of ocean basins releases CO2. Quantitative estimates for surface water pH and pCO2 in different regions of the ocean and identification of CO2-sources and sinks are needed to better understand the role of the ocean in driving and/or amplifying variations in the atmospheric CO2 reservoir and climate change. Here we present preliminary results of surface water pH for the early Pliocene to Holocene based on boron isotope measurements of planktic foraminifera for the Eastern Equatorial Pacific. We develop records of B/Ca, Mg/Ca ratios, boron isotopes, and oxygen isotopes measurements in foraminifera tests (Globigeneroides sacculifer, Globigeneroides ruber, Neogloboquadrina dutertrei). We reconstruct changes in ocean CO2 outgassing in the Eastern Equatorial Pacific using records from ODP Site 847 (0°N, 95°W, 3373 m water depth). These data are used to examine if there is evidence for changes in stratification and CO2 outgassing during the early Pliocene warm period and during Pliocene intensification of Northern Hemisphere glaciation.

  20. An Objective Classification of Saturn Cloud Features from Cassini ISS Images

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony D.; Barbara, John M.

    2016-01-01

    A k -means clustering algorithm is applied to Cassini Imaging Science Subsystem continuum and methane band images of Saturn's northern hemisphere to objectively classify regional albedo features and aid in their dynamical interpretation. The procedure is based on a technique applied previously to visible- infrared images of Earth. It provides a new perspective on giant planet cloud morphology and its relationship to the dynamics and a meteorological context for the analysis of other types of simultaneous Saturn observations. The method identifies 6 clusters that exhibit distinct morphology, vertical structure, and preferred latitudes of occurrence. These correspond to areas dominated by deep convective cells; low contrast areas, some including thinner and thicker clouds possibly associated with baroclinic instability; regions with possible isolated thin cirrus clouds; darker areas due to thinner low level clouds or clearer skies due to downwelling, or due to absorbing particles; and fields of relatively shallow cumulus clouds. The spatial associations among these cloud types suggest that dynamically, there are three distinct types of latitude bands on Saturn: deep convectively disturbed latitudes in cyclonic shear regions poleward of the eastward jets; convectively suppressed regions near and surrounding the westward jets; and baro-clinically unstable latitudes near eastward jet cores and in the anti-cyclonic regions equatorward of them. These are roughly analogous to some of the features of Earth's tropics, subtropics, and midlatitudes, respectively. This classification may be more useful for dynamics purposes than the traditional belt-zone partitioning. Temporal variations of feature contrast and cluster occurrence suggest that the upper tropospheric haze in the northern hemisphere may have thickened by 2014. The results suggest that routine use of clustering may be a worthwhile complement to many different types of planetary atmospheric data analysis.

  1. Association of Subdural Hematoma With Increased Mortality in Lobar Intracerebral Hemorrhage

    PubMed Central

    Patel, Pratik V.; FitzMaurice, Emilie; Kaveer Nandigam, R. N.; Auluck, Pavan; Viswanathan, Anand; Goldstein, Joshua N.; Rosand, Jonathan; Greenberg, Steven M.; Smith, Eric E.

    2011-01-01

    Objective To determine the prevalence of subdural hematoma (SDH) in patients presenting with primary non-traumatic lobar intracerebral hemorrhage (ICH) and characteristics associated with the presence of SDH. Design Retrospective analysis of data collected in a prospective cohort study. Setting Hospital. Patients Consecutive sample of 200 patients with primary lobar ICH and 75 patients with deep hemispheric ICH. Main Outcome Measures Presence of SDH and mortality. Results Subdural hematoma was present in 40 of 200 patients (20%) with primary lobar ICH. By contrast, SDH was not present in any of 75 consecutive patients with deep hemispheric ICH (P<.001 for comparison with lobar ICH). Intracerebral hemorrhage volume higher than 60 cm3 was the only independent predictor of SDH (odds ratio [OR], 2.69; 95% confidence interval [CI], 1.14–6.34; P=.02). Subdural hematoma thickness more than 5 mm was an independent predictor of increased 30-day mortality (OR, 7.60; 95% CI, 1.86–30.99; P=.005) after controlling for other factors including ICH volume. Further analysis showed that the effect of SDH on mortality depended on ICH volume, with larger odds for mortality in those with low ICH volume (OR, 12.85; 95% CI, 2.42–68.23; P=.003 for those with ICH volume <30 cm3). Cerebral amyloid angiopathy was present in 8 of 9 patients with pathological specimens. Conclusions Nontraumatic SDH frequently accompanies primary lobar ICH and is associated with higher 30-day mortality, particularly when the ICH volume is relatively low. Rupture of an amyloid-laden leptomeningeal vessel, with extravasation into the brain parenchyma and subdural space, may be the pathogenic mechanism. PMID:19139303

  2. The Southern Ocean's role in ocean circulation and climate transients

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.

    2017-12-01

    The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.

  3. Interplanetary CubeSat Navigational Challenges

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Gustafson, Eric D.; Young, Brian T.

    2015-01-01

    CubeSats are miniaturized spacecraft of small mass that comply with a form specification so they can be launched using standardized deployers. Since the launch of the first CubeSat into Earth orbit in June of 2003, hundreds have been placed into orbit. There are currently a number of proposals to launch and operate CubeSats in deep space, including MarCO, a technology demonstration that will launch two CubeSats towards Mars using the same launch vehicle as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) Mars lander mission. The MarCO CubeSats are designed to relay the information transmitted by the InSight UHF radio during Entry, Descent, and Landing (EDL) in real time to the antennas of the Deep Space Network (DSN) on Earth. Other CubeSatts proposals intend to demonstrate the operation of small probes in deep space, investigate the lunar South Pole, and visit a near Earth object, among others. Placing a CubeSat into an interplanetary trajectory makes it even more challenging to pack the necessary power, communications, and navigation capabilities into such a small spacecraft. This paper presents some of the challenges and approaches for successfully navigating CubeSats and other small spacecraft in deep space.

  4. Small genomes in tetraploid Rubus L. (Rosaceae) from New Zealand and southern South America

    USDA-ARS?s Scientific Manuscript database

    About 60 to70% of Rubus species are polyploids. Ploidy in this genus ranges from diploid through tetradecaploid , with aneuploids. The gametic chromosome number is x = 7. Taxa in Rubus Subgenera Micranthobatus and Comaropsis are endemic to the Southern Hemisphere in trans-Pacific Ocean environments ...

  5. High-resolution probing of inner core structure with seismic interferometry

    NASA Astrophysics Data System (ADS)

    Huang, Hsin-Hua; Lin, Fan-Chi; Tsai, Victor C.; Koper, Keith D.

    2015-12-01

    Increasing complexity of Earth's inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.

  6. Mother Knows Best: Occurrence and Associations of Resighted Humpback Whales Suggest Maternally Derived Fidelity to a Southern Hemisphere Coastal Feeding Ground

    PubMed Central

    Barendse, Jaco; Best, Peter B.; Carvalho, Inês; Pomilla, Cristina

    2013-01-01

    Site fidelity is common among migratory cetaceans, including humpback whales (Megaptera novaeangliae). In the Northern Hemisphere it has been found that fidelity to humpback whale feeding grounds is transferred maternally but this has never been shown for the species in the Southern Hemisphere. We examined this in a unique feeding area off west South Africa using resighting data of 68 individually identified humpback whales by means of photographic (tail flukes and dorsal fins) and/or molecular methods (microsatellite genotyping) over an 18 year span. We found short-term association patterns and recurrent visits typical of other feeding grounds. Males and females had different seasonality of attendance. Significant female-dominated presence corresponded to timing of an expected influx of females on their southward migration from the breeding ground: firstly non-nursing (possibly pregnant) females in mid-spring, and mothers and calves in mid-to late summer. The potential benefit of this mid-latitude feeding area for females is illustrated by a record of a cow with known age of at least 23 years that produced calves in three consecutive years, each of which survived to at least six months of age: the first record of successful post-partum ovulation for this species in the Southern Hemisphere. We recorded association of a weaned calf with its mother, and a recurring association between a non-lactating female and male over more than two years. Moreover, three animals first identified as calves returned to the same area in subsequent years, sometimes on the same day as their mothers. This, together with numerous Parent-Offspring relations detected genetically among and between resighted and non-resighted whales is strongly suggestive of maternally derived site fidelity at a small spatial scale by a small sub-population of humpback whales. PMID:24349047

  7. Mother knows best: occurrence and associations of resighted humpback whales suggest maternally derived fidelity to a Southern Hemisphere coastal feeding ground.

    PubMed

    Barendse, Jaco; Best, Peter B; Carvalho, Inês; Pomilla, Cristina

    2013-01-01

    Site fidelity is common among migratory cetaceans, including humpback whales (Megaptera novaeangliae). In the Northern Hemisphere it has been found that fidelity to humpback whale feeding grounds is transferred maternally but this has never been shown for the species in the Southern Hemisphere. We examined this in a unique feeding area off west South Africa using resighting data of 68 individually identified humpback whales by means of photographic (tail flukes and dorsal fins) and/or molecular methods (microsatellite genotyping) over an 18 year span. We found short-term association patterns and recurrent visits typical of other feeding grounds. Males and females had different seasonality of attendance. Significant female-dominated presence corresponded to timing of an expected influx of females on their southward migration from the breeding ground: firstly non-nursing (possibly pregnant) females in mid-spring, and mothers and calves in mid-to late summer. The potential benefit of this mid-latitude feeding area for females is illustrated by a record of a cow with known age of at least 23 years that produced calves in three consecutive years, each of which survived to at least six months of age: the first record of successful post-partum ovulation for this species in the Southern Hemisphere. We recorded association of a weaned calf with its mother, and a recurring association between a non-lactating female and male over more than two years. Moreover, three animals first identified as calves returned to the same area in subsequent years, sometimes on the same day as their mothers. This, together with numerous Parent-Offspring relations detected genetically among and between resighted and non-resighted whales is strongly suggestive of maternally derived site fidelity at a small spatial scale by a small sub-population of humpback whales.

  8. Global distribution of the He+ column density observed by Extreme Ultra Violet Imager on the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Yuta; Saito, Akinori; Yoshikawa, Ichiro; Yamazaki, Atsushi; Murakami, Go; Yoshioka, Kazuo; Chen, Chia-Hung

    2017-07-01

    The global distribution of He+ in the topside ionosphere was investigated using data of the He+ resonant scattering emission at 30.4 nm obtained by the Extreme Ultra Violet Imager (EUVI) onboard the International Space Station. The optical observation by EUVI from the low-Earth orbit provides He+ column density data above the altitude of 400 km, presenting a unique opportunity to study the He+ distribution with a different perspective from that of past studies using data from in situ measurements. We analyzed data taken in 2013 and elucidated, for the first time, the seasonal, longitudinal, and latitudinal variations of the He+ column density in the dusk sector. It was found that the He+ column density in the winter hemisphere was about twice that in the summer hemisphere. In the December solstice season, the magnitude of this hemispheric asymmetry was large (small) in the longitudinal sector where the geomagnetic declination is eastward (westward). In the June solstice season, this relationship between the He+ distribution and the geomagnetic declination is reversed. In the equinox seasons, the He+ column densities in the two hemispheres are comparable at most longitudes. The seasonal and longitudinal dependence of the hemispheric asymmetry of the He+ distribution was attributed to the geomagnetic meridional neutral wind in the F region ionosphere. The neutral wind effect on the He+ distribution was examined with an empirical neutral wind model, and it was confirmed that the transport of ions in the topside ionosphere is predominantly affected by the F region neutral wind and the geomagnetic configuration.

  9. Phase-amplitude coupling within the anterior thalamic nuclei during seizures.

    PubMed

    Ibrahim, George M; Wong, Simeon; Morgan, Benjamin R; Lipsman, Nir; Fallah, Aria; Weil, Alexander G; Krishna, Vibhor; Wennberg, Richard A; Lozano, Andres A

    2018-04-01

    Cross-frequency phase-amplitude coupling (cfPAC) subserves an integral role in the hierarchical organization of interregional neuronal communication and is also expressed by epileptogenic cortex during seizures. Here, we sought to characterize patterns of cfPAC expression in the anterior thalamic nuclei during seizures by studying extra-operative recordings in patients implanted with deep brain stimulation electrodes for intractable epilepsy. Nine seizures from two patients were analyzed in the peri-ictal period. CfPAC was calculated using the modulation index and interregional functional connectivity was indexed using the phase-locking value. Statistical analysis was performed within subjects on the basis of nonparametric permutation and corrected with Gaussian field theory. Five of the nine analyzed seizures demonstrated significant cfPAC. Significant cfPAC occurred during the pre-ictal and ictal periods in three seizures, as well as the postictal windows in four seizures. The preferred phase at which cfPAC occurred differed 1) in space, between the thalami of the epileptogenic and nonepileptogenic hemispheres; and 2) in time, at seizure termination. The anterior thalamic nucleus of the epileptogenic hemisphere also exhibited altered interregional phase-locking synchrony concurrent with the expression of cfPAC. By analyzing extraoperative recordings from the anterior thalamic nuclei, we show that cfPAC associated with altered interregional phase synchrony is lateralized to the thalamus of the epileptogenic hemisphere during seizures. Electrophysiological differences in cfPAC, including preferred phase of oscillatory interactions may be further investigated as putative targets for individualized neuromodulation paradigms in patients with drug-resistant epilepsy. NEW & NOTEWORTHY The association between fast brain activity and slower oscillations is an integral mechanism for hierarchical neuronal communication, which is also manifested in epileptogenic cortex. Our data suggest that the same phenomenon occurs in the anterior thalamic nuclei during seizures. Further, the preferred phase of modulation shows differences in space, between the epileptogenic and nonepileptogenic hemispheres and time, as seizures terminate. Our data encourage the study of cross-frequency coupling for targeted, individualized closed-loop stimulation paradigms.

  10. A Deep Hydrographic Section Across the Tasman Sea.

    DTIC Science & Technology

    1985-09-01

    the same cruise, TC1, as that on which the magneto- telluric moorings (plus a RANRL recording current-meter) were deployed. A small number of deep...that of Wyrtki (1961) who described the different water masses of this area and the northward movement of deep waters from Antarctica. Boland and

  11. The Role Of Orbital Forcing On Polar Ice Volume And Global Sea-Level During The Late Pliocene (3.3-.2.6 Ma)

    NASA Astrophysics Data System (ADS)

    Naish, T.; Grant, G.; Dunbar, G. B.; Patterson, M. O.; Kominz, M. A.; Stocchi, P.

    2017-12-01

    Challenges remain concerning the potentially intractable problem of constraining the absolute magnitude of Pliocene eustatic sea-level change, and the role of orbital forcing on the frequency of ice volume/sea-level change is widely debated. Here, we present three new high-resolution geological archives for the MPWP: (i) ice-berg rafted debris (IBRD) mass accumulation rates from deep ocean sediment core (IODP U1361) off the Wilkes Margin of Antarctica recording fluctuations in the East Antarctic ice sheet; (ii) a continuous shallow-marine record of sea-level change from the Wanganui Basin, New Zealand; and (iii) a record sea-level-controlled terrigenous sedimentation (IODP 1124) to the deep ocean on Hikurangi margin of New Zealand. All three records are dominated by precession-paced cyclicity ( 20ka) in-phase with high-latitude southern hemisphere insolation between 3.3M-2.9Ma, and provide insights into orbital-forcing of ice volume and sea-level independent of the benthic oxygen isotope records. Moreover, we have back-stripped the Wanganui record to reveal glacial-interglacial sea-level changes of 20±10m amplitude. We conclude that during this interval, precession-paced Antarctic ice volume changes largely drove global glacial-interglacial sea-level fluctuations, in the absence of a significant northern hemisphere ice volume contribution. Prior to 3.3Ma, proxy data from IODP U1361 and ANDRILL 1-A records extending back to 5Ma, show that the Antarctic margin experienced warmer ocean temperatures, a lack of perennial sea-ice, and fluctuations in ice extent paced by obliquity. The emergence of precession at 3.3Ma coincident with the M2 glaciation in the benthic d18O record, also coincides with continent-wide cooling, ice expansion and the development of extensive seasonal sea-ice around Antarctica. We argue that a melt threshold response to orbital forcing was crossed, whereby Antarctic ice sheet melt was restricted to peak austral summer insolation (precession), rather than a longer summer melt-season controlled by mean annual insolation (obliquity). An obliquity-paced signal re-emerges in the New Zealand sea-level records after 2.9Ma, while the EAIS IBRD record continues to be paced by precession, implying an increasingly dominant influence of northern hemisphere ice sheets.

  12. Hartley and Itokawa: small comet and asteroid with similar morphologies and structures

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2011-10-01

    " Orbits ma ke s tructures " [1-3]. This three-word sentence means that as all cosmic bodies moves in non-circular keplerian orbits they all are subjected to an action of inertia -gravity warping waves. These waves arise in bodies as a result of periodically changing accelerations causing inertia-gravity forces. These forces are absorbed by bodies masses and make them to warp. This warping is smoothed by gravity making globular shapes of the larger bodies. But smaller bodies with rather weak gravity keep their warped shapes. The wave nature warping happens in four interfering direct ions (ortho - and diagonal) and in various wavelengths. The fundamental wave 1 long 2π R makes ubiquitous tectonic dichotomy: an oppos ition of the uplifted segment-hemisphere and the subsided one. For small bodies a result of this is in their convexo-concave shape [3] (Fig. 1-7). The uplifted bulging segment expands and is breaking by cracks, faults, rifts. The opposed subsided concave segment contracts. As a result in the middle of an oblong body is formed a narrow thoroughly squeezed and degassed portion - a neck or waist (wringed out wet linen). Subsequently here at a weakened place could happen a break - formation of binaries, polycomponental bodies, satellites. Figures 1 to 4 show development stages of small bodies leading to a full separation of two parts. Traces of warping waves of four directions are often seen on surfaces of many celestial bodies as cross -cutting lineations. A recent example of the small core of the Hartley 2 comet (2 km long) is very impressive. At received points of view are clearly seen at least three ortho- and diagonal lineations often marked by small outgassing craters (Fig. 1). Crossing lineations produce square forms (craters ) earlier s een on the Eros ' s urface. Wave comp res s ion lineations make the Hart ley 2 t o appear as a wafer ca ke. A " wa is t" (neck) is formed as a res ult of nearing a concave depression, from one side, and deep cracks at the convex bulge, from the antipodean side (Fig. 5). The smaller rocky asteroid Itokawa (0.5 km long, Fig. 2) is surprisingly similar in shape and structure to the icy core of Hart ley. It is also bent and rich in cross-cutting lineations o 4 direct ions marked by small holes-craters. But here they are ext inct and lack of gas -dust jets. One sees a transition from a volat ile rich comet core to an ext inct mostly rocky mass - asteroid. In both cases (comet core and as teroid) in the middle develops a smooth "wais t". The bulged convex and antipodal concave segments -hemispheres in rotating bodies require somewhat different densities of composing them masses to equilibrate angular momentum of two halves (compare with the Ea rth's hemis pheres : the eas tern continental "granitic" and wes tern Pacific "bas altic"). The near-IR images of two asteroids (Fig.6-7) confirm this. The concave and convex s ides are co mpos itionally d ifferent. In the Eros ' cas e the concave s ide is rich er in pyroxene, thus denser.

  13. HUBBLE SPOTS NORTHERN HEMISPHERIC CLOUDS ON URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Using visible light, astronomers for the first time this century have detected clouds in the northern hemisphere of Uranus. The newest images, taken July 31 and Aug. 1, 1997 with NASA Hubble Space Telescope's Wide Field and Planetary Camera 2, show banded structure and multiple clouds. Using these images, Dr. Heidi Hammel (Massachusetts Institute of Technology) and colleagues Wes Lockwood (Lowell Observatory) and Kathy Rages (NASA Ames Research Center) plan to measure the wind speeds in the northern hemisphere for the first time. Uranus is sometimes called the 'sideways' planet, because its rotation axis is tipped more than 90 degrees from the planet's orbit around the Sun. The 'year' on Uranus lasts 84 Earth years, which creates extremely long seasons - winter in the northern hemisphere has lasted for nearly 20 years. Uranus has also been called bland and boring, because no clouds have been detectable in ground-based images of the planet. Even to the cameras of the Voyager spacecraft in 1986, Uranus presented a nearly uniform blank disk, and discrete clouds were detectable only in the southern hemisphere. Voyager flew over the planet's cloud tops near the dead of northern winter (when the northern hemisphere was completely shrouded in darkness). Spring has finally come to the northern hemisphere of Uranus. The newest images, both the visible-wavelength ones described here and those taken a few days earlier with the Near Infrared and Multi-Object Spectrometer (NICMOS) by Erich Karkoschka (University of Arizona), show a planet with banded structure and detectable clouds. Two images are shown here. The 'aqua' image (on the left) is taken at 5,470 Angstroms, which is near the human eye's peak response to wavelength. Color has been added to the image to show what a person on a spacecraft near Uranus might see. Little structure is evident at this wavelength, though with image-processing techniques, a small cloud can be seen near the planet's northern limb (rightmost edge). The 'red' image (on the right) is taken at 6,190 Angstroms, and is sensitive to absorption by methane molecules in the planet's atmosphere. The banded structure of Uranus is evident, and the small cloud near the northern limb is now visible. Scientists are expecting that the discrete clouds and banded structure may become even more pronounced as Uranus continues in its slow pace around the Sun. 'Some parts of Uranus haven't seen the Sun in decades,' says Dr. Hammel, 'and historical records suggest that we may see the development of more banded structure and patchy clouds as the planet's year progresses.' Some scientists have speculated that the winds of Uranus are not symmetric around the planet's equator, but no clouds were visible to test those theories. The new data will provide the opportunity to measure the northern winds. Hammel and colleagues expect to have results soon. Credits: Heidi Hammel (Massachusetts Institute of Technology), and NASA.

  14. Co-Orbital Debris as a Source of Small Impactors and Albedo Features on Tethys

    DTIC Science & Technology

    2017-03-01

    along the equator in the leading hemisphere of Tethys and correspond to the albedo “lens” identified in both Voyager and Cassini data (see Fig. 1...to determine the small- est fragment that would create a resolvable crater on Tethys, given the current imaging data available. We can confidently...identify craters larger than 1 km in diameter at the best Cassini image resolution of ~215 m/pix. Using the same impactor size to crater diameter

  15. Temporal, spatial and ecological dynamics of speciation among amphi-Beringian small mammals

    USGS Publications Warehouse

    Hope, Andrew G.; Takebayashi, Naoki; Galbreath, Kurt E.; Talbot, Sandra L.; Cook, Joseph A.

    2013-01-01

    Quaternary climate cycles played an important role in promoting diversification across the Northern Hemisphere, although details of the mechanisms driving evolutionary change are still poorly resolved. In a comparative phylogeographical framework, we investigate temporal, spatial and ecological components of evolution within a suite of Holarctic small mammals. We test a hypothesis of simultaneous divergence among multiple taxon pairs, investigating time to coalescence and demographic change for each taxon in response to a combination of climate and geography.

  16. Evolution of ep fragmentation and multiplicity distributions in the Breit frame

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Bassler, U.; Beck, H. P.; Beck, M.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Borras, K.; Botterweck, F.; Boudry, V.; Bourov, S.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; de Roeck, A.; de Wolf, E. A.; Delcourt, B.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Dollfus, C.; Donovan, K. T.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; İşsever, Ç.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jacquet, M.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Laforge, B.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Levonian, S.; Lindstroem, M.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Walter, T.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nowak, G.; Nunnemann, T.; Nyberg-Werther, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Prell, S.; Rabbertz, K.; Reimer, P.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vandenplas, D.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Wallny, R.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wollatz, H.; Wünsch, E.; ŽáČek, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zurnedden, M.

    1997-02-01

    Low x deep-inelastic ep scattering data, taken in 1994 at the H1 detector at HERA, are analysed in the Breit frame of reference. The evolution of the peak and width of the current hemisphere fragmentation function is presented as a function of Q and compared with e+e- results at equivalent centre of mass energies. Differences between the average charged multiplicity and the multiplicity of e+e- annihilations at low energies are analysed. Invariant energy spectra are compared with MLLA predictions. Distributions of multiplicity are presented as functions of Bjorken- x and Q2, and KNO scaling is discussed.

  17. Comparison of multiplicity distributions to the negative binomial distribution in muon-proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badełek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftáčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jachołkowska, A.; Janata, F.; Jancsó, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettinghale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schneider, A.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1987-09-01

    The multiplicity distributions of charged hadrons produced in the deep inelastic muon-proton scattering at 280 GeV are analysed in various rapidity intervals, as a function of the total hadronic centre of mass energy W ranging from 4 20 GeV. Multiplicity distributions for the backward and forward hemispheres are also analysed separately. The data can be well parameterized by binomial distributions, extending their range of applicability to the case of lepton-proton scattering. The energy and the rapidity dependence of the parameters is presented and a smooth transition from the negative binomial distribution via Poissonian to the ordinary binomial is observed.

  18. Voyager 1 Jupiter Southern Hemisphere Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This movie shows a portion of Jupiter in the southern hemisphere over 17Jupiter days. Above the white belt, notice the series of atmospheric vortices headed west. Even these early approach frames show wild dynamics in the roiling environment south of the white belt. Notice the small tumbling white cloud near the center.

    As Voyager 1 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 17 images taken once every Jupiter rotation period (about 10 hours). These images were acquired in the Blue filter around Feb. 1, 1979. The spacecraft was about 37 million kilometers from Jupiter at that time.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  19. Effect of plasma ion bombardment on the reflectance of Io's trailing and leading hemispheres

    NASA Technical Reports Server (NTRS)

    Sack, N. J.; Baragiola, R. A.; Johnson, R. E.

    1993-01-01

    The possible effect of a net difference in the ion bombardment flux to the surface of Io on the ratio of the reflectance spectra is investigated. Io's vapor-deposited surface layers are simulated by a laboratory-produced film of vapor-deposited SO2 with a small admixture (about 3 percent) of H2S and (about 0.1 percent) H2O. It is shown that the reflectance ratio in the UV/visible of the surface bombarded by keV ions to the unbombarded surface is surprisingly similar to the observed ratio of Io's trailing to leading hemispherical reflectance. The changes produced are either structural or involve products of species originally present in the sample.

  20. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1981-01-01

    An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  1. Statistical properties of superactive regions during solar cycles 19-23

    NASA Astrophysics Data System (ADS)

    Chen, A. Q.; Wang, J. X.; Li, J. W.; Feynman, J.; Zhang, J.

    2011-10-01

    Context. Each solar activity cycle is characterized by a small number of superactive regions (SARs) that produce the most violent of space weather events with the greatest disastrous influence on our living environment. Aims: We aim to re-parameterize the SARs and study the latitudinal and longitudinal distributions of SARs. Methods: We select 45 SARs in solar cycles 21-23, according to the following four parameters: 1) the maximum area of sunspot group, 2) the soft X-ray flare index, 3) the 10.7 cm radio peak flux, and 4) the variation in the total solar irradiance. Another 120 SARs given by previous studies of solar cycles 19-23 are also included. The latitudinal and longitudinal distributions of the 165 SARs in both the Carrington frame and the dynamic reference frame during solar cycles 19-23 are studied statistically. Results: Our results indicate that these 45 SARs produced 44% of all the X class X-ray flares during solar cycles 21-23, and that all the SARs are likely to produce a very fast CME. The latitudinal distributions of SARs display the Maunder butterfly diagrams and SARs occur preferentially in the maximum period of each solar cycle. Northern hemisphere SARs dominated in solar cycles 19 and 20 and southern hemisphere SARs dominated in solar cycles 21 and 22. In solar cycle 23, however, SARs occurred about equally in each hemisphere. There are two active longitudes in both the northern and southern hemispheres, about 160°-200° apart. Applying the improved dynamic reference frame to SARs, we find that SARs rotate faster than the Carrington rate and there is no significant difference between the two hemispheres. The synodic periods are 27.19 days and 27.25 days for the northern and southern hemispheres, respectively. The longitudinal distribution of SARs is significantly non-axisymmetric and about 75% SARs occurred near two active longitudes with half widths of 45°. Appendix A is available in electronic form at http://www.aanda.org

  2. Variation pattern of particulate organic carbon and nitrogen in oceans and inland waters

    NASA Astrophysics Data System (ADS)

    Huang, Changchun; Jiang, Quanliang; Yao, Ling; Yang, Hao; Lin, Chen; Huang, Tao; Zhu, A.-Xing; Zhang, Yimin

    2018-03-01

    We examined the relationship between, and variations in, particulate organic carbon (POC) and particulate organic nitrogen (PON) based on previously acquired ocean and inland water data. The latitudinal dependency of POC / PON is significant between 20 and 90° N but weak in low-latitude areas and in the Southern Hemisphere. The mean values of POC / PON in the Southern Hemisphere and Northern Hemisphere were 7.40 ± 3.83 and 7.80 ± 3.92, respectively. High values of POC / PON appeared between 80-90 (12.2 ± 7.5) and 70-80° N (9.4 ± 6.4), while relatively low POC / PON was found from 20 (6.6 ± 2.8) to 40° N (6.7 ± 2.7). The latitudinal variation of POC / PON in the Northern Hemisphere is much stronger than in the Southern Hemisphere due to the influence of more terrestrial organic matter. Higher POC and PON could be expected in coastal waters. POC / PON growth ranged from 6.89 ± 2.38 to 7.59 ± 4.22 in the Northern Hemisphere, with an increasing rate of 0.0024 km from the coastal to open ocean. Variations of POC / PON in lake water also showed a similar latitude-variation tendency of POC / PON with ocean water but were significantly regulated by the lakes' morphology, trophic state and climate. Small lakes and high-latitude lakes prefer relatively high POC / PON, and large lakes and low-latitude lakes tend to prefer low POC / PON. The coupling relationship between POC and PON in oceans is much stronger than in inland waters. Variations in POC, PON and POC / PON in inland waters should receive more attention due to the implications of these values for the global carbon and nitrogen cycles and the indeterminacy of the relationship between POC and PON.

  3. A 55-year-old female with leukoencephalopathy with cerebral calcifications and cysts: Case report and radiopathologic description.

    PubMed

    Novo, Jorge; Lin, Diana; Shanks, Megan; Kocak, Mehmet; Arvanitis, Leonidas

    2017-11-01

    Adult-onset leukoencephalopathies with increased cerebral volume can present a potentially challenging diagnosis for the pathologist. We present the case of a patient with a rare adult-onset disease called Leukoencephalopathy with cerebral Calcifications and Cysts (LCC). A 55-year-old woman with a history of morning headaches, mild memory loss, diabetes, and hypertension presented to the emergency department with acute onset altered mental status. CT scan revealed multiple small hypodense lesions in the white matter with calcifications in the bilateral cerebral hemispheres, basal ganglia, pons, and cerebellar hemispheres. MRI showed multiple complex/hemorrhagic cystic lesions with partial enhancement in addition to calcifications bilaterally in the frontotemporal white matter, pons, and cerebellar hemispheres, and diffuse white matter signal abnormality. The differential diagnosis included chronic infection, chronic thromboembolic disease, and neoplasm. The biopsy revealed extensive geode-like mineralization as well as smaller calcifications (calcospherites) with associated sclerosis, Rosenthal fibers, angiomatous proliferation of blood vessels with thrombosis and microbleeds. We discuss the differential diagnosis, radiologic and detailed histologic features of LCC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Hemispherical spondylosclerosis - a polyetiologic syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dihlmann, W.

    1981-11-01

    Radiologic examination of 43 patients revealed 47 lesions of a type which we have termed hemispherical spondylosclerosis (HSS). This term describes and includes the following essential and possible radiologic findings of the disease: 1) Hemispherical (or dome - or helmet-shaped ) sclerosis of the vertebra above the intervertebral disk. Thus it is a supradiscal HSS. 2) One or more small erosions of the inferior end plate of the vertebra involved. 3) Periosteal apposition on the anterior border of the vertebra along the length of the sclerosis. 4) New bone formation on the inferior end plate. 5) Anterior vertebral osteophytes. 6)more » Narrowing of the disk space below the affected vertebra. HSS occurs not only as a sequel of degenerative disk disease, but also in bacterial (tuberculous and non-tuberculous) spondylitis, ankylosing spondylitis, osteoid osteoma, and metastases of neoplasms. The differential diagnosis between inflammatory and non-inflammatory pathogenesis and etiology of HSS is described. The characteristic shape of HSS, its sites of predilection (L4 >> L5 > L3), and the preponderance of female sufferers from this painful condition are due to factors which, as yet, remain unknown.« less

  5. Determination of A FB b at the Z pole using inclusive charge reconstruction and lifetime tagging

    NASA Astrophysics Data System (ADS)

    DELPHI Collaboration

    2005-03-01

    A novel high precision method measures the b-quark forward-backward asymmetry at the Z pole on a sample of 3,560,890 hadronic events collected with the DELPHI detector in 1992 to 2000. An enhanced impact parameter tag provides a high purity b sample. For event hemispheres with a reconstructed secondary vertex the charge of the corresponding quark or anti-quark is determined using a neural network which combines in an optimal way the full available charge information from the vertex charge, the jet charge and from identified leptons and hadrons. The probability of correctly identifying b-quarks and anti-quarks is measured on the data themselves comparing the rates of double hemisphere tagged like-sign and unlike-sign events. The b-quark forward-backward asymmetry is determined from the differential asymmetry, taking small corrections due to hemisphere correlations and background contributions into account. The results for different centre-of-mass energies are: A_{FB}^{{b}} (89.449 GeV) = 0.0637 ± 0.0143(stat.) ± 0.0017(syst.)

  6. Directional Absorption of Parameterized Mountain Waves and Its Influence on the Wave Momentum Transport in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Tang, Ying; Wang, Yuan; Xue, Ming

    2018-03-01

    The directional absorption of mountain waves in the Northern Hemisphere is assessed by examination of horizontal wind rotation using the 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis between 2011 and 2016. In the deep layer of troposphere and stratosphere, the horizontal wind rotates by more than 120° all over the Northern Hemisphere primary mountainous areas, with the rotation mainly occurring in the troposphere (stratosphere) of lower (middle to high) latitudes. The rotation of tropospheric wind increases markedly in summer over the Tibetan Plateau and Iranian Plateau, due to the influence of Asian summer monsoonal circulation. The influence of directional absorption of mountain waves on the mountain wave momentum transport is also studied using a new parameterization scheme of orographic gravity wave drag (OGWD) which accounts for the effect of directional wind shear. Owing to the directional absorption, the wave momentum flux is attenuated by more than 50% in the troposphere of lower latitudes, producing considerable orographic gravity wave lift which is normal to the mean wind. Compared with the OGWD produced in traditional schemes assuming a unidirectional wind profile, the OGWD in the new scheme is suppressed in the lower stratosphere but enhanced in the upper stratosphere and lower mesosphere. This is because the directional absorption of mountain waves in the troposphere reduces the wave amplitude in the stratosphere. Consequently, mountain waves are prone to break at higher altitudes, which favors the production of stronger OGWD given the decrease of air density with height.

  7. Deglacial temperature history of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cuffey, Kurt M.; Clow, Gary D.; Steig, Eric J.; Buizert, Christo; Fudge, T. J.; Koutnik, Michelle; Waddington, Edwin D.; Alley, Richard B.; Severinghaus, Jeffrey P.

    2016-12-01

    The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth’s climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes’ sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3±1.811.3±1.8∘C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.

  8. Mars' Volcanic Surface Compositions: Distributions and Boundaries Examined Using Multiple Orbiter Datasets

    NASA Technical Reports Server (NTRS)

    Rogers, D.; Christensen, P.; Bandfield, J. L.; Christensen, P.

    2001-01-01

    MGS TES data is used at high resolution to map small regions of basalt in Mars' northern hemisphere. With the exception of 2 outliers, the northern extent of the highland basalt appears to correspond with the northern edge of the cratered highlands. Additional information is contained in the original extended abstract.

  9. Disorganized behavior on Link's cube test is sensitive to right hemispheric frontal lobe damage in stroke patients

    PubMed Central

    Kopp, Bruno; Rösser, Nina; Tabeling, Sandra; Stürenburg, Hans Jörg; de Haan, Bianca; Karnath, Hans-Otto; Wessel, Karl

    2014-01-01

    One of Luria's favorite neuropsychological tasks for challenging frontal lobe functions was Link's cube test (LCT). The LCT is a cube construction task in which the subject must assemble 27 small cubes into one large cube in such a manner that only the painted surfaces of the small cubes are visible. We computed two new LCT composite scores, the constructive plan composite score, reflecting the capability to envisage a cubical-shaped volume, and the behavioral (dis-) organization composite score, reflecting the goal-directedness of cube construction. Voxel-based lesion-behavior mapping (VLBM) was used to test the relationship between performance on the LCT and brain injury in a sample of stroke patients with right hemisphere damage (N = 32), concentrated in the frontal lobe. We observed a relationship between the measure of behavioral (dis-) organization on the LCT and right frontal lesions. Further work in a larger sample, including left frontal lobe damage and with more power to detect effects of right posterior brain injury, is necessary to determine whether this observation is specific for right frontal lesions. PMID:24596552

  10. Western hemisphere of the Moon taken by Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Galileo spacecraft image of the Moon recorded at 9:35 am Pacific Standard Time (PST), 12-09-90, after completing its first Earth Gravity Assist. Western hemisphere of the Moon was taken through a green filter at a range of about 350,000 miles. In the center is Orientale Basin, 600 miles in diameter, formed about 3.8 billion years ago by the impact of an asteroid-size body. Orientale's dark center is a small mare. To the right is the lunar near side with the great, dark Oceanus Procellarum above the small, circular, dark Mare Humorum below. Maria are broad plains formed mostly over 3 billion years ago as vast basaltic lava flows. To the left is the lunar far side with fewer maria, but, at lower left South-Pole-Aitken basin, about 1200 miles in diameter, which resembles Orientale but is much older and more weathered and battered by cratering. The intervening cratered highlands of both sides, as well as the maria, are dotted with bright young craters. This image was 'reprojected' so as to

  11. Hemispheric Dichotomy in Lithosphere Thickness on Mars Caused by Differences in Crustal Structure and Composition

    NASA Astrophysics Data System (ADS)

    Thiriet, Mélanie; Michaut, Chloé; Breuer, Doris; Plesa, Ana-Catalina

    2018-04-01

    Estimates of the Martian elastic lithosphere thickness suggest small values of ˜25 km during the Noachian for the southern hemisphere and a large present-day difference below the two polar caps (≥300 km in the north and >110 km in the south). In addition, young lava flows suggest that Mars has been volcanically active up to the recent past. We run Monte Carlo simulations using a 1-D parameterized thermal evolution model to investigate whether a north/south hemispheric dichotomy in crustal properties and composition can explain these constraints. Our results suggest that 55-65% of the bulk radioelement content are in the crust, and most of it (43-51%) in the southern one. The southern crust can be up to 480 kg/m3 less dense than the northern one and might contain a nonnegligible proportion of felsic rocks. Our models predict a dry mantle and a wet or dry crustal rheology today. This is consistent with a mantle depleted in radioelements and volatiles. We retrieve north/south surface heat flux of 17.1-19.5 mW/m2 and 24.8-26.5 mW/m2, respectively, and a large difference in lithospheric temperatures between the two hemispheres (170-304 K in the shallow mantle). This difference could leave a signature in the seismic signals measured by the future InSight mission.

  12. Corpus callosum segmentation using deep neural networks with prior information from multi-atlas images

    NASA Astrophysics Data System (ADS)

    Park, Gilsoon; Hong, Jinwoo; Lee, Jong-Min

    2018-03-01

    In human brain, Corpus Callosum (CC) is the largest white matter structure, connecting between right and left hemispheres. Structural features such as shape and size of CC in midsagittal plane are of great significance for analyzing various neurological diseases, for example Alzheimer's disease, autism and epilepsy. For quantitative and qualitative studies of CC in brain MR images, robust segmentation of CC is important. In this paper, we present a novel method for CC segmentation. Our approach is based on deep neural networks and the prior information generated from multi-atlas images. Deep neural networks have recently shown good performance in various image processing field. Convolutional neural networks (CNN) have shown outstanding performance for classification and segmentation in medical image fields. We used convolutional neural networks for CC segmentation. Multi-atlas based segmentation model have been widely used in medical image segmentation because atlas has powerful information about the target structure we want to segment, consisting of MR images and corresponding manual segmentation of the target structure. We combined the prior information, such as location and intensity distribution of target structure (i.e. CC), made from multi-atlas images in CNN training process for more improving training. The CNN with prior information showed better segmentation performance than without.

  13. A new look at deep-sea video

    USGS Publications Warehouse

    Chezar, H.; Lee, J.

    1985-01-01

    A deep-towed photographic system with completely self-contained recording instrumentation and power can obtain color-video and still-photographic transects along rough terrane without need for a long electrically conducting cable. Both the video- and still-camera systems utilize relatively inexpensive and proven off-the-shelf hardware adapted for deep-water environments. The small instrument frame makes the towed sled an ideal photographic tool for use on ship or small-boat operations. The system includes a temperature probe and altimeter that relay data acoustically from the sled to the surface ship. This relay enables the operator to monitor simultaneously water temperature and the precise height off the bottom. ?? 1985.

  14. Lutetia: an example of prediction of polyhedra in shapes of small cosmic bodies

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2011-10-01

    The following prediction based on rules of the wave planetology [1-12] was published before the Rosetta spacecraft imaged asteroid Lutetia [13]. "A 100 km long flattened asteroid 21-Lutetia will be imaged by the "Ros etta' s pacecraft in July 2010. Knowing that heavenly bodies are effectively structurized by warping inertia -gravity waves one might expect that Lutetia will not be an exclusion out of a row of bodies subjected to an action of these waves [1-9]. The elliptical keplerian orbits with periodically changing bodies 'accelerations imply inertia -gravity forces applied to any body notwithstanding its size, mass, density, chemical composition, and physical state. These forces produce inertia-gravity waves having in rotating bodied standing character and four direct ions of propagation (orthogonal and diagonal). Interfering these waves produce in bodies three (five) kinds of tectonic blocks: uprising s trongly and moderately (++, +), subsiding deeply and moderately (--, -), and neutral (0) where + and - are compensated. Lengths and amplitudes of warping waves form the harmonic sequence. The fundamental wave1 (long 2πR) ma kes ubiquitous tectonic dichotomy (two antipodean segments or hemispheres: one risen, another fallen). In small bodies this structurization is expressed in their convexo-concave shape: one hemisphere is bulged, another one pressed in. Bulging hemisphere is extended, pressed in hemisphere contracted. This wave shaping tends to transform a globular body into a tetrahedron - the ess entially dichotomous s imp les t Plato's figure. In this polyhedron always there is an oppos ition of extension (a face) to contraction (a vertex). The firs t overtone wave2 (long πR) ma kes tectonic s ectors , als o ris en and fallen, and regularly disposed on (and in) a globe. This regularity is expressed in an octahedron form. The octahedron (diamond) or its parts are often observed in shapes of small bodies with small gravities. Larger bodies with rather strong gravity tend to smooth polyhedron vertices and edges but a polyhedron structurization is always present inside their globes a nd is shown in their tectonics, geomorphology and geophysical fields. The shorter warping waves are also present but because of their comparatively small lengths and amplitudes they are not so important in distorting globes. The presented main harmonic row is complicated by superimposed individual waves lengths of which are inversely proportional to orbital frequencies: higher frequency - smaller wave, and, vice versa, lower frequency - larger wave. In the main asteroid belt the fundamental wave of the ma in s equence and the individual wave (a ls o long 2π R) a re in the s tron gest 1:1 resonance what prohibits an accretion of a real planet because of prevailing debris scattering. Thus, the Lutetia shape can support the main point of the wave planetology - "orbits make s tructures ." [13]. Below are some examples of cosmic polyhedra belonging to small bodies of various classes (asteroids, satellites, comets), s izes and compos itions . Thus , the prediction of Lutetia' s hape (s trengthened by the later Tempel's images ) was bas ed on rathe r representative observations.

  15. Seasonality and intermittency of the ocean dynamics at scales smaller than 100 km in the world ocean: A scientific challenge for SWOT

    NASA Astrophysics Data System (ADS)

    Wang, J.; Su, Z.; Klein, P.; Thompson, A. F.; Menemenlis, D.; Fu, L. L.

    2016-12-01

    The major observational advance expected from the Surface Water and Ocean Topography (SWOT) altimeter, compared with existing altimeters, is that it will provide wide-swath (120 km) along-track data that permit the sampling of oceanic scales between 15 and 150km. The potential of this satellite mission is to understand the dynamical impact of these small scales on ocean dynamics. Such impact is known to affect the vertical velocity field (and therefore the vertical fluxes of ocean properties) and significantly affect both the inverse and direct kinetic energy cascades. The need to monitor these scales on a global scale is illustrated by the results of a realistic global ocean simulation. This model has 1/48-degree horizontal grid spacing, 90 vertical levels, and the inclusion of tidal forcing. This simulation reveals a strong seasonality of ocean dynamics at scales less than 100 km, not only in the previously documented regions, such as the Kuroshio extension, Gulf Stream, and subtropical gyres; but also in most other regions, such as most of the Southern Hemisphere and the North-East Atlantic. This strong seasonality, with a maximum amplitude consistently in winter, is associated with deep winter mixed-layer and energetic mesoscale eddies, pointing to mixed-layer instability as a major driver of the seasonality of dynamics at small scales. In addition to seasonal variations, strong intermittencies of ocean dynamics with a period of one to two weeks are also observed occasionally with the same amplitude as the seasonal variability. In this presentation, we discuss the consequences and the challenges posed by the strong spatial and temporal variability to SWOT data analysis.

  16. Use of a "small-bubble technique" to increase the success of Anwar's "big-bubble technique" for deep lamellar keratoplasty with complete baring of Descemet's membrane.

    PubMed

    Parthasarathy, Anand; Por, Yong Ming; Tan, Donald T H

    2007-10-01

    To describe a quick and simple "small-bubble" technique to immediately determine the success of attaining complete Descemet's membrane (DM) separation from corneal stroma through Anwar's "big-bubble" technique of deep anterior lamellar keratoplasty (DALK) for complete stromal removal. A partial trephination was followed by a lamellar dissection of the anterior stroma. Deep stromal air injection was then attempted to achieve the big bubble to help separate the stroma from the DM. To confirm that a big bubble had been achieved, a small air bubble was injected into the anterior chamber (AC) through a limbal paracentesis. If the small bubble is then seen at the corneal periphery, it confirms that the big-bubble separation of DM was successful because the convex nature of the bubble will cause it to protrude posteriorly, forcing the small AC bubble to the periphery. If the small AC bubble is not seen in the corneal periphery, this means that it is present in the centre, beneath the opaque corneal stroma, and therefore the big bubble has not been achieved. We used the small-bubble technique to confirm the presence of the big bubble in three (one keratoconus, one interstitial keratitis and one dense corneal scar) out of 41 patients who underwent DALK. The small-bubble technique confirmed that the big bubble was achieved in the eye of all three patients. Complete stromal removal with baring of the DM was achieved, and postoperatively all three eyes achieved best corrected vision of 6/6. The small-bubble technique can be a useful surgical tool for corneal surgeons attempting lamellar keratoplasty using the big-bubble technique. It helps in confirming the separation of DM from the deep stroma, which is important in achieving total stromal replacement. It will help to make the transition to lamellar keratoplasty smoother, enhance corneal graft success and improve visual outcomes in patients.

  17. Tracer evolution in winds generated by a global spectral mechanistic model

    NASA Technical Reports Server (NTRS)

    Nielsen, J. E.; Rood, Richard B.; Couglass, Anne R.; Cerniglia, Mark C.; Allen, Dale J.; Rosenfield, Joan E.

    1994-01-01

    The lower boundary of a spectral mechanistic model is prescribed with 100 hPa geopotentials, and its performance during a November 1989 through March 1990 integration is compared with National Meteorological Center observations. Although the stratopause temperatures quickly become biased near the pole in both hemispheres, the model develops a residual mean circulation which shows significant descent over the winter pole and ascent in the tropics and over the summer pole at pressures less than 10 hPa. The daily correspondence of observed to modeled features in the upper stratosphere and mesosphere degrades after one month. However, the long-term variability qualitatively follows the observations. The results of off-line transport experiments are also described. A passive tracer is instantaneously injected into the flow over the poles and evolves in a manner which is consistent with the residual mean circulation. It demonstrates a significant cross-equatorial flux in the mesosphere near solstice, and air which originates in the southern hemisphere polar mesosphere can be found descending deep into the nothern polar stratosphere at the end of the integration. Nitrous oxide is also transported, and its ability to act as a dynamical tracer is evaluated by comparison to the evolution of the passive tracer.

  18. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array

    NASA Astrophysics Data System (ADS)

    Acconcia, Christopher N.; Jones, Ryan M.; Goertz, David E.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2017-09-01

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  19. Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography.

    PubMed

    Talley, L D; Feely, R A; Sloyan, B M; Wanninkhof, R; Baringer, M O; Bullister, J L; Carlson, C A; Doney, S C; Fine, R A; Firing, E; Gruber, N; Hansell, D A; Ishii, M; Johnson, G C; Katsumata, K; Key, R M; Kramp, M; Langdon, C; Macdonald, A M; Mathis, J T; McDonagh, E L; Mecking, S; Millero, F J; Mordy, C W; Nakano, T; Sabine, C L; Smethie, W M; Swift, J H; Tanhua, T; Thurnherr, A M; Warner, M J; Zhang, J-Z

    2016-01-01

    Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.

  20. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array.

    PubMed

    Acconcia, Christopher N; Jones, Ryan M; Goertz, David E; O'Reilly, Meaghan A; Hynynen, Kullervo

    2017-09-05

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  1. Waiting for 21-Lutetia "Rosetta" images as a final proof of structurizing force of inertia-gravity waves

    NASA Astrophysics Data System (ADS)

    Kochemasov, Gennady G.

    2010-05-01

    The 100 km long flattened asteroid 21-Lutetia will be imaged by the "Rosetta' spacecraft in July 2010. Knowing that heavenly bodies are effectively structurized by warping inertia-gravity waves one might expect that Lutetia will not be an exclusion out of a row of bodies subjected to an action of these waves [1-9]. The elliptical keplerian orbits with periodically changing bodies' accelerations imply inertia-gravity forces applied to any body notwithstanding its size, mass, density, chemical composition, and physical state. These forces produce inertia-gravity waves having in rotating bodied standing character and four directions of propagation (orthogonal and diagonal). Interfering these waves produce in bodies three (five) kinds of tectonic blocks: uprising strongly and moderately (++, +), subsiding deeply and moderately (--, -), and neutral (0) where + and - are compensated. Lengths and amplitudes of warping waves form the harmonic sequence. The fundamental wave1 (long 2πR) makes ubiquitous tectonic dichotomy (two antipodean segments or hemispheres: one risen, another fallen). In small bodies this structurization is expressed in their convexo-concave shape: one hemisphere is bulged, another one pressed in. Bulging hemisphere is extended, pressed in hemisphere contracted. This wave shaping tends to transform a globular body into a tetrahedron - the essentially dichotomous simplest Plato's figure. In this polyhedron always there is an opposition of extension (a face) to contraction (a vertex). The first overtone wave2 (long πR) makes tectonic sectors, also risen and fallen, and regularly disposed on (and in) a globe. This regularity is expressed in an octahedron form. The octahedron (diamond) or its parts are often observed in shapes of small bodies with small gravities. Larger bodies with rather strong gravity tend to smooth polyhedron vertices and edges but a polyhedron structurization is always present inside their globes and is shown in their tectonics, geomorphology and geophysical fields. The shorter warping waves are also present but because of their comparatively small lengths and amplitudes they are not so important in distorting globes. The presented main harmonic row is complicated by superimposed individual waves lengths of which are inversely proportional to orbital frequencies: higher frequency - smaller wave, and, vice versa, lower frequency - larger wave. In the main asteroid belt the fundamental wave of the main sequence and the individual wave (also long 2πR) are in the strongest 1:1 resonance what prohibits an accretion of a real planet because of prevailing debris scattering. Thus, the Lutetia shape can support the main point of the wave planetology - «orbits make structures». [1] Kochemasov G.G. (1999) "Diamond" and "dumb-bells"-like shapes of celestial bodies induced by inertia-gravity waves // 30th Vernadsky-Brown microsymposium on comparative planetology, Abstracts, Moscow, Vernadsky Inst., 49-50. [2] -"- (1999) On convexo-concave shape of small celestial bodies // Asteroids, Comets, Meteors. Cornell Univ., July 26-30, 1999, Abstr. # 24.22. [3] -"- (2006) The wave planetology illustrated - I: dichotomy, sectoring // 44th Vernadsky-Brown microsymposium "Topics in Comparative Planetology", Oct. 9-11, 2006, Moscow, Vernadsky Inst., Abstr. m44_39, CD-ROM; [4] -"- (2006) Theorems of the wave planetology imprinted in small bodies // Geophys. Res. Abstracts, Vol. 8, EGU06-A-01098, CD-ROM. [5] -"- (2007) Plato's polyhedra in space // EPSC Abstracts, Vol. 2, EPSC2007-A-00014, 2007. [6] -"-(2007) Wave shaping of small saturnian satellites and wavy granulation of saturnian rings // Geophys. Res. Abstracts, Vol. 9, EGU2007-A-01594, CD-ROM. [7] -"- (2007) Plato's polyhedra as shapes of small satellites in the outer Solar system // New Concepts in Global Tectonics Newsletter, # 44, 43-45. [8] -"- (2008) Plato' polyhedra as shapes of small icy satellites // Geophys. Res. Abstracts, Vol. 10, EGU2008-A-01271, CD-ROM. [9] -"- (2008) A wave geometrization of small heavenly bodies // GRA, Vol. 10, EGU2008-A-01275, CD-ROM.

  2. "Small World" architecture in brain connectivity and hippocampal volume in Alzheimer's disease: a study via graph theory from EEG data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Piludu, Francesca; Granata, Giuseppe; Romanello, Roberto; Caulo, Massimo; Onofrj, Valeria; Bramanti, Placido; Colosimo, Cesare; Rossini, Paolo Maria

    2017-04-01

    Brain imaging plays an important role in the study of Alzheimer's disease (AD), where atrophy has been found to occur in the hippocampal formation during the very early disease stages and to progress in parallel with the disease's evolution. The aim of the present study was to evaluate a possible correlation between "Small World" characteristics of the brain connectivity architecture-as extracted from EEG recordings-and hippocampal volume in AD patients. A dataset of 144 subjects, including 110 AD (MMSE 21.3) and 34 healthy Nold (MMSE 29.8) individuals, was evaluated. Weighted and undirected networks were built by the eLORETA solutions of the cortical sources' activities moving from EEG recordings. The evaluation of the hippocampal volume was carried out on a subgroup of 60 AD patients who received a high-resolution T1-weighted sequence and underwent processing for surface-based cortex reconstruction and volumetric segmentation using the Freesurfer image analysis software. Results showed that, quantitatively, more correlation was observed in the right hemisphere, but the same trend was seen in both hemispheres. Alpha band connectivity was negatively correlated, while slow (delta) and fast-frequency (beta, gamma) bands positively correlated with hippocampal volume. Namely, the larger the hippocampal volume, the lower the alpha and the higher the delta, beta, and gamma Small World characteristics of connectivity. Accordingly, the Small World connectivity pattern could represent a functional counterpart of structural hippocampal atrophying and related-network disconnection.

  3. The distribution of lead concentrations and isotope compositions in the eastern Tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Bridgestock, Luke; Rehkämper, Mark; van de Flierdt, Tina; Paul, Maxence; Milne, Angela; Lohan, Maeve C.; Achterberg, Eric P.

    2018-03-01

    Anthropogenic emissions have dominated marine Pb sources during the past century. Here we present Pb concentrations and isotope compositions for ocean depth profiles collected in the eastern Tropical Atlantic Ocean (GEOTRACES section GA06), to trace the transfer of anthropogenic Pb into the ocean interior. Variations in Pb concentration and isotope composition were associated with changes in hydrography. Water masses ventilated in the southern hemisphere generally featured lower 206Pb/207Pb and 208Pb/207Pb ratios than those ventilated in the northern hemisphere, in accordance with Pb isotope data of historic anthropogenic Pb emissions. The distributions of Pb concentrations and isotope compositions in northern sourced waters were consistent with differences in their ventilation timescales. For example, a Pb concentration maximum at intermediate depth (600-900 m, 35 pmol kg-1) in waters sourced from the Irminger/Labrador Seas, is associated with Pb isotope compositions (206Pb/207Pb = 1.1818-1.1824, 208Pb/207Pb = 2.4472-2.4483) indicative of northern hemispheric emissions during the 1950s and 1960s close to peak leaded petrol usage, and a transit time of ∼50-60 years. In contrast, North Atlantic Deep Water (2000-4000 m water depth) featured lower Pb concentrations and isotope compositions (206Pb/207Pb = 1.1762-1.184, 208Pb/207Pb = 2.4482-2.4545) indicative of northern hemispheric emissions during the 1910s and 1930s and a transit time of ∼80-100 years. This supports the notion that transient anthropogenic Pb inputs are predominantly transferred into the ocean interior by water mass transport. However, the interpretation of Pb concentration and isotope composition distributions in terms of ventilation timescales and pathways is complicated by (1) the chemical reactivity of Pb in the ocean, and (2) mixing of waters ventilated during different time periods. The complex effects of water mass mixing on Pb distributions is particularly apparent in seawater in the Tropical Atlantic Ocean which is ventilated from the southern hemisphere. In particular, South Atlantic Central Water and Antarctic Intermediate Water were dominated by anthropogenic Pb emitted during the last 50-100 years, despite estimates of much older average ventilation ages in this region.

  4. High genetic diversity in a small population: the case of Chilean blue whales

    PubMed Central

    Torres-Florez, Juan P; Hucke-Gaete, Rodrigo; Rosenbaum, Howard; Figueroa, Christian C

    2014-01-01

    It is generally assumed that species with low population sizes have lower genetic diversities than larger populations and vice versa. However, this would not be the case for long-lived species with long generation times, and which populations have declined due to anthropogenic effects, such as the blue whale (Balaenoptera musculus). This species was intensively decimated globally to near extinction during the 20th century. Along the Chilean coast, it is estimated that at least 4288 blue whales were hunted from an apparently pre-exploitation population size (k) of a maximum of 6200 individuals (Southeastern Pacific). Thus, here, we describe the mtDNA (control region) and nDNA (microsatellites) diversities of the Chilean blue whale aggregation site in order to verify the expectation of low genetic diversity in small populations. We then compare our findings with other blue whale aggregations in the Southern Hemisphere. Interestingly, although the estimated population size is small compared with the pre-whaling era, there is still considerable genetic diversity, even after the population crash, both in mitochondrial (N = 46) and nuclear (N = 52) markers (Hd = 0.890 and Ho = 0.692, respectively). Our results suggest that this diversity could be a consequence of the long generation times and the relatively short period of time elapsed since the end of whaling, which has been observed in other heavily-exploited whale populations. The genetic variability of blue whales on their southern Chile feeding grounds was similar to that found in other Southern Hemisphere blue whale feeding grounds. Our phylogenetic analysis of mtDNA haplotypes does not show extensive differentiation of populations among Southern Hemisphere blue whale feeding grounds. The present study suggests that although levels of genetic diversity are frequently used as estimators of population health, these parameters depend on the biology of the species and should be taken into account in a monitoring framework study to obtain a more complete picture of the conservation status of a population. PMID:24834336

  5. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle.

    PubMed

    Böhm, E; Lippold, J; Gutjahr, M; Frank, M; Blaser, P; Antz, B; Fohlmeister, J; Frank, N; Andersen, M B; Deininger, M

    2015-01-01

    Extreme, abrupt Northern Hemisphere climate oscillations during the last glacial cycle (140,000 years ago to present) were modulated by changes in ocean circulation and atmospheric forcing. However, the variability of the Atlantic meridional overturning circulation (AMOC), which has a role in controlling heat transport from low to high latitudes and in ocean CO2 storage, is still poorly constrained beyond the Last Glacial Maximum. Here we show that a deep and vigorous overturning circulation mode has persisted for most of the last glacial cycle, dominating ocean circulation in the Atlantic, whereas a shallower glacial mode with southern-sourced waters filling the deep western North Atlantic prevailed during glacial maxima. Our results are based on a reconstruction of both the strength and the direction of the AMOC during the last glacial cycle from a highly resolved marine sedimentary record in the deep western North Atlantic. Parallel measurements of two independent chemical water tracers (the isotope ratios of (231)Pa/(230)Th and (143)Nd/(144)Nd), which are not directly affected by changes in the global cycle, reveal consistent responses of the AMOC during the last two glacial terminations. Any significant deviations from this configuration, resulting in slowdowns of the AMOC, were restricted to centennial-scale excursions during catastrophic iceberg discharges of the Heinrich stadials. Severe and multicentennial weakening of North Atlantic Deep Water formation occurred only during Heinrich stadials close to glacial maxima with increased ice coverage, probably as a result of increased fresh-water input. In contrast, the AMOC was relatively insensitive to submillennial meltwater pulses during warmer climate states, and an active AMOC prevailed during Dansgaard-Oeschger interstadials (Greenland warm periods).

  6. Field-Aligned Currents in Saturn's Nightside Magnetosphere: Subcorotation and Planetary Period Oscillation Components During Northern Spring

    NASA Astrophysics Data System (ADS)

    Bradley, T. J.; Cowley, S. W. H.; Provan, G.; Hunt, G. J.; Bunce, E. J.; Wharton, S. J.; Alexeev, I. I.; Belenkaya, E. S.; Kalegaev, V. V.; Dougherty, M. K.

    2018-05-01

    We newly analyze Cassini magnetic field data from the 2012/2013 Saturn northern spring interval of highly inclined orbits and compare them with similar data from late southern summer in 2008, thus providing unique information on the seasonality of the currents that couple momentum between Saturn's ionosphere and magnetosphere. Inferred meridional ionospheric currents in both cases consist of a steady component related to plasma subcorotation, together with the rotating current systems of the northern and southern planetary period oscillations (PPOs). Subcorotation currents during the two intervals show opposite north-south polar region asymmetries, with strong equatorward currents flowing in the summer hemispheres but only weak currents flowing to within a few degrees of the open-closed boundary (OCB) in the winter hemispheres, inferred due to weak polar ionospheric conductivities. Currents peak at 1 MA rad-1 in both hemispheres just equatorward of the open-closed boundary, associated with total downward polar currents 6 MA, then fall across the narrow auroral upward current region to small values at subauroral latitudes. PPO-related currents have a similar form in both summer and winter with principal upward and downward field-aligned currents peaking at 1.25 MA rad-1 being essentially collocated with the auroral upward current and approximately equal in strength. Though northern and southern PPO currents were approximately equal during both intervals, the currents in both hemispheres were dual modulated by both systems during 2012/2013, with approximately half the main current closing in the opposite ionosphere and half cross field in the magnetosphere, while only the northern hemisphere currents were similarly dual modulated in 2008.

  7. Global-Scale Consequences of Magnetic-Helicity Injection and Condensation on the Sun

    NASA Technical Reports Server (NTRS)

    Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.

    2013-01-01

    In the recent paper of Antiochos, a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines (PILs) has been developed. We investigate this concept through global simulations of the Sun's photospheric and coronal magnetic fields and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominately counter-clockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (i) On a north-south orientated PIL, both differential rotation and convective motions inject the same sign of helicity which matches that required to reproduce the hemispheric pattern of filaments. (ii) On a high latitude east-west orientated polar crown or sub-polar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (iii) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases helicity condensation can reverse the effect of differential rotation along the East-West lead arm, but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation is a viable method to explain the hemispheric pattern of filaments in conjunction with the mechanisms used in Yeates et al. (2008). Future observational studies should focus on determining the vorticity component within convective motions to determine, both its magnitude and latitudinal variation relative to the differential rotation gradient on the Sun.

  8. Temporal Lobe White Matter Asymmetry and Language Laterality in Epilepsy Patients

    PubMed Central

    Ellmore, Timothy M.; Beauchamp, Michael S.; Breier, Joshua I.; Slater, Jeremy D.; Kalamangalam, Giridhar P.; O’Neill, Thomas J.; Disano, Michael A.; Tandon, Nitin

    2009-01-01

    Recent studies using diffusion tensor imaging (DTI) have advanced our knowledge of the organization of white matter subserving language function. It remains unclear, however, how DTI may be used to predict accurately a key feature of language organization: its asymmetric representation in one cerebral hemisphere. In this study of epilepsy patients with unambiguous lateralization on Wada testing (19 left and 4 right lateralized subjects; no bilateral subjects), the predictive value of DTI for classifying the dominant hemisphere for language was assessed relative to the existing standard - the intra-carotid Amytal (Wada) procedure. Our specific hypothesis is that language laterality in both unilateral left- and right-hemisphere language dominant subjects may be predicted by hemispheric asymmetry in the relative density of three white matter pathways terminating in the temporal lobe implicated in different aspects of language function: the arcuate (AF), uncinate (UF), and inferior longitudinal fasciculi (ILF). Laterality indices computed from asymmetry of high anisotropy AF pathways, but not the other pathways, classified the majority (19 of 23) of patients using the Wada results as the standard. A logistic regression model incorporating information from DTI of the AF, fMRI activity in Broca’s area, and handedness was able to classify 22 of 23 (95.6%) patients correctly according to their Wada score. We conclude that evaluation of highly anisotropic components of the AF alone has significant predictive power for determining language laterality, and that this markedly asymmetric distribution in the dominant hemisphere may reflect enhanced connectivity between frontal and temporal sites to support fluent language processes. Given the small sample reported in this preliminary study, future research should assess this method on a larger group of patients, including subjects with bihemispheric dominance. PMID:19874899

  9. Meridional distribution of molecular hydrogen and its deuterium content in the atmosphere

    NASA Astrophysics Data System (ADS)

    Rice, Andrew; Quay, Paul; Stutsman, Johnny; Gammon, Richard; Price, Heather; Jaeglé, Lyatt

    2010-06-01

    The atmospheric molecular hydrogen concentration and its deuterium abundance were measured in remote air samples collected onboard six Pacific Ocean ship transects between 37°N and 77°S during years 2001 through 2005. The data reveal a year-round interhemispheric gradient in H2 concentration and isotopic composition with the extratropical Northern Hemisphere lower in H2 concentration by 17 ± 11 ppb and δD of H2 by 16 ± 12‰ than the Southern Hemisphere (95% confidence). On the basis of these snapshots, the interhemispheric gradient in δD was observed to be smallest in September through November, a time that experiences the largest gradient in concentration, and the largest in April, a time that has a small gradient in concentration. A simple hemispheric box model of the atmosphere indicates that, while the hemispheric asymmetry in soil sink of H2 is primarily responsible for the observed interhemispheric gradient in H2 concentration, the hemispheric difference in the δD of the H2 sources and sinks are equally responsible for the observed interhemispheric gradient in δD. Both the inverse correlation between interhemispheric H2 and δD gradients and their seasonal changes point to the importance of the H2 produced by photochemical sources. Comparisons with a three-dimensional chemical transport model shows reasonable agreement with mean behavior in both variables and provides an accounting for H2 sources and sinks within ±15% without a dramatic change in the H2 budget. Anomalous H2 concentrations and δD in tropics and low-latitude regions observed during the November-December 2001 meridional H2 and δD snapshot is thought to be a result of H2 emissions from biomass burning, possibly from continental Africa.

  10. A model-based method for estimating Ca2+ release fluxes from linescan images in Xenopus oocytes.

    PubMed

    Baran, Irina; Popescu, Anca

    2009-09-01

    We propose a model-based method of interpreting linescan images observed in Xenopus oocytes with the use of Oregon Green-1 as a fluorescent dye. We use a detailed modeling formalism based on numerical simulations that incorporate physical barriers for local diffusion, and, by assuming a Gaussian distribution of release durations, we derive the distributions of release Ca(2+) amounts and currents, fluorescence amplitudes, and puff widths. We analyze a wide set of available data collected from 857 and 281 events observed in the animal and the vegetal hemispheres of the oocyte, respectively. A relatively small fraction of events appear to involve coupling of two or three adjacent clusters of Ca(2+) releasing channels. In the animal hemisphere, the distribution of release currents with a mean of 1.4 pA presents a maximum at 1.0 pA and a rather long tail extending up to 5 pA. The overall distribution of liberated Ca(2+) amounts exhibits a dominant peak at 120 fC, a smaller peak at 375 fC, and an average of 166 fC. Ca(2+) amounts and release fluxes in the vegetal hemisphere appear to be 3.6 and 1.6 times smaller than in the animal hemisphere, respectively. Predicted diameters of elemental release sites are approximately 1.0 microm in the animal and approximately 0.5 microm in the vegetal hemisphere, but the side-to-side separation between adjacent sites appears to be identical (approximately 0.4 microm). By fitting the model to individual puffs we can estimate the quantity of liberated calcium, the release current, the orientation of the scan line, and the dimension of the corresponding release site.

  11. Catheter-Directed Thrombolysis via Small Saphenous Veins for Treating Acute Deep Venous Thrombosis.

    PubMed

    Yang, Bin; Xu, Xiao-Dong; Gao, Peng; Yu, Ji-Xiang; Li, Yu; Zhu, Ai-Dong; Meng, Ran-Ran

    2016-08-23

    BACKGROUND There is little data comparing catheter-directed thrombolysis (CDT) via small saphenous veins vs. systematic thrombolysis on complications and efficacy in acute deep venous thrombosis patients. The aim of our study was to compare the efficacy and safety of CDT via the small saphenous veins with systematic thrombolysis for patients with acute deep venous thrombosis (DVT). MATERIAL AND METHODS Sixty-six patients with acute DVT admitted from June 2012 to December 2013 were divided into 2 groups: 27 patients received systemic thrombolysis (ST group) and 39 patients received CDT via the small saphenous veins (CDT group). The thrombolysis efficiency, limb circumference differences, and complications such as post-thrombotic syndrome (PTS) in the 2 groups were recorded. RESULTS The angiograms demonstrated that all or part of the fresh thrombus was dissolved. There was a significant difference regarding thrombolysis efficiency between the CDT group and ST group (71.26% vs. 48.26%, P=0.001). In both groups the postoperative limb circumference changes were higher compared to the preoperative values. The differences between postoperative limb circumferences on postoperative days 7 and 14 were significantly higher in the CDT group than in the ST group (all P<0.05). The incidence of postoperative PTS in the CDT group (17.9%) was significantly lower in comparison to the ST group (51.85%) during the follow-up (P=0.007). CONCLUSIONS Catheter-directed thrombolysis via the small saphenous veins is an effective, safe, and feasible approach for treating acute deep venous thrombosis.

  12. Semi-inclusive deep inelastic scattering at small- x

    NASA Astrophysics Data System (ADS)

    Marquet, Cyrille; Xiao, Bo-Wen; Yuan, Feng

    2009-11-01

    We study the semi-inclusive hadron production in deep inelastic scattering at small-x. A transverse-momentum-dependent factorization is found consistent with the results calculated in the small-x approaches, such as the color-dipole framework and the color glass condensate, in the appropriate kinematic region at the lowest order. The transverse-momentum-dependent quark distribution can be studied in this process as a probe for the small-x saturation physics. Especially, the ratio of quark distributions as a function of transverse momentum at different x demonstrates strong dependence on the saturation scale. The Q2 dependence of the same ratio is also studied by applying the Collins-Soper-Sterman resummation method.

  13. The devil is in the detail: brain dynamics in preparation for a global-local task.

    PubMed

    Leaver, Echo E; Low, Kathy A; DiVacri, Assunta; Merla, Arcangelo; Fabiani, Monica; Gratton, Gabriele

    2015-08-01

    When analyzing visual scenes, it is sometimes important to determine the relevant "grain" size. Attention control mechanisms may help direct our processing to the intended grain size. Here we used the event-related optical signal, a method possessing high temporal and spatial resolution, to examine the involvement of brain structures within the dorsal attention network (DAN) and the visual processing network (VPN) in preparation for the appropriate level of analysis. Behavioral data indicate that the small features of a hierarchical stimulus (local condition) are more difficult to process than the large features (global condition). Consistent with this finding, cues predicting a local trial were associated with greater DAN activation. This activity was bilateral but more pronounced in the left hemisphere, where it showed a frontal-to-parietal progression over time. Furthermore, the amount of DAN activation, especially in the left hemisphere and in parietal regions, was predictive of subsequent performance. Although local cues elicited left-lateralized DAN activity, no preponderantly right activity was observed for global cues; however, the data indicated an interaction between level of analysis (local vs. global) and hemisphere in VPN. They further showed that local processing involves structures in the ventral VPN, whereas global processing involves structures in the dorsal VPN. These results indicate that in our study preparation for analyzing different size features is an asymmetric process, in which greater preparation is required to focus on small rather than large features, perhaps because of their lesser salience. This preparation involves the same DAN used for other attention control operations.

  14. A quantitative comparison of the hemispheric, areal, and laminar origins of sensory and motor cortical projections to the superior colliculus of the cat.

    PubMed

    Butler, Blake E; Chabot, Nicole; Lomber, Stephen G

    2016-09-01

    The superior colliculus (SC) is a midbrain structure central to orienting behaviors. The organization of descending projections from sensory cortices to the SC has garnered much attention; however, rarely have projections from multiple modalities been quantified and contrasted, allowing for meaningful conclusions within a single species. Here, we examine corticotectal projections from visual, auditory, somatosensory, motor, and limbic cortices via retrograde pathway tracers injected throughout the superficial and deep layers of the cat SC. As anticipated, the majority of cortical inputs to the SC originate in the visual cortex. In fact, each field implicated in visual orienting behavior makes a substantial projection. Conversely, only one area of the auditory orienting system, the auditory field of the anterior ectosylvian sulcus (fAES), and no area involved in somatosensory orienting, shows significant corticotectal inputs. Although small relative to visual inputs, the projection from the fAES is of particular interest, as it represents the only bilateral cortical input to the SC. This detailed, quantitative study allows for comparison across modalities in an animal that serves as a useful model for both auditory and visual perception. Moreover, the differences in patterns of corticotectal projections between modalities inform the ways in which orienting systems are modulated by cortical feedback. J. Comp. Neurol. 524:2623-2642, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Physical measurements of breaking wave impact on a floating wave energy converter

    NASA Astrophysics Data System (ADS)

    Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison

    2013-04-01

    Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.

  16. Semi-inclusive Deep Inelastic Scattering at Small-x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquet, C.; Xiao, B.-W.; Yuan, Feng

    We study the semi-inclusive hadron production in deep inelastic scattering at small-x.A transverse momentum dependent factorization is found consistent with the resultscalculated in the color-dipole framework in the appropriate kinematic region. The transverse momentum dependent quark distribution can be studied in this processas a probe for the small-x saturation physics. Especially, the ratio of the quark distributions as functions of transverse momentum at different x demonstrates strong dependence on the saturation scale. The Q2 dependence of the same ratio is also studied by applying the Collins-Soper-Sterman resummation method.

  17. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, D.E.; Petrini, R.R.; Carter, G.W.

    An improved rod optic system for inspecting small diameter, deep bores is described. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90/sup 0/ to minimize optical distortion in examing the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable if examing 1/16 inch diameter and up to 4-inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and righ angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  18. Late Pleistocene paleoproductivity patterns during the last climatic cycle in the Guyana Basin as revealed by calcareous nannoplankton

    NASA Astrophysics Data System (ADS)

    López-Otálvaro, G.-E.; Flores, J. A.; Sierro, F. J.; Cacho, I.; Grimalt, J.-O.; Michel, E.; Cortijo, E.; Labeyrie, L.

    2008-03-01

    Variations in the assemblages and abundances of calcareous nannoplankton have allowed us to interpret changes in oceanic and atmospheric dynamics in the Guyana Basin, mainly linked to the southeast trades over the last climatic cycle. Records of the paleoproductivity index of coccolithophores (N ratio) allowed us to monitor the nutri-thermocline fluctuations. Additionally, nannofossil accumulation rates vary closely with the N ratio, indicating a strong correlation between these two paleoproductivity proxies. The dominance of upper (small Noelaerhabdaceae, Emiliania huxleyi and Gephyrocapsa oceanica), over lower photic zone dwellers (Florisphaera profunda) during Termination II and interglacial substages 5.1 and 5.3 is related to eutrophic conditions due to a shoaling of the nutri-thermocline as a consequence of enhanced southeast Trade Winds. This activated an upwelling at the continental margin of the Guyana Basin. Low N ratio values and the dominance of F. profunda over the glacial substages of MIS 5 and glacial MIS 2-4 are linked to a deep nutri-thermocline (deep stratification of the mixed layer), at times of low influence of the southeast Trade Winds, and a weak upwelling. However, the N ratio during MIS 2-4 was slightly higher than those seen for the MIS 4/5 boundary and glacial substages 5.2 and 5.4. These micropaleontological proxies follow the insolation at high northern latitude (65° N): the high N ratio and NAR data from the Guyana Basin during Termination II and interglacials 5.1. and 5.3 are correlated with high insolation values, and low values of the N ratio and NAR during the MIS 4/5 boundary, glacials 5.2, 5.4 and MIS 2-4 are correlated with low insolation at the same latitudes. This situation suggests a link between the ITCZ, the southeast Trade Wind dynamics and the Northern Hemisphere climate changes during the last climatic cycle.

  19. DEEP: Database of Energy Efficiency Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon

    A database of energy efficiency performance (DEEP) is a presimulated database to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 10 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER [sic] prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones.more » DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air conditioning, plug loads, and domestic hot war. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center (NERSC) of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of the CEC PIER project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users' decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly building energy audit.« less

  20. Oasis 2: improved online analysis of small RNA-seq data.

    PubMed

    Rahman, Raza-Ur; Gautam, Abhivyakti; Bethune, Jörn; Sattar, Abdul; Fiosins, Maksims; Magruder, Daniel Sumner; Capece, Vincenzo; Shomroni, Orr; Bonn, Stefan

    2018-02-14

    Small RNA molecules play important roles in many biological processes and their dysregulation or dysfunction can cause disease. The current method of choice for genome-wide sRNA expression profiling is deep sequencing. Here we present Oasis 2, which is a new main release of the Oasis web application for the detection, differential expression, and classification of small RNAs in deep sequencing data. Compared to its predecessor Oasis, Oasis 2 features a novel and speed-optimized sRNA detection module that supports the identification of small RNAs in any organism with higher accuracy. Next to the improved detection of small RNAs in a target organism, the software now also recognizes potential cross-species miRNAs and viral and bacterial sRNAs in infected samples. In addition, novel miRNAs can now be queried and visualized interactively, providing essential information for over 700 high-quality miRNA predictions across 14 organisms. Robust biomarker signatures can now be obtained using the novel enhanced classification module. Oasis 2 enables biologists and medical researchers to rapidly analyze and query small RNA deep sequencing data with improved precision, recall, and speed, in an interactive and user-friendly environment. Oasis 2 is implemented in Java, J2EE, mysql, Python, R, PHP and JavaScript. It is freely available at https://oasis.dzne.de.

  1. Inter-comparison of hydro-climatic regimes across northern catchments: snychronicity, resistance and resilience

    Treesearch

    Sean K. Carey; Doerthe Tetzlaff; Jan Seibert; Chris Soulsby; Jim Buttle; Hjalmar Laudon; Jeff McDonnell; Kevin McGuire; Daniel Caissie; Jamie Shanley; Mike Kennedy; Kevin Devito; John W. Pomeroy

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of...

  2. Carpinus L.

    Treesearch

    Paula M. Pijut

    2008-01-01

    The hornbeam genus—Carpinus L.—includes about 35 species of deciduous, monoecious, small to large trees, that are native to the Northern Hemisphere from Europe to eastern Asia, south to the Himalayas, and in North and Central America (Furlow 1990; Hillier 1991; Krüssmann 1984; LHBH 1976; Suszka and others 1996). Five species are considered here....

  3. Can Small Lesions Induce Language Reorganization as Large Lesions Do?

    ERIC Educational Resources Information Center

    Maestu, Fernando; Saldana, Cristobal; Amo, Carlos; Gonzalez-Hidalgo, Mercedes; Fernandez, Alberto; Fernandez, Santiago; Mata, Pedro; Papanicolaou, Andrew; Ortiz, Tomas

    2004-01-01

    Shift of the cortical mechanisms of language from the usually dominant left to the non-dominant right hemisphere has been demonstrated in the presence of large brain lesions. Here, we report a similar phenomenon in a patient with a cavernoma over the anterolateral superior temporal gyrus associated with epilepsy. Language mapping was performed by…

  4. Calculation of far-field scattering from nonspherical particles using a geometrical optics approach

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1991-01-01

    A numerical method was developed using geometrical optics to predict far-field optical scattering from particles that are symmetric about the optic axis. The diffractive component of scattering is calculated and combined with the reflective and refractive components to give the total scattering pattern. The phase terms of the scattered light are calculated as well. Verification of the method was achieved by assuming a spherical particle and comparing the results to Mie scattering theory. Agreement with the Mie theory was excellent in the forward-scattering direction. However, small-amplitude oscillations near the rainbow regions were not observed using the numerical method. Numerical data from spheroidal particles and hemispherical particles are also presented. The use of hemispherical particles as a calibration standard for intensity-type optical particle-sizing instruments is discussed.

  5. DeepVel: Deep learning for the estimation of horizontal velocities at the solar surface

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.; Requerey, I. S.; Vitas, N.

    2017-07-01

    Many phenomena taking place in the solar photosphere are controlled by plasma motions. Although the line-of-sight component of the velocity can be estimated using the Doppler effect, we do not have direct spectroscopic access to the components that are perpendicular to the line of sight. These components are typically estimated using methods based on local correlation tracking. We have designed DeepVel, an end-to-end deep neural network that produces an estimation of the velocity at every single pixel, every time step, and at three different heights in the atmosphere from just two consecutive continuum images. We confront DeepVel with local correlation tracking, pointing out that they give very similar results in the time and spatially averaged cases. We use the network to study the evolution in height of the horizontal velocity field in fragmenting granules, supporting the buoyancy-braking mechanism for the formation of integranular lanes in these granules. We also show that DeepVel can capture very small vortices, so that we can potentially expand the scaling cascade of vortices to very small sizes and durations. The movie attached to Fig. 3 is available at http://www.aanda.org

  6. HEp-2 cell image classification method based on very deep convolutional networks with small datasets

    NASA Astrophysics Data System (ADS)

    Lu, Mengchi; Gao, Long; Guo, Xifeng; Liu, Qiang; Yin, Jianping

    2017-07-01

    Human Epithelial-2 (HEp-2) cell images staining patterns classification have been widely used to identify autoimmune diseases by the anti-Nuclear antibodies (ANA) test in the Indirect Immunofluorescence (IIF) protocol. Because manual test is time consuming, subjective and labor intensive, image-based Computer Aided Diagnosis (CAD) systems for HEp-2 cell classification are developing. However, methods proposed recently are mostly manual features extraction with low accuracy. Besides, the scale of available benchmark datasets is small, which does not exactly suitable for using deep learning methods. This issue will influence the accuracy of cell classification directly even after data augmentation. To address these issues, this paper presents a high accuracy automatic HEp-2 cell classification method with small datasets, by utilizing very deep convolutional networks (VGGNet). Specifically, the proposed method consists of three main phases, namely image preprocessing, feature extraction and classification. Moreover, an improved VGGNet is presented to address the challenges of small-scale datasets. Experimental results over two benchmark datasets demonstrate that the proposed method achieves superior performance in terms of accuracy compared with existing methods.

  7. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    USGS Publications Warehouse

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  8. Advanced Microelectronics Technologies for Future Small Satellite Systems

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  9. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions andmore » 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly building energy audit. DEEP will be migrated into the DEnCity - DOE’s Energy City, which integrates large-scale energy data for multi-purpose, open, and dynamic database leveraging diverse source of existing simulation data.« less

  10. Theoretical and experimental design studies for the Atmospheric General Circulation Experiment

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W.; Hathaway, D. H.; Miller, T. L.; Roberts, G. O.; Kopecky, K. J.

    1985-01-01

    The major criterion for the Atmospheric General Circulation Experiment (AGCE) design is that it be possible to realize strong baroclinic instability in the spherical configuration chosen. A configuration was selected in which a hemispherical shell of fluid is subjected to latitudinal temperature gradients on its spherical boundaries and the latitudinal boundaries are insulators. Work in the laboratory with a cylindrical version of this configuration revealed more instabilities than baroclinic instability. Since researchers fully expect these additional instabilities to appear in the spherical configuration also, they decided to continue the laboratory cylindrical annulus studies. Four flow regimes were identified: an axisymmetric Hadley circulation, boundary layer convection, baroclinic waves and deep thermal convection. Regime diagrams were prepared.

  11. Western hemisphere of the Moon taken by Galileo spacecraft

    NASA Image and Video Library

    1990-12-09

    Galileo spacecraft image of the Moon recorded at 9:35 am Pacific Standard Time (PST), 12-09-90, after completing its first Earth Gravity Assist. Western hemisphere of the Moon was taken through a green filter at a range of about 350,000 miles. In the center is Orientale Basin, 600 miles in diameter, formed about 3.8 billion years ago by the impact of an asteroid-size body. Orientale's dark center is a small mare. To the right is the lunar near side with the great, dark Oceanus Procellarum above the small, circular, dark Mare Humorum below. Maria are broad plains formed mostly over 3 billion years ago as vast basaltic lava flows. To the left is the lunar far side with fewer maria, but, at lower left South-Pole-Aitken basin, about 1200 miles in diameter, which resembles Orientale but is much older and more weathered and battered by cratering. The intervening cratered highlands of both sides, as well as the maria, are dotted with bright young craters. This image was "reprojected" so as to center the Orientale Basin, and was filtered to enhance the visibility of small features. The digital image processing was done by DLR, the German Aerospace Research Establishment near Munich, an international collaborator in the Galileo mission. Photo was provided by Jet Propulsion Laboratory (JPL) with alternate number P-37327, 12-19-90.

  12. Vesta's UV Lightcurve: Hemispheric Variation in Brightness and Spectral Reversal

    NASA Technical Reports Server (NTRS)

    Hendrix, Amanda R.; Vilas, Faith; Festou, Michael

    2003-01-01

    Spectra of asteroid 4 Vesta obtained in October 1990 with the International Ultraviolet Explorer are reanalyzed and reinterpreted. A large portion of the eastern hemisphere (based on the prime meridian definition of Thomas et al., 1997a) is darker at UV Wavelengths than much of the western hemisphere. The UV lightcurve is in contrast with the visible lightcurve, which shows that the eastern hemisphere is brighter than the western. These IUE spectra of Vesta thus may be evidence for the "spectral reversal." first seen on the Moon by Apollo 17. where the visibly brighter lunar highlands are darker than the maria at far-UV wavelengths. This effect was linked to space weathering when it was noted (Wagner et al., 1987) that the spectral reversal appears in the laboratory spectra of lunar soils but not powdered lunar rocks. We investigate Vesta's UV lightcurve and spectral reversal, and its possible connection with space weathering. The addition to grain coatings of small amounts of submicroscopic iron (SMFe) through vapor deposition causes drastic spectral changes at UV-visible wavelengths (Hapke, 2001). while the longer wavelength spectrum remains largely unaffected. Other laboratory results (e.g., Hiroi and Pieters, 1998) indicate that the UV-visible wavelength range is affected by simulated weathering processes in a manner similar to what is seen on Vesta. It is likely that Vesta has experienced relatively minor amounts of space weathering, as indicated by the spectral reversal, along with the subtle visible-near infrared weathering effects (e.g., Binzel et al., 1997).

  13. Occurrence of pristine aerosol environments on a polluted planet.

    PubMed

    Hamilton, Douglas S; Lee, Lindsay A; Pringle, Kirsty J; Reddington, Carly L; Spracklen, Dominick V; Carslaw, Kenneth S

    2014-12-30

    Natural aerosols define a preindustrial baseline state from which the magnitude of anthropogenic aerosol effects on climate are calculated and are a major component of the large uncertainty in anthropogenic aerosol-cloud radiative forcing. This uncertainty would be reduced if aerosol environments unperturbed by air pollution could be studied in the present--day atmosphere, but the pervasiveness of air pollution makes identification of unperturbed regions difficult. Here, we use global model simulations to define unperturbed aerosol regions in terms of two measures that compare 1750 and 2000 conditions-the number of days with similar aerosol concentrations and the similarity of the aerosol response to perturbations in model processes and emissions. The analysis shows that the aerosol system in many present-day environments looks and behaves like it did in the preindustrial era. On a global annual mean, unperturbed aerosol regions cover 12% of the Earth (16% of the ocean surface and 2% of the land surface). There is a strong seasonal variation in unperturbed regions of between 4% in August and 27% in January, with the most persistent conditions occurring over the equatorial Pacific. About 90% of unperturbed regions occur in the Southern Hemisphere, but in the Northern Hemisphere, unperturbed conditions are transient and spatially patchy. In cloudy regions with a radiative forcing relative to 1750, model results suggest that unperturbed aerosol conditions could still occur on a small number of days per month. However, these environments are mostly in the Southern Hemisphere, potentially limiting the usefulness in reducing Northern Hemisphere forcing uncertainty.

  14. The Use of Non-invasive Brain Stimulation Techniques to Facilitate Recovery from Post-stroke Aphasia

    PubMed Central

    Marchina, Sarah; Wan, Catherine Y.

    2011-01-01

    Aphasia is a common symptom after left hemispheric stroke. Neuroimaging techniques over the last 10–15 years have described two general trends: Patients with small left hemisphere strokes tend to recruit perilesional areas, while patients with large left hemisphere lesions recruit mainly homotopic regions in the right hemisphere. Non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have been employed to facilitate recovery by stimulating lesional and contralesional regions. The majority of these brain stimulation studies have attempted to block homotopic regions in the right posterior inferior frontal gyrus (IFG) to affect a presumed disinhibited right IFG (triangular portion). Other studies have used anodal or excitatory tDCS to stimulate the contralesional (right) fronto-temporal region or parts of the intact left IFG and perilesional regions to improve speech-motor output. It remains unclear whether the interhemispheric disinhibition model, which is the basis for motor cortex stimulation studies, also applies to the language system. Future studies could address a number of issues, including: the effect of lesion location on current density distribution, timing of the intervention with regard to stroke onset, whether brain stimulation should be combined with behavioral therapy, and whether multiple brain sites should be stimulated. A better understanding of the predictors of recovery from natural outcome studies would also help to inform study design, and the selection of clinically meaningful outcome measures in future studies. PMID:21842404

  15. Global and local processing near the left and right hands

    PubMed Central

    Langerak, Robin M.; La Mantia, Carina L.; Brown, Liana E.

    2013-01-01

    Visual targets can be processed more quickly and reliably when a hand is placed near the target. Both unimodal and bimodal representations of hands are largely lateralized to the contralateral hemisphere, and since each hemisphere demonstrates specialized cognitive processing, it is possible that targets appearing near the left hand may be processed differently than targets appearing near the right hand. The purpose of this study was to determine whether visual processing near the left and right hands interacts with hemispheric specialization. We presented hierarchical-letter stimuli (e.g., small characters used as local elements to compose large characters at the global level) near the left or right hands separately and instructed participants to discriminate the presence of target letters (X and O) from non-target letters (T and U) at either the global or local levels as quickly as possible. Targets appeared at either the global or local level of the display, at both levels, or were absent from the display; participants made foot-press responses. When discriminating target presence at the global level, participants responded more quickly to stimuli presented near the left hand than near either the right hand or in the no-hand condition. Hand presence did not influence target discrimination at the local level. Our interpretation is that left-hand presence may help participants discriminate global information, a right hemisphere (RH) process, and that the left hand may influence visual processing in a way that is distinct from the right hand. PMID:24194725

  16. Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study

    NASA Astrophysics Data System (ADS)

    Nagai, Shoko; Yamada, Kiho; Hirano, Akira; Ippommatsu, Masamichi; Ito, Masahiro; Morishima, Naoki; Aosaki, Ko; Honda, Yoshio; Amano, Hiroshi; Akasaki, Isamu

    2016-08-01

    To replace mercury lamps with AlGaN-based deep-ultraviolet (DUV) LEDs, a simple and low-cost package with increased light extraction efficiency (LEE) is indispensable. Therefore, resin encapsulation is considered to be a key technology. However, the photochemical reactions induced by DUV light cause serious problems, and conventional resins cannot be used. In the former part of this study, a comparison of a silicone resin and fluorine polymers was carried out in terms of their suitability for encapsulation, and we concluded that only one of the fluorine polymers can be used for encapsulation. In the latter part, the endurance of encapsulation using the selected fluorine polymer was investigated, and we confirmed that the selected fluorine polymer can guarantee a lifetime of over 6,000 h at a wavelength of 265 nm. Furthermore, a 3 × 4 array module of encapsulated dies on a simple AlN submount was fabricated, demonstrating the possibility of W/cm2-class lighting.

  17. A “Shallow Phylogeny” of Shallow Barnacles (Chthamalus)

    PubMed Central

    Wares, John P.; Pankey, M. Sabrina; Pitombo, Fabio; Daglio, Liza Gómez; Achituv, Yair

    2009-01-01

    Background We present a multi-locus phylogenetic analysis of the shallow water (high intertidal) barnacle genus Chthamalus, focusing on member species in the western hemisphere. Understanding the phylogeny of this group improves interpretation of classical ecological work on competition, distributional changes associated with climate change, and the morphological evolution of complex cirripede phenotypes. Methodology and Findings We use traditional and Bayesian phylogenetic and ‘deep coalescent’ approaches to identify a phylogeny that supports the monophyly of the mostly American ‘fissus group’ of Chthamalus, but that also supports a need for taxonomic revision of Chthamalus and Microeuraphia. Two deep phylogeographic breaks were also found within the range of two tropical American taxa (C. angustitergum and C. southwardorum) as well. Conclusions Our data, which include two novel gene regions for phylogenetic analysis of cirripedes, suggest that much more evaluation of the morphological evolutionary history and taxonomy of Chthamalid barnacles is necessary. These data and associated analyses also indicate that the radiation of species in the late Pliocene and Pleistocene was very rapid, and may provide new insights toward speciation via transient allopatry or ecological barriers. PMID:19440543

  18. Southern Ocean Deep-Convection as a Driver of Centennial-to-Millennial-Scale Climate Variability at Southern High Latitudes

    NASA Astrophysics Data System (ADS)

    Pedro, J. B.; Martin, T.; Steig, E. J.; Jochum, M.; Park, W.; Rasmussen, S.

    2015-12-01

    Antarctic Isotope Maxima (AIM) are centennial-to-millennial scale warming events observed in Antarctic ice core records from the last glacial period and deglaciation. Mounting evidence links AIM events to parallel variations in atmospheric CO2, Southern Ocean (SO) sea surface temperatures and Antarctic Bottom Water production. According to the prevailing view, AIM events are forced from the North Atlantic by melt-water discharge from ice sheets suppressing the production of North Atlantic Deep Water and associated northward heat transport in the Atlantic. However observations and model studies increasingly suggest that melt-water fluxes have the wrong timing to be invoked as such a trigger. Here, drawing on results form the Kiel Climate Model, we present an alternative hypothesis in which AIM events are forced via internal oscillations in SO deep-convection. The quasi-periodic timescale of deep-convection events is set by heat (buoyancy) accumulation at SO intermediate depths and stochastic variability in sea ice conditions and freshening at the surface. Massive heat release from the SO convective zone drives Antarctic and large-scale southern hemisphere warming via a two-stage process involving changes in the location of Southern Ocean fronts, in the strength and intensity of the Westerlies and in meridional ocean and atmospheric heat flux anomalies. The potential for AIM events to be driven by internal Southern Ocean processes and the identification of time-lags internal to the southern high latitudes challenges conventional views on the North Atlantic as the pacemaker of millennial-scale climate variability.

  19. Probing the inner core's African hemisphere boundary with P'P'

    NASA Astrophysics Data System (ADS)

    Day, Elizabeth; Ward, James; Bastow, Ian; Irving, Jessica

    2017-04-01

    Geophysical observations of the inner core today improve our understanding not just of the processes occurring in the core at the present, but also those that occurred in the past. As the inner core freezes it may record clues as to the state of the Earth at the time of growth; the texture in the inner core may also be modified through post-solidification deformation. The seismic structure of the inner core is not simple; the dominant pattern is one of anisotropic and isotropic differences between the Eastern and Western 'hemispheres' of the inner core. Additionally, there is evidence for an innermost inner core, layering of the uppermost inner core, and possibly super-rotation of the inner core relative to the mantle. Most body wave studies of inner core structure use PKP-PKIKP differential travel times to constrain velocity variations within the inner core. However, body wave studies are inherently limited by the geometry of seismic sources and stations, and thus there are some areas of the inner core that are relatively under-sampled, even in today's data-rich world. Here, we examine the differential travel times of the different branches of P'P' (PKIKPPKIKP, or P'P'df, and PKPPKP), comparing the arrival time of inner core turning branch P'P'df with the arrival times of branches that turn in the outer core. By using P'P' we are able to exploit different ray geometries and sample different regions of the inner core to those areas accessible to studies which utilize PKIKP. We use both linear and non-linear stacking methods to make observations of the small amplitude P'P' phases. We identify the three P'P' branches, as well as pre- and post-cursors to the main arrivals, which can cause confusion. To facilitate identifying each P'P' branch we make AxiSEM synthetics, carry out beamforming, and use bootstrapping to access the robustness of our observations, which focus on the inner core's hemisphere boundary beneath Africa. Our measurements match the broad scale hemispherical pattern of anisotropy in the inner core, but also show some small scale variations.

  20. [Physiological and hygienic assessment of the impact of mobile phones with various radiation intensity on the functional state of brain of children and adolescents according to electroencephalographic data].

    PubMed

    Vyatleva, O A; Teksheva, L M; Kurgansky, A M

    To test the effect of mobile phones (MP) of various radiation intensities on the functional state of the brain in children and adolescents, a sham-controlled EEG-study was conducted in a group of thirteen 6-13 years old children, including eight 6-10 years old children. The study showed that a 3-minute exposure to the MP causes the significant decline in alpha-band absolute power, which depends on the radiation intensity and the user’s age. Different from sham, an EEG-effect of MP with the energy flux density (EFD) about 100 mW/cm2 was registered both in total, and in a younger (6-10 yr) group. Its bilateral character, more prominent in the hemisphere that is ipsilateral to MP, indicates that this intensity of the radiation influences not only the superficial cortical areas of the ipsilateral hemisphere, but also the deep structures of the brain. MP with the EFD less than 1 mW/cm2 differed from sham by EEG-effect only in the group of children who are 6-10 years old. Its local, ipsilateral character indicates to the superficial influence of such intensity of the radiation on the cortex of the ipsilateral hemisphere. The results show that for the regulation of MP-radiation it’s necessary to consider age features of the brain’s response. The high significance of the EFD, as an index in the assessment of the impact of MP on the EEG of children, is shown. Since almost all schoolchildren are the users of mobile phones, the situation with the valuation of MP-effects on children of various ages, requires hygienic solution.

  1. Impacts of polar ice sheets on the East Asian monsoon during the MIS-13 interglacial

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Yin, Qiuzhen; Nikolova, Irina; Guo, Zhengtang; Berger, Andre

    2017-04-01

    Among all the interglacials of the last one million years, Marine Isotope Stage (MIS) 13 has the highest δ18O value over the past 800 ka in the deep-sea sediments. This would indicate that MIS-13 is the coolest interglacial if assuming δ18O mainly represents global ice volume. The Antarctic ice core records show also that MIS-13 is the coolest interglacial over Antarctica with almost the lowest greenhouse gases concentrations (GHG). However, many proxy records from the northern hemisphere (NH) indicate that MIS-13 is at least as warm as or even warmer than the recent interglacials, with extremely strong summer monsoon and a possible melting of Greenland ice sheet. In this study, based on proxy reconstructions, different scenarios regarding the size of the Greenland and Antarctic ice sheets are made, and the response of the East Asian summer monsoon to these scenarios are tested by using the models HadCM3 and LOVECLIM as well as factor separation analysis and under the astronomical and GHG configurations of MIS-13. The results show that the influence of the disappearance of Greenland ice sheet on the surface temperature is quite localized, mainly over the northern high latitudinal regions, however, the influence of the bigger southern Hemisphere (SH) ice sheet on the surface temperature is very global, especially in the southern hemisphere. This ice sheet condition has an impact on the precipitation pattern over tropical-subtropical regions. It causes much more summer precipitation over all the East Asian monsoon region, in consistent with the paleosol record from southern China. The scenario of melted Greenland ice sheet and of larger SH ice sheets provides one of the explanations of the strong monsoon rainfall documented by the proxy data.

  2. Accuracy and Precision in the Southern Hemisphere Additional Ozonesondes (SHADOZ) Dataset 1998-2000 in Light of the JOSIE-2000 Results

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, A. M.; Schmidlin, F. J.; Oltmans, S. J.; McPeters, R. D.; Smit, H. G. J.

    2003-01-01

    A network of 12 southern hemisphere tropical and subtropical stations in the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has provided over 2000 profiles of stratospheric and tropospheric ozone since 1998. Balloon-borne electrochemical concentration cell (ECC) ozonesondes are used with standard radiosondes for pressure, temperature and relative humidity measurements. The archived data are available at:http: //croc.gsfc.nasa.gov/shadoz. In Thompson et al., accuracies and imprecisions in the SHADOZ 1998- 2000 dataset were examined using ground-based instruments and the TOMS total ozone measurement (version 7) as references. Small variations in ozonesonde technique introduced possible biases from station-to-station. SHADOZ total ozone column amounts are now compared to version 8 TOMS; discrepancies between the two datasets are reduced 2\\% on average. An evaluation of ozone variations among the stations is made using the results of a series of chamber simulations of ozone launches (JOSIE-2000, Juelich Ozonesonde Intercomparison Experiment) in which a standard reference ozone instrument was employed with the various sonde techniques used in SHADOZ. A number of variations in SHADOZ ozone data are explained when differences in solution strength, data processing and instrument type (manufacturer) are taken into account.

  3. The benefit of image guidance for the contralateral interhemispheric approach to the lateral ventricle.

    PubMed

    Fronda, Chiara; Miller, Dorothea; Kappus, Christoph; Bertalanffy, Helmut; Sure, Ulrich

    2008-06-01

    Recently, neurosurgeons have increasingly faced small intracerebral lesions in asymptomatic or minimally symptomatic patients. Here, we evaluated a series of four patients with nearly asymptomatic intraventricular tumors close to the corpus callosum that had been treated with the aid of an image-guided transcallosal approach. Four consecutive patients suffering from left intra- and paraventricular tumors were operated on via a contralateral interhemispheric transcallosal approach with the aid of neuronavigation. Our image-guided system directed: (1) the skin incision, (2) the interhemispheric dissection, and (3) the incision of the corpus callosum. Using the image-guided contralateral interhemispheric transcallosal approach to the left ventricle all lesions have been completely resected without the risk of damage to the dominant hemisphere. The callosal incision was kept as limited as possible (1.2-2.1cm) depending on the size of the tumor. No postoperative neurological or neuropsychological deficit was observed in our series. Neuronavigation facilitates a safe and targeted contralateral interhemispheric transcallosal approach to the dominant hemisphere's lateral ventricle. Our technique minimizes the risk of damage to the dominant hemisphere and requires only a limited opening of the corpus callosum, which might decrease the risk of neuropsychological morbidity.

  4. Impact of Audio-Visual Asynchrony on Lip-Reading Effects -Neuromagnetic and Psychophysical Study-

    PubMed Central

    Yahata, Izumi; Kanno, Akitake; Sakamoto, Shuichi; Takanashi, Yoshitaka; Takata, Shiho; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio

    2016-01-01

    The effects of asynchrony between audio and visual (A/V) stimuli on the N100m responses of magnetoencephalography in the left hemisphere were compared with those on the psychophysical responses in 11 participants. The latency and amplitude of N100m were significantly shortened and reduced in the left hemisphere by the presentation of visual speech as long as the temporal asynchrony between A/V stimuli was within 100 ms, but were not significantly affected with audio lags of -500 and +500 ms. However, some small effects were still preserved on average with audio lags of 500 ms, suggesting similar asymmetry of the temporal window to that observed in psychophysical measurements, which tended to be more robust (wider) for audio lags; i.e., the pattern of visual-speech effects as a function of A/V lag observed in the N100m in the left hemisphere grossly resembled that in psychophysical measurements on average, although the individual responses were somewhat varied. The present results suggest that the basic configuration of the temporal window of visual effects on auditory-speech perception could be observed from the early auditory processing stage. PMID:28030631

  5. Evidence for a Southern Pattern of Deglacial Surface Warming in the Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Spero, H. J.; Schmidt, M. W.; Lea, D. W.; Lavagnino, L.

    2009-12-01

    The timing of both Southern and Northern hemisphere warming patterns has been used to explain tropical Pacific warming at the end of the last glacial period. Despite the importance of resolving this deglacial tropical-polar connection, the controversy is still ongoing (Koutavas & Sachs, 2008; Lea et al., 2000, 2006). For instance, the initiation of eastern equatorial Pacific (EEP) surface warming, derived from Mg/Ca analyses of the surface-dwelling foraminifera Globigerinoides ruber, shows a clear correlation with the Southern hemisphere. In contrast, alkenone-derived temperatures from the EEP indicate tropical warming occurred at least 3 kyr later than that implied from Mg/Ca data, thereby suggesting a Northern hemisphere link to initial SST rise. Here, we use a multispecies, multiproxy approach that is based on fundamental foraminifera biology to resolve this controversy. Laboratory experiments demonstrate the final shell size of symbiont-bearing foraminifera varies primarily as a function of the light level (=symbiont photosynthetic rate) that an individual grew under. Because light decreases exponentially in the water column, and the EEP is highly stratified with a shallow mixed layer and cold thermocline, we hypothesize that symbiotic foraminifera with a broad habitat range such as Globigerinoides sacculifer, should produce smaller shells in the more dimly lit cold thermocline than individuals growing in the more illuminated mixed layer. Moreover, these larger shells should contain a temperature signal that is similar to G. ruber, which is constrained to the shallow mixed layer. Mg/Ca and δ18O analyses conducted on 350-400 μm and >650 μm sized G. sacculifer from EEP core TR163-19 (2N, 91W, 2348) demonstrate large specimens yield Mg/Ca and δ18O that are similar to data published previously for mixed layer dwelling G. ruber. In contrast, small G. sacculifer record significantly higher δ18O and lower Mg/Ca temperatures that are consistent with a shallow thermocline habitat. More important, the timing of warming for the large G. sacculifer is similar to that of G. ruber, whereas thermocline temperatures recorded by small G. sacculifer increase nearly 3 kyr later, in close agreement with alkenone temperature change. These results link EEP surface warming to the Southern hemisphere and suggest that 1) early deglacial alkenone data are recording thermocline rather than mixed layer temperatures and 2) EEP thermocline temperature increase is more closely linked to Northern, rather than Southern hemisphere dynamics.

  6. Cerebral Asymmetries in the Processing of Dichotic Materials as a Function of Sex, Handedness, and Instructions.

    ERIC Educational Resources Information Center

    Iaccino, James F.; Sowa, Stephen J.

    Since past studies have shown that females as well as left-handers do not demonstrate a right-ear advantage for verbal materials, suggesting that linguistic functions may not be handled in the left hemisphere exclusively, a study was conducted to examine these laterality effects more closely. Subjects, 24 undergraduate students at a small college…

  7. The Development of Global and Local Processing: A Comparison of Children to Adults

    ERIC Educational Resources Information Center

    Peterson, Eric; Peterson, Robin L.

    2014-01-01

    In light of the adult model of a hemispheric asymmetry of global and local processing, we compared children (M [subscript age] = 8.4 years) to adults in a global-local reaction time (RT) paradigm. Hierarchical designs (large shapes made of small shapes) were presented randomly to each visual field, and participants were instructed to identify…

  8. Influence of Continental Geometry on the Onset and Spatial Distribution of Monsoonal Precipitation

    NASA Astrophysics Data System (ADS)

    Hui, K. L.; Bordoni, S.

    2017-12-01

    Recent studies have shown that the rapid onset of the monsoon is due to a switch between a dynamical regime where the tropical circulation strength is controlled by eddy momentum fluxes, to a monsoon regime where the strength is more directly controlled by energetic constraints, which causes the monsoonal cross-equatorial cell to grow rapidly in strength and extent. While it is now widely accepted that land-sea contrast is not necessary to generate monsoons, the spatial distribution of land can still affect important features of monsoons. This study focuses on the influence of continental geometry on the monsoonal precipitation. We use an idealized aquaplanet model with a slab ocean, where land and ocean differ only by the mixed-layer depth of the slab ocean, which is two orders of magnitude smaller over land than over ocean. The model is run with different zonally symmetric configurations of Northern Hemispheric land that extends poleward from southern boundaries at various latitudes. Simulations with a continent extending to tropical latitudes are able to reproduce the monsoonal precipitation distribution and rapid onset well. For continents with more poleward southern boundaries and weaker hemispheric asymmetry, the main precipitation zone remains over the ocean, moving gradually into the summer hemisphere. A local maximum in precipitation forms over the continent even when the continent does not extend into the deeper tropics, but this is primarily associated with local recycling from the saturated surface rather than moisture flux convergence by a deep and broad monsoonal circulation. Further analysis shows that a decrease in hemispheric asymmetry prevents the establishment of a reversed meridional gradient in lower-level moist static energy and, with it, a poleward displaced convergence zone. This suggests that in order to have the rapid onset of monsoonal precipitation, tropical regions of low thermal inertia may be necessary to facilitate the transition of the tropical circulation to a dynamical regime that restricts the degree to which eddy momentum fluxes influence the circulation strength and allows the cell the grow rapidly in strength and poleward extent. These results provide some useful insights for developing theories to better understand the mechanisms of rapid onset of monsoon systems worldwide.

  9. Does navigated transcranial stimulation increase the accuracy of tractography? A prospective clinical trial based on intraoperative motor evoked potential monitoring during deep brain stimulation.

    PubMed

    Forster, Marie-Therese; Hoecker, Alexander Claudius; Kang, Jun-Suk; Quick, Johanna; Seifert, Volker; Hattingen, Elke; Hilker, Rüdiger; Weise, Lutz Martin

    2015-06-01

    Tractography based on diffusion tensor imaging has become a popular tool for delineating white matter tracts for neurosurgical procedures. To explore whether navigated transcranial magnetic stimulation (nTMS) might increase the accuracy of fiber tracking. Tractography was performed according to both anatomic delineation of the motor cortex (n = 14) and nTMS results (n = 9). After implantation of the definitive electrode, stimulation via the electrode was performed, defining a stimulation threshold for eliciting motor evoked potentials recorded during deep brain stimulation surgery. Others have shown that of arm and leg muscles. This threshold was correlated with the shortest distance between the active electrode contact and both fiber tracks. Results were evaluated by correlation to motor evoked potential monitoring during deep brain stimulation, a surgical procedure causing hardly any brain shift. Distances to fiber tracks clearly correlated with motor evoked potential thresholds. Tracks based on nTMS had a higher predictive value than tracks based on anatomic motor cortex definition (P < .001 and P = .005, respectively). However, target site, hemisphere, and active electrode contact did not influence this correlation. The implementation of tractography based on nTMS increases the accuracy of fiber tracking. Moreover, this combination of methods has the potential to become a supplemental tool for guiding electrode implantation.

  10. Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes

    NASA Astrophysics Data System (ADS)

    Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.

    2016-09-01

    The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (<1000 m) between 15° and ˜32°S, largely related to a weakening of the wind stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.

  11. Structure of the Outer Cusp and Sources of the Cusp Precipitation during Intervals of a Horizontal IMF

    NASA Technical Reports Server (NTRS)

    Berchem, Jean; Nemecek, Z.; Safrankova, J.; Prech, L.; Simunek, J.; Sauvaud, J.-A.; Fedorov, A.; Stenuit, H.; Fuselier, S. A.; Savin, S.; hide

    2003-01-01

    The cusp represents a place where the magnetosheath plasma can directly penetrate into the magnetosphere. Since the main transport processes are connected with merging of the interplanetary and magnetospheric field lines: the interplanetary magnetic field (IMF) Orientation plays a decisive role in the formation of the high-altitude cusp. The importance of the sign of the IMF B(sub Z) component for this process was suggested about 40 years ago and later it was documented by many experimental investigations. However, situations when IMF Bz is the major IMF component are rather rare. The structure of the cusp during periods of a small IMF B(sub Z) is generally unknown, probably due to the fully 3-D nature of the interaction. The present case study reveals the importance of horizontal IMF components on the global magnetospheric configuration as well as on small-scale processes at the cusp-magnetosheath interface. We have used simultaneous measurements of several spacecraft (ISTP program) operating in different regions of interplanetary space and two closely spaced satellites (INTERBALL-1/MAGION-4) crossing the cusp-magnetosheath boundary to show the connection between the short- and large-scale phenomena. In the northern hemisphere, observations suggest a presence of two spots of cusp-like precipitation supplied by reconnection occurring simultaneously in both hemispheres. A source of this bifurcation is the positive IMF B(sub y) component further enhanced by the field draping in the magnetosheath. This magnetic field component shifts the entry point far away from the local noon but in opposite sense in either hemisphere. The cusp represents a place where the magnetosheath plasma can directly

  12. Central and regional hemodynamics in prolonged space flights

    NASA Astrophysics Data System (ADS)

    Gazenko, O. G.; Shulzhenko, E. B.; Turchaninova, V. F.; Egorov, A. D.

    This paper presents the results of measuring central and regional (head, forearm, calf) hemodynamics at rest and during provocative tests by the method of tetrapolar rheography in the course of Salyut-6-Soyuz and Salyut-7-Soyuz missions. The measurements were carried out during short-term (19 man-flights of 7 days in duration) and long-term (21 man-flights of 65-237 days in duration) manned missions. At rest, stroke volume (SV) and cardiac output (CO) as well as heart rate (HR) decreased insignificantly (in short-term flights) or remained essentially unchanged (in long-term flights). In prolonged flights CO increased significantly in response to exercise tests due to an increase in HR and the lack of changes in SV. After exercise tests SV and CO decreased as compared to the preflight level. During lower body negative pressure (LBNP) tests HR and CO were slightly higher than preflight. Changes in regional hemodynamics included a distinct decrease of pulse blood filling (PBF) of the calf, a reduction of the tone of large vessels of the calf and small vessels of the forearm. Head examination (in the region of the internal carotid artery) showed a decrease of PBF of the left hemisphere (during flight months 2-8) and a distinct decline of the tone of small vessels, mainly, in the right hemisphere. During LBNP tests the tone of pre- and postcapillary vessels of the brain returned to normal while PBF of the right and left hemisphere vessels declined. It has been shown that regional circulation variations depend on the area examined and are induced by a rearrangement of total hemodynamics of the human body in microgravity. This paper reviews the data concerning changes in central and regional circulation of men in space flights of different duration.

  13. Inter-hemispheric functional connectivity disruption in children with prenatal alcohol exposure

    PubMed Central

    Wozniak, Jeffrey R.; Mueller, Bryon A.; Muetzel, Ryan L.; Bell, Christopher J.; Hoecker, Heather L.; Nelson, Miranda L.; Chang, Pi-Nian; Lim, Kelvin O.

    2010-01-01

    Background MRI studies, including recent diffusion tensor imaging (DTI) studies, have shown corpus callosum abnormalities in children prenatally exposed to alcohol, especially in the posterior regions. These abnormalities appear across the range of Fetal Alcohol Spectrum Disorders (FASD). Several studies have demonstrated cognitive correlates of callosal abnormalities in FASD including deficits in visual-motor skill, verbal learning, and executive functioning. The goal of this study was to determine if inter-hemispheric structural connectivity abnormalities in FASD are associated with disrupted inter-hemispheric functional connectivity and disrupted cognition. Methods Twenty-one children with FASD and 23 matched controls underwent a six minute resting-state functional MRI scan as well as anatomical imaging and DTI. Using a semiautomated method, we parsed the corpus callosum and delineated seven inter-hemispheric white matter tracts with DTI tractography. Cortical regions of interest (ROIs) at the distal ends of these tracts were identified. Right-left correlations in resting fMRI signal were computed for these sets of ROIs and group comparisons were done. Correlations with facial dysmorphology, cognition, and DTI measures were computed. Results A significant group difference in inter-hemispheric functional connectivity was seen in a posterior set of ROIs, the para-central region. Children with FASD had functional connectivity that was 12% lower than controls in this region. Sub-group analyses were not possible due to small sample size, but the data suggest that there were effects across the FASD spectrum. No significant association with facial dysmorphology was found. Para-central functional connectivity was significantly correlated with DTI mean diffusivity, a measure of microstructural integrity, in posterior callosal tracts in controls but not in FASD. Significant correlations were seen between these structural and functional measures and Wechsler perceptual reasoning ability. Conclusions Inter-hemispheric functional connectivity disturbances were observed in children with FASD relative to controls. The disruption was measured in medial parietal regions (para-central) that are connected by posterior callosal fiber projections. We have previously shown microstructural abnormalities in these same posterior callosal regions and the current study suggests a possible relationship between the two. These measures have clinical relevance as they are associated with cognitive functioning. PMID:21303384

  14. The Asian monsoon's role in atmospheric heat transport responses to orbital and millennial-scale climate change

    NASA Astrophysics Data System (ADS)

    McGee, D.; Green, B.; Donohoe, A.; Marshall, J.

    2015-12-01

    Recent studies have provided a framework for understanding the zonal-mean position of the tropical rain belt by documenting relationships between rain belt latitude and atmospheric heat transport across the equator (Donohoe et al., 2013). Modern seasonal and interannual variability in globally-averaged rain belt position (often referred to as 'ITCZ position') reflects the interhemispheric heat balance, with the rain belt's displacement toward the warmer hemisphere directly proportional to atmospheric heat transport into the cooler hemisphere. Model simulations suggest that rain belt shifts are likely to have obeyed the same relationship with interhemispheric heat transport in response to past changes in orbital parameters, ice sheets, and ocean circulation. This relationship implies that even small (±1 degree) shifts in the mean rain belt require large changes in hemispheric heat budgets, placing tight bounds on mean rain belt shifts in past climates. This work has primarily viewed tropical circulation in two dimensions, as a pair of zonal-mean Hadley cells on either side of the rain belt that are displaced north and south by perturbations in hemispheric energy budgets, causing the atmosphere to transport heat into the cooler hemisphere. Here we attempt to move beyond this zonal-mean perspective, motivated by arguments that the Asian monsoon system, rather than the zonal-mean circulation, plays the dominant role in annual-mean heat transport into the southern hemisphere in the modern climate (Heaviside and Czaja, 2012; Marshall et al., 2014). We explore a range of climate change experiments, including simulations of North Atlantic cooling and mid-Holocene climate, to test whether changes in interhemispheric atmospheric heat transport are primarily driven by the mean Hadley circulation, the Asian monsoon system, or other regional-scale atmospheric circulation changes. The scalings that this work identifies between Asian monsoon changes and atmospheric heat transport help to provide quantitative insights into Asian monsoon variability in past climates. References cited: Donohoe, A. et al., (2013) Journal of Climate 26, 3597-3618. Heaviside, C. and Czaja, A. (2012) Quart. J. Royal Met. Soc. 139, 2181-2189. Marshall, J. et al., (2014) Climate Dynamics 42, 1967-1979.

  15. Seismic velocity and attenuation structures in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Che

    2007-12-01

    I study seismic velocity and attenuation structures in the top 400 km of the Earth's inner core along equatorial paths, velocity-attenuation relationship, and seismic anisotropy in the top of the inner core beneath Africa. Seismic observations exhibit "east-west" hemispheric differences in seismic velocity, attenuation, and anisotropy. Joint modeling of the PKiKP-PKIKP and PKPbc-PKIKP phases is used to constrain seismic velocity and attenuation structures in the top 400 km of the inner core for the eastern and western hemispheres. The velocity and attenuation models for the western hemisphere are simple, having a constant velocity gradient and a Q value of 600 in the top 400 km of the inner core. The velocity and attenuation models for the eastern hemisphere appear complex. The velocity model for the eastern hemisphere has a small velocity gradient in the top 235 km, a steeper velocity gradient at the depth range of 235 - 375 km, and a gradient similar to PREM in the deeper portion of the inner core. The attenuation model for the eastern hemisphere has a Q value of 300 in the top 300 km and a Q value of 600 in the deeper portion of the inner core. The study of velocity-attenuation relationship reveals that inner core is anisotropic in both velocity and attenuation, and the direction of high attenuation corresponding to that of high velocity. I hypothesize that the hexagonal close packed (hcp) iron crystal is anisotropic in attenuation, with the axis of high attenuation corresponding to that of high velocity. Anisotropy in the top of the inner core beneath Africa is complex. Beneath eastern Africa, the thickness of the isotropic upper inner core is about 0 km. Beneath central and western Africa, the thickness of the isotropic upper inner core increases from 20 to 50 km. The velocity increase across the isotropic upper inner core and anisotropic lower inner core boundary is sharp, laterally varying from 1.6% - 2.2%. The attenuation model has a Q value of 600 for the isotropic upper inner core and 150 to 400 for the anisotropic lower inner core.

  16. Comprehensive discovery of noncoding RNAs in acute myeloid leukemia cell transcriptomes.

    PubMed

    Zhang, Jin; Griffith, Malachi; Miller, Christopher A; Griffith, Obi L; Spencer, David H; Walker, Jason R; Magrini, Vincent; McGrath, Sean D; Ly, Amy; Helton, Nichole M; Trissal, Maria; Link, Daniel C; Dang, Ha X; Larson, David E; Kulkarni, Shashikant; Cordes, Matthew G; Fronick, Catrina C; Fulton, Robert S; Klco, Jeffery M; Mardis, Elaine R; Ley, Timothy J; Wilson, Richard K; Maher, Christopher A

    2017-11-01

    To detect diverse and novel RNA species comprehensively, we compared deep small RNA and RNA sequencing (RNA-seq) methods applied to a primary acute myeloid leukemia (AML) sample. We were able to discover previously unannotated small RNAs using deep sequencing of a library method using broader insert size selection. We analyzed the long noncoding RNA (lncRNA) landscape in AML by comparing deep sequencing from multiple RNA-seq library construction methods for the sample that we studied and then integrating RNA-seq data from 179 AML cases. This identified lncRNAs that are completely novel, differentially expressed, and associated with specific AML subtypes. Our study revealed the complexity of the noncoding RNA transcriptome through a combined strategy of strand-specific small RNA and total RNA-seq. This dataset will serve as an invaluable resource for future RNA-based analyses. Copyright © 2017 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  17. The Effect of Uni- and Bilateral Thalamic Deep Brain Stimulation on Speech in Patients With Essential Tremor: Acoustics and Intelligibility.

    PubMed

    Becker, Johannes; Barbe, Michael T; Hartinger, Mariam; Dembek, Till A; Pochmann, Jil; Wirths, Jochen; Allert, Niels; Mücke, Doris; Hermes, Anne; Meister, Ingo G; Visser-Vandewalle, Veerle; Grice, Martine; Timmermann, Lars

    2017-04-01

    Deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM) is performed to suppress medically-resistant essential tremor (ET). However, stimulation induced dysarthria (SID) is a common side effect, limiting the extent to which tremor can be suppressed. To date, the exact pathogenesis of SID in VIM-DBS treated ET patients is unknown. We investigate the effect of inactivated, uni- and bilateral VIM-DBS on speech production in patients with ET. We employ acoustic measures, tempo, and intelligibility ratings and patient's self-estimated speech to quantify SID, with a focus on comparing bilateral to unilateral stimulation effects and the effect of electrode position on speech. Sixteen German ET patients participated in this study. Each patient was acoustically recorded with DBS-off, unilateral-right-hemispheric-DBS-on, unilateral-left-hemispheric-DBS-on, and bilateral-DBS-on during an oral diadochokinesis task and a read German standard text. To capture the extent of speech impairment, we measured syllable duration and intensity ratio during the DDK task. Naïve listeners rated speech tempo and speech intelligibility of the read text on a 5-point-scale. Patients had to rate their "ability to speak". We found an effect of bilateral compared to unilateral and inactivated stimulation on syllable durations and intensity ratio, as well as on external intelligibility ratings and patients' VAS scores. Additionally, VAS scores are associated with more laterally located active contacts. For speech ratings, we found an effect of syllable duration such that tempo and intelligibility was rated worse for speakers exhibiting greater syllable durations. Our data confirms that SID is more pronounced under bilateral compared to unilateral stimulation. Laterally located electrodes are associated with more severe SID according to patient's self-ratings. We can confirm the relation between diadochokinetic rate and SID in that listener's tempo and intelligibility ratings can be predicted by measured syllable durations from DDK tasks. © 2017 International Neuromodulation Society.

  18. Jupiter's Northern Hemisphere in False Color (Time Set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.

    This mosaic uses the Galileo imaging camera's three near-infrared wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. The clouds and haze over the ovals are high, extending into Jupiter's stratosphere. Dark purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. Reactivity measurements using the Zolotukhin-Mogilner Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-07-01

    The zero count probability method (also called Zolotukhin-Mogilner Method, after its inventors) is a method for measuring the reactivity in nuclear reactors, being a competitor of the [more well-known in the West] Feynman-alpha Method and the Rossi-alpha Method. The modus operandi of this method is using the detector channels where there was no counting at all in order to calculate reactor parameters. In deep subcriticality few models have been tested and this work tries out the Zolotukhin-Mogilner Method in one of such scenarios: measurements will be made in environments below -3,5 k pcm in the zero-potency water-moderated reactor IPEN/MB-01 whichmore » is fuelled by UO{sub 2} enriched by 4.3%. These extremely low reactivity environments are required because the chance of no counts on the detector must be significant: otherwise, the method would demand a large time of acquisition of data. Besides that, the method is very simple and straightforward. One of the advantages of this method is that it needs very little data reduction, since the essential data is directly given by the measuring apparatus. The detection will be in charge of modern BF{sub 3} detectors. It will be assumed that, in these deep subcritical systems, the function K{sub eff} = f(N-Nkp) has a linear portion in its first part, resulting of the decomposition of it in a Taylor series. The value of alpha is related to the reactivity ρ with linear dependency. The results will be compared with recent studies of the two main methods described above. Presented for the first time in the 60's, this tool has seen little use in the west hemisphere. This work shows its use in the measurements of the nuclear reactor IPEN/MB-01, as well as the code developed for its employment. It will be the first time this method is used in the south hemisphere. (authors)« less

  20. Late Quaternary Palaeoceanographic Changes in Sea Surface Conditions in the Tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Fischel, Andrea; Seidenkrantz, Marit-Solveig; Kuijpers, Antoon; Nürnberg, Dirk

    2013-04-01

    Palaeoceanographic changes and the variability in surface water mass hydrography are reconstructed in order to track tropical ocean and climate variability and inter-hemispheric heat exchange through the last 42,000 year BP. Our studies are based on the relative abundance of planktonic foraminifera combined with sea surface temperature approximation based Mg/Ca measurements, XRF scanning and stable oxygen isotope analyses in a 5 m long gravity core Ga307-Win-12GC (17°50.80N, 64°48.7290W), retrieved in the Virgin Island Basin in approx. 3,960 m water depth. The Virgin Island Basin is the deepest part of the Anegada-Jungfern Passage in the northeast Caribbean, one of the most important pathways for water mass exchange between the Central Atlantic and the Caribbean Sea. Due to its bathymetry surface waters as well as deep water mass strata from the northern and southern hemisphere enter the basin, comprising Caribbean Surface Water (CSW), Antarctic Intermediate Water (AAIW), Atlantic Intermediate Water (AIW) and North Atlantic Deep Water (NADW). The planktonic foraminiferal assemblage suggests rather stable sea-surface conditions during the Holocene in the NE Caribbean. However, major changes in the hydrographic setting could be identified within the glacial period. During the glacial period, clear millennial-scale variability in sea-surface temperature and productivity are present. Fluctuations in the relative abundance of Globigerinoides ruber in the sediment core may be correlated to Dansgaard-Oeschger events in the northern North Atlantic. Furthermore an increase in relative abundance of Globorotalia rubescens occurs synchronous with ice rafted debris layers described from the North Atlantic. The faunal changes in the tropical Atlantic may thus be correlated to major climate changes in the North Atlantic, mainly D-O cyclicity as well as Heinrich events. Thus, the synchronous change in water mass distribution and hydrographic cyclicity suggests a possible linkage between tropical and North Atlantic Ocean variability during the Late Quaternary.

  1. Jupiter's Northern Hemisphere in False Color (Time Set 2)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.

    This mosaic uses the Galileo imaging camera's three near-infrared wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. The clouds and haze over the ovals are high, extending into Jupiter's stratosphere. Dark purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

    North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  2. [Effects of unified surgical scheme for wounds on the treatment outcome of patients with extensive deep burn].

    PubMed

    Tang, Wenbin; Li, Xiaojian; Deng, Zhongyuan; Zhang, Zhi; Zhang, Xuhui; Zhang, Tao; Zhong, Xiaomin; Chen, Bin; Liu, Changling

    2015-08-01

    To investigate the effects of unified surgical scheme for wounds on the outcome of patients with extensive deep partial-thickness to full-thickness (briefly referred to as deep) burn. One hundred and thirty-seven patients with extensive deep burn hospitalized from July 2007 to November 2012 underwent unified surgery according to area of deep wound (unified scheme group, US). Among them, 57 patients with deep wound area less than 51% TBSA received escharectomy or tangential excision by stages followed by autologous mesh skin grafting; 52 patients with deep wound area from 51% to 80% TBSA underwent escharectomy or tangential excision by stages followed by autologous mesh skin grafting and/or small skin grafting, or escharectomy or tangential excision followed by large sheet of allogeneic skin covering plus autologous mesh skin grafting and/or small skin grafting after the removal of allogeneic skin; 28 patients with deep wound area larger than 80% TBSA received escharectomy or tangential excision by stages followed by autologous microskin grafting plus coverage of large sheet of allogeneic skin, or escharectomy or tangential excision followed by small autologous skin grafting and/or intermingled grafting with small autologous and/or allogeneic skin. Another 120 patients with extensive deep burn hospitalized from January 2002 to June 2007 who did not receive unified surgical scheme were included as control group (C). Except for the surgical methods in group US, in 53 patients with deep wound area less than 51% TBSA in group C escharectomy or tangential excision was performed followed by autologous small skin grafting; in 40 patients with deep wound area from 51% to 80% TBSA in group C escharectomy or tangential excision was performed followed by autologous microskin grafting plus large sheet of allogeneic skin covering, or escharectomy or tangential excision followed by large sheet of allogeneic skin embedded with stamp-like autologous skin; in 27 patients with deep wound area larger than 80% TBSA in group C escharectomy or tangential excision was performed followed by covering with large sheet of allogeneic skin embedded with stamp-like autologous skin without intermingled grafting with small autologous and allogeneic skin in group US. In group US, escharectomy of full-thickness wound in extremities was performed with the use of tourniquet in every patient; saline containing adrenaline was subcutaneously injected when performing escharectomy or tangential excision over the trunk and skin excision; normal skin and healed superficial-thickness wound were used as donor sites for several times of skin excision. The baseline condition of patients and their treatment in the aspects of fluid resuscitation, nutrition support, anti-inflammation, and organ function support were similar between the two groups. The mortality and incidence of complications of all patients and wound healing time and times of surgery of healed patients were compared between the two groups. Data were processed with independent sample t test, Mann-Whitney U test, and Fisher's exact test. (1) Both the mortality and the incidence of complications of patients with deep wound area less than 51% TBSA in group US were 0, which were close to those of group C (with P values above 0.05). The number of times of surgery of healed patients with deep wound area less than 51% TBSA in group US was 2.4 ± 0.9, which was obviously fewer than that of group C (3.5 ± 1.8, U=-5.085, P<0.001), but with wound healing time close to that of group C (U=-1.480, P>0.05). (2) Both the mortality and the incidence of complications of patients with deep wound area from 51% to 80% TBSA in group US were 0, which were significantly lower than those of group C [both as 20.0% (8/40), with P values below 0.01]. The number of times of surgery and wound healing time of healed patients with deep wound area from 51% to 80% TBSA in group US were respectively 3.0 ± 1.0 and (43 ± 13) d, which were obviously fewer or shorter than those in group C [4.2 ± 2.3 and (61 ± 34) d, with U values respectively -2.491 and -2.186, P values below 0.05]. (3) Both the mortality and the incidence of complications of patients with deep wound area larger than 80% TBSA in group US were 25.0% (7/28), which were close to those of group C [both as 25.9% (7/27), with P values above 0.05]. The number of times of surgery and wound healing time of healed patients with deep wound area larger than 80% TBSA in group US were close to those of group C (with U values respectively -0.276 and -0.369, P values above 0.05). Unified surgical scheme can indirectly decrease the mortality and the incidence of complications of burn patients with deep wound area from 51% to 80% TBSA; it can reduce times of surgery of healed patients of this type and shorten their wound healing time.

  3. Observational constraints on the global atmospheric CO2 budget

    NASA Technical Reports Server (NTRS)

    Tans, Pieter P.; Fung, Inez Y.; Takahashi, Taro

    1990-01-01

    Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.

  4. [Application of BaSO4 diffuser plate in 250-400 nm spectral radiance calibration].

    PubMed

    Jia, Hui; Li, Fu-tian

    2004-01-01

    Sprayed BaSO4 diffuser plate is the most Lambertian surface actually used in spectral radiance calibration known by now. Its hemispheric reflectance and Bi-directional Reflectance Distribution Functions (BRDF) were measured in the experiment. Its diffuse characteristics were compared with Lambertian surface. In order to calibrate spectral radiance more accurately, the small variation of diffuser's BRDF with scattered angles and the nonuniformity of spectral irradiance on diffuser surface illuminated by the standard lamp should be considered. By integrating the radiation flux reflected by the element area and that entering the entrance slit within the viewing area of spectrometer, the measured spectral radiance can be calculated. Furthermore, the spectral radiance of Lambertian surface whose BRDF was derived from hemispheric reflectance was compared with that from the average of the measured BRDF.

  5. Our Human Journey to Mars - The Next Steps

    NASA Technical Reports Server (NTRS)

    Singer, Jody

    2016-01-01

    The United States National Aeronautics and Space Administration (NASA) will be launching the super-heavy-lift Space Launch System (SLS) by the end of the decade. This launch marks the next steps of human exploration of Mars and continues the journey that began over 50 years ago with Mariner and most recently ExoMars. SLS is the only rocket with the power capable of sending humans to deep space and the large systems necessary for human exploration all the way to Mars. Exploration Mission (EM)-1 will be the first integrated flight of the SLS rocket and Orion spacecraft - journeying farther into space than Apollo. NASA will also expand the science and exploration capability of SLS by deploying thirteen small satellites into deep space for the first time. These small satellites, created through partnerships with small businesses, Universities and international partners, will carry out various scientific missions to better understand our universe and the challenges of living and working in deep space. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also for payload accommodations, ground processing and on-orbit operations. The results of this mission will validate capabilities for sending explorers to Mars and create the opportunity to pioneer solutions to challenges to deep space exploration. SLS's versatile design will evolve for future exploration needs and accommodate bigger payloads, such as large aperture telescopes for scientific research or manned human deep space exploration missions to Mars. The achievement of EM-1 will demonstrate NASA's commitment and capability to extend human existence to deep space and inspire the world to pursue greatness in the exploration of our universe.

  6. Efficacy of deep biopsy for subepithelial lesions in the upper gastrointestinal tract.

    PubMed

    Vaicekauskas, Rolandas; Stanaitis, Juozas; Valantinas, Jonas

    2016-01-01

    Accurate diagnosis of subepithelial lesions (SELs) in the gastrointestinal tract depends on a variety of methods: endoscopy, endoscopic ultrasound and different types of biopsy. Making an error-free diagnosis is vital for the subsequent application of an appropriate treatment. To evaluate the efficacy of deep biopsy via the endoscopic submucosal dissection (ESD) technique for SELs in the upper gastrointestinal tract. It was a case series study. Deep biopsy via the ESD technique was completed in 38 patients between November 2012 and October 2014. Thirty-eight SELs in the upper gastrointestinal tract of varying size (very small ≤ 1 cm, small 1-2 cm and large ≥ 2 cm) by means of the ESD technique after an incision with an electrosurgical knife of the overlying layers and revealing a small part of the lesion were biopsied under direct endoscopic view. Deep biopsy via the ESD technique was diagnostic in 28 of 38 patients (73.3%; 95% CI: 59.7-89.7%). The diagnostic yield for SELs with a clear endophytic shape increased to 91.3%. An evident endophytic appearance of a subepithelial lesion, the mean number of biopsied samples (6.65 ±1.36) and the total size in length of all samples per case (19.88 ±8.07 mm) were the main criteria influencing the positiveness of deep biopsy in the diagnostic group compared to the nondiagnostic one (p = 0.001; p = 0.025; p = 0.008). Deep biopsy via the ESD technique is an effective and safe method for the diagnosis of SELs especially with a clear endophytic appearance in a large number of biopsied samples.

  7. Control of climate and Tethyan legacy on distribution of Paleocene–Eocene gastropods and establishment of the Northern Tropical Realm

    NASA Astrophysics Data System (ADS)

    Das, Shrestha; Halder, Kalyan

    2018-06-01

    Palaeobiogeographical distribution of gastropod genera from the Paleocene and the Eocene has been analysed. Based on this distribution, formal palaeobiogeographical provinces have been established and their relationships are sought. It has been found that the provinces were largely restricted to the palaeo-tropics and subtropics mainly of the northern hemisphere and they share a large proportion of their generic composition. The Northern Tropical Realm has been established to include these provinces. The distribution evinces presence of ocean surface currents in the tropics across longitudes. The possible currents moved through the relict Tethys Ocean, across the Atlantic Ocean and perhaps also across the Pacific. However, planktotrophic larvae of these benthic molluscs could not cross the deep ocean barrier that lay between the Northern Tropical Realm and the Austro-New Zealand Province of the southern hemisphere. The gastropod fauna in the latter province evolved independently. Distribution of all the provinces within palaeo-tropics and subtropics indicates strong control of temperature over it. Paleocene-Eocene Thermal Maximum appears to be responsible for extinction and range contraction of high latitude faunas. Low latitude faunas also suffered significant extinction. However, large diversification in the Eocene was a response to widespread transgression that coincided with the thermal event.

  8. Foxi2 Is an Animally Localized Maternal mRNA in Xenopus, and an Activator of the Zygotic Ectoderm Activator Foxi1e

    PubMed Central

    Cha, Sang-Wook; McAdams, Meredith; Kormish, Jay; Wylie, Christopher; Kofron, Matthew

    2012-01-01

    Foxi1e is a zygotic transcription factor that is essential for the expression of early ectodermal genes. It is expressed in a highly specific pattern, only in the deep cell layers of the animal hemisphere, and in a mosaic pattern in which expressing cells are interspersed with non-expressing cells. Previous work has shown that several signals in the blastula control this expression pattern, including nodals, the TGFβ family member Vg1, and Notch. However, these are all inhibitory, which raises the question of what activates Foxi1e. In this work, we show that a related Forkhead family protein, Foxi2, is a maternal activator of Foxi1e. Foxi2 mRNA is maternally encoded, and highly enriched in animal hemisphere cells of the blastula. ChIP assays show that it acts directly on upstream regulatory elements of Foxi1e. Its effect is specific, since animal cells depleted of Foxi2 are able to respond normally to mesoderm inducing signals from vegetal cells. Foxi2 thus acts as a link between the oocyte and the early pathway to ectoderm, in a similar fashion to the vegetally localized VegT acts to initiate endoderm and mesoderm formation. PMID:22848601

  9. Zonal asymmetric evolution of aerosol optical depth in the subtropics of northern hemisphere in boreal spring and its association with the thermal forcing of Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, B.; Jin, Q.; He, J.

    2017-12-01

    More than 70% population living in the subtropics of the northern hemisphere are exposed to the serious air pollution. In the present, the zonal asymmetric evolution of the 550-nm aerosol optical depth (AOD) over this region has been observed between the East Asian (EA) and the East North American (ENA) continent from boreal winter to summer. The peak of AOD emerges in April over the EA and decreases evidently till June, meanwhile the AOD is still increasing over the ENA, although the low-level southerly is prevailing over the two areas. The diagnosis suggests that such zonal asymmetry is ascribed to the distinct feedback between general circulation and atmospheric heat source (AHS) in situ. The condensation heating becomes dominant in the AHS over the East Asia in April, along with the low-level southerly and the upper-tropospheric northerly, implicating the formation of summertime circulation pattern. Afterwards, the deep convection and the ventilation with strong ascending is generated to reduce the AOD over the EA. Whereas the similar configuration between circulation and AHS takes place over the ENA in June. Furthermore, the possible reason for the different evolution of atmospheric heating source between East Asia and East North America has been discussed.

  10. Palynological evidence for a southward shift of the North Atlantic Current at 2.6 Ma during the intensification of late Cenozoic Northern Hemisphere glaciation

    NASA Astrophysics Data System (ADS)

    Hennissen, Jan A. I.; Head, Martin J.; De Schepper, Stijn; Groeneveld, Jeroen

    2014-06-01

    The position of the North Atlantic Current (NAC) during the intensification of Northern Hemisphere glaciation (iNHG) has been evaluated using dinoflagellate cyst assemblages and foraminiferal geochemistry from a 260 kyr interval straddling the base of the Quaternary System from two sites: eastern North Atlantic Deep Sea Drilling Project Site 610 in the path of the present NAC and central North Atlantic Integrated Ocean Drilling Program Site U1313 in the subtropical gyre. Stable isotope and foraminiferal Mg/Ca analyses confirm cooling near the marine isotope stage (MIS) G7-G6 transition (2.74 Ma). However, a continued dominance of the dinoflagellate cyst Operculodinium centrocarpum sensu Wall and Dale (1966) indicates an active NAC in the eastern North Atlantic for a further 140 kyr. At MIS 104 ( 2.60 Ma), a profound dinoflagellate cyst assemblage turnover indicates NAC shutdown in the eastern North Atlantic, implying elevated atmospheric pressure over the Arctic and a resulting shift in the westerlies that would have driven the NAC. These findings challenge recent suggestions that there was no significant southward shift of the NAC or the Arctic Front during iNHG, and reveal a fundamental climatic reorganization near the base of the Quaternary.

  11. Effects of small nose bluntness on static stability and Magnus characteristics of a projectile shape at Mach 0.91 and 3.03

    NASA Astrophysics Data System (ADS)

    Kayser, Lyle D.

    1986-07-01

    Wind tunnel test results on a typical projectile shape with small nose bluntness are reported. Flat and hemispherical nose tip results are shown in addition to sharp nose tip results. The effects of nose bluntness on static stability are shown to be negligible at both Mach 0.91 and 3.02. The effects of nose bluntness on Magnus force and Magnus moment were not large, but of sufficient magnitude to indicate that such bluntness should not be neglected in a numerical flow field computation.

  12. In vivo deep tissue fluorescence imaging of the murine small intestine and colon

    NASA Astrophysics Data System (ADS)

    Crosignani, Viera; Dvornikov, Alexander; Aguilar, Jose S.; Stringari, Chiara; Edwards, Roberts; Mantulin, Williams; Gratton, Enrico

    2012-03-01

    Recently we described a novel technical approach with enhanced fluorescence detection capabilities in two-photon microscopy that achieves deep tissue imaging, while maintaining micron resolution. This technique was applied to in vivo imaging of murine small intestine and colon. Individuals with Inflammatory Bowel Disease (IBD), commonly presenting as Crohn's disease or Ulcerative Colitis, are at increased risk for developing colorectal cancer. We have developed a Giα2 gene knock out mouse IBD model that develops colitis and colon cancer. The challenge is to study the disease in the whole animal, while maintaining high resolution imaging at millimeter depth. In the Giα2-/- mice, we have been successful in imaging Lgr5-GFP positive stem cell reporters that are found in crypts of niche structures, as well as deeper structures, in the small intestine and colon at depths greater than 1mm. In parallel with these in vivo deep tissue imaging experiments, we have also pursued autofluorescence FLIM imaging of the colon and small intestine-at more shallow depths (roughly 160μm)- on commercial two photon microscopes with excellent structural correlation (in overlapping tissue regions) between the different technologies.

  13. Global Lunar Geochemistry and Its Significant Parallel With Terrestrial One

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Planetary geochemistry reflects planetary tectonic pattern. The most global tectonic feature is the ubiquitous dichotomy (Theorem 1, [1]) with one hemisphere of a di- minished radius (concave) opposed by the convex hemisphere with an increased ra- dius. The terrestrial case is well known: the pressed in Pacific hemisphere is opposed by the bulging out continental one. This tectonics finds its demonstration in global geochemistry: the concave part is filled with denser basalts, rich in Fe, Ti, and the convex part is built of more acidic less dense lithologies, on average of andesitic composition. Much smaller Moon (almost 100 times less massive) reveals the same tectonic-geochemical construction. The near concave side is occupied by Procellarum basin and large marea filled with dense basalts rich in Fe, Ti. The far convex side is built of less dense anarthosites. On both planetary bodies the convex hemispheres are complicated by large subsided sectors (Theorem 2, [1]) filled with, as required by Theorem 4 [1], denser basalts. At Earth it is the Indoceanic sector, on the Moon the South Pole-Aitken basin. Genetically they are similar and constitute regular parts of global tectono-geochemistry (here there is no place for random impact or plate tec- tonic origin of these deep global depressions, they are components of "wave1-wave2" produced structures). The Lunar Prospector global geochemical coverage [2] allows to make lunar - terrestrial parallels not only in dichotomic distribution of iron and ti- tanium but also in distribution of potassium and thorium marking a contact between two dichotomic hemispheres. At Earth the seismically active contact is famous by its andesitic volcanism. Andesites comparative to basalts are richer in K and Th. On the Moon this transitional zone between the dichotomic halves is enriched with Th and K as well [2]. The transition to highlands requires less dense than mare basalts lithologies and they appear as feldspar-rich KREEP basalts enriched with K and Th. The geochemical parallel between two planetary bodies is not occasional and is a con- sequence of the wave planetary tectonics. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics //Geophys. Res. Abstr., v.1, #3, 700; [2]Chevrel 1 S.D., Pinet P.C., Daydou Y. et al (2001) Global scale multielement analysis of the lunar surface using iron, titanium and thorium abundances // 34th Vernadsky-Brown microsymposium. Topics in comparative planetology. Moscow, Vernadsky Inst., Oct. 8-9, 2001,Abstracts, (CD-ROM).

  14. Hubble Spots Northern Hemispheric Clouds on Uranus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Using visible light, astronomers for the first time this century have detected clouds in the northern hemisphere of Uranus. The newest images, taken July 31 and Aug. 1, 1997 with NASA Hubble Space Telescope's Wide Field and Planetary Camera 2, show banded structure and multiple clouds. Using these images, Dr. Heidi Hammel (Massachusetts Institute of Technology) and colleagues Wes Lockwood (Lowell Observatory) and Kathy Rages (NASA Ames Research Center) plan to measure the wind speeds in the northern hemisphere for the first time.

    Uranus is sometimes called the 'sideways' planet, because its rotation axis tipped more than 90 degrees from the planet's orbit around the Sun. The 'year' on Uranus lasts 84 Earth years, which creates extremely long seasons - winter in the northern hemisphere has lasted for nearly 20 years. Uranus has also been called bland and boring, because no clouds have been detectable in ground-based images of the planet. Even to the cameras of the Voyager spacecraft in 1986, Uranus presented a nearly uniform blank disk, and discrete clouds were detectable only in the southern hemisphere. Voyager flew over the planet's cloud tops near the dead of northern winter (when the northern hemisphere was completely shrouded in darkness).

    Spring has finally come to the northern hemisphere of Uranus. The newest images, both the visible-wavelength ones described here and those taken a few days earlier with the Near Infrared and Multi-Object Spectrometer (NICMOS) by Erich Karkoschka (University of Arizona), show a planet with banded structure and detectable clouds.

    Two images are shown here. The 'aqua' image (on the left) is taken at 5,470 Angstroms, which is near the human eye's peak response to wavelength. Color has been added to the image to show what a person on a spacecraft near Uranus might see. Little structure is evident at this wavelength, though with image-processing techniques, a small cloud can be seen near the planet's northern limb (rightmost edge). The 'red' image (on the right) is taken at 6,190 Angstroms, and is sensitive to absorption by methane molecules in the planet's atmosphere. The banded structure of Uranus is evident, and the small cloud near the northern limb is now visible.

    Scientists are expecting that the discrete clouds and banded structure may become even more pronounced as Uranus continues in its slow pace around the Sun. 'Some parts of Uranus haven't seen the Sun in decades,' says Dr. Hammel, 'and historical records suggest that we may see the development of more banded structure and patchy clouds as the planet's year progresses.'

    Some scientists have speculated that the winds of Uranus are not symmetric around the planet's equator, but no clouds were visible to test those theories. The new data will provide the opportunity to measure the northern winds. Hammel and colleagues expect to have results soon.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http:// oposite.stsci.edu/pubinfo/

  15. Comparison of rate one-half, equivalent constraint length 24, binary convolutional codes for use with sequential decoding on the deep-space channel

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1976-01-01

    Virtually all previously-suggested rate 1/2 binary convolutional codes with KE = 24 are compared. Their distance properties are given; and their performance, both in computation and in error probability, with sequential decoding on the deep-space channel is determined by simulation. Recommendations are made both for the choice of a specific KE = 24 code as well as for codes to be included in future coding standards for the deep-space channel. A new result given in this report is a method for determining the statistical significance of error probability data when the error probability is so small that it is not feasible to perform enough decoding simulations to obtain more than a very small number of decoding errors.

  16. Deep and surface learning in problem-based learning: a review of the literature.

    PubMed

    Dolmans, Diana H J M; Loyens, Sofie M M; Marcq, Hélène; Gijbels, David

    2016-12-01

    In problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested and try to understand what is being studied. This review investigates: (1) the effects of PBL on students' deep and surface approaches to learning, (2) whether and why these effects do differ across (a) the context of the learning environment (single vs. curriculum wide implementation), and (b) study quality. Studies were searched dealing with PBL and students' approaches to learning. Twenty-one studies were included. The results indicate that PBL does enhance deep learning with a small positive average effect size of .11 and a positive effect in eleven of the 21 studies. Four studies show a decrease in deep learning and six studies show no effect. PBL does not seem to have an effect on surface learning as indicated by a very small average effect size (.08) and eleven studies showing no increase in the surface approach. Six studies demonstrate a decrease and four an increase in surface learning. It is concluded that PBL does seem to enhance deep learning and has little effect on surface learning, although more longitudinal research using high quality measurement instruments is needed to support this conclusion with stronger evidence. Differences cannot be explained by the study quality but a curriculum wide implementation of PBL has a more positive impact on the deep approach (effect size .18) compared to an implementation within a single course (effect size of -.05). PBL is assumed to enhance active learning and students' intrinsic motivation, which enhances deep learning. A high perceived workload and assessment that is perceived as not rewarding deep learning are assumed to enhance surface learning.

  17. Determining shape of a seasonally shadowed asteroid using stellar occultation imaging

    NASA Astrophysics Data System (ADS)

    Murchie, Scott L.; Nair, Hari; Stephens, Grant K.

    2016-10-01

    A key objective in exploration of small, asteroidal bodies is to determine global shape and volume. The accuracy to which volume can be determined limits determination of bulk density, an important measurement for understanding internal structure. A special case for a rendezvous mission that uses stereo imaging to determine shape is a body with high obliquity encountered near solstice: half of the body is in shadow, and imaging of illuminated terrain alone under-constrains global shape. In this paper we demonstrate the use of stellar occultation imaging to place an upper bound on volume of such a shadowed hemisphere. Thirty-three sets of images of the night side limb of Mercury, acquired by the Mercury Dual Imaging System (MDIS) wide-angle camera (WAC) on MESSENGER, were used to bound the radius of that planet's night side. The maximum radius determined from this limited image set agrees with the actual radius to within 0.1%. We show, by simulation, expected performance of a campaign of such night side limb images to bound the shape of an irregular, high-obliquity asteroid encountered at solstice. We assumed a body the size and shape of Deimos imaged from a 40-km radius orbit by an imager having specifications of the MDIS/WAC but an updated detector sensitive to mv 10 stars, and a day-side stereo imaging campaign by a well-calibrated camera system. From an equatorial orbit, with one hemisphere in shadow, a campaign of ≥150 night side limb images determines volume of the shadowed hemisphere to 4 to 6% accuracy. Increasing orbital inclination to improve sampling of high latitudes decreases residuals for the dark hemisphere by 2 to 3%, for the same number of images. A 2 to 3% uncertainty in global volume - from stereo imaging of illuminated terrain and stellar occultation imaging of shadowed terrain - compares favorably to uncertainty of up to ±25% in the absence of direct measurements of the radius of the shadowed hemisphere.

  18. The Search for Eight Glacial Cycles of Deep-Water Temperatures and Global ice Volume From the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.

    2007-12-01

    It has been recently suggested "a substantial portion of the marine 100-ky cycle that has been object of so much attention over the past quarter of a century is, in reality, a deep-water temperature signal and not an ice volume signal" (Shackleton, 2000). There are currently few records available of deep-water temperature variations during the Pleistocene and most of our understanding is inferred from the oxygen isotopic composition (δ18O) of benthic foraminifera from deep-sea sediments. However, variations in benthic δ18O reflect some combination of local to regional changes in water mass properties (largely deep- water temperature) as well as global changes in seawater δ18O (δ18Osw) resulting from the growth and decay of continental ice. Recent studies suggest that benthic foraminiferal Mg/Ca may be useful in reconstructing deep-water temperature changes, but the application of this method to benthic species has been hampered by a number of unresolved issues, such as uncertainties related to the calibration for benthic Mg at the coldest temperatures. Here we present deep-sea Mg/Ca and δ18O records for the past eight glacial cycles in benthic foraminiferal ( Uvigerina spp.) calcite from a marine sediment core recovered in the mid Southern latitudes. Ocean Drilling Program Site 1123 was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (3290 m water depth). This site lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. Temperatures derived via pore fluid modeling of the last glacial maximum are available from Site 1123 and represent an important tool to constrain deep-water temperatures estimates using Mg/Ca. In selected time slices, we measured B/Ca ratios in Uvigerina in order to gain information on the deep-water carbonate saturation state and have data of Mg/Ca and B/Ca on planktonic species, which also provides evidence on carbonate saturation state. These results permit preliminary discussion of the magnitude of the deep-water temperature changes during glacial/interglacial transitions and the interglacials themselves. In particular, our deep-water temperature estimates confirm that interglacial stages before 430 ka were characterized by less pronounced warmth - at least in the deeper southern Pacific - than those of the past four climatic cycles, a pattern previously observed in the deuterium record from EPICA Dome C. We examine the relative contributions of deep-water temperature and ice volume to the benthic δ18O signal. The phase relationship between the two signals is tentatively assessed for the middle/late Pleistocene, when different patterns of climate variability have been inferred from marine and ice cores records.

  19. Small-scale martian polygonal terrain: Implications for liquid surface water

    USGS Publications Warehouse

    Seibert, N.M.; Kargel, J.S.

    2001-01-01

    Images from the Mars Orbiter Camera (MOC) through August 1999 were analyzed for the global distribution of small-scale polygonal terrain not clearly resolved in Viking Orbiter imagery. With very few exceptions, small-scale polygonal terrain occurs at middle to high latitudes of the northern and southern hemisphere in Hesperian-age geologic units. The largest concentration of this terrain occurs in the Utopia basin in close association with scalloped depressions (interpreted as thermokarst) and appears to represent an Amazonia event. The morphology and occurence of small polygonal terrain suggest they are either mud desiccation cracks or ice-wedge polygons. Because the small-scale polygons in Utopia and Argyre Planitiae are associated with other cold-climate permafrost or glacial features, an ice-wedge model is preferred for these areas. Both cracking mechanisms work most effectively in water- or ice-rich finegrained material and may imply the seasonal or episodic existence of liquid water at the surface.

  20. Body Knowledge in Brain-Damaged Children: A Double-Dissociation in Self and Other's Body Processing

    ERIC Educational Resources Information Center

    Frassinetti, Francesca; Fiori, Simona; D'Angelo, Valentina; Magnani, Barbara; Guzzetta, Andrea; Brizzolara, Daniela; Cioni, Giovanni

    2012-01-01

    Bodies are important element for self-recognition. In this respect, in adults it has been recently shown a self vs other advantage when small parts of the subjects' body are visible. This advantage is lost following a right brain lesion underlying a role of the right hemisphere in self body-parts processing. In order to investigate the bodily-self…

  1. ON THE STRENGTH OF THE HEMISPHERIC RULE AND THE ORIGIN OF ACTIVE-REGION HELICITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil

    Vector magnetograph and morphological observations have shown that the solar magnetic field tends to have negative (positive) helicity in the northern (southern) hemisphere, although only ∼60%-70% of active regions appear to obey this 'hemispheric rule'. In contrast, at least ∼80% of quiescent filaments and filament channels that form during the decay of active regions follow the rule. We attribute this discrepancy to the difficulty in determining the helicity sign of newly emerged active regions, which are dominated by their current-free component; as the transverse field is canceled at the polarity inversion lines, however, the axial component becomes dominant there, allowingmore » a more reliable determination of the original active-region chirality. We thus deduce that the hemispheric rule is far stronger than generally assumed, and cannot be explained by stochastic processes. Earlier studies have shown that the twist associated with the axial tilt of active regions is too small to account for the observed helicity; here, both tilt and twist are induced by the Coriolis force acting on the diverging flow in the emerging flux tube. However, in addition to this east-west expansion about the apex of the loop, each of its legs must expand continually in cross section during its rise through the convection zone, thereby acquiring a further twist through the Coriolis force. Since this transverse pressure effect is not limited by drag or tension forces, the final twist depends mainly on the rise time, and may be large enough to explain the observed active-region helicity.« less

  2. Optimization of SPR signals: Monitoring the physical structures and refractive indices of prisms

    NASA Astrophysics Data System (ADS)

    Maisarah Mukhtar, Wan; Halim, Razman Mohd; Hassan, Hazirah

    2017-11-01

    Surface plasmon resonance (SPR) can only be achieved if sufficient energy is provided at the boundary between metal and dielectric. An employment of prism as a light coupler by using Kretschmann configuration is one of the alternative for the production of adequate energy to be generated as surface plasmon polaritons (SPP). This work is carried out to investigate the effect of physical structure of the prism and its refractive index to the excitation of SPPs. A 50nm gold thin metal film with dielectric constant of ɛ=-12.45i+1.3 was deposited on the hypotenuse surface of the prisms. The physical structures of the prisms were varied such as triangular, conical, hemispherical and half cylindrical. These prisms were classified into two types of refractive indices (RI), namely n=1.51(type BK7) and n=1.77(type SF11). Based on SPR curve analyses, we discovered that strong SPR signals which consist of 82.98% photons were excited as SPPs can be obtained by using type-BK7 prism with physical structures of hemispherical or half cylindrical. From the view of selectivity ability as sensors, the usage of type-SF11 prisms (half cylindrical and hemispherical) able to enhance this impressive feature in which sharp SPR curves with small FWHM values were obtained. In conclusion, apart from properties of thin film materials, the physical structure of prisms and their RI values play crucial roles to obtain optimum SPR signal. High sensitivity SPR sensor can be established with the appointment of type-BK7 prisms (hemispherical or half cylindrical shape) as light couplers.

  3. Gender differences in cerebral metabolism for color processing in mice: A PET/MRI Study.

    PubMed

    Njemanze, Philip C; Kranz, Mathias; Amend, Mario; Hauser, Jens; Wehrl, Hans; Brust, Peter

    2017-01-01

    Color processing is a central component of mammalian vision. Gender-related differences of color processing revealed by non-invasive functional transcranial Doppler ultrasound suggested right hemisphere pattern for blue/yellow chromatic opponency by men, and a left hemisphere pattern by women. The present study measured the accumulation of [18F]fluorodeoxyglucose ([18F]FDG) in mouse brain using small animal positron emission tomography and magnetic resonance imaging (PET/MRI) with statistical parametric mapping (SPM) during light stimulation with blue and yellow filters compared to darkness condition. PET revealed a reverse pattern relative to dark condition compared to previous human studies: Male mice presented with left visual cortex dominance for blue through the right eye, while female mice presented with right visual cortex dominance for blue through the left eye. We applied statistical parametric mapping (SPM) to examine gender differences in activated architectonic areas within the orbital and medial prefrontal cortex and related cortical and sub-cortical areas that lead to the striatum, medial thalamus and other brain areas. The metabolic connectivity of the orbital and medial prefrontal cortex evoked by blue stimulation spread through a wide range of brain structures implicated in viscerosensory and visceromotor systems in the left intra-hemispheric regions in male, but in the right-to-left inter-hemispheric regions in female mice. Color functional ocular dominance plasticity was noted in the right eye in male mice but in the left eye in female mice. This study of color processing in an animal model could be applied in the study of the role of gender differences in brain disease.

  4. The functional anatomy of single-digit arithmetic in children with developmental dyslexia.

    PubMed

    Evans, Tanya M; Flowers, D Lynn; Napoliello, Eileen M; Olulade, Olumide A; Eden, Guinevere F

    2014-11-01

    Some arithmetic procedures, such as addition of small numbers, rely on fact retrieval mechanisms supported by left hemisphere perisylvian language areas, while others, such as subtraction, rely on procedural-based mechanisms subserved by bilateral parietal cortices. Previous work suggests that developmental dyslexia, a reading disability, is accompanied by subtle deficits in retrieval-based arithmetic, possibly because of compromised left hemisphere function. To test this prediction, we compared brain activity underlying arithmetic problem solving in children with and without dyslexia during addition and subtraction operations using a factorial design. The main effect of arithmetic operation (addition versus subtraction) for both groups combined revealed activity during addition in the left superior temporal gyrus and activity during subtraction in the bilateral intraparietal sulcus, the right supramarginal gyrus and the anterior cingulate, consistent with prior studies. For the main effect of diagnostic group (dyslexics versus controls), we found less activity in dyslexic children in the left supramarginal gyrus. Finally, the interaction analysis revealed that while the control group showed a strong response in the right supramarginal gyrus for subtraction but not for addition, the dyslexic group engaged this region for both operations. This provides physiological evidence in support of the theory that children with dyslexia, because of disruption to left hemisphere language areas, use a less optimal route for retrieval-based arithmetic, engaging right hemisphere parietal regions typically used by good readers for procedural-based arithmetic. Our results highlight the importance of language processing for mathematical processing and illustrate that children with dyslexia have impairments that extend beyond reading. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Occurrence of pristine aerosol environments on a polluted planet

    PubMed Central

    Hamilton, Douglas S.; Lee, Lindsay A.; Pringle, Kirsty J.; Reddington, Carly L.; Spracklen, Dominick V.; Carslaw, Kenneth S.

    2014-01-01

    Natural aerosols define a preindustrial baseline state from which the magnitude of anthropogenic aerosol effects on climate are calculated and are a major component of the large uncertainty in anthropogenic aerosol−cloud radiative forcing. This uncertainty would be reduced if aerosol environments unperturbed by air pollution could be studied in the present-day atmosphere, but the pervasiveness of air pollution makes identification of unperturbed regions difficult. Here, we use global model simulations to define unperturbed aerosol regions in terms of two measures that compare 1750 and 2000 conditions—the number of days with similar aerosol concentrations and the similarity of the aerosol response to perturbations in model processes and emissions. The analysis shows that the aerosol system in many present-day environments looks and behaves like it did in the preindustrial era. On a global annual mean, unperturbed aerosol regions cover 12% of the Earth (16% of the ocean surface and 2% of the land surface). There is a strong seasonal variation in unperturbed regions of between 4% in August and 27% in January, with the most persistent conditions occurring over the equatorial Pacific. About 90% of unperturbed regions occur in the Southern Hemisphere, but in the Northern Hemisphere, unperturbed conditions are transient and spatially patchy. In cloudy regions with a radiative forcing relative to 1750, model results suggest that unperturbed aerosol conditions could still occur on a small number of days per month. However, these environments are mostly in the Southern Hemisphere, potentially limiting the usefulness in reducing Northern Hemisphere forcing uncertainty. PMID:25512511

  6. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  7. Annual variations in the Martian bow shock location as observed by the Mars Express mission

    NASA Astrophysics Data System (ADS)

    Hall, B. E. S.; Lester, M.; Sánchez-Cano, B.; Nichols, J. D.; Andrews, D. J.; Edberg, N. J. T.; Opgenoorth, H. J.; Fränz, M.; Holmström, M.; Ramstad, R.; Witasse, O.; Cartacci, M.; Cicchetti, A.; Noschese, R.; Orosei, R.

    2016-11-01

    The Martian bow shock distance has previously been shown to be anticorrelated with solar wind dynamic pressure but correlated with solar extreme ultraviolet (EUV) irradiance. Since both of these solar parameters reduce with the square of the distance from the Sun, and Mars' orbit about the Sun increases by ˜0.3 AU from perihelion to aphelion, it is not clear how the bow shock location will respond to variations in these solar parameters, if at all, throughout its orbit. In order to characterize such a response, we use more than 5 Martian years of Mars Express Analyser of Space Plasma and EneRgetic Atoms (ASPERA-3) Electron Spectrometer measurements to automatically identify 11,861 bow shock crossings. We have discovered that the bow shock distance as a function of solar longitude has a minimum of 2.39RM around aphelion and proceeds to a maximum of 2.65RM around perihelion, presenting an overall variation of ˜11% throughout the Martian orbit. We have verified previous findings that the bow shock in southern hemisphere is on average located farther away from Mars than in the northern hemisphere. However, this hemispherical asymmetry is small (total distance variation of ˜2.4%), and the same annual variations occur irrespective of the hemisphere. We have identified that the bow shock location is more sensitive to variations in the solar EUV irradiance than to solar wind dynamic pressure variations. We have proposed possible interaction mechanisms between the solar EUV flux and Martian plasma environment that could explain this annual variation in bow shock location.

  8. The Functional Anatomy of Single-Digit Arithmetic in Children with Developmental Dyslexia

    PubMed Central

    Evans, Tanya M.; Flowers, D. Lynn; Napoliello, Eileen M.; Olulade, Olumide A.; Eden, Guinevere F.

    2014-01-01

    Some arithmetic procedures, such as addition of small numbers, rely on fact retrieval mechanisms supported by left hemisphere perisylvian language areas, while others, such as subtraction, rely on procedural-based mechanisms subserved by bilateral parietal cortices. Previous work suggests that developmental dyslexia, a reading disability, is accompanied by subtle deficits in retrieval-based arithmetic, possibly because of compromised left hemisphere function. To test this prediction, we compared brain activity underlying arithmetic problem solving in children with and without dyslexia during addition and subtraction operations using a factorial design. The main effect of arithmetic operation (addition versus subtraction) for both groups combined revealed activity during addition in the left superior temporal gyrus and activity during subtraction in bilateral intraparietal sulcus, right supramarginal gyrus and the anterior cingulate, consistent with prior studies. For the main effect of diagnostic group (dyslexics versus controls), we found less activity in dyslexic children in the left supramarginal gyrus. Finally, the interaction analysis revealed that while the control group showed a strong response in right supramarginal gyrus for subtraction but not for addition, the dyslexic group engaged this region for both operations. This provides physiological evidence in support of the theory that children with dyslexia, because of disruption to left hemisphere language areas, use a less optimal route for retrieval-based arithmetic, engaging right hemisphere parietal regions typically used by good readers for procedural-based arithmetic. Our results highlight the importance of language processing for mathematical processing and illustrate that children with dyslexia have impairments that extend beyond reading. PMID:25067820

  9. Model simulations and proxy-based reconstructions for the European region in the past millennium (Invited)

    NASA Astrophysics Data System (ADS)

    Zorita, E.

    2009-12-01

    One of the objectives when comparing simulations of past climates to proxy-based climate reconstructions is to asses the skill of climate models to simulate climate change. This comparison may accomplished at large spatial scales, for instance the evolution of simulated and reconstructed Northern Hemisphere annual temperature, or at regional or point scales. In both approaches a 'fair' comparison has to take into account different aspects that affect the inevitable uncertainties and biases in the simulations and in the reconstructions. These efforts face a trade-off: climate models are believed to be more skillful at large hemispheric scales, but climate reconstructions are these scales are burdened by the spatial distribution of available proxies and by methodological issues surrounding the statistical method used to translate the proxy information into large-spatial averages. Furthermore, the internal climatic noise at large hemispheric scales is low, so that the sampling uncertainty tends to be also low. On the other hand, the skill of climate models at regional scales is limited by the coarse spatial resolution, which hinders a faithful representation of aspects important for the regional climate. At small spatial scales, the reconstruction of past climate probably faces less methodological problems if information from different proxies is available. The internal climatic variability at regional scales is, however, high. In this contribution some examples of the different issues faced when comparing simulation and reconstructions at small spatial scales in the past millennium are discussed. These examples comprise reconstructions from dendrochronological data and from historical documentary data in Europe and climate simulations with global and regional models. These examples indicate that the centennial climate variations can offer a reasonable target to assess the skill of global climate models and of proxy-based reconstructions, even at small spatial scales. However, as the focus shifts towards higher frequency variability, decadal or multidecadal, the need for larger simulation ensembles becomes more evident. Nevertheless,the comparison at these time scales may expose some lines of research on the origin of multidecadal regional climate variability.

  10. The Challenge of Small Satellite Systems to the Space Security Environment

    DTIC Science & Technology

    2012-03-01

    Space, 1945–1995, (New York: Dodd, Mead & Company, Inc. 1984), 142. 40 Moltz, The Politics of Space Security, 93. 41William E. Burrows , Deep Black...90 Stares, The Militarization of Space, 170. 91 Ibid. 92 Burrows , Deep Black, 279- 280. 30 to gather together in 1978 at the request...www.technologynewsroom.com/press_releases/company_releases.aspx?sto ry=522. Burrows , William E. Deep Black: Space Espionage and National Security

  11. Deep learning in the small sample size setting: cascaded feed forward neural networks for medical image segmentation

    NASA Astrophysics Data System (ADS)

    Gaonkar, Bilwaj; Hovda, David; Martin, Neil; Macyszyn, Luke

    2016-03-01

    Deep Learning, refers to large set of neural network based algorithms, have emerged as promising machine- learning tools in the general imaging and computer vision domains. Convolutional neural networks (CNNs), a specific class of deep learning algorithms, have been extremely effective in object recognition and localization in natural images. A characteristic feature of CNNs, is the use of a locally connected multi layer topology that is inspired by the animal visual cortex (the most powerful vision system in existence). While CNNs, perform admirably in object identification and localization tasks, typically require training on extremely large datasets. Unfortunately, in medical image analysis, large datasets are either unavailable or are extremely expensive to obtain. Further, the primary tasks in medical imaging are organ identification and segmentation from 3D scans, which are different from the standard computer vision tasks of object recognition. Thus, in order to translate the advantages of deep learning to medical image analysis, there is a need to develop deep network topologies and training methodologies, that are geared towards medical imaging related tasks and can work in a setting where dataset sizes are relatively small. In this paper, we present a technique for stacked supervised training of deep feed forward neural networks for segmenting organs from medical scans. Each `neural network layer' in the stack is trained to identify a sub region of the original image, that contains the organ of interest. By layering several such stacks together a very deep neural network is constructed. Such a network can be used to identify extremely small regions of interest in extremely large images, inspite of a lack of clear contrast in the signal or easily identifiable shape characteristics. What is even more intriguing is that the network stack achieves accurate segmentation even when it is trained on a single image with manually labelled ground truth. We validate this approach,using a publicly available head and neck CT dataset. We also show that a deep neural network of similar depth, if trained directly using backpropagation, cannot acheive the tasks achieved using our layer wise training paradigm.

  12. Crew Earth Observations (CEO) taken during Expedition Six

    NASA Image and Video Library

    2003-02-01

    ISS006-E-28028 (February 2003) --- The Southern Cross (left center), the Coal Sack Nebula (bottom left), and the Carina Nebula (upper right) are visible in this view photographed by astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, on board the International Space Station (ISS). The Carina Nebula is a molecular cloud about 9000 light years from Earth where young stars are forming. The Coal Sack Nebula is an inky-black dust cloud about 2000 light years from Earth. Stars are probably condensing deep inside the Coal Sack, but their light has not yet broken through the cloud’s dense exterior. The Southern Cross, also known as The Crux, is a constellation familiar to southern hemisphere stargazers.

  13. [A case of non-convulsive status epilepticus worsened Wernicke's aphasia reversely].

    PubMed

    Ueki, Y; Terada, K; Otsuka, A; Kanda, M; Akiguchi, I

    2000-04-01

    A 62-year-old right-handed woman had presented progressive speech impediment over 4 months. She was alert without any convulsions or involuntary movements. Neurological examination showed Wernicke's aphasia, constructional apraxia. Her magnetic resonance imaging (MRI) showed an old cerebral infarction in the left parieto-occipital area, in addition to ischemic changes in the bilateral deep white matter. Electroencephalography (EEG) revealed periodic lateralized epileptiform discharges (PLEDs) predominant in the posterior left hemisphere. The PLEDs as well as the cortical symptoms improved after an administration of anti-convulsive agents, thus establishing the diagnosis of non-convulsive status epilepticus (NSE). It should be emphasized that NSE manifesting as Wernicke's aphasia should be distinguished from dementia syndrome because it is a treatable disorder.

  14. Petrogenesis of melt rocks, Manicouagan impact structure, Quebec

    NASA Technical Reports Server (NTRS)

    Simonds, C. H.; Floran, R. J.; Mcgee, P. E.; Phinney, W. C.; Warner, J. L.

    1978-01-01

    It is suggested, on the basis of previous theoretical studies of shock waves, that the Manicouagan melt formed in 1 or 2 s in a 5-km-radius hemisphere near the point of impact. The melt and the less shocked debris surrounding it flowed downward and outward for a few minutes until the melt formed a lining of a 5- to 8-km deep, 15- to 22-km-radius cavity. Extremely turbulent flow thoroughly homogenized the melt and promoted the incorporation and progressive digestion of debris that had been finely fragmented (but not melted) to grain sizes of less than one mm by the passage of the shock waves. The equilibration of clasts and melt, plagioclase nucleation, and readjustment of the crater floor are discussed.

  15. Recent changes in the ventilation of the southern oceans.

    PubMed

    Waugh, Darryn W; Primeau, Francois; Devries, Tim; Holzer, Mark

    2013-02-01

    Surface westerly winds in the Southern Hemisphere have intensified over the past few decades, primarily in response to the formation of the Antarctic ozone hole, and there is intense debate on the impact of this on the ocean's circulation and uptake and redistribution of atmospheric gases. We used measurements of chlorofluorocarbon-12 (CFC-12) made in the southern oceans in the early 1990s and mid- to late 2000s to examine changes in ocean ventilation. Our analysis of the CFC-12 data reveals a decrease in the age of subtropical subantarctic mode waters and an increase in the age of circumpolar deep waters, suggesting that the formation of the Antarctic ozone hole has caused large-scale coherent changes in the ventilation of the southern oceans.

  16. [Two cases of cerebral infarction caused by fat embolism during orthopedic bone surgeries].

    PubMed

    Takinami, Yoshikazu

    2009-08-01

    I report on two cases of cerebral infarction caused by fat embolism during the orthopedic surgeries. The first patient was a 77-year-old woman with a femur neck fracture, who developed coma after orthopedic operation. The other was a 70-year-old woman with open fractures in the femur and the fibula, who developed hemiplegia after operation. By echogram, no embolus was demonstrated in the heart, in the carotid arteries or in deep veins, also paradoxical cerebral infarction was denied in the both cases. Diffusion-weighted MR image and FLAIR MR image showing multiple hyperintense signals in the hemispheres were very useful as a diagnosing modality in acute stage. The patients gradually recovered with the intensive treatment.

  17. Corneal-shaping electrode

    DOEpatents

    Doss, James D.; Hutson, Richard L.

    1982-01-01

    The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.

  18. Cephalopods of the Southwest Indian OceanRidge: A hotspot of biological diversity and absence of endemism

    NASA Astrophysics Data System (ADS)

    Laptikhovsky, V.; Boersch-Supan, P.; Bolstad, K.; Kemp, K.; Letessier, T.; Rogers, A. D.

    2017-02-01

    A total of 68 cephalopod species belonging to 26 families (10-11% of the total known cephalopod diversity) were collected onboard R/V Fridtjof Nansen during a research survey on Southwest Indian Ocean Ridge in November-December 2009. This relatively small area extends from the Tropical front to the Subantarctic front with four distinctive cephalopod faunas and represents one of the most outstanding hotspots of cephalopod diversity reported to date. However, most of the species caught there were characterised by circumglobal distribution in the Southern Hemisphere, and no endemic species were unambiguously found, although a number of taxa could not be confidently attributed to known species. Most of the studied area was dominated by squid species reproducing in epipelagic layers (mostly Enoploteuthidae and Pyroteuthidae). Species reproducing in meso-bathypelagial whose juveniles ascend to surface water (Cranchiidae, Histioteuthidae, etc.) became gradually more and more important southward from the Tropical Zone to the Southern Peripheral Ecotone. In the latter region they were joined by near-bottom dwellers of the order Sepiolida. The epipelagic strategy of reproduction disappears completely at the Subpolar Front, where epipelagic waters were inhabited by young members of the Cranchiidae and Gonatidae hatched in deep-seas. This study demonstrated the importance of conservation and management of this high-seas area, with its unique biodiversity and ecological resources, in line with recommendations by the IUCN Seamount project and Global Ocean Biodiversity Initiative.

  19. Small-scale lobes on Mars: Solifluction, thaw and clues to gully formation.

    NASA Astrophysics Data System (ADS)

    Johnsson, Andreas; Reiss, Dennis; Conway, Susan; Hauber, Ernst; Hiesinger, Harald

    2017-04-01

    Small-scale lobes (SSL) on Mars are landforms that show striking morphologic resemblance to solifluction lobes on Earth [1,2]. Solifluction is the net downslope movement of soil driven by phase changes of near-surface water due to freeze-thaw activity [3]. SSLs on Mars consist of an arcuate front (riser) tens to hundreds of meters wide [1,2]. Risers are typically decimeters to a few meters (<5m) in height [1]. Where the riser is outlined by visible clasts the tread surface is relatively clast free [1]. SLLs often display overlapping of individual lobes. Previously SLL's have only been studied in detail in the northern hemisphere on Mars [1,2,4,5] where they have been found to be latitude-dependent landforms [1,2]. In contrast, only a few observations have been made in the southern hemisphere [6,7]. Several authors argue for a freeze-thaw hypothesis for SSL formation on Mars [1,2,4-7]. If correct, the implication is significant since it would require transient H2O liquids in a frost-susceptible regolith over large areal extents. Thus a better understanding of SLL will allow identifying environments that may have experienced transient liquid water in the shallow subsurface in the recent past. This study aims to determine the distribution of SSL in the southern hemisphere and to investigate their relationship to gullies and other possible periglacial landforms such as patterned ground and polygonal terrain. Collectively, these landforms may be linked to phase changes of water at the surface or in the shallow subsurface. We show that the distribution of SLLs in the southern hemisphere roughly mirrors that in the northern hemisphere distribution. Hence, SLLs are hemispherically bimodal-distributed landforms, similar to polygonal terrain [e.g. 5] and gullies [e.g. 8]. However, despite more abundant sloping terrain in the southern hemisphere, fewer SLLs are observed, except in the Charitum Montes region. This is in contrast to gully landforms which are more abundant in the southern hemisphere. Martian gully landforms and their formative processes have received considerable attention in the last decade and there are currently conflicting ideas whether liquid water [e.g. 9] or CO2-triggered mass wasting [e.g. 10] are the primary agents of erosion. As there are no CO2 frost triggered hypotheses that can explain the occurrence of SSL, a thaw-based hypothesis could explain both landforms. In the latter scenario gullies and SLLs may form a hydrologic continuum where available water content governs the type of landform produced. Solifluction would require ice lens formation (excess ice) to develop. Excess ice was encountered by the Phoenix lander in 2008 [11]. Furthermore, modelling attempts may suggest that ice lenses could be widespread on Mars [12]. However more work is needed to understand the physical environment related to the CO2 paradigm and the full suite of slope landforms predicted by it. Hence, we suggest that any model to explain gully formation must incorporate the geomorphologic context in which they occur. [1] Johnsson et al. (2012) Icarus 21, 489-505. [2] Gallagher et al. (2011) Icarus 211, 458-471. [3] Matsuoka (2001) Earth-Sci. Rev. 55, 107-134. [3] Gallagher and Balme (2011) GSL 356, 87-111. [4] Nyström and Johnsson (2014) EPSC, #EPSC2014-480. [5] Balme et al. (2013) Prog. Phys. Geogr., 37, 289-324. [6] Mangold (2005) Icarus 174, 336-359. [7] Soare et al. (2016). Icarus 264, 184-197. [8] Harrison et al. (2016) Icarus 252, 236-254. [9] Conway et al. (2015) Icarus 254, 189-204. [10] Pilorget and Forget (2015) Nature Geo., 9. 65-69. [11] Mellon et al (2009). JGR-Planets 114, E003417 [12] Sizemore et al. (2015). Icarus 251, 191-210.

  20. Cenozoic Circulation History of the North Atlantic Ocean From Seismic Stratigraphy of the Newfoundland Ridge Drift Complex

    NASA Astrophysics Data System (ADS)

    Boyle, P. R.; Romans, B.; Norris, R. D.; Tucholke, B. E.; Swift, S. A.; Sexton, P. F.

    2014-12-01

    In the North Atlantic Ocean, contour-following bottom currents have eroded regional unconformities and deposited contourite drifts that exceed two km in thickness and extend for 100s of km. The character of deep-water masses that are conveyed through ocean basins by such currents influence global heat transfer and ocean-atmosphere partitioning of CO2. The Newfoundland Ridge Drift Complex lies directly under the modern Deep Western Boundary Current southeast of Newfoundland, close to the site of overturning in the northwest Atlantic Ocean and at the intersection of the warm Gulf Stream and cool Labrador surface currents. To the south are regions of the western North Atlantic basin that are influenced by southern- as well as northern-sourced bottom waters. Here, we document the evolution of North Atlantic deep-water circulation by seismic-stratigraphic analysis of the long-lived and areally extensive Newfoundland Ridge Drift Complex. IODP Expedition 342 boreholes provide age control on seismic units, allowing sedimentation patterns to be placed in a temporal framework. We find three major phases of sedimentation: pre-contourite drift (~115-50 Ma), active contourite drift (~50-2.6 Ma), and late-contourite drift (~2.6-0 Ma). Bottom-current-controlled deposition of terrigenous-rich sediment began at ~50 Ma, which correlates to the onset of a long-term global cooling trend. A further change in deep circulation near the Eocene-Oligocene transition (~30 Ma) is indicated by more focused drift sedimentation with greatly increased accumulation rates and stratal architecture dominated by mud waves. At ~2.6 Ma to present the axis of drift accumulation shifted markedly towards shallower water depths, corresponding with the onset of Northern Hemisphere ice sheets. We discuss how these reorganizations of deep circulation correlate with results of other North Atlantic seismic stratigraphic studies to the north and south.

  1. Contralateral posterior interhemispheric approach to deep medial parietooccipital vascular malformations: surgical technique and results.

    PubMed

    Burkhardt, Jan-Karl; Winkler, Ethan A; Lawton, Michael T

    2017-07-21

    OBJECTIVE Deep medial parietooccipital arteriovenous malformations (AVMs) and cerebral cavernous malformations (CCMs) are traditionally resected through an ipsilateral posterior interhemispheric approach (IPIA), which creates a deep, perpendicular perspective with limited access to the lateral margins of the lesion. The contralateral posterior interhemispheric approach (CPIA) flips the positioning, with the midline positioned horizontally for retraction due to gravity, but with the AVM on the upper side and the approach from the contralateral, lower side. The aim of this paper was to analyze whether the perpendicular angle of attack that is used in IPIA would convert to a parallel angle of attack with the CPIA, with less retraction, improved working angles, and no significant increase in risk. METHODS A retrospective review of pre- and postoperative clinical and radiographic data was performed in 8 patients who underwent a CPIA. RESULTS Three AVMs and 5 CCMs were resected using the CPIA, with an average nidus size of 2.3 cm and CCM diameter of 1.7 cm. All lesions were resected completely, as confirmed on postoperative catheter angiography or MRI. All patients had good neurological outcomes, with either stable or improved modified Rankin Scale scores at last follow-up. CONCLUSIONS The CPIA is a safe alternative approach to the IPIA for deep medial parietooccipital vascular malformations that extend 2 cm or more off the midline. Contralaterality and retraction due to gravity optimize the interhemispheric corridor, the surgical trajectory to the lesion, and the visualization of the lateral margin, without resection or retraction of adjacent normal cortex. Although the falx is a physical barrier to accessing the lesion, it stabilizes the ipsilateral hemisphere while gravity delivers the dissected lesion through the transfalcine window. Patient positioning, CSF drainage, venous preservation, and meticulous dissection of the deep margins are critical to the safety of this approach.

  2. The luminosity function for different morphological types in the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.

    1994-01-01

    We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.

  3. Relationships between tree size, crown shape, gender segregation and sex allocation in Pinus halepensis, a Mediterranean pine tree.

    PubMed

    Ne'eman, Gidi; Goubitz, Shirrinka; Werger, Marinus J A; Shmida, Avi

    2011-07-01

    Sex allocation has been studied mainly in small herbaceous plants but much less in monoecious wind-pollinated trees. The aim of this study was to explore changes in gender segregation and sex allocation by Pinus halepensis, a Mediterranean lowland pine tree, within tree crowns and between trees differing in their size or crown shape. The production of new male and female cones and sex allocation of biomass, nitrogen and phosphorus were studied. The relationship between branch location, its reproductive status and proxies of branch vigour was also studied. Small trees produced only female cones, but, as trees grew, they produced both male and female cones. Female cones were produced mainly in the upper part of the crown, and male cones in its middle and lower parts. Lateral branch density was correlated with the number of male but not female cones; lateral branches were more dense in large than in small trees and even denser in hemispherical trees. Apical branches grew faster, were thicker and their phosphorus concentration was higher than in lateral shoots. Nitrogen concentration was higher in cone-bearing apical branches than in apical vegetative branches and in lateral branches with or without cones. Allocation to male relative to female function increased with tree size as predicted by sex allocation theory. The adaptive values of sex allocation and gender segregation patterns in P. halepensis, in relation to its unique life history, are demonstrated and discussed. Small trees produce only female cones that have a higher probability of being pollinated than the probability of male cones pollinating; the female-first strategy enhances population spread. Hemispherical old trees are loaded with serotinous cones that supply enough seeds for post-fire germination; thus, allocation to males is more beneficial than to females.

  4. ACG Clinical Guideline: Diagnosis and Management of Small Bowel Bleeding.

    PubMed

    Gerson, Lauren B; Fidler, Jeff L; Cave, David R; Leighton, Jonathan A

    2015-09-01

    Bleeding from the small intestine remains a relatively uncommon event, accounting for ~5-10% of all patients presenting with gastrointestinal (GI) bleeding. Given advances in small bowel imaging with video capsule endoscopy (VCE), deep enteroscopy, and radiographic imaging, the cause of bleeding in the small bowel can now be identified in most patients. The term small bowel bleeding is therefore proposed as a replacement for the previous classification of obscure GI bleeding (OGIB). We recommend that the term OGIB should be reserved for patients in whom a source of bleeding cannot be identified anywhere in the GI tract. A source of small bowel bleeding should be considered in patients with GI bleeding after performance of a normal upper and lower endoscopic examination. Second-look examinations using upper endoscopy, push enteroscopy, and/or colonoscopy can be performed if indicated before small bowel evaluation. VCE should be considered a first-line procedure for small bowel investigation. Any method of deep enteroscopy can be used when endoscopic evaluation and therapy are required. VCE should be performed before deep enteroscopy if there is no contraindication. Computed tomographic enterography should be performed in patients with suspected obstruction before VCE or after negative VCE examinations. When there is acute overt hemorrhage in the unstable patient, angiography should be performed emergently. In patients with occult hemorrhage or stable patients with active overt bleeding, multiphasic computed tomography should be performed after VCE or CTE to identify the source of bleeding and to guide further management. If a source of bleeding is identified in the small bowel that is associated with significant ongoing anemia and/or active bleeding, the patient should be managed with endoscopic therapy. Conservative management is recommended for patients without a source found after small bowel investigation, whereas repeat diagnostic investigations are recommended for patients with initial negative small bowel evaluations and ongoing overt or occult bleeding.

  5. The deep levels in InGaAlP epilayers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine

    NASA Astrophysics Data System (ADS)

    Izumiya, T.; Ishikawa, H.; Mashita, M.

    1994-12-01

    InGaAlP epilayers and double-hetero structure light emitting diodes (LEDs) were grown by metalorganic chemical vapor deposition (MOCVD) using tertiarybutylphosphine (TBP). The photoluminescence (PL) intensities were low compared with the epilayer grown using PH 3, and depended markedly on the TBP synthesis lots. Deep levels, were studied and two oxygen related levels were observed in the epilayers with small PL intensities. An intimate relation between the deep levels and the photoluminescence (PL) intensity has been found. A larger TBP flow rate reduced the deep level concentrations and improved the PL intensity.

  6. Types, Sizes, Shapes and Distributions of Mars Ice and Dust Aerosols from the MGS TES Emission Phase Function Observations

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Christensen, P. R.

    2001-12-01

    A full Mars year (1999-2001) of emission phase function (EPF observations from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) provide the most complete study of Mars dust and ice aerosol properties to date. TES visible (solar band average) and infrared spectral (6-30 micron, 10 invcm res) EPF sequences are analyzed self-consistently with detailed multiple scattering radiative transfer (RT) codes to obtain first-time seasonal/latitudinal distributions of aerosol visible optical depths, particle sizes, and single scattering phase functions. As a consequence of the combined angular and wavelength coverage, we are able to define two distinct ice cloud types at 45S-45N latitudes on Mars. Type 1 ice clouds exhibit small particle sizes (1-2 micron radii), as well as a broad, deep minimum in side scattering indicative of aligned ice grains (see Wolff et al., 2001). Type 1 ice aerosols are most prevalent in the southern hemisphere during Mars aphelion, but also appear more widely distributed in season and latitude as topographic and high altitude (above 20 km) ice hazes. Type 2 ice clouds exhibit larger particle sizes (2-4 microns) and a much narrower side-scattering minimum, indicative of poorer grain alignment or a change in particle shape relative to the type 1 ice clouds (see Wolff et al., 2001). Type 2 ice clouds appear most prominently in the northern subtropical aphelion cloud belt, where relatively low altitudes of water vapor saturation (10 km) coincide with strong advective transport (Clancy et al., 1996). Retrieved dust particle radii of 1.5-1.8 micron are consistent with Pathfinder (Tomasko et al., 1999) and recent Viking/Mariner 9 reanalyses (e.g., size distribution B of Clancy et al., 1995). Detailed spectral modeling of the solar passband also implies agreement of EPF-derived dust single scattering albedos (ssa) with the ssa results from Tomasko et al.(table 8 therein). Spatial and seasonal changes in the dust ssa (0.92-0.95, solar band average) and phase functions suggest possible dust property variations, but may also be a consequence of variable high altitude ice hazes. The annual variations of both dust and ice clouds at 45S-45N latitudes are predominately orbital rather than seasonal in character and have shown close repeatability during the portions of first two Mars years observed by MGS (i.e., prior to the July 2001 global dust storm which began at Ls=185, a most striking departure from the previous two Mars years observed). Minimum visible dust opacities of 0.05-0.10 occur at southern latitudes in aphelion, maximum dust opacities of 1.0-1.5 at northern latitudes after Ls=200 (and greater than 3 in the 2001 global dust storm). Type 2 ice clouds abruptly disappear at Ls=145, as does the widespread occurrence of type 1 clouds in the southern hemisphere. Dust loading in the southern hemisphere increases at this time, but does not do so in the northern hemisphere. A comparison of dust solar band to thermal infrared optical depth ratios also provides strong evidence for non-uniform vertical mixing of the dust loading. A large fraction of the dust column (20-50 percent) appears to be concentrated in the lower boundary layer of the Mars atmosphere, particularly during conditions of low-to-moderate dust loading.

  7. Exploration of Near-Earth Objects from the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Dunham, D. W.; Stakkestad, K.; Vedder, P.; McAdams, J.; Horsewood, J.; Genova, A. L.

    2018-02-01

    The paper will show how clever use of orbital dynamics can lower delta-V costs to enable scientifically interesting missions. The high-energy Deep Space Gateway orbits can be used to reach NEOs, a trans node for crews, or to deploy small sats. Examples are given.

  8. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2001-07-04

    Giving scientists their first look, Chandra observed x-rays produced by fluorescent radiation from oxygen atoms of the Sun in the sparse upper atmosphere of Mars, about 120 kilometers (75 miles) above its surface. The x-ray power detected from the Martian atmosphere is very small, amounting to only 4 megawatts, comparable to the x-ray power of about ten thousand medical x-ray machines. At the time of the Chandra observation, a huge dust storm developed on Mars that covered about one hemisphere, later to cover the entire planet. This hemisphere rotated out of view over the 9-hour observation, but no change was observed in the x-ray intensity indicating that the dust storm did not affect the upper atmosphere. Scientists also observed a halo of x-rays extending out to 7,000 kilometers above the surface of Mars believed to be produced by collisions of ions racing away from the Sun (the solar wind).

  9. Behavioural laterality as a factor in emotional regulation.

    PubMed

    Rempala, Daniel M

    2014-01-01

    Individuals who perform a variety of tasks using one side of their bodies (i.e., high-dominance people) are thought to differ from individuals who perform a variety of tasks with both sides of their body (i.e., low-dominance people) in several neurological and cognitive characteristics. We examined whether behavioural laterality predicted the efficacy of different emotional regulation strategies. Specifically, we thought that behavioural laterality would influence verbal strategies (associated with left hemisphere activation) when regulating anxiety (associated with right hemisphere activation). In three studies participants presented in front of small audiences. Behavioural laterality (as measured by a modified handedness inventory) positively correlated with presentation anxiety, such that "low-dominance" participants reported less anxiety than "high-dominance" participants, but only when using cognitive reappraisal (a verbal strategy), not attention deployment or response modulation (behavioural strategies). These results provide preliminary evidence that individual differences in behavioural laterality mediate the efficacy of certain emotional regulation strategies.

  10. Laterality across languages: Results from a global dichotic listening study using a smartphone application

    PubMed Central

    Bless, Josef J.; Westerhausen, René; Torkildsen, Janne von Koss; Gudmundsen, Magne; Kompus, Kristiina; Hugdahl, Kenneth

    2015-01-01

    Left-hemispheric language dominance has been suggested by observations in patients with brain damages as early as the 19th century, and has since been confirmed by modern behavioural and brain imaging techniques. Nevertheless, most of these studies have been conducted in small samples with predominantly Anglo-American background, thus limiting generalization and possible differences between cultural and linguistic backgrounds may be obscured. To overcome this limitation, we conducted a global dichotic listening experiment using a smartphone application for remote data collection. The results from over 4,000 participants with more than 60 different language backgrounds showed that left-hemispheric language dominance is indeed a general phenomenon. However, the degree of lateralization appears to be modulated by linguistic background. These results suggest that more emphasis should be placed on cultural/linguistic specificities of psychological phenomena and on the need to collect more diverse samples. PMID:25588000

  11. Laterality across languages: Results from a global dichotic listening study using a smartphone application.

    PubMed

    Bless, Josef J; Westerhausen, René; von Koss Torkildsen, Janne; Gudmundsen, Magne; Kompus, Kristiina; Hugdahl, Kenneth

    2015-01-01

    Left-hemispheric language dominance has been suggested by observations in patients with brain damages as early as the 19th century, and has since been confirmed by modern behavioural and brain imaging techniques. Nevertheless, most of these studies have been conducted in small samples with predominantly Anglo-American background, thus limiting generalization and possible differences between cultural and linguistic backgrounds may be obscured. To overcome this limitation, we conducted a global dichotic listening experiment using a smartphone application for remote data collection. The results from over 4,000 participants with more than 60 different language backgrounds showed that left-hemispheric language dominance is indeed a general phenomenon. However, the degree of lateralization appears to be modulated by linguistic background. These results suggest that more emphasis should be placed on cultural/linguistic specificities of psychological phenomena and on the need to collect more diverse samples.

  12. Animal Models of Zika Virus

    PubMed Central

    Bradley, Michael P; Nagamine, Claude M

    2017-01-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian–Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model–based Zika virus research that has been performed to date. PMID:28662753

  13. Head turning as a prominent motor symptom in status epilepticus.

    PubMed

    Bauer, Gerhard; Broessner, Gregor; Unterberger, Iris; Walser, Gerald; Pfausler, Bettina; Trinka, Eugen

    2008-06-01

    Head and eye turning is frequently observed during seizures. Versions with tonic and/or clonic symptoms can be differentiated from smooth head deviations. Head turning as a prominent symptom of status epilepticus has not previously been reported. We present eight case reports, (7 women/1 man, mean age 41 years, median 41.5, range 10 to 74), of status epilepticus (SE), with head turning as a prominent motor symptom. Six were accompanied by continuous frontal, occipital and temporal ictal epileptiform discharges. Furthermore, two patients had absence status with rhythmic and clonic head versions. While the localizing significance of head turnings in SE is low, in our cases, the direction was away from the discharging hemisphere in all cases of focal SE regardless of whether the turning was classified as version (three cases) or deviation (three cases). In this small series of SE, the classical observation of a patient looking away from the discharging hemisphere is still valid.

  14. Chandra Image Gives First Look at Mars Emitted X-Rays

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Giving scientists their first look, Chandra observed x-rays produced by fluorescent radiation from oxygen atoms of the Sun in the sparse upper atmosphere of Mars, about 120 kilometers (75 miles) above its surface. The x-ray power detected from the Martian atmosphere is very small, amounting to only 4 megawatts, comparable to the x-ray power of about ten thousand medical x-ray machines. At the time of the Chandra observation, a huge dust storm developed on Mars that covered about one hemisphere, later to cover the entire planet. This hemisphere rotated out of view over the 9-hour observation, but no change was observed in the x-ray intensity indicating that the dust storm did not affect the upper atmosphere. Scientists also observed a halo of x-rays extending out to 7,000 kilometers above the surface of Mars believed to be produced by collisions of ions racing away from the Sun (the solar wind).

  15. Neglect assessment as an application of virtual reality.

    PubMed

    Broeren, J; Samuelsson, H; Stibrant-Sunnerhagen, K; Blomstrand, C; Rydmark, M

    2007-09-01

    In this study a cancellation task in a virtual environment was applied to describe the pattern of search and the kinematics of hand movements in eight patients with right hemisphere stroke. Four of these patients had visual neglect and four had recovered clinically from initial symptoms of neglect. The performance of the patients was compared with that of a control group consisting of eight subjects with no history of neurological deficits. Patients with neglect as well as patients clinically recovered from neglect showed aberrant search performance in the virtual reality (VR) task, such as mixed search pattern, repeated target pressures and deviating hand movements. The results indicate that in patients with a right hemispheric stroke, this VR application can provide an additional tool for assessment that can identify small variations otherwise not detectable with standard paper-and-pencil tests. VR technology seems to be well suited for the assessment of visually guided manual exploration in space.

  16. Animal Models of Zika Virus.

    PubMed

    Bradley, Michael P; Nagamine, Claude M

    2017-06-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian-Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model-based Zika virus research that has been performed to date.

  17. Effects of depth and crayfish size on predation risk and foraging profitability of a lotic crayfish

    USGS Publications Warehouse

    Flinders, C.A.; Magoulick, D.D.

    2007-01-01

    We conducted field surveys and experiments to determine whether observed distributions of crayfish among habitats were influenced by differential resource availability, foraging profitability, and predation rates and whether these factors differed with crayfish size and habitat depth. We sampled available food resources (detritus and invertebrates) and shelter as rock substrate in deep (>50 cm) and shallow (<30 cm) habitats. We used an enclosure-exclosure experiment to examine the effects of water depth and crayfish size on crayfish biomass and survival, and to determine whether these factors affected silt accrual, algal abundance (chlorophyll a [chl a]), and detritus and invertebrate biomass (g ash-free dry mass) differently from enclosures without crayfish. We conducted tethering experiments to assess predation on small (13-17 mm carapace length [CL]) and large (23-30 mm CL) Orconectes marchandi and to determine whether predation rates differed with water depth. Invertebrate biomass was significantly greater in shallow water than in deep water, whereas detritus biomass did not differ significantly between depths. Cobble was significantly more abundant in shallow than in deep water. Depth and crayfish size had a significant interactive effect on change in size of enclosed crayfish when CL was used as a measure of size but not when biomass was used as a measure of size. CL of small crayfish increased significantly more in enclosures in shallow than in deep water, but CL of large crayfish changed very little at either depth. Silt, chl a, and detritus biomass were significantly lower on tiles in large- than in small- and no-crayfish enclosures, and invertebrate biomass was significantly lower in large- than in no-crayfish enclosures. Significantly more crayfish were consumed in deep than in shallow water regardless of crayfish size. Our results suggest that predation and resource availability might influence the depth distribution of small and large crayfish. Small crayfish grew faster in shallow habitats where they might have had a fitness advantage caused by high prey availability and reduced predation risk. Size-dependent reduction of silt by crayfish might influence benthic habitats where large crayfish are abundant. ?? 2007 by The North American Benthological Society.

  18. Dichotomy of some satellites of the outer Solar system

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2011-10-01

    Recently acquired by the Cas as ini' CIR a temperature map (11 -16 microns radiation) of small satellite Mimas caused a perplexity among the Cassini scientists (an interpretation of PIA12867). They expected to have a regular temperature map characteristic of a homogeneous spherical body heated by Sun. Instead, the bizarre map with two sharply divided temperature fields was produced (Fig. 1). The temperature difference between two fields is about 15 Kelvin that is rather remarkable. The warm part has typical temperature near 92 Kelvin, the cold part -about 77 Kelvin. Obviously there are two icy substances with different conductivity of heat composing two planetary segments (hemispheres). But in this result there is nothing new for explorers insisting for many years that all celestial bodies are tectonically dichotomous [1, 2, 3]. However, this new beautiful confirmat ion of the wave planetology theorem 1 (" Celes tial bodies are dichotomous ") is not s uperfluous , as many s cientis ts , es pecially in the USA, are not acquainted with the wave p lanetology. The fundamental wave 1 long 2πR warping any body aris es in them becaus e they move in elliptica l keple rian orbits with periodically changing acceleration. Having in rotating bodies (but all bodies rotate!) a stationary character and four interfering directions (ortho- and diagonal) these waves inevitably produce uplifting (+), subsiding (-), and neutral (0) tectonic blocks (Fig. 7). The uplifts and subsidences are in an opposition (the best examples are the terrestrial Eastern (+) and Western ( -) segments-hemispheres and mart ian Northern (-) and Southern (+) ones) [3]. The small icy Mimas (396 km in diameter) is no exclusion (Fig. 1). Its dichotomy is well pronounced in two temperature fields obviously reflect ing slightly different in composition icy materials composing two segments. Presence of two kinds of surface materials is also revealed by spectrometry under combination of the UV, green and IR emissions (Fig. 4). Around Herschel Crater material is more bluish than more greenish elsewhere (artificial colors). Presence of dark streaks on walls o f some craters also indicates at another than pure ice substance. The deep Herschel Crater on the cooler segment is somewhat warmer than surrounding terrains (Fig. 1). Thus, one may suppose that the warmer segment exposes deeper layers and is uplifted (+), the cooler segment is subsided (-). Important confirmat ions of Mimas ' dichotomy are s imi lar geometric patterns observed on Iapetus (black & white) (Fig. 2) and on Titania (Fig. 3). Such pattern can be caught under specific viewing point s of dichotomous structure. Figures 5 and 6 show dichotomies of Rhea and Dione. Fig. 7 gives a geometrical s cheme of getting dichotomies by wave interference.

  19. Theoretical Accuracy of Global Snow-Cover Mapping Using Satellite Data in the Earth Observing System (EOS) Era

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Foster, J. L.; Salomonson, V. V.; Klein, A. G.; Chien, J. Y. L.

    1998-01-01

    Following the launch of the Earth Observing System first morning (EOS-AM1) satellite, daily, global snow-cover mapping will be performed automatically at a spatial resolution of 500 m, cloud-cover permitting, using Moderate Resolution Imaging Spectroradiometer (MODIS) data. A technique to calculate theoretical accuracy of the MODIS-derived snow maps is presented. Field studies demonstrate that under cloud-free conditions when snow cover is complete, snow-mapping errors are small (less than 1%) in all land covers studied except forests where errors are greater and more variable. The theoretical accuracy of MODIS snow-cover maps is largely determined by percent forest cover north of the snowline. Using the 17-class International Geosphere-Biosphere Program (IGBP) land-cover maps of North America and Eurasia, the Northern Hemisphere is classified into seven land-cover classes and water. Snow-mapping errors estimated for each of the seven land-cover classes are extrapolated to the entire Northern Hemisphere for areas north of the average continental snowline for each month. Average monthly errors for the Northern Hemisphere are expected to range from 5 - 10%, and the theoretical accuracy of the future global snow-cover maps is 92% or higher. Error estimates will be refined after the first full year that MODIS data are available.

  20. Tis the Season

    NASA Image and Video Library

    2013-12-23

    Winter is approaching in the southern hemisphere of Saturn and with this cold season has come the familiar blue hue that was present in the northern winter hemisphere at the start of NASA's Cassini mission. The changing blue hue that we have learned marks winter at Saturn is likely due to reduction of ultraviolet sunlight and the haze it produces, making the atmosphere clearer and increasing the opportunity for Rayleigh scattering (scattering by molecules and smaller particles) and methane absorption: both processes make the atmosphere blue. The small black dot seen to the right and up from image center, within the ring shadows of the A and F rings, is the shadow of the moon, Prometheus. For an image showing winter in the northern hemisphere see PIA08166. This view looks toward the unilluminated side of the rings from about 44 degrees below the ring plane. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were taken with the Cassini spacecraft wide-angle camera on July 29, 2013. This view was acquired at a distance of approximately 1.003 million miles (1.615 million kilometers) from Saturn. Image scale is 58 miles (93 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17176

  1. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere.

    PubMed

    Delgado-Baquerizo, Manuel; Reith, Frank; Dennis, Paul G; Hamonts, Kelly; Powell, Jeff R; Young, Andrew; Singh, Brajesh K; Bissett, Andrew

    2018-03-01

    The ecological drivers of soil biodiversity in the Southern Hemisphere remain underexplored. Here, in a continental survey comprising 647 sites, across 58 degrees of latitude between tropical Australia and Antarctica, we evaluated the major ecological patterns in soil biodiversity and relative abundance of ecological clusters within a co-occurrence network of soil bacteria, archaea and eukaryotes. Six major ecological clusters (modules) of co-occurring soil taxa were identified. These clusters exhibited strong shifts in their relative abundances with increasing distance from the equator. Temperature was the major environmental driver of the relative abundance of ecological clusters when Australia and Antarctica are analyzed together. Temperature, aridity, soil properties and vegetation types were the major drivers of the relative abundance of different ecological clusters within Australia. Our data supports significant reductions in the diversity of bacteria, archaea and eukaryotes in Antarctica vs. Australia linked to strong reductions in temperature. However, we only detected small latitudinal variations in soil biodiversity within Australia. Different environmental drivers regulate the diversity of soil archaea (temperature and soil carbon), bacteria (aridity, vegetation attributes and pH) and eukaryotes (vegetation type and soil carbon) across Australia. Together, our findings provide new insights into the mechanisms driving soil biodiversity in the Southern Hemisphere. © 2018 by the Ecological Society of America.

  2. Temporal and spatial variability of global water balance

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.

    2013-01-01

    An analysis of simulated global water-balance components (precipitation [P], actual evapotranspiration [AET], runoff [R], and potential evapotranspiration [PET]) for the past century indicates that P has been the primary driver of variability in R. Additionally, since about 2000, there have been increases in P, AET, R, and PET for most of the globe. The increases in R during 2000 through 2009 have occurred despite unprecedented increases in PET. The increases in R are the result of substantial increases in P during the cool Northern Hemisphere months (i.e. October through March) when PET increases were relatively small; the largest PET increases occurred during the warm Northern Hemisphere months (April through September). Additionally, for the 2000 through 2009 period, the latitudinal distribution of P departures appears to co-vary with the mean P departures from 16 climate model projections of the latitudinal response of P to warming, except in the high latitudes. Finally, changes in water-balance variables appear large from the perspective of departures from the long-term means. However, when put into the context of the magnitudes of the raw water balance variable values, there appears to have been little change in any of the water-balance variables over the past century on a global or hemispheric scale.

  3. HUBBLE FINDS NEW DARK SPOT ON NEPTUNE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet's northern hemisphere is now tilted away from Earth, the new feature appears near the limb of the planet. The spot is a near mirror-image to a similar southern hemisphere dark spot that was discovered in 1989 by the Voyager 2 probe. In 1994, Hubble showed that the southern dark spot had disappeared. Like its predecessor, the new spot has high altitude clouds along its edge, caused by gasses that have been pushed to higher altitudes where they cool to form methane ice crystal clouds. The dark spot may be a zone of clear gas that is a window to a cloud deck lower in the atmosphere. Planetary scientists don t know how long lived this new feature might be. Hubble's high resolution will allow astronomers to follow the spot's evolution and other unexpected changes in Neptune's dynamic atmosphere. The image was taken on November 2, 1994 with Hubble's Wide Field Planetary Camera 2, when Neptune was 2.8 billion miles (4.5 billion kilometers) from Earth. Hubble can resolve features as small as 625 miles (1,000 kilometers) across in Neptune's cloud tops. Credit: H. Hammel (Massachusetts Institute of Technology) and NASA

  4. NASA's Space Launch System: Deep-Space Delivery for SmallSats

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). Planning is underway for smallsat accomodations on future configurations of the vehicle, which will present additional opportunities. This paper will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the current and future opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018 and a discussion of future capabilities.

  5. Deep Learning for Drug Design: an Artificial Intelligence Paradigm for Drug Discovery in the Big Data Era.

    PubMed

    Jing, Yankang; Bian, Yuemin; Hu, Ziheng; Wang, Lirong; Xie, Xiang-Qun Sean

    2018-03-30

    Over the last decade, deep learning (DL) methods have been extremely successful and widely used to develop artificial intelligence (AI) in almost every domain, especially after it achieved its proud record on computational Go. Compared to traditional machine learning (ML) algorithms, DL methods still have a long way to go to achieve recognition in small molecular drug discovery and development. And there is still lots of work to do for the popularization and application of DL for research purpose, e.g., for small molecule drug research and development. In this review, we mainly discussed several most powerful and mainstream architectures, including the convolutional neural network (CNN), recurrent neural network (RNN), and deep auto-encoder networks (DAENs), for supervised learning and nonsupervised learning; summarized most of the representative applications in small molecule drug design; and briefly introduced how DL methods were used in those applications. The discussion for the pros and cons of DL methods as well as the main challenges we need to tackle were also emphasized.

  6. Small vs. Large Convective Cloud Objects from CERES Aqua Observations: Where are the Intraseasonal Variation Signals?

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2016-01-01

    During inactive phases of Madden-Julian oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES observations for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation directions/speeds.

  7. Homeland Security Department: FY2008 Request for Appropriations

    DTIC Science & Technology

    2007-05-17

    23 Hiring U.S. Border Patrol (USBP) Agents . . . . . . . . . . . . . . . . . 23 Western Hemisphere Travel Initiative (WHTI...2,613 TWIC 10 27 Hazmat 16 19 Registered Traveler 3 35 FEMA/EPR National flood insurance fund 129 145 CBP Small airports 7 7 Subtotal account level...include TWIC, HAZMAT, Registered Traveler , and Alien Flight School Checks. e. Does not include transfer of $7 million per Sec. 21101 of P.L. 110-5. f

  8. The Dependence of Homo- and Heterogeneously Formed Cirrus Clouds on Latitude, Season and Surface-type based on a New CALIPSO Remote Sensing Method

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Garnier, A.; Mejia, J.; Avery, M. A.; Erfani, E.

    2016-12-01

    A new CALIPSO infrared retrieval method sensitive to small ice crystals has been developed to measure the temperature dependence of the layer-average number concentration N, effective diameter De and ice water content in single-layer cirrus clouds (one cloud layer in the atmospheric column) that have optical depths between 0.3 and 3.0 and cloud base temperature T < 235 K. While retrievals of low N are not accurate, mid-to-high N can be retrieved with much lower uncertainty. This enables the retrieval to estimate the dominant ice nucleation mechanism (homo- or heterogeneous, henceforth hom and het) though which the cirrus formed. Based on N, hom or het cirrus can be estimated as a function of temperature, season, latitude and surface type. The retrieved properties noted above compare favorably with spatial-temporal coincident cirrus cloud in situ measurements from SPARTICUS case studies as well as the extensive in situ cirrus data set of Krämer et al. (2009, ACP). For our cirrus cloud selection, these retrievals show a pronounced seasonal cycle in the N. Hemisphere over land north of 30°N latitude in terms of both cloud amount and microphysics, with greater cloud cover, higher N and smaller De during the winter season. We postulate that this is partially due to the seasonal cycle of deep convection that replenishes the supply of ice nuclei (IN) at cirrus levels, with hom more likely when deep convection is absent. Over oceans, heterogeneous ice nucleation appears to prevail based on the lower N and higher De observed. Due to the relatively smooth ocean surface, lower amplitude atmospheric waves at cirrus cloud levels are expected. Over land outside the tropics during winter, hom cirrus tend to occur over mountainous terrain, possibly due to lower IN concentrations and stronger, more sustained updrafts in mountain-induced waves. Over pristine Antarctica, IN concentrations are minimal and the terrain near the coast is often high and rugged, allowing hom to dominate. Accordingly, over Antarctica cirrus clouds exhibit relatively high N and small De throughout the year. These retrievals allow us to parameterize De and the ice fall speed in CAM5 as a function of T, season, latitude and surface-type. Our goal is to estimate the radiative impact of hom cirrus north of 30°N latitude in winter relative to het cirrus before the AGU Fall Meeting.

  9. Polar Cap Energy Deposition Events During the 5-6 August 2011 Magnetic Storm

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2018-03-01

    We study the 5-6 August 2011 storm for its energy deposition events occurring deep in the polar cap region, where the consequential localized intensifications of earthward directed Poynting flux led to the development of their related localized neutral density increases. For unraveling the underlying physical processes, we investigate the relations among Poynting flux intensifications, flow channels (FCs), and localized neutral density enhancements plus the nature of the underlying reconnection events. Observational results demonstrate Poynting flux increase deep in the polar cap in a FC-2 type FC during magnetopause reconnections and in a FC-4 type FC during lobe reconnections. During the latter stages of these different types of reconnection events, energy/momentum transfer occurred along old-open field lines and commonly led to the development of localized neutral density increases during their respective upwelling events fueled by field-aligned currents and above/within these polar FCs. The prevailing BY domination and the pulsed nature of this storm created favorable conditions for the development of these FC-2 and FC-4 types in the sunlit northern summer hemisphere and caused the observed Poynting flux intensifications deep in the polar cap. The solar wind source of these reconnections taking place along old-open field lines was situated in the high-latitude boundary layer. Thus, the high-latitude boundary layer dynamo provided a vigorous source of energy/momentum transfer during the latter-stage reconnections unfolding along old-open field lines.

  10. A Critical Test of Nd isotopes as a Paleocirculation Proxy in the Southwest Atlantic

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Goldstein, S. L.; Pena, L.; Hartman, A. E.; Rijkenberg, M. J. A.; de Baar, H. J. W.

    2016-12-01

    The application of Nd isotopes as a paleo-ocean circulation tracer assumes that Nd isotope ratios (ɛNd) effectively fingerprint different water masses and approximate expected values from water mass mixing. The Southwest Atlantic, with the major water masses involved in the Atlantic Meridional Ocean Circulation (southward flowing North Atlantic Deep Water, northward flowing Antarctic Intermediate Water and Antarctic Bottom Water), is one of the best places on Earth to evaluate how well Nd isotope ratios act like a conservative water mass tracer in the modern ocean. Seawater profiles and core-top sediments from 17 stations were sampled in the Southwest Atlantic in the South Atlantic Meridional GEOTRACES cruise (GA02 Leg 3; RRS James Cook 057) between Tierra del Fuego and the Equator. Along the cruise track, along with the possibility of "boundary exchange", there are several additional potential sources that could add external Nd to seawater and disturb the "quasi-conservative" behavior of ɛNd. For example, it transects the continental shelf in the far south, the Rio Grande Rise, volcanic seamounts, and the major geological age boundaries of South America. It also crosses the major Southern Hemisphere wind zones, allowing us to test the impacts of eolian dust input, as well as inputs from major rivers. Our results on seawater ɛNd show strikingly that the Southwest Atlantic transect confirms "quasi-conservative" behavior of ɛNd in intermediate and deep water. Shallow depths show local impacts but these are not transferred to intermediate and deep water.

  11. Identification of microRNA-like RNAs from Curvularia lunata associated with maize leaf spot by bioinformation analysis and deep sequencing.

    PubMed

    Liu, Tong; Hu, John; Zuo, Yuhu; Jin, Yazhong; Hou, Jumei

    2016-04-01

    Deep sequencing of small RNAs is a useful tool to identify novel small RNAs that may be involved in fungal growth and pathogenesis. In this study, we used HiSeq deep sequencing to identify 747,487 unique small RNAs from Curvularia lunata. Among these small RNAs were 1012 microRNA-like RNAs (milRNAs), which are similar to other known microRNAs, and 48 potential novel milRNAs without homologs in other organisms have been identified using the miRBase© database. We used quantitative PCR to analyze the expression of four of these milRNAs from C. lunata at different developmental stages. The analysis revealed several changes associated with germinating conidia and mycelial growth, suggesting that these milRNAs may play a role in pathogen infection and mycelial growth. A total of 8334 target mRNAs for the 1012 milRNAs that were identified, and 256 target mRNAs for the 48 novel milRNAs were predicted by computational analysis. These target mRNAs of milRNAs were also performed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. To our knowledge, this study is the first report of C. lunata's milRNA profiles. This information will provide a better understanding of pathogen development and infection mechanism.

  12. A new genus of Nanaloricidae (Loricifera) from deep-sea sediments of volcanic origin in the Kilinailau Trench north of Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Gad, Gunnar

    2004-02-01

    A new genus and species of Nanaloricidae (Loricifera), Phoeniciloricus simplidigitatus, is described inhabiting fine sand covered by a layer of volcanic ash at a water depth of 1,813 m in the New Ireland Basin near the Kilinailau Trench (north of Papua New Guinea). The described specimen is a postlarva enclosed in a larval exuvium. This is the first report of a species belonging to the Nanaloricidae from the deep sea. This occurrence is surprising, because Nanaloricidae are typical inhabitants of coarse sands in the intertidal or littoral zone. Preference for these shallow water habitats is reflected in many morphological features which characterize the Nanaloricidae, and are not normally found in Loricifera inhabiting fine-grained, clayish, deep-sea bottoms. The postlarva of the new species is characterized by a long narrow mouth tube, an urn-shaped lorica divided into ten plates, and 13 small lorica spikes. Distinguishing features of the Higgins-larva include short spinose toes lacking mucros but having small and slightly enlarged bases, short scalids on the introvert, many thoracic plates arranged in 6-8 rows, numerous small papillate flosculi in the collar and caudal regions, and three pairs of filiform, short locomotory appendages on the ventral side. Some features of the new species, especially of the Higgins-larva, are discussed as adaptations to the deep-sea environment.

  13. Extrapolar climate reversal during the last deglaciation.

    PubMed

    Asmerom, Yemane; Polyak, Victor J; Lachniet, Matthew S

    2017-08-02

    Large ocean-atmosphere and hydroclimate changes occurred during the last deglaciation, although the interplay between these changes remains ambiguous. Here, we present a speleothem-based high resolution record of Northern Hemisphere atmospheric temperature driven polar jet variability, which matches the Greenland ice core records for the most of the last glacial period, except during the last deglaciation. Our data, combined with data from across the globe, show a dramatic climate reversal during the last deglaciation, which we refer to as the Extrapolar Climate Reversal (ECR). This is the most prominent feature in most tropical and subtropical hydroclimate proxies. The initiation of the ECR coincides with the rapid rise in CO 2 , in part attributed to upwelling in the Southern Ocean and the near collapse of the Atlantic Meridional Overturning Circulation. We attribute the ECR to upwelling of cold deep waters from the Southern Ocean. This is supported by a variety of proxies showing the incursion of deep Southern Ocean waters into the tropics and subtropics. Regional climate variability across the extropolar regions during the interval previously referred to as the "Mystery Interval" can now be explained in the context of the ECR event.

  14. Effect of unilateral versus bilateral electrostimulation in subthalamic nucleus on speech in Parkinsons disease

    NASA Astrophysics Data System (ADS)

    Wang, Emily; Verhagen Metman, Leo; Bakay, Roy; Arzbaecher, Jean; Bernard, Bryan

    2004-05-01

    Previously, it was found that 16 right-handed patients with idiopathic Parkinsons disease who underwent unilateral implantation of deep brain stimulator in subthalamic nucleus (STN) showed significant improvement in their nonspeech motor functions. Eight of the 16 patients had stimulator in the left STN and eight in the right STN. In contrast, their speech function showed very mild improvement that was limited to the respiratory/phonotory subsystems. Further, there seemed a trend that the patients with right STN stimulation did better than those with left STN stimulation. It was speculated that the difference might be due to a micro lesion caused by the surgical procedure to the corticobulbar fibers run in the left internal capsule. This paper reports speech changes associated with bilateral DBS in STN in four of the 16 subjects who elected to have deep brain stimulator implanted in STN on the opposite side of the brain at a later time. Results show negative changes in speech after bilateral DBS in STN. The changes were not limited to the micro lesion effect due to the surgery itself, but also related to the active stimulation on the dominant hemisphere for speech processing. [Work supported by NIH.

  15. Titan's topography as a clue to geologic processes and landscape evolution

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.

    2012-12-01

    Cassini has revealed a diversity of surface features on Titan rivaled by few bodies in the Solar System. Some of these features are readily identified: dunes, channels, lakes, seas, fresh impact craters, and mountains. Others are enigmatic and in some cases have sparked debate about their mode of origin. Given the limited resolution of the Cassini images, at best 300 m for synthetic aperture RADAR (SAR) images, it can be difficult to identify details that might confirm a particular mode of origin. Supplementing the images with topographic information provides an important and sometimes crucial clue to the origin and evolution of landforms. Topographic profiles from altimetry and SARTopo analysis of the images can shed light on simpler features (e.g., dunes) and led to the surprising conclusion that Titan's largest feature, Xanadu, is not elevated as had been supposed. For more complex structures, digital topographic models (DTMs) provide a full three-dimensional view. About 10% of Titan's surface has been imaged in stereo by RADAR, and we have produced DTMs of about 2% by analyzing these stereopairs. Analysis of the results within the Cassini RADAR team has shed light on a number of geologic problems: * Some putative volcanic features (e.g., the supposed dome Ganesa Macula and various diffuse surface flows) have been shown to lack the expected relief, greatly weakening the case for their volcanic origin. * Conversely, flows in Hotei Regio have been shown to tower over nearby fluvial channels, and those near Sotra Facula are associated with multiple edifices and caldera-like pits, strengthening the case for a volcanic origin. * Depths of the handful of definite impact craters measured so far range from Ganymede-like to nearly zero, and are statistically consistent with a process such as eolian deposition that would steadily reduce the crater depth rather than a process such as surface erosion that would tend to leave craters only partially filled. * Clustering of the small north-polar lakes at a few discrete levels, all of which are hundreds of meters above the major seas, suggests that these bodies of liquid are connected locally but not (over relevant timescales) regionally by subsurface flow. * Evidence for topographic "benches" at multiple levels around the seas suggests that the liquid level has fluctuated over time, perhaps as a result of inter-hemispheric transport of volatiles over multi-seasonal timescales. These examples come primarily from Titan's northern hemisphere and equatorial zone. Cassini's extended mission to date has yielded extensive coverage of the southern hemisphere that we have recently integrated into a global control network, allowing us to begin producing DTMs of multiple southern hemisphere sites with consistent absolute elevations. Of particular interest are apparent basins, for the most part empty of surface liquid, near the South Pole. Are the basin floors or possible shoreline features at consistent elevations? How do the depths and absolute elevations compare to Ontario Lacus and the other small lakes (including transient ones) in the south, and to the lakes and seas of the northern hemisphere? Topomapping now under way will help address these and other questions about the evolution of Titan's southern hemisphere and its volatile distribution over time.

  16. Noninvasive brain stimulation for treatment of right- and left-handed poststroke aphasics.

    PubMed

    Heiss, Wolf-Dieter; Hartmann, Alexander; Rubi-Fessen, Ilona; Anglade, Carole; Kracht, Lutz; Kessler, Josef; Weiduschat, Nora; Rommel, Thomas; Thiel, Alexander

    2013-01-01

    Accumulating evidence from single case studies, small case series and randomized controlled trials seems to suggest that inhibitory noninvasive brain stimulation (NIBS) over the contralesional inferior frontal gyrus (IFG) of right-handers in conjunction with speech and language therapy (SLT) improves recovery from poststroke aphasia. Application of inhibitory NIBS to improve recovery in left-handed patients has not yet been reported. A total of 29 right-handed subacute poststroke aphasics were randomized to receive either 10 sessions of SLT following 20 min of inhibitory repetitive transcranial magnetic stimulation (rTMS) over the contralesional IFG or 10 sessions of SLT following sham stimulation; 2 left-handers were treated according to the same protocol with real rTMS. Language activation patterns were assessed with positron emission tomography prior to and after the treatment; 95% confidence intervals for changes in language performance scores and the activated brain volumes in both hemispheres were derived from TMS- and sham-treated right-handed patients and compared to the same parameters in left-handers. Right-handed patients treated with rTMS showed better recovery of language function in global aphasia test scores (t test, p < 0.002) as well as in picture-naming performance (ANOVA, p = 0.03) than sham-treated right-handers. In treated right-handers, a shift of activation to the ipsilesional hemisphere was observed, while sham-treated patients consolidated network activity in the contralesional hemisphere (repeated-measures ANOVA, p = 0.009). Both left-handed patients also improved, with 1 patient within the confidence limits of TMS-treated right-handers (23 points, 15.9-28.9) and the other patient within the limits of sham-treated subjects (8 points, 2.8-14.5). Both patients exhibited only a very small interhemispheric shift, much less than expected in TMS-treated right-handers, and more or less consolidated initially active networks in both hemispheres. Inhibitory rTMS over the nondominant IFG appears to be a safe and effective treatment for right-handed poststroke aphasics. In the 2 cases of left-handed aphasics no deterioration of language performance was observed with this protocol. However, therapeutic efficiency is less obvious and seems to be more related to the dominance pattern prior to the stroke than to the TMS intervention.

  17. Hemispheric Sunspot Unit Area: Comparison with Hemispheric Sunspot Number and Sunspot Area

    NASA Astrophysics Data System (ADS)

    Li, K. J.; Xiang, N. B.; Qu, Z. N.; Xie, J. L.

    2014-03-01

    The monthly mean northern and southern hemispheric sunspot numbers (SNs) and sunspot areas (SAs) in the time interval of 1945 January to 2012 December are utilized to construct the monthly northern and southern hemispheric sunspot unit areas (SUAs), which are defined as the ratio of hemispheric SA to SN. Hemispheric SUAs are usually found to rise at the beginning and to fall at the ending time of a solar cycle more rapidly, forming a more irregular cycle profile than hemispheric SNs and SAs, although it also presents Schwabe-cycle-like hemispheric SNs and SAs. Sunspot activity (SN, SA, and SUA) is found asynchronously and is asymmetrically distributed in the northern and southern hemispheres, and hemispheric SNs, SAs, and SUAs are not in phase in the two hemispheres. The similarity of hemispheric SNs and SAs is found to be much more obvious than that of hemispheric SUAs and SNs (or SAs), and also for their north-south asymmetry. A notable feature is found for the behavior of the SUA around the minimum time of cycle 24: the SUA rapidly decreases from the cycle maximum value to the cycle minimum value of sunspot cycles 19-24 within just 22 months.

  18. Hemispheric sunspot unit area: comparison with hemispheric sunspot number and sunspot area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K. J.; Xiang, N. B.; Qu, Z. N.

    2014-03-01

    The monthly mean northern and southern hemispheric sunspot numbers (SNs) and sunspot areas (SAs) in the time interval of 1945 January to 2012 December are utilized to construct the monthly northern and southern hemispheric sunspot unit areas (SUAs), which are defined as the ratio of hemispheric SA to SN. Hemispheric SUAs are usually found to rise at the beginning and to fall at the ending time of a solar cycle more rapidly, forming a more irregular cycle profile than hemispheric SNs and SAs, although it also presents Schwabe-cycle-like hemispheric SNs and SAs. Sunspot activity (SN, SA, and SUA) is foundmore » asynchronously and is asymmetrically distributed in the northern and southern hemispheres, and hemispheric SNs, SAs, and SUAs are not in phase in the two hemispheres. The similarity of hemispheric SNs and SAs is found to be much more obvious than that of hemispheric SUAs and SNs (or SAs), and also for their north-south asymmetry. A notable feature is found for the behavior of the SUA around the minimum time of cycle 24: the SUA rapidly decreases from the cycle maximum value to the cycle minimum value of sunspot cycles 19-24 within just 22 months.« less

  19. Multi-hole pressure probes to air data system for subsonic small-scale air vehicles

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Berezin, D. R.; Puzirev, L. N.; Tarasov, A. Z.; Kharitonov, A. M.; Shmakov, A. S.

    2016-10-01

    A brief review of research performed to develop multi-hole probes to measure of aerodynamic angles, dynamic head, and static pressure of a flying vehicle. The basis of these works is the application a well-known classical multi-hole pressure probe technique of measuring of a 3D flow to use in the air data system. Two multi-hole pressure probes with spherical and hemispherical head to air-data system for subsonic small-scale vehicles have been developed. A simple analytical probe model with separation of variables is proposed. The probes were calibrated in the wind tunnel, one of them is in-flight tested.

  20. Analysis of the Laser Drilling Process for the Combination with a Single-Lip Deep Hole Drilling Process with Small Diameters

    NASA Astrophysics Data System (ADS)

    Biermann, Dirk; Heilmann, Markus

    Due to the tendency of downsizing of components, also the industrial relevance of bore holes with small diameters and high length-to-diameter ratios rises with the growing requirements on parts. In these applications, the combination of laser pre-drilling and single-lip deep hole drilling can shorten the process chain in machining components with non-planar surfaces, or can reduce tool wear in machining case-hardened materials. In this research, the combination of these processes was realized and investigated for the very first time.

  1. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs

    USDA-ARS?s Scientific Manuscript database

    Accurate detection of viruses in plants and animals is critical for agriculture production and human health. Deep sequencing and assembly of virus-derived siRNAs has proven to be a highly efficient approach for virus discovery. However, to date no computational tools specifically designed for both k...

  2. A GSK-3β Inhibitor Protects Against Radiation Necrosis in Mouse Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiaoyu; Perez-Torres, Carlos J.; Thotala, Dinesh

    Purpose: To quantify the effectiveness of SB415286, a specific inhibitor of GSK-3β, as a neuroprotectant against radiation-induced central nervous system (brain) necrosis in a mouse model. Methods and Materials: Cohorts of mice were treated with SB415286 or dimethyl sulfoxide (DMSO) prior to irradiation with a single 45-Gy fraction targeted to the left hemisphere (brain) using a gamma knife machine. The onset and progression of radiation necrosis (RN) were monitored longitudinally by noninvasive in vivo small-animal magnetic resonance imaging (MRI) beginning 13 weeks postirradiation. MRI-derived necrotic volumes for SB415286- and DMSO-treated mice were compared. MRI results were supported by correlative histology. Results: Micemore » treated with SB415286 showed significant protection from radiation-induced necrosis, as determined by in vivo MRI with histologic validation. MRI-derived necrotic volumes were significantly smaller at all postirradiation time points in SB415286-treated animals. Although the irradiated hemispheres of the DMSO-treated mice demonstrated many of the classic histologic features of RN, including fibrinoid vascular necrosis, vascular telangiectasia, hemorrhage, and tissue loss, the irradiated hemispheres of the SB415286-treated mice consistently showed only minimal tissue damage. These studies confirmed that treatment with a GSK-3β inhibitor dramatically reduced delayed time-to-onset necrosis in irradiated brain. Conclusions: The unilateral cerebral hemispheric stereotactic radiation surgery mouse model in concert with longitudinal MRI monitoring provided a powerful platform for studying the onset and progression of RN and for developing and testing new neuroprotectants. Effectiveness of SB415286 as a neuroprotectant against necrosis motivates potential clinical trials of it or other GSK-3β inhibitors.« less

  3. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Clark, P. U.; Ricken, W.; Mitrovica, J. X.; Hostetler, S. W.; Kuhn, G.

    2012-04-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood because only a few findings with robust chronologies exist for Antarctic ice sheets. We developed a chronology for the Weddell Sea sector of the East Antarctic ice sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates the advance to their maximum extent at 29 -28 ka, and retreat from their maximum extent at 19 ka was nearly synchronous with Northern Hemisphere ice sheets (Weber, M.E., Clark, P. U., Ricken, W., Mitrovica, J. X., Hostetler, S. W., and Kuhn, G. (2011): Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum. - Science, 334, 1265-1269, doi: 10.1126:science.1209299). As for the deglaciation, modeling studies suggest a late ice-sheet retreat starting around 14 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, the Weddell Sea sites studied here, as well as sites from the Scotia Sea, provide evidence that specifically the EAIS responded much earlier, possibly provided a significant contribution to the last sea-level rise, and was much more dynamic than previously thought. Using the results of an atmospheric general circulation we conclude that surface climate forcing of Antarctic ice mass balance would likely cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Furthermore, our new data support teleconnections involving a sea-level fingerprint forced from Northern Hemisphere ice sheets as indicated by gravitational modeling. Also, changes in North Atlantic Deepwater formation and attendant heat flux to Antarctic grounding lines may have contributed to synchronizing the hemispheric ice sheets.

  4. Can we identify effects from the 11 year solar cycle in AIM PMC Data?

    NASA Astrophysics Data System (ADS)

    Siskind, D. E.; Stevens, M. H.; Hervig, M. E.; Randall, C. E.

    2012-12-01

    One of the primary objectives of the AIM extended mission is to understand the solar cycle variation of Polar Mesospheric Clouds (PMCs). Complicating this problem have been two unexpected phenomena. First, it has become clear that PMCs vary greatly in response to meteorological variability propagating upwards from the stratosphere or teleconnecting from the opposite (winter) hemisphere. Second, the first 4 years of the AIM mission (2007-2010) corresponded to historically very low solar activity. Recently, solar activity has increased modestly; however, the problem remains of pulling out a weak signal (solar) against a noisy background (dynamics). There are two ways to reduce the geophysical noise. First, we note that due to the dynamically active Northern Hemisphere (NH) winter, the effects of meteorological teleconnections are greatest on Southern Hemisphere PMCs. By focusing on Northern Hemisphere PMCs, we get less dynamical variability. Second, it has been shown that by correlating PMC properties with stratospheric winter temperatures, a functional relationship between PMCs and dynamics can be established. In principle, deviations from this functional relationship could be interpreted as due to external forcing, i.e. from solar variability. Expectations are that clouds should decrease for higher levels of solar forcing. Surprisingly however, in 2011, the first year with higher solar activity, the SOFIE instrument on AIM saw more clouds in July than ever. We explore possible reasons for this anomaly, including the possibility of an enhancement in H2O from the launch of STS135 on July 8th. To date, 2012 also shows moderately higher solar activity, but without the contaminating effects of shuttle exhaust. We will evaluate whether PMCs were affected by solar activity in 2012. Acknowledgements: This work was sponsored by the NASA AIM Small Explorer program.

  5. Age- and sex-related variations in the brain white matter fractal dimension throughout adulthood: an MRI study.

    PubMed

    Farahibozorg, S; Hashemi-Golpayegani, S M; Ashburner, J

    2015-03-01

    To observe age- and sex-related differences in the complexity of the global and hemispheric white matter (WM) throughout adulthood by means of fractal dimension (FD). A box-counting algorithm was used to extract FD from the WM magnetic resonance images of 209 healthy adults from three structural layers, including general (gFD), skeleton (sFD), and boundaries (bFD). Model selection algorithms and statistical analyses, respectively, were used to examine the patterns and significance of the changes. gFD and sFD showed inverse U-shape patterns with aging, with a slighter slope of increase from young to mid-age and a steeper decrease to the old. bFD was less affected by age. Sex differences were evident, specifically in gFD and sFD, with men showing higher FDs. Age × sex interaction was significant mainly in the hemispheric analysis, with men undergoing sharper age-related changes. After adjusting for the volume effect, age-related results remained approximately the same, but sex differences changed in most of the features, with women indicating higher values, specifically in the left hemisphere and boundaries. Right hemisphere was still more complex in men. This study is the first that investigates the WM FD spanning adulthood, treating age both as a continuous and categorical variable. We found positive correlations between FD and volume, and our results show similarities with those investigating small-world properties of the brain networks, as well as those of functional complexity and WM integrity. These suggest that FD could yield a highly compact description of the structural changes and also might inform us about functional and cognitive variations.

  6. AN EXTERNAL RADIATION BELT AT A HEIGHT OF 320 KM ABOVE THE EARTH (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernov, S.N.; Savenko, I.A.; Shavrin, P.I.

    1961-10-01

    The orbit of the second Russian sputnik was almost circular with altitude extremes of 307 and 339 km. The count rate obtained from a scintillation counter (NaI (Tl) crystall on board the sputnik showed an increase from 4 to 11 disinteg/cm/sup 2/-sec on going from the equator to latitudes of plus or minus 40 to 50 deg due to the variation in cosmic ray count with latitude. Then, a sharp increase in count rate of 20-600 disinteg/cm/sup 2/-sec was observed at geometrical latitudes 50 to 65 deg . Conjugate points were determined, where a zone of increased activity in Siberiamore » was related with a region in the South Indian Ocean, and a zone in North America was related with a zone in the South Pacific Ocean. Thus, zones of increased radiation in the Northern Hemisphere were related to corresponding zones in the Southern Hemisphere by means of the force lines of the geomagnetic field which determines the external radiation belt. The limit of the radiation belt at small latitudes corresponds with the isocline delta = 70 deg in the Northern Hemisphere and with delta = 66 deg in the Southern Hemisphere. The radiation was found to be due to gamma rays having an energy of 100 to 300 kev which originated from the slow-down of electrons hitting the shell of the sputnik. It was estimated that the upper limit of the lifetime of the electrons in the belt was 10/sup 6/to 10/ sup 8/ seconds. Hence it is more likely that the electrons are captured by local acceleration of electrons within the limits of the geomagnetic field than in accordance with a neutron hypothesis (TTT)« less

  7. Neural correlates of uncertain decision making: ERP evidence from the Iowa Gambling Task

    PubMed Central

    Cui, Ji-fang; Chen, Ying-he; Wang, Ya; Shum, David H. K.; Chan, Raymond C. K.

    2013-01-01

    In our daily life, it is very common to make decisions in uncertain situations. The Iowa Gambling Task (IGT) has been widely used in laboratory studies because of its good simulation of uncertainty in real life activities. The present study aimed to examine the neural correlates of uncertain decision making with the IGT. Twenty-six university students completed this study. An adapted IGT was administered to them, and the EEG data were recorded. The adapted IGT we used allowed us to analyze the choice evaluation, response selection, and feedback evaluation stages of uncertain decision making within the same paradigm. In the choice evaluation stage, the advantageous decks evoked larger P3 amplitude in the left hemisphere, while the disadvantageous decks evoked larger P3 in the right hemisphere. In the response selection stage, the response of “pass” (the card was not turned over; the participants neither won nor lost money) evoked larger negativity preceding the response compared to that of “play” (the card was turned over; the participant either won or lost money). In the feedback evaluation stage, feedback-related negativity (FRN) was only sensitive to the valence (win/loss) but not the magnitude (large/small) of the outcome, and P3 was sensitive to both the valence and the magnitude of the outcome. These results were consistent with the notion that a positive somatic state was represented in the left hemisphere and a negative somatic state was represented in the right hemisphere. There were also anticipatory ERP effects that guided the participants' responses and provided evidence for the somatic marker hypothesis with more precise timing. PMID:24298248

  8. Effects of convergent diffusion and charge transfer kinetics on the diffusion layer thickness of spherical micro- and nanoelectrodes.

    PubMed

    Molina, A; Laborda, E; González, J; Compton, R G

    2013-05-21

    Nuances of the linear diffusion layer approximation are examined for slow charge transfer reactions at (hemi)spherical micro- and nanoelectrodes. This approximation is widely employed in Electrochemistry to evaluate the extent of electrolyte solution perturbed by the electrode process, which is essential to the understanding of the effects arising from thin-layer diffusion, convergent diffusion, convection, coupled chemical reactions and the double layer. The concept was well established for fast charge transfer processes at macroelectrodes, but remains unclear under other conditions such that a thorough assessment of its meaning was necessary. In a previous publication [A. Molina, J. González, E. Laborda and R. G. Compton, Phys. Chem. Chem. Phys., 2013, 15, 2381-2388] we shed some light on the influence of the reversibility degree. In the present work, the meaning of the diffusion layer thickness is investigated when very small electrodes are employed and so the contribution of convergent diffusion to the mass transport is very important. An analytical expression is given to calculate the linear diffusion layer thickness at (hemi)spherical electrodes and its behaviour is studied for a wide range of conditions of reversibility (from reversible to fully-irreversible processes) and electrode size (from macro- to nano-electrodes). Rigorous analytical solutions are deduced for true concentration profiles, surface concentrations, linear diffusion layer thickness and current densities when a potential pulse is applied at (hemi)spherical electrodes. The expressions for the magnitudes mentioned above are valid for electrodes of any size (including (hemi)spherical nanoelectrodes) and for any degree of reversibility, provided that mass transport occurs exclusively via diffusion. The variation of the above with the electrode size, applied potential and charge transfer kinetics is studied.

  9. Multibeam Mapping of Remote Fjords in Southeast-Greenland

    NASA Astrophysics Data System (ADS)

    Weinrebe, W.; Kjaer, K. H.; Kjeldsen, K. K.; Bjork, A. A.

    2015-12-01

    The fjords of Southeast-Greenland are among the most remote areas of the Northern Hemisphere. Access to this area is hampered by a broad belt of sea ice floating along the East-Greenland coast from North to South. Consequently, the majority of those fjords have never been surveyed in detail until now. During an expedition by the Center of GeoGenetics of the University of Copenhagen in summer of 2014 we were able to map the Skjoldungen Fjord system with multibeam bathymetry. The topsail schooner ACTIV, built 1951 as a cargo ship to supply remote settlements in Greenland was chosen for the expedition. Though a vintage vessel, the ACTIV was well suited to cross the belt of sea ice and to cruise the ice covered fjords. A portable ELAC-Seabeam 1050 multibeam system was temporarily installed on the vessel. The two transducer of the system were mounted at the lower end of a 6 m long pole attached outboard at port side to the hull of the vessel. Though the installation was quite demanding without any winches or cranes, the construction was sufficiently stable and easy to manage throughout the entire cruise. Nearly the entire fjord system, leaving only a small gap of 5 km at the innermost part and small stripes close to the shorelines could be surveyed during the cruise. For the first time, a comprehensive map of Skjoldungen Fjord is now available. The map displays water depths from close to zero up to 800 m, the deepest part along a stretch of about 10 km in the Southwest. The bathymetry of the northern fjord is remarkably different from the southern fjord: the southern fjord features an outer deep part showing water depths between 500 m and 800 m and a shallow inner part with depths less than 300 m and a prominent sill in between. The northern fjord shows a more gradual increase of water depths from 200 m in the inner part to 600 m at the entrance.

  10. The deep muscular plexus of the pig duodenum: a histochemical and ultrastructural study with special reference to the interstitial cells.

    PubMed

    Henry, M; Porcher, C; Julé, Y

    1998-06-10

    The aim of the present study was to describe the deep muscular plexus of the pig duodenum and to characterize its cellular components. Numerous nerve varicosities have been detected in the deep muscular plexus using anti-synaptophysin antibodies. Nerve fibres were also detected here in the outer circular muscle layer, whereas no nerve fibres were observed in the inner circular muscle layer. In the deep muscular plexus, nerve fibres projected to interstitial cells which were characterized at the ultrastructural level. The interstitial cells were of two kinds: the interstitial fibroblastic-like cells (FLC) and the interstitial dense cells (IDC), both of which were interposed between nerve fibres and smooth muscle cells. The FLC were characterized by their elongated bipolar shape, the lack of basal lamina, a well-developed endoplasmic reticulum, a Golgi apparatus, and intermediate filaments. They were closely apposed to axon terminals containing small clear synaptic vesicles and/or dense-cored vesicles. They were frequently connected to each other and to smooth muscle cells of the inner and outer circular layer by desmosomes and more rarely by gap junctions. The IDC are myoid-like cells. They had a stellate appearance and were characterized by a dense cell body, numerous caveolae, and a discontinuous basal lamina. The IDC were always closely apposed to nerve fibres and were connected to smooth muscle cells by desmosomes and small gap junctions. The present results show the unique pattern of cellular organization of the deep muscular plexus of the pig small intestine. They suggest that the interstitial cells in the deep muscular plexus are involved in the integration and transmission of nervous inputs from myenteric neurons to the inner and outer circular muscle layers. The clear-cut distinction observed here between the two types of interstitial cells (fibroblastic and myoid-like) suggests that the interstitial cells of each type may also be involved in some other specific activity, which still remains to be determined.

  11. A size-frequency study of large Martian craters

    NASA Technical Reports Server (NTRS)

    Woronow, A.

    1975-01-01

    The log normal frequency distribution law was used to analyze the crater population on the surface of Mars. Resulting data show possible evidence for the size frequency evolution of crater producing bodies. Some regions on Mars display excessive depletion of either large or small craters; the most likely causes of the depletion are considered. Apparently, eolian sedimentation has markedly altered the population of the small craters south of -30 deg latitude. The general effects of crater obliteration in the Southern Hemisphere appear to be confined to diameters of less than 20 km. A strong depletion of large craters in a large region just south of Deuteronilus Mensae, and in a small region centered at 35 deg latitude and 10 deg west longitude, may indicate locations of subsurface ice.

  12. A Modular Habitation System for Human Planetary and Space Exploration

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott

    2015-01-01

    A small-diameter modular pressure vessel system is devised that can be applied to planetary surface and deep space human exploration missions. As one of the recommendations prepared for the NASA Human Spaceflight Architecture Team (HAT) Evolvable Mars Campaign (EMC), a compact modular system can provide a Mars-forward approach to a variety of missions and environments. Small cabins derived from the system can fit into the Space Launch System (SLS) Orion "trunk", or can be mounted with mobility systems to function as pressurized rovers, in-space taxis, ascent stage cabins, or propellant tanks. Larger volumes can be created using inflatable elements for long-duration deep space missions and planetary surface outposts. This paper discusses how a small-diameter modular system can address functional requirements, mass and volume constraints, and operational scenarios.

  13. Benzobisoxazole cruciforms: A tunable, cross-conjugated platform for the generation of deep blue OLED materials

    DOE PAGES

    Chavez, III, Ramiro; Cai, Min; Tlach, Brian; ...

    2016-01-20

    Four new cross-conjugated small molecules based on a central benzo[1,2-d:4,5-d']bisoxazole moiety possessing semi-independently tunable HOMO and LUMO levels were synthesized and the properties of these materials were evaluated experimentally and theoretically. The molecules were thermally stable with 5% weight loss occurring well above 350 °C. The cruciforms all exhibited blue emission in solution ranging from 433–450 nm. Host–guest OLEDs fabricated from various concentrations of these materials using the small molecule host 4,4'-bis(9-carbazolyl)-biphenyl (CBP) exhibited deep blue-emission with Commission Internationale de L'Eclairage (CIE) coordinates of (0.15 ≤ x ≤ 0.17, 0.05 ≤ y ≤ 0.11), and maximum luminance efficiencies as highmore » as ~2 cd A–1. Lastly, these results demonstrate the potential of benzobisoxazole cruciforms as emitters for developing high-performance deep blue OLEDs.« less

  14. Low Data Drug Discovery with One-Shot Learning.

    PubMed

    Altae-Tran, Han; Ramsundar, Bharath; Pappu, Aneesh S; Pande, Vijay

    2017-04-26

    Recent advances in machine learning have made significant contributions to drug discovery. Deep neural networks in particular have been demonstrated to provide significant boosts in predictive power when inferring the properties and activities of small-molecule compounds (Ma, J. et al. J. Chem. Inf. 2015, 55, 263-274). However, the applicability of these techniques has been limited by the requirement for large amounts of training data. In this work, we demonstrate how one-shot learning can be used to significantly lower the amounts of data required to make meaningful predictions in drug discovery applications. We introduce a new architecture, the iterative refinement long short-term memory, that, when combined with graph convolutional neural networks, significantly improves learning of meaningful distance metrics over small-molecules. We open source all models introduced in this work as part of DeepChem, an open-source framework for deep-learning in drug discovery (Ramsundar, B. deepchem.io. https://github.com/deepchem/deepchem, 2016).

  15. ARENA - A Collaborative Immersive Environment for Virtual Fieldwork

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.

    2012-12-01

    Whenever a geoscientific study area is not readily accessible, as is the case on the deep seafloor, it is difficult to apply traditional but effective methods of fieldwork, which often require physical presence of the observer. The Artificial Research Environment for Networked Analysis (ARENA), developed at GEOMAR | Helmholtz Centre for Ocean Research Kiel within the Cluster of Excellence "The Future Ocean", provides a backend solution to robotic research on the seafloor by means of an immersive simulation environment for marine research: A hemispherical screen of 6m diameter covering the entire lower hemisphere surrounds a group of up to four researchers at once. A variety of open source (e.g. Microsoft Research World Wide Telescope) and commercial software platforms allow the interaction with e.g. in-situ recorded video, vector maps, terrain, textured geometry, point cloud and volumetric data in four dimensions. Data can be put into a holistic, georeferenced context and viewed on scales stretching from centimeters to global. Several input devices from joysticks to gestures and vocalized commands allow interaction with the simulation, depending on individual preference. Annotations added to the dataset during the simulation session catalyze the following quantitative evaluation. Both the special simulator design, making data perception a group experience, and the ability to connect remote instances or scaled down versions of ARENA over the Internet are significant advantages over established immersive simulation environments.

  16. Corticomotor control of lumbar multifidus muscles is impaired in chronic low back pain: concurrent evidence from ultrasound imaging and double-pulse transcranial magnetic stimulation.

    PubMed

    Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril

    2016-04-01

    Chronic low back pain (CLBP) is often associated with impaired control of deep trunk muscles and reorganization of the primary motor areas (M1). Precisely, functional changes of the lumbar multifidus muscles (MF) involved in spine stability may be of special interest in rehabilitation. Therefore, we tested MF corticomotor control using double transcranial magnetic stimulation (TMS) paradigms for the first time in this muscle and examined its link with MF volitional activation. Eleven individuals with lateralized CLBP and 13 pain-free participants were recruited. Ultrasound imaging enabled measurement of MF volitional isometric contraction in prone lying. TMS of MF M1 area was used to test hemispheric excitability and mechanisms in relation to motor programming, i.e., active motor threshold (AMT), amplitude of motor-evoked potentials and short-interval intracortical inhibition (SICI) and facilitation (SICF). In CLBP, SICI level was lower in the left hemisphere and MF volitional contraction was not related to AMT (M1 excitability), conversely to what was observed in the pain-free group. No other between-group difference was detected. These original findings support a plasticity of cortical maps controlling paravertebral muscles and likely including a different motor strategy for the control of MF. Changes of M1 function may thus underlie impaired motor control of lumbopelvic spine and pain persistence in CLBP.

  17. Successful Insular Glioma Removal in a Deaf Signer Patient During an Awake Craniotomy Procedure.

    PubMed

    Metellus, Philippe; Boussen, Salah; Guye, Maxime; Trebuchon, Agnes

    2017-02-01

    Resection of tumors located within the insula of the dominant hemisphere represents a technical challenge because of the complex anatomy, including the surrounding vasculature, and the relationship to functional (motor and language) structures. We report here the case of a successful resection of a left insular glioma in a native deaf signer during an awake craniotomy. The patient, a congenitally deaf right-handed patient who is a native user of sign language, presented with a seizure 1 week before he was referred to our department. Magnetic resonance imaging revealed a left heterogeneous insular tumor enhanced after intravenous gadolinium infusion. Because of its deep and dominant hemisphere location, an awake craniotomy was decided. The patient was evaluated intraoperatively using object naming, text reading, and sign repetition tasks. An isolated inferior frontal gyrus site evoked repeated object naming errors. A transopercular parietal approach was performed and allowed the successful removal of the tumor under direct electric stimulation and electrocorticography. To our knowledge, this is the first report of successful removal of a left insular tumor without any functional sequelae in a native deaf signer using intraoperative direct cerebral stimulation during an awake craniotomy. The methodology used also provides the first evidence of the actual anatomo-functional organization of language in deaf signers. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Ciais, Philippe; Babst, Flurin; Guo, Weichao; Zhang, Cicheng; Magliulo, Vincenzo; Pavelka, Marian; Liu, Shaomin; Huang, Yongmei; Wang, Pei; Shi, Chunming; Ma, Yujun

    2018-01-01

    In view of future changes in climate, it is important to better understand how different plant functional groups (PFGs) respond to warmer and drier conditions, particularly in temperate regions where an increase in both the frequency and severity of drought is expected. The patterns and mechanisms of immediate and delayed impacts of extreme drought on vegetation growth remain poorly quantified. Using satellite measurements of vegetation greenness, in-situ tree-ring records, eddy-covariance CO 2 and water flux measurements, and meta-analyses of source water of plant use among PFGs, we show that drought legacy effects on vegetation growth differ markedly between forests, shrubs and grass across diverse bioclimatic conditions over the temperate Northern Hemisphere. Deep-rooted forests exhibit a drought legacy response with reduced growth during up to 4 years after an extreme drought, whereas shrubs and grass have drought legacy effects of approximately 2 years and 1 year, respectively. Statistical analyses partly attribute the differences in drought legacy effects among PFGs to plant eco-hydrological properties (related to traits), including plant water use and hydraulic responses. These results can be used to improve the representation of drought response of different PFGs in land surface models, and assess their biogeochemical and biophysical feedbacks in response to a warmer and drier climate. © 2017 John Wiley & Sons Ltd.

  19. Calculated WIMP signals at the ANDES laboratory: comparison with northern and southern located dark matter detectors

    NASA Astrophysics Data System (ADS)

    Civitarese, O.; Fushimi, K. J.; Mosquera, M. E.

    2016-12-01

    Weakly interacting massive particles (WIMPs) are possible components of the Universe’s dark matter (DM). The detection of WIMPs is signaled by the recoil of the atomic nuclei which form a detector. CoGeNT at the Soudan Underground Laboratory (SUL) and DAMA at the Laboratori Nazionali del Gran Sasso (LNGS) have reported data on annual modulation of signals attributed to WIMPs. Both experiments are located in laboratories in the Northern Hemisphere. DM detectors are planned to operate (or already operate) in laboratories in the Southern Hemisphere, including SABRE at Stawell Underground Physics Laboratory (SUPL) in Australia, and DM-ICE in Antarctica. In this work we have analyzed the dependence of diurnal and annual modulation of signals, pertaining to the detection of WIMP, on the coordinates of the laboratory, for experiments which may be performed in the planned new Agua Negra Deep Experimental Site (ANDES) underground facility, to be built in San Juan, Argentina. We made predictions for NaI and Ge-type detectors placed in ANDES, to compare with DAMA, CoGeNT, SABRE and DM-ICE arrays, and found that the diurnal modulation of the signals, at the ANDES site, is amplified at its maximum value, both for NaI (Ge)-type detectors, while the annual modulation remains unaffected by the change in coordinates from north to south.

  20. Atmospheric radiocarbon as a Southern Ocean wind proxy over the last 1000 years

    NASA Astrophysics Data System (ADS)

    Rodgers, K. B.; Mikaloff Fletcher, S.; Galbraith, E.; Sarmiento, J. L.; Gnanadesikan, A.; Slater, R. D.; Naegler, T.

    2009-04-01

    Measurements of radiocarbon in tree rings over the last 1000 years indicate that there was a pre-industrial latitudinal gradient of atmospheric radiocarbon of 3.9-4.5 per mail and that this gradient had temporal variability of order 6 per mil. Here we test the idea that the mean gradient as well as variability in he gradient is dominated by the strength of the winds over the Southern Ocean. This is done using an ocean model and an atmospheric transport model. The ocean model is used to derive fluxes of 12CO2 and 14CO2 at the sea surface, and these fluxes are used as a lower boundary condition for the transport model. For the mean state, strong winds in the Southern Ocean drive significant upwelling of radiocarbon-depleted Circumpolar Deep Water (CDW), leading to a net flux of 14CO2 relative to 12CO2 into the ocean. This serves to maintain a hemispheric gradient in pre-anthropogenic atmospheric delta-c14. For perturbations, increased/decreased Southern Ocean winds drive increased/decreased uptake of 14CO2 relative to 12CO2, thus increasing/decreasing the hemispheric gradient in atmospheric delta-c14. The tree ring data is interpreted to reveal a decrease in the strength of the Southern Ocean winds at the transition between the Little Ice Age and the Medieval Warm Period.

  1. Frontoparietal network involved in successful retrieval from episodic memory. Spatial and temporal analyses using fMRI and ERP.

    PubMed

    Iidaka, Tetsuya; Matsumoto, Atsushi; Nogawa, Junpei; Yamamoto, Yukiko; Sadato, Norihiro

    2006-09-01

    The neural basis for successful recognition of previously studied items, referred to as "retrieval success," has been investigated using either neuroimaging or brain potentials; however, few studies have used both modalities. Our study combined event-related functional magnetic resonance imaging (fMRI) and event-related potential (ERP) in separate groups of subjects. The neural responses were measured while the subjects performed an old/new recognition task with pictures that had been previously studied in either a deep- or shallow-encoding condition. The fMRI experiment showed that among the frontoparietal regions involved in retrieval success, the inferior frontal gyrus and intraparietal sulcus were crucial to conscious recollection because the activity of these regions was influenced by the depth of memory at encoding. The activity of the right parietal region in response to a repeated item was modulated by the repetition lag, indicating that this area would be critical to familiarity-based judgment. The results of structural equation modeling revealed that the functional connectivity among the regions in the left hemisphere was more significant than that in the right hemisphere. The results of the ERP experiment and independent component analysis paralleled those of the fMRI experiment and demonstrated that the repeated item produced an earlier peak than the hit item by approximately 50 ms.

  2. Recent Plasma Observations Related to Magnetic Merging and the Low-Latitude Boundary Layer. Case Study by Polar, March 18, 2006

    NASA Technical Reports Server (NTRS)

    Chandler, M.; Avanov, L.; Craven, P.; Mozer, F.; Moore, T. E.

    2007-01-01

    We have begun an investigation of the nature of the low-latitude boundary layer in the mid-altitude cusp region using data from the Polar spacecraft. Magnetosheath-like plasma is frequently observed deep (in terms of distance from the magnetopause and in invariant latitude) in the magnetosphere. One such case, taken during a long period of northward interplanetary magnetic field (IMP) on March 18, 2006, shows injected magnetosheath ions within the magnetosphere with velocity distributions resulting from two separate merging sites along the same field lines. Cold ionospheric ions were also observed counterstreaming along the field lines, evidence that these field lines were closed. Our results support the idea of double reconnection under northward IMP on the same group of field lines can provide a source for the LLBL. However, the flow direction of the accelerated magnetosheath ions antiparallel to the local magnetic field and given location of the spacecraft suggest that these two injection sites are located northward of the spacecraft position. Observed convection velocities of the magnetic field lines are inconsistent with those expected for double post-cusp reconnection in both hemispheres. These observations favor a scenario in which a group of newly closed field lines was created by a combination of high shear merging at high latitudes in the northern hemisphere and low shear merging at lower latitudes at the dayside magnetopause.

  3. The Right Brain: Surviving Retardation

    ERIC Educational Resources Information Center

    Science News, 1977

    1977-01-01

    Describes two studies of brain hemisphere development which indicate children retarded in the functions of one hemisphere may not be retarded in the functions of the second hemisphere. Suggests that the left hemisphere functions may inhibit some right hemisphere functions. (SL)

  4. Hypothalamic digoxin, hemispheric chemical dominance, and eating behavior.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-08-01

    The isoprenoid pathway produces an endogenous membrane Na+-K+ ATPase inhibitor, digoxin, which can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in eating disorders. The patterns were compared in those with right hemispheric and left hemispheric dominance. The serum HMG CoA reductase activity, RBC membrane Na+-K+ ATPase activity, serum digoxin, magnesium, tryptophan catabolites (serotonin, quinolinic acid, strychnine, and nicotine), and tyrosine catabolites (morphine, dopamine, and noradrenaline) were measured in anorexia nervosa, bulimia nervosa, right hemispheric dominant, left hemispheric dominant, and bihemispheric dominant individuals. Digoxin synthesis was increased with upregulated tryptophan catabolism and downregulated tyrosine catabolism in those with anorexia nervosa and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism and upregulated tyrosine catabolism in those with bulimia nervosa and left hemispheric chemical dominance. The membrane Na+-K+ ATPase activity and serum magnesium were decreased in anorexia nervosa and right hemispheric chemical dominance while they were increased in bulimia nervosa and left hemispheric chemical dominance. Hypothalamic digoxin and hemispheric chemical dominance play a central role in the regulation of eating behavior. Anorexia nervosa represents the right hemispheric chemically dominant/hyperdigoxinemic state and bulimia nervosa the left hemispheric chemically dominant/hypodigoxinemic state.

  5. NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro

    2014-01-01

    Satellite microwave radiometers are widely used to estimate sea ice cover properties (concentration, extent, and area) through the use of sea ice concentration (IC) algorithms. Rare are the algorithms providing associated IC uncertainty estimates. Algorithm uncertainty estimates are needed to assess accurately global and regional trends in IC (and thus extent and area), and to improve sea ice predictions on seasonal to interannual timescales using data assimilation approaches. This paper presents a method to provide relative IC uncertainty estimates using the enhanced NASA Team (NT2) IC algorithm. The proposed approach takes advantage of the NT2 calculations and solely relies on the brightness temperatures (TBs) used as input. NT2 IC and its associated relative uncertainty are obtained for both the Northern and Southern Hemispheres using the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) TB. NT2 IC relative uncertainties estimated on a footprint-by-footprint swath-by-swath basis were averaged daily over each 12.5-km grid cell of the polar stereographic grid. For both hemispheres and throughout the year, the NT2 relative uncertainty is less than 5%. In the Southern Hemisphere, it is low in the interior ice pack, and it increases in the marginal ice zone up to 5%. In the Northern Hemisphere, areas with high uncertainties are also found in the high IC area of the Central Arctic. Retrieval uncertainties are greater in areas corresponding to NT2 ice types associated with deep snow and new ice. Seasonal variations in uncertainty show larger values in summer as a result of melt conditions and greater atmospheric contributions. Our analysis also includes an evaluation of the NT2 algorithm sensitivity to AMSR-E sensor noise. There is a 60% probability that the IC does not change (to within the computed retrieval precision of 1%) due to sensor noise, and the cumulated probability shows that there is a 90% chance that the IC varies by less than +/-3%. We also examined the daily IC variability, which is dominated by sea ice drift and ice formation/melt. Daily IC variability is the highest, year round, in the MIZ (often up to 20%, locally 30%). The temporal and spatial distributions of the retrieval uncertainties and the daily IC variability is expected to be useful for algorithm intercomparisons, climate trend assessments, and possibly IC assimilation in models.

  6. Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Gong, Jie; Wu, Dong L.

    2017-02-01

    Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166 GHz channels. It is the first study on frozen particle microphysical properties on a global scale that uses the dual-frequency microwave polarimetric signals.From the ice cloud scenes identified by the 183.3 ± 3 GHz channel brightness temperature (Tb), we find that the scattering by frozen particles is highly polarized, with V-H polarimetric differences (PDs) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166 GHz TBs, as well as the PD at 640 GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow regions (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would easily result in as large as 30 % error in ice water path retrievals. There is a universal bell curve in the PD-TBV relationship, where the PD amplitude peaks at ˜ 10 K for all three channels in the tropics and increases slightly with latitude (2-4 K). Moreover, the 166 GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89 GHz PD is less sensitive than 166 GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors.Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, turbulent mixing within deep convective cores inevitably promotes the random orientation of these particles, a mechanism that works effectively in reducing the PD. The current GMI polarimetric measurements themselves cannot fully disentangle the possible mechanisms.

  7. Microphysical Properties of Frozen Particles Inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) Polarimetric Measurements

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dongliang

    2017-01-01

    Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166GHz channels. It is the first study on global frozen particle microphysical properties that uses the dual-frequency microwave polarimetric signals. From the ice cloud scenes identified by the 183.3 3GHz channel brightness temperature (TB), we find that the scatterings of frozen particles are highly polarized with V-H polarimetric differences (PD) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166GHz TBs, as well as the PD at 640GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow region (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would result in as large as 30 error in ice water path retrievals. There is a universal bell-curve in the PD TB relationship, where the PD amplitude peaks at 10K for all three channels in the tropics and increases slightly with latitude. Moreover, the 166GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89GHz PD is less sensitive than 166GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors. Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, changes in the ice microphysical habitats or orientation due to turbulence mixing can also lead to a reduced PD in the deep convective cores. The current GMI polarimetric measurements themselves cannot fully disentangle the possible mechanisms.

  8. Background light measurements in the deep ocean

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Kitamura, T.; Matsuno, S.; Mitsui, K.; Ohashi, Y.

    1986-04-01

    The ambient light intensity at depths from 1500 to 4700 m at the DUMAND site near Hawaii is determined experimentally. The instrument (two 5-inch-diameter hemispherical photomultiplier elements enclosed in a glass sphere filled with transparent silicon gel, a cylindrical stainless-steel electronics housing, and an A1/PVC frame) and the data-processing techniques are described, and the results of both ship-suspended and bottom-tethered deployments are presented in graphs and characterized. The bottom-tethered data are shown to be stable, and the absolute flux (218 + 20 or - 60 photons/sq cm s) at 4700 m is considered consistent with the beta decay of K-40. Higher and less stable intensities in the ship-suspended data are attributed to bioluminescence stimulated by the motion of the instrument.

  9. Intercontinental Transport of Tropical Ozone from Biomass Burning: Views from Satellite and SHADOZ (Southern Hemisphere Additional Ozonesondes) Soundings

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2003-01-01

    The atmospheric impacts of tropical fires came to attention in the 1970's and there has been interest in the connection between these fires and ozone since about 1980. Photochemically reactive gases released by fires (e.g. NO, CO, volatile organic carbon) interact as they do in an urban environment to form ozone. Tropical meteorology also plays a part in tropospheric ozone distributions in the tropics - through large-scale circulation, deep convection, regional phenomena (West African and Asian monsoon) - and variations associated with El-Nino and the Quasi- biennial Oscillation have been reported. This Poster is an overview of observations, taken from satellite and from ozone soundings, that illustrate regional influences and intercontinental-range ozone transport in the tropics.

  10. All sky Northern Hemisphere 10(15) EV gamma-ray survey

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Loh, E. C.; Mizumoto, Y.; Sokolsky, P.; Sommers, P.; Steck, D.

    1985-01-01

    Flux limits in the range 10 to the minus 13th power-10 to the minus 12 power/sq cm/s have been obtained by observing Cerenkov flashes from small air showers. During 1983, a 3.5 sigma excess of showers was observed during the phase interval 0.2 to 0.3 of the 4.8h period of Cygnus X-3, but no excess was found in 1984 observations.

  11. Taxonomy, phylogenetics and biogeography of Chesneya (Fabaceae), evidenced from data of three sequences, ITS, trnS-trnG, and rbcL

    Treesearch

    Ming-Li Zhang; Zhi-Bin Wen; Xiao-Li Hao; Vyacheslav V. Byalt; Alexander P. Sukhorukov; Stewart C. Sanderson

    2015-01-01

    Plants of Central Asia have played a significant role in the origin of floras of Eurasia and the Northern Hemisphere. Chesneya, a small leguminous genus occurring in Central Asia, western Asia, and Tibet, is used to establish phylogenetic relationships and discuss the evolutionary and biogeographical history based on sequence data of ITS and trnS-trnG and rbcL.We...

  12. Effects of Microwave Irradiation on Embryonic Brain Tissue.

    DTIC Science & Technology

    1979-03-01

    less than 1 hour) post partum in the experiment described in Section III, page 13. Table 2 The significance of the difference in weight of the irradiated...appeared normal. Two of the control and two of the exposed rats showed small depressions of the external surface of the hemisphere unilaterally with...some thinning of the underlying cortex. The depressions occurred, one just dorsal to the rhinal fissure and the other lateral to the longitudinal sulcus

  13. The nature of hemispheric specialization for linguistic and emotional prosodic perception: a meta-analysis of the lesion literature.

    PubMed

    Witteman, Jurriaan; van Ijzendoorn, Marinus H; van de Velde, Daan; van Heuven, Vincent J J P; Schiller, Niels O

    2011-11-01

    It is unclear whether there is hemispheric specialization for prosodic perception and, if so, what the nature of this hemispheric asymmetry is. Using the lesion-approach, many studies have attempted to test whether there is hemispheric specialization for emotional and linguistic prosodic perception by examining the impact of left vs. right hemispheric damage on prosodic perception task performance. However, so far no consensus has been reached. In an attempt to find a consistent pattern of lateralization for prosodic perception, a meta-analysis was performed on 38 lesion studies (including 450 left hemisphere damaged patients, 534 right hemisphere damaged patients and 491 controls) of prosodic perception. It was found that both left and right hemispheric damage compromise emotional and linguistic prosodic perception task performance. Furthermore, right hemispheric damage degraded emotional prosodic perception more than left hemispheric damage (trimmed g=-0.37, 95% CI [-0.66; -0.09], N=620 patients). It is concluded that prosodic perception is under bihemispheric control with relative specialization of the right hemisphere for emotional prosodic perception. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Resources for Hope: Ideas for Alternatives from Heterodox Higher Education Institutions

    ERIC Educational Resources Information Center

    Butcher, Catherine Norma

    2017-01-01

    This report describes my field visits to Berea and Deep Springs Colleges in the U.S.A. and explores their forms of ownership/control, governance, financing and organisational structure. Berea and Deep Springs are small, liberal arts colleges, distinctive in American higher education, in which students actively participate in a spirit of democracy.…

  15. Some glial progenitors in the neonatal subventricular zone migrate through the corpus callosum to the contralateral cerebral hemisphere.

    PubMed

    Kakita, Akiyoshi; Zerlin, Marielba; Takahashi, Hitoshi; Goldman, James E

    2003-04-14

    The great majority of glial cells of the mammalian forebrain are generated in the perinatal period from progenitors in the subventricular zone (SVZ). We investigated the migration of progenitors from the neonatal (postnatal day 0, P0) rat forebrain SVZ by labeling them in vivo with a green fluorescence protein (GFP) retrovirus and monitoring their movements by time-lapse video microscopy in P3 slices. We identified a small number of progenitors that migrated tangentially within the corpus callosum (CC) and crossed the midline. These cells retained a relatively uniform morphology: the leading process was extended toward the contralateral side but showed no process branching or turning away from the migratory direction. Net migration requires the elongation of the leading process and nuclear translocation, and the migrating cells in the CC showed both modes. We confirmed the presence of unmyelinated axon bundles within the P3 CC, but failed to detect any radially directed glial processes (vimentin- or GLAST-immunolabeled fibers) spanning through the CC. Confocal images showed a close proximity between neurofilament-immunolabeled axons and the leading process of the GFP-expressing progenitors in the CC. The destination of the callosal fibers was examined by applying DiI to the right cingulum; the labeled fibers ran throughout the CC and reached the left cingulate and motor areas. The distribution and final fates of the retrovirus-labeled cells were examined in P28 brains. A small proportion of the labeled cells were found in the contralateral hemisphere, where, as oligodendrocytes and astrocytes, they colonized predominantly the cortex and the underlying white matter of the cingulate and secondary motor areas. The distribution pattern appears to coincide well with the projection direction of the callosal fibers. Thus, glial progenitors migrate across the CC, presumably in conjunction with unmyelinated axons, to colonize the contralateral hemisphere. Copyright 2003 Wiley-Liss, Inc.

  16. Convective Available Potential Energy of World Ocean

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ingersoll, A. P.; Thompson, A. F.

    2012-12-01

    Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open-ocean convection may arise through strong surface buoyancy fluxes (Schott et al. 1996), or by thermobaric instability (Akitomo 1999a, b). Ingersoll (2005) demonstrated that thermobaric-induced deep convection is due to the abrupt release of ocean potential energy into kinetic energy. In atmospheric dynamics, Convective Available Potential Energy (CAPE) has long been an important thermodynamic variable (Arakawa and Schubert 1974) that has been used to forecast moist convection (Doswell and Rasmussen 1994) and to test the performance of GCMs (Ye et al. 1998). However, the development of a similar diagnostic in the ocean has received little attention.; World Ocean Convective Available Potential Energy distribution in North-Hemisphere Autumn (J/kg)

  17. Dueling Deglacial Depth Transects: A Synthesis of Isotope Records from the South Atlantic and Pacific Oceans Provides Insight into Deglacial Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Sikes, E. L.; Allen, K. A.; Lund, D. C.

    2016-12-01

    The end of the last ice age was marked by rapid increases in atmospheric CO2 and changes in ocean circulation and seawater δ13C and Δ14C, suggesting that enhanced ventilation of the deep ocean may have released sequestered CO2 to the atmosphere. Here we compare depth transects of Δ14C and high-resolution Cibicidoides sp. δ13C and δ18O records from the Southwest Pacific and the Southwest Atlantic to gain insight into the changing extent and composition of water masses in the Southern Hemisphere. Our vertical transects document that during the Last Glacial Maximum (LGM), water mass properties and boundaries in the Southwest Atlantic and Pacific were very different from one another and from their respective modern profiles. The shallow to deep δ13C difference (Δδ13C, 660- 2500 m) in the Pacific was 1.7‰, more than double the Holocene value ( 0.7‰) and a deep watermass boundary was situated above 1600m. LGM Δδ13C in the Atlantic was similar to the Pacific, but the deep geochemical front was situated at 2500 m (as observed previously; e.g. Hoffman and Lund, 2012). At the onset of Heinrich Stadial 1 (HS1; 18 - 14.5 ka), changes in the shallow isotope records (< 1500 m) from the two basins differed, indicating independent controls on intermediate water composition/formation in these two ocean basins. During HS1 in the Pacific, rapid δ13C and Δ14C enrichment above 1600 m coincided with δ13C depletion in Atlantic waters between 1500 m and 2500 m. Benthic δ13C below 2500 m in both basins and D14C in the Pacific remained depleted until the Antarctic Cold Reversal (ACR; 14.7 to 12.7 ka). During the ACR, Pacific Δ14C below 1600 m increased while both the Atlantic and Pacific experienced a rapid increase in δ13C and decrease in δ18O below 2500 m. These simultaneous isotopic shifts in the Pacific and Atlantic support the idea of a widespread pulse of deep-water ventilation driven by the resumption of North Atlantic Deep Water formation during the ACR. Overall, early shallow to intermediate ventilation differed between the two basins and simultaneous deep ventilation occurred later in the deglaciation, coincident with the reinitiation of deep overturning circulation during the Bølling-Allerød.

  18. New whole-body sensory-motor gradients revealed using phase-locked analysis and verified using multivoxel pattern analysis and functional connectivity.

    PubMed

    Zeharia, Noa; Hertz, Uri; Flash, Tamar; Amedi, Amir

    2015-02-18

    Topographic organization is one of the main principles of organization in the human brain. Specifically, whole-brain topographic mapping using spectral analysis is responsible for one of the greatest advances in vision research. Thus, it is intriguing that although topography is a key feature also in the motor system, whole-body somatosensory-motor mapping using spectral analysis has not been conducted in humans outside M1/SMA. Here, using this method, we were able to map a homunculus in the globus pallidus, a key target area for deep brain stimulation, which has not been mapped noninvasively or in healthy subjects. The analysis clarifies contradictory and partial results regarding somatotopy in the caudal-cingulate zone and rostral-cingulate zone in the medial wall and in the putamen. Most of the results were confirmed at the single-subject level and were found to be compatible with results from animal studies. Using multivoxel pattern analysis, we could predict movements of individual body parts in these homunculi, thus confirming that they contain somatotopic information. Using functional connectivity, we demonstrate interhemispheric functional somatotopic connectivity of these homunculi, such that the somatotopy in one hemisphere could have been found given the connectivity pattern of the corresponding regions of interest in the other hemisphere. When inspecting the somatotopic and nonsomatotopic connectivity patterns, a similarity index indicated that the pattern of connected and nonconnected regions of interest across different homunculi is similar for different body parts and hemispheres. The results show that topographical gradients are even more widespread than previously assumed in the somatosensory-motor system. Spectral analysis can thus potentially serve as a gold standard for defining somatosensory-motor system areas for basic research and clinical applications. Copyright © 2015 the authors 0270-6474/15/352845-15$15.00/0.

  19. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models

    NASA Astrophysics Data System (ADS)

    Cabré, Anna; Marinov, Irina; Leung, Shirley

    2015-09-01

    We analyze for the first time all 16 Coupled Model Intercomparison Project Phase 5 models with explicit marine ecological modules to identify the common mechanisms involved in projected phytoplankton biomass, productivity, and organic carbon export changes over the twenty-first century in the RCP8.5 scenario (years 2080-2099) compared to the historical scenario (years 1980-1999). All models predict decreases in primary and export production globally of up to 30 % of the historical value. We divide the ocean into biomes using upwelling velocities, sea-ice coverage, and maximum mixed layer depths. Models generally show expansion of subtropical, oligotrophic biomes and contraction of marginal sea-ice biomes. The equatorial and subtropical biomes account for 77 % of the total modern oceanic primary production (PP), but contribute 117 % to the global drop in PP, slightly compensated by an increase in PP in high latitudes. The phytoplankton productivity response to climate is surprisingly similar across models in low latitude biomes, indicating a common set of modeled processes controlling productivity changes. Ecological responses are less consistent across models in the subpolar and sea-ice biomes. Inter-hemispheric asymmetries in physical drivers result in stronger climate-driven relative decreases in biomass, productivity, and export of organic matter in the northern compared to the southern hemisphere low latitudes. The export ratio, a measure of the efficiency of carbon export to the deep ocean, decreases across low and mid-latitude biomes and models with more than one phytoplankton type, particularly in the northern hemisphere. Inter-model variability is much higher for biogeochemical than physical variables in the historical period, but is very similar among predicted 100-year biogeochemical and physical changes. We include detailed biome-by-biome analyses, discuss the decoupling between biomass, productivity and export across biomes and models, and present statistical significance and consistency across models using a novel technique based on bootstrapping combined with a weighting scheme based on similarity across models.

  20. Microplastic pollution in deep-sea sediments.

    PubMed

    Van Cauwenberghe, Lisbeth; Vanreusel, Ann; Mees, Jan; Janssen, Colin R

    2013-11-01

    Microplastics are small plastic particles (<1 mm) originating from the degradation of larger plastic debris. These microplastics have been accumulating in the marine environment for decades and have been detected throughout the water column and in sublittoral and beach sediments worldwide. However, up to now, it has never been established whether microplastic presence in sediments is limited to accumulation hot spots such as the continental shelf, or whether they are also present in deep-sea sediments. Here we show, for the first time ever, that microplastics have indeed reached the most remote of marine environments: the deep sea. We found plastic particles sized in the micrometre range in deep-sea sediments collected at four locations representing different deep-sea habitats ranging in depth from 1100 to 5000 m. Our results demonstrate that microplastic pollution has spread throughout the world's seas and oceans, into the remote and largely unknown deep sea. Copyright © 2013. Published by Elsevier Ltd.

Top