Science.gov

Sample records for small deflection energy

  1. Small Deflection Energy Analyzer for Energy and Angular Distributions

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.

    2009-01-01

    The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere. The SDEA consists of a pair of parallel conducting plates separated by a small distance, with an entrance slit on one end, and an exit slit on the other. A voltage applied to these plates develops an electric field between the plates, and this field deflects ions passing through it. If an ion has too little energy, it will strike one of the plates. If it has too much, it will strike the back wall. An ion with the amount of energy being searched for will have its trajectory bent just enough to exit the back slit. The SDEA units are compact, rectangular, and operate with low voltages. The units can be built up into small arrays. These arrays could be used either to widen the field of view or to sharpen an existing one. This approach can also be used to obtain angular distributions in two planes simultaneously, thus cutting down the ion source power requirements in half. This geometry has enabled a new mass-spectrometer concept that can provide miniaturized mass spectrometers for use in industrial plants, air-pollution monitoring, and noxious-gas detection.

  2. Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.; Finne, Theodore T.

    2010-01-01

    Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about

  3. Guide Vanes for Deflecting Fluid Currents with Small Loss of Energy

    NASA Technical Reports Server (NTRS)

    Krober, G

    1933-01-01

    The transverse momentum of the deflected air stream to be absorbed is divided between the intermediate and outside walls, so that the pressure increase on each wall is much smaller and the danger of separation is diminished. The formation of secondary vortices is also diminished. By taking as the basis profiles with high c(sub a), such as have proved practically favorable, it is not possible to find a satisfactory form of grid simply on the assumption that the flow is potential. The requirements called for the most uniform possible velocity distribution behind the bend and the smallest possible losses.

  4. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  5. A general small-deflection theory for flat sandwich plates

    NASA Technical Reports Server (NTRS)

    Libove, Charles; Batdorf, S B

    1948-01-01

    A small-deflection theory is developed for the elastic behavior of orthotropic flat plates in which deflections due to shear are taken into account. In this theory, which covers all types of flat sandwich construction, a plate is characterized by seven physical constants (five stiffnesses and two Poisson ratios) of which six are independent. Both the energy expression and the differential equations are developed. Boundary conditions corresponding to simply supported, clamped, and elastically restrained edges are considered.

  6. Simulations of directed energy comet deflection

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.

    2016-09-01

    Earth-crossing asteroids and comets pose a long-term hazard to life and property on Earth. Schemes to mitigate the impact threat have been studied extensively but tend to focus on asteroid diversion while neglecting the possibility of a comet threat. Such schemes often demand physically intercepting the target by spacecraft, a task feasible only for targets identified decades in advance in a restricted range of orbits. A threatening comet is unlikely to satisfy these criteria and so necessitates a fundamentally different approach for diversion. Comets are naturally perturbed from purely gravitational trajectories through solar heating of their surfaces which activates sublimation-driven jets. Artificial heating of a comet, such as by a high-powered laser array in Earth orbit, may supplement natural heating by the Sun to purposefully manipulate its path to avoid an impact. The effectiveness of any particular laser array for a given comet depends on the comet's heating response which varies dramatically depending on factors including nucleus size, orbit and dynamical history. These factors are incorporated into a numerical orbital model using established models of nongravitational perturbations to evaluate the effectiveness and feasibility of using high-powered laser arrays in Earth orbit or on the ground to deflect a variety of comets. Simulation results suggest that orbital arrays of 500m and 10GW operating for 10 min=d over 1 yr may be adequate for mitigating impacts by comets up to 500m in diameter. Continuously operating ground-based arrays of 100m and 10GW may be similarly effective when appropriately located.

  7. Directed energy deflection laboratory measurements of common space based targets

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so

  8. Measuring Atomic and Molecular Species in the Upper Atmosphere up to 1000 km with the Free-Fall Mass Spectrometer and the Small Deflection Energy Analyzer

    NASA Astrophysics Data System (ADS)

    Herrero, F.; Nicholas, A.

    2007-05-01

    Atomic oxygen (O), the major constituent of the Earth's thermosphere above 200 km altitude is both a driver and a tracer of atmospheric motions in the thermosphere and plays a pivotal role in interactions with the ionosphere through ion-drag and chemical reactions. At altitudes above 400 to 500 km, the energies and composition may reveal interactions with the magnetosphere. In addition, satellites in low-Earth orbit require knowledge of O densities to address engineering issues in low-Earth-orbit missions. The major difficulties in O measurements involve ambiguities due to the recombination of O in the sensor surfaces to yield O2 which is then measured with a mass spectrometer; similar difficulties exist for atomic hydrogen H and nitrogen N. In this paper we describe the use of our new charged particle spectrometers to measure relative densities and energies of the neutral and ion constituents in the upper atmosphere and into the exosphere to about 1000 km altitude. Neutral atoms are ionized before striking internal surfaces and surface-accommodated atoms and molecules are discriminated from incident ones according to their energies. Our ion source sensitivity is about 1.3x10-4/s per microAmp electron beam current for a number density of 1/cm3. Thus, operating with 1 mA emission (about 0.2W cathode power), signals of 100/s with integration period of 1 second correspond to a neutral atom density of about 103/cm3 with 10% variance. At very high altitudes, the lowest densities occur with the coldest thermopause - a 750K thermopause having an O density of about 150/cm3 at 1000 km, much higher densities for H and He, and much lower for O2 and N2. Total power for the spectrometer suite is less than 0.5 W with a mass of about 0.5 kg, based on our current versions. We plan to propose development of the sensor suite for two missions; one at 400 km and one at 830 km.

  9. Four-dimensional visualization of a small-scale flame based on deflection tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Liu, Zhigang; Zhao, Minmin

    2016-11-01

    Optical computed tomography is an important technique in the visualization and diagnosis of various flow fields. A small-scale diffusion flame was visualized using deflection tomography. A projection sampling system was proposed for deflection tomography to obtain deflectograms with a pair of gratings. Wave-front retrieval was employed for processing the deflectograms to obtain the deflection angles of the rays. This two-dimensional data extraction method expanded the application of deflection tomography and was suitable for the projection extraction of small-scale combustion. Deflection angle revision reconstruction algorithm was used to reconstruct the temperature distributions in 10 cross sections for each deflectogram in different instants. The flow structure was reconstructed using a visualization toolkit equipped with the marching cube and ray casting algorithms. The performed experiments demonstrated the three-dimensional dynamic visualization of temperature distributions and the flame structures of small-scale diffusion combustion.

  10. A small-gap electrostatic micro-actuator for large deflections

    PubMed Central

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  11. A small-gap electrostatic micro-actuator for large deflections.

    PubMed

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-12-11

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance.

  12. Comet deflection by directed energy: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Madajian, Jonathan; Griswold, Janelle; Gandra, Anush; Hughes, Gary B.; Zhang, Qicheng; Rupert, Nic; Lubin, Philip

    2016-09-01

    Comets and Asteroids are viable threats to our planet; if these space rocks are smaller than 25 meters, they burn up in the atmosphere, but if they are wider than 25 meters they can cause damage to the impact area. Anything more than one to two kilometers can have worldwide effects, furthermore a mile-wide asteroid travelling at 30,000 miles per hour has the energy equal to a megaton bomb and is very likely to wipe out most of the life on Earth. Residents near Chelyabinsk, Russia experienced the detrimental effects of a collision with a Near-Earth Asteroid (NEA) on 15 February 2013 as a 20 m object penetrated the atmosphere above that city. The effective yield from this object was approximately 1/2 Megaton TNT equivalent (Mt), or that of a large strategic warhead. The 1908 Tunguska event, also over Russia, is estimated to have had a yield of approximately 15 Mt and had the potential to kill millions of people had it come down over a large city1. In the face of such danger a planetary defense system is necessary and this paper proposes a design for such a system. DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) is a phased array laser system that can be used to oblate, deflect and de-spin asteroids and comets.

  13. Kidnapping small icy asteroids in Earth near encounter to harbour life and to deflect trajectory

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The inter-planetary flight for human being is under danger because of unscreened and lethal solar flare radioactive showers. The screening of the astronauts by huge superconducting magnetic fields is unrealistic by many reasons. On the contrary the ability to reach nearby icy asteroids, to harbour there a complete undergound room where ecological life systems are first set, this goal may offer a later natural and safe currier for future human stations and enterprise. The need to deflect such a small size (a few thousands tons objects) maybe achieved by micro nuclear engines able to dig the asteroid icy skin, to heat and propel the soil by a synchronous jet engine array, bending and driving it to any desired trajectories. The need for such a wide collection of icy asteroid stations, often in a robotic ibernated state, it will offer the safe help station, raft in the wide space sea, where to collect material or energy in long human planetary travels.

  14. Optimization of Deflection of a Big NEO through Impact with a Small One

    PubMed Central

    Zhu, Kaijian; Huang, Weiping; Wang, Yuncai; Niu, Wei; Wu, Gongyou

    2014-01-01

    Using a small near-Earth object (NEO) to impact a larger and potentially threatening NEO has been suggested as an effective method to avert a collision with Earth. This paper develops a procedure for analysis of the technique for specific NEOs. First, an optimization method is used to select a proper small body from the database. Some principles of optimality are achieved with the optimization process. Then, the orbit of the small body is changed to guarantee that it flies toward and impacts the big threatening NEO. Kinetic impact by a spacecraft is chosen as the strategy of deflecting the small body. The efficiency of this method is compared with that of a direct kinetic impact to the big NEO by a spacecraft. Finally, a case study is performed for the deflection of the Apophis NEO, and the efficiency of the method is assessed. PMID:25525627

  15. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    PubMed Central

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C. F.; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  16. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  17. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  18. Small deflection of a class of clamped thin plates using collocation

    NASA Technical Reports Server (NTRS)

    Worley, W. J.

    1977-01-01

    Equations are given for the optimization of a class of two-and three-dimensional structures. The application of existing analytical techniques to the response of thin clamped plates is described. The ratios of deflections to plate thickness are given for uniform transverse loads as well as for uniform plus linearly varying transverse loads. Deflections are presented at angular increments of 5 degrees and at radial increments of 0.1 of the radius.

  19. Full sky harmonic analysis hints at large ultra-high energy cosmic ray deflections

    SciTech Connect

    Tinyakov, P. G. Urban, F. R.

    2015-03-15

    The full-sky multipole coefficients of the ultra-high energy cosmic ray (UHECR) flux have been measured for the first time by the Pierre Auger and Telescope Array collaborations using a joint data set with E > 10 EeV. We calculate these harmonic coefficients in the model where UHECR are protons and sources trace the local matter distribution, and compare our results with observations. We find that the expected power for low multipoles (dipole and quadrupole, in particular) is sytematically higher than in the data: the observed flux is too isotropic. We then investigate to which degree our predictions are influenced by UHECR deflections in the regular Galactic magnetic field. It turns out that the UHECR power spectrum coefficients C{sub l} are quite insensitive to the effects of the Galactic magnetic field, so it is unlikely that the discordance can be reconciled by tuning the Galactic magnetic field model. On the contrary, a sizeable fraction of uniformly distributed flux (representing for instance an admixture of heavy nuclei with considerably larger deflections) can bring simulations and observations to an accord.

  20. Influence of incoherent scattering on stochastic deflection of high-energy negative particle beams in bent crystals

    NASA Astrophysics Data System (ADS)

    Kirillin, I. V.; Shul'ga, N. F.; Bandiera, L.; Guidi, V.; Mazzolari, A.

    2017-02-01

    An investigation on stochastic deflection of high-energy negatively charged particles in a bent crystal was carried out. On the basis of analytical calculation and numerical simulation it was shown that there is a maximum angle at which most of the beam is deflected. The existence of a maximum, which is taken in the correspondence of the optimal radius of curvature, is a novelty with respect to the case of positively charged particles, for which the deflection angle can be freely increased by increasing the crystal length. This difference has to be ascribed to the stronger contribution of incoherent scattering affecting the dynamics of negative particles that move closer to atomic nuclei and electrons. We therefore identified the ideal parameters for the exploitation of axial confinement for negatively charged particle beam manipulation in future high-energy accelerators, e.g., ILC or muon colliders.

  1. Microwave Deflection Sensor

    NASA Technical Reports Server (NTRS)

    Shores, Paul; Kobayashi, Herb; Ngo, Phong; Lichtenberg, C. L.

    1988-01-01

    Doppler-radar instrument measures small deflections or vibrations of reflecting surface. Acting as interferometric micrometer, instrument includes combination of analog and digital circuits measuring change in phase of radar return due to movement of reflecting surface along signal-propagation path. Includes homodyne Doppler-radar transceiver and digital signal-processing circuitry to measure change in phase shift as target deflects.

  2. Impact of Laser Beam Speckle Structure on Crossed Beam Energy Transfer via Beam Deflections and Ponderomotive Self-Focusing

    NASA Astrophysics Data System (ADS)

    Raj, G.; Hüller, S.

    2017-02-01

    The role of laser speckle structure (hot spots) and its ponderomotive self-focusing (PSF), in crossed beam energy transfer (CBET), of smoothed laser beams is investigated in an inhomogeneous expanding plasma. Numerical simulations using the code harmony in two spatial dimensions, demonstrate how self-focusing of laser hot spots in crossed beams can significantly affect the transfer of energy from one beam to the other in addition to the stimulated Brillouin scattering (SBS) process. It is shown that for sufficiently intense laser beams, when the laser hot spots exceed the criterion for self-focusing in a plasma with flow, the angular spread of transmitted light beams increases considerably with the intensity, which arises in particular, in expanding plasma where significant beam deflection is observed. It is shown for the first time that besides SBS, the contribution of speckle structure, PSF, and deflections of the intense hot spots in multiple speckle beams to CBET, therefore matters.

  3. Maps of CMB lensing deflection from N-body simulations in Coupled Dark Energy Cosmologies

    SciTech Connect

    Carbone, Carmelita; Baldi, Marco; Baccigalupi, Carlo E-mail: marco.baldi5@unibo.it E-mail: bacci@sissa.it

    2013-09-01

    We produce lensing potential and deflection-angle maps in order to simulate the weak gravitational lensing of the Cosmic Microwave Background (CMB) via ray-tracing through the COupled Dark Energy Cosmological Simulations (CoDECS), the largest suite of N-body simulations to date for interacting Dark Energy cosmologies. The constructed maps faithfully reflect the N-body cosmic structures on a range of scales going from the arcminute to the degree scale, limited only by the resolution and extension of the simulations. We investigate the variation of the lensing pattern due to the underlying Dark Energy (DE) dynamics, characterised by different background and perturbation behaviours as a consequence of the interaction between the DE field and Cold Dark Matter (CDM). In particular, we study in detail the results from three cosmological models differing in the background and perturbations evolution at the epoch in which the lensing cross section is most effective, corresponding to a redshift of ∼ 1, with the purpose to isolate their imprints in the lensing observables, regardless of the compatibility of these models with present constraints. The scenarios investigated here include a reference ΛCDM cosmology, a standard coupled DE (cDE) scenario, and a ''bouncing'' cDE scenario. For the standard cDE scenario, we find that typical differences in the lensing potential result from two effects: the enhanced growth of linear CDM density fluctuations with respect to the ΛCDM case, and the modified nonlinear dynamics of collapsed structures induced by the DE-CDM interaction. As a consequence, CMB lensing highlights the DE impact in the cosmological expansion, even in the degenerate case where the amplitude of the linear matter density perturbations, parametrised through σ{sub 8}, is the same in both the standard cDE and ΛCDM cosmologies. For the ''bouncing'' scenario, we find that the two opposite behaviours of the lens density contrast and of the matter abundance lead to

  4. Orbital Simulations on Deflecting Near-Earth Objects by Directed Energy

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Walsh, Kevin J.; Melis, Carl; Hughes, Gary B.; Lubin, Philip M.

    2016-04-01

    Laser ablation of a near-Earth object (NEO) on a collision course with Earth produces a cloud of ejecta that exerts a thrust on the NEO, deflecting it from its original trajectory. Ablation may be performed from afar by illuminating an Earth-targeting asteroid or comet with a stand-off “DE-STAR” system consisting of a large phased-array laser in Earth orbit. Alternatively, a much smaller stand-on “DE-STARLITE” system may travel alongside the target, slowly deflecting it from nearby over a long period. This paper presents orbital simulations comparing the effectiveness of both systems across a range of laser and NEO parameters. Simulated parameters include magnitude, duration and, for the stand-on system, direction of the thrust, as well as the type, size, and orbital characteristics of the target NEO. These simulations indicate that deflection distance is approximately proportional to the magnitude of thrust and to the square of the duration of ablation, and is inversely proportional to the mass. Furthermore, deflection distance shows strong dependence on thrust direction with the optimal direction of thrust varying with the duration of laser activity. As one example, consider a typical 325 m asteroid: beginning 15 years in advance, just 2 N of thrust from a ∼20 kW stand-on DE-STARLITE system is sufficient to deflect the asteroid by 2 {R}\\oplus . Numerous scenarios are discussed as is a practical implementation of such a system consistent with current launch vehicle capabilities.

  5. Solar Sailing Kinetic Energy Interceptor (KEI) Mission for Impacting/Deflecting Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Wie, Bong

    2005-01-01

    A solar sailing mission architecture, which requires a t least ten 160-m, 300-kg solar sail spacecraft with a characteristic acceleration of 0.5 mm/sqs, is proposed as a realistic near- term option for mitigating the threat posed by near-Earth asteroids (NEAs). Its mission feasibility is demonstrated for a fictional asteroid mitigation problem created by AIAA. This problem assumes that a 200-m asteroid, designated 2004WR, was detected on July 4, 2004, and that the expected impact will occur on January 14, 2015. The solar sailing phase of the proposed mission for the AIAA asteroid mitigation problem is comprised of the initial cruise phase from 1 AU t o 0.25 AU (1.5 years), the cranking orbit phase (3.5 years), and the retrograde orbit phase (1 year) prior to impacting the target asteroid at its perihelion (0.75 AU from the sun) on January 1, 2012. The proposed mission will require at least ten kinetic energy interceptor (KEI) solar sail spacecraft. Each KEI sailcraft consists of a 160- m, 150-kg solar sail and a 150-kg microsatellite impactor. The impactor is to be separated from a large solar sail prior to impacting the 200-m target asteroid at its perihelion. Each 150-kg microsatellite impactor, with a relative impact velocity of at least 70 km/s, will cause a conservatively estimated AV of 0.3 cm/s in the trajectory of the 200-m target asteroid, due largely to the impulsive effect of material ejected from the newly-formed crater. The deflection caused by a single impactor will increase the Earth-miss-distance by 0.45Re (where Re denotes the Earth radius of 6,378 km). Therefore, at least ten KEI sailcraft will be required for consecutive impacts, but probably without causing fragmentation, to increase the total Earth-miss-distance by 4.5Re. This miss-distance increase of 29,000 km is outside of a typical uncertainty/error of about 10,000 km in predicting the Earth-miss- distance. A conventional Delta I1 2925 launch vehicle is capable of injecting at least two KEI

  6. Electric Solar Wind Sail Kinetic Energy Impactor for Asteroid Deflection Missions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kouhei; Yamakawa, Hiroshi

    2016-03-01

    An electric solar wind sail uses the natural solar wind stream to produce low but continuous thrust by interacting with a number of long thin charged tethers. It allows a spacecraft to generate a thrust without consuming any reaction mass. The aim of this paper is to investigate the use of a spacecraft with such a propulsion system to deflect an asteroid with a high relative velocity away from an Earth collision trajectory. To this end, we formulate a simulation model for the electric solar wind sail. By summing thrust vectors exerted on each tether, a dynamic model which gives the relation between the thrust and sail attitude is proposed. Orbital maneuvering by fixing the sail's attitude and changing tether voltage is considered. A detailed study of the deflection of fictional asteroids, which are assumed to be identified 15 years before Earth impact, is also presented. Assuming a spacecraft characteristic acceleration of 0.5 mm/s 2, and a projectile mass of 1,000 kg, we show that the trajectory of asteroids with one million tons can be changed enough to avoid a collision with the Earth. Finally, the effectiveness of using this method of propulsion in an asteroid deflection mission is evaluated in comparison with using flat photonic solar sails.

  7. The Asteroid Impact Mission (AIM): Studying the geophysics of small binaries, measuring asteroid deflection and studying impact physics

    NASA Astrophysics Data System (ADS)

    Kueppers, Michael; Michel, Patrick; AIM Team

    2016-10-01

    Binary asteroids and their formation mechanisms are of particular interest for understanding the evolution of the small bodies in the solar system. Also, hazards to Earth from impact of near-Earth asteroids and their mitigation have drawn considerable interest over the last decades.Those subjects are both addressed by ESA's Asteroid Impact mission, which is part of the Asteroid Impact & Deflection Assessment (AIDA) currently under study in collaboration between NASA and ESA. NASA's DART mission will impact a projectile into the minor component of the binary near-Earth asteroid (65803) Didymos in 2022. The basic idea is to demonstrate the effect of the impact on the orbital period of the secondary around the primary. ESA's AIM will monitor the Didymos system for several months around the DART impact time.AIM will be launched in aurumn 2020. It is foreseen to arrive at Didymos in April 2022. The mission takes advantage of a close approach of Didymos to Earth. The next opportunity would arise in 2040 only.AIM will stay near Didymos for approximately 6 months. Most of the time it will be placed on the illuminated side of the system, at distances of approximately 35 km and 10 km. AIM is expected to move away from Didymos for some time around the DART impact.The reference payload for AIM includes two visual imagers, a hyperspectral camera, a lidar, a thermal infrared imager, a monostatic high frequency radar, and a bistatic low frequency radar. In addition, AIM will deploy a small lander on the secondary asteroid, and two cubesats that will be used for additional, more risky investigations close to or on the surface of the asteroid.Major contributions from AIM are expected in the study of the geophysics of small asteroids (including for the first time, radar measurements of an interior structure), the formation of binary asteroids, the momentum enhancement factor from the DART impact (through measuring the mass and the change of orbit of the seondary), and impact physics

  8. A Computational Investigation on Bending Deformation Behavior at Various Deflection Rates for Enhancement of Absorbable Energy in TRIP Steel

    NASA Astrophysics Data System (ADS)

    Pham, Hang Thi; Iwamoto, Takeshi

    2016-08-01

    Transformation-induced plasticity (TRIP) steel might have a high energy-absorption characteristic because it could possibly consume impact energy by not only plastic deformation but also strain-induced martensitic transformation (SIMT) during deformation. Therefore, TRIP steel is considered to be suitable for automotive structures from the viewpoint of safety. Bending deformation due to buckling is one of the major collapse modes of automotive structures. Thus, an investigation on the bending deformation behavior and energy-absorption characteristic in TRIP steel at high deformation rate is indispensable to clarify the mechanism of better performance. Some past studies have focused on the improvement of mechanical properties by means of SIMT; however, the mechanism through which the energy-absorption characteristic in steel can be improved is still unclear. In this study, the three-point bending deformation behavior of a beam specimen made of type-304 austenitic stainless steel, a kind of TRIP steel, is investigated at various deflection rates by experiments and finite-element simulations based on a constitutive model proposed by one of the authors. After confirming the validity of the computation, the rate-sensitivity of energy absorption from the viewpoint of hardening behavior is examined and the improvement of the energy-absorption characteristic in TRIP steel including its mechanism is discussed.

  9. Effect of aileron deflections on the aerodynamic characteristics of a semispan model of a subsonic energy-efficient transport

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.

    1985-01-01

    An investigation was conducted in the Langley 8 Foot Transonic Pressure Tunnel to determine the effect of aileron deflections on the aerodynamic characteristics of a subsonic energy efficient transport (EET) model. The semispan model had an aspect ratio 10 supercritical wing and was configured with a conventionally located set of ailerons (i.e., a high speed aileron located inboard and a low speed aileron located outboard). Data for the model were taken over a Mach number range from 0.30 to 0.90 and an angle of attack range from approximately -2 deg to 10 deg. The Reynolds number was 2.5 million per foot for Mach number = 0.30 and 4 million per foot for the other Mach numbers. Model force and moment data, aileron effectiveness parameters, aileron hinge moment data, otherwise pressure distributions, and spanwise load data are presented.

  10. 3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel

    NASA Astrophysics Data System (ADS)

    Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi

    2015-09-01

    Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.

  11. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities.

    PubMed

    Verhoeven, W; van Rens, J F M; van Ninhuijs, M A W; Toonen, W F; Kieft, E R; Mutsaers, P H A; Luiten, O J

    2016-09-01

    We demonstrate the use of two TM110 resonant cavities to generate ultrashort electron pulses and subsequently measure electron energy losses in a time-of-flight type of setup. The method utilizes two synchronized microwave cavities separated by a drift space of 1.45 m. The setup has an energy resolution of 12 ± 2 eV FWHM at 30 keV, with an upper limit for the temporal resolution of 2.7 ± 0.4 ps. Both the time and energy resolution are currently limited by the brightness of the tungsten filament electron gun used. Through simulations, it is shown that an energy resolution of 0.95 eV and a temporal resolution of 110 fs can be achieved using an electron gun with a higher brightness. With this, a new method is provided for time-resolved electron spectroscopy without the need for elaborate laser setups or expensive magnetic spectrometers.

  12. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities

    PubMed Central

    Verhoeven, W.; van Rens, J. F. M.; van Ninhuijs, M. A. W.; Toonen, W. F.; Kieft, E. R.; Mutsaers, P. H. A.; Luiten, O. J.

    2016-01-01

    We demonstrate the use of two TM110 resonant cavities to generate ultrashort electron pulses and subsequently measure electron energy losses in a time-of-flight type of setup. The method utilizes two synchronized microwave cavities separated by a drift space of 1.45 m. The setup has an energy resolution of 12 ± 2 eV FWHM at 30 keV, with an upper limit for the temporal resolution of 2.7 ± 0.4 ps. Both the time and energy resolution are currently limited by the brightness of the tungsten filament electron gun used. Through simulations, it is shown that an energy resolution of 0.95 eV and a temporal resolution of 110 fs can be achieved using an electron gun with a higher brightness. With this, a new method is provided for time-resolved electron spectroscopy without the need for elaborate laser setups or expensive magnetic spectrometers. PMID:27704035

  13. AIDA: Asteroid Impact & Deflection Assessment

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew F.; Rivkin, A.; Galvez, A.; Carnelli, I.; Michel, P.; Reed, C.

    2012-10-01

    Near Earth objects are small bodies orbiting the Sun near Earth’s orbit, some of which impact the Earth. The impact of an object as large as 30 m in diameter occurs every few centuries. The impact of such an object would already release an energy of at least a megaton of TNT, and the impact of a larger object, which would occur less often, would be even more hazardous. To protect the Earth from a potential asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. The Double Asteroid Redirection Test (DART) is such an asteroid mitigation mission concept. This mission would be a valuable precursor to human spaceflight to an asteroid, as it would return unique information on an asteroid’s strength and internal structure and would be particularly relevant to a human mission for asteroid mitigation. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART study is coordinated with an ESA study of an Asteroid Impact Monitoring (AIM) mission, which would rendezvous with the same target. AIDA follows the previous Don Quijote mission study performed by ESA in 2005-2007, with the objective of demonstrating the ability to modify the trajectory of an asteroid and measure the trajectory change. Don Quijote involved an orbiter and an impactor spacecraft, with the orbiter arriving first and measuring the deflection, and with the orbiter making additional characterization measurements. Unlike Don Quijote, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid, with ground-based observations to measure the deflection as well as additional spacecraft observations from AIM. Low cost mission approaches will be presented.

  14. Energy Conservation in Small Schools. Small Schools Digest.

    ERIC Educational Resources Information Center

    Gardener, Clark

    Information concerning methods and available materials for conserving energy is needed by small, rural schools to offset continued increasing energy costs and lack of financial support and technical assistance. The first step in developing an energy conservation policy is to obtain school board commitment and to establish an energy saving policy.…

  15. Benchmarking Asteroid-Deflection Experiment

    NASA Astrophysics Data System (ADS)

    Remington, Tane; Bruck Syal, Megan; Owen, John Michael; Miller, Paul L.

    2016-10-01

    An asteroid impacting Earth could have devastating consequences. In preparation to deflect or disrupt one before it reaches Earth, it is imperative to have modeling capabilities that adequately simulate the deflection actions. Code validation is key to ensuring full confidence in simulation results used in an asteroid-mitigation plan. We are benchmarking well-known impact experiments using Spheral, an adaptive smoothed-particle hydrodynamics code, to validate our modeling of asteroid deflection. We describe our simulation results, compare them with experimental data, and discuss what we have learned from our work. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-695540

  16. Laser deflection of space objects -- An overview

    SciTech Connect

    Canavan, G.H.

    1997-04-01

    Lasers provide the two major attributes required for effective deflection of space objects: agility and efficiency. Lasers act instantaneously over long distances with little losses, but deliver energy at modest power levels. Material interceptors provide large impulses, but deliver only a fraction of the mass launched into space at low speeds. The two deflection concepts are compared, as are some important additional applications.

  17. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  18. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    SciTech Connect

    Pilan, N. Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  19. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  20. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  1. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  2. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  3. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns...

  4. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  5. Large Deflections of Elastic Rectangular Plates

    NASA Astrophysics Data System (ADS)

    Razdolsky, A. G.

    2015-11-01

    It is known that elastic large deflections of thin plates are governed by von Karman nonlinear equations. The analytical solution of these equations in the general case is unfeasible. Samuel Levy, in 1942, showed that large deflections of the rectangular plate can be expressed as a double series of sine-shaped harmonics (deflection harmonics). However, this method gave no way of creating the computer algorithm of solving the problem. The stress function expression taken in the Levy's method must be revised to find the approach that takes into account of all possible products of deflection coefficients. The algorithm of solving the problem for the rectangular plate with an arbitrary aspect ratio under the action of the lateral distributed load is reported in this paper. The approximation of the plate deflection is taken in the form of double series proposed by Samuel Levy. However, the expression for the stress function is presented in the form that incorporates products of deflection coefficients in the explicit form in distinction to the Levy's expression. The number of harmonics in the deflection expression may be arbitrary. The algorithm provides composing the system of governing cubic equations, which includes the deflection coefficients in the explicit form. Solving the equation system is based on using the principle of minimum potential energy. A method of the gradient descent is applied to find the equilibrium state of the plate as the minimum point of the potential energy. A computer program is developed on the basis of the present algorithm. Numerical examples carried out for the plate model with 16 deflection harmonics illustrate the potentialities of the program. The results of solving the examples are presented in the graphical form for the plates with a different aspect ratio and may be used under designing thin-walled elements of airplane and ship structures.

  6. Accurate analytical approximation of asteroid deflection with constant tangential thrust

    NASA Astrophysics Data System (ADS)

    Bombardelli, Claudio; Baù, Giulio

    2012-11-01

    We present analytical formulas to estimate the variation of achieved deflection for an Earth-impacting asteroid following a continuous tangential low-thrust deflection strategy. Relatively simple analytical expressions are obtained with the aid of asymptotic theory and the use of Peláez orbital elements set, an approach that is particularly suitable to the asteroid deflection problem and is not limited to small eccentricities. The accuracy of the proposed formulas is evaluated numerically showing negligible error for both early and late deflection campaigns. The results will be of aid in planning future low-thrust asteroid deflection missions.

  7. Damping of unwanted modes in SRF deflecting/crabbing cavities

    SciTech Connect

    Burt, Graeme; Wang, Haipeng

    2014-01-01

    As deflecting and crab cavities do not use the fundamental acceleration mode for their operation, the spectrum of unwanted modes is significantly different from that of accelerating cavities. The fundamental acceleration mode is now unwanted and can cause energy spread in the beam; in addition this mode frequency is often close to or lower than that of the deflecting mode, making it difficult to damp. This is made more complex in some of the compact crab cavities as there small beampipes often attenuate the fields very sharply. In addition in some crab cavities there can be an orthogonal transverse mode similar to the deflecting mode, known as the same order mode. The degeneracy of these modes must be split by polarising the cavity and if the polarisation is not large enough, dampers should be placed at either an electric or magnetic field null of the crabbing mode to effectively damp the unwanted polarisation. Various concepts for dealing with unwanted modes in various SRF deflecting cavities will be reviewed.

  8. Philippines: Small-scale renewable energy update

    SciTech Connect

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  9. An analytical solution to proton Bragg peak deflection in a magnetic field.

    PubMed

    Wolf, Russell; Bortfeld, Thomas

    2012-09-07

    The role of MR imaging for image-guided radiation therapy (IGRT) is becoming more and more important thanks to the excellent soft tissue contrast offered by MRI. Hybrid therapy devices with integrated MRI scanners are under active development for x-ray therapy. The combination of proton therapy with MRI imaging has only been investigated at the theoretical or conceptual level. Of concern is the deflection of the proton beam in the homogeneous magnetic field. A previous publication has come to the conclusion that the impact of a 0.5 T magnetic field on the dose distribution for proton therapy is very small and lateral deflections stay well below 2 mm. The purpose of this study is to provide new insights into the effects of magnetic fields on a proton beam coming to rest in a patient. We performed an analytical calculation of the lateral deflection of protons with initial energies between 50 MeV and 250 MeV, perpendicular to the beam direction and the magnetic field. We used a power-law range-energy relationship and the Lorentz force in both relativistic and non-relativistic conditions. Calculations were done for protons coming to rest in water or soft tissue, and generalized to other uniform and non-uniform media. Results were verified by comparisons with numerical calculations and Monte Carlo simulations. A key result of our calculations is that the maximum lateral deflection at the end of range is proportional to the third power of the initial energy. Accordingly, due to the strong dependence on the energy, even a relatively small magnetic field of 0.5 T will cause a deflection of the proton beam by 1 cm at the end of range of a 200 MeV beam. The maximum deflection at 200 MeV is more than 10 times larger than that of a 90 MeV beam. Relativistic corrections of the deflection are generally small but they can become non-negligible at higher energies around 200 MeV and above. Contrary to previous findings, the lateral deflection of a proton beam can be significant (1

  10. Draft air deflecting device

    SciTech Connect

    Riley, J.E.

    1982-05-18

    A draft air deflecting device is mountable proximate to a window contained in a firebox and serves as a conduit which directs draft air across the inner surface of the window prior to its supporting combustion of the fuel in the firebox. In this respect , the draft air deflecting device is formed as a box which communicates with draft air holes located in the firebox and which includes a forwardly extending lip serving to define a nozzle for both increasing the velocity and directing the incoming draft air across the firebox window. The incoming draft air is thus utilized to cool and to prevent soot, creosote and other particulates from accumulating on the window.

  11. Undulator Gravitational Deflection

    SciTech Connect

    Bowden, G.

    2005-01-31

    This note estimates distortions imposed by gravity on LCLS undulator strong-backs. Because of the strongback's asymmetric cross section, gravitational forces cause both torsion as well as simple bending. The superposition of these two effects yields a 4.4 {micro}m maximum deflection and a 0.16 milli radian rotation of the undulator axis. The choice of titanium is compared to aluminum.

  12. Deflection of large near-earth objects

    SciTech Connect

    Canavan, G.H.

    1999-01-11

    The Earth is periodically hit by near Earth objects (NEOs) ranging in size from dust to mountains. The small ones are a useful source of information, but those larger than about 1 km can cause global damage. The requirements for the deflection of NEOs with significant material strength are known reasonably well; however, the strength of large NEOs is not known, so those requirements may not apply. Meteor impacts on the Earth`s atmosphere give some information on strength as a function of object size and composition. This information is used here to show that large, weak objects could also be deflected efficiently, if addressed properly.

  13. Tri-County Small Business Energy Efficiency Program

    EPA Pesticide Factsheets

    The program will have benefits: reducing greenhouse gas emissions, fossil fuel consumption, & water use among small businesses; saving money for small business owners; & educating small business owners about the benefits of energy & water efficiency

  14. Experimental and Theoretical Deflections and Natural Frequencies of an Inflatable Fabric Plate

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson

    1961-01-01

    Static and vibration tests were performed on an inflatable square fabric plate supported on all edges. Lateral deflections and natural frequencies showed good agreement with calculations made using a linear small-deflection theory.

  15. Small Buildings = Big Opportunity for Energy Savings (Fact Sheet)

    SciTech Connect

    Not Available

    2013-09-01

    This fact sheet describes the Small Buildings and Small Portfolios roadmap, which outlines approaches and strategic priorities for the U.S. Department of Energy's Building Technologies Office to pursue over the next three to five years that will support the implementation of high-potential energy efficiency opportunities for small business and building owners and operators.

  16. Small Buildings = Big Opportunity for Energy Savings (Fact Sheet)

    SciTech Connect

    Not Available

    2013-12-01

    Small buildings have a big impact on energy use. In the United States, 44.6 million small buildings consume 44% of the overall energy used in buildings, presenting an enormous opportunity to cut costs, energy use, and greenhouse gas emissions.

  17. Deflection And Stress In Preloaded Square Membrane

    NASA Technical Reports Server (NTRS)

    Hermida, Alfonso

    1991-01-01

    Theoretical analysis yields equations for transverse deflection of, and stresses in, square membrane subject to both uniform transverse load and tension preloads applied uniformly along the edges. Follows energy/virtual-displacement approach. Basic equation expresses strain energy in membrane as double integral, over x and y coordinates of square, of function of longitudinal strains, shear strain, thickness of membrane, and Young's modulus and Poissons's ratio of membrane material.

  18. Small Island States Green Energy Initiative. Final report

    SciTech Connect

    Khattak, Nasir

    1999-10-15

    This report covers the activities carried out during a one year period from 7/15/99 to 7/15/00 as part of the Small Islands Green Energy Initiative. The three activities were: 1) Energy Ministerial conference in the Caribbean; 2) Training session on renewable energy for utility engineers; and 3) Case studies compilation on renewable energy in the Caribbean.

  19. Large beam deflection using cascaded prism array

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Tsui, Chi-Leung

    2012-04-01

    Endoscopes have been utilize in the medical field to observe the internals of the human body to assist the diagnosis of diseases, such as breathing disorders, internal bleeding, stomach ulcers, and urinary tract infections. Endoscopy is also utilized in the procedure of biopsy for the diagnosis of cancer. Conventional endoscopes suffer from the compromise between overall size and image quality due to the required size of the sensor for acceptable image quality. To overcome the size constraint while maintaining the capture image quality, we propose an electro-optic beam steering device based on thermal-plastic polymer, which has a small foot-print (~5mmx5mm), and can be easily fabricated using conventional hot-embossing and micro-fabrication techniques. The proposed device can be implemented as an imaging device inside endoscopes to allow reduction in the overall system size. In our previous work, a single prism design has been used to amplify the deflection generated by the index change of the thermal-plastic polymer when a voltage is applied; it yields a result of 5.6° deflection. To further amplify the deflection, a new design utilizing a cascading three-prism array has been implemented and a deflection angle to 29.2° is observed. The new design amplifies the beam deflection, while keeping the advantage of simple fabrication made possible by thermal-plastic polymer. Also, a photo-resist based collimator lens array has been added to reduce and provide collimation of the beam for high quality imaging purposes. The collimator is able to collimate the exiting beam at 4 μm diameter for up to 25mm, which potentially allows high resolution image capturing.

  20. Deflection of uncooperative targets using laser ablation

    NASA Astrophysics Data System (ADS)

    Thiry, Nicolas; Vasile, Massimiliano

    2015-09-01

    Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which are thought to limit seriously the potential efficiency of a laser-deflection method: the impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. In this paper, we developed a steady-state analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a laser deflection system in absence of the two aforementioned issues. A numerical model was then implemented to solve the transient heat equation in presence of vaporization and melting and account for the tumbling rate of the target. This model was also translated to the case where the target is a space debris by considering material properties of an aluminium 6061-T6 alloy and adapting at every time-step the size of the computational domain along with the recession speed of the interface in order to account for the finite thickness of the debris component. The comparison between the numerical results and the analytical predictions allow us to draw interesting conclusions regarding the momentum coupling achievable by a given laser deflection system both for asteroids and space debris in function of the flux, the rotation rate of the target and its material properties. In the last section of this paper, we show how a reasonably small spacecraft could deflect a 56m asteroid with a laser system requiring less than 5kW of input power.

  1. Small Business Innovation Research Award Success Story: Proton Energy Systems

    SciTech Connect

    2011-04-01

    This success story describes Proton Energy Systems, a small business that designs and manufactures proton exchange membrane (PEM) electrolysis sytems to produce hydrogen from water. The U.S. Department of Energy's Fuel Cell Technologies Program has supported much of Proton's technology development through Small Business Innovation Research (SBIR) Awards and other non-SBIR funding.

  2. ULTRAHIGH ENERGY NEUTRINOS, SMALL X AND UNITARITY.

    SciTech Connect

    HALL RENO, M.; SARCEVIC,IN.; STERMAN,G.; STRATMANN,M.; VOGELSANG,W.

    2001-06-30

    The ultrahigh energy cross section for neutrino interactions with nucleons is reviewed, and unitarity constraints are discussed. We argue that existing QCD extrapolations are self-consistent, and do not imply a breakdown of the perturbative expansion in the weak coupling.

  3. High energy density propulsion systems and small engine dynamometer

    NASA Astrophysics Data System (ADS)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  4. Energy conservation in small meat, poultry and dairy processing plants

    SciTech Connect

    Hausen, C.L.; Fields, E.L.; Huff, R.C.

    1983-06-01

    Energy audits were performed in twenty-three small (generally under 50 employees) meat, poultry and dairy processing plants. Energy conservation opportunities with the greatest potential for net gain in a plant are listed and discussed. Relationships between product throughput and energy consumption are reported.

  5. Energy Distributions in Small Populations: Pascal versus Boltzmann

    ERIC Educational Resources Information Center

    Kugel, Roger W.; Weiner, Paul A.

    2010-01-01

    The theoretical distributions of a limited amount of energy among small numbers of particles with discrete, evenly-spaced quantum levels are examined systematically. The average populations of energy states reveal the pattern of Pascal's triangle. An exact formula for the probability that a particle will be in any given energy state is derived.…

  6. Selected Energy Management Options for Small Business and Local Government.

    ERIC Educational Resources Information Center

    Wert, Jonathan M.; Worthington, Barry K.

    This document is a checklist of 257 energy management options for small business and local government. The energy management options are categorized under: (1) Energy management strategies; (2) Buildings; (3) Lighting; (4) Water; (5) Waste operations; (6) Equipment; (7) Transportation; and (8) Food preparation. To select options for…

  7. 75 FR 10873 - Energy Conservation Program: Energy Conservation Standards for Small Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ...The U.S. Department of Energy (DOE) is adopting energy conservation standards for small electric motors. DOE has determined that these standards will result in significant conservation of energy, and are technologically feasible and economically...

  8. Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate

    NASA Astrophysics Data System (ADS)

    Amabili, Marco; Balasubramanian, Prabakaran; Breslavsky, Ivan D.; Ferrari, Giovanni; Garziera, Rinaldo; Riabova, Kseniia

    2016-12-01

    The hyperelastic behavior of a thin square silicone rubber plate has been investigated analytically, numerically and experimentally; the case of small-amplitude vibrations has been considered, as well as the case of large static deflection under aerostatic pressure. The Mooney-Rivlin hyperelastic model has been chosen to describe the material nonlinear elasticity. The material parameters have been identified by a fitting procedure on the results of a uniaxial traction test. For the analytical model, the equations of motion have been obtained by a unified energy approach, and geometrical nonlinearities are modeled according to the Novozhilov nonlinear shell theory. A numerical model has also been developed by using a commercial Finite-Element code. In the experiments, the silicone rubber plate has been fixed to a heavy metal frame; a certain in-plane pre-load, applied by stretching the plate, has been given in order to ensure a flatness of the surface. An experimental modal analysis has been conducted; results have been used to identify the applied in-plane loads by optimization procedure with two different models: a numerical and an analytical one. The first four experimental and numerical natural modes and frequencies are in good agreement with the experiments after the pre-load identification. The static deflection has been measured experimentally for different pressures. Results have been compared to those obtained by analytical and numerical models. The static deflections are also satisfactorily compared, up to a deflection 50 times larger than the plate thickness, corresponding to a 30 percent strain.

  9. Polyhedron tracking and gravity tractor asteroid deflection

    NASA Astrophysics Data System (ADS)

    Ummen, N.; Lappas, V.

    2014-11-01

    In the wake of the Chelyabinsk airburst, the defense against hazardous asteroids is becoming a topic of high interest. This work improves the gravity tractor asteroid deflection approach by tracking realistic small body shapes with tilted ion engines. An algorithm for polyhedron tracking was evaluated in a fictitious impact scenario. The simulations suggest a capability increase up to 38.2% with such improved tilting strategies. The long- and short-term effects within polyhedron tracking are illustrated. In particular, the orbital reorientation effect is influential when realistic asteroid shapes and rotations are accounted for. Also analyzed is the subject of altitude profiles, a way to tailor the gravity tractor performance, and to achieve a steering ability within the B-plane. A novel analytical solution for the classic gravity tractor is derived. It removes the simulation need for classic tractor designs to obtain comparable two body model Δv figures. This paper corroborates that the asteroid shape can be exploited for maximum performance. Even a single engine tilt adjustment at the beginning of deflection operations yields more deflection than a fixed preset tilt.

  10. High bandwidth deflection readout for atomic force microscopes.

    PubMed

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62fm/√Hz.

  11. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  12. Traversable wormholes with arbitrarily small energy condition violations.

    PubMed

    Visser, Matt; Kar, Sayan; Dadhich, Naresh

    2003-05-23

    Traversable wormholes necessarily require violations of the averaged null energy condition, this being the definition of "exotic matter." However, the theorems which guarantee the energy condition violation are remarkably silent when it comes to making quantitative statements regarding the "total amount" of energy condition violating matter in the spacetime. We develop a suitable measure for quantifying this notion and demonstrate the existence of spacetime geometries containing traversable wormholes that are supported by arbitrarily small quantities of exotic matter.

  13. Deflecting another Tunguska

    NASA Astrophysics Data System (ADS)

    Williamson, Mark

    2009-07-01

    In October 2008 astronomers in the US discovered an asteroid measuring a few metres across that appeared to be on a collision course for Earth. The astronomers, based at the Catalina Sky Survey near Tucson, Arizona, calculated that it would impact the atmosphere in just 19 hours. Sure enough, the asteroid - named 2008 TC3 - hit the atmosphere over northern Sudan early the next morning, producing what NASA called "a brilliant fireball", with an estimated energy equivalent to a kilotonne of TNT.

  14. Small Town Energy Program (STEP) Final Report revised

    SciTech Connect

    Wilson, Charles T.

    2014-01-02

    University Park, Maryland (“UP”) is a small town of 2,540 residents, 919 homes, 2 churches, 1 school, 1 town hall, and 1 breakthrough community energy efficiency initiative: the Small Town Energy Program (“STEP”). STEP was developed with a mission to “create a model community energy transformation program that serves as a roadmap for other small towns across the U.S.” STEP first launched in January 2011 in UP and expanded in July 2012 to the neighboring communities of Hyattsville, Riverdale Park, and College Heights Estates, MD. STEP, which concluded in July 2013, was generously supported by a grant from the U.S. Department of Energy (DOE). The STEP model was designed for replication in other resource-constrained small towns similar to University Park - a sector largely neglected to date in federal and state energy efficiency programs. STEP provided a full suite of activities for replication, including: energy audits and retrofits for residential buildings, financial incentives, a community-based social marketing backbone and local community delivery partners. STEP also included the highly innovative use of an “Energy Coach” who worked one-on-one with clients throughout the program. Please see www.smalltownenergy.org for more information. In less than three years, STEP achieved the following results in University Park: • 30% of community households participated voluntarily in STEP; • 25% of homes received a Home Performance with ENERGY STAR assessment; • 16% of households made energy efficiency improvements to their home; • 64% of households proceeded with an upgrade after their assessment; • 9 Full Time Equivalent jobs were created or retained, and 39 contractors worked on STEP over the course of the project. Estimated Energy Savings - Program Totals kWh Electricity 204,407 Therms Natural Gas 24,800 Gallons of Oil 2,581 Total Estimated MMBTU Saved (Source Energy) 5,474 Total Estimated Annual Energy Cost Savings $61,343 STEP clients who

  15. Noncontact measurement of angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L.

    1978-01-01

    Technique for measuring instantaneous angular deflection of object requires no physical contact. Technique utilizes two flat refractors, converging lens, and different photocell. Distinction of method is its combination of optical and electromechanical components into feedback system in which measurement error is made to approach zero. Application is foreseen in measurement of torsional strain.

  16. Unlocking energy efficiency in small commercial buildings through mechanical contractors

    DOE PAGES

    Granderson, Jessica; Hult, Erin; Fernandes, Samuel; ...

    2017-03-01

    Although buildings smaller than 4,645 m2 account for nearly half of the energy used in U.S. commercial buildings, energy-efficiency programs to date have primarily focused on larger buildings. Stakeholder interviews conducted during a scoping study by Lawrence Berkeley National Laboratory (LBNL) indicated interest in energy efficiency from the small commercial building sector, provided solutions are simple and of low cost. To address this need, an energy management package (EMP) was developed to deliver energy management to small commercial buildings via HVAC contractors, because they already serve these clients and the transaction cost to market would be reduced. This energy-management approachmore » is unique from, but often complementary to, conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Furthermore, this paper presents an overview of the EMP, the business model to deliver it, and preliminary demonstration findings from a pilot use of the EMP. Results from the pilot validated that contractors could deliver the EMP in 4–8 h per building per year and that energy savings of 3–5% are feasible through this approach.« less

  17. Small and Shaping the Future Energy Eco-house System

    NASA Astrophysics Data System (ADS)

    Furukawa, Ryuzo; Takahashi, Hideyuki; Sato, Yoshinori; Sasaki, Hiroshi; Isu, Norifumi; Ohtsuka, Masuo; Tohji, Kazuyuki

    2010-11-01

    The objective of this research is to develop the elemental technology of the small and thin energy collection system from water, wind, and others in the house, and examine them at the eco-house which will be built at Tohoku University on March 2010. This small energy storage system will contribute to reduce 10% of greenhouse gas emission from household electricity. This project is done by three following groups. 1st group (NEC-Tokin Co. Ltd.) will develop the technologies on the accumulation of electric power pressured from low electric power in which electricity is generated and on the cooperation with AC power supply used for domestic use for this eco-house system. 2nd group (INAX Co. Ltd.) will develop the elemental technology of the slight energy collection system from tap water in the home using a small hydroelectric generator for this eco-house system. 3rd group (Shoei Co. Ltd.) will develop the technologies on existent magnetic gear device, health appliances (Exercise bike), wind power generator, for this eco-house system. Tokoku University compiles these groups. Furthermore, I develop a search of unused small energy and the use technology, and propose a new energy supply system using solar cell and Li ion secondary battery.

  18. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect

    S. Bragg-Sitton

    2014-10-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  19. Theory of using magnetic deflections to combine charged particle beams

    SciTech Connect

    Steckbeck, Mackenzie K.; Doyle, Barney Lee

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.

  20. Quantitative Analysis of CME Deflections in the Corona

    NASA Astrophysics Data System (ADS)

    Gui, Bin; Shen, Chenglong; Wang, Yuming; Ye, Pinzhong; Liu, Jiajia; Wang, Shui; Zhao, Xuepu

    2011-07-01

    In this paper, ten CME events viewed by the STEREO twin spacecraft are analyzed to study the deflections of CMEs during their propagation in the corona. Based on the three-dimensional information of the CMEs derived by the graduated cylindrical shell (GCS) model (Thernisien, Howard, and Vourlidas in Astrophys. J. 652, 1305, 2006), it is found that the propagation directions of eight CMEs had changed. By applying the theoretical method proposed by Shen et al. ( Solar Phys. 269, 389, 2011) to all the CMEs, we found that the deflections are consistent, in strength and direction, with the gradient of the magnetic energy density. There is a positive correlation between the deflection rate and the strength of the magnetic energy density gradient and a weak anti-correlation between the deflection rate and the CME speed. Our results suggest that the deflections of CMEs are mainly controlled by the background magnetic field and can be quantitatively described by the magnetic energy density gradient (MEDG) model.

  1. AIDA: Asteroid Impact & Deflection Assessment

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Galvez, A.; Carnelli, I.; Michel, P.; Rivkin, A.; Reed, C.

    2012-12-01

    To protect the Earth from a hazardous asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. AIDA, consisting of two mission elements, the Double Asteroid Redirection Test (DART) and the Asteroid Impact Monitoring (AIM) mission, is a demonstration of asteroid deflection. To date, there has been no such demonstration, and there is major uncertainty in the result of a spacecraft impact onto an asteroid, that is, the amount of deflection produced by a given momentum input from the impact. This uncertainty is in part due to unknown physical properties of the asteroid surface, such as porosity and strength, and in part due to poorly understood impact physics such that the momentum carried off by ejecta is highly uncertain. A first mission to demonstrate asteroid deflection would not only be a major step towards gaining the capability to mitigate an asteroid hazard, but in addition it would return unique information on an asteroid's strength, other surface properties, and internal structure. This information return would be highly relevant to future human exploration of asteroids. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART spacecraft impactor study is coordinated with an ESA study of the AIM mission, which would rendezvous with the same asteroid to measure effects of the impact. Unlike the previous Don Quijote mission study performed by ESA in 2005-2007, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid. DART includes ground-based observations to measure the deflection independently of the rendezvous spacecraft observations from AIM, which also measures deflection and provides detailed characterization of the target asteroid. The joint mission AIDA

  2. Energy losses through entrance condensation in small vapour engines

    SciTech Connect

    Bom, G.J. )

    1993-03-01

    The effects of entrance condensation were studied in a small piston type vapour engine as could be used for low power thermodynamic solar waterpumping (50-1000 W output). Indicative relations have been established between the magnitude of energy losses caused by this phenomenon and engine design features. 2 refs., 5 figs.

  3. Environmentally Sound Small-Scale Energy Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Bassan, Elizabeth Ann; Wood, Timothy S., Ed.

    This manual is the fourth volume in a series of publications that provide information for the planning of environmentally sound small-scale projects. Programs that aim to protect the renewable natural resources that supply most of the energy used in developing nations are suggested. Considerations are made for physical environmental factors as…

  4. The Seven Habits of Highly Deflective Colleagues

    ERIC Educational Resources Information Center

    Maher, Michelle; Chaddock, Katherine

    2009-01-01

    The authors define deflection as a strategy to bounce action or responsibility away from oneself and toward another person, time, or place. Although they contend that deflection occurs in all areas of personal and professional life, the authors limit their focus to the deflective colleague ("collega deflectivus") in academe. In this article, the…

  5. Energy Efficiency in Small Server Rooms: Field Surveys and Findings

    SciTech Connect

    Cheung, Iris; Greenberg, Steve; Mahdavi, Roozbeh; Brown, Richard; Tschudi, William

    2014-08-11

    Fifty-seven percent of US servers are housed in server closets, server rooms, and localized data centers, in what are commonly referred to as small server rooms, which comprise 99percent of all server spaces in the US. While many mid-tier and enterprise-class data centers are owned by large corporations that consider energy efficiency a goal to minimize business operating costs, small server rooms typically are not similarly motivated. They are characterized by decentralized ownership and management and come in many configurations, which creates a unique set of efficiency challenges. To develop energy efficiency strategies for these spaces, we surveyed 30 small server rooms across eight institutions, and selected four of them for detailed assessments. The four rooms had Power Usage Effectiveness (PUE) values ranging from 1.5 to 2.1. Energy saving opportunities ranged from no- to low-cost measures such as raising cooling set points and better airflow management, to more involved but cost-effective measures including server consolidation and virtualization, and dedicated cooling with economizers. We found that inefficiencies mainly resulted from organizational rather than technical issues. Because of the inherent space and resource limitations, the most effective measure is to operate servers through energy-efficient cloud-based services or well-managed larger data centers, rather than server rooms. Backup power requirement, and IT and cooling efficiency should be evaluated to minimize energy waste in the server space. Utility programs are instrumental in raising awareness and spreading technical knowledge on server operation, and the implementation of energy efficiency measures in small server rooms.

  6. Technical Support Document: 50% Energy Savings for Small Office Buildings

    SciTech Connect

    Thornton, Brian A.; Wang, Weimin; Huang, Yunzhi; Lane, Michael D.; Liu, Bing

    2010-04-30

    The Technical Support Document (TSD) for 50% energy savings in small office buildings documents the analysis and results for a recommended package of energy efficiency measures (EEMs) referred to as the advanced EEMs. These are changes to a building design that will reduce energy usage. The package of advanced EEMs achieves a minimum of 50% energy savings and a construction area weighted average energy savings of 56.6% over the ANSI/ASHRAE/IESNA Standard 90.1-2004 for 16 cities which represent the full range of climate zones in the United States. The 50% goal is for site energy usage reduction. The weighted average is based on data on the building area of construction in the various climate locations. Cost-effectiveness of the EEMs is determined showing an average simple payback of 6.7 years for all 16 climate locations. An alternative set of results is provided which includes a variable air volume HVAC system that achieves at least 50% energy savings in 7 of the 16 climate zones with a construction area weighted average savings of 48.5%. Other packages of EEMs may also achieve 50% energy savings; this report does not consider all alternatives but rather presents at least one way to reach the goal. Design teams using this TSD should follow an integrated design approach and utilize additional analysis to evaluate the specific conditions of a project.

  7. Application of small-signal fusion energy gain

    SciTech Connect

    Jassby, D.L.

    1986-11-01

    The measured burnup fraction of the 1-MeV tritons produced in a deuterium tokamak plasma, multiplied by 17.5, is essentially the small-signal fusion energy gain g/sub T/ for an ideal 1-MeV triton beam injected into the deuterium plasma. The measured g/sub T/ can be converted directly into the two-component fusion energy gain that would be realized if a lower energy tritium beam were injected into the plasma, or if a deuterium beam were injected into a tritium target plasma having the same parameters as the acutal deuterium plasma. Under certain conditions, g/sub T/ greater than or equal to 1 can be obtained by injection of a low-current 225-keV tritium beam into a hot deuterium plasma, thereby verifying that the plasma has the essential characteristics needed for achieving macroscopic fusion energy ''break-even.''

  8. Electrically small resonators for energy harvesting in the infrared regime

    NASA Astrophysics Data System (ADS)

    AlShareef, Mohammed R.; Ramahi, Omar M.

    2013-12-01

    A novel structure based on electrically small resonators is proposed for harvesting the infrared energy and yielding more than 80% harvesting efficiency. The dispersion effect of the dielectric and conductor materials of the resonators is taken into account by applying the Drude model. A new scheme to channel the infrared waves from an array of split ring resonators is proposed, whereby a wide-bandwidth collector is utilized by employing this new channeling concept.

  9. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned.

    PubMed

    Foladori, P; Vaccari, M; Vitali, F

    2015-01-01

    Energy audits in wastewater treatment plants (WWTPs) reveal large differences in the energy consumption in the various stages, depending also on the indicators used in the audits. This work is aimed at formulating a suitable methodology to perform audits in WWTPs and identifying the most suitable key energy consumption indicators for comparison among different plants and benchmarking. Hydraulic-based stages, stages based on chemical oxygen demand, sludge-based stages and building stages were distinguished in WWTPs and analysed with different energy indicators. Detailed energy audits were carried out on five small WWTPs treating less than 10,000 population equivalent and using continuous data for 2 years. The plants have in common a low designed capacity utilization (52% on average) and equipment oversizing which leads to waste of energy in the absence of controls and inverters (a common situation in small plants). The study confirms that there are several opportunities for reducing energy consumption in small WWTPs: in addition to the pumping of influent wastewater and aeration, small plants demonstrate low energy efficiency in recirculation of settled sludge and in aerobic stabilization. Denitrification above 75% is ensured through intermittent aeration and without recirculation of mixed liquor. Automation in place of manual controls is mandatory in illumination and electrical heating.

  10. Solar Energy and Other Appropriate Technologies for Small ...

    EPA Pesticide Factsheets

    This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change resulting from the use of fossil fuels in Puerto Rico. In Puerto Rico, petroleum (65%), natural gas (18%) and coal (16%) are imported to generate electricity resulting in electrical rates that are more than twice the US average. In 2012, only 1% of electricity came from renewable energy (US Energy Information Administration). One major cost for electricity for small communities in Puerto Rico is the transfer, treatment and distribution of drinking water. These small communities (Non-PRASA communities) are not able to afford electrical costs and many have abandoned their groundwater sources and reverted to unfiltered surface water systems, creating serious public health risks and non-compliance. Many Non-PRASA groundwater systems (141 out of 247) could use solar-powered pumps to extract and deliver groundwater. Solar power would also extend the life of system electrical components by improving the quality of electrical power supply. Solar power as a renewable energy source for Non-PRASA water systems is a viable approach that also reduces the impact of climate change in the Caribbean.

  11. Mechanistic interpretation of nondestructive pavement testing deflections

    NASA Astrophysics Data System (ADS)

    Hoffman, M. S.

    1980-06-01

    A method is proposed for the backcalculation of material properties in flexible pavements based on the interpretation of surface deflection measurements. ILLI-PAVE, a stress dependent finite element pavement model, was used to generate data for developing algorithms and nomographs for deflection basin interpretation. Over 11,000 deflection measurements for 24 different flexible pavement sections were collected and analyzed. Deflections were measured using the Benkelman Beam, the IDOT Road Rater, the Falling Weight Deflectometer, and an accelerometer to measure deflections under moving trucks. Loading mode effects on pavement response were investigated using dynamic and viscous pavement models. The factors controlling the pavement response to different loading modes were explained and identified. Correlations between different devices were developed. The proposed evaluation procedure is illustrated for three different flexible pavements using deflection data collected on several testing dates.

  12. Small Beneficial Effect of Caffeinated Energy Drink Ingestion on Strength.

    PubMed

    Collier, Nora B; Hardy, Michelle A; Millard-Stafford, Mindy L; Warren, Gordon L

    2016-07-01

    Collier, NB, Hardy, MA, Millard-Stafford, ML, and Warren, GL. Small beneficial effect of caffeinated energy drink ingestion on strength. J Strength Cond Res 30(7): 1862-1870, 2016-Because caffeine ingestion has been found to increase muscle strength, our aim was to determine whether caffeine when combined with other potential ergogenic ingredients, such as those in commercial energy drinks, would have a similar effect. Fifteen young healthy subjects were used in a double-blind, repeated-measures experimental design. Each subject performed 3 trials, ingesting either a caffeinated energy drink, an uncaffeinated version of the drink, or a placebo drink. The interpolated twitch procedure was used to assess maximum voluntary isometric contraction (MVIC) strength, electrically evoked strength, and percent muscle activation during MVIC of the knee extensors both before and after drink ingestion, and after a fatiguing bout of contractions; electromyographic (EMG) amplitude of the knee extensors during MVIC was also assessed. The mean (±SE) change in MVIC strength from before to after drink ingestion was significantly greater for the caffeinated energy drink compared with placebo [+5.0 (±1.7) vs. -0.5 (±1.5)%] and the difference between the drinks remained after fatigue (p = 0.015); the strength changes for the uncaffeinated energy drink were not significantly different from those of the other 2 drinks at any time. There was no significant effect of drink type on the changes in electrically evoked strength, percent muscle activation, and EMG from before to after drink ingestion. This study indicates that a caffeinated energy drink can increase MVIC strength but the effect is modest and the strength increase cannot be attributed to increased muscle activation. Whether the efficacy of energy drinks can be attributed solely to caffeine remains unclear.

  13. Measurement of Deflection Line on Bridges

    NASA Astrophysics Data System (ADS)

    Urban, Rudolf; Štroner, Martin

    2013-12-01

    Prestressed concrete bridges are very sensitive to the increase in long-term deflections. Reliable forecasts of deflections of bridge structures during construction and durability are crucial for achieving good durability. The main results of measurements are the changes of the deflection line of the bridge structures, which places special demands on the measurement procedure. Results from measurements are very useful for the improvement of mathematical prediction methods of behaviour of long span prestressed concrete structures.

  14. AIDA: the Asteroid Impact & Deflection Assessment mission

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste

    2016-07-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to assess the possibility of deflecting an asteroid trajectory by using a kinetic impactor. The European Asteroid Impact Mission (AIM) is under Phase A/B1 study at ESA from March 2015 until summer 2016. AIM is set to rendez-vous with the asteroid system a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft to fully characterize the smaller of the two binary components. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions: AIM will release a set of CubeSats in deep space and a lander on the surface of the smaller asteroid and for the first time, deep-space inter-satellite linking will be demonstrated between the main spacecraft, the CubeSats, and the lander, and data will also be transmitted from interplanetary space to Earth by a laser communication system. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Small asteroids are believed to result from collisions and other processes (e.g., spinup, shaking) that made them what they are now. Having direct information on their surface and internal properties will allow us to understand how these processes work and transform these small bodies as well as, for this particular case, how a binary system forms. So far, our understanding of the collisional process and the validation of numerical simulations of the impact process rely on impact experiments at laboratory scales. With DART, thanks to the characterization of the

  15. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their effective dates. (a)...

  16. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their effective dates. (a)...

  17. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their effective dates. (a)...

  18. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their effective dates....

  19. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their effective dates. (a)...

  20. ASTEROFF: A Computer Code to Deflect NEOs by Missiles shot from L1 and L3 (Earth-Moon)

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    We develop the mathematical theory for an automatic, space-based system to deflect NEOs by virtue of missiles shot from the Earth-Moon L1 and L3 Lagrangian Points. A patent application has been filed for the relevant code, dubbed ASTEROFF (= Asteroids OFF !). This code was already implemented, and a copyright for it was registered. In a paper published in Acta Astronautica, Vol. 50, No. 3, pp. 185-199 (2002), this author proved mathematically the following theorem (hereafter called the ``confocal conics theorem''): ``Within the sphere of influence of the Earth, any NEO could be hit by a missile at just an angle of 90 degrees, was the missile shot from Lagrangian Points L1 or L3 of the Earth-Moon system, rather than from the surface of the Earth''. As a consequence, the hitting missile would have move along a ``confocal ellipse'' (centered at the Earth) uniquely determined by the NEO's incoming hyperbola. Based on the above theorem, the author further shows in this paper that: The proposed defense system would be ideal to deflect NEOs that are small, i.e. less than one kilometer in diameter. Small NEOs are just the most difficult ones to be detected early enough and to such an orbital accuracy to be positively sure that they are indeed hazardous. The traditional theory of Keplerian orbits can successfully be applied to get an excellent first-order approximation of the (otherwise unknown) mathematical formulae of the energy/momentum requested to achieve the NEO deflection. Many engineering details about the missiles shot from L1 and L3, however, still have to be implemented into our simulations, partly because they are classified. Was one missile not enough to deflect the NEO completely, it is a great advantage of the ``confocal conics'' used here that the new, slightly deflected NEO's hyperbola would certainly be hit at nearly 90 degrees by another and slightly more eccentric elliptical missile trajectory. A sufficient number of missiles could thus be launched in a

  1. Siting handbook for small wind energy conversion systems

    SciTech Connect

    Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

    1980-03-01

    This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

  2. Large cross sections for transitions with a small energy difference

    NASA Astrophysics Data System (ADS)

    McGuire, J. H.; Shakov, Kh. Kh.

    2009-05-01

    Cross sections for transitions between states with small differences in energy can be quite large. An example is the 1s-2p transition in atomic hydrogen caused by the impact of a fast charged particle [1] or a photon [3]. In such cases the actual cross section may become much larger than the simple geometric cross section. Such transitions are often difficult to observe in the laboratory. However, they can be evaluated numerically. This effect can be significant in analysis of astrophysical data, as pointed out by T. Nandi [2]. I discuss a few examples of calculations and give a physical explanation for this effect. [4pt] [1] J.H. McGuire, D. J. Land, J. G. Brennan and G. Basbas, Phys. Rev. A19, 2180 (1979).[0pt] [2] Kh.Kh. Shakov and J.H. McGuire, Phys. Rev. A67 033405 (2003). [0pt] [3] T. Nandi, private communication, 2008.

  3. The effect of asteroid topography on surface ablation deflection

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.; Scheeres, Daniel J.

    2017-02-01

    Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.

  4. Phosphate binding energy and catalysis by small and large molecules.

    PubMed

    Morrow, Janet R; Amyes, Tina L; Richard, John P

    2008-04-01

    Catalysis is an important process in chemistry and enzymology. The rate acceleration for any catalyzed reaction is the difference between the activation barriers for the uncatalyzed (Delta G(HO)(#)) and catalyzed (Delta G(Me)(#)) reactions, which corresponds to the binding energy (Delta G(S)(#) = Delta G(Me)(#)-Delta G(HO)(#)) for transfer of the reaction transition state from solution to the catalyst. This transition state binding energy is a fundamental descriptor of catalyzed reactions, and its evaluation is necessary for an understanding of any and all catalytic processes. We have evaluated the transition state binding energies obtained from interactions between low molecular weight metal ion complexes or high molecular weight protein catalysts and the phosphate group of bound substrate. Work on catalysis by small molecules is exemplified by studies on the mechanism of action of Zn2(1)(H2O). A binding energy of Delta G(S)(#) = -9.6 kcal/mol was determined for Zn2(1)(H2O)-catalyzed cleavage of the RNA analogue HpPNP. The pH-rate profile for this cleavage reaction showed that there is optimal catalytic activity at high pH, where the catalyst is in the basic form [Zn2(1)(HO-)]. However, it was also shown that the active form of the catalyst is Zn2(1)(H2O) and that this recognizes the C2-oxygen-ionized substrate in the cleavage reaction. The active catalyst Zn2(1)(H2O) shows a high affinity for oxyphosphorane transition state dianions and a stable methyl phosphate transition state analogue, compared with the affinity for phosphate monoanion substrates. The transition state binding energies, Delta G(S)(#), for cleavage of HpPNP catalyzed by a variety of Zn2+ and Eu3+ metal ion complexes reflect the increase in the catalytic activity with increasing total positive charge at the catalyst. These values of Delta G(S)(#) are affected by interactions between the metal ion and its ligands, but these effects are small in comparison with Delta G(S)(#) observed for catalysis

  5. The Free Energy Landscape of Small Molecule Unbinding

    PubMed Central

    Huang, Danzhi; Caflisch, Amedeo

    2011-01-01

    The spontaneous dissociation of six small ligands from the active site of FKBP (the FK506 binding protein) is investigated by explicit water molecular dynamics simulations and network analysis. The ligands have between four (dimethylsulphoxide) and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms, and an affinity for FKBP ranging from 20 to 0.2 mM. The conformations of the FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each ligand) are grouped according to a set of intermolecular distances into nodes of a network, and the direct transitions between them are the links. The network analysis reveals that the bound state consists of several subbasins, i.e., binding modes characterized by distinct intermolecular hydrogen bonds and hydrophobic contacts. The dissociation kinetics show a simple (i.e., single-exponential) time dependence because the unbinding barrier is much higher than the barriers between subbasins in the bound state. The unbinding transition state is made up of heterogeneous positions and orientations of the ligand in the FKBP active site, which correspond to multiple pathways of dissociation. For the six small ligands of FKBP, the weaker the binding affinity the closer to the bound state (along the intermolecular distance) are the transition state structures, which is a new manifestation of Hammond behavior. Experimental approaches to the study of fragment binding to proteins have limitations in temporal and spatial resolution. Our network analysis of the unbinding simulations of small inhibitors from an enzyme paints a clear picture of the free energy landscape (both thermodynamics and kinetics) of ligand unbinding. PMID:21390201

  6. Planetary Defense From Space: Part 2 (Simple) Asteroid Deflection Law

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2006-06-01

    A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement. The mathematical theory developed by the author in the years 2002 2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);the asteroid's size and density (also supposed to be known from astronomical observations of various types);the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;the distance from the Earth of the two Lagrangian points L1 and L3 where the

  7. Deflection angle in the strong deflection limit in a general asymptotically flat, static, spherically symmetric spacetime

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki

    2017-03-01

    Gravitational lensing by the light sphere of compact objects like black holes and wormholes will give us information on the compact objects. In this paper, we provide an improved strong deflection limit analysis in a general asymptotically flat, static, spherically symmetric spacetime. The strong deflection limit analysis also works in ultrastatic spacetimes. As an example of an ultrastatic spacetime, we reexamine the deflection angle in the strong deflection limit in an Ellis wormhole spacetime. Using the strong deflection limit, we obtain the deflection angle analytically for the Reissner-Nordström spacetime. The point of the improvement is the definition of a standard variable in the strong deflection limit analysis. We show that the choice of the variable is as important as the choice of the coordinates and we conclude that one should choose a proper variable for a given spacetime.

  8. Deflected Mirage Mediation: A Framework for Generalized Supersymmetry Breaking

    SciTech Connect

    Kim, Ian-Woo

    2008-11-23

    We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario 'deflected mirage mediation', which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. Competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by the stabilization of the gauge singlet field responsible for the masses of the messenger fields. We analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra.

  9. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.47 Deflection...) Use a deflection measuring device with an accuracy of ±.001 inches to measure the deflection of...

  10. National Weatherization Assistance Program Impact Evaluation: Energy Impacts for Small Multifamily Buildings

    SciTech Connect

    Blasnik, Michael; Dalhoff, Greg; Carroll, David; ucar, Ferit

    2014-09-01

    This report estimates energy savings, energy cost savings, and cost effectiveness attributable to weatherizing small multifamily buildings under the auspices of the Department of Energy's Weatherization Assistance Program during Program Year 2008.

  11. Optical measurement of unducted fan blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measuring unducted fan (or propeller) blade deflections is described and evaluated. The measurement does not depend on blade surface reflectivity. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained with a single light beam generated by a low-power, helium-neon laser. Quantitiative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured static deflections from a series of high-speed wind tunnel tests of a counterrotating unducted fan model are compared with available, predicted deflections, which are also used to evaluate systematic errors.

  12. Optical measurement of unducted fan blade deflections

    NASA Astrophysics Data System (ADS)

    Kurkov, A. P.

    1990-10-01

    A nonintrusive optical method for measuring unducted fan (or propeller) blade deflections is described and evaluated. The measurement does not depend on blade surface reflectivity. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained with a single light beam generated by a low-power, helium-neon laser. Quantitative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured static deflections from a series of high-speed wind tunnel tests of a counterrotating unducted fan model are compared with available, predicted deflections, which are also used to evaluate systematic errors.

  13. Noncontacting method for measuring angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L. (Inventor)

    1980-01-01

    An apparatus is described for indicating the instantaneous angular deflection of an object about a selected axis without mechanical contact with the object. Light from a light source is transmitted through a flat refractor to a converging lens which focuses the light through another flat refractor onto a differential photocell. The first flat refractor is attached to the object such that when the object is deflected about the selected axis the refractor is also deflected about that axis. The two flat refractors are identical and they are placed an equal distance from the converging lens as are the light source and the photocell. The output of the photocell which is a function of image displacement is fed to a high gain amplifier that drives a galvanometer which rotates the second flat refractor. The second refractor is rotated so that the image displacement is very nearly zero making the galvanometer current a measure of the deflection of the object about the selected axis.

  14. Optical measurement of propeller blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measurement of propeller blade deflections is described and evaluated. It does not depend on the reflectivity of the blade surface but only on its opaqueness. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained using a single light beam generated by a low-power helium-neon laser. Quantitative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured deflections from a static and a high-speed test are compared with available predicted deflections which are also used to evaluate systematic errors.

  15. Shielded serpentine traveling wave tube deflection structure

    DOEpatents

    Hudson, C.L.; Spector, J.

    1994-12-27

    A shielded serpentine slow wave deflection structure is disclosed having a serpentine signal conductor within a channel groove. The channel groove is formed by a serpentine channel in a trough plate and a ground plane. The serpentine signal conductor is supported at its ends by coaxial feed through connectors. A beam interaction trough intersects the channel groove to form a plurality of beam interaction regions wherein an electron beam may be deflected relative to the serpentine signal conductor. 4 figures.

  16. Isotope separation by selective charge conversion and field deflection

    DOEpatents

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  17. Opportunities of energy supply of farm holdings on the basis of small-scale renewable energy sources

    NASA Astrophysics Data System (ADS)

    Efendiev, A. M.; Nikolaev, Yu. E.; Evstaf'ev, D. P.

    2016-02-01

    One of the major national economic problems of Russia is raising of agricultural production, which will provide strategic security and sustainable supply of the population with provisions. Creation of subsidiary small holdings, farm holdings, and peasant farm holdings will require addressing issues of energy supply. At considerable distance of small farms from centralized energy systems (by fuel, electricity and thermal energy) it is proposed to create a system of local energy networks on the basis of low-powered power plants using renewable energy sources (RES). There is economic unreasonableness of use of imported components of small power plants. Creation of new combined small power plants on renewable energy sources produced by domestic manufacturers is recommended. Schemes of arrangements of small power plants based on renewable energy sources are proposed, variants and characteristics of a basic source are provided—biogas plants developed by the authors. Calculations revealed that heat and power supply of self-contained farms distant from small power plants based on renewable energy sources is 2.5-2.6 times cheaper than from centralized networks. Production of biogas through anaerobic fermentation of organic waste of cattle complexes is considered as the basis. The analysis of biowaste output in various cattle farms is carried out, and the volume of biogas is determined to meet the requirements of these farms in electrical and thermal energy. The objective of the present article is to study the possibility of creating small combined power plants in Russia based on renewable sources of energy for independent consumers.

  18. Small Business Innovation Research Award Success Story: FuelCell Energy Inc.

    SciTech Connect

    2011-08-31

    This success story describes FuelCell Energy Inc., a small business that manufactures stationary fuel cells. In collaboration with Sustainable Innovations LLC, and with support from a Small Business Innovation Research (SBIR) Award from the U.S. Department of Energy's Fuel Cell Technologies Program, FuelCell Energy Inc. has developed a highly efficient solid state electrochemical hydrogen compressor.

  19. Orbital deflection of fragments produced through peripheral reactions of heavy nuclei at 290 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Momota, S.; Kanazawa, M.; Kitagawa, A.; Sato, S.

    2017-02-01

    The orbital deflection phenomenon of reaction products formed through peripheral reactions of heavy nuclei at intermediate energy is studied to examine the contributions of the Coulomb potential and nuclear potential that act between the projectile and target nuclei. The angular distributions of fragments produced in 1-nucleon removal and exchange reactions of 40Ar and 84Kr beams with C, Al, Nb, Tb, and Au targets at 290 MeV/nucleon were observed. A significant deflection effect was successfully identified in observed angular distributions at energies as low as Ei = 100 MeV/nucleon. The deflection effect increases with the atomic number of the target nuclei. The observed deflection effect is consistently explainable using the classical deflection angle, which is obtained with respect to a simple framework of the Coulomb potential and the real part of the energy-dependent nuclear potential, and the characteristic impact parameter between the projectile and target nuclei.

  20. Bio-mimetic optical sensor for structural deflection measurement

    NASA Astrophysics Data System (ADS)

    Frost, Susan A.; Wright, Cameron H. G.; Streeter, Robert W.; Khan, Md. A.; Barrett, Steven F.

    2014-03-01

    Reducing the environmental impact of aviation is a primary goal of NASA aeronautics research. One approach to achieve this goal is to build lighter weight aircraft, which presents complex challenges due to a corresponding increase in structural flexibility. Wing flexibility can adversely affect aircraft performance from the perspective of aerodynamic efficiency and safety. Knowledge of the wing position during flight can aid active control methods designed to mitigate problems due to increased wing flexibility. Current approaches to measuring wing deflection, including strain measurement devices, accelerometers, or GPS solutions, and new technologies such as fiber optic strain sensors, have limitations for their practical application to flexible aircraft control. Hence, it was proposed to use a bio-mimetic optical sensor based on the fly-eye to track wing deflection in real-time. The fly-eye sensor has several advantages over conventional sensors used for this application, including light weight, low power requirements, fast computation, and a small form factor. This paper reports on the fly-eye sensor development and its application to real-time wing deflection measurement.

  1. The use of a deflectable nose on a missile as a control device

    NASA Astrophysics Data System (ADS)

    Thompson, K. D.

    1981-05-01

    Wind tunnel tests have been carried out on a blunted ogive-cylinder with a deflectable nose at Mach numbers between 0.8 and 2.0. Although the results are subject to scale effects, it appears that the deflectable nose could find use as a missile control method. The results have been applied to two missile configurations. For a long slender missile the deflectable nose produces non-linear trim curves at subsonic speeds, approaching linearity at supersonic Mach numbers. Nevertheless, worth-while trimmed incidences can be achieved. Although a deflectable nose on a 105 mm shell at subsonic speeds produces only relatively small normal force coefficients at trim, the trim curves are linear. Furthermore, it appears that when used for terminal control significant deviations in shell impact point are attainable.

  2. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect

    1995-02-01

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  3. Small Wind Turbine Testing Results from the National Renewable Energy Lab

    SciTech Connect

    Bowen, A.; Huskey, A.; Link, H.; Sinclair, K.; Forsyth, T.; Jager, D.; van Dam, J.; Smith, J.

    2009-07-01

    The independent testing project was established at the National Renewable Energy Laboratory to help reduce the barriers of wind energy expansion. Among these barriers is a lack of independent testing results for small turbines.

  4. Base deflection and microleakage of composite restorations.

    PubMed

    Paulillo, L A; de Goes, M F; Consani, S

    1994-06-01

    The flexural deflections of human dentin, Herculite XR, Dycal, Vidrion F, zinc phosphate base, and combinations of composite-base were determined. The influence of the flexural deflections in the marginal microleakage was also determined for the composite-base combinations. The flexural deflection test for dentin showed no statistically significant differences between the two floor cavity depths studied. There were significant differences among cements when the thickness of the base was 1 mm whereas no differences occurred at 2 mm. The composite-base combinations did not present statistical differences. There were no statistically significant differences in the microleakage levels among loaded and non-loaded specimens; however, dye penetration was visually greater in loaded samples.

  5. Beam loading in magnicon deflection cavities

    SciTech Connect

    Hafizi, B.; Gold, S.H.

    1997-02-01

    The radio frequency (RF) source for the next linear collider (NLC) is required to generate a power of 1/2--1 GW per tube in a 200-ns pulse, or 100--200 J of energy in a pulse of up to a few {micro}s in duration, at a frequency of 10--20 GHz. A variety of RF sources are under investigation at the present time aimed at fulfilling the needs of the NLC. These include the X-band klystron, Gyroklystron, traveling-wave tube, harmonic convertor, chopper-driven traveling-wave tube, and magnicon. Here, analysis of the beam-deflection cavity interaction in a magnicon is presented and compared with experiment. For a driven cavity a dispersion relation is obtained wherein the interaction modifies the cold-cavity factor and the resonance frequency. In terms of a lumped-parameter equivalent circuit the interaction corresponds to a complex-values beam admittance Y{sub b} in parallel with the cavity admittance. The response of the gain cavities is modified by the same admittance. In a magnicon, Y{sub b} is a sensitive function of the solenoidal focusing magnetic field B{sub 0}, thus providing a convenient means of adjusting the cavity properties in experiments. When the relativistic gyrofrequency is twice the drive frequency, ImY{sub b} = 0 and the beam does not load the cavity. Analytical expressions of the variation of the detuning, instantaneous bandwidth (i.e., loaded quality factor) and gain with B{sub 0} are derived. Simulation results are presented to verify the linear analysis with ideal beams and to illustrate the modifications due to finite beam emittance. Results of the magnicon experiment at the Naval Research Laboratory are examined in the light of the analysis.

  6. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  7. Transverse photothermal beam deflection within a solid

    SciTech Connect

    Spear, J.D.; Russo, R.E. )

    1991-07-15

    The mirage effect within a transparent solid substrate was used for monitoring optical absorption of a thin film. Refractive index gradients, which accompany thermal gradients below the film-coated surface, cause a probe laser beam to be deflected. The spectrum of copper, deposited onto a piece of clear acrylic, was recorded by this method of photothermal deflection. The influence of thermally induced mechanical stresses can alter the effective value of the thermo-optic coefficient of the solid, {ital dn}/{ital dT}.

  8. Compliant Robot Wrist Senses Deflections And Forces

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.; Strempek, Franklin; Premack, Timothy

    1989-01-01

    Precise parts assembled without damage. Goddard Space Flight Center developed compliant wrist that moves in any direction and rotates about any axis in response to applied forces. Deflection calibrated and instrumented so control computer measures degree of deflection and derives magnitude and direction of applied forces and torques. Compliant wrist brings to robots important capabilities humans use in manipulating objects. Helps prevent damage to precise, delicate parts during assembly by robot. Rod lengths, spring stiffnesses, and type of displacement sensor changed to suit different applications.

  9. Shielded serpentine traveling wave tube deflection structure

    DOEpatents

    Hudson, Charles L.; Spector, Jerome

    1994-01-01

    A shielded serpentine slow wave deflection structure (10) having a serpene signal conductor (12) within a channel groove (46). The channel groove (46) is formed by a serpentine channel (20) in a trough plate (18) and a ground plane (14). The serpentine signal conductor (12) is supported at its ends by coaxial feed through connectors 28. A beam interaction trough (22) intersects the channel groove (46) to form a plurality of beam interaction regions (56) wherein an electron beam (54) may be deflected relative to the serpentine signal conductor (12).

  10. 75 FR 17036 - Energy Conservation Program: Energy Conservation Standards for Small Electric Motors; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... CONTACT: James Raba, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... Motors; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION....gov . SUPPLEMENTARY INFORMATION: I. Background On March 9, 2010, the DOE's Office of Energy...

  11. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  12. Rural Youth and Anticipatory Goal Deflection.

    ERIC Educational Resources Information Center

    Curry, Evans W.; And Others

    Race, sex, community size, occupation of major wage earner, father's education, mother's education, and certainty of expectations were the variables used in this study to determine the "anticipatory occupational goal deflection" (AOGD) of urban and rural youth (blacks and whites) in Louisiana. Least squares analysis of variance and other…

  13. Simplified deflection-coil linearity testing

    NASA Technical Reports Server (NTRS)

    Kramer, G. P.

    1976-01-01

    Mask placed over face of image-dissecting photomultiplier tube has precision array of pinholes that permit light to impinge on tube at known points. Signals are fed to deflection coil which sweeps beam across each point without complex operator procedures.

  14. Particle beam and crabbing and deflecting structure

    DOEpatents

    Delayen, Jean [Yorktown, VA

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  15. Impeller deflection and modal finite element analysis.

    SciTech Connect

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  16. A triboelectric wind turbine for small-scale energy harvesting

    NASA Astrophysics Data System (ADS)

    Perez, Matthias; Boisseau, Sebastien; Geisler, Matthias; Despesse, Ghislain; Reboud, Jean Luc

    2016-11-01

    This paper deals with a rotational energy harvester including a Horizontal Axis Wind Turbine (HAWT), a cylindrical stator covered by several electrodes, and thin Teflon dielectric membranes hung on the rotor. The sliding contact of the Teflon membranes on the stator provides simultaneously large capacitance variations and a polarization source for the electrostatic converter by exploiting triboelectric phenomena. 1μW has been harvested at 4m/s; 130μW at 10m/s and 550μW at 20m/s with a 40mmØ device. In order to validate the energy harvesting chain, the airflow energy harvester has been connected to a power management circuit implementing Synchronous Electric Charge Extraction (SECE) to supply a wireless sensor node with temperature and acceleration measurements, transmitted to a computer at 868MHz.

  17. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of small, large, and very large...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reference, see § 431.95. Energy Efficiency Standards ... DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL... measurement of energy efficiency of small, large, and very large commercial package air conditioning...

  18. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of small, large, and very large...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reference, see § 431.95. Energy Efficiency Standards ... DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL... measurement of energy efficiency of small, large, and very large commercial package air conditioning...

  19. Surface energy balance calculations for small northern lakes

    NASA Astrophysics Data System (ADS)

    Binyamin, J.; Rouse, W. R.; Davies, J. A.; Oswald, C. J.; Schertzer, W. M.

    2006-12-01

    An energy balance model is used to determine diurnal surface energy balance components for three different sized high-latitude Canadian lakes in the Mackenzie River Basin (MRB) during the open water seasons of 2000, 2001, and 2002. Surface net radiation is derived from the component fluxes of the radiation balance. Turbulent heat fluxes are calculated using the aerodynamic method with input from local meteorological stations and experimentally derived drag coefficients. Lake heat storage, determined as a residual of the surface energy balance, is used together with measured water temperature profiles to calculate the daily mixing layer depth. The model uses readily available meteorological inputs for radiation calculations.Verification results for surface energy balance components show mean bias error (MBE) generally less than 5% of the mean measured daily fluxes and root mean square error (RMSE) less than 38%, which decreases to less than 16% for 10-day averaging periods. The model tends to overestimate net radiation by 7% and latent and sensible heat fluxes by about 4% and 1%, respectively, on average. Inferred slab layer depths indicate that the shallowest lake was isothermal while the deeper lakes showed temporal variations as expected.

  20. A small low energy cyclotron for radioisotope measurements

    SciTech Connect

    Bertsche, K.J.

    1989-11-01

    Direct detection of {sup 14}C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of {sup 14}C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring {sup 14}C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as {sup 3}H, and {sup 10}Be, and {sup 26}Al, are discussed. 70 refs.

  1. Integrated alternative energy systems for use in small communities

    NASA Astrophysics Data System (ADS)

    Thornton, J.

    1982-01-01

    This paper summarizes the principles and conceptual design of an integrated alternative energy system for use in typical farming communities in developing countries. A system is described that, utilizing the Sun and methane produced from crop waste, would supply sufficient electric and thermal energy to meet the basic needs of villagers for water pumping, lighting, and cooking. The system is sized to supply enough pumping capacity to irrigate 101 ha (249 acres) sufficiently to optimize annual crop yields for the community. Three economic scenarios were developed, showing net benefits to the community of $3,578 to $15,547 anually, payback periods of 9.5 to 20 years, and benefit-to-cost ratios of 1.1 to 1.9.

  2. High energy physics - The large and the small

    SciTech Connect

    Santoro, Alberto

    2012-09-24

    In this Sixth International School on Field Theory and Gravitation, I was invited to give this talk to the students and researchers of Field Theory mainly about LHC - The Large Hadron Collider and results. I will try to summarize the main daily life of the high energy physics and give an idea about the experiments and the expectations for the near future. I will comment the present results and the prospects to LHC/CMS.

  3. Small hysteresis and high energy storage power of antiferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Jinfei; Yang, Tongqing; Chen, Shengchen; Yao, Xi

    2014-09-01

    In this paper, modified Pb(Zr,Ti)O3(PZT) antiferroelectric (AFE) ceramics system was investigated by traditional solid state method. It was observed that the effect of different contents of Zr/Sn, Zr/Ti on modified PZT antiferroelectrics. With increasing Zr/Sn content, the EAFE (electric field of AFE phase to ferroelectric (FE) phase) value was enlarged. The phase switch field was reduced from FE to AFE (EFA). The hysteresis loops were changed from "slanted" to "square"-types. With increasing Zr/Ti concentrate, the EAFE value, and also the EFA was enlarged, while the hysteresis switch ΔE was reduced. The hysteresis loops was from "square" to "slanted"-types. The samples with square hysteresis loops are suitable for energy storage capacitor applications, the composition of ceramics was Pb0.97La0.02(Zr0.90Sn0.05Ti0.05)O3, which have the largest energy storage density 4.426J/cm3 at 227 kV/cm, and ΔE was 80 kV/cm, energy efficient η was about 0.612.

  4. Comparing Server Energy Use and Efficiency Using Small Sample Sizes

    SciTech Connect

    Coles, Henry C.; Qin, Yong; Price, Phillip N.

    2014-11-01

    This report documents a demonstration that compared the energy consumption and efficiency of a limited sample size of server-type IT equipment from different manufacturers by measuring power at the server power supply power cords. The results are specific to the equipment and methods used. However, it is hoped that those responsible for IT equipment selection can used the methods described to choose models that optimize energy use efficiency. The demonstration was conducted in a data center at Lawrence Berkeley National Laboratory in Berkeley, California. It was performed with five servers of similar mechanical and electronic specifications; three from Intel and one each from Dell and Supermicro. Server IT equipment is constructed using commodity components, server manufacturer-designed assemblies, and control systems. Server compute efficiency is constrained by the commodity component specifications and integration requirements. The design freedom, outside of the commodity component constraints, provides room for the manufacturer to offer a product with competitive efficiency that meets market needs at a compelling price. A goal of the demonstration was to compare and quantify the server efficiency for three different brands. The efficiency is defined as the average compute rate (computations per unit of time) divided by the average energy consumption rate. The research team used an industry standard benchmark software package to provide a repeatable software load to obtain the compute rate and provide a variety of power consumption levels. Energy use when the servers were in an idle state (not providing computing work) were also measured. At high server compute loads, all brands, using the same key components (processors and memory), had similar results; therefore, from these results, it could not be concluded that one brand is more efficient than the other brands. The test results show that the power consumption variability caused by the key components as a

  5. 77 FR 36532 - Review of Small Generator Interconnection Agreements and Procedures; Solar Energy Industries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ...-001; ER12-1855-000] Review of Small Generator Interconnection Agreements and Procedures; Solar Energy... discuss issues related to a petition for rulemaking recently submitted by the Solar Energy Industries... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY...

  6. Providing for energy efficiency in homes and small buildings: student workbook

    SciTech Connect

    1980-06-01

    This workbook parallels the basic manual, providing for energy efficiency in homes and small buildings consisting of three parts: understanding and practicing energy conservation in buildings; determining amount of energy lost or gained in a building; and determining which practices are most efficient and installing materials. A teacher guide is available to answer questions in the student workbook related to these subjects.

  7. Implementation of a beam deflection system for studies of liquid interfaces on beamline I07 at Diamond.

    PubMed

    Arnold, Thomas; Nicklin, Chris; Rawle, Jonathan; Sutter, John; Bates, Trevor; Nutter, Brian; McIntyre, Gary; Burt, Martin

    2012-05-01

    X-ray optics, based on a double-crystal deflection scheme, that enable reflectivity measurements from liquid surfaces/interfaces have been designed, built and commissioned on beamline I07 at Diamond Light Source. This system is able to deflect the beam onto a fixed sample position located at the centre of a five-circle diffractometer. Thus the incident angle can be easily varied without moving the sample, and the reflected beam is tracked either by a moving Pilatus 100K detector mounted on the diffractometer arm or by a stationary Pilatus 2M detector positioned appropriately for small-angle scattering. Thus the system can easily combine measurements of the reflectivity from liquid interfaces (Q(z) > 1 Å(-1)) with off-specular data collection, both in the form of grazing-incidence small-angle X-ray scattering (GISAXS) or wider-angle grazing-incidence X-ray diffraction (GIXD). The device allows operation over the energy range 10-28 keV.

  8. Design of a small fruit drier using geothermal energy

    SciTech Connect

    Lund, J.W.

    1996-02-01

    A fruit drier was originally proposed for a project at the Los Azufres geothermal field in Mexico. Since the drier was to be used in a demonstration project to interest local fruit growers and processors, the size was minimal to expedite construction and minimize cost. The design was based on preliminary work reported by Herman Guillen. The design is described here, as it can be adapted to many small or experimental situations. The actual design will handle about 900 kg (2000 lbs) of fruit (wet) per drying cycle. Cutting, storing and packaging of the fruit should be done on site in a separate building. A cold-storage facility may be designed to keep fresh fruit when harvest exceeds the capacity of the drier.

  9. Deflection Angle and R-Charged Black Holes

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2013-10-01

    In this paper we consider R-charged black holes with three electrical charges and study deflection angle. We confirmed result of previous study that the black hole charges increased the deflection angle.

  10. Small-scale waste-to-energy systems: A state-of-the-art report

    NASA Astrophysics Data System (ADS)

    White, A. L.

    1982-02-01

    For industry and local government, small scale waste to energy systems represent an increasingly attractive option to enhance energy security, control energy costs, generate revenues and alleviate landfill constraints. Projects are characterized by: a mix of modular and waterwall systems; small and medium size industrial steam customers; a nascent interest in cogeneration; the utilization of a variety of public financing instruments; and growing vendor involvement in facility operations. Experience also points to the pivotal role of one or a few persistent individuals during the project implementation process. Recent operating history is likely to provide the foundation for steady growth in the number of small scale systems during the next decade.

  11. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    SciTech Connect

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  12. Dark matter prospects in deflected mirage mediation

    SciTech Connect

    Holmes, Michael; Nelson, Brent D. E-mail: b.nelson@neu.edu

    2009-07-01

    The recently introduced deflected mirage mediation (DMM) model is a string-motivated paradigm in which all three of the major supersymmetry-breaking transmission mechanisms are operative. We begin a systematic exploration of the parameter space of this rich model context, paying special attention to the pattern of gaugino masses which arise. In this work we focus on the dark matter phenomenology of the DMM model as such signals are the least influenced by the model-dependent scalar masses. We find that a large portion of the parameter space in which the three mediation mechanisms have a similar effective mass scale of 1 TeV or less will be probed by future direct and indirect detection experiments. Distinguishing deflected mirage mediation from the mirage model without gauge mediation will prove difficult without collider input, though we indicate how gamma ray signals may provide an opportunity for distinguishing between the two paradigms.

  13. Low-energy dissociative recombination in small polyatomic molecules.

    PubMed

    Jungen, Ch; Pratt, S T

    2010-12-07

    Indirect dissociative recombination of low-energy electrons and molecular ions often occurs through capture into vibrationally excited Rydberg states. Properties of vibrational autoionization, the inverse of this capture mechanism, are used to develop some general ideas about the indirect recombination process, and these ideas are illustrated by examples from the literature. In particular, the Δv = -1 propensity rule for vibrational autoionization, i.e., that vibrational autoionization occurs by the minimum energetically allowed change in vibrational quantum numbers, leads to the prediction of thresholds in the dissociative recombination cross sections and rates at the corresponding vibrational thresholds. Capture into rotationally excited Rydberg states is also discussed in terms of recent low-temperature studies of the dissociative recombination of H(3)(+).

  14. Compact Superconducting Crabbing and Deflecting Cavities

    SciTech Connect

    De Silva, Payagalage Subashini Uddika

    2012-09-01

    Recently, new geometries for superconducting crabbing and deflecting cavities have been developed that have significantly improved properties over those the standard TM{sub 110} cavities. They are smaller, have low surface fields, high shunt impedance and, more importantly for some of them, no lower-order-mode with a well-separated fundamental mode. This talk will present the status of the development of these cavities.

  15. Laser heating of a cavity versus a plane surface for metal targets utilizing photothermal deflection measurements

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Greif, R.; Russo, R. E.

    1996-08-01

    The effects of a cylindrical cavity in a metal surface on the energy coupling of a laser beam with the solid were investigated by using a photothermal deflection technique. The photothermal deflection of a probe beam over the cavity was measured while the bottom of the cavity was heated with a Nd-YAG laser with a wavelength of 1064 nm. Cavities in three different materials and with two different aspect ratios were used for the experiment. Temperature distributions in the solid and the surrounding air were computed numerically and used to calculate photothermal deflections for cavity heating and for plane surface heating. Reflection of the heating laser beam inside the cavity increased the photothermal deflection amplitude significantly with larger increases for materials with larger thermal diffusivity. The computed photothermal deflections agreed more closely with the experimental results when reflection of the heating laser beam inside the cavity was included in the numerical model. The overall energy coupling between a heating laser and a solid is enhanced by a cavity.

  16. A search for cosmic sources of high energy neutrinos with small underground detectors

    NASA Technical Reports Server (NTRS)

    Berezinsky, V. S.; Castagnoli, C.; Galeotti, P.

    1985-01-01

    On the basis of standard source calculations of high energy neutrino fluxes, some models of astrophysical object (single stars and binary systems) are discussed from which a detectable muon flux is expected in small underground detectors.

  17. Analysis of the energy impacts of the DOE Appropriate Energy Technology Small Grants Program: methods and results

    SciTech Connect

    Lucarelli, B.; Kessel, J.; Kay, J.; Linse, J.; Tompson, S.; Homer, M.

    1981-02-01

    In 1977, Congress directed DOE to create an energy grants program with the object of funding individuals, small businesses, and nonprofit organizations to develop technologies that use renewable energy resources. The Small Grants Program was created and this report assesses the energy savings potential of the program. The first step in the analysis was to assess the energy-savings potential of 57 projects. Program energy savings were then estimated from project savings using statistical inference. Chapter 2 presents estimates of direct energy savings for the 57 projects and discusses direct energy savings. Chapter 3 discusses the methods and results of the economic analysis. Chapter 4 examines the indirect savings. Because of the large size of the sample, neither project descriptions nor specific details of each project analysis are included. Instead, two examples from the analysis are presented in Chapters 2, 3, and 4 to illustrate the methods. The results of the analysis and key project data are summarized. Chapter 5 presents estimates of program energy savings and the methods used to obtain them. The report concludes with a discussion of how improved project selection can increase program energy savings and present two approaches for conducting future energy-impact studies.

  18. ForeCAT - A model for magnetic deflections of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Kay, Christina D.

    2016-01-01

    Frequently, the Sun explosively releases bubbles of magnetized plasma known as coronal mass ejections (CMEs), which can produce adverse space weather effects at Earth. Accurate space weather forecasting requires knowledge of the trajectory of CMEs. Decades of observations show that CMEs can deflect from a purely radial trajectory, however, no consensus exists as to the cause of these deflections. We developed a model for CME deflection and rotation from magnetic forces, called Forecasting a CME's Altered Trajectory (ForeCAT). ForeCAT has been designed to run fast enough for large parameter phase space studies, and potentially real-time predictions. ForeCAT reproduces the general trends seen in observed CME deflections. In particular, CMEs deflect toward regions of minimum magnetic energy - frequently the Heliospheric Current Sheet (HCS) on global scales. The background magnetic forces decrease rapidly with distance and quickly become negligible. Most deflections and rotations can be well-described by assuming constant angular momentum beyond 10 Rs. ForeCAT also reproduces individual observed CME deflections - the 2008 December 12, 2008 April 08, and 2010 July 12 CMEs. By determining the reduced chi-squared best fit between the ForeCAT results and the observations we constrain parameters related to the CME and the background solar wind. Additionally, we constrain whether different models for the low corona magnetic backgrounds can produce the observed CME deflection. We explore the space weather of cool M dwarfs (dMs) with surface magnetic field strengths of order kG. dMs have extreme CMEs and flares and close-in habitable zones. We use ForeCAT to explore the deflections corresponding to the range of plausible CME masses and speeds for the dM V374 Peg. The deflection of the dM CMEs exceeds their solar counterparts, and the strong magnetic gradients surrounding the dM's Astrospheric Current Sheet (ACS, analogous to the Sun's HCS) can trap the CMEs that reach it

  19. Effect of Flap Deflection on Section Characteristics of S813 Airfoil; Period of Performance: 1993--1994

    SciTech Connect

    Somers, D. M.

    2005-01-01

    The effect of small deflections of a 30% chord, simple flap on the section characteristics of a tip airfoil, the S813, designed for 20- to 30-meter, stall-regulated, horizontal-axis wind turbines has been evaluated theoretically. The decrease in maximum lift coefficient due to leading-edge roughness increases in magnitude with increasing, positive flap deflection and with decreasing Reynolds number.

  20. Managing the Socioeconomic Impacts of Energy Development. A Guide for the Small Community.

    ERIC Educational Resources Information Center

    Armbrust, Roberta

    Decisions concerning large-scale energy development projects near small communities or in predominantly rural areas are usually complex, requiring cooperation of all levels of government, as well as the general public and the private sector. It is unrealistic to expect the typical small community to develop capabilities to independently evaluate a…

  1. 78 FR 7296 - Energy Conservation Program: Energy Conservation Standards for Small, Large, and Very Large...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Very Large Commercial Package Air Conditioning and Heating Equipment AGENCY: Office of Energy... energy conservation standards for certain commercial air-conditioning and heating equipment. This notice... Industrial Equipment, which includes provisions covering the commercial heating and...

  2. Theory of optical beam deflection for single microparticles

    NASA Astrophysics Data System (ADS)

    Wu, Jiaqi; Kitamori, Takehiko; Sawada, Tsuguo

    1991-05-01

    A theory was developed for the optical beam deflection (OBD) signal generated from a single microparticle. From the thermal-diffusion equations, the temperature fields inside and outside the microparticle, which has a two-layer structure, was deduced. A three-dimensional theoretical treatment was established for the deflection signal of the probe beam passing through the temperature field formed by photothermal conversion of the excitation beam energy absorbed by the sample. The proprieties of the theoretical model and its results were confirmed by comparing the theoretical values of the frequency characteristics, probe beam offset dependencies, and particle size dependencies of the OBD signal with the experimental ones for 25-300-μm-radius microparticles. From the theory, the unique particle size dependencies and frequency characteristics of the OBD method for the single microparticle, i.e., higher sensitivity for smaller particles and at high frequencies, were identified as due to the microparticle surface curvature. The optimal experimental conditions in the OBD measurement of the single microparticle were also obtained using theoretical analysis.

  3. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOEpatents

    Gammel, George M.; Kugel, Henry W.

    1992-10-06

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  4. Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source

    SciTech Connect

    Not Available

    1980-07-01

    Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

  5. Deflection Missions for Asteroid 2011 AG5

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel; Landau, Damon; Bhaskaran, Shyam; Chodas, Paul; Chesley, Steven; Yeomans, Don; Petropoulos, Anastassios; Sims, Jon

    2012-01-01

    The recently discovered asteroid 2011 AG5 currently has a 1-in-500 chance of impacting Earth in 2040. In this paper, we discuss the potential of future observations of the asteroid and their effects on the asteroid's orbital uncertainty. Various kinetic impactor mission scenarios, relying on both conventional chemical as well as solar-electric propulsion, are presented for deflecting the course of the asteroid safely away from Earth. The times for the missions range from pre-keyhole passage (pre-2023), and up to five years prior to the 2040 Earth close approach. We also include a brief discussion on terminal guidance, and contingency options for mission planning.

  6. Combustion Diagnostics by Photo-Deflection Spectroscopy

    DTIC Science & Technology

    1992-03-01

    Laser Deflection Techniques," S.W. Kizirnis, R.J. Brecha , B.N. Ganguly, L.P. Goss, and R. Gupta, Applied Optics 23, 3873 (1984). 4. "The Photoacoustic...signal DIGITIZE " from the entire flame-laser beam interaction length. How- ever, PADS has a good potential for obtaining spatial reso- P .R.T. lution by...proportional to the position of the probe beam. _The difference signal is digitized by a LeCroy WD 8256 -transient digitizer and transferred to a

  7. Dark matter signals in deflected mirage mediation

    SciTech Connect

    Holmes, Michael

    2010-02-10

    We investigate the parameter space of a specific class of model within the deflected mirage mediation (DMM) scenario. We look at neutralino properties and compute the thermal relic density as well as interaction rates with xenon direct detection experiments. We find that there are portions of the parameter space which are in line with the current WMAP constraints. Further we find that none of the investigated parameter space is in conflict with current bounds from the Xenon10 experiment and that future large-scale liquid xenon experiments will probe a large portion of the model space.

  8. Electroweak naturalness and deflected mirage mediation

    NASA Astrophysics Data System (ADS)

    Barger, Vernon; Everett, Lisa L.; Garon, Todd S.

    2016-04-01

    We investigate the question of electroweak naturalness within the deflected mirage mediation (DMM) framework for supersymmetry breaking in the minimal supersymmetric standard model. The class of DMM models considered are nine-parameter theories that fall within the general classification of the 19-parameter phenomenological minimal supersymmetric standard model. Our results show that these DMM models have regions of parameter space with very low electroweak fine-tuning, at levels comparable to the phenomenological minimal supersymmetric standard model. These parameter regions should be probed extensively in the current LHC run.

  9. Deflection of Propeller Blades While Running

    NASA Technical Reports Server (NTRS)

    Katzmayr, R

    1922-01-01

    The forces acting on the blades of a propeller proceed from the mass of the propeller and the resistance of the surrounding medium. The magnitude, direction and point of application of the resultant to the propeller blade is of prime importance for the strength calculation. Since it was obviously impracticable to bring any kind of testing device near the revolving propeller, not so much on account of the element of danger as on account of the resulting considerable disturbance of the air flow, the deflection in both cases was photographically recorded and subsequently measured at leisure.

  10. Technical Support Document: The Development of the Advanced Energy Design Guide for Small Retail Buildings

    SciTech Connect

    Liu, Bing; Jarnagin, Ronald E.; Winiarski, David W.; Jiang, Wei; McBride, Merle F.; Crall, C.

    2006-09-30

    The Advanced Energy Design Guide for Small Retail Buildings (AEDG-SR) was developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the Department of Energy (DOE). The guide is intended to offer recommendations to achieve 30% energy savings and thus to encourage steady progress towards net-zero energy buildings. The baseline level energy use was set at buildings built at the turn of the millennium, which are assumed to be based on ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings (refer to as the ?Standard? in this report). ASHRAE and its partners are engaged in the development of a series of guides for small commercial buildings, with the AEDG-SR being the second in the series. Previously the partnership developed the Advanced Energy Design Guide for Small Office Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, which was published in late 2004. The technical support document prepared by PNNL details how the energy analysis performed in support of the Guide and documents development of recommendation criteria.

  11. Optimal energy window selection of a CZT-based small-animal SPECT for quantitative accuracy

    NASA Astrophysics Data System (ADS)

    Park, Su-Jin; Yu, A. Ram; Choi, Yun Young; Kim, Kyeong Min; Kim, Hee-Joung

    2015-05-01

    Cadmium zinc telluride (CZT)-based small-animal single-photon emission computed tomography (SPECT) has desirable characteristics such as superior energy resolution, but data acquisition for SPECT imaging has been widely performed with a conventional energy window. The aim of this study was to determine the optimal energy window settings for technetium-99 m (99mTc) and thallium-201 (201Tl), the most commonly used isotopes in SPECT imaging, using CZT-based small-animal SPECT for quantitative accuracy. We experimentally investigated quantitative measurements with respect to primary count rate, contrast-to-noise ratio (CNR), and scatter fraction (SF) within various energy window settings using Triumph X-SPECT. The two ways of energy window settings were considered: an on-peak window and an off-peak window. In the on-peak window setting, energy centers were set on the photopeaks. In the off-peak window setting, the ratios of energy differences between the photopeak from the lower- and higher-threshold varied from 4:6 to 3:7. In addition, the energy-window width for 99mTc varied from 5% to 20%, and that for 201Tl varied from 10% to 30%. The results of this study enabled us to determine the optimal energy windows for each isotope in terms of primary count rate, CNR, and SF. We selected the optimal energy window that increases the primary count rate and CNR while decreasing SF. For 99mTc SPECT imaging, the energy window of 138-145 keV with a 5% width and off-peak ratio of 3:7 was determined to be the optimal energy window. For 201Tl SPECT imaging, the energy window of 64-85 keV with a 30% width and off-peak ratio of 3:7 was selected as the optimal energy window. Our results demonstrated that the proper energy window should be carefully chosen based on quantitative measurements in order to take advantage of desirable characteristics of CZT-based small-animal SPECT. These results provided valuable reference information for the establishment of new protocol for CZT

  12. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    SciTech Connect

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  13. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    NASA Astrophysics Data System (ADS)

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-01

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  14. Real-Time Deflection Monitoring for Milling of a Thin-Walled Workpiece by Using PVDF Thin-Film Sensors with a Cantilevered Beam as a Case Study

    PubMed Central

    Luo, Ming; Liu, Dongsheng; Luo, Huan

    2016-01-01

    Thin-walled workpieces, such as aero-engine blisks and casings, are usually made of hard-to-cut materials. The wall thickness is very small and it is easy to deflect during milling process under dynamic cutting forces, leading to inaccurate workpiece dimensions and poor surface integrity. To understand the workpiece deflection behavior in a machining process, a new real-time nonintrusive method for deflection monitoring is presented, and a detailed analysis of workpiece deflection for different machining stages of the whole machining process is discussed. The thin-film polyvinylidene fluoride (PVDF) sensor is attached to the non-machining surface of the workpiece to copy the deflection excited by the dynamic cutting force. The relationship between the input deflection and the output voltage of the monitoring system is calibrated by testing. Monitored workpiece deflection results show that the workpiece experiences obvious vibration during the cutter entering the workpiece stage, and vibration during the machining process can be easily tracked by monitoring the deflection of the workpiece. During the cutter exiting the workpiece stage, the workpiece experiences forced vibration firstly, and free vibration exists until the amplitude reduces to zero after the cutter exits the workpiece. Machining results confirmed the suitability of the deflection monitoring system for machining thin-walled workpieces with the application of PVDF sensors. PMID:27626424

  15. Real-Time Deflection Monitoring for Milling of a Thin-Walled Workpiece by Using PVDF Thin-Film Sensors with a Cantilevered Beam as a Case Study.

    PubMed

    Luo, Ming; Liu, Dongsheng; Luo, Huan

    2016-09-10

    Thin-walled workpieces, such as aero-engine blisks and casings, are usually made of hard-to-cut materials. The wall thickness is very small and it is easy to deflect during milling process under dynamic cutting forces, leading to inaccurate workpiece dimensions and poor surface integrity. To understand the workpiece deflection behavior in a machining process, a new real-time nonintrusive method for deflection monitoring is presented, and a detailed analysis of workpiece deflection for different machining stages of the whole machining process is discussed. The thin-film polyvinylidene fluoride (PVDF) sensor is attached to the non-machining surface of the workpiece to copy the deflection excited by the dynamic cutting force. The relationship between the input deflection and the output voltage of the monitoring system is calibrated by testing. Monitored workpiece deflection results show that the workpiece experiences obvious vibration during the cutter entering the workpiece stage, and vibration during the machining process can be easily tracked by monitoring the deflection of the workpiece. During the cutter exiting the workpiece stage, the workpiece experiences forced vibration firstly, and free vibration exists until the amplitude reduces to zero after the cutter exits the workpiece. Machining results confirmed the suitability of the deflection monitoring system for machining thin-walled workpieces with the application of PVDF sensors.

  16. Small-scale hydroelectric power in the southeast: new impetus for an old energy source

    SciTech Connect

    Not Available

    1980-06-01

    The Southeastern conference, Small-Scale Hydroelectric Power: New Impetus for an Old Energy Source, was convened to provide a forum for state legislators and other interested persons to discuss the problems facing small-scale hydro developers, and to recommend appropriate solutions to resolve those problems. During the two-day meeting state legislators and their staffs, along with dam developers, utility and industry representatives, environmentalists and federal/state officials examined and discussed the problems impeding small-scale hydro development at the state level. Based upon the problem-oriented discussions, alternative policy options were recommended for consideration by the US Department of Energy, state legislatures and the staff of the National Conference of State Legislatures (NCSL). Emphasis was placed on the legal, institutional, environmental and economic barriers at the state level, as well as the federal delays associated with licensing small-scale hydro projects. Whereas other previously held conferences have emphasized the identification and technology of small-scale hydro as an alternative energy source, this conference stressed legislative resolution of the problems and delays in small-scale hydro licensing and development. Panel discussions and workshops are summarized. Papers on the environmental, economic, and legal aspects of small-scale hydropower development are presented. (LCL)

  17. Investigation of the role of trap states in solar cell reliability using photothermal deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Bezryadina, Anna Sergeyevna

    Stability and reliability of solar cells are crucial for utilizing them for solar energy technology. In this dissertation work photothermal deflection spectroscopy (PDS) technique was used to detect small absorption changes and to investigate trap density changes in three different types of solar cells in the process of light, air, and temperature induced degradation. The light-induced metastable changes in the properties of amorphous silicon and crystallinity effect in microcrystalline silicon were quantified by PDS. The effect of ligands and nanoparticle (NP) size on mid-gap trap states in NP thin films (CdTe and PbS) as it impacts on the performance during degradation were examined. Finally, several most common polymers (P3HT, MEH-PPV, and Polyfluorene Red) films absorption were compared and effect of photo-degradation and photo-oxidation on their trap states were analyzed. The PDS measurement technique is independent of scattering and permits the full band gap of the solar cells to be measured as well as the Urbach energy and the density of mid-gap trap states through analysis of the band gap and the band tail absorption. This work demonstrated that the higher amount of trap states in the material do not necessary limit the efficiency of a solar cell, since material structure, crystallinity, a particle deformation, and a polymer's decomposition may have much higher effect on the solar cells' stability and performance.

  18. Energy transfers in large-scale and small-scale dynamos

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  19. Energy simulation and optimization for a small commercial building through Modelica

    NASA Astrophysics Data System (ADS)

    Rivas, Bryan

    Small commercial buildings make up the majority of buildings in the United States. Energy consumed by these buildings is expected to drastically increase in the next few decades, with a large percentage of the energy consumed attributed to cooling systems. This work presents the simulation and optimization of a thermostat schedule to minimize energy consumption in a small commercial building test bed during the cooling season. The simulation occurs through the use of the multi-engineering domain Dymola environment based on the Modelica open source programming language and is optimized with the Java based optimization program GenOpt. The simulation uses both physically based modeling utilizing heat transfer principles for the building and regression analysis for energy consumption. GenOpt is dynamically coupled to Dymola through various interface files. There are very few studies that have coupled GenOpt to a building simulation program and even fewer studies have used Dymola for building simulation as extensively as the work presented here. The work presented proves Dymola as a viable alternative to other building simulation programs such as EnergyPlus and MatLab. The model developed is used to simulate the energy consumption of a test bed, a commissioned real world small commercial building, while maintaining indoor thermal comfort. Potential applications include smart or intelligent building systems, predictive simulation of small commercial buildings, and building diagnostics.

  20. EPAs Energy Star Names Odessa, TX, as Nations Top Small City for Energy Efficient Buildings

    EPA Pesticide Factsheets

    DALLAS - (March 26, 2015) The U.S. Environmental Protection Agency (EPA) has announced Odessa, Texas, as the nation's leader among smaller cities for Energy Star certified buildings. Odessa boasts 31 buildings with the certification-all schools and

  1. Temperature- and deflection- dependences of orthodontic force with Ni-Ti wires.

    PubMed

    Yanaru, Kotaro; Yamaguchi, Kazunori; Kakigawa, Hiroshi; Kozono, Yoshio

    2003-06-01

    Orthodontic forces of Ni-Ti wires examined under the retrained condition on the dental arch model were evaluated with the changes in temperature and deflection. The tested specimens were a commercially available superelastic (W1) wire and two shape memory wires with their nominal A(f) points were 35 degrees C (W2) and 40 degrees C (W3), respectively. They showed typical superelastic hysteresis loops under the restraint condition at 40 degrees C. The force levels were significantly larger than those generally obtained by simple three-bending test. The recovery forces in the plateau region at 1.0 mm deflection were much larger than desired in the clinical guidelines around oral temperatures. In the shape memory wire W3, the recovery force rapidly decreased to zero by a small reduction of the deflection from its maximum. However, the wire again exerted the force with the remaining permanent deflection by temperature rising. It was small compared to the guidelines of desirable orthodontic force and seemed to be useful especially for the hypersensitive patients.

  2. Analysis of engineering characteristics of pavement deflection trends

    SciTech Connect

    Kerali, H.R.; Lawrance, A.J.

    1999-05-01

    This paper describes analysis of pavement deflection data collected by the Transport Research Laboratory at two experimental road sites in England during 1960--1985. Measurements of Benkelman beam deflections together with records of traffic loading were taken at 6 to 12 month intervals. The analysis investigates the deflection trend as a function of road base material and thickness. The deflection trend was represented by a negative exponential curve form. Engineering aspects of the curve form were extracted and statistically analyzed. The results obtained focus on the dependency of deflection progression on both road base material and thickness, which are shown to act either jointly or singly, depending on the engineering characteristic of the pavement deflection trend.

  3. Washington State Department of Transportation energy efficiency guidelines for small buildings

    SciTech Connect

    1995-03-01

    This document provides energy efficiency guidelines for the construction and remodel of small buildings owned by the Washington State Department of Transportation (DOT). For the purpose of these guidelines {open_quotes}small buildings{close_quotes} are defined as those under 25,000 square feet. However, many of the guidelines can also be used for larger buildings. DOT is responsible for 641 buildings totaling 2.2 million square feet and consuming approximately $1,087,500 dollars in energy costs each year. Building types covered by these guidelines are small offices, shop buildings, and heated and unheated storage. These building types can be expected to vary greatly in both the distribution and magnitude of energy use.

  4. Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings

    SciTech Connect

    Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

    2006-11-30

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with

  5. Scanning Light Sheet Would Measure Deflection Of Beam

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Monteith, James H.; Weisenborn, Michael D.; Franke, John M.; Jordan, Thomas L.

    1992-01-01

    Scanning-light-sheet apparatus designed to measure linear and angular displacement or deflection of structure. Intended specifically to measure deflection of beam-shaped truss structure. Includes conventional low-powered laser, lenses, mounts, single-axis optical scanner, several photodiodes, and electronic controller. Apparatus measures motion of structure and also used to determine positions, deflections, and velocities. Besides use in aerospace field, displacement measurements have many applications in construction-equipment and automotive industries.

  6. Beam-beam deflection and signature curves for elliptic beams

    SciTech Connect

    Ziemann, V.

    1990-10-22

    In this note we will present closed expressions for the beam-beam deflection angle for arbitrary elliptic beams including tilt. From these expressions signature curves, i.e., systematic deviations from the round beam deflection curve due to ellipticity or tilt are derived. In the course of the presentation we will prove that it is generally impossible to infer individual beam sizes from beam-beam deflection scans. 3 refs., 2 figs.

  7. EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances

    SciTech Connect

    Sanchez, Marla Christine; Brown, Richard; Homan, Gregory

    2008-11-17

    Over a decade ago, the electricity consumption associated with home electronics and other small appliances emerged onto the global energy policy landscape as one of the fastest growing residential end uses with the opportunity to deliver significant energy savings. As our knowledge of this end use matures, it is essential to step back and evaluate the degree to which energy efficiency programs have successfully realized energy savings and where savings opportunities have been missed.For the past fifteen years, we have quantified energy, utility bill, and carbon savings for US EPA?s ENERGY STAR voluntary product labeling program. In this paper, we present a unique look into the US residential program savings claimed to date for EPA?s ENERGY STAR office equipment, consumer electronics, and other small household appliances as well as EPA?s projected program savings over the next five years. We present a top-level discussion identifying program areas where EPA?s ENERGY STAR efforts have succeeded and program areas where ENERGY STAR efforts did not successfully address underlying market factors, technology issues and/or consumer behavior. We end by presenting the magnitude of ?overlooked? savings.

  8. New blue emissive conjugated small molecules with low lying HOMO energy levels for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Trupthi Devaiah, C.; Hemavathi, B.; Ahipa, T. N.

    2017-03-01

    Versatile conjugated small molecules bearing cyanopyridone core (CP1-5), composed of various donor/acceptor moieties at position - 4 and - 6 have been designed, developed and characterized. Their solvatochromic studies were conducted and analyzed using Lippert-Mataga, Kamlet-Taft and Catalan solvent scales and interesting results were obtained. The polarizability/dipolarity of the solvent greatly influenced the spectra. The electrochemical studies were carried out using cyclic voltammetry to calculate the HOMO-LUMO energy levels. The study revealed that the synthesized conjugated small molecules possess low lying HOMO energy levels which can be exploited for application in various fields of optoelectronics.

  9. Metabolic costs of capital energy storage in a small-bodied ectotherm.

    PubMed

    Griffen, Blaine D

    2017-04-01

    Reproduction is energetically financed using strategies that fall along a continuum from animals that rely on stored energy acquired prior to reproduction (i.e., capital breeders) to those that rely on energy acquired during reproduction (i.e., income breeders). Energy storage incurs a metabolic cost. However, previous studies suggest that this cost may be minimal for small-bodied ectotherms. Here I test this assumption. I use a laboratory feeding experiment with the European green crab Carcinus maenas to establish individuals with different amounts of energy storage. I then demonstrate that differences in energy storage account for 26% of the variation in basal metabolic costs. The magnitudes of these costs for any individual crab vary through time depending on the amount of energy it has stored, as well as on temperature-dependent metabolism. I use previously established relationships between temperature- and mass-dependent metabolic rates, combined with a feasible annual pattern of energy storage in the Gulf of Maine and annual sea surface temperature patterns in this region, to estimate potential annual metabolic costs expected for mature female green crabs. Results indicate that energy storage should incur an ~8% increase in metabolic costs for female crabs, relative to a hypothetical crab that did not store any energy. Translated into feeding, for a medium-sized mature female (45 mm carapace width), this requires the consumption of an additional ~156 mussels annually to support the metabolic cost of energy storage. These results indicate, contrary to previous assumptions, that the cost of energy storage for small-bodied ectotherms may represent a considerable portion of their basic operating energy budget. An inability to meet these additional costs of energy storage may help explain the recent decline of green crabs in the Gulf of Maine where reduced prey availability and increased consumer competition have combined to hamper green crab foraging success in

  10. Energy flow and functional compensation in Great Basin small mammals under natural and anthropogenic environmental change

    PubMed Central

    Terry, Rebecca C.; Rowe, Rebecca J.

    2015-01-01

    Research on the ecological impacts of environmental change has primarily focused at the species level, leaving the responses of ecosystem-level properties like energy flow poorly understood. This is especially so over millennial timescales inaccessible to direct observation. Here we examine how energy flow within a Great Basin small mammal community responded to climate-driven environmental change during the past 12,800 y, and use this baseline to evaluate responses observed during the past century. Our analyses reveal marked stability in energy flow during rapid climatic warming at the terminal Pleistocene despite dramatic turnover in the distribution of mammalian body sizes and habitat-associated functional groups. Functional group turnover was strongly correlated with climate-driven changes in regional vegetation, with climate and vegetation change preceding energetic shifts in the small mammal community. In contrast, the past century has witnessed a substantial reduction in energy flow caused by an increase in energetic dominance of small-bodied species with an affinity for closed grass habitats. This suggests that modern changes in land cover caused by anthropogenic activities—particularly the spread of nonnative annual grasslands—has led to a breakdown in the compensatory dynamics of energy flow. Human activities are thus modifying the small mammal community in ways that differ from climate-driven expectations, resulting in an energetically novel ecosystem. Our study illustrates the need to integrate across ecological and temporal scales to provide robust insights for long-term conservation and management. PMID:26170294

  11. Evaluation and recommendations for the Department of Energy-Farmers Home Administration small-town energy-planning grant program

    SciTech Connect

    Cannon, T.; Kron, N. Jr.

    1980-10-01

    DOE funded several small-town energy planning projects, through the Farmer's Home Administration (FmHA) Area Development Assistance Planning Grant Program. DOE intended that this program should: (1) encourage community energy planning and the development of Integrated Community Energy Systems (ICES) and (2) provide a testing ground for the technologies and planning methods developed by its Buildings and Community Systems Division. FmHA intended that the joint program should further the development of rural areas and make DOE expertise available to grant recipients doing energy planning. All grantees under this joint program endeavored to define their local energy problems and to find local solutions. However, the resulting energy cost savings were not always impressive, and generally they were not very well documented. Lack of implementation power, lack of focus, and inability to generate local financial support for projects and further planning were the main reasons for this performance. The lack of sufficient documentation could be the result of DOE's failure to require a standardized and systematic accounting of grantees' accomplishments. The recommended changes in the scope-of-work requirements suggested in this report would cause grantees to focus their energy-planning activities so as to increase local financial support. The appendixes give a standardized format by which grantees would account for the energy savings and production made possible by their planning efforts.

  12. A Multiagent Energy Management System for a Small Microgrid Equipped with Power Sources and Energy Storage Units

    NASA Astrophysics Data System (ADS)

    Radziszewska, Weronika; Nahorski, Zbigniew

    An Energy Management System (EMS) for a small microgrid is presented, with both demand and production side management. The microgrid is equipped with renewable and controllable power sources (like a micro gas turbine), energy storage units (batteries and flywheels). Energy load is partially scheduled to avoid extreme peaks of power demand and to possibly match forecasted energy supply from the renewable power sources. To balance the energy in the network on line, a multiagent system is used. Intelligent agents of each device are proactively acting towards balancing the energy in the network, and at the same time optimizing the cost of operation of the whole system. A semi-market mechanism is used to match a demand and a production of the energy. Simulations show that the time of reaching a balanced state does not exceed 1 s, which is fast enough to let execute proper balancing actions, e.g. change an operating point of a controllable energy source. Simulators of sources and consumption devices were implemented in order to carry out exhaustive tests.

  13. Analysis of energy-efficiency investment decisions by small and medium-sized manufacturers

    SciTech Connect

    Woodruff, M.G.; Roop, J.M.; Seely, H.E.; Muller, M.R.; Jones, T.W.; Dowd, J.

    1996-05-01

    This report highlights the results of a comprehensive analysis of investment decisions regarding energy-efficiency measures at small and medium-sized manufacturing plants. The analysis is based on the experiences of companies participating in the DOE Industrial Assessment Center (IAC) program. The IAC program is a network of university-based centers that provides energy and waste assessments to small and medium-sized manufacturing plants. The purposes of this report are to do the following: (1) Examine what the data collected reveal about patterns of implementation of recommended energy- efficiency measures, (2) Evaluate how various factors, such as the type of industry, the characteristics of the manufacturing plants, or the cost of the measures, appear to effect implementation rates, (3) Examine reasons why recommended energy-saving measures are accepted or rejected.

  14. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.

    1998-01-01

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available.

  15. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.

    1998-09-29

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available. 5 figs.

  16. System engineering and energy costs of small and medium wind turbines

    SciTech Connect

    Tu, P K.C.

    1985-07-01

    A preliminary system-level, computational model was developed to allow broad assessment and optimization of wind turbine design and costs analysis at The Wind Energy Research Center, Solar Energy Research Institute under contract to the US Department of Energy (DOE). This paper briefly describes the basic principles used in the model for energy capture and cost-of-energy (COE), and demonstrates the model's usefulness in determining the effects of rotor and system design modifications. The model's utilization for conducting parametric studies and defining the energy cost of small and medium-sized wind turbines is also shown. Topics of interest to wind turbine engineers and designers include the effects on rotor performance of airfoil geometry, blade pitch angle setting, and the system RPM schedule, etc.

  17. Solar Energy: Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices (Small 19/2016).

    PubMed

    Leung, Siu-Fung; Zhang, Qianpeng; Tavakoli, Mohammad Mahdi; He, Jin; Mo, Xiaoliang; Fan, Zhiyong

    2016-05-01

    Nanoengineered materials and structures can harvest light efficiently for photovoltaic applications. Device structure design optimization and material property improvement are equally important for high performance. On page 2536, X. Mo, Z. Fan, and co-workers summarize the design guidelines of solar energy harvesting devices to assist with a better understanding of device physics.

  18. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  19. Small molecule hydration energy and entropy from 3D-RISM

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Case, D. A.; Yamazaki, T.; Gusarov, S.; Kovalenko, A.; Luchko, T.

    2016-09-01

    Implicit solvent models offer an attractive way to estimate the effects of a solvent environment on the properties of small or large solutes without the complications of explicit simulations. One common test of accuracy is to compute the free energy of transfer from gas to liquid for a variety of small molecules, since many of these values have been measured. Studies of the temperature dependence of these values (i.e. solvation enthalpies and entropies) can provide additional insights into the performance of implicit solvent models. Here, we show how to compute temperature derivatives of hydration free energies for the 3D-RISM integral equation approach. We have computed hydration free energies of 1123 small drug-like molecules (both neutral and charged). Temperature derivatives were also used to calculate hydration energies and entropies of 74 of these molecules (both neutral and charged) for which experimental data is available. While direct results have rather poor agreement with experiment, we have found that several previously proposed linear hydration free energy correction schemes give good agreement with experiment. These corrections also provide good agreement for hydration energies and entropies though simple extensions are required in some cases.

  20. Igniter adapter-to-igniter chamber deflection test

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Testing was performed to determine the maximum RSRM igniter adapter-to-igniter chamber joint deflection at the crown of the inner joint primary seal. The deflection data was gathered to support igniter inner joint gasket resiliency predictions which led to launch commit criteria temperature determinations. The proximity (deflection) gage holes for the first test (Test No. 1) were incorrectly located; therefore, the test was declared a non-test. Prior to Test No. 2, test article configuration was modified with the correct proximity gage locations. Deflection data were successfully acquired during Test No. 2. However, the proximity gage deflection measurements were adversely affected by temperature increases. Deflections measured after the temperature rise at the proximity gages were considered unreliable. An analysis was performed to predict the maximum deflections based on the reliable data measured before the detectable temperature rise. Deflections to the primary seal crown location were adjusted to correspond to the time of maximum expected operating pressure (2,159 psi) to account for proximity gage bias, and to account for maximum attach and special bolt relaxation. The maximum joint deflection for the igniter inner joint at the crown of the primary seal, accounting for all significant correction factors, was 0.0031 in. (3.1 mil). Since the predicted (0.003 in.) and tested maximum deflection values were sufficiently close, the launch commit criteria was not changed as a result of this test. Data from this test should be used to determine if the igniter inner joint gasket seals are capable of maintaining sealing capability at a joint displacement of (1.4) x (0.0031 in.) = 0.00434 inches. Additional testing should be performed to increase the database on igniter deflections and address launch commit criteria temperatures.

  1. Small

    SciTech Connect

    Montoya, Joseph

    2013-07-18

    Representing the Center on Nanostructuring for Efficient Energy Conversion (CNEEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of CNEEC is to understand how nanostructuring can enhance efficiency for energy conversion and solve fundamental cross-cutting problems in advanced energy conversion and storage systems.

  2. 77 FR 28861 - Secretary of Energy Advisory Board, Small Modular Reactor Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ...This notice announces an open meeting of the Secretary of Energy Advisory Board (SEAB), Small Modular Reactor Subcommittee (SMR). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires public notice of this meeting be announced in the Federal...

  3. MAGNETOHYDRODYNAMIC KINK WAVES IN NONUNIFORM SOLAR FLUX TUBES: PHASE MIXING AND ENERGY CASCADE TO SMALL SCALES

    SciTech Connect

    Soler, Roberto; Terradas, Jaume

    2015-04-10

    Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles in the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfvén continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In addition, we discuss that the processes of resonant absorption and phase mixing are closely linked. They represent two aspects of the same underlying physical mechanism: the energy cascade from large scales to small scales due to naturally occurring plasma and/or magnetic field inhomogeneities. This process may provide the necessary scenario for efficient dissipation of transverse MHD wave energy in the solar atmospheric plasma.

  4. Selected Resource Materials for Developing Energy Conservation Programs in the Small Business/Commercial Sector.

    ERIC Educational Resources Information Center

    Lengyel, Dorothy L.; And Others

    This annotated bibliography is a selected listing of references for use by small business managers in the development of energy conservation programs. The references are listed under the agency through which they are available. The agency listings are alphabetized and include complete mailing addresses. There are 35 agency listings, many of which…

  5. 76 FR 647 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ...This supplemental notice of proposed rulemaking (SNOPR) proposes to clarify certain terms and language in our regulations for certain commercial and industrial equipment, as follows: revise the definitions of certain terms related to electric motors and small electric motors, clarify the scope of energy conservation standards for electric motors, update references to several industry and......

  6. Improved electric energy production of solar cell using small silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Li, H. F.; Shi, S.; Wang, J. L.

    2017-03-01

    The influence of small Ag nanoparticles (NPs) on the all-day electric energy production of solar cells has been investigated. The small Ag NPs were deposited on the cell surface by the magnetron sputtering system. The cell without NPs is used as a reference cell. The external quantum efficiency (EQE) curves indicate that the performance of cell with 8% nanoparticle coverage is better than that of other cells in the long wavelength band. The maximum power-angle curves indicate that the small Ag NPs can effectively improve the all-day electric energy production of solar cell. Comparing with the values of reference cell, the half peak height of maximum power for cell optimized increases by 65%, and the half peak breadth of maximum power for cell optimized broadens by 3%. The enhancements of optimum operating current and optimum operating voltage lead directly to the enhancement of maximum power.

  7. Rotational and translational considerations in kinetic impact deflection of potentially hazardous asteroids

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Xu, Bo; Circi, Christian; Zhang, Lei

    2017-04-01

    Kinetic impact may be the most reliable and easily implemented method to deflect hazardous asteroids using current technology. Depending on warning time, it can be effective on asteroids with diameters of a few hundred meters. Current impact deflection research often focuses on the orbital dynamics of asteroids. In this paper, we use the ejection outcome of a general oblique impact to calculate how an asteroid's rotational and translational state changes after impact. The results demonstrate how small impactors affect the dynamical state of small asteroids having a diameter of about 100 m. According to these consequences, we propose using several small impactors to hit an asteroid continuously and gently, making the deflection mission relatively flexible. After calculating the rotational variation, we find that the rotational state, especially of slender non-porous asteroids, can be changed significantly. This gives the possibility of using multiple small impactors to mitigate a potentially hazardous asteroid by spinning it up into pieces, or to despin one for future in-situ investigation (e.g., asteroid retrieval or mining).

  8. Bending with large deflection of a clamped rectangular plate with length-width ratio of 1.5 under normal pressure

    NASA Technical Reports Server (NTRS)

    Levy, Samuel; Greenman, Samuel

    1942-01-01

    The Von Karman equations for a thin flat plate with large deflections are solved for the special case of a plate with clamped edges having a ratio of length to width of 1.5 and loaded by uniform normal pressure. Center deflections, membrane stresses, and extreme-fiber bending stresses are given as a function of pressure for center deflections up to twice the thickness of the plate. For small deflections the results coincide with those obtained by Hencky from the linear theory. The maximum stresses and center deflection at high pressures differ less than 3 percent from those derived by Bostnov for an infinitely long plate with clamped edges. This agreement suggests that clamped plates with a length-to-width ratio greater than 1.5 may be reared as infinitely long plates for purposes of design.

  9. Effect of translational and angular momentum conservation on energy equipartition in microcanonical equilibrium in small clusters

    NASA Astrophysics Data System (ADS)

    Niiyama, Tomoaki; Shimizu, Yasushi; Kobayashi, Taizo R.; Okushima, Teruaki; Ikeda, Kensuke S.

    2009-05-01

    We investigate numerically and analytically the effects of conservation of total translational and angular momentum on the distribution of kinetic energy among particles in microcanonical particle systems with small number of degrees of freedom, specifically microclusters. Molecular dynamics simulations of microclusters with constant total energy and momenta, using Lennard-Jones, Morse, and Coulomb plus Born-Mayer-type potentials, show that the distribution of kinetic energy among particles can be inhomogeneous and depend on particle mass and position even in thermal equilibrium. Statistical analysis using a microcanonical measure taking into account of the additional conserved quantities gives theoretical expressions for kinetic energy as a function of the mass and position of a particle with only O(1/N2) deviation from the Maxwell-Boltzmann distribution. These expressions fit numerical results well. Finally, we propose an intuitive interpretation for the inhomogeneity of the kinetic energy distributions.

  10. Calculation of free energy barriers to the fusion of small vesicles.

    PubMed

    Lee, J Y; Schick, M

    2008-03-01

    The fusion of small vesicles, either with a planar bilayer or with one another, is studied using a microscopic model in which the bilayers are composed of hexagonal- and lamellar-forming amphiphiles. The free energy of the system is obtained within the self-consistent field approximation. We find that the free energy barrier to form the initial stalk is hardly affected by the radius of the vesicle, but that the barrier to expand the hemifusion diaphragm and form a fusion pore decreases rapidly as the radius decreases. As a consequence, once the initial barrier to stalk formation is overcome, one which we estimate at 13 k(B)T for biological membranes, fusion involving small vesicles should proceed with little or no further input of energy.

  11. Small renal tumors: natural history, observation strategies and emerging modalities of energy based tumor ablation.

    PubMed

    Derweesh, Ithaar H; Novick, Andrew C

    2003-06-01

    With further advances in the technology of non-invasive imaging modalities as well as their utilization, diagnosis of incidental renal tumors has increased considerably. A large proportion of these renal tumors have been small (<4 cm) masses, for which nephron sparing surgery has been proven to be effective for. The trend toward minimally invasive options in the management of renal tumors has prompted interest in energy-based ablation techniques as a possible alternative to radical or partial nephrectomy in select patients. This article will review the natural history of small renal neoplasms and the emerging modalities of energy based energy ablation such as cryoablation, radiofrequency ablation, interstitial photon radiation, interstitial laser technology, microwave ablation, and Cyberknife extracorporeal renal tissue ablation.

  12. Radiation safety assessment of a system of small reactors for distributed energy.

    PubMed

    Odano, N; Ishida, T

    2005-01-01

    A passively safe small reactor for a distributed energy system, PSRD, is an integral type of light-water reactor with a thermal output of 100 or 300 MW aimed to be used for supplying district heat, electricity to small grids, and so on. Candidate locations for the PSRD as a distributed energy source are on-ground, deep underground, and in a seaside pit in the vicinity of the energy consumption area. Assessments of the radiation safety of a PSRD were carried out for three cases corresponding to normal operation, shutdown and a hypothetical postulated accident for several siting candidates. Results of the radiation safety assessment indicate that the PSRD design has sufficient shielding performance and capability and that the exposure to the general public is very low in the case of a hypothetical accident.

  13. Teach Deflection Concepts with Hacksaw Blades and Rubber Bands

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2013-01-01

    Technology and engineering educators can use a simple hacksaw blade to help students learn about deflection, as that which occurs in a beam. Here the beam is fixed at one end and allowed to deflect in a manner that is easy to see and measure--the hacksaw blade represents a cantilever, an overhanging structure. This simple and very inexpensive…

  14. The Deflection Plate Analyzer: A Technique for Space Plasma Measurements Under Highly Disturbed Conditions

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Dutton, Ken; Martinez, Nelson; Smith, Dennis; Stone, Nobie H.

    2004-01-01

    A technique has been developed to measure the characteristics of space plasmas under highly disturbed conditions; e.g., non-Maxwellian plasmas with strong drifting populations and plasmas contaminated by spacecraft outgassing. The present method is an extension of the capabilities of the Differential Ion Flux Probe (DIFP) to include a mass measurement that does not include either high voltage or contamination sensitive devices such as channeltron electron multipliers or microchannel plates. This reduces the complexity and expense of instrument fabrication, testing, and integration of flight hardware as compared to classical mass analyzers. The new instrument design is called the Deflection Plate Analyzer (DPA) and can deconvolve multiple ion streams and analyze each stream for ion flux intensity (density), velocity (including direction of motion), mass, and temperature (or energy distribution). The basic functionality of the DPA is discussed. The performance characteristics of a flight instrument as built for an electrodynamic tether mission, the Propulsive Small Expendable Deployer System (ProSEDS), and the instrument s role in measuring key experimental conditions are also discussed.

  15. A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats

    SciTech Connect

    Herter, Karen; Wayland, Seth; Rasin, Josh

    2009-08-12

    This report documents a field study of 78 small commercial customers in the Sacramento Municipal Utility District service territory who volunteered for an integrated energy-efficiency/demand-response (EE-DR) program in the summer of 2008. The original objective for the pilot was to provide a better understanding of demand response issues in the small commercial sector. Early findings justified a focus on offering small businesses (1) help with the energy efficiency of their buildings in exchange for occasional load shed, and (2) a portfolio of options to meet the needs of a diverse customer sector. To meet these expressed needs, the research pilot provided on-site energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioning setpoint control. Overall results show that pilot participants had energy savings of 20%, and the potential for an additional 14% to 20% load drop during a 100 F demand response event. In addition to the efficiency-related bill savings, participants on the dynamic rate saved an estimated 5% on their energy costs compared to the standard rate. About 80% of participants said that the program met or surpassed their expectations, and three-quarters said they would probably or definitely participate again without the $120 participation incentive. These results provide evidence that energy efficiency programs, dynamic rates and load control programs can be used concurrently and effectively in the small business sector, and that communicating thermostats are a reliable tool for providing air-conditioning load shed and enhancing the ability of customers on dynamic rates to respond to intermittent price events.

  16. A computational study of asymmetric glottal jet deflection during phonation.

    PubMed

    Zheng, X; Mittal, R; Bielamowicz, S

    2011-04-01

    Two-dimensional numerical simulations are used to explore the mechanism for asymmetric deflection of the glottal jet during phonation. The model employs the full Navier-Stokes equations for the flow but a simple laryngeal geometry and vocal-fold motion. The study focuses on the effect of Reynolds number and glottal opening angle with a particular emphasis on examining the importance of the so-called "Coanda effect" in jet deflection. The study indicates that the glottal opening angle has no substantial effect on glottal jet deflection. Deflection in the glottal jet is always preceded by large-scale asymmetry in the downstream portion of the glottal jet. A detailed analysis of the velocity and vorticity fields shows that these downstream asymmetric vortex structures induce a flow at the glottal exit which is the primary driver for glottal jet deflection.

  17. A computational study of asymmetric glottal jet deflection during phonation

    PubMed Central

    Zheng, X.; Mittal, R.; Bielamowicz, S.

    2011-01-01

    Two-dimensional numerical simulations are used to explore the mechanism for asymmetric deflection of the glottal jet during phonation. The model employs the full Navier–Stokes equations for the flow but a simple laryngeal geometry and vocal-fold motion. The study focuses on the effect of Reynolds number and glottal opening angle with a particular emphasis on examining the importance of the so-called “Coanda effect” in jet deflection. The study indicates that the glottal opening angle has no substantial effect on glottal jet deflection. Deflection in the glottal jet is always preceded by large-scale asymmetry in the downstream portion of the glottal jet. A detailed analysis of the velocity and vorticity fields shows that these downstream asymmetric vortex structures induce a flow at the glottal exit which is the primary driver for glottal jet deflection. PMID:21476669

  18. Optimized frequency dependent photothermal beam deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Korte, D.; Cabrera, H.; Toro, J.; Grima, P.; Leal, C.; Villabona, A.; Franko, M.

    2016-12-01

    In the letter the optimization of the experimental setup for photothermal beam deflection spectroscopy is performed by analyzing the influence of its geometrical parameters (detector and sample position, probe beam radius and its waist position etc) on the detected signal. Furthermore, the effects of the fluid’s thermo-optical properties, for optimized geometrical configuration, on the measurement sensitivity and uncertainty determination of sample thermal properties is also studied. The examined sample is a recently developed CuFeInTe3 material. It is seen from the obtained results, that it is a complex problem to choose the proper geometrical configuration as well as sensing fluid to enhance the sensitivity of the method. A signal enhancement is observed at low modulation frequencies by placing the sample in acetonitrile (ACN), while at high modulation frequencies the sensitivity is higher for measurements made in air. For both, detection in air and acetonitrile the determination of CuFeInTe3 thermal properties is performed. The determined values of thermal diffusivity and thermal conductivity are (0.048  ±  0.002)  ×  10-4 m2 s-1 and 4.6  ±  0.2 W m-1 K-1 and (0.056  ±  0.005)  ×  10-4 m2 s-1 and 4.8  ±  0.4 W m-1 K-1 for ACN and air, respectively. It is seen, that the determined values agree well within the range of their measurement uncertainties for both cases, although the measurement uncertainty is two times lower for the measurements in ACN providing more accurate results. The analysis is performed by the use of recently developed theoretical description based on the complex geometrical optics. It is also shown, how the presented work fits into the current status of photothermal beam deflection spectroscopy.

  19. Three-dimensional Simulations of Jet/Cloud Interactions: Structure and Kinematics of the Deflected Jets

    NASA Astrophysics Data System (ADS)

    de Gouveia Dal Pino, Elisabete M.

    1999-12-01

    place indicate that the interacting cloud in that system must have a radius Rc>>Rj, where Rj is the jet radius, as previously suggested, and a density ratio between the jet and the cloud β2=nj/nc<~10-2. Because of the small size of the clouds [with radius Rc~=(1-2)Rj], the interactions examined here are very transient (with lifetimes of few ~10 to ~100 yr that are much less than the typical dynamical lifetimes of the protostellar outflows, τ>~104 yr). Nonetheless, they leave important signatures in the surviving outflow. The leftovers of the cloud and the knots that are produced in the deflected beam are deposited into the working surface and contribute to enrich the knotty pattern commonly observed in Herbig-Haro objects behind the bow shocks of protostellar jets. Also, the collision may partially destroy the shell at the head, producing remarkable asymmetries in the head region. A jet undergoing many transient interactions with compact clumps along its propagation and lifetime may inject a considerable amount of shocked jet material sideways into the surrounding ambient medium, and this process may provide a powerful tool for momentum transfer and turbulent mixing with the ambient medium.

  20. Load Deflection Characteristics of Nickel Titanium Initial Archwires

    PubMed Central

    Aghili, Hossein; Yasssaei, Sogra; Ahmadabadi, Mahmoud Nilli

    2015-01-01

    Objectives: The aim of this study was to assess and compare the characteristics of commonly used initial archwires by their load deflection graphs. Materials and Methods: This study tested three wire designs namely copper nickel titanium (CNT), nickel titanium (NiTi), and multi-strand NiTi (MSNT) archwires engaged in passive self-ligating (PSL) brackets, active self-ligating (ASL) brackets or conventional brackets. To evaluate the mechanical characteristics of the specimens, a three-point bending test was performed. The testing machine vertically applied force on the midpoint of the wire between the central incisor and canine teeth to obtain 2 and 4mm of deflection. The force level at maximum deflection and characteristics of plateau (the average plateau load and the plateau length) were recorded. Two-way ANOVA and Tukey’s test were used at P <0.05 level of significance. Results: Force level at maximum deflection and plateau length were significantly affected by the amount of deflection. The type of archwires and brackets had significant effects on force level at maximum deflection, and plateau length. However, the bracket type had no significant effect on the average plateau force. Conclusion: With any type of brackets in deflections of 2 and 4mm, MSNT wire exerted the lowest while NiTi wire exerted the highest force level at maximum deflection and plateau phase. The force level at maximum deflection and the plateau length increased with raising the amount of primary deflection; however the average plateau force did not change significantly. PMID:27148381

  1. Mission Designs for Demonstrating Gravity Tractor Asteroid Deflection

    NASA Astrophysics Data System (ADS)

    Busch, M.; Faber, N.; Eggl, S.; Morrison, D.; Clark, A.; Frost, C.; Jaroux, B. A.; Khetawat, V.

    2015-12-01

    Gravity tractor asteroid deflection relies on the gravitational attraction between the target and a nearby spacecraft; using low-thrust propulsion to change the target's trajectory slowly but continuously. Our team, based at the NASA Ames Mission Design Center, prepared designs for a Gravity Tractor Demonstration Mission (GTDM) for the European Commission's NEOShield initiative. We found five asteroids with well-known orbits and opportunities for efficient stand-alone demonstrations in the 2020s. We selected one object, 2000 FJ10, for a detailed design analysis. Our GTDM design has a 4 kW solar-electric propulsion system and launch mass of 1150 kg. For a nominal asteroid mass of 3 x 109 kg and diameter 150 m, and a hovering altitude 125 m above the asteroid's surface, GTDM would change FJ10's semi-major axis by 10 km over 2 years. To measure the deflection clearly and to permit safe hovering by the spacecraft, several months of survey and characterization are required prior to the active tractoring phase of the mission. Accurate tracking is also required after the tractoring phase, to ensure that the asteroid has indeed been deflected as intended. The GTDM design includes both spacecraft and Earth-based observations of FJ10 to verify the deflection. The estimated cost of GTDM is $280 million. Trajectory analysis for GTDM confirmed that the outcome of a deflection of any asteroid depends on when that deflection is performed. Compared to kinetic impactor deflection, the gradual deflection from a gravity tractor produces comparable results for a given total momentum transfer. However, a gravity tractor can have greater flexibility in the direction in which the target asteroid can be deflected. Asteroid deflection scenarios must be modeled carefully on a case-to-case basis. We will review implications of the results of the GTDM study to other proposed gravity tractor demonstrations, such as that included in NASA's Asteroid Redirect Mission.

  2. Deflection by Kinetic Impact or Nuclear Ablation: Sensitivity to Asteroid Properties

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.

    2015-12-01

    Impulsive deflection of a threatening asteroid can be achieved by deploying either a kinetic impactor or a standoff nuclear device to impart a modest velocity change to the body. Response to each of these methods is sensitive to the individual asteroid's characteristics, some of which may not be well constrained before an actual deflection mission. Numerical simulations of asteroid deflection, using both hypervelocity impacts and nuclear ablation of the asteroid's surface, provide detailed information on asteroid response under a range of initial conditions. Here we present numerical results for the deflection of asteroids by both kinetic and nuclear methods, focusing on the roles of target body composition, strength, porosity, rotational state, shape, and internal structure. These results provide a framework for evaluating the planetary defense-related value of future asteroid characterization missions and capture some of the uncertainty that may be present in a real threat scenario. Part of this work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 12-ERD-005, performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675914.

  3. Hardwood energy crops and wildlife diversity: Investigating potential benefits for breeding birds and small mammals

    SciTech Connect

    Schiller, A.; Tolbert, V.R.

    1996-08-01

    Hardwood energy crops have the potential to provide a profit to growers as well as environmental benefits (for water quality, soil stabilization, chemical runoff, and wildlife habitat). Environmental considerations are important for both sustainable development of bioenergy technologies on agricultural lands, and for public support. The Environmental Task of the US DOE`s Biofuels feedstock Development Program (BFDP) is working with industry, universities and others to determine how to plant, manage and harvest these crops to maximize environmental advantages and minimize impacts while economically meeting production needs. One research objective is to define and improve wildlife habitat value of these energy crops by exploring how breeding birds and small mammals use them. The authors have found increased diversity of birds in tree plantings compared to row crops. However, fewer bird and small mammal species use the tree plantings than use natural forest. Bird species composition on hardwood crops studied to date is a mixture of openland and forest bird species. Restricted research site availability to date has limited research to small acreage sites of several years of age, or to a few larger acreage but young (1--2 year) plantings. Through industry collaboration, research began this season on bird use of diverse hardwood plantings (different ages, acreages, tree species) in the southeast. Together with results of previous studies, this research will help define practical energy crop guidelines to integrate native wildlife benefits with productive energy crops.

  4. Energy conserving coupling through small apertures in an infinite perfect conducting screen

    NASA Astrophysics Data System (ADS)

    Petzold, J.; Tkachenko, S.; Vick, R.

    2015-11-01

    Apertures in shielding enclosures are an important issue for determining shielding efficiencies. Various mathematical procedures and theories were employed to describe the coupling between the regions connected via an aperture in a well conducting plane. Bethe's theory describes the coupling via the equivalent problem of field excited dipole moments at the location of the aperture. This approach neglects the reaction of the dipole moments on the exciting field and therefore violates energy conservation. This work emphasizes an analytical approach for coupling between half-spaces through small apertures, inspired by the so called method of small antenna, which allows an understandable generalization of Bethe's theory.

  5. Deflection strategies to optimally mitigate the risk of asteroid impact with the earth

    NASA Astrophysics Data System (ADS)

    Englander, Jacob

    While the probability of an asteroid impact with the Earth is small the damage that could be done if one were to occur is almost immeasurable, making that hazard a serious one worth considering by the international community. Several researchers have applied optimal control theory to the problem of deflection of a potentially hazardous asteroid. The methods of de- flection under consideration by the scientific community include nuclear explosives, continuous low-thrust deflection via in-situ propulsion or by a "gravity tractor", and kinetic impact, that is, deflection caused by hitting the asteroid with a spacecraft, which is the method chosen in this work. The feasibility of this method was demonstrated by NASA's Deep Impact spacecraft which struck the comet Tempel I in July 2005. This optimal control problem is unusual in that the objective function is not a simple function of the path, such as minimizing flight time or maximizing spacecraft final mass. The true objective is to deflect the asteroid in the direction that most rapidly moves the impact point off of the surface of the Earth, even if the size of the deflection is itself not maximized. Because this objective function is not easy to formulate, previous authors have approximated it with a simpler but related function, such as maximizing the deflection magnitude. However this does not guarantee that the asteroid's point of closest approach is moved as far from the Earth as possible, or even off the surface of the Earth! This work considers this correct objective function and how it may be maximized for two different mission configurations; either using a conventional single impulsive burn in low Earth orbit to put the spacecraft on a trajectory to intercept the target, or using an impulse for Earth escape only followed by very efficient continuous low-thrust propulsion until impact. In both cases the spacecraft is a simple projectile which collides with the target asteroid to change its orbit. The

  6. The U.S. Department of Energy pollution prevention program: Applications for small business

    SciTech Connect

    Betsch, M.D.

    1997-05-14

    This report shows the benefits small businesses can realize by instituting cost-effective pollution prevention improvements. It is a series of pollution prevention assessments that were conducted at small businesses in Richland, Washington. It describes a technology transfer test of US Department of Energy (USDOE) pollution prevention methods to small businesses through eleven pollution prevention assessments conducted at small businesses in the city of Richland. The assessment method tested was first developed at the USDOE Hanford Site, located in Richland, Washington. Two pilot studies were initially conducted to determine the usefulness of the assessment method for small businesses. Then, four additional pollution prevention assessments were conducted using a refined process. In order to determine the assessment method`s usefulness by different practitioners, a number of the assessments contained in this report were conducted by the undergraduate and graduate students at Washington State University at Tri-Cities as part of their class projects. These students were trained in the pollution prevention assessment process by the author of this report and conducted five small business assessments using the same methods and materials as in the remainder of the study.

  7. Development of Ultra Small Shock Tube for High Energy Molecular Beam Source

    SciTech Connect

    Miyoshi, Nobuya; Nagata, Shuhei; Kinefuchi, Ikuya; Shimizu, Kazuya; Matsumoto, Yoichiro; Takagi, Shu

    2008-12-31

    A molecular beam source exploiting a small shock tube is described for potential generation of high energy beam in a range of 1-5 eV without any undesirable impurities. The performance of a non-diaphragm type shock tube with an inner diameter of 2 mm was evaluated by measuring the acceleration and attenuation process of shock waves. With this shock tube installed in a molecular beam source, we measured the time-of-flight distributions of shock-heated beams, which demonstrated the ability of controlling the beam energy with the initial pressure ratio of the shock tube.

  8. Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary

    SciTech Connect

    Levi, M. P.; O'Grady, M. J.

    1980-02-01

    The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

  9. Observation of Deflection of a Beam of Multi-GeV Electrons by a Thin Crystal

    NASA Astrophysics Data System (ADS)

    Wienands, U.; Markiewicz, T. W.; Nelson, J.; Noble, R. J.; Turner, J. L.; Uggerhøj, U. I.; Wistisen, T. N.; Bagli, E.; Bandiera, L.; Germogli, G.; Guidi, V.; Mazzolari, A.; Holtzapple, R.; Miller, M.

    2015-02-01

    We report on an experiment performing channeling and volume reflection of a high-energy electron beam using a quasimosaic, bent silicon (111) crystal at the End Station A Test Beam at SLAC. The experiment uses beams of 3.35 and 6.3 GeV. In the channeling orientation, deflections of the beam of 400 μ rad for both energies with about 22% efficiency are observed, while in the volume-reflection orientation, deflection of the beam by 120 μ rad at 3.35 GeV and by 80 μ rad at 6.3 GeV is observed with 86%-95% efficiency. Quantitative measurements of the channeling efficiency, surface transmission, and dechanneling length are taken. These are the first quantitative measurements of channeling and volume reflection using a primary beam of multi-GeV electrons.

  10. Casimir energy in a small volume multiply connected static hyperbolic preinflationary universe

    SciTech Connect

    Mu''ller, Daniel; Fagundes, Helio V.; Opher, Reuven

    2001-06-15

    A few years ago, Cornish, Spergel and Starkman (CSS) suggested that a multiply connected ''small'' universe could allow for classical chaotic mixing as a preinflationary homogenization process. The smaller the volume, the more important the process. Also, a smaller universe has a greater probability of being spontaneously created. Previously DeWitt, Hart and Isham (DHI) calculated the Casimir energy for static multiply connected flat space-times. Because of the interest in small volume hyperbolic universes (e.g., CSS), we generalize the DHI calculation by making a numerical investigation of the Casimir energy for a conformally coupled, massive scalar field in a static universe, whose spatial sections are the Weeks manifold, the smallest universe of negative curvature known. In spite of being a numerical calculation, our result is in fact exact. It is shown that there is spontaneous vacuum excitation of low multipolar components.

  11. Energy losses in thermally cycled optical fibers constrained in small bend radii

    SciTech Connect

    Guild, Eric; Morelli, Gregg

    2012-09-23

    High energy laser pulses were fired into a 365μm diameter fiber optic cable constrained in small radii of curvature bends, resulting in a catastrophic failure. Q-switched laser pulses from a flashlamp pumped, Nd:YAG laser were injected into the cables, and the spatial intensity profile at the exit face of the fiber was observed using an infrared camera. The transmission of the radiation through the tight radii resulted in an asymmetric intensity profile with one half of the fiber core having a higher peak-to-average energy distribution. Prior to testing, the cables were thermally conditioned while constrained in the small radii of curvature bends. Single-bend, double-bend, and U-shaped eometries were tested to characterize various cable routing scenarios.

  12. Energy density in small systems equal to the one in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Paić, G.; Cuautle, E.

    2016-07-01

    The recent developments in the study of quark-gluon matter at high densities have shown that there are many similarities between the behavior of the observables in light and heavy systems, especially when the light systems are observed at high multiplicities. Contrary to what was previously thought, the small systems do exhibit collective effects that could indicate that small droplets of strongly interacting quark-gluon plasma are possible. The results infer that the energy densities can be computed in light systems in the same way as in heavy systems and hence, the energy density should be considered when comparing systems with different sizes. We review some of the aspects as well as the existing main models and the way to disentangle them using experimental data.

  13. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    SciTech Connect

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  14. Hands-on solutions to improve your profits and productivity: Energy-saving tips for small businesses

    SciTech Connect

    1996-03-01

    This booklet leads small business owners to examine the energy consumption of their business and implement significant energy saving modifications and practices. The topics of the booklet include evaluating energy use and suggestions for energy conservation in lighting systems, building envelope and materials, space conditioning, equipment and machines, motors, and vehicles.

  15. Investigation of current university research concerning energy conversion and conservation in small single-family dwellings

    NASA Technical Reports Server (NTRS)

    Grossman, G. R.; Roberts, A. S., Jr.

    1975-01-01

    An investigation was made of university research concerning energy conversion and conservation techniques which may be applied in small single-family residences. Information was accumulated through published papers, progress reports, telephone conversations, and personal interviews. A synopsis of each pertinent investigation is given. Finally, a discussion of the synopses is presented and recommendations are made concerning the applicability of concepts for the design and construction of NASA-Langley Research Center's proposed Technology Utilization House in Hampton, Virginia.

  16. Ion Deflection for Final Optics In Laser Inertial Fusion Power Plants

    SciTech Connect

    Abbott, R P; Latkowski, J F

    2006-11-17

    Left unprotected, both transmissive and reflective final optics in a laser inertial fusion power plant would quickly fail from melting, pulsed thermal stresses, or degradation of optical properties as a result of ion implantation. One potential option for mitigating this threat is to magnetically deflect the ions such that they are directed into a robust energy dump. In this paper we detail integrated studies that have been carried out to asses the viability of this approach for protecting final optics.

  17. Ion Deflection for Final Optics in Laser Inertial Fusion Power Plants

    SciTech Connect

    Abbott, Ryan P.

    2005-12-01

    Left unprotected, both transmissive and reflective final optics in a laser-driven inertial fusion power plant would quickly fail from melting, pulsed thermal stress, or degradation of optical properties as a result of ion implantation. One potential option for mitigating this threat is to magnetically deflect the ions such that they are directed to a robust energy dump. In this paper we detail integrated studies that have been carried out to assess the viability of this approach for protecting final optics.

  18. Asteroid Deflection Mission Design Considering On-Ground Risks

    NASA Astrophysics Data System (ADS)

    Rumpf, Clemens; Lewis, Hugh G.; Atkinson, Peter

    The deflection of an Earth-threatening asteroid requires high transparency of the mission design process. The goal of such a mission is to move the projected point of impact over the face of Earth until the asteroid is on a miss trajectory. During the course of deflection operations, the projected point of impact will match regions that were less affected before alteration of the asteroid’s trajectory. These regions are at risk of sustaining considerable damage if the deflecting spacecraft becomes non-operational. The projected impact point would remain where the deflection mission put it at the time of mission failure. Hence, all regions that are potentially affected by the deflection campaign need to be informed about this risk and should be involved in the mission design process. A mission design compromise will have to be found that is acceptable to all affected parties (Schweickart, 2004). A software tool that assesses the on-ground risk due to deflection missions is under development. It will allow to study the accumulated on-ground risk along the path of the projected impact point. The tool will help determine a deflection mission design that minimizes the on-ground casualty and damage risk due to deflection operations. Currently, the tool is capable of simulating asteroid trajectories through the solar system and considers gravitational forces between solar system bodies. A virtual asteroid may be placed at an arbitrary point in the simulation for analysis and manipulation. Furthermore, the tool determines the asteroid’s point of impact and provides an estimate of the population at risk. Validation has been conducted against the solar system ephemeris catalogue HORIZONS by NASA’s Jet Propulsion Laboratory (JPL). Asteroids that are propagated over a period of 15 years show typical position discrepancies of 0.05 Earth radii relative to HORIZONS’ output. Ultimately, results from this research will aid in the identification of requirements for

  19. TH-A-18C-08: Design of a Small Animal Contrast Enhanced Dual Energy CT

    SciTech Connect

    Martin, R; Pan, T; Li, B

    2014-06-15

    Purpose: Dual energy CT has a variety of uses in a small animal setting including quantification and enhanced visualization of contrast agent. This study aims to determine the best energy combinations for contrast enhanced DECT on the XRAD 225Cx (Precision x-ray), a small animal IGRT system with a nominal energy range of 20 – 225 kVp. Focus was placed on material density accuracy and low contrast detectability. Methods: Simulations of single energy scans of an object containing concentrations of iodine varying from 0.5 to 50 mg/ml were performed using the simulation package ImaSim. Energy spectra from 50 – 220 kVp were calculated using the same software. For approximate Poisson noise modeling, mAs were chosen such that 30% of the total 10cGy dose was assigned to the low energy scan. A calibration involving projections of objects containing different thicknesses of iodine (0–0.5 mm) and water (0–50 mm) was performed for each energy and fit to a cubic equation as the calibration curve for each energy pair. Results: Contrast to noise ratios of the iodine material images and accuracies in iodine density measurements were measured. Gradual improvements in each metric were seen with increasing high energy. Larger improvements in CNR were observed for decreasing the low energy. Errors in iodine density were generally close to 5% for concentrations of iodine above 3 mg/ml but increased to around 15% for 50 kVp, likely due to its proximity to the discontinuity caused by the k-edge of iodine. Conclusion: Based on these simulations, the best energy combination for detecting low concentrations of iodine using a projection space calibration procedure is 50/200 kVp. However, if accuracy is most important 80/220 kVp is ideal, with 60/220 kVp being a good compromise to achieve both goals. Future work is necessary to verify these conclusions with physical data.

  20. A Comprehensive Analysis of Small-Passerine Fatalities from Collision with Turbines at Wind Energy Facilities

    PubMed Central

    Erickson, Wallace P.; Wolfe, Melissa M.; Bay, Kimberly J.; Johnson, Douglas H.; Gehring, Joelle L.

    2014-01-01

    Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species). PMID

  1. A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities.

    PubMed

    Erickson, Wallace P; Wolfe, Melissa M; Bay, Kimberly J; Johnson, Douglas H; Gehring, Joelle L

    2014-01-01

    Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species).

  2. A comprehensive analysis of small-passerine fatalities from collisions with turbines at wind energy facilities

    USGS Publications Warehouse

    Erickson, Wallace P.; Wolfe, Melissa M.; Bay, Kimberly J.; Johnson, Douglas H.; Gehring, Joelle L.

    2014-01-01

    Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 39 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species).

  3. Monitoring electrostatically-induced deflection, strain and doping in suspended graphene using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Metten, Dominik; Froehlicher, Guillaume; Berciaud, Stéphane

    2017-03-01

    Electrostatic gating offers elegant ways to simultaneously strain and dope atomically thin membranes. Here, we report on a detailed in situ Raman scattering study on graphene, suspended over a Si/SiO2 substrate. In such a layered structure, the intensity of the Raman G- and 2D-mode features of graphene are strongly modulated by optical interference effects and allow an accurate determination of the electrostatically-induced membrane deflection, up to irreversible collapse. The membrane deflection is successfully described by an electromechanical model, which we also use to provide useful guidelines for device engineering. In addition, electrostatically-induced tensile strain is determined by examining the softening of the Raman features. Due to a small residual charge inhomogeneity, we find that non-adiabatic anomalous phonon softening is negligible compared to strain-induced phonon softening. These results open perspectives for innovative Raman scattering-based readout schemes in two-dimensional nanoresonators.

  4. Sensitive and absolute absorption measurements in optical materials and coatings by laser-induced deflection technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon

    2012-12-01

    The laser-induced deflection (LID) technique, a photo-thermal deflection setup with transversal pump-probe-beam arrangement, is applied for sensitive and absolute absorption measurements of optical materials and coatings. Different LID concepts for bulk and transparent coating absorption measurements, respectively, are explained, focusing on providing accurate absorption data with only one measurement and one sample. Furthermore, a new sandwich concept is introduced that allows transferring the LID technique to very small sample geometries and to significantly increase the sensitivity for materials with weak photo-thermal responses. For each of the different concepts, a representative application example is given. Particular emphasis is placed on the importance of the calibration procedure for providing absolute absorption data. The validity of an electrical calibration procedure for the LID setup is proven using specially engineered surface absorbing samples. The electrical calibration procedure is then applied to evaluate two other approaches that use either doped samples or highly absorptive reference samples.

  5. Possible influences on bullet trajectory deflection in ballistic gelatine.

    PubMed

    Riva, Fabiano; Kerkhoff, Wim; Bolck, Annabel; Mattijssen, Erwin J A T

    2017-02-01

    The influence of the distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots on a bullet's trajectory, when passing through ballistic gelatine, was studied. No significant difference in deflection was found when trajectories of 9mm Luger bullets, fired at a 3.5cm distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots, were compared to trajectories of bullets fired 7cm or more away from any of the aforementioned aspects. A surprisingly consistent 6.5° absolute deflection angle was found when these bullets passed through 22.5 to 23.5cm of ballistic gelatine. The projection angle, determined by the direction of the deflection, appeared to be random. The consistent absolute angle, in combination with the random projection angle, resulted in a cone-like deflection pattern.

  6. Shielded helix traveling wave cathode ray tube deflection structure

    DOEpatents

    Norris, Neil J.; Hudson, Charles L.

    1992-01-01

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse.

  7. Shielded helix traveling wave cathode ray tube deflection structure

    DOEpatents

    Norris, N.J.; Hudson, C.L.

    1992-12-15

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse. 13 figs.

  8. Deflection of a Reflected Intense Vortex Laser Beam

    NASA Astrophysics Data System (ADS)

    Zhang, Lingang; Shen, Baifei; Zhang, Xiaomei; Huang, Shan; Shi, Yin; Liu, Chen; Wang, Wenpeng; Xu, Jiancai; Pei, Zhikun; Xu, Zhizhan

    2016-09-01

    An interesting deflection effect deviating the optical reflection law is revealed in the relativistic regime of intense vortex laser plasma interaction. When an intense vortex laser obliquely impinges onto an overdense plasma target, the reflected beam deflects out of the plane of incidence with an experimentally observable deflection angle. The mechanism is demonstrated by full three-dimensional particle-in-cell simulation as well as analytical modeling using the Maxwell stress tensor. The deflection results from the rotational symmetry breaking of the foil driven by the unsymmetrical shear stress of the vortex beam. The l -dependent shear stress, where l is the topological charge, as an intrinsic characteristic to the vortex beam, plays an important role as the ponderomotive force in relativistic vortex laser matter interaction.

  9. Double deflection system for an electron beam device

    DOEpatents

    Parker, Norman W.; Golladay, Steven D.; Crewe, Albert V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations.

  10. Comparison of Spinal Needle Deflection in a Ballistic Gel Model

    PubMed Central

    Rand, Ethan; Christolias, George; Visco, Christopher; R. Singh, Jaspal

    2016-01-01

    Background Percutaneous diagnostic and therapeutic procedures are commonly used in the treatment of spinal pain. The success of these procedures depends on the accuracy of needle placement, which is influenced by needle size and shape. Objectives The purpose of this study is to examine and quantify the deviation of commonly used spinal needles based on needle tip design and gauge, using a ballistic gel tissue simulant. Materials and Methods Six needles commonly used in spinal procedures (Quincke, Short Bevel, Chiba, Tuohy, Hustead, Whitacre) were selected for use in this study. Ballistic gel samples were made in molds of two depths, 40mm and 80 mm. Each needle was mounted in a drill press to ensure an accurate needle trajectory. Distance of deflection was recorded for each needle. Results In comparing the mean deflection of 22 gauge needles of all types at 80 mm of depth, deflection was greatest among beveled needles [Short Bevel (9.96 ± 0.77 mm), Quincke (8.89 ± 0.17 mm), Chiba (7.71 ± 1.16 mm)], moderate among epidural needles [Tuohy (7.64 ± 0.16 mm) and least among the pencil-point needles [Whitacre (0.73 ± 0.34 mm)]. Increased gauge (25 g) led to a significant increase in deflection among beveled needles. The direction of deflection was away from the bevel with Quincke, Chiba and Short Beveled needles and toward the bevel of the Tuohy and Hustead needles. Deflection of the Whitacre pencil-point needle was minimal. Conclusions There is clinical utility in knowing the relative deflection of various needle tips. When a procedure requires a needle to be steered around obstacles, or along non-collinear targets, the predictable and large amount of deflection obtained through use of a beveled spinal needle may prove beneficial. PMID:27847693

  11. Design of Superconducting Parallel Bar Deflecting and Crabbing rf Structures

    SciTech Connect

    Jean Delayen, Haipeng Wang

    2009-05-01

    A new concept for a deflecting and crabbing rf structure based on half-wave resonant lines was introduced recently*. It offers significant advantages to existing designs and, because of it compactness, allows low frequency operation. This concept has been further refined and optimized for superconducting implementation. Results of this optimization and application to a 400 MHz crabbing cavity and a 499 MHz deflecting cavity are presented.

  12. Plasma Deflection Test Setup for E-Sail Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Andersen, Allen; Vaughn, Jason; Schneider, Todd; Wright, Ken

    2016-01-01

    The Electronic Sail or E-Sail is a novel propulsion concept based on momentum exchange between fast solar wind protons and the plasma sheath of long positively charged conductors comprising the E-Sail. The effective sail area increases with decreasing plasma density allowing an E-Sail craft to continue to accelerate at predicted ranges well beyond the capabilities of existing electronic or chemical propulsion spacecraft. While negatively charged conductors in plasmas have been extensively studied and flown, the interaction between plasma and a positively charged conductor is not well studied. We present a plasma deflection test method using a differential ion flux probe (DIFP). The DIFP measures the angle and energy of incident ions. The plasma sheath around a charged body can measured by comparing the angular distribution of ions with and without a positively charged test body. These test results will be used to evaluate numerical calculations of expected thrust per unit length of conductor in the solar wind plasma. This work was supported by a NASA Space Technology Research Fellowship.

  13. A simple damage detection indicator using operational deflection shapes

    NASA Astrophysics Data System (ADS)

    Sampaio, R. P. C.; Maia, N. M. M.; Almeida, R. A. B.; Urgueira, A. P. V.

    2016-05-01

    Catastrophic structural failure of aircrafts, bridges, buildings and other structures in modern societies has always been of primary concern because of the loss of human lifes and of negative economic impact. The aging of the structures, the growing dependency on their role in our networks of transportation, energy and comunications, the smaller construction tolerances, the bigger power demanded and the media and society awardness to catastrophic events are sufficient motivations for the growing field of structural health monitoring, which aims at assessing the actual condition of a structure and to identify incipient damage. Damage identification can be considered as a two step process, the detection and the diagnosis. The former, and fundamental step, is the confirmation of an efective damage existence. When the response is affirmative, the latter step begins with the diagnosis, and then the questions are: where?, how much?, what type?, when will it fail? In this paper the authors propose a simple method to detect and relatively quantify structural damage by using measured vibrations data, specifically the operational deflections shapes. Numerical simulations and experimental tests are presented to validate the proposed method.

  14. Total Energy Management: A Practical Handbook on Energy Conservation and Management. For Use of Owners and Managers of Office Buildings and Small Retail Stores. 2nd Edition.

    ERIC Educational Resources Information Center

    National Electrical Contractors Association, Washington, DC.

    Described in this guide for owners and managers of office buildings and small retail stores, is a program entitled Total Energy Management (TEM). The TEM program approach rests on the premise that buildings should be examined in terms of total energy consumption, rather than prescribing energy budgets for a building's separate systems. The…

  15. Energy efficiency in the US economy technical report four: Analysis of energy-efficiency investment decisions by small and medium-sized manufacturers

    SciTech Connect

    1996-03-01

    This report highlights the results of a comprehensive analysis of investment decisions regarding energy-efficiency measures at small and medium-sized manufacturing plants. The analysis is based primarily on the experiences of companies participating in the US Department of Energy`s Industrial Assessment Center (IAC) program.

  16. Sustainable agriculture, renewable energy and rural development: An analysis of bio-energy systems used by small farms in China

    NASA Astrophysics Data System (ADS)

    Zhou, Aiming

    Renewable energy needs to be incorporated into the larger picture of sustainable agriculture and rural development if it is to serve the needs of the 3.25 billion human beings whose livelihoods and based on rural economies and ecologies. For rural communities, increasing agriculture production is key to raising income generation and improving social well-being, but this linkage depends also upon not harming natural resources. This dissertation provides an overview of recent Chinese agriculture history, discusses the role of energy in contemporary's China's agriculture and rural development, and introduces a new approach---the integrated agricultural bio-energy (IAB) system---to address the challenge of sustainable agriculture and rural development. IAB is an innovative design and offers a renewable energy solution for improving agricultural productivity, realizing efficient resource management, and enhancing social well-being for rural development. In order to understand how the IAB system can help to achieve sustainable agricultural and rural development in China, a comprehensive evaluation methodology is developed from health, ecological, energy and economic (HE3) perspectives. With data from surveys of 200 small farm households, a detailed study of IAB and conventional agricultural energy (CAE) system applications (in China's Liaoning and Yunnan Province) is conducted. The HE3 impacts of IAB systems in China's rural areas (compared to existing CAE systems) are quantified. The dissertation analyzes the full life-cycle costs and benefits of IAB systems, including their contributions to energy savings, CO2 emissions reduction, agricultural waste reduction, increased rural incomes, better rural health, and improved ecosystem sustainability. The analysis relies upon qualitative and quantitative modeling in order to produce a comprehensive assessment of IAB system impacts. Finally, the dissertation discusses the barriers to greater diffusion of the IAB systems

  17. Cantilever deflection associated with hybridization of monomolecular DNA film

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Ganapathysubramanian, Baskar; Shrotriya, Pranav

    2012-04-01

    Recent experiments show that specific binding between a ligand and surface immobilized receptor, such as hybridization of single stranded DNA immobilized on a microcantilever surface, leads to cantilever deflection. The binding-induced deflection may be used as a method for detection of biomolecules, such as pathogens and biohazards. Mechanical deformation induced due to hybridization of surface-immobilized DNA strands is a commonly used system to demonstrate the efficacy of microcantilever sensors. To understand the mechanism underlying the cantilever deflections, a theoretical model that incorporates the influence of ligand/receptor complex surface distribution and empirical interchain potential is developed to predict the binding-induced deflections. The cantilever bending induced due to hybridization of DNA strands is predicted for different receptor immobilization densities, hybridization efficiencies, and spatial arrangements. Predicted deflections are compared with experimental reports to validate the modeling assumptions and identify the influence of various components on mechanical deformation. Comparison of numerical predictions and experimental results suggest that, at high immobilization densities, hybridization-induced mechanical deformation is determined, primarily by immobilization density and hybridization efficiency, whereas, at lower immobilization densities, spatial arrangement of hybridized chains need to be considered in determining the cantilever deflection.

  18. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  19. Effect of anisotropy of the bending rigidity on the supercoiling free energy of small circular DNAs.

    PubMed

    Schurr, J M; Babcock, H P; Gebe, J A

    1995-11-01

    In principle, the supercoiling free energy of a small circular DNA will be enhanced by increasing the anisotropy of its bending potential at constant persistence length. The magnitude of this effect is investigated by Monte Carlo simulation using an extension of a previously proposed algorithm. The supercoiling free energy at 298 K is simulated for circular DNAs containing N = bp with torsion constant alpha = 5.8 X 10(-12) dyne cm, persistence lengths P = 500 A and 10,000 A, and a range of anisotropies of the bending potential from rho = 1.0 to 16.0. The apparent torsion constants, reckoned from these supercoiling free energies by assuming an isotropic bending potential, are found to increase by less than 3% as the input anisotropy increases from 1.0 to 16.0 When P = 500 A, the apparent torsion constant never rises significantly above the input value over the entire range of input anisotropies. When P = 10,000 A, the apparent torsion constant rises only about 3% above the input value for anisotropies rho = 8.0 and 16.0. Evidently, anisotropy of the bending potential cannot account for the fact that the torsion constants reported for small circular DNAs exceed those reported for long linear DNAs by a factor of 1.6 or more.

  20. An Exploratory Energy Analysis of Electrochromic Windows in Small and Medium Office Buildings - Simulated Results Using EnergyPlus

    SciTech Connect

    Belzer, David B.

    2010-08-01

    The Department of Energy’s (DOE) Building Technologies Program (BTP) has had an active research program in supporting the development of electrochromic (EC) windows. Electrochromic glazings used in these windows have the capability of varying the transmittance of light and heat in response to an applied voltage. This dynamic property allows these windows to reduce lighting, cooling, and heating energy in buildings where they are employed. The exploratory analysis described in this report examined three different variants of EC glazings, characterized by the amount of visible light and solar heat gain (as measured by the solar heat gain coefficients [SHGC] in their “clear” or transparent states). For these EC glazings, the dynamic range of the SHGC’s between their “dark” (or tinted) state and the clear state were: (0.22 - 0.70, termed “high” SHGC); (0.16 - 0.39, termed “low” SHGC); and (0.13 - 0.19; termed “very low” SHGC). These glazings are compared to conventional (static) glazing that meets the ASHRAE Standard 90.1-2004 energy standard for five different locations in the U.S. All analysis used the EnergyPlus building energy simulation program for modeling EC windows and alternative control strategies. The simulations were conducted for a small and a medium office building, where engineering specifications were taken from the set of Commercial Building Benchmark building models developed by BTP. On the basis of these simulations, total source-level savings in these buildings were estimated to range between 2 to 7%, depending on the amount of window area and building location.

  1. Inference from the small scales of cosmic shear with current and future Dark Energy Survey data

    SciTech Connect

    MacCrann, N.; Aleksić, J.; Amara, A.; Bridle, S. L.; Bruderer, C.; Chang, C.; Dodelson, S.; Eifler, T. F.; Huff, E. M.; Huterer, D.; Kacprzak, T.; Refregier, A.; Suchyta, E.; Wechsler, R. H.; Zuntz, J.; Abbott, T. M. C.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Romer, A. K.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Sheldon, E.; Soares-Santos, M.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.

    2016-11-05

    Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While muddying any cosmological information that is contained in small scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. 2015 halo model to account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on nonlinear scales, `lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear datasets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.

  2. Inference from the small scales of cosmic shear with current and future Dark Energy Survey data

    NASA Astrophysics Data System (ADS)

    MacCrann, N.; Aleksić, J.; Amara, A.; Bridle, S. L.; Bruderer, C.; Chang, C.; Dodelson, S.; Eifler, T. F.; Huff, E. M.; Huterer, D.; Kacprzak, T.; Refregier, A.; Suchyta, E.; Wechsler, R. H.; Zuntz, J.; Abbott, T. M. C.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Romer, A. K.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Sheldon, E.; Soares-Santos, M.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; DES Collaboration

    2017-03-01

    Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback, and active galactic nuclei feedback. While muddying any cosmological information that is contained in small-scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. (2015) halo model to account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on non-linear scales, 'lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear data sets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.

  3. Parametric studies on the load-deflection characteristics of hydraulic snubbers

    SciTech Connect

    Subudhi, M.; Curreri, J., Bezler, P.; Hartzman, M.

    1984-01-01

    Hydraulic snubbers are extensively used in the nuclear power industry for supporting high energy piping systems subjected to dynamic loadings. These devices allow the piping system to displace freely under slowly applied loads, but lock up under sudden excitations. This paper presents the governing differential equations describing the hydro-mechanical mechanisms of a typical snubber. A finite difference computer code, SNUBER, was developed to solve these equations. Using the code, the load deflection characteristics of the unit were developed for a range of parameters of interest. The parameters included leakage orifice area, initial piston location, eyebolt clearance and reservoir pressures. The results include the load deflection characteristics for various combinations of the controlling parameters and some chamber pressure time history profiles. It is intended that the nonlinear characteristic of the snubbers be incorporated into a structural dynamic analysis program to allow prediction of the overall response of nuclear piping supported by these devices and subjected to a variety of loadings.

  4. Multisubband transport and magnetic deflection of Fermi electron trajectories in three terminal junctions and rings

    NASA Astrophysics Data System (ADS)

    Poniedziałek, M. R.; Szafran, B.

    2012-02-01

    We study the electron transport in three terminal junctions and quantum rings looking for the classical deflection of electron trajectories in the presence of intersubband scattering. We indicate that although the Aharonov-Bohm oscillations and the Lorentz force effects co-exist in the low subband transport, for higher Fermi energies a simultaneous observation of both effects is difficult and calls for carefully formed structures. In particular, in quantum rings with channels wider than the input lead the Lorentz force is well resolved but the Aharonov-Bohm periodicity is lost in chaotic scattering events. In quantum rings with equal lengths of the channels and T-shaped junctions the Aharonov-Bohm oscillations are distinctly periodic but the Lorentz force effects are not well pronounced. We find that systems with wedge-shaped junctions allow for observation of both the periodic Aharonov-Bohm oscillations and the magnetic deflection.

  5. Energy-Efficiency Retrofits in Small-Scale Multifamily Rental Housing: A Business Model

    NASA Astrophysics Data System (ADS)

    DeChambeau, Brian

    The goal of this thesis to develop a real estate investment model that creates a financial incentive for property owners to perform energy efficiency retrofits in small multifamily rental housing in southern New England. The medium for this argument is a business plan that is backed by a review of the literature and input from industry experts. In addition to industry expertise, the research covers four main areas: the context of green building, efficient building technologies, precedent programs, and the Providence, RI real estate market for the business plan. The thesis concludes that the model proposed can improve the profitability of real estate investment in small multifamily rental properties, though the extent to which this is possible depends partially on utility-run incentive programs and the capital available to invest in retrofit measures.

  6. Thick Silicon Double-Sided Strip Detectors for Low-Energy Small-Animal SPECT

    PubMed Central

    Shokouhi, Sepideh; McDonald, Benjamin S.; Durko, Heather L.; Fritz, Mark A.; Furenlid, Lars R.; Peterson, Todd E.

    2010-01-01

    This work presents characterization studies of thick silicon double-sided strip detectors for a high-resolution small-animal SPECT. The dimension of these detectors is 60.4 mm × 60.4 mm × 1 mm. There are 1024 strips on each side that give the coordinates of the photon interaction, with each strip processed by a separate ASIC channel. Our measurement shows that intrinsic spatial resolution equivalent to the 59 μm strip pitch is attainable. Good trigger uniformity can be achieved by proper setting of a 4-bit DAC in each ASIC channel to remove trigger threshold variations. This is particularly important for triggering at low energies. The thick silicon DSSD (Double-sided strip detector) shows high potential for small-animal SPECT. PMID:20686626

  7. Transportation during the next energy crisis: the special problems of small urban areas. Final report

    SciTech Connect

    Crowell, W.; Shapiro, A.; McShane, W.

    1981-06-01

    The purpose of this study was to provide local government officials and other interested parties in small urban areas (less than 50,000 pop.) with special assistance in the planning and implementation of transportation energy contingency plans. The nature of such contingencies and their impact on the transportation sector are reviewed, along with the special transportation characteristics of small urban areas (modal split, trip purpose distribution, transit structure, etc.). After establishing the nature of Federal and State contingency responsibilities, the basic local contingency plan needs are assessed, and a wide array of potential strategies are analyzed according to a consistent set of criteria (financing, timeframe, institutional problems, targeted mobility needs, special strategy-specific problems). The final chapter reviews the results of these assessments and makes a number of conclusions and recommendations. A special 13-page guidebook on contingency planning, following a question- and answer format, was also developed and is included in the appendix.

  8. PKL tests on energy transfer mechanisms during small-break LOCAs

    SciTech Connect

    Mandl, R.M.; Weiss, P.A.

    1982-03-01

    The Primarkreislaufe (PKL) test facility, originally designed to examine the refill and reflood phases of a loss-of-coolant accident, was modified and used for a series of transient and steady-state small-break tests. Results from these tests are presented with the intention of showing the influence of such parameters as power, reduce water inventories on the primary or secondary sides, and noncondensible gas on the ability of the system to remove decay heat. It is shown that in the case of a small break, the transport of decay heat from the system is ensured when a two-phase coolant mixture covers the core and energy can be removed from the secondary sides of the steam generators.

  9. A Small-Changes Approach Reduces Energy Intake in Free-Living Humans

    PubMed Central

    Stroebele, Nanette; de Castro, John M.; Stuht, Jennifer; Catenacci, Vicki; Wyatt, Holly R.; Hill, James O.

    2010-01-01

    Objective America On the Move (AOM) is a national weight gain prevention initiative that promotes small lifestyle changes by increasing walking by 2000 steps/day and reducing energy intake by about 100 kcal/day. The study’s intent was to determine the impact of these small changes recommendations on steps/day and energy intake. Methods In this cross-sectional study, food and fluid intake and physical activity in 116 healthy overweight adults (BMI: 25–36 kg/m2; age: 18–60y) was compared between a non-intervention and an intervention week using diet diaries and pedometers. The major outcomes were steps/day, daily caloric intake, macronutrient intake and meal size. Within subject ANOVAs were conducted to compare results between intervention and non-intervention weeks. Results Total energy intake was lower during intervention week than non-intervention week (P < .01), including macronutrient contents (all P’s < .01), meal size (P < .01), consumption of sugar (P < .01), sugared sodas (P < .01) and sodium (P < .01). Steps/day were higher during intervention week than non-intervention week (P < .01). Conclusions The results support previous research showing that the message to increase steps/day results in an increase in physical activity. The results demonstrate for the first time that the message to reduce intake by 100 kcal/day does actually result in a lower intake in the short term. People seem to be able to make positive changes in diet and physical activity in response to these messages. If these small changes can be sustained, this approach could be effective in preventing further weight gain in the population. PMID:19571162

  10. Improving ungulate habitat in a region undergoing rapid energy development: Consequences for songbirds and small mammals

    NASA Astrophysics Data System (ADS)

    Bombaci, Sara Petrita

    Habitat manipulation intended to mitigate the impact of energy development on game animals is well underway in the western U.S. Yet, the consequences of these actions for other species are not well understood. A habitat manipulation experiment was established in the Piceance Basin, a region of Colorado undergoing rapid energy development, to evaluate alternative methods (i.e. chaining, hydro-axe, and roller-chop treatments) for reducing pinyon-juniper woodlands to promote mule deer habitat. I use this experimental design to additionally test the initial effects of these treatments on birds and small mammals, and to evaluate selection of habitat components in treatments by birds and small mammals. I found lower bird species occupancy in all treatment plots compared to control plots; however the strength of this response varied by bird guild. I found a positive relationship between bird species occupancy and percent tree cover and a negative relationship between bird species occupancy and percent grass and forb cover. I found no evidence of differences in small mammal species occupancy or density between controls and treatments. I found a positive relationship between small mammal species occupancy and percent grass and forb cover. Species richness did not significantly differ between control and treatment plots for birds or small mammals. My approach and research findings can be used to inform habitat management and multiple-species conservation objectives in pinyon-juniper and sage-steppe ecosystems undergoing energy development. Specifically, I have identified that recently developed roller-chop and hydro-axe treatments have similar impacts to woodland bird guilds as traditional chaining treatments. I have also identified species that are sensitive to habitat mitigation treatments, and thus should be monitored if woodland reduction continues to be used as a habitat mitigation strategy. Since all bird guilds were positively associated with tree cover, woodland

  11. Small Wind Turbine Testing Results from the National Renewable Energy Laboratory: Preprint

    SciTech Connect

    Bowen, A.; Huskey, A.; Link, H.; Sinclair, K.; Forsyth, T.; Jager, D.; van Dam, J.; Smith, J.

    2010-04-01

    In 2008, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) began testing small wind turbines (SWTs) through the Independent Testing project. Using competitive solicitation, five SWTs were selected for testing at the National Wind Technology Center (NWTC). NREL's NWTC is accredited by the American Association of Laboratory Accreditation (A2LA) to conduct duration, power performance, safety and function, power quality, and noise tests to International Electrotechnical Commission (IEC) standards. Results of the tests conducted on each of the SWTs are or will be available to the public on the NREL website. The results could be used by their manufacturers in the certification of the turbines or state agencies to decide which turbines are eligible for state incentives.

  12. Interactive analysis of waste recycling and energy recovery program in a small-scale incinerator.

    PubMed

    Chen, Jeng-Chung; Chen, Wei-Hsin; Chang, Ni-Bin; Davila, Eric; Tsai, Cheng-Hsien

    2005-09-01

    Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.

  13. Small refiner bias: a case study in US federal energy regulation

    SciTech Connect

    Boyce, P.G.

    1983-01-01

    This paper represents a case study in federal regulatory control of US energy markets. In particular, a set of regulations known as the Small Refiner Bias (SRB) is closely examined. The SRB, initiated in November 1974, was aimed at disproportionately subsidizing the average crude acquisition costs of refiners with crude throughputs of less than 175 thousand barrels per day (mb/cd). From November 1974 to December 1980, the SRB transfered over $5 billion (September 1981 dollars) to small refiners. Using regression models, it is found that the SRB subsidy completely accounted for the net entry of firms and plants into refining during its existence. It can be shown that the SRB led to deadweight losses in foregone user surplus as a result of induced distortions in crude use. This loss totalled $56 million (September 1981 dollars) over 1975-1980. In refining, the minimum efficient scale (MES) occurs with a 200 mb/cd capacity plant. In terms of operating costs, the difference between the costs associated with the bias babies, i.e., small refining firms which entered in response to the SRB, and that level of cost had this output been produced with MES plants, amounted to $1 billion (September 1981 dollars). Analogously, this difference for construction costs came to $2.2 billion (September 1981 dollars). In all, the SRB resutled in deadweight efficiency losses totaling $3.3 billion, the sum of operating and construction diseconomies and losses associated with the distortion in choice of crude use. Since the SRB transferred about $5.0 billion to small refiners, the difference between this amount and the efficiency losses noted came to $1.7 billion and can be imputed to small refiners as increased rent.

  14. Dual-Energy Technique at Low Tube Voltages for Small Animal Imaging*

    PubMed Central

    CHO, Seungryong; SIDKY, Emil Y; BIAN, Junguo; PAN, Xiaochuan

    2010-01-01

    We investigate the feasibility of dual-energy method for image contrast enhancement in small animal studies using a low kV X-ray radiographic system. A robust method for X-ray spectrum estimation from transmission measurements, based on expectation-maximization (EM) method, is applied to an X-ray specimen radiographic system for dual energy imaging of a mouse. From transmission measurements of two known attenuators at two different X-ray tube voltages, the X-ray energy spectra are reconstructed using the EM-based method. From the spectra information thus obtained, the transmission data for bone and soft tissue in terms of various thicknesses are generated. Two polynomial functions of transmission data are then sought for to fit the inverted thicknesses of bone and soft-tissue. Scatters in cone-beam projection data acquired at two X-ray energies were corrected. From the scatter-corrected data, a bone thickness map is separated from a soft-tissue thickness map by use of the polynomial functions. PMID:20589233

  15. Experimental Demonstration of Information-to-Energy Conversion in Small Fluctuating Systems

    NASA Astrophysics Data System (ADS)

    Sano, Masaki

    2015-03-01

    What is the relation between information and thermodynamics has been a long standing question in science. In 1867, J.C. Maxwell proposed a Gedanken experiment to demonstrate violation of the second law of thermodynamics by assuming a small creature called Maxwell's demon which separates hot atoms from cold atoms. In 1929, L. Szilard formulated the idea of Maxwell for a more tractable setup in which a single particle is thermally moving in a box immersed in a heat bath. He succeeded to relate information entropy and the second law of thermodynamics in this Gedanken experiment. It had led to long and intense debates on the relation among thermodynamics, information, observation, and even computation until it was clarified recently. Nevertheless, experimental realization of information-energy-conversion has been elusive. Recently, we succeeded to demonstrate the information-energy-conversion by observing Brownian motion of colloidal particles and controlling them. We introduced a feedback control protocol based on the information of Brownian particle by electric fields and found that the particle rotates against the torque exerted by an external electric field and obtains free energy larger than the amount of work performed on it. By measuring detailed process, validity of a new nonequilibrium equality concerning the feedback control has been shown. Efficiency of information-energy conversion was evaluated in this feedback system. Moreover, I will discuss on possible generalization of this cocept to information processing in cell chemotaxis.

  16. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    SciTech Connect

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs.

  17. The Impacts of Different Expansion Modes on Performance of Small Solar Energy Firms: Perspectives of Absorptive Capacity

    PubMed Central

    Chen, Hsing Hung; Shen, Tao; Xu, Xin-long; Ma, Chao

    2013-01-01

    The characteristics of firm's expansion by differentiated products and diversified products are quite different. However, the study employing absorptive capacity to examine the impacts of different modes of expansion on performance of small solar energy firms has never been discussed before. Then, a conceptual model to analyze the tension between strategies and corporate performance is proposed to filling the vacancy. After practical investigation, the results show that stronger organizational institutions help small solar energy firms expanded by differentiated products increase consistency between strategies and corporate performance; oppositely, stronger working attitudes with weak management controls help small solar energy firms expanded by diversified products reduce variance between strategies and corporate performance. PMID:24453837

  18. A novel differential optical beam deflection detection system for measuring laser-generated surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Shi, Yifei; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian

    2008-03-01

    As the application of the laser ultrasonics developed rapidly, there is especial call for more sensitive and convenient optical installation to detect the ultrasonic waves induced by pulsed laser. The optical beam deflection (OBD) methods have abstracted the interest of people for many years for their merits over the interference method. In this paper a novel differential OBD detection system for measuring laser-generated surface acoustic waves (SAW) is presented. The detection principle of this optical system is discussed in detail according to the scheme. And we get the linear relation between the physical parameter of the SAW and the output of the detection system. For confirm the conclusion the Monte Carlo computation method is utilized to simulate the ray propagation in the system, adding the consideration of the light spot distribution of the detection laser. The numerical result agrees with the analytic method. The linear relation between the detection system output current and the deflection angle induced by SAW is validated. Furthermore, the sensitivity and the spatial resolution of the system proposed are also calculated for comparing with the other OBD methods. The results show that this differential optical beam deflection detection system is more sensitive to the small disturbance and has higher space resolution. It has considerable potential in ultrasonic measurement.

  19. High-efficiency polymer solar cells with small photon energy loss.

    PubMed

    Kawashima, Kazuaki; Tamai, Yasunari; Ohkita, Hideo; Osaka, Itaru; Takimiya, Kazuo

    2015-12-02

    A crucial issue facing polymer-based solar cells is how to manage the energetics of the polymer/fullerene blends to maximize short-circuit current density and open-circuit voltage at the same time and thus the power conversion efficiency. Here we demonstrate that the use of a naphthobisoxadiazole-based polymer with a narrow bandgap of 1.52 eV leads to high open-circuit voltages of approximately 1 V and high-power conversion efficiencies of ∼9% in solar cells, resulting in photon energy loss as small as ∼0.5 eV, which is much smaller than that of typical polymer systems (0.7-1.0 eV). This is ascribed to the high external quantum efficiency for the systems with a very small energy offset for charge separation. These unconventional features of the present polymer system will inspire the field of polymer-based solar cells towards further improvement of power conversion efficiencies with both high short-circuit current density and open-circuit voltage.

  20. High-efficiency polymer solar cells with small photon energy loss

    PubMed Central

    Kawashima, Kazuaki; Tamai, Yasunari; Ohkita, Hideo; Osaka, Itaru; Takimiya, Kazuo

    2015-01-01

    A crucial issue facing polymer-based solar cells is how to manage the energetics of the polymer/fullerene blends to maximize short-circuit current density and open-circuit voltage at the same time and thus the power conversion efficiency. Here we demonstrate that the use of a naphthobisoxadiazole-based polymer with a narrow bandgap of 1.52 eV leads to high open-circuit voltages of approximately 1 V and high-power conversion efficiencies of ∼9% in solar cells, resulting in photon energy loss as small as ∼0.5 eV, which is much smaller than that of typical polymer systems (0.7–1.0 eV). This is ascribed to the high external quantum efficiency for the systems with a very small energy offset for charge separation. These unconventional features of the present polymer system will inspire the field of polymer-based solar cells towards further improvement of power conversion efficiencies with both high short-circuit current density and open-circuit voltage. PMID:26626042

  1. Collisions between low-energy electrons and small polyatomic targets of biological relevance

    NASA Astrophysics Data System (ADS)

    Hargreaves, Leigh

    2016-05-01

    Over the last decade, cross section measurements and calculations for DNA prototype molecules have received significant attention from the collisions community, due to the potential applications of this data in modelling electron transport through biological matter with a view to improving radiation dosimetry. Such data are additionally interesting from a fundamental aspect, as small carbon-based molecules are ideal targets for considering effects including target conformation, long-range dynamical interactions and coupling effects between the various degrees of freedom on the scattering properties of the target. At the California State University Fullerton, we have made a series of measurements of the elastic, vibrationally inelastic and electronically inelastic cross sections for a variety of small polyatomic targets, including water and the basic alcohols, ethylene, toluene and several fluorinated alkanes. These processes are important in a range of applications, primarily for modelling electron transport and thermalization, and energy deposition to a biological media. The data were obtained using a high resolution electron energy-loss spectrometer, operating in a crossed beam configuration with a moveable aperture gas source. The gas source design facilitates both an expedient and highly accurate method of removing background signal, and removes uncertainties from the data due to uncertainties in the beam profile. We have also performed scattering calculations employing the Schwinger Multichannel method, in collaboration with the California institute of technology, to compare with our measurements. In this talk, I will present an overview of our recent data and future research plans.

  2. Solution structure and excitation energy transfer in phycobiliproteins of Acaryochloris marina investigated by small angle scattering.

    PubMed

    Golub, M; Combet, S; Wieland, D C F; Soloviov, D; Kuklin, A; Lokstein, H; Schmitt, F-J; Olliges, R; Hecht, M; Eckert, H-J; Pieper, J

    2017-04-01

    The structure of phycobiliproteins of the cyanobacterium Acaryochloris marina was investigated in buffer solution at physiological temperatures, i.e. under the same conditions applied in spectroscopic experiments, using small angle neutron scattering. The scattering data of intact phycobiliproteins in buffer solution containing phosphate can be well described using a cylindrical shape with a length of about 225Å and a diameter of approximately 100Å. This finding is qualitatively consistent with earlier electron microscopy studies reporting a rod-like shape of the phycobiliproteins with a length of about 250 (M. Chen et al., FEBS Letters 583, 2009, 2535) or 300Å (J. Marquart et al., FEBS Letters 410, 1997, 428). In contrast, phycobiliproteins dissolved in buffer lacking phosphate revealed a splitting of the rods into cylindrical subunits with a height of 28Å only, but also a pronounced sample aggregation. Complementary small angle neutron and X-ray scattering experiments on phycocyanin suggest that the cylindrical subunits may represent either trimeric phycocyanin or trimeric allophycocyanin. Our findings are in agreement with the assumption that a phycobiliprotein rod with a total height of about 225Å can accommodate seven trimeric phycocyanin subunits and one trimeric allophycocyanin subunit, each of which having a height of about 28Å. The structural information obtained by small angle neutron and X-ray scattering can be used to interpret variations in the low-energy region of the 4.5K absorption spectra of phycobiliproteins dissolved in buffer solutions containing and lacking phosphate, respectively.

  3. Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission.

    PubMed

    Lin, Wen-Yinn; Chang, Yuan-Yi; Hsieh, You-Ru

    2010-02-01

    This study was focused on fuel energy efficiency and pollution analysis of different ratios of ethanol-gasoline blended fuels (E0, E3, E6, and E9) under different loadings. In this research, the experimental system consisted of a small engine generator, a particulate matter measurement system, and an exhaust gas analyzer system. Different fuels, unleaded gasoline, and ethanol-gasoline blends (E0, E3, E6, and E9) were used to study their effects on the exhaust gas emission and were expressed as thermal efficiency of the small engine generator energy efficiency. The results suggested that particle number concentration increased as the engine loading increased; however, it decreased as the ethanol content in the blend increased. While using E6 as fuel, the carbon monoxide (CO) concentration was less than other fuels (E0, E3, and E9) for each engine loading. The average of CO concentration reduction by using E3, E6, and E9 is 42, 86, and 83%, respectively. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 78.7, 97.5, and 89.46% of the mean average values of hydrocarbons (HCs) with E3, E6, and E9 fuels, respectively, for all engine loadings. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 35, 86, and 77% of the mean average values of nitrogen oxides (NOx) with E3, E6, and E9 fuels, respectively, at each engine loading. The E6 fuel gave the best results of the exhaust emissions, and the E9 fuel gave the best results of the particle emissions and engine performance. The thermal efficiency of the small engine generator increased as the ethanol content in the blend increased and as the engine loading increased.

  4. The effect of β + energy on performance of a small animal PET camera

    NASA Astrophysics Data System (ADS)

    Partridge, M.; Spinelli, A.; Ryder, W.; Hindorf, C.

    2006-12-01

    The effective spatial resolution of a positron emission tomography (PET) scanner is determined in part by the initial energy of the positron, which is a function of the radionuclide. For F-18 ( Emax=0.633 MeV) the mean positron range in water is small (0.6 mm). However, many other useful positron-emitting nuclides have higher energies, for example Ga-68 ( Emax=1.899 MeV, mean range 2.9 mm) has one of the highest. The performance of a non-rotating, 16 module high density avalanche chamber (quad-HIDAC) small animal PET scanner was measured using both F-18 and Ga-68 to represent the extremes of high and low positron energy. The count rate performance—scatter fraction and noise-equivalent count rate (NEC)—were measured for both isotopes. Data were also collected for a spatial resolution phantom with rectangular arrays of holes of diameter 2.0, 1.5, 1.0 and 0.5 mm with the centres separated by 4.0, 3.0, 2.0 and 1.0 mm respectively. The NEC, measured for both 70 and 200 cm 3 cylindrical phantoms, was approximately linear up to 30 MBq, but shows a rapid drop-off above this value. The spatial resolution phantom showed that 1 mm objects are just resolved with F-18, but none of the targets are resolved for Ga-68. In conclusion, spatial resolution is dominated by the choice of isotope down to 1 mm, with sensitivity and count-rate data being largely independent of positron range.

  5. Small run-of-river hydropower: tradeoff among energy production, profitability and hydrologic impact

    NASA Astrophysics Data System (ADS)

    Basso, S.; Lazzaro, G.; Schirmer, M.; Botter, G.

    2013-12-01

    Energy production by run-of-river hydropower plants strongly depends on the availability and temporal variability of streamflows. Due to the absence of a reservoir, the selection of the plant capacity is a key step to reach an efficient exploitation of the available water resources, and it should rest on a characterization of the variability of river flows as well as on economic issues. In this work we propose an analytical framework to identify the capacity which maximizes the produced energy or the economic profitability of small run-of-river power plants, explicitly taking into account the streamflow variability and the management strategies used to operate the plants. The framework allows for an assessment of the gap between the economic and energy optimizations of these plants and of the effectiveness of policies aimed at its reduction. In order to consider also the value linked to protection or restoration of riverine processes and habitats, which could be heavily impacted by small run-of-river plants built in cascade along the same river reach, the alteration of the hydrologic regime between the intake and the outflow of the plant is expressed as a function of the natural regime. Two alternative withdrawal strategies (the commonly used minimum flow discharge and the percent-of-flow approaches) are analyzed and the resulting hydrologic disturbances and economic profitabilities are compared by using a set of synthetic indices. The application to three case studies in the Alps proves the framework to be a valuable tool to assess the ability of water management strategies to trade between hydrologic disturbance and anthropogenic uses of fresh water and to identify incentive policies promoting an efficient exploitation of water resources.

  6. Deflecting APOPHIS with a flotilla of solar shields

    NASA Astrophysics Data System (ADS)

    Prado, Jean-Yves; Perret, Alain; Boisard, Olivier

    2011-12-01

    The possibility to use the photonic pressure from the Sun for acting upon the orbit of a man-made object is well known. What is presented in this paper is the capacity to use a solar sail like vehicle to change the orbit of a small body of the solar system by hovering over its sunlit surface. One of the forces that affect the orbit of small bodies is a tiny but permanent thrust of thermal origin, the intensity and direction of which are directly related to the nature of the soil, the characteristics of the rotation and the physical properties of the body. This effect is known as the Yarkovsky Effect. It concerns mainly hundred meter class asteroids. There are hundred thousands of small bodies of this type. About 10% of them are classified as Near Earth Object and one of them, APOPHIS, is of special interest. APOPHIS has been discovered in 2004. Its diameter is estimated to be 270 m. Its rotation period is around 30 h so the Yarkovsky Effect on its orbit should not be negligible. These parameters and possibly others should be refined in 2012 when this asteroid can be observed again. APOPHIS will make a very close (40,000 km) approach to the Earth in April 2029. Depending on the geometry of its swing-by, it can be placed on an impact orbit to the Earth and present a danger for the future decades. The areas that correspond to such trajectories are called Resonant Orbit Keyholes and are only a few hundred meter wide. From the observation in 2012, it will be possible to determine the magnitude of the Yarkovsky Effect on APOPHIS and to greatly improve the prevision of its 2029 swing-by. If the Yarkovsky Effect is found to be important, cancelling it will be sufficient to avoid any keyhole and prevent any future collision with the Earth. We call Yarkovsky Effect Suppression (YES) this deflection method. This effect can be cancelled by shadowing and cooling down the asteroid with a flotilla of solar shields. This new type of solar sails will have to counter the photonic

  7. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Gallivan, Justin [Emory University

    2016-07-12

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  8. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Gallivan, Justin

    2012-03-21

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  9. RF deflecting cavity design for Berkeley ultrafast X-ray source

    NASA Astrophysics Data System (ADS)

    Li, D.; Corlett, J.

    2002-05-01

    Our proposed source for production of ultra-short (less than 100 fs FWHM) x-ray pulses utilizes a scheme for manipulation of the relatively long (2 ps) electron bunch in transverse phase-space, followed by compression of the emitted x-ray pulse in crystal optics. In order to compress the x-ray pulses, RF cavities operating in a dipole mode (TM110-like) are required to deflect the head and tail of a 2.5 GeV bunch in opposite directions. For a 2 ps duration electron bunch, an 8.5 MV deflecting voltage is required at a RF frequency of 3.9 GHz. In this paper, we will present a preliminary cavity design based on numerical simulations performed by MAFIA and URMEL codes. Seven-cell superconducting p mode dipole RF cavities are proposed to provide the necessary deflecting voltage. Due to the presence of beam iris, the mavities operate in a hybrid mode where TM and TE like modes co-exist. Even on mhe beam axis, both magnetic and electric fields contribute to the transverse mick. Lower order monopole modes (LOMs) in the cavities may cause energy spread of the electron beam and need to be damped. The effects of the LOMs on beam dynamics are estimated. Possible damping schemes will be discussed.

  10. RF deflecting cavity design for Berkeley ultrafast X-ray source

    SciTech Connect

    Li, Derun; Corlett, J.

    2002-05-30

    Our proposed source for production of ultra-short (less than 100 fs FWHM) x-ray pulses utilizes a scheme for manipulation of the relatively long ({approx}2 ps) electron bunch in transverse phase-space, followed by compression of the emitted x-ray pulse in crystal optics [1]. In order to compress the x-ray pulses, RF cavities operating in a dipole mode (TM{sub 110}-like) are required to deflect the head and tail of a 2.5 GeV bunch in opposite directions. For a 2 ps duration electron bunch, an 8.5 MV deflecting voltage is required at a RF frequency of 3.9 GHz. In this paper, we will present a preliminary cavity design based on numerical simulations performed by MAFIA and URMEL codes. Seven-cell superconducting {pi} mode dipole RF cavities are proposed to provide the necessary deflecting voltage. Due to the presence of beam iris, the cavities operate in a hybrid mode where TM and TE like modes co-exist. Even on the beam axis, both magnetic and electric fields contribute to the transverse kick. Lower order monopole modes (LOMs) in the cavities may cause energy spread of the electron beam and need to be damped. The effects of the LOMs on beam dynamics are estimated. Possible damping schemes will be discussed.

  11. Integrated system modeling analysis of a cryogenic multi-cell deflecting-mode cavity resonator

    NASA Astrophysics Data System (ADS)

    Shin, Young-Min; Church, Michael

    2013-09-01

    A deflecting mode cavity is the integral element for six-dimensional phase-space beam control in bunch compressors and emittance transformers at high energy beam test facilities. RF performance of a high-Q device is, however, highly sensitive to operational conditions, in particular in a cryo-cooling environment. Using analytic calculations and RF simulations, we examined cavity parameters and deflecting characteristics of TM110,π mode of a 5 cell resonator in a liquid nitrogen cryostat, which has long been used at the Fermilab A0 Photoinjector (A0PI). The sensitivity analysis indicated that the cavity could lose 30%-40% of deflecting force due to defective input power coupling accompanying non-uniform field distribution across the cells with 40 ˜ 50 MeV electron beam and 70-80 kW klystron power. Vacuum-cryomodules of the 5 cell cavity are planned to be installed at the Fermilab Advanced Superconducting Test Accelerator facility. Comprehensive modeling analysis integrated with multi-physics simulation tools showed that RF loading of 1 ms can cause a ˜5 K maximum temperature increase, corresponding to a ˜4.3 μm/ms deformation and a 1.32 MHz/K maximum frequency shift. The integrated system modeling analysis will improve design process of a high-Q cavity with more accurate prediction of cryogenic RF performance under a high power pulse operation.

  12. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    SciTech Connect

    Kay, J.

    1982-04-01

    This report presents an analysis of the technical performance and cost effectiveness of nine small wind energy conversion systems (SWECS) funded during FY 1979 by the U.S. Department of Energy. Chapter 1 gives an analytic framework with which to evaluate the systems. Chapter 2 consists of a review of each of the nine projects, including project technical overviews, estimates of energy savings, and results of economic analysis. Chapter 3 summarizes technical, economic, and institutional barriers that are likely to inhibit widespread dissemination of SWECS technology.

  13. A Small Potassium Current in AgRP/NPY Neurons Regulates Feeding Behavior and Energy Metabolism.

    PubMed

    He, Yanlin; Shu, Gang; Yang, Yongjie; Xu, Pingwen; Xia, Yan; Wang, Chunmei; Saito, Kenji; Hinton, Antentor; Yan, Xiaofeng; Liu, Chen; Wu, Qi; Tong, Qingchun; Xu, Yong

    2016-11-08

    Neurons that co-express agouti-related peptide (AgRP) and neuropeptide Y (NPY) are indispensable for normal feeding behavior. Firing activities of AgRP/NPY neurons are dynamically regulated by energy status and coordinate appropriate feeding behavior to meet nutritional demands. However, intrinsic mechanisms that regulate AgRP/NPY neural activities during the fed-to-fasted transition are not fully understood. We found that AgRP/NPY neurons in satiated mice express high levels of the small-conductance calcium-activated potassium channel 3 (SK3) and are inhibited by SK3-mediated potassium currents; on the other hand, food deprivation suppresses SK3 expression in AgRP/NPY neurons, and the decreased SK3-mediated currents contribute to fasting-induced activation of these neurons. Genetic mutation of SK3 specifically in AgRP/NPY neurons leads to increased sensitivity to diet-induced obesity, associated with chronic hyperphagia and decreased energy expenditure. Our results identify SK3 as a key intrinsic mediator that coordinates nutritional status with AgRP/NPY neural activities and animals' feeding behavior and energy metabolism.

  14. Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique

    NASA Astrophysics Data System (ADS)

    Nordbo, Annika; Launiainen, Samuli; Mammarella, Ivan; LeppäRanta, Matti; Huotari, Jussi; Ojala, Anne; Vesala, Timo

    2011-01-01

    Measurements of the energy balance components of a small boreal lake (area 0.041 km2, mean depth 2.5 m) in southern Finland were performed during four open water periods (April-October) in 2005-2008. Turbulent fluxes of sensible and latent heat acquired using the eddy covariance technique were accompanied by net radiation and water heat storage measurements. In April the lake was near isothermal, whereas in May the development of a thermocline was enabled by dark water color and a sheltered location. The thermocline continued to deepen until September down to the depth of 3.5 m and prevented the deeper water from interacting with the atmosphere. The sensible heat flux was governed by the air-water temperature difference and had its minimum in the afternoon (values down to -45 W m-2) and peaked in the early morning (values up to 32 W m-2). The monthly means ranged from -9 W m-2 (April 2005) to 24 W m-2 (July 2008). The diurnal variation of the latent heat flux, controlled by vapor pressure deficit, had an opposite diurnal phase with a maximum in the afternoon (values up to 120 W m-2) and minimum in the morning (values down to ˜2 W m-2). The monthly averages ranged from 4 W m-2 (October 2008) to 77 W m-2 (July 2006). Furthermore, the lake acted as a heat sink until July and August when the maximum heat content was about 230 MJ m-2. The monthly energy balance closure varied from 57% to 112%, and the average closure was 82% (residual 16 W m-2) and 72% (residual 23 W m-2) for 2006 and 2007, respectively.

  15. Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy, and Small-Scale Cogeneration

    NASA Astrophysics Data System (ADS)

    Siler-Evans, Kyle

    to evaluate the effects of an additional wind turbine or solar panel in the U.S. electricity system. I find that the most attractive sites for renewables depend strongly on one's objective. A solar panel in Iowa displaces 20% more CO2 emissions than a panel in Arizona, though energy production from the Iowa panel is 25% less. Similarly, despite a modest wind resource, a wind turbine in West Virginia is expected to displace 7 times more health and environmental damages than a wind turbine in Oklahoma. Finally, I shift focus and explore the economics of small-scale cogeneration, which has long been recognized as a more efficient alternative to central-station power. Although the benefits of distributed cogeneration are widely cited, adoption has been slow in the U.S. Adoption could be encouraged by making cogeneration more economically attractive, either by increasing the expected returns or decreasing the risks of such investments. I present a case study of a 300-kilowatt cogeneration unit and evaluate the expected returns from: demand response, capacity markets, regulation markets, accelerated depreciation, a price on CO2 emissions, and net metering. In addition, I explore the effectiveness of feed-in tariffs at mitigating the energy-price risks to cogeneration projects.

  16. Evaporation from a small prairie wetland in the Cottonwood Lake Area, North Dakota - An energy-budget study

    USGS Publications Warehouse

    Parkhurst, R.S.; Winter, T.C.; Rosenberry, D.O.; Sturrock, A.M.

    1998-01-01

    Evaporation from Wetland Pl in the Cottonwood Lake area of North Dakota, USA was determined by the energy-budget method for 1982-85 and 1987. Evaporation rates were as high as 0.672 cm day-1. Incoming solar radiation, incoming atmospheric radiation, and long-wave radiation emitted from the water body are the largest energy fluxes to and from the wetland. Because of the small heat storage of the water body, evaporation rates closely track solar radiation on short time scales. The effect of advected energy related to precipitation is small because the water quickly heats up by solar radiation following precipitation. Advected energy related to ground water is minimal because ground-water fluxes are small and groundwater temperature is only about 7 ??C. Energy flux related to sediment heating and thermal storage in the sediments, which might be expected to be large because the water is clear and shallow, affects evaporation rates by less than 5 percent.

  17. Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface

    NASA Astrophysics Data System (ADS)

    Chesley, S.; Farnocchia, D.

    2014-07-01

    The kinetic impactor deflection approach is likely to be the optimal deflection strategy in most real-world cases, given the likelihood of decades of warning time provided by asteroid search programs and the probable small size of the next confirmed asteroid impact that would require deflection. However, despite its straightforward implementation, the kinetic impactor approach can have its effectiveness limited by the astrodynamics that govern the impactor spacecraft trajectory. First, the deflection from an impact is maximized when the asteroid is at perihelion, while an impact near perihelion can in some cases be energetically difficult to implement. Additionally, the asteroid change in velocity Δ V should aligned with the target's heliocentric velocity vector in order to maximize the deflection at a potential impact some years in the future. Thus the relative velocity should be aligned with or against the heliocentric velocity, which implies that the impactor and asteroid orbits should be tangent at the point of impact. However, for natural bodies such as meteorites colliding with the Earth, the relative velocity vectors tend to cluster near the sunward or anti- sunward directions, far from the desired direction. This is because there is generally a significant crossing angle between the orbits of the impactor and target and an impact at tangency is unusual. The point is that hitting the asteroid is not enough, but rather we desire to hit the asteroid at a point when the asteroid and spacecraft orbits are nearly tangent and when the asteroid is near perihelion. However, complicating the analysis is the fact that the impact of a spacecraft on an asteroid would create an ejecta plume that is roughly normal to the surface at the point of impact. This escaping ejecta provides additional momentum transfer that generally adds to the effectiveness of a kinetic deflection. The ratio β between the ejecta momentum and the total momentum (ejecta plus spacecraft) can

  18. A wideband deflected reflection based on multiple resonances

    NASA Astrophysics Data System (ADS)

    Chen, Hongya; Ma, Hua; Wang, Jiafu; Qu, Shaobo; Li, Yongfeng; Wang, Jun; Yan, Mingbao; Pang, Yongqiang

    2015-07-01

    We propose to realize wideband deflected reflection in microwave regime through multiple resonances. A wideband deflected reflection of a phase gradient metasurface is designed using a double-head arrow structure, which has demonstrated an ultra-wideband cross-polarized reflection caused by multiple electric and magnetic resonances. The wideband effect benefits from the wideband cross-polarized reflection and flexible phase modulation of the double-head arrow structure. Simulated and experimental results agree well with theoretical predictions. Furthermore, relative bandwidths of deflected reflection reach to 71 % for both x- and y-polarized waves under normal incidence. Our method of expansion bandwidth may pave the way in many practical applications, such as RCS reduction, stealth surfaces.

  19. Development of pneumatic thrust-deflecting powered-lift systems

    NASA Technical Reports Server (NTRS)

    Englar, R. J.; Nichols, J. H., Jr.; Harris, M. J.; Eppel, J. C.; Shovlin, M. D.

    1986-01-01

    Improvements introduced into the Circulation Control Wing/Upper Surface Blowing (CCW/USB) STOL concept (Harris et al., 1982) are described along with results of the full-scale static ground tests and model-scale wind tunnel investigations. Tests performed on the full-scale pneumatic thrust-deflecting system installed on the NASA QSRA aircraft have demonstrated that, relative to the original baseline configuration, a doubling of incremental thrust deflection due to blowing resulted from improvements that increased the blowing span and momentum, as well as from variations in blowing slot height and geometry of the trailing edge. A CCW/Over the Wing model has been built and tested, which was shown to be equivalent to the CCW/USB system in terms of pneumatic thrust deflection and lift generation, while resolving the problem of cruise thrust loss due to exhaust scrubbing on the wing upper surface.

  20. Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy.

    PubMed

    Chen, Jun; Li, Xiaoming; Gu, Yu; Wang, Hao; Song, Xiufeng; Zeng, Haibo

    2017-03-01

    For nanomaterial fabrication by laser ablation in liquid (LAL), it is very important to understand the mesoscopic process of laser interaction with materials in liquid. We proposed a method combining time-resolved shadowgraphy and optical beam deflection method to study the LAL process in both pure water and water with nanoparticles (colloids). As the laser was focused on the target in pure water, the laser energy was absorbed by the target and plasma, shockwaves and bubbles were produced, along with the generation of nanoparticles. While in case of colloid, laser beam first passed through the solution, interacted with nanoparticles and induced plenty of sporadic shadows (small bubbles) on the beam path which were captured by shadowgraphy. Then, the laser arrived at the target and induced breakdown accompanied by the emergence of plasma, shockwave and bubbles. Meanwhile, the concentration of nanoparticle increased and the sizes of nanoparticle were modified. The radius and oscillation time of bubbles are much smaller in the colloid than that in pure water, mainly due to laser energy loss by breakdown of the nanoparticles and generation of small bubbles before reaching the target. Moreover, we found the maximum bubble radius and bubble oscillation time decrease quickly with laser irradiation times at the beginning, and then reach a plateau, because of laser energy lost on the way to the target. In addition, we used the ablation process to explain a bimodal size distribution of nanoparticles. This work will deepen our understanding on the mechanism of both laser ablation of bulk targets in liquid and laser irradiation of particles in liquid.

  1. Novel deflecting cavity design for eRHIC

    SciTech Connect

    Wu, Q.; Belomestnykh, S.; Ben-Zvi, I.

    2011-07-25

    To prevent significant loss of the luminosity due to large crossing angle in the future ERL based Electron Ion Collider at BNL (eRHIC), there is a demand for crab cavities. In this article, we will present a novel design of the deflecting/crabbing 181 MHz superconducting RF cavity that will fulfil the requirements of eRHIC. The quarter-wave resonator structure of the new cavity possesses many advantages, such as compact size, high R{sub t}/Q, the absence of the same order mode and lower order mode, and easy higher order mode damping. We will present the properties and characteristics of the new cavity in detail. As the accelerator systems grow in complexity, developing compact and efficient deflecting cavities is of great interest. Such cavities will benefit situations where the beam line space is limited. The future linac-ring type electron-ion collider requires implementation of a crab-crossing scheme for both beams at the interaction region. The ion beam has a long bunches and high rigidity. Therefore, it requires a low frequency, large kicking angle deflector. The frequency of the deflecting mode for the current collider design is 181 MHz, and the deflecting angle is {approx}5 mrad for each beam. At such low frequency, the previous designs of the crab cavities will have very large dimensions, and also will be confronted by typical problems of damping the Lower Order Mode (LOM), the Same Order Mode (SOM), and as usual, the Higher Order Modes (HOM). In this paper we describe how one can use the concept of a quarter-wave (QW) resonator for a deflecting/crabbing cavity, and use its fundamental mode to deflect the beam. The simplicity of the cavity geometry and the large separation between its fundamental mode and the first HOM make it very attractive.

  2. Optical caliper with compensation for specimen deflection and method

    DOEpatents

    Bernacki, B.E.

    1997-12-09

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors. 2 figs.

  3. Deflection angle of light in an Ellis wormhole geometry

    NASA Astrophysics Data System (ADS)

    Nakajima, Koki; Asada, Hideki

    2012-05-01

    We reexamine the light deflection by an Ellis wormhole. The bending angle as a function of the ratio between the impact parameter and the throat radius of the wormhole is obtained in terms of a complete elliptic integral of the first kind. This result immediately yields asymptotic expressions in the weak field approximation. It is shown that an expression for the deflection angle derived (and used) in recent papers is valid at the leading order but it breaks down at the next order because of the nontrivial spacetime topology.

  4. Nuclear cycler: An incremental approach to the deflection of asteroids

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano; Thiry, Nicolas

    2016-04-01

    This paper introduces a novel deflection approach based on nuclear explosions: the nuclear cycler. The idea is to combine the effectiveness of nuclear explosions with the controllability and redundancy offered by slow push methods within an incremental deflection strategy. The paper will present an extended model for single nuclear stand-off explosions in the proximity of elongated ellipsoidal asteroids, and a family of natural formation orbits that allows the spacecraft to deploy multiple bombs while being shielded by the asteroid during the detonation.

  5. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  6. Optical caliper with compensation for specimen deflection and method

    DOEpatents

    Bernacki, Bruce E.

    1997-01-01

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors.

  7. Optimum vibrating beams with stress and deflection constraints

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.

    1976-01-01

    The fundamental frequency of vibration of an Euler-Bernoulli or a Timoshenko beam of a specified constant volume is maximized subject to the constraint that under a prescribed loading the maximum stress or maximum deflection at any point along the beam axis will not exceed a specified value. In contrast with the inequality constraint which controls the minimum cross-section, the present inequality constraints lead to more meaningful designs. The inequality constraint on stresses is as easily implemented as the minimum cross-section constraint but the inequality constraint on deflection uses a treatment which is an extension of the matrix partitioning technique of prescribing displacements in finite element analysis.

  8. Monolithically integrated optical displacement sensor based on triangulation and optical beam deflection.

    PubMed

    Higurashi, E; Sawada, R; Ito, T

    1999-03-20

    A monolithically integrated optical displacement sensor based on triangulation and optical beam deflection is reported. This sensor is simple and consists of only a laser diode, a polyimide waveguide, and a split detector (a pair of photodiodes) upon a GaAs substrate. The resultant prototype device is extremely small (750 microm x 800 microm). Experiments have shown that this sensor can measure the displacement of a mirror with resolution of better than 4 nm. Additionally, we have experimentally demonstrated both axial and lateral displacement measurements when we used a cylindrical micromirror (diameter, 125 microm) as a movable external object.

  9. Surprisingly High Conductivity and Efficient Exciton Blocking in Fullerene/Wide-Energy-Gap Small Molecule Mixtures.

    PubMed

    Bergemann, Kevin J; Amonoo, Jojo A; Song, Byeongseop; Green, Peter F; Forrest, Stephen R

    2015-06-10

    We find that mixtures of C60 with the wide energy gap, small molecular weight semiconductor bathophenanthroline (BPhen) exhibit a combination of surprisingly high electron conductivity and efficient exciton blocking when employed as buffer layers in organic photovoltaic cells. Photoluminescence quenching measurements show that a 1:1 BPhen/C60 mixed layer has an exciton blocking efficiency of 84 ± 5% compared to that of 100% for a neat BPhen layer. This high blocking efficiency is accompanied by a 100-fold increase in electron conductivity compared with neat BPhen. Transient photocurrent measurements show that charge transport through a neat BPhen buffer is dispersive, in contrast to nondispersive transport in the compound buffer. Interestingly, although the conductivity is high, there is no clearly defined insulating-to-conducting phase transition with increased insulating BPhen fraction. Thus, we infer that C60 undergoes nanoscale (<10 nm domain size) phase segregation even at very high (>80%) BPhen fractions.

  10. Low energy emission bands in a small molecular fluorene derivative for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lou, S. L.; Yu, H. S.; Ma, W. M.; Jiang, Y.; Zhang, Q.

    2008-11-01

    6,6'-(9H-fluoren-9,9-diyl)bis(2,3-bis(9,9-dihexyl-9H-fluoren-2-yl)quinoxaline) (BFLBBFLYQ) was a novel small molecular fluorene material with fluorescence maxima at 450 nm in spin cast films. Compared to spin cast films, BFLBBFLYQ vacuum evaporated deposition films exhibited different photo-physical properties. The low energy emission bands from 530 to 570 nm were observed from the electroluminescence (EL) and photoluminescence (PL) spectra of BFLBBFLYQ films evaporated deposition in ultrahigh vacuum circumstance, and the origin of these emission features were investigated and discussed. Also, the emissive properties of BFLBBFLYQ spin cast films upon thermal annealing and under UV irradiation in air were characterized for the effect of thermal oxidization and photo-oxidization.

  11. Identification of Selected Areas to Support Federal Clean Energy Goals Using Small Modular Reactors

    SciTech Connect

    Belles, Randy; Mays, Gary T; Omitaomu, Olufemi A; Poore III, Willis P

    2013-12-01

    This analysis identifies candidate locations, in a broad sense, where there are high concentrations of federal government agency use of electricity, which are also suitable areas for near-term SMRs. Near-term SMRs are based on light-water reactor (LWR) technology with compact design features that are expected to offer a host of safety, siting, construction, and economic benefits. These smaller plants are ideally suited for small electric grids and for locations that cannot support large reactors, thus providing utilities or governement entities with the flexibility to scale power production as demand changes by adding additional power by deploying more modules or reactors in phases. This research project is aimed at providing methodologies, information, and insights to assist the federal government in meeting federal clean energy goals.

  12. Bending energy of a vesicle to which a small spherical particle adhere: An analytical study

    NASA Astrophysics Data System (ADS)

    Cao, Si-Qin; Wei, Guang-Hong; Chen, Jeff Z. Y.

    2015-09-01

    On the basis of Helfrich’s bending energy model, we show that the adsorption process of a small spherical particle to a closed vesicle can be analytically studied by retaining the leading terms in an expansion of the shape equation. Our general derivation predicts the optimal binding sites on a vesicle, where the local membrane shape of the binding site could be non-axisymmetric before the continuous adhesion transition takes place. Our derivation avoids directly solving the shape equation and depends on an integration of the contact-line condition. The results are verified by several examples of independent numerical solutions. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074047 and 11274075), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. RFDP-20100071110006), and the Natural Science and Science Engineering Council of Canada.

  13. Providing for energy efficiency in homes and small buildings. Part I. Understanding and practicing energy conservation in buildings

    SciTech Connect

    Parady, W. Harold; Turner, J. Howard

    1980-06-01

    This is a training program to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. A teacher guide and student workbook are available to supplement the basic guide, which contains three parts. Part I considers the following: understanding the importance of energy; developing a concern for conserving energy; understanding the use of energy in buildings; care and maintenance of energy-efficient buildings; and developing energy-saving habits. A bibliography is presented.

  14. Analysis of the energy impacts of the DOE Appropriate Energy Technology Small Grants Program: Method and results

    NASA Astrophysics Data System (ADS)

    Lucarelli, B.; Kessel, J.; Kay, J.; Linse, J.; Tompson, S.; Homer, M.

    1981-08-01

    Methods for assessing the energy savings of projects in the appropriate technology program (AT) and how to apply these methods to obtain estimates of energy impacts was studied. Program energy savings were estimated from project savings by statistical inference. Direct energy savings and methods and results of the economic analysis are discussed. Indirect energy savings and program energy savings and the methods used to obtain them are estimated. Improvement of project selection which increase program energy savings and two approaches for conducting future energy impact studies are presented.

  15. High-energy sky observation by two small satellites using formation flight (FFAST)

    NASA Astrophysics Data System (ADS)

    Tsunemi, Hiroshi; Hayashida, Kiyoshi; Kunieda, Hideyo; Ogasaka, Yasushi; Itoh, Masayuki; Ozaki, Masanobu; Kawano, Isao

    2008-07-01

    We are planning to have a "formation flight all sky telescope"~(FFAST) that will cover a large sky area in relatively high energy X-ray. In particular, it will focus on the energy range above 10 keV. It consists of two small satellites that will go in a formation flight. One is an X-ray telescope satellite and the other is a detector satellite. Two satellites will be simultaneously launched by a single rocket vehicle into a low earth orbit. They are in a formation flight with a separation of 20m+/-10cm. The observation direction is determined by the two satellites. Since two satellites are put into Keplerian orbit, the observation direction is scanning the sky rather than pointing to a fixed direction. The X-ray telescope satellite carries one super-mirror covering the energy range up to 80 keV. The telescope is 45-cm diameter and its focal length is 20m. The telescope is a "super mirror" ~that has a multi-layer coating covering the energy range up to 80 keV. The effective area is about 500cm2 at low energy and 200cm2 at 70 keV. The mirror system is a thin foil mirror that is developing at Nagoya University that is being developed. The PSF of the mirror will be about 1-2 arcmin. The satellite is equipped with an attitude control system using momentum wheel. It will keep the satellite such that the optical axis of the mirror is pointing to the detector satellite. The other is a detector satellite that carries an SDCCD system. The SDCCD is a CCD with a scintillator that is directly attached to the CCD. The CCD chip is fully depleted which can be a back-illuminated CCD. The scintillator is attached to the CCD at back side so that it has high detection efficiency for visible photons generated inside the scintillator. The X-ray enters into the CCD at front side. Therefore, low energy X-rays (below 10 keV) can be photo-absorbed in the depletion layer of the CCD while high energy X-rays will be absorbed in the scintillator that will emit visible photons The visible

  16. Small Businesses Save Big: A Borrower's Guide To Increase the Bottom Line Using Energy Efficiency (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Dollars saved through energy efficiency can directly impact your bottom line. Whether you are planning for a major renovation or upgrading individual pieces of building equipment, these improvements can help reduce operating costs, save on utility bills, and boost profits. This fact sheet provides a guide for small businesses to find the resources to increase the energy efficiency of their buildings.

  17. Jahn-Teller effects in transition-metal compounds with small charge-transfer energy

    NASA Astrophysics Data System (ADS)

    Mizokawa, Takashi

    2013-04-01

    We have studied Jahn-Teller effects in Cs2Au2Br6, ACu3Co4O12(A=Ca or Y), and IrTe2 in which the ligand p-to-transition-metal d charge-transfer energy is small or negative. The Au+/Au3+ charge disproportionation of Cs2Au2Br6 manifests in Au 4f photoemission spectra. In Cs2Au2Br6 with negative Δ and intermediate U, the charge disproportionation can be described using effective d orbitals constructed from the Au 5d and Br 4p orbitals and is stabilized by the Jahn-Teller distortion of the Au3+ site with low-spin d8 configuration. In ACu3Co4O12, Δs for Cu3+ and Co4+ are negative and Us are very large. The Zhang-Rice picture is valid to describe the electronic state, and the valence change from Cu2+/Co4+ to Cu3+/Co3+ can be viewed as the O 2p hole transfer from Co to Cu or d9 + d6L → d9L + d6. In IrTe2, both Δ and U are small and the Ir 5d and Te 5p electrons are itinerant to form the multi-band Fermi surfaces. The ideas of band Jahn-Teller transition and Peierls transition are useful to describe the structural instabilities.

  18. Modelling galaxy clustering on small scales to tighten constraints on dark energy and modified gravity

    NASA Astrophysics Data System (ADS)

    Wang, Yun

    2017-01-01

    We present a new approach to measuring cosmic expansion history and growth rate of large-scale structure using the anisotropic two-dimensional galaxy correlation function (2DCF) measured from data; it makes use of the empirical modelling of small-scale galaxy clustering derived from numerical simulations by Zheng et al. We validate this method using mock catalogues, before applying it to the analysis of the CMASS sample from the Sloan Digital Sky Survey Data Release 10 of the Baryon Oscillation Spectroscopic Survey. We find that this method enables accurate and precise measurements of cosmic expansion history and growth rate of large-scale structure. Modelling the 2DCF fully including non-linear effects and redshift space distortions in the scale range of 16-144 h-1 Mpc, we find H(0.57)rs(zd)/c = 0.0459 ± 0.0006, DA(0.57)/rs(zd) = 9.011 ± 0.073, and fg(0.57)σ8(0.57) = 0.476 ± 0.050, which correspond to precisions of 1.3 per cent, 0.8 per cent, and 10.5 per cent, respectively. We have defined rs(zd) to be the sound horizon at the drag epoch computed using a simple integral, fg(z) as the growth rate at redshift z, and σ8(z) as the matter power spectrum normalization on 8 h-1 Mpc scale at z. We find that neglecting the small-scale information significantly weakens the constraints on H(z) and DA(z), and leads to a biased estimate of fg(z). Our results indicate that we can significantly tighten constraints on dark energy and modified gravity by reliably modelling small-scale galaxy clustering.

  19. Evaluation of solvation free energies for small molecules with the AMOEBA polarizable force field.

    PubMed

    Mohamed, Noor Asidah; Bradshaw, Richard T; Essex, Jonathan W

    2016-12-15

    The effects of electronic polarization in biomolecular interactions will differ depending on the local dielectric constant of the environment, such as in solvent, DNA, proteins, and membranes. Here the performance of the AMOEBA polarizable force field is evaluated under nonaqueous conditions by calculating the solvation free energies of small molecules in four common organic solvents. Results are compared with experimental data and equivalent simulations performed with the GAFF pairwise-additive force field. Although AMOEBA results give mean errors close to "chemical accuracy," GAFF performs surprisingly well, with statistically significantly more accurate results than AMOEBA in some solvents. However, for both models, free energies calculated in chloroform show worst agreement to experiment and individual solutes are consistently poor performers, suggesting non-potential-specific errors also contribute to inaccuracy. Scope for the improvement of both potentials remains limited by the lack of high quality experimental data across multiple solvents, particularly those of high dielectric constant. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  20. Evaluation of solvation free energies for small molecules with the AMOEBA polarizable force field

    PubMed Central

    Mohamed, Noor Asidah; Bradshaw, Richard T.

    2016-01-01

    The effects of electronic polarization in biomolecular interactions will differ depending on the local dielectric constant of the environment, such as in solvent, DNA, proteins, and membranes. Here the performance of the AMOEBA polarizable force field is evaluated under nonaqueous conditions by calculating the solvation free energies of small molecules in four common organic solvents. Results are compared with experimental data and equivalent simulations performed with the GAFF pairwise‐additive force field. Although AMOEBA results give mean errors close to “chemical accuracy,” GAFF performs surprisingly well, with statistically significantly more accurate results than AMOEBA in some solvents. However, for both models, free energies calculated in chloroform show worst agreement to experiment and individual solutes are consistently poor performers, suggesting non‐potential‐specific errors also contribute to inaccuracy. Scope for the improvement of both potentials remains limited by the lack of high quality experimental data across multiple solvents, particularly those of high dielectric constant. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27757978

  1. Measured energy savings from the application of reflective roofsin 2 small non-residential buildings

    SciTech Connect

    Akbari, Hashem

    2003-01-14

    Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

  2. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    SciTech Connect

    Cremer, T.; Tatchyn, R.

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  3. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    DOEpatents

    Hagen, E.C.; Hudson, C.L.

    1995-07-25

    A new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and a shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks, and forms an internal serpentine trough within these ground blocks, for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame, and which are electrically connected to the serpentine set. 10 figs.

  4. Orthogonally interdigitated shielded serpentine travelling wave cathod ray tube deflection structure

    SciTech Connect

    Hagen, E.C.; Hudson, C.L.

    1993-10-27

    This invention comprises a new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes and is deflected by the deflection field to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks and forms an internal serpentine trough within these ground blocks for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame and which are electrically connected to the serpentine set.

  5. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    SciTech Connect

    Belles, Randy J.; Omitaomu, Olufemi A.

    2014-09-01

    Geographic information systems (GIS) technology was applied to analyze federal energy demand across the contiguous US. Several federal energy clusters were previously identified, including Hampton Roads, Virginia, which was subsequently studied in detail. This study provides an analysis of three additional diverse federal energy clusters. The analysis shows that there are potential sites in various federal energy clusters that could be evaluated further for placement of an integral pressurized-water reactor (iPWR) to support meeting federal clean energy goals.

  6. Energy balance measurements over a small reservoir in Ghana's Upper East Region

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Ohene Annor, Frank

    2013-04-01

    Near the small village of Binaba (10.778927 deg N, 0.464859 deg E), a small irrigation reservoir has been instrumented to measure different parts of the energy balance of this water body. Instruments were placed on, or attached to, a spar platform. This platform consisted of a long PVC pipe, the spar, which is closed at the bottom. On the PVC pipe rests an aluminum frame platform that carries instrumentation and solar power panel. In turn, the platform rests partially on a large inflated tire. At the bottom of the PVC pipe, lead weights and batteries were placed to ensure a very low point of gravity to minimize wave impact on the platform movement. The tire ensures a large second moment of the water plane. The combination of large second momentum of the water plane and small displacement, ensures a high placement of the metacenter. The distance between the point of gravity and the metacenter is relatively long and the weight is large due to the weights and batteries. This ensures that the eigenfrequency of the platform is very low. On the platform, we fixed a WindMaster Pro (sonic anemometer for 3D wind speed and air temperature to perform eddy covariance measurements of sensible heat flux), a NR Lite (net radiometer), and air temperature and relative humidity sensors. Water temperature at different depths was measured with a string of TidbiT's (waterproof temperature sensors and loggers). The platform had a wind vane and the spar could turn freely around its anchor cable to ensure that the anemometer always faced upwind. A compass in the logger completed this setup. First results suggest, as expected, that the sensible heat flux is relatively small with on average 20 W/m2 over the course of a day. Sensible heat flux peaked around midnight at 35 W/m2, when the warm water warmed up the air from the colder surrounding land. The dynamics of heat storage during the daytime and longwave radiation during the night time, are important to calculate the latent heat flux.

  7. A television display using acoustic deflection and modulation of coherent light.

    PubMed

    Korpel, A; Adler, R; Desmares, P; Watson, W

    1966-10-01

    Bragg reflection of laser light by ultrasonic waves in water produces the horizontal deflection in a television display. The ultrasonic waves are frequency-modulated with a sawtooth function. Deflection angles are small but there are 200 resolvable positions; the constant rate of angular change which characterizes a television scan permits the use of a wide optical aperture, leading to a small spot size. Conventional optical magnification follows the horizontal deflection, rendering a 3 MHz video signal visible on the screen. Bragg reflection requires the acoustic wave front to be symmetrical with respect to the incident and diffracted light rays. Thus, as the Bragg angle is altered, the acoustic wavefront should rotate. This is accomplished by a phased array of transducer strips whose combined wavefront rotates as the frequency changes, providing excellent correction over a wide band (19 to 35 MHz in this experiment, corresponding to a +/-30 percent change in Bragg angle). Broadband electrical and acoustical matching techniques make it possible to diffract all the incident light with about one watt of electrical input. A second acoustic diffraction cell intensity-modulates the light. In an early experiment, the laser beam was constricted to a very small diameter before entering the modulator cell; even so, the finite beam size caused a significant loss of high-frequency response. An improved version uses an old principle (Scophony, 1939): the laser beam traversing the cell is made wide enough to encompass several picture elements, all traveling across the beam at sound velocity; the horizontal deflection system nullifies the apparent motion of these elements making them stand still on the screen while a fan of light sweeps over them. With this modulation system, spatial coherence is needed only across the vertical dimension of the laser. The tolerance on the orientation of the acoustic wavefronts, the improvement brought about by the phased array, and the amount

  8. Deflection of Light by Gravity: A Physical Approach.

    ERIC Educational Resources Information Center

    Diamond, Joshua B.

    1982-01-01

    Einstein's equivalence principle relates effects seen by an accelerating observer to those experienced by an observer in a gravitational field, providing an explanation of bending of a light beam by gravity. Because the calculations lead to results one-half the value found experimentally, obtaining the correct light deflection is discussed.…

  9. 75 FR 12981 - Eligibility for Commercial Flats Failing Deflection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... included new deflection standards, previously applicable only to automation flats, for all commercial flat... should be eligible for full-service IMb pricing. If automation prices are denied, pieces that are... standards are not currently eligible for any automation flats prices, including full- service...

  10. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  11. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  12. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  13. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  14. Visually Controlled Robots For Unpacking And Mounting Television Deflection Units

    NASA Astrophysics Data System (ADS)

    Saraga, P.; Newcomb, C. V.; Lloyd, P. R.; Humphreys, D. R.; Burnett, D. J.

    1984-10-01

    There are many real factory problems that can be solved by the use of robots equipped with computer vision. Typical of these tasks are the unpacking and assembly of loosely constrained objects. This paper describes a system in which TV deflection units are unpacked from a large carton and mounted onto the necks of picture tubes. The unpacking is performed by a cartesian gantry robot carrying a TV camera equipped with parallel-projection optics. The asso-ciated vision system is used to determine the position of the deflection units in the carton. Once a deflection unit has been unpacked, it is picked up by a PUMA 560 robot and then mounted in a specific orientation onto a picture tube. The mounting system is equipped with three TV cameras to locate the deflection unit and the neck of the tube. The paper describes the structure and operation of both systems, including gray-level picture processing, camera calibration with-out operator intervention, and the use of a general purpose, robot operating system, ROBOS, to control the two tasks.

  15. On guided versus deflected fields in controlled-source electromagnetics

    NASA Astrophysics Data System (ADS)

    Swidinsky, Andrei

    2015-06-01

    The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.

  16. Charge control switch responsive to cell casing deflection

    NASA Technical Reports Server (NTRS)

    Fischell, Robert E. (Inventor)

    1981-01-01

    A switch structure, adapted for sensing the state-of-charge of a rechargeable cell, includes a contact element which detects cell casing deflection that occurs as a result of an increase in gaseous pressure within the cell when the cell is returned to its fully charged state during a recharging operation.

  17. A consistent large deflection theory of composite sandwich shells

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfu

    1993-05-01

    Composite sandwich shells are important structures in aeronautical and astronautical industry. The theory, especially nonlinear theory, of them is still required to be advanced so as to meet the demand of engineering application. With Lagrangian description, the consistent Green strain tensor, the compatibility equations and the second Piola-Kirchhoff stress tensor of the composite sandwich shells are obtained. Based on these results and several assumptions, the constitutive equations relating the stress resultants to the strains, the strain energy density and the potential energy functional are further developed. In terms of minimum potential energy principle, the equilibrium equations and associated boundary conditions are obtained, which are consistent with the first order approximation under the conditions of small strain accompanied with moderate/small rotation. In terms of the structural features of the shallow composite sandwich shells, the equations obtained are further processed approximately and Donnel-type equations for the shallow composite sandwich shells are obtained.

  18. Investigation of current-density modification during magnetic reconnection by analysis of hydrogen-pellet deflection.

    PubMed

    Waller, V; Pégourié, B; Giruzzi, G; Huysmans, G T A; Garzotti, L; Géraud, A

    2003-11-14

    A pellet penetrating the inner region of a tokamak discharge, where the safety factor drops below unity, triggers an instability analogous to a sawtooth crash. Because of the simultaneity of the crash and pellet crossing, the latter is an appropriate probe for investigating the current distribution during reconnection. In this Letter, pellet deflection is used to characterize the associated electron distribution function. The perturbation compatible with the observed trajectory requires a negative current layer on the q=1 magnetic surface between 3 and 12 times the equilibrium current density and an expulsion of high energy electrons from the plasma core.

  19. Modeling the deflection of relativistic electrons in a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Koshcheev, V. P.; Shtanov, Yu. N.; Morgun, D. A.; Panina, T. A.

    2015-10-01

    The deflection of electrons with energies 855 MeV and 6.3 GeV in planar (111) channels of a bent silicon crystal has been numerically simulated using a TROPICS computer code with atomic diffusion coefficient constructed in the Doyle-Turner approximation of the isolated atom potential. It is established that the atomic diffusion coefficient tends to a minimum value in the region of maximum nuclear density of atomic chain, where the Kitagawa-Ohtsuki diffusion coefficient reaches a maximum value.

  20. Daily energy expenditure of the grey mouse lemur (Microcebus murinus): a small primate that uses torpor.

    PubMed

    Schmid, J; Speakman, J R

    2000-12-01

    We aimed to investigate the pattern of utilisation of torpor and its impact on energy budgets in free-living grey mouse lemurs (Microcebus murinus), a small nocturnal primate endemic to Madagascar. We measured daily energy expenditure (DEE) and water turnover using doubly labelled water, and we used temperature-sensitive radio collars to measure skin temperature (Tsk) and home range. Our results showed that male and female mouse lemurs in the wild enter torpor spontaneously over a wide range of ambient temperatures (Ta) during the dry season, but not during the rainy season. Mouse lemurs remained torpid between 1.7-8.9 h with a daily mean of 3.4 h, and their Tsk s fell to a minimum of 18.8 degrees C. Mean home ranges of mouse lemurs which remained normothermic were similar in the rainy and dry season. During the dry season, the mean home range of mouse lemurs showing daily torpor was significantly smaller than that of animals remaining normothermic. The DEE of M. murinus remaining normothermic in the rainy season (122 +/- 65.4 kJ x day(-1)) was about the same of that of normothermic mouse lemurs in the dry season (115.5 +/- 27.3 kJ x day(-1)). During the dry season, the mean DEE of M. murinus that utilised daily torpor was 103.4 +/- 32.7 kJ x day(-1) which is not significantly different from the mean DEE of animals remaining normothermic. We found that the DEE of mouse lemurs using daily torpor was significantly correlated with the mean temperature difference between Tsk and Ta (r2 = 0.37) and with torpor bout length (r2 = 0.46), while none of these factors explained significant amounts of variation in the DEE of the mouse lemurs remaining normothermic. The mean water flux rate of mouse lemurs using daily torpor (13.0 +/- 4.1 ml x day(-1)) was significantly lower than that of mouse lemurs remaining normothermic (19.4 +/- 3.8 ml x day(-1)), suggesting the lemurs conserve water by entering torpor. Thus, this first study on the energy budget of free-ranging M. murinus

  1. Condensation on surface energy gradient shifts drop size distribution toward small drops.

    PubMed

    Macner, Ashley M; Daniel, Susan; Steen, Paul H

    2014-02-25

    During dropwise condensation from vapor onto a cooled surface, distributions of drops evolve by nucleation, growth, and coalescence. Drop surface coverage dictates the heat transfer characteristics and depends on both drop size and number of drops present on the surface at any given time. Thus, manipulating drop distributions is crucial to maximizing heat transfer. On earth, manipulation is achieved with gravity. However, in applications with small length scales or in low gravity environments, other methods of removal, such as a surface energy gradient, are required. This study examines how chemical modification of a cooled surface affects drop growth and coalescence, which in turn influences how a population of drops evolves. Steam is condensed onto a horizontally oriented surface that has been treated by silanization to deliver either a spatially uniform contact angle (hydrophilic, hydrophobic) or a continuous radial gradient of contact angles (hydrophobic to hydrophilic). The time evolution of number density and associated drop size distributions are measured. For a uniform surface, the shape of the drop size distribution is unique and can be used to identify the progress of condensation. In contrast, the drop size distribution for a gradient surface, relative to a uniform surface, shifts toward a population of small drops. The frequent sweeping of drops truncates maturation of the first generation of large drops and locks the distribution shape at the initial distribution. The absence of a shape change indicates that dropwise condensation has reached a steady state. Previous reports of heat transfer enhancement on chemical gradient surfaces can be explained by this shift toward smaller drops, from which the high heat transfer coefficients in dropwise condensation are attributed to. Terrestrial applications using gravity as the primary removal mechanism also stand to benefit from inclusion of gradient surfaces because the critical threshold size required for

  2. Investigation of thermal and optical properties of thin WO3 films by the photothermal Deflection Technique

    NASA Astrophysics Data System (ADS)

    Gaied, I.; Dabbous, S.; Ben Nasrallah, T.; Yacoubi, N.

    2010-03-01

    Owing to its novel physical properties, as well as its technological implication in many fields, the thermal and optical properties of WO3 thin films are studied here. These thin films are prepared from Ammonium Tungstate and deposited on a glass substrate at 400°C by the Spray Pyrolysis Technique. The thermal properties (Thermal conductivity and thermal diffusivity) were studied by the Photothermal Deflection method in its uniform heating case instead of traditionally a non uniform heating one by comparing the experimental amplitude and phase variations versus square root modulation frequency to the corresponding theoretical ones. The best coincidence between theory and experience is obtained for well-defined values of thermal conductivity and thermal diffusivity. The optical properties (optical absorption spectrum and gap energy) were measured using the Photothermal Deflection Spectroscopy (PDS) by drawing the amplitude and phase variation versus wavelength in experimental way and versus absorption coefficient in theoretical one at a fixed modulation frequency. By comparing point by point the normalised experimental and corresponding theoretical amplitude variation, one can deduce the optical absorption spectrum. Using the Tauc law for energies above the gap we can deduce the gap energy. We notice that these films show low thermal conductivity and high transparency in the visible range.

  3. A model to predict deflection of bevel-tipped active needle advancing in soft tissue.

    PubMed

    Datla, Naresh V; Konh, Bardia; Honarvar, Mohammad; Podder, Tarun K; Dicker, Adam P; Yu, Yan; Hutapea, Parsaoran

    2014-03-01

    Active needles are recently being developed to improve steerability and placement accuracy for various medical applications. These active needles can bend during insertion by actuators attached to their bodies. The bending of active needles enables them to be steered away from the critical organs on the way to target and accurately reach target locations previously unachievable with conventional rigid needles. These active needles combined with an asymmetric bevel-tip can further improve their steerability. To optimize the design and to develop accurate path planning and control algorithms, there is a need to develop a tissue-needle interaction model. This work presents an energy-based model that predicts needle deflection of active bevel-tipped needles when inserted into the tissue. This current model was based on an existing energy-based model for bevel-tipped needles, to which work of actuation was included in calculating the system energy. The developed model was validated with needle insertion experiments with a phantom material. The model predicts needle deflection reasonably for higher diameter needles (11.6% error), whereas largest error was observed for the smallest needle diameter (24.7% error).

  4. Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland

    NASA Astrophysics Data System (ADS)

    Mammarella, Ivan; Nordbo, Annika; Rannik, Üllar; Haapanala, Sami; Levula, Janne; Laakso, Heikki; Ojala, Anne; Peltola, Olli; Heiskanen, Jouni; Pumpanen, Jukka; Vesala, Timo

    2015-07-01

    Dynamics of carbon dioxide and energy exchange over a small boreal lake were investigated. Flux measurements have been carried out by the eddy covariance technique during two open-water periods (June-October) at Lake Kuivajärvi in Finland. Sensible heat (H) flux peaked in the early morning, and upward sensible heat flux at night results in unstable stratification over the lake. Minimum H was measured in the late afternoon, often resulting in adiabatic conditions or slightly stable stratification over the lake. The latent heat flux (LE) showed a different pattern, peaking in the afternoon and having a minimum at night. High correlation (r2 = 0.75) between H and water-air temperature difference multiplied by wind speed (U) was found, while LE strongly correlated with the water vapor pressure deficit multiplied by U (r2 = 0.78). Monthly average values of energy balance closure ranged between 70 and 99%. The lake acted as net source of carbon dioxide, and the measured flux (FCO2) averaged over the two open-water periods (0.7 µmol m-2 s-1) was up to 3 times higher than those reported in other studies. Furthermore, it was found that during period of high wind speed (>3 m s-1) shear-induced water turbulence controls the water-air gas transfer efficiency. However, under calm nighttime conditions, FCO2 was poorly correlated with the difference between the water and the equilibrium CO2 concentrations multiplied by U. Nighttime cooling of surface water enhances the gas transfer efficiency through buoyancy-driven turbulent mixing, and simple wind speed-based transfer velocity models strongly underestimate FCO2.

  5. The statistical analysis of energy release in small-scale coronal structures

    NASA Astrophysics Data System (ADS)

    Ulyanov, Artyom; Kuzin, Sergey; Bogachev, Sergey

    We present the results of statistical analysis of impulsive flare-like brightenings, which numerously occur in the quiet regions of solar corona. For our study, we utilized high-cadence observations performed with two EUV-telescopes - TESIS/Coronas-Photon and AIA/SDO. In total, we processed 6 sequences of images, registered throughout the period between 2009 and 2013, covering the rising phase of the 24th solar cycle. Based on high-speed DEM estimation method, we developed a new technique to evaluate the main parameters of detected events (geometrical sizes, duration, temperature and thermal energy). We then obtained the statistical distributions of these parameters and examined their variations depending on the level of solar activity. The results imply that near the minimum of the solar cycle the energy release in quiet corona is mainly provided by small-scale events (nanoflares), whereas larger events (microflares) prevail on the peak of activity. Furthermore, we investigated the coronal conditions that had specified the formation and triggering of registered flares. By means of photospheric magnetograms obtained with MDI/SoHO and HMI/SDO instruments, we examined the topology of local magnetic fields at different stages: the pre-flare phase, the peak of intensity and the ending phase. To do so, we introduced a number of topological parameters including the total magnetic flux, the distance between magnetic sources and their mutual arrangement. The found correlation between the change of these parameters and the formation of flares may offer an important tool for application of flare forecasting.

  6. Free-energy inference from partial work measurements in small systems

    PubMed Central

    Ribezzi-Crivellari, Marco; Ritort, Felix

    2014-01-01

    Fluctuation relations (FRs) are among the few existing general results in nonequilibrium systems. Their verification requires the measurement of the total work performed on a system. Nevertheless in many cases only a partial measurement of the work is possible. Here we consider FRs in dual-trap optical tweezers where two different forces (one per trap) are measured. With this setup we perform pulling experiments on single molecules by moving one trap relative to the other. We demonstrate that work should be measured using the force exerted by the trap that is moved. The force that is measured in the trap at rest fails to provide the full dissipation in the system, leading to a (incorrect) work definition that does not satisfy the FR. The implications to single-molecule experiments and free-energy measurements are discussed. In the case of symmetric setups a second work definition, based on differential force measurements, is introduced. This definition is best suited to measure free energies as it shows faster convergence of estimators. We discuss measurements using the (incorrect) work definition as an example of partial work measurement. We show how to infer the full work distribution from the partial one via the FR. The inference process does also yield quantitative information, e.g., the hydrodynamic drag on the dumbbell. Results are also obtained for asymmetric dual-trap setups. We suggest that this kind of inference could represent a previously unidentified and general application of FRs to extract information about irreversible processes in small systems. PMID:25099353

  7. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    PubMed Central

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  8. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    NASA Astrophysics Data System (ADS)

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-11-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air.

  9. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging.

    PubMed

    Dukic, Maja; Adams, Jonathan D; Fantner, Georg E

    2015-11-17

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air.

  10. Deflections from two types of human surrogates in oblique side impacts.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A

    2008-10-01

    The objective of the study was to obtain time-dependent thoracic and abdominal deflections of an anthropomorphic test device, the WorldSID dummy, in oblique impact using sled tests, and compare with post mortem human subject (PMHS) data. To simulate the oblique loading vector, the load wall was configured such that the thorax and abdominal plates were offset by twenty or thirty degrees. Deflections were obtained from a chestband placed at the middle thoracic level and five internal deflection transducers. Data were compared from the chestband and the transducer located at the same level of the thorax. In addition, data were compared with deflections from similar PMHS tests obtained using chestbands placed at the level of the axilla, xyphoid process, and tenth rib, representing the upper thorax, middle thorax, and abdominal region of the biological specimen. Peak deflections ranged from 30 to 85 mm in the dummy tests. Peak deflections ranged from 60 to 115 mm in PMHS. Under both obliquities, dummy deflection-time histories at the location along the chestband in close proximity to the internal deflection transducer demonstrated similar profiles. However, the peak deflection magnitudes from the chestband were approximately 20 mm greater than those from the internal transducer. Acknowledging that the chestband measures external deflections in contrast to the transducer which records internal ribcage deformations, peak deflections match from the two sensors. Deflection time histories were also similar between the dummy and PMHS in terms of morphology, although thoracic deflection magnitudes from the dummy matched more closely with PMHS than abdominal deflection magnitudes. The dummy deformed in such a way that peak deflections occurred along the lateral vector. This was in contrast to PMHS tests wherein maximum deflections occurred along the antero-lateral direction, suggesting differing deformation responses in the two models. In addition, peak deflections occurred

  11. Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water.

    PubMed

    Buhariwalla, Connor R C; Bowles, Richard K; Saika-Voivod, Ivan; Sciortino, Francesco; Poole, Peter H

    2015-05-01

    The ST2 interaction potential has been used in a large number of simulation studies to explore the possibility of a liquid-liquid phase transition (LLPT) in supercooled water. Using umbrella sampling Monte Carlo simulations of ST2 water, we evaluate the free energy of formation of small ice nuclei in the supercooled liquid in the vicinity of the Widom line, the region above the critical temperature of the LLPT where a number of thermodynamic anomalies occur. Our results show that in this region there is a substantial free-energy cost for the formation of small ice nuclei, demonstrating that the thermodynamic anomalies associated with the Widom line in ST2 water occur in a well-defined metastable liquid phase. On passing through the Widom line, we identify changes in the free energy to form small ice nuclei that illustrate how the thermodynamic anomalies associated with the LLPT may influence the ice nucleation process.

  12. Micro-scale modelling of energy fluxes over a small Fluxnet forest site in Denmark

    NASA Astrophysics Data System (ADS)

    Sogachev, A.; Dellwik, E.; Boegh, E.

    2012-12-01

    Most forests, especially in Europe, are too small to fulfil strict fetch requirements associated with idealized flux observations in undisturbed, homogeneous flow. As a consequence of limited fetch, the flux measured above the canopy will often deviate from the source strength underlying the measurements. Since representative measurements focused on heterogeneous effects are scarce because of demanding experimental arrangements the numerical modelling are often recruited for analysis of these deviations. During the last years the atmospheric boundary layer (ABL) model SCADIS (scalar distribution model; Sogachev et al., 2002, Tellus 54B, 784-819) has been successfully applied especially in the region adjacent to a forest edge in order to improve flux data interpretation. Most of the analyses were done for the neutral case and in two-dimensional mode. When analyzing the effect of a forest edge on both flow and passive scalar properties, numerical studies showed that sources located on a soil surface are major contributors to wave-like flux behavior downwind of the leading edge, and that it is important to distinguish the effects of ground sources from those of the foliage. In the present work, we apply the SCADIS model with enhanced turbulence closure including buoyancy for investigation of the daily course of energy fluxes over patchy forested terrain in Denmark, where the model is used in three-dimensional mode. The modelling results (with 50 m horizontal resolution) are in good qualitative agreement with high-resolution (60 m and 120 m) remote-sensing data of the effective surface temperature of the area near the site in focus: the forested areas are colder in daytime and warmer in night time than surrounding open areas. In contrast to the remote sensing approach, SCADIS provides the information about spatial distribution of latent and sensible heat vertical fluxes in the whole ABL. Topography and forest edge effects result in vertical turbulent fluxes that

  13. International Energy Agency (IEA) Small Solar Power Systems (SSPS) sodium cavity and external receiver performance comparison

    NASA Astrophysics Data System (ADS)

    Baker, A. F.

    1987-10-01

    Experimental data is used to compare the performance of two sodium cooled solar central receivers operated at the International Energy Agency Small Solar Power Systems project near Almeria, Spain. Performance includes point-in-time steady state efficiency, average efficiency, start-up time, and operation time. Point-in-time steady state efficiency calculations were based on the statistical method of least squares using receiver incident and absorbed powers. One receiver, a cavity type, showed a peak steady state receiver efficiency of 87% +/- 5% and an average efficiency of about 67%. The other receiver, an external billboard type, had a peak steady state receiver efficiency of 96% +/- 4% and an average efficiency of about 79%. The original design peak steady state efficiency predictions for both receivers were within the experimentally determined 95% probability interval. Thermal loss test data were evaluated for the external receiver to confirm its point-in-time steady state efficiency independent of the receiver incident power. The thermal loss, which includes emitted radiation, convection, and conduction from the external receiver, was less than 100 kW(sub t) with the receiver operating at normal design conditions and having an absorbed power of over 2200 kW/sub t/.

  14. The solution of the optimization problem of small energy complexes using linear programming methods

    NASA Astrophysics Data System (ADS)

    Ivanin, O. A.; Director, L. B.

    2016-11-01

    Linear programming methods were used for solving the optimization problem of schemes and operation modes of distributed generation energy complexes. Applicability conditions of simplex method, applied to energy complexes, including installations of renewable energy (solar, wind), diesel-generators and energy storage, considered. The analysis of decomposition algorithms for various schemes of energy complexes was made. The results of optimization calculations for energy complexes, operated autonomously and as a part of distribution grid, are presented.

  15. Small modular reactor modeling using modelica for nuclear-renewable hybrid energy systems applications

    DOE PAGES

    Mikkelson, Daniel; Chang, Chih -Wei; Cetiner, Sacit M.; ...

    2015-10-01

    Here, the U.S. Department of Energy (DOE) supports research and development (R&D) that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet grid demand and industrial thermal energy needs [1]. One hybridization approach being investigated by the DOE Offices of Nuclear Energy (NE) and the DOE Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources to better manage overall energy use for the combined electricity, industrial manufacturing, and transportation sectors.

  16. Technical Support Document: The Development of the Advanced Energy Design Guide for Small Warehouse and Self-Storage Buildings

    SciTech Connect

    Liu, Bing; Jarnagin, Ronald E.; Jiang, Wei; Gowri, Krishnan

    2007-12-01

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Small Warehouse and Self-storage Buildings (AEDG-WH or the Guide), a design guidance document intended to provide recommendations for achieving 30% energy savings in small warehouses over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-WH is the fourth in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the U.S. Department of Energy (DOE).

  17. Correction of deflection under mask's own weight by bending mask technology

    NASA Astrophysics Data System (ADS)

    Yagami, Takashi; Kambayashi, Takashi; Azumi, Minako

    2016-10-01

    It is known that the photomask substrate deflects when the mask is set on the frame and the deflection is an obstacle to light exposure. In this study, we introduce "the bending mask" to cancel out the deflection. The surface of the bending mask has the height distribution in advance to cancel out the deflection, owing to Nikon's accurate polishing technology and Nikon's accurate measurement machine.

  18. Mobile loading transuranic waste at small quantity sites in the Department of Energy complex-10523

    SciTech Connect

    Carter, Mitch; Howard, Bryan; Weyerman, Wade; Mctaggart, Jerri

    2009-01-01

    Los Alamos National Laboratory, Carlsbad Office (LANL-CO), operates mobile loading operations for all of the large and small quantity transuranic (TRU) waste sites in the Department of Energy (DOE) complex. The mobile loading team performs loading and unloading evolutions for both contact handled (CH) and remote handled (RH) waste. For small quantity sites, many of which have yet to remove their TRU waste, the mobile loading team will load shipments that will ship to Idaho National Laboratory, a centralization site, or ship directly to the Waste Isolation Pilot Plant (WIPP). For example, Argonne National Laboratory and General Electric Vallecitos Nuclear Center have certified programs for RH waste so they will ship their RH waste directly to WIPP. Many of the other sites will ship their waste to Idaho for characterization and certification. The Mobile Loading Units (MLU) contain all of the necessary equipment needed to load CH and RH waste into the appropriate shipping vessels. Sites are required to provide additional equipment, such as cranes, fork trucks, and office space. The sites are also required to provide personnel to assist in the shipping operations. Each site requires a site visit from the mobile loading team to ensure that all of the necessary site equipment, site requirements and space for shipping can be provided. The mobile loading team works diligently with site representatives to ensure that all safety and regulatory requirements are met. Once the waste is ready and shipping needs are met, the mobile loading team can be scheduled to ship the waste. The CH MLU is designed to support TRUPACT-II and HalfPACT loading activities wherever needed within the DOE complex. The team that performs the mobile loading operation has obtained national certification under DOE for TRUPACT-II and HalfPACT loading and shipment certification. The RH MLU is designed to support removable lid canister (RLC) and RH-72B cask loading activities wherever needed within the DOE

  19. Improved energy output levels from small-scale Microbial Fuel Cells.

    PubMed

    Ieropoulos, I; Greenman, J; Melhuish, C

    2010-04-01

    This study reports on the findings from the investigation into small-scale (6.25 mL) MFCs, connected together as a network of multiple units. The MFCs contained unmodified (no catalyst) carbon fibre electrodes and for initial and later experiments, a standard ion-exchange membrane for the proton transfer from the anode to the cathode. The anode microbial culture was of the type commonly found in domestic wastewater fed with 5 mM acetate as the carbon-energy (C/E) source. The cultures were mature and acclimatised in the MFC environment for approximately 2 months before being re-inoculated in the experimental MFC units. The cathode was of the O(2) diffusion open-to-air type, but for the purposes of the polarization experiments, the cathodic electrodes were moistened with ferricyanide. The main aim of this study was to investigate the effects of connecting multiples of MFC units together as a method of scale up by using stacks and comparison of the effects of different PEM and MFC structural materials on the performance. Impedance matching (maximum-power-transfer) was achieved through calculation of total internal impedance. Three different PEM materials were compared in otherwise identical MFCs in sets of three. For individual isolated MFCs, Hyflon E87-03 was shown to produce twice, whilst E87-10 produced approximately 1.5 times the power output of the control (standard) PEM. However, when MFCs containing the E87-03 and E87-10 membranes were connected in a stack, the system suffered from severe instability and cell reversal. To study the effects of the various polymeric MFC structural materials, four small-scale units were manufactured from three different types of RP material; acrylo-butadiene-styrene coated (ABS), ABS coated (ABS-MEK) and polycarbonate (polyC). The stack of four (4) units prototyped out of polyC produced the highest power density values in polarisation experiments (80 mW/m(2)).

  20. Improved beam steering efficiency of large deflection angle for periodic grating

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-hua; Kong, Ling-jiang; Xiao, Feng; Zhuo, Jing-yi; Yang, Xiao-bo

    2013-08-01

    The limited quantization digit of voltage and the effect of fringing field between adjacent electrodes (phased-array controlling units) limit the deflection efficiency when a Liquid-Crystal Phased Array (LCPA) is used for beam steering. In this paper, an optimization algorithm named pattern search is proposed to improve the diffraction efficiency. This algorithm directly optimizes the step phase slope to obtain high diffraction efficiency, rather than discussing the complex relationship between the diffraction efficiency and various influence factors. Besides, other optimization algorithms based on phase retrieval, such as GS, need the entire energy distribution; however, it is hard to obtain in practical. Our algorithm need only the energy of the target diffraction point and it can be easily realized. Firstly, we construct the model for beam steering, and point out that the deformation of the phase slope by influence factors is the reason why conventional method can not realize high diffraction efficiency. Secondly, we construct an optimization model for the issues and apply the pattern search algorithm to optimize the diffraction efficiency. The simulation results show high performance of our algorithm comparing with the conventional steering method. Finally, a set of beam steering experiments were performed with a one-dimensional LCPA being set both according to the un-optimized and the optimized recipe, and the results were in very good agreement with the theoretical predictions. We show that the deflection efficiency can be drastically improved.

  1. Energy service contracts in regional engineering center for small and medium businesses

    NASA Astrophysics Data System (ADS)

    Gil'manshin, I. R.; Kashapov, N. F.

    2014-12-01

    The analysis of the energy service contracts development in Russia is given in the article. The role of the Complex learning centres in the field of energy efficiency in the promotion of energy service contracts is described. The reasons of constraining the development of energy service contracts are described.

  2. Modelling of crack deflection at core junctions in sandwich structures

    NASA Astrophysics Data System (ADS)

    Jakobsen, J.; Andreasen, J. H.; Thomsen, O. T.

    2009-08-01

    The paper treats the problem of crack propagation in sandwich panels with interior core junctions. When a face-core interface crack approaches a trimaterial wedge, as it may occur at a sandwich core junction, two options exist for further crack advance; one is for the interface crack to penetrate the wedge along the face-core interface, and the second is deflection along the core junction interface. Crack deflection is highly relevant and a requirement for the functionality of a newly developed peel stopper for sandwich structures. The physical model presented in this paper enables the quantitative prediction of the ratio of the toughnesses of the two wedge interfaces required to control the crack propagation, and the derived results can be applied directly in future designs of sandwich structures. The solution strategy is based on finite element analysis (FEA), and a realistic engineering practice example of a tri-material composition corresponding to face and core materials is presented.

  3. Evolutionary optimization of deflection missions with fly-by manoeuvre .

    NASA Astrophysics Data System (ADS)

    Costanza, L.; Casalino, L.

    The Earth, as the other celestial bodies in Solar System, is continuously exposed to impact hazard with bodies coming from space. The goal of this study is to find the optimal solution for a PHO (Potentially Hazardous Object) deflection mission with a kinetic impactor. An evolutionary algorithm, which combines the results obtained in parallel by differential evolution (DE), genetic algorithm (GA) and particle swarm optimization (PSO), is employed. Once identified a reference PHO, it has been considered an Earth-Asteroid mission that exploits the high mass of Jupiter to obtain a free velocity change performing a fly-by of the planet. The higher relative velocity at impact involves a higher deflection effect on PHO's trajectory. Spacecraft's direct and retrograde motion has been considered.

  4. Experimental modelling of eddy currents and deflection for tokamak limiters

    SciTech Connect

    Hua, T.Q.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1986-11-01

    During plasma disruptions in a tokamak fusion reactor, eddy currents are induced in the limiters and other conducting structures surrounding the plasma. Interactions between these currents with the toroidal field causes deflection and stress in the structural components. The structural motion in the strong magnetic field induces additional eddy current opposing the initial eddy current and modifying subsequent structural dynamics. Therefore, the motion and current are coupled and must be solved simultaneously. The coupling between current and deflection in cantilevered beams was investigated experimentally. The beams provide a simple model for the limiter blade of a tokamak fusion reactor. Several test pieces and various magnetic field conditions were employed to study the extend of the coupling effect from weak to strong coupling. Experimental results are compared with analytical predictions.

  5. Flow visualisation studies on growth of area of deflected jets

    NASA Astrophysics Data System (ADS)

    Sivadas, V.; Pani, B. S.; Bütefisch, K. A.; Meier, G. E. A.

    Laser light sheet visualisation, coupled with image processing, was utilised to understand the effect of exit geometry on the integral properties of jets in cross flow. The study involved jets emanating from circular and rectangular nozzles of different aspect ratios deflected by a uniform free-stream. The investigation considers incompressible momentum jets with exit Reynolds number in the range of 4400-9200, the velocity ratios being 3.9, 5.9 and 7.8. In contrast to a deflected circular jet, those jets emanating from blunt configurations tend to have higher growth rates initially and are devoid of the horse-shoe or the bound vortex system in their cross section.

  6. Ion Beam Deflection (AKA Push-Me/Pull-You)

    NASA Technical Reports Server (NTRS)

    Brophy, John

    2013-01-01

    The Ion Beam Deflection provides the following potential advantages over other asteroid deflection systems. Like the gravity tractor, it doesn't require despinning of the asteroid. Unlike the gravity tractor, it provides a significantly higher coupling force that is independent of the asteroid size. The concept could be tested as part of the baseline Asteroid Redirect Robotic Mission. The thrust and total impulse are entirely within the design of the SEP vehicle. The total impulse is potentially competitive with kinetic impactors and eliminates the need for a second rendezvous spacecraft.?Gridded ion thrusters provide beam divergence angles of a few degrees enabling long stand-off distances from the asteroid. Mitigating control issues. Minimizing back-sputter contamination risks

  7. SUPERCONDUCTING RF-DIPOLE DEFLECTING AND CRABBING CAVITIES

    SciTech Connect

    Delayen, Jean; De Silva, Paygalage Subashini

    2013-09-01

    Recent interests in designing compact deflecting and crabbing structures for future accelerators and colliders have initiated the development of novel rf structures. The superconducting rf-dipole cavity is one of the first compact designs with attractive properties such as higher gradients, higher shunt impedance, the absence of lower order modes and widely separated higher order modes. Two rf-dipole designs of 400 MHz and 499 MHz have been designed, fabricated and tested as proof-of-principle designs of compact deflecting and crabbing cavities for the LHC high luminosity upgrade and Jefferson Lab 12 GeV upgrade. The first rf tests have been performed on the rf-dipole geometries at 4.2 K and 2.0 K in a vertical test assembly with excellent results. The cavities have achieved high gradients with high intrinsic quality factors, and multipacting levels were easily processed.

  8. Galvanometer deflection: a precision high-speed system.

    PubMed

    Jablonowski, D P; Raamot, J

    1976-06-01

    An X-Y galvanometer deflection system capable of high precision in a random access mode of operation is described. Beam positional information in digitized form is obtained by employing a Ronchi grating with a sophisticated optical detection scheme. This information is used in a control interface to locate the beam to the required precision. The system is characterized by high accuracy at maximum speed and is designed for operation in a variable environment, with particular attention placed on thermal insensitivity.

  9. Tool deflection in the milling of titanium alloy: case study

    NASA Astrophysics Data System (ADS)

    Zebala, W.

    2015-09-01

    Tool deflection strongly influences on the workpiece quality. Author of the paper built a simulation model of the down milling process of titanium alloy (Ti6Al4V) with a tool made of sintered carbides. Material model consists of strain, strain rate and thermal sensitivity formulations to predict the stress field distribution in the cutting zone. Numerical calculations were experimentally verified on the milling center, equipped with measuring devices: force dynamometer, thermo-vision and high-speed video cameras.

  10. Influence of the triethanolamine concentration on the optical properties of tin sulphide thin films by the Photothermal Deflection Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaied, I.; Akkari, A.; Yacoubi, N.; Kamoun, N.

    2010-03-01

    The optical properties of Tin sulphide thin films grown on a glass substrate by chemical bath deposition were investigated by the Photothermal Deflection Spectroscopy. The experimental normalised amplitude curves of the photothermal signal versus wavelength are compared to the corresponding theoretical ones versus optical absorption coefficient in order to determine the optical absorption spectrum. Then using the Tauc law, one can deduce the energy gap. The influence of the triethanolamine concentration (TEA) in the solution bath on the optical properties was successfully studied.

  11. Rapid small-animal dual-energy X-ray absorptiometry using digital radiography.

    PubMed

    Holdsworth, D W; Thornton, M M; Drost, D; Watson, P H; Fraher, L J; Hodsman, A B

    2000-12-01

    Although dual-energy X-ray absorptiometry (DEXA) is an established technique for clinical assessment of areal bone mineral density (BMD), the spatial resolution, signal-to-noise ratio, scan time, and availability of clinical DEXA systems may be limiting factors for small-animal investigations using a large number of specimens. To avoid these limitations, we have implemented a clinical digital radiography system to perform rapid area DEXA analysis on in vitro rat bone specimens. A crossed step-wedge (comprised of epoxy-based materials that mimic the radiographic properties of tissue and bone) was used to calibrate the system. Digital radiographs of bone specimens (pelvis, spine, femur, and tibia from sham-ovariectomized [SHAM] and ovariectomized [OVX] rats) were obtained at 40 kilovolt peak (kVp) and 125 kVp, and the resulting areal BMD values were compared with those obtained with a clinical fan-beam DEXA system (Hologics QDR 4500). Our investigation indicates that the cross-wedge calibrated (CWC) DEXA technique provides high-precision measurements of bone mineral content (BMC; CV = 0.6%) and BMD (CV = 0.8%) within a short acquisition time (<30 s). Areal BMD measurements reported by the CWC-DEXA system are within 8.5% of those reported by a clinical fan-beam scanner, and BMC values are within 5% of the known value of test specimens. In an in vivo application, the CWC-DEXA system is capable of reporting significant differences between study groups (SHAM and OVX) that are not reported by a clinical fan-beam DEXA system, because of the reduced variance and improved object segmentation provided by the CWC-DEXA system.

  12. Application of photothermal deflection spectroscopy to electrochemical interfaces

    SciTech Connect

    Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

    1992-03-01

    This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A ``secondary gradient technique`` is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

  13. Application of photothermal deflection spectroscopy to electrochemical interfaces

    SciTech Connect

    Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

    1992-03-01

    This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A secondary gradient technique'' is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

  14. Experimental modeling of eddy currents and deflections for tokamak limiters

    SciTech Connect

    Hua, T.Q.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1986-01-01

    In this study, experiments were performed to investigate deflection, current, and material stress in cantilever beams with the Fusion ELectromagnetic Induction eXperiment (FELIX) at the Argonne National Laboratory. Since structures near the plasma are typically cantilevered, the beams provide a good model for the limiter blades of a tokamak fusion reactor. The test pieces were copper, aluminum, phosphor bronze, and brass cantilever beams, clamped rigidly at one end with a nonconducting support frame inside the FELIX test volume. The primary data recorded as functions of time were the beam deflection measured with a noncontact electro-optical device, the total eddy current measured with a Rogowski coil and linking through a central hole in the beam, and the material stress extracted from strain gauges. Measurements of stress and deflection were taken at selected positions along the beam. The extent of the coupling effect depends on several factors. These include the size, the electrical and mechanical properties of the beam, segmenting of the beam, the decay rate of the dipole field, and the strength of the solenoid field.

  15. Planetary Defense: Options for Deflection of Near Earth Objects

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Alexander, Reginald; Bonometti, Joseph; Chapman, Jack; Fincher, Sharon; Hopkins, Randall; Kalkstein, Matthew; Philips, Al; Polsgrove, Tara; Statham, Geoffrey

    2002-01-01

    In FY 2002 a team of engineers and scientists at MSFC conducted a preliminary investigation of the options for deflecting a Near Earth Object (NEO) fiom a collision course with the earth. A general discussion of the current threat facing the earth from NEO s is outlined. A suite of tools were developed to model inbound and outbound trajectories, propulsive options, and assessment of threat. Propulsive options considered included; staged chemical, nuclear ablation and deflagration, mass driver and solar sail concepts. Trajectory tools plotted the outbound course to intercept the NE0 and the deflection requirements to cause the inbound NE0 to miss the earth. Threat assessment tools estimated the number of lives saved over a given time frame by deploying a system capable of deflecting an NE0 of a certain size and velocity. All of these tools were integrated into a routine to find the most effective vehicle for a given mission mass and mission time. Discussion of desired future efforts is given. This work was funded under the Revolutionary Aerospace Systems Concepts activity from NASA HQ.

  16. How can small hydro energy and other renewable energy mitigate impact of climate change in remote Central Africa: Cameroon case study.

    NASA Astrophysics Data System (ADS)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Central Africa owns important renewable energy potential, namely hydro, solar and biomass. This important potential is still suffering from poor development up to the point where the sub region is still abundantly using the fossil energy and biomass as main power source. This is harmful to the climate and the situation is still ongoing. The main cause of the poor use of renewable energy is the poor management of resources by governments who have not taken the necessary measures to boost the renewable energy sector. Since the region is experiencing power shortage, thermal plants are among other solutions planned or under construction. Firewood is heavily used in remote areas without a sustainability program behind. This solution is not environment friendly and hence is not a long term solution. Given the fact that the region has the highest hydro potential of the continent, up to one-quarter of the world's tropical forest, important oil production with poor purchase power, the aim of this paper is to identify actions for improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure in Central Africa and the promotion of small hydro and other renewable energy. The work will show at first the potential for the three primary energy sources which are solar, biomass and hydro while showing where available the level of development, with an emphasis on small hydro. Then identified obstacles for the promotion of clean energy will be targeted. From lessons learned, suggestions will be made to help the countries develop an approach aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon has a great renewable energy potential and some data are available on energy. From the overview of institutional structure reform of the Cameroon power sector and assessments, specific suggestions based on the weaknesses

  17. Small-energy analysis for the selfadjoint matrix Schrödinger operator on the half line. II

    SciTech Connect

    Aktosun, Tuncay; Klaus, Martin; Weder, Ricardo

    2014-03-15

    The matrix Schrödinger equation with a selfadjoint matrix potential is considered on the half line with the most general selfadjoint boundary condition at the origin. When the matrix potential is integrable and has a second moment, it is shown that the corresponding scattering matrix is differentiable at zero energy. An explicit formula is provided for the derivative of the scattering matrix at zero energy. The previously established results when the potential has only the first moment are improved when the second moment exists, by presenting the small-energy asymptotics for the related Jost matrix, its inverse, and various other quantities relevant to the corresponding direct and inverse scattering problems.

  18. A database of frequency distributions of energy depositions in small-size targets by electrons and ions.

    PubMed

    Nikjoo, H; Uehara, S; Emfietzoglou, D; Pinsky, L

    2011-02-01

    Linear energy transfer (LET) is an average quantity, which cannot display the stochastics of the interactions of radiation tracks in the target volume. For this reason, microdosimetry distributions have been defined to overcome the LET shortcomings. In this paper, model calculations of frequency distributions for energy depositions in nanometre size targets, diameters 1-100 nm, and for a 1 μm diameter wall-less TEPC, for electrons, protons, alpha particles and carbon ions are reported. Frequency distributions for energy depositions in small-size targets with dimensions similar to those of biological molecules are useful for modelling and calculations of DNA damage. Monte Carlo track structure codes KURBUC and PITS99 were used to generate tracks of primary electrons 10 eV to 1 MeV, and ions 1 keV µm(-1) to 300 MeV µm(-1) energies. Distribution of absolute frequencies of energy depositions in volumes with diameters of 1-100 nm randomly positioned in unit density water irradiated with 1 Gy of the given radiation was obtained. Data are presented for frequency of energy depositions and microdosimetry quantities including mean lineal energy, dose mean lineal energy, frequency mean specific energy and dose mean specific energy. The modelling and calculations presented in this work are useful for characterisation of the quality of radiation beam in biophysical studies and in radiation therapy.

  19. Asteroid Impact Deflection and Assessment (AIDA) mission - Properties of Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.; Fahnestock, Eugene G.; Schwartz, Stephen R.; Murdoch, Naomi; Asphaug, Erik; Cheng, Andrew F.; Housen, Kevin R.; Michel, Patrick; Miller, Paul L.; Stickle, Angela; Tancredi, Gonzalo; Vincent, Jean-Baptiste; Wuennemann, Kai; Yu, Yang; AIDA Impact Simulation Working Group

    2016-10-01

    The Asteroid Impact Deflection and Assessment (AIDA) mission is composed of NASA's Double Asteroid Redirection Test (DART) mission and ESA's Asteroid Impact Monitor (AIM) rendezvous mission. The DART spacecraft is designed to impact the small satellite of near-Earth asteroid 65803 Didymos in October 2022, while the in-situ AIM spacecraft observes. AIDA's Modeling and Simulation of Impact Outcomes Working Group is tasked with investigating properties of the debris ejected from the impact. The orbital evolution of this ejecta has important implications for observations that the AIM spacecraft will take as well as for the safety of the spacecraft itself. Ejecta properties including particle sizes, bulk densities, and velocities all depend on the poorly-known physical properties of Didymos' moon. The moon's density, internal strength, and especially its porosity have a strong effect on all ejecta properties. Making a range of assumptions, we perform a suite of numerical simulations to determine the fate of the ejected material; we will use simulation predictions to optimize AIM observations and safety. Ultimately, combining AIM's observations of the ejecta with detailed numerical simulations will help constrain key satellite parameters.We use distinct types of numerical tools to explore ejecta properties based on additional target parameters (different forms of friction, cohesion), e.g., the shock physics code iSALE, smoothed particle hydrodynamics codes, and the granular code PKDGRAV. Given the large discrepancy between the 6 km/s impact speed of DART and the moon's 6 cm/s escape speed, a great challenge will be to determine properties of the low-speed ejecta. Very low-speed material relevant to the safety of the AIM spacecraft and its ability to conduct its observations may loft from the crater at late stages of the impact process, or from other locations far from the impact site due to seismic energy propagation. The manner in which seismic waves manifests in

  20. Monte Carlo and Analytical Calculation of Lateral Deflection of Proton Beams in Homogeneous Targets

    SciTech Connect

    Pazianotto, Mauricio T.; Inocente, Guilherme F.; Silva, Danilo Anacleto A. d; Hormaza, Joel M.

    2010-05-21

    Proton radiation therapy is a precise form of radiation therapy, but the avoidance of damage to critical normal tissues and the prevention of geographical tumor misses require accurate knowledge of the dose delivered to the patient and the verification of his position demand a precise imaging technique. In proton therapy facilities, the X-ray Computed Tomography (xCT) is the preferred technique for the planning treatment of patients. This situation has been changing nowadays with the development of proton accelerators for health care and the increase in the number of treated patients. In fact, protons could be more efficient than xCT for this task. One essential difficulty in pCT image reconstruction systems came from the scattering of the protons inside the target due to the numerous small-angle deflections by nuclear Coulomb fields. The purpose of this study is the comparison of an analytical formulation for the determination of beam lateral deflection, based on Moliere's theory and Rutherford scattering with Monte Carlo calculations by SRIM 2008 and MCNPX codes.

  1. Beam steering and deflecting device using step-based micro-blazed grating

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Su, Xianyu; Xu, Ping; Gu, Zheng

    2008-08-01

    The rapidly evolving demands of optical communications and optical switching systems have created a new market for high capacity all-optical beam steering and deflecting techniques. One technology potentially capable of realizing such systems uses the multistep micro-blazed grating optical beam deflectors based on binary and multiple-phase modulation methods. The micro-optical element has been fabricated by introducing very large scale integration (VLSI), stepping photolithography and reactive ion etching (RIE), which can realize beam steering, deflecting, splitting, and switching in free space, and its diffraction properties are determined by the blazed-grating parameters, such as the number of steps, grating depth, grating period, as well as blazed profile. The theoretical analysis and primarily experimental result show that this phase-type element has the advantages of high diffractive efficiency, low cross talk, small feature size, and high reliability due to nonmechanical beam steering without any moving parts. Hence it is ideally suited to applications in optical communication and optical interconnection network.

  2. Accurate prediction of higher-level electronic structure energies for large databases using neural networks, Hartree-Fock energies, and small subsets of the database.

    PubMed

    Malshe, M; Pukrittayakamee, A; Raff, L M; Hagan, M; Bukkapatnam, S; Komanduri, R

    2009-09-28

    A novel method is presented that significantly reduces the computational bottleneck of executing high-level, electronic structure calculations of the energies and their gradients for a large database that adequately samples the configuration space of importance for systems containing more than four atoms that are undergoing multiple, simultaneous reactions in several energetically open channels. The basis of the method is the high-degree of correlation that generally exists between the Hartree-Fock (HF) and higher-level electronic structure energies. It is shown that if the input vector to a neural network (NN) includes both the configuration coordinates and the HF energies of a small subset of the database, MP4(SDQ) energies with the same basis set can be predicted for the entire database using only the HF and MP4(SDQ) energies for the small subset and the HF energies for the remainder of the database. The predictive error is shown to be less than or equal to the NN fitting error if a NN is fitted to the entire database of higher-level electronic structure energies. The general method is applied to the computation of MP4(SDQ) energies of 68,308 configurations that comprise the database for the simultaneous, unimolecular decomposition of vinyl bromide into six different reaction channels. The predictive accuracy of the method is investigated by employing successively smaller subsets of the database to train the NN to predict the MP4(SDQ) energies of the remaining configurations of the database. The results indicate that for this system, the subset can be as small as 8% of the total number of configurations in the database without loss of accuracy beyond that expected if a NN is employed to fit the higher-level energies for the entire database. The utilization of this procedure is shown to save about 78% of the total computational time required for the execution of the MP4(SDQ) calculations. The sampling error involved with selection of the subset is shown to be

  3. Accurate prediction of higher-level electronic structure energies for large databases using neural networks, Hartree-Fock energies, and small subsets of the database

    NASA Astrophysics Data System (ADS)

    Malshe, M.; Pukrittayakamee, A.; Raff, L. M.; Hagan, M.; Bukkapatnam, S.; Komanduri, R.

    2009-09-01

    A novel method is presented that significantly reduces the computational bottleneck of executing high-level, electronic structure calculations of the energies and their gradients for a large database that adequately samples the configuration space of importance for systems containing more than four atoms that are undergoing multiple, simultaneous reactions in several energetically open channels. The basis of the method is the high-degree of correlation that generally exists between the Hartree-Fock (HF) and higher-level electronic structure energies. It is shown that if the input vector to a neural network (NN) includes both the configuration coordinates and the HF energies of a small subset of the database, MP4(SDQ) energies with the same basis set can be predicted for the entire database using only the HF and MP4(SDQ) energies for the small subset and the HF energies for the remainder of the database. The predictive error is shown to be less than or equal to the NN fitting error if a NN is fitted to the entire database of higher-level electronic structure energies. The general method is applied to the computation of MP4(SDQ) energies of 68 308 configurations that comprise the database for the simultaneous, unimolecular decomposition of vinyl bromide into six different reaction channels. The predictive accuracy of the method is investigated by employing successively smaller subsets of the database to train the NN to predict the MP4(SDQ) energies of the remaining configurations of the database. The results indicate that for this system, the subset can be as small as 8% of the total number of configurations in the database without loss of accuracy beyond that expected if a NN is employed to fit the higher-level energies for the entire database. The utilization of this procedure is shown to save about 78% of the total computational time required for the execution of the MP4(SDQ) calculations. The sampling error involved with selection of the subset is shown to be

  4. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions.

    PubMed

    Cheong, Seokjung; Clomburg, James M; Gonzalez, Ramon

    2016-05-01

    Anabolic metabolism can produce an array of small molecules, but yields and productivities are low owing to carbon and energy inefficiencies and slow kinetics. Catabolic and fermentative pathways, on the other hand, are carbon and energy efficient but support only a limited product range. We used carbon- and energy-efficient non-decarboxylative Claisen condensation reactions and subsequent β-reduction reactions, which can accept a variety of functionalized primers and functionalized extender units and operate in an iterative manner, to synthesize functionalized small molecules. Using different ω- and ω-1-functionalized primers and α-functionalized extender units in combination with various termination pathways, we demonstrate the synthesis of 18 products from 10 classes, including ω-phenylalkanoic, α,ω-dicarboxylic, ω-hydroxy, ω-1-oxo, ω-1-methyl, 2-methyl, 2-methyl-2-enolic and 2,3-dihydroxy acids, β-hydroxy-ω-lactones, and ω-1-methyl alcohols.

  5. Light deflection, lensing, and time delays from gravitational potentials and Fermat's principle in the presence of a cosmological constant

    SciTech Connect

    Ishak, Mustapha

    2008-11-15

    The contributions of the cosmological constant to the deflection angle and the time delays are derived from the integration of the gravitational potential as well as from Fermat's principle. The findings are in agreement with recent results using exact solutions to Einstein's equations and reproduce precisely the new {lambda} term in the bending angle and the lens equation. The consequences on time-delay expressions are explored. While it is known that {lambda} contributes to the gravitational time delay, it is shown here that a new {lambda} term appears in the geometrical time delay as well. Although these newly derived terms are perhaps small for current observations, they do not cancel out as previously claimed. Moreover, as shown before, at galaxy cluster scale, the {lambda} contribution can be larger than the second-order term in the Einstein deflection angle for several cluster lens systems.

  6. Providing for Energy Efficiency in Homes and Small Buildings. Teacher Guide.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    This is the teacher's guide for a training program designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy efficient buildings. Alternatives are provided in the program to allow for specific instruction in…

  7. Providing for Energy Efficiency in Homes and Small Buildings. Student Workbook.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    This student manual presents a training program designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that may result in energy efficient buildings. Alternatives are provided in this program to allow for specific instruction in…

  8. Providing for Energy Efficiency in Homes and Small Buildings, Part III.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    Presented is part three of a training program designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy efficient buildings. Alternatives are provided in this program to allow for specific instruction in…

  9. Energy Efficient Homes and Small Buildings. Vocational Education, Industrial Arts Curriculum Guide. Bulletin 1698.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum guide provides high school carpentry, construction, or drafting course teachers with material related to retrofitting a building for energy conservation. Section 1 discusses how design and construction methods affect energy use. Section 2 focuses on care and maintenance of energy efficient buildings. In addition to informative…

  10. 76 FR 2029 - Small Business Investment Companies-Energy Saving Qualified Investments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ..., packaged CHP systems, more efficient process heating equipment, more efficient steam generation equipment... other Federal agencies to identify energy efficient products and services and to encourage the provision... energy efficient products and services will ensure that Energy Saving Qualified Investments satisfy...

  11. Providing for Energy Efficiency in Homes and Small Buildings, Part II.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    Presented is part two of a training program designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy efficient buildings. Alternatives are provided in this program to allow for specific instruction in…

  12. Assessing Regional Scale Fluxes of Mass, Momentum, and Energy with Small Environmental Research Aircraft

    NASA Astrophysics Data System (ADS)

    Zulueta, Rommel Callejo

    Natural ecosystems are rarely structurally or functionally homogeneous. This is true for the complex coastal regions of Magdalena Bay, Baja California Sur, Mexico, and the Barrow Peninsula on the Arctic Coastal Plain of Alaska. The coastal region of Magdalena Bay is comprised of the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert ecosystems all adjacent and within a few kilometers, while the Barrow Peninsula is a mosaic of small ponds, thaw lakes, different aged vegetated thaw-lake basins ( VDTLBs ) and interstitial tundra which have been dynamically formed by both short- and long-term processes. We used a combination of tower- and small environmental research aircraft (SERA)-based eddy covariance measurements to characterize the spatial and temporal patterns of CO2, latent, and sensible heat fluxes along with MODIS NDVI, and land surface information, to scale the SERA-based CO2 fluxes up to the regional scale. In the first part of this research, the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert areas of northern Magdalena Bay were studied. SERA-derived average midday CO2 fluxes from the desert showed a slight uptake of -1.32 mumol CO2 m-2 s-1, the coastal ocean also showed uptake of -3.48 mumol CO2 m-2 s -1, and the lagoon mangroves showed the highest uptake of -8.11 mumol CO2 m-2 s-1. Additional simultaneous measurements of NDVI allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. In the second part of this research, the spatial variability of ecosystem fluxes across the 1802 km2 Barrow Peninsula region was studied. During typical 2006 summer conditions, the midday hourly CO2 flux over the region was -2.04 x 105 kgCO2 hr-1. The CO2 fluxes among the interstitial tundra, Ancient and Old VDTLBs, as well as between the Medium and Young VDTLBs were not significantly different. Combined, the interstitial tundra and Old and Ancient

  13. Energy demand analysis via small scale hydroponic systems in suburban areas - An integrated energy-food nexus solution.

    PubMed

    Xydis, George A; Liaros, Stelios; Botsis, Konstantinos

    2017-03-28

    The study is a qualitative approach and looks into new ways for the effective energy management of a wind farm (WF) operation in a suburban or near-urban environment in order the generated electricity to be utilised for hydroponic farming purposes as well. Since soilless hydroponic indoor systems gain more and more attention one basic goal, among others, is to take advantage of this not typical electricity demand and by managing it, offering to the grid a less fluctuating electricity generation signal. In this paper, a hybrid business model is presented where the Distributed Energy Resources (DER) producer is participating in the electricity markets under competitive processes (spot market, real-time markets etc.) and at the same time acts as a retailer offering - based on the demand - to the hydroponic units for their mass deployment in an area, putting forward an integrated energy-food nexus approach.

  14. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    SciTech Connect

    edu, Janet. twomey@wichita.

    2010-04-30

    This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  15. Energy dissipation mechanisms in microcantilever oscillators with applications to the detection of small forces

    NASA Astrophysics Data System (ADS)

    Yasumura, Kevin Youl

    In 1986 the atomic force microscope (AFM) was invented by Binnig, Quate, and Gerber. Cantilever based force microscopy has been used in a wide range of fields including the study of biological samples, data storage media, and microelectronics. These AFM-based imaging techniques typically measure forces in the piconewton (10-12 N) range. Recent developments in microcantilever fabrication and optical fiber displacement sensors have allowed for the construction of force microscope systems that are capable of measuring forces in the attonewton (10-18 N) range. Applications such as magnetic resonance force microscopy (MRFM) require the cantilevers used to have subattonewton force resolution in order to eventually detect single nuclear spins. It is believed that improvements in cantilever and experimental design will allow for improved force resolution. A fundamental limit to the detection of small forces is thermomechanical noise. The thermal noise force limit, via the fluctuation dissipation theorem, is directly related to the amount of mechanical energy dissipation in the cantilever-based force sensor. Work has therefore been focused on developing an understanding of which mechanisms are limiting the force resolution of these microcantilever oscillators. Arrays of silicon nitride, single-crystal silicon, and polysilicon cantilevers have been fabricated and studied. By measuring the dependence of Q on cantilever material, geometry, and surface treatments, significant insight into the dissipation mechanisms has been obtained. For submicron thick cantilevers, Q is found to decrease with decreasing cantilever thickness, indicative of surface loss mechanisms. For single-crystal silicon cantilevers, significant increase in room temperature Q is obtained after 700 C heat treatment in either N 2 or forming gas. Thermoelastic dissipation is not a factor for submicron thick cantilevers, but is shown to be significant for silicon nitride cantilevers as thin as 2.3 um. At low

  16. The Asteroid Impact and Deflection Assessment Mission and its Potential Contributions to Human Exploration of Asteroids

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Rivkin, Andy S.

    2014-01-01

    The joint ESA and NASA Asteroid Impact and Deflection Assessment (AIDA) mission will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission, involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. AIDA's primary objective is to demonstrate a kinetic impact deflection and characterize the binary NEA Didymos. The science and technical data obtained from AIDA will aid in the planning of future human exploration missions to NEAs and other small bodies. The dual robotic missions of AIDA, ESA's Asteroid Impact Monitor (AIM) and NASA's Double Asteroid Redirection Test (DART), will provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of the binary target Didymos both prior to and after the kinetic impact demonstration. The knowledge gained from this mission will help identify asteroidal physical properties in order to maximize operational efficiency and reduce mission risk for future small body missions. The AIDA data will help fill crucial strategic knowledge gaps concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations.

  17. Analytical Study on Multi-Tier 5G Heterogeneous Small Cell Networks: Coverage Performance and Energy Efficiency

    PubMed Central

    Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong

    2016-01-01

    In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells’ deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells’ deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency. PMID:27827917

  18. Analytical Study on Multi-Tier 5G Heterogeneous Small Cell Networks: Coverage Performance and Energy Efficiency.

    PubMed

    Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong

    2016-11-04

    In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells' deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells' deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency.

  19. Deflection and Extraction of Pb Ions up to 33 TeV/c by a Bent Silicon Crystal

    SciTech Connect

    Arduini, G.; Biino, C.; Clement, M.; Cornelis, K.; Doble, N.; Elsener, K.; Ferioli, G.; Fidecaro, G.; Gatignon, L.; Grafstroem, P.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Weisse, E.; Mo Uggerho Taratin, A.; Freund, A.; Keppler, P.; Major, J.

    1997-11-01

    The first results from an experiment to deflect a beam of fully stripped, ultrarelativistic Pb{sup 82+} ions of 400 GeV/c per unit of charge, equivalent to 33 TeV/c , by means of a bent crystal are reported. Deflection efficiencies are as high as 14{percent}, in agreement with theoretical estimates. In a second experiment a bent crystal was used to extract 270 GeV/c -per-charge Pb{sup 82+} (22 TeV/c) ions from a coasting beam in the CERN-SPS, and a high extraction efficiency of up to 10{percent} was found. These represent the first measurements to demonstrate applications of bent crystals in high energy heavy ion beams. {copyright} {ital 1997} {ital The American Physical Society}

  20. From detection to deflection: Mitigation techniques for hidden global threats of natural space objects with short warning time

    NASA Astrophysics Data System (ADS)

    Hussein, Alaa; Rozenheck, Oshri; Entrena Utrilla, Carlos Manuel

    2016-09-01

    Throughout recorded history, hundreds of Earth impacts have been reported, with some catastrophic localized consequences. Based on the International Space University (ISU) Planetary Defense project named READI, we address the impact event problem by giving recommendations for the development of a planetary defense program. This paper reviews the current detection and tracking techniques and gives a set of recommendations for a better preparation to shield Earth from asteroid and cometary impacts. We also extend the use of current deflection techniques and propose a new compilation of those to deflect medium-sized potentially hazardous objects (PHOs). Using an array of techniques from high-energy lasers to defensive missiles, we present a set of protective layers to defend our planet. The paper focused on threats with a short warning period from discovery to impact with Earth, within few years.

  1. Development of the cycloidal propeller StECon as a new small hydropower plant for kinetic energy

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Jensen, J.; Wieland, J.; Lohr, W.; Metzger, J.; Stiller, H.-L.

    2016-11-01

    The StECon (Stiller Energy Converter) is a promising new small hydropower plant for kinetic energy. It is an invention of Mr. Hans-Ludwig Stiller and has several advantages compared to the technologies for the use of hydropower known for millennia. It runs completely submerged forwards and backwards, with horizontal or vertical axis and has a compact design by using a single or a double-sided planetary gear with optimum alignment to the flow direction. The possible applications include mobile and stationary tide and current generators as well as hybrid solutions, either as a generator or as a propulsion system. The high expectations have to be confirmed in a research project StEwaKorad at the University of Siegen. Aim of this research project is to investigate the performance and characteristics of the StECon as an energy converter for producing renewable energy from hydropower with low fall heights including sea currents.

  2. Ab initio GW quasiparticle energies of small sodium clusters by an all-electron mixed-basis approach

    NASA Astrophysics Data System (ADS)

    Ishii, Soh; Ohno, Kaoru; Kawazoe, Yoshiyuki; Louie, Steven G.

    2001-04-01

    A state-of-the-art GW calculation is carried out for small sodium clusters, Na2, Na4, Na6, and Na8. The quasiparticle energies are evaluated by employing an ab initio GW code based on an all-electron mixed-basis approach, which uses both plane waves and atomic orbitals as basis functions. The calculated ionization potential and the electron affinity are in excellent agreement with available experimental data. The exchange and correlation parts to the electron self-energy within the GW approximation are presented from the viewpoint of their size dependence. In addition, the effect of the off-diagonal elements of the self-energy corrections to the local-density-approximation exchange-correlation potential is discussed. Na2 and Na8 have a larger energy gap than Na4 and Na6, consistent with the fact that they are magic number clusters.

  3. The 2017 Eclipse: Centenary of the Einstein Light Deflection Experiment

    NASA Astrophysics Data System (ADS)

    Kennefick, Daniel

    2017-01-01

    August 21st, 2017 will see a total eclipse of the Sun visible in many parts of the United States. Coincidentally this date marks the centenary of the first observational attempt to test Einstein's General Theory of Relativity by measuring gravitational deflection of light by the Sun. This was attempted by the Kodaikanal Observatory in India during the conjunction of Regulus with the Sun in daylight on August 21st, 1917. The observation was attempted at the urging of the amateur German-British astronomer A. F. Lindemann, with his son, F. A. Lindemann, a well-known physicist, who later played a significant role as Churchill's science advisor during World War II. A century later Regulus will once again be in conjunction with the Sun, but by a remarkable coincidence, this will occur during a solar eclipse! Efforts will be made to measure the star deflection during the eclipse and the experiment is contrasted with the famous expeditions of 1919 which were the first to actually measure the light deflection, since the 1917 effort did not meet with success. Although in recent decades there have been efforts made to suggest that the 1919 eclipse team, led by Arthur Stanley Eddington and Sir Frank Watson Dyson, over-interpreted their results in favor of Einstein this talk will argue that such claims are wrong-headed. A close study of their data analysis reveals that they had good grounds for the decisions they made and this conclusion is reinforced by comparison with a modern re-analysis of the plates by the Greenwich Observatory conducted in 1977.

  4. Reservation information sharing enhancement for deflection routing in OBS network.

    PubMed

    Gao, Donghui; Zhang, Hanyi; Zhou, Zhiyu

    2005-03-07

    The resource contention problem is critical in Just-Enough-Time (JET) based optical burst switching (OBS) networks. Although deflection routing (DR) reduces the contention probability in some degree, it does not give much improvement under heavy traffic load. This paper analyzed the inducement causing contention in OBS networks, and proposed Resource Information Sharing Enhancement (RISE) scheme. Theoretical analysis shows that this scheme achieves shorter length of the detour path than normal DR. We simulated this scheme on both full mesh network and practical 14-node NSFNET. The simulation results show that it gives at best 2 orders magnitude improvement in reducing the burst contention probability over its previous routing approaches.

  5. Self-referenced prism deflection measurement schemes with microradian precision

    SciTech Connect

    Olson, Rebecca; Paul, Justin; Bergeson, Scott; Durfee, Dallin S

    2005-08-01

    We have demonstrated several inexpensive methods that can be used to measure the deflection angles of prisms with microradian precision. The methods are self-referenced, where various reversals are used to achieve absolute measurements without the need of a reference prism or any expensive precision components other than the prisms under test. These techniques are based on laser interferometry and have been used in our laboratory to characterize parallel-plate beam splitters, penta prisms, right-angle prisms, and corner cube reflectors using only components typically available in an optics laboratory.

  6. Henry Cavendish, Johann von Soldner, and the deflection of light

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.

    1988-05-01

    The gravitational deflection of light based on Newtonian theory and the corpuscular model of light was calculated, but never published, around 1784 by Henry Cavendish, almost 20 years earlier than the first published calculation by Johann Georg von Soldner. The two results are slightly different because, while Cavendish treated a light ray emitted from infinity, von Soldner treated a light ray emitted from the surface of the gravitating body. At the first order of approximation, they agree with each other; both are one-half the value predicted by general relativity and confirmed by experiment.

  7. Force feedback microscopy based on an optical beam deflection scheme

    SciTech Connect

    Vitorino, Miguel V.; Rodrigues, Mario S.; Carpentier, Simon; Costa, Luca

    2014-07-07

    Force feedback microscopy circumvents the jump to contact in atomic force microscopy when using soft cantilevers and quantitatively measures the interaction properties at the nanoscale by simultaneously providing force, force gradient, and dissipation. The force feedback microscope developed so far used an optical cavity to measure the tip displacement. In this Letter, we show that the more conventional optical beam deflection scheme can be used to the same purpose. With this instrument, we have followed the evolution of the Brownian motion of the tip under the influence of a water bridge.

  8. Deflected mirage mediation: a phenomenological framework for generalized supersymmetry breaking.

    PubMed

    Everett, Lisa L; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M

    2008-09-05

    We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can be effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a "deflected" scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the CERN Large Hadron Collider.

  9. Deflected Mirage Mediation: A Phenomenological Framework for Generalized Supersymmetry Breaking

    SciTech Connect

    Everett, Lisa L.; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M.

    2008-09-05

    We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can be effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a ''deflected'' scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the CERN Large Hadron Collider.

  10. Optical beam deflection signal from a single microparticle

    NASA Astrophysics Data System (ADS)

    Wu, Jiaqi; Kitamori, Takehiko; Sawada, Tsuguo

    1990-07-01

    The optical beam deflection (OBD) method was applied to the measurement of a single microparticle, and the signal from one resin microparticle of 200-600 μm in diameter could be detected. Based on the frequency characteristics and size dependence of the OBD signal, this method was found to be more sensitive for a smaller particle, and more effective than the photoacoustic method. Theoretical considerations showed that these characteristics were attributable to the enhancement of the temperature field gradient due to the curvature of the microparticle.

  11. Abrupt fiber taper based Michelson interferometric deflection sensor

    NASA Astrophysics Data System (ADS)

    Tian, Zhaobing; Yam, Scott S.-H.

    2008-06-01

    A new compact standard single mode fiber Michelson interferometer deflection sensor was proposed, tested and simulated. The new interferometer consists of a symmetrical abrupt 3 dB taper region with a 40 μm waist diameter, a 700 μm length and a 500nm thick gold layer coating. Compared with similar interferometric devices based on long period gratings that need microfabrication technology and photosensitive fibers, the proposed sensor uses a much simplified fabrication process and normal single mode fiber, and has a linear response of 1.1nm/mm.

  12. Direct measurement of Vorticella contraction force by micropipette deflection.

    PubMed

    France, Danielle; Tejada, Jonathan; Matsudaira, Paul

    2017-02-01

    The ciliated protozoan Vorticella convallaria is noted for its exceptionally fast adenosine triphosphate-independent cellular contraction, but direct measurements of contractile force have proven difficult given the length scale, speed, and forces involved. We used high-speed video microscopy to image live Vorticella stalled in midcontraction by deflection of an attached micropipette. Stall forces correlate with both distance contracted and the resting stalk length. Estimated isometric forces range from 95 to 177 nanonewtons (nN), or 1.12 nN·μm(-1) of the stalk. Maximum velocity and work are also proportional to distance contracted. These parameters constrain proposed biochemical/physical models of the contractile mechanism.

  13. Observation of Femtosecond Bunch Length Using a Transverse Deflecting Structure

    SciTech Connect

    Huning, M.; Bolzmann, A.; Schlarb, H.; Frisch, J.; McCormick, D.; Ross, M.; Smith, T.; Rossbach, J.; /Hamburg U.

    2005-12-14

    The design of the VUV-FEL at DESY demands bunch lengths in the order of 50 fs and below. For the diagnostic of such very short bunches a transverse deflecting RF structure (LOLA) has been installed which streaks the beam according to the longitudinal distribution. Tests in the VUV-FEL yielded a rich substructure of the bunches. The most pronounced peak in the has a rms length of approximately 50 fs during FEL operation and below 20 fs FWHM at maximum compression. Depending on the transverse focusing a resolution well below 50 fs was achieved.

  14. CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Gorlé, C.; van Beeck, J.; Rambaud, P.; Van Tendeloo, G.

    When considering the modelling of small particle dispersion in the lower part of the Atmospheric Boundary Layer (ABL) using Reynolds Averaged Navier Stokes simulations, the particle paths depend on the velocity profile and on the turbulence kinetic energy, from which the fluctuating velocity components are derived to predict turbulent dispersion. It is therefore important to correctly reproduce the ABL, both for the velocity profile and the turbulence kinetic energy profile. For RANS simulations with the standard k- ɛ model, Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k-ɛ turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46-47, 145-153.) proposed a set of boundary conditions which result in horizontally homogeneous profiles. The drawback of this method is that it assumes a constant profile of turbulence kinetic energy, which is not always consistent with field or wind tunnel measurements. Therefore, a method was developed which allows the modelling of a horizontally homogeneous turbulence kinetic energy profile that is varying with height. By comparing simulations performed with the proposed method to simulations performed with the boundary conditions described by Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k-ɛ turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46-47, 145-153.), the influence of the turbulence kinetic energy on the dispersion of small particles over flat terrain is quantified.

  15. Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems

    NASA Astrophysics Data System (ADS)

    Hekmati, Arsalan; Hekmati, Rasoul

    2016-12-01

    Electrical power quality and stability is an important issue nowadays and technology of Superconducting Magnetic Energy Storage systems, SMES, has brought real power storage capability to power systems. Therefore, optimum SMES design to achieve maximum energy with the least length of tape has been quite a matter of concern. This paper provides an approach to design optimization of solenoid and toroid types of SMES, ensuring maximum possible energy storage. The optimization process, based on Genetic Algorithm, calculates the operating current of superconducting tapes through intersection of a load line with the surface indicating the critical current variation versus the parallel and perpendicular components of magnetic flux density. FLUX3D simulations of SMES have been utilized for energy calculations. Through numerical analysis of obtained data, formulations have been obtained for the optimum dimensions of superconductor coil and maximum stored energy for a given length and cross sectional area of superconductor tape.

  16. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells.

    PubMed

    Li, Sunsun; Ye, Long; Zhao, Wenchao; Zhang, Shaoqing; Mukherjee, Subhrangsu; Ade, Harald; Hou, Jianhui

    2016-11-01

    Fine energy-level modulations of small-molecule acceptors (SMAs) are realized via subtle chemical modifications on strong electron-withdrawing end-groups. The two new SMAs (IT-M and IT-DM) end-capped by methyl-modified dicycanovinylindan-1-one exhibit upshifted lowest unoccupied molecular orbital (LUMO) levels, and hence higher open-circuit voltages can be observed in the corresponding devices. Finally, a top power conversion efficiency of 12.05% is achieved.

  17. Measurement of energy spectra of small-angle scattering and distribution of optical microinhomogeneities in laser ceramics

    SciTech Connect

    Tverdokhleb, P E; Shepetkin, Yu A; Steinberg, I Sh; Belikov, A Yu; Vatnik, S M; Vedin, I A; Kurbatov, P F

    2014-06-30

    The energy spectra of small-angle light scattering from the samples of Nd:YAG ceramics and the spatial distributions of optical microinhomogeneities in them are measured. The spatial profiles of microinhomogeneities are found using the collinear heterodyne microprobe technique. Based on the obtained data, the comparison of noise and lasing characteristics of foreign and domestic samples of laser ceramics is carried out. (extreme light fields and their applications)

  18. THE HELIOCENTRIC DISTANCE WHERE THE DEFLECTIONS AND ROTATIONS OF SOLAR CORONAL MASS EJECTIONS OCCUR

    SciTech Connect

    Kay, C.; Opher, M.

    2015-10-01

    Understanding the trajectory of a coronal mass ejection (CME), including any deflection from a radial path, and the orientation of its magnetic field is essential for space weather predictions. Kay et al. developed a model, Forecasting a CME’s Altered Trajectory (ForeCAT), of CME deflections and rotation due to magnetic forces, not including the effects of reconnection. ForeCAT is able to reproduce the deflection of observed CMEs. The deflecting CMEs tend to show a rapid increase of their angular momentum close to the Sun, followed by little to no increase at farther distances. Here we quantify the distance at which the CME deflection is “determined,” which we define as the distance after which the background solar wind has negligible influence on the total deflection. We consider a wide range in CME masses and radial speeds and determine that the deflection and rotation of these CMEs can be well-described by assuming they propagate with constant angular momentum beyond 10 R{sub ⊙}. The assumption of constant angular momentum beyond 10 R{sub ⊙} yields underestimates of the total deflection at 1 AU of only 1%–5% and underestimates of the rotation of 10%. Since the deflection from magnetic forces is determined by 10 R{sub ⊙}, non-magnetic forces must be responsible for any observed interplanetary deflections or rotations where the CME has increasing angular momentum.

  19. High energy gamma ray results from the second small astronomy satellite

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. F.; Tuemer, T.

    1974-01-01

    A high energy (35 MeV) gamma ray telescope employing a thirty-two level magnetic core spark chamber system was flown on SAS 2. The high energy galactic gamma radiation is observed to dominate over the general diffuse radiation along the entire galactic plane, and when examined in detail, the longitudinal and latitudinal distribution seem generally correlated with galactic structural features, particularly with arm segments. The general high energy gamma radiation from the galactic plane, explained on the basis of its angular distribution and magnitude, probably results primarily from cosmic ray interactions with interstellar matter.

  20. Sampling errors in free energy simulations of small molecules in lipid bilayers.

    PubMed

    Neale, Chris; Pomès, Régis

    2016-10-01

    Free energy simulations are a powerful tool for evaluating the interactions of molecular solutes with lipid bilayers as mimetics of cellular membranes. However, these simulations are frequently hindered by systematic sampling errors. This review highlights recent progress in computing free energy profiles for inserting molecular solutes into lipid bilayers. Particular emphasis is placed on a systematic analysis of the free energy profiles, identifying the sources of sampling errors that reduce computational efficiency, and highlighting methodological advances that may alleviate sampling deficiencies. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.

  1. Holes bound as small polarons to acceptor defects in oxide materials: why are their thermal ionization energies so high?

    NASA Astrophysics Data System (ADS)

    Schirmer, O. F.

    2011-08-01

    Holes bound to acceptor defects in oxide materials usually need comparatively high energies, of the order of 0.5-1.0 eV, to be ionized thermally to the valence band maximum. It is discussed that this has to be attributed to the stabilization of such holes by mainly short range interactions with the surrounding lattice, leading to the formation of small O - polarons. This is tantamount to the localization of the hole at only one of several equivalent oxygen ions next to the defect. The hole stabilizing energies can be determined experimentally from the related intense optical absorption bands. This paper exploits previous phenomenological studies of bound-hole small polarons in order to account for the large hole stabilization energies on this basis. A compilation demonstrates that bound-hole small polarons occur rather often in oxides and also in some related materials. The identification of such systems is based on EPR and optical studies and also on recent advanced electronic structure calculations.

  2. Accurate structures and binding energies for small water clusters: The water trimer

    SciTech Connect

    Nielsen, I.M.; Seidl, E.T.; Janssen, C.L.

    1999-05-01

    The global minimum on the water trimer potential energy surface has been investigated by means of second-order Mo/ller-Plesset (MP2) perturbation theory employing the series of correlation-consistent basis sets aug-cc-pVXZ (X = D, T, Q, 5, 6), the largest of which contains 1329 basis functions. Definitive predictions are made for the binding energy and equilibrium structure, and improved values are presented for the harmonic vibrational frequencies. A value of 15.82{plus_minus}0.05 kcal mol{sup {minus}1} is advanced for the infinite basis set frozen core MP2 binding energy, obtained by extrapolation of MP2 correlation energies computed at the aug-cc-pVQZ MP2 geometry. Inclusion of core correlation, using the aug-cc-pCV5Z basis set, has been found to increase the binding energy by 0.08 kcal mol{sup {minus}1}, and after consideration of core correlation and higher-order correlation effects, the classical binding energy for the water trimer is estimated to be 15.9{plus_minus}0.2 kcal mol{sup {minus}1}. A zero-point vibrational correction of {minus}5.43 kcal mol{sup {minus}1} has been computed from aug-cc-pVTZ MP2 harmonic vibrational frequencies. The accuracy of different computational schemes for obtaining the binding energies of the water dimer and trimer has been investigated, and computationally feasible methods are suggested for obtaining accurate structures and binding energies for larger water clusters.{copyright} {ital 1999 American Institute of Physics.}

  3. Landau damping effects and evolutions of energy spread in small isochronous ring

    SciTech Connect

    Li, Yingjie; Wang, Langfa; Lin, Fanglei

    2014-11-01

    This paper presents the Landau damping effects on the microwave instability of a coasting long bunch in an isochronous ring due to finite energy spread and emittance. Our two-dimensional (2D) dispersion relation gives more accurate predictions of the microwave instability growth rates of short-wavelength perturbations than the conventional 1D formula. The long-term evolution of energy spread is also studied by measurements and simulations.

  4. Design and Field Test of a Galvanometer Deflected Streak Camera

    SciTech Connect

    Lai, C C; Goosman, D R; Wade, J T; Avara, R

    2002-11-08

    We have developed a compact fieldable optically-deflected streak camera first reported in the 20th HSPP Congress. Using a triggerable galvanometer that scans the optical signal, the imaging and streaking function is an all-optical process without incurring any photon-electron-photon conversion or photoelectronic deflection. As such, the achievable imaging quality is limited mainly only by optical design, rather than by multiple conversions of signal carrier and high voltage electron-optics effect. All core elements of the camera are packaged into a 12 inch x 24 inch footprint box, a size similar to that of a conventional electronic streak camera. At LLNL's Site-300 Test Site, we have conducted a Fabry-Perot interferometer measurement of fast object velocity using this all-optical camera side-by-side with an intensified electronic streak camera. These two cameras are configured as two independent instruments for recording synchronously each branch of the 50/50 splits from one incoming signal. Given the same signal characteristics, the test result has undisputedly demonstrated superior imaging performance for the all-optical streak camera. It produces higher signal sensitivity, wider linear dynamic range, better spatial contrast, finer temporal resolution, and larger data capacity as compared with that of the electronic counterpart. The camera had also demonstrated its structural robustness and functional consistence to be well compatible with field environment. This paper presents the camera design and the test results in both pictorial records and post-process graphic summaries.

  5. Mirage models confront the LHC. III. Deflected mirage mediation

    NASA Astrophysics Data System (ADS)

    Everett, Lisa L.; Garon, Todd; Kaufman, Bryan L.; Nelson, Brent D.

    2016-03-01

    We complete the study of a class of string-motivated effective supergravity theories in which modulus-induced soft supersymmetry breaking is sufficiently suppressed in the observable sector so as to be competitive with anomaly-mediated supersymmetry breaking. Here we consider deflected "mirage mediation" (DMM), where contributions from gauge mediation are added to those arising from gravity mediation and anomaly mediation. We update previous work that surveyed the rich parameter space of such theories, in light of data from the CERN Large Hadron Collider (LHC) and recent dark matter detection experiments. Constraints arising from LHC superpartner searches at √{s }=8 TeV are considered, and discovery prospects at √{s }=14 TeV are evaluated. We find that deflected mirage mediation generally allows for S U (3 )-charged superpartners of significantly lower mass (given current knowledge of the Higgs mass and neutralino relic density) than was found for the "pure" mirage mediation models of Kachru et al. [Phys. Rev. D 68, 046005 (2003)]. Consequently, discovery prospects are enhanced for many combinations of matter multiplet modular weights. We examine the experimental challenges that will arise due to the prospect of highly compressed spectra in DMM, and the correlation between accessibility at the LHC and discovery prospects at large-scale liquid xenon dark matter detectors.

  6. On-demand beam deflection system for PIXE milliprobe

    NASA Astrophysics Data System (ADS)

    Voltr, J.; Král, J.; Černý, J.; Švejda, J.

    2002-04-01

    Application of an on-demand beam deflection system in PIXE analysis has numerous advantages. The suppression of pile-up is accomplished much better than by using pile-up rejection electronic circuits only. In the case of biological and other sensitive types of samples, it is important to minimize the radiation and thermal load. In the case of samples with very different concentrations, the need for beam current correction between sample analyses is not as critical. An on-demand beam deflection system for the analytical facility at the CTU in Prague has been developed and implemented. A pair of electrodes was inserted in the beam line in front of the target chamber. The electrodes are supplied with positive high voltage up to 1 kV and they are a U-shape cross-section to reduce their beam distortion effect. Temporarily, one of the electrodes is shorted to ground potential. The shorting, by a HEXFET ® transistor, occurs in a period of about 100 ns after the edge of the triggering pulse. A description of the system as well as the results of the tests are presented.

  7. Deflection of resilient materials for reduction of floor impact sound.

    PubMed

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.

  8. System for deflection measurements of floating dry docks

    NASA Astrophysics Data System (ADS)

    Gorbachev, Alexey A.; Pantyushin, Anton V.; Serikova, Mariya G.; Korotaev, Valery V.; Timofeev, Aleksandr N.

    2015-05-01

    In this paper we introduce a system for deflection measurement of floating dry docks. The system contains two measurement channels observing opposite directions of the dock. It also includes set of reference marks, an industrial computer and a display. Each channel contains CMOS camera with long focal-length lens. Reference marks are implemented as IR LED arrays with 940 nm working wavelength for better performance within bad weather conditions (e.g. fog, rain, high humidity etc.). In the paper we demonstrate results of an analysis of different optical schemes for coupling the oppositely directed channels of the measurement unit and show that the scheme with two image sensors with separated lenses is an optimal option, because it allows usage of nonequidistant location of reference marks and demonstrates the least value of parasitic shift caused by rotations of the measuring unit. The developed system was tested both on specially-designed setup and in real infrastructure of a floating dry dock. The conducted tests proved that a measuring error of the system is smaller than +/- 1.5 mm within the measurement range of +/- 150 mm when deflection of 100 m dock is measured. Obtained results showed that the system demonstrates an ability to work in a harsh environment including poor weather conditions.

  9. a Measurement of MU, P and he Energy Spectra at the Small Atmospheric Depth.

    NASA Astrophysics Data System (ADS)

    Abe, K.

    2004-04-01

    The cosmic-ray proton, helium, and muon spectra at small atmospheric depths of 4.5 - 28 g/cm2 were precisely measured during the slow descending period of the BESS-2001 balloon flight. The variation of atmospheric secondary particle fluxes as a function of atmospheric depth provides fundamental information to study hadronic interactions of the primary cosmic rays with the atmosphere.

  10. Compact superconducting rf-dipole cavity designs for deflecting and crabbing applications

    SciTech Connect

    De Silva, Subashini; Delayen, Jean R.; Castilla, Alejandro

    2013-06-01

    Over the years the superconducting parallel-bar design has evolved into an rf-dipole cavity with improved properties. The new rf-dipole design is considered for a number of deflecting and crabbing applications. Some of those applications are the 499 MHz rf separator system for the Jefferson Lab 12 GeV upgrade, the 400 MHz crabbing cavity system for the proposed LHC high luminosity upgrade, and the 750 MHz crabbing cavity for the medium energy electron-ion collider in Jefferson Lab. In this paper we present the optimized rf design in terms of rf performance including rf properties, higher order modes (HOM) properties, multipacting and multipole expansion for the above mentioned applications.

  11. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Kimura, Masayuki; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2005-05-01

    We have developed a low noise cantilever deflection sensor with a deflection noise density of 17fm/√Hz by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed in both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.

  12. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy

    SciTech Connect

    Fukuma, Takeshi; Kimura, Masayuki; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2005-05-15

    We have developed a low noise cantilever deflection sensor with a deflection noise density of 17 fm/{radical}(Hz) by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed in both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.

  13. High-yield maize with large net energy yield and small global warming intensity.

    PubMed

    Grassini, Patricio; Cassman, Kenneth G

    2012-01-24

    Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N · ha(-1)) and irrigation water inputs (272 mm or 2,720 m(3) ha(-1)). Although energy inputs (30 GJ · ha(-1)) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg · ha(-1) and 159 GJ · ha(-1), respectively) and lower GHG-emission intensity (231 kg of CO(2)e · Mg(-1) of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N(2)O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals.

  14. 77 FR 26607 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... methods, marking requirements, and energy efficiency levels for three-phase induction motors, March 2010... Performance of Single-Speed Three-Phase Cage Induction Motors, clauses 5.2, 5.4, 6, and 8, and Tables 1, 2, 3... Procedure for Polyphase Induction Motors and Generators, approved February 9, 2004: (i) Section...

  15. The Energy Bibliography and Index Database--a Small, Specialized File with Some Unique Contents.

    ERIC Educational Resources Information Center

    Rholes, Julia M.

    1982-01-01

    Describes the background, document and subject coverage, access points, indexing, and other features of the online version of Energy Bibliography and Index (EBIB). A set of nine figures illustrate such things as a sample EBIB record, searchable fields in the EBIB database, and searching EBIB by index terms. (JL)

  16. Creswell's Energy Efficient Construction Program: A Big Project for a Small School.

    ERIC Educational Resources Information Center

    Kelsh, Bruce

    1982-01-01

    In Creswell (Oregon) High School's award winning vocational education program, students study energy efficient construction along with basic building skills. Part of the program has been the active recruitment of female, minority, disadvantaged, and handicapped students into the vocational area. Students have assembled solar hot water collectors,…

  17. van der Waals interaction energy and disjoining pressure at small separation.

    PubMed

    White, Lee R

    2010-03-01

    The divergence of the van der Waals interaction energy E(132)(L) between plane half-spaces 1 and 2 separated by medium 3 as the separation distance L tends to zero is naively thought of as due to the overlap of the atomic polarization centers. It follows that it may therefore be prevented by properly allowing for the finite size of the atomic species which would prevent the overlap. The distance cutoff model is a simple example of such a modification. The present paper demonstrates that this is not ultimately the origin of the divergence and, that although finite atomic dimensions would alleviate the embarrassment, non-overlap does not properly address the thermodynamic restriction that pertains to the interaction energy. By allowing in an albeit approximate way for the wavelength dependence of the material dielectric response functions epsilon(i xi, k) which arise naturally in the modern Lifshitz theory for this interaction, a form for the van der Waals energy and the corresponding disjoining pressure may be derived which obey the thermodynamic constraint and remove the divergence as L-->0. The energy and disjoining pressure in this new model are compared with the classic non-retarded results and the length cutoff model.

  18. Direct deflection radius measurement of flexible PET substrates by using an optical interferometry.

    PubMed

    Hsu, Jiong-Shiun; Li, Po-Wei

    2015-06-10

    The deflection radius is essential in determining residual stress estimations in flexible electronics. However, the literature provides only indirect methods for obtaining a deflection radius. In this study, we present a measurement methodology for directly measuring the deflection radius of a polyethylene terephthalate (PET) substrate (a popular substrate of flexible electronics) by using an optical interferometer. A Twyman-Green optical interferometer was established and phase-shifting technology was used to increase the measurement resolution. Five PET substrates with known deflection radii were prepared to verify the measurement precision of the proposed measurement methodology. The results revealed that the error variance of our proposed measurement methodology is smaller than 3.5%.

  19. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    DOEpatents

    Hagen, Edward C.; Hudson, Charles L.

    1995-01-01

    A new deflection structure (12) which deflects a beam of charged particles, uch as an electron beam (15), includes a serpentine set (20) for transmitting a deflection field, and a shielding frame (25) for housing the serpentine set (20). The serpentine set (20) includes a vertical serpentine deflection element (22) and a horizontal serpentine deflection element (24). These deflection elements (22, 24) are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage (75), through which the electron beam (15) passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame (25) includes a plurality of ground blocks (26, 28, 30, 32), and forms an internal serpentine trough (77) within these ground blocks, for housing the serpentine set (20). The deflection structure (12) further includes a plurality of feedthrough connectors (35, 37, 35I, 37I), which are inserted through the shielding frame (25), and which are electrically connected to the serpentine set (20).

  20. The calculations of small molecular conformation energy differences by density functional method

    NASA Astrophysics Data System (ADS)

    Topol, I. A.; Burt, S. K.

    1993-03-01

    The differences in the conformational energies for the gauche (G) and trans(T) conformers of 1,2-difluoroethane and for myo-and scyllo-conformer of inositol have been calculated by local density functional method (LDF approximation) with geometry optimization using different sets of calculation parameters. It is shown that in the contrast to Hartree—Fock methods, density functional calculations reproduce the correct sign and value of the gauche effect for 1,2-difluoroethane and energy difference for both conformers of inositol. The results of normal vibrational analysis for1,2-difluoroethane showed that harmonic frequencies calculated in LDF approximation agree with experimental data with the accuracy typical for scaled large basis set Hartree—Fock calculations.

  1. Measurement of Small Molecule Diffusion in Carbon Dioxide Swollen Polymers using Fluorescence Nonradiative Energy Transfer

    NASA Astrophysics Data System (ADS)

    Watkins, James; Gupta, Ravi; Ramachandrarao, Vijay

    2001-03-01

    Diffusion coefficients of molecular probes in CO2-swollen polystyrene films were measured in situ using high-pressure fluorescence nonradiative energy transfer (NRET). Specifically, the diffusivities of decacyclene and BPEA (9,10- bis phenyl ethnyl Anthracene), relatively large fluorescence acceptor probes, were determined in real time using pyrene-labeled polystyrene as the corresponding energy donor in carbon dioxide-plasticized films. Decacyclene diffusivities were measured at 65 and 80 C and carbon dioxide pressures ranging from 62 to 144 bar, conditions near and well above the previously reported, solvent-depressed glass transition of polystyrene. Decacyclene diffusivity shows an increase of over 5 orders of magnitude upon CO2 sorption relative to the PS glass at ambient pressure and equivalent temperatures. BPEA exhibits similar behavior but diffuses about an order of magnitude faster than decacyclene in CO2 plasticized polystyrene under similar conditions.

  2. Deflection of light to second order in conformal Weyl gravity

    SciTech Connect

    Sultana, Joseph

    2013-04-01

    We reexamine the deflection of light in conformal Weyl gravity obtained in Sultana and Kazanas (2010), by extending the calculation based on the procedure by Rindler and Ishak, for the bending angle by a centrally concentrated spherically symmetric matter distribution, to second order in M/R, where M is the mass of the source and R is the impact parameter. It has recently been reported in Bhattacharya et al. (JCAP 09 (2010) 004; JCAP 02 (2011) 028), that when this calculation is done to second order, the term γr in the Mannheim-Kazanas metric, yields again the paradoxical contribution γR (where the bending angle is proportional to the impact parameter) obtained by standard formalisms appropriate to asymptotically flat spacetimes. We show that no such contribution is obtained for a second order calculation and the effects of the term γr in the metric are again insignificant as reported in our earlier work.

  3. Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows.

    PubMed

    Liang, Litao; Zhu, Junjie; Xuan, Xiangchun

    2011-09-01

    Magnetic field-induced particle manipulation is a promising technique for biomicrofluidics applications. It is simple, cheap, and also free of fluid heating issues that accompany other common electric, acoustic, and optical methods. This work presents a fundamental study of diamagnetic particle motion in ferrofluid flows through a rectangular microchannel with a nearby permanent magnet. Due to their negligible magnetization relative to the ferrofluid, diamagnetic particles experience negative magnetophoresis and are repelled away from the magnet. The result is a three-dimensionally focused particle stream flowing near the bottom outer corner of the microchannel that is the farthest to the center of the magnet and hence has the smallest magnetic field. The effects of the particle's relative position to the magnet, particle size, ferrofluid flow rate, and concentration on this three-dimensional diamagnetic particle deflection are systematically studied. The obtained experimental results agree quantitatively with the predictions of a three-dimensional analytical model.

  4. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.

    1999-01-01

    LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.

  5. Photothermal cantilever deflection spectroscopy of a photosensitive polymer

    SciTech Connect

    Yun, Minhyuk; Lee, Dongkyu; Jung, Namchul; Jeon, Sangmin; Kim, Seonghwan; Chae, Inseok; Thundat, Thomas

    2012-05-14

    The mechanical and chemical information of a poly(methyl methacrylate) (PMMA) film on a microcantilever were simultaneously acquired by photothermal cantilever deflection spectroscopy as a function of ultraviolet (UV) irradiation time. Nanomechanical infrared (IR) spectra from the PMMA-coated microcantilever agreed well with the Fourier transform infrared spectroscopy (FTIR) spectra of PMMA on gold-coated silicon wafer. The decreasing intensities of nanomechanical IR peaks represent chemical as well as mechanical information of UV radiation-induced photodegradation processes in the PMMA which cannot be obtained by a conventional FTIR technique. The observed decrease in the resonance frequency of the microcantilever is related to the change in the Young's modulus of the PMMA under UV exposure.

  6. Self-contained instrument for measuring subterranean tunnel wall deflection

    DOEpatents

    Rasmussen, Donald Edgar; Hof, Jr., Peter John

    1978-01-01

    The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.

  7. Fabrication and Testing of Deflecting Cavities for APS

    SciTech Connect

    Mammosser, John; Wang, Haipeng; Rimmer, Robert; Jim, Henry; Katherine, Wilson; Dhakal, Pashupati; Ali, Nassiri; Jim, Kerby; Jeremiah, Holzbauer; Genfa, Wu; Joel, Fuerst; Yawei, Yang; Zenghai, Li

    2013-09-01

    Jefferson Lab (Newport News, Virginia) in collaboration with Argonne National Laboratory (Argonne, IL) has fabricated and tested four first article, 2.8 GHz, deflecting SRF cavities, for Argonne's Short-Pulse X-ray (SPX) project. These cavities are unique in many ways including the fabrication techniques in which the cavity cell and waveguides were fabricated. These cavity subcomponents were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The challenging cavity and helium vessel design and fabrication results from the stringent RF performance requirements required by the project and operation in the APS ring. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.

  8. Profiling compact toroid plasma density on CTIX with laser deflection

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel Joseph Erwin

    A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.

  9. Light deflection by light: Effect of incidence angle and inhomogeneity

    NASA Astrophysics Data System (ADS)

    Kumar, Pardeep; Dasgupta, Shubhrangshu

    2016-10-01

    We study the angular deflection of the circularly polarized components of a linearly polarized probe field in a weakly birefringent atomic system in tripod configuration. A spatially inhomogeneous control field incident obliquely onto an atomic vapor cell facilitates a large angular divergence between circular components. We show that the angular resolution can be dynamically controlled by optimally choosing the angle of incidence and the transverse profile of the control beam. For instance, by employing a Laguerre-Gaussian profile of the control field, one can impart a large angular divergence to the circular components close to the entry face of the atomic vapor cell. We further demonstrate how such a medium causes the focusing and refocusing of the probe field, thereby acting as a lens with multiple foci. The absorption in the medium remains negligible at resonance due to electromagnetically induced transparency.

  10. Combines Attitude Control and Energy Storage for Small Satellites using Variable Speed Control Moment Gyroscopes

    DTIC Science & Technology

    2008-06-24

    Benefits Related to Motor Data . . . . . . . . . . . . 195 B.3 Comparison to Laboratory Data . . . . . . . . . . . . . . . . . . . . . . . . . 196 B.4 BLDC ...Research Laboratory AMSAT = Amateur Satellite BCR = Battery Charge Regulator BLDC = Brushless DC PM Motor/Generator CEACS = Combined Energy Storage and...designer to select a gimbal motor (assumed to be a Brushless DC ( BLDC ) motor here). Examples of applying this approach are given in [148]. Agile Att Ref

  11. Mechanisms for impulsive energy dissipation and small-scale effects in microgranular media

    NASA Astrophysics Data System (ADS)

    Bunyan, Jonathan; Vakakis, Alexander F.; Tawfick, Sameh

    2015-12-01

    We study impulse response in one-dimensional homogeneous microgranular chains on a linear elastic substrate. Microgranular interactions are analytically described by the Schwarz contact model which includes nonlinear compressive as well as snap-to and from-contact adhesive effects forming a hysteretic loop in the force deformation relationship. We observe complex transient dynamics, including disintegration of solitary pulses, local clustering, and low-to-high-frequency energy transfers resulting in enhanced energy dissipation. We study in detail the underlying dynamics of cluster formation in the impulsively loaded medium and relate enhanced energy dissipation to the rate of cluster formation. These unusual and interesting dynamical phenomena are shown to be robust over a range of physically feasible conditions and are solely scale effects since they are attributed to surface forces, which have no effect at the macroscale. We establish a universal relation between the reclustering rate and the effective damping in these systems. Our findings demonstrate that scale effects generating new nonlinear features can drastically affect the dynamics and acoustics of microgranular materials.

  12. Experimental measurement of radiological penumbra associated with intermediate energy x-rays (1 MV) and small radiosurgery field sizes

    SciTech Connect

    Keller, Brian M.; Beachey, David J.; Pignol, Jean-Philippe

    2007-10-15

    Stereotactic radiosurgery is used to treat intracranial lesions with a high degree of accuracy. At the present time, x-ray energies at or above Co-60 gamma rays are used. Previous Monte Carlo simulations have demonstrated that intermediate energy x-ray photons or IEPs (defined to be photons in the energy range of 0.2-1.2 MeV), combined with small field sizes, produce a reduced radiological penumbra leading to a sharper dose gradient, improved dose homogeneity and sparing of critical anatomy adjacent to the target volume. This hypothesis is based on the fact that, for small x-ray fields, a dose outside the treatment volume is dictated mainly by the range of electrons set into motion by x-ray photons. The purpose of this work is: (1) to produce intermediate energy x rays using a detuned medical linear accelerator (2) to characterize the energy of this beam (3) to measure the radiological penumbra for IEPs and small fields to compare with that produced by 6 MV x rays or Co-60, and (4) to compare these experimental measurements with Monte Carlo computer simulations. The maximum photon energy of our IEP x-ray spectrum was measured to be 1.2 MeV. Gafchromic EBT films (ISP Technologies, Wayne, NJ) were irradiated and read using a novel digital microscopy imaging system with high spatial resolution. Under identical irradiation conditions the measured radiological penumbra widths (80%-20% distance), for field sizes ranging from 0.3x0.3 to 4.0x4.0 cm{sup 2}, varied from 0.3-0.77 mm (1.2 MV) and from 1.1-2.1 mm (6 MV). Even more dramatic were the differences found when comparing the 90%-10% or the 95%-5% widths, which are in fact more significant in radiotherapy. Monte Carlo simulations agreed well with the experimental findings. The reduction in radiological penumbra could be substantial for specific clinical situations such as in the treatment of an ocular melanoma abutting the macula or for the treatment of functional disorders such as trigeminal neuralgia (a nonlethal

  13. Experimental measurement of radiological penumbra associated with intermediate energy x-rays (1 MV) and small radiosurgery field sizes.

    PubMed

    Keller, Brian M; Beachey, David J; Pignol, Jean-Philippe

    2007-10-01

    Stereotactic radiosurgery is used to treat intracranial lesions with a high degree of accuracy. At the present time, x-ray energies at or above Co-60 gamma rays are used. Previous Monte Carlo simulations have demonstrated that intermediate energy x-ray photons or IEPs (defined to be photons in the energy range of 0.2-1.2 MeV), combined with small field sizes, produce a reduced radiological penumbra leading to a sharper dose gradient, improved dose homogeneity and sparing of critical anatomy adjacent to the target volume. This hypothesis is based on the fact that, for small x-ray fields, a dose outside the treatment volume is dictated mainly by the range of electrons set into motion by x-ray photons. The purpose of this work is: (1) to produce intermediate energy x rays using a detuned medical linear accelerator, (2) to characterize the energy of this beam, (3) to measure the radiological penumbra for IEPs and small fields to compare with that produced by 6 MV x rays or Co-60, and (4) to compare these experimental measurements with Monte Carlo computer simulations. The maximum photon energy of our IEP x-ray spectrum was measured to be 1.2 MeV. Gafchromic EBT films (ISP Technologies, Wayne, NJ) were irradiated and read using a novel digital microscopy imaging system with high spatial resolution. Under identical irradiation conditions the measured radiological penumbra widths (80%-20% distance), for field sizes ranging from 0.3 x 0.3 to 4.0 x 4.0 cm2, varied from 0.3-0.77 mm (1.2 MV) and from 1.1-2.1 mm (6 MV). Even more dramatic were the differences found when comparing the 90%-10% or the 95%-5% widths, which are in fact more significant in radiotherapy. Monte Carlo simulations agreed well with the experimental findings. The reduction in radiological penumbra could be substantial for specific clinical situations such as in the treatment of an ocular melanoma abutting the macula or for the treatment of functional disorders such as trigeminal neuralgia (a nonlethal

  14. Coronal energy distribution and X-ray activity in the small scale magnetic field of the quiet sun

    NASA Technical Reports Server (NTRS)

    Habbal, S. R.

    1992-01-01

    The energy distribution in the small-scale magnetic field that pervades the solar surface, and its relationship to X-ray/coronal activity are discussed. The observed emission from the small scale structures, at temperatures characteristic of the chromosphere, transition region and corona, emanates from the boundaries of supergranular cells, within coronal bright points. This emission is characterized by a strong temporal and spatial variability with no definite pattern. The analysis of simultaneous, multiwavelength EUV observations shows that the spatial density of the enhanced as well as variable emission from the small scale structures exhibits a pronounced temperature dependence with significant maxima at 100,000 and 1,000,000 K. Within the limits of the spatial (1-5 arcsec) and temporal (1-5 min) resolution of data available at present, the observed variability in the small scale structure cannot account for the coroal heating of the quiet sun. The characteristics of their emission are more likely to be an indicator of the coronal heating mechanisms.

  15. Experiment and analysis for a small-sized flywheel energy storage system with a high-temperature superconductor bearing

    NASA Astrophysics Data System (ADS)

    Kim, Bongsu; Ko, Junseok; Jeong, Sangkwon; Lee, Seung S.

    2006-02-01

    This paper presents a small-sized flywheel energy storage system that uses a high-temperature superconductor (HTS) bearing characterized by a non-contacting bearing with no active control. The small-sized flywheel is made up several magnets for a motor/generator as well as an HTS bearing, and they are fitted into a 34 mm diameter, 3 mm thick aluminium disc. For simplicity and miniaturization of the whole system, the small-sized flywheel takes torque directly from a planar stator, which consists of an axial flux-type brushless DC motor/generator. The small-sized flywheel successfully rotated up to 38 000 rpm in a vacuum while levitated above the stator with a gap of about 1 mm. However, there are some eddy current losses in the stator and non-axisymmetry in the magnetic field causing large drag torque. In order to solve these problems, an improved magnet array in the flywheel, including magnetic screening, is proposed and 3D electromagnetic simulations have been conducted.

  16. Current deflection NDE for pipeline inspection and monitoring

    NASA Astrophysics Data System (ADS)

    Jarvis, Rollo; Cawley, Peter; Nagy, Peter B.

    2016-02-01

    Failure of oil and gas pipelines can often be catastrophic, therefore routine inspection for time dependent degradation is essential. In-line inspection is the most common method used; however, this requires the insertion and retrieval of an inspection tool that is propelled by the fluid in the pipe and risks becoming stuck, so alternative methods must often be employed. This work investigates the applicability of a non-destructive evaluation technique for both the detection and growth monitoring of defects, particularly corrosion under insulation. This relies on injecting an electric current along the pipe and indirectly measuring the deflection of current around defects from perturbations in the orthogonal components of the induced magnetic flux density. An array of three orthogonally oriented anisotropic magnetoresistive sensors has been used to measure the magnetic flux density surrounding a 6'' schedule-40 steel pipe carrying 2 A quasi-DC axial current. A finite element model has been developed that predicts the perturbations in magnetic flux density caused by current deflection which has been validated by experimental results. Measurements of the magnetic flux density at 50 mm lift-off from the pipe surface are stable and repeatable to the order of 100 pT which suggests that defect detection or monitoring growth of corrosion-type defects may be possible with a feasible magnitude of injected current. Magnetic signals are additionally incurred by changes in the wall thickness of the pipe due to manufacturing tolerances, and material property variations. If a monitoring scheme using baseline subtraction is employed then the sensitivity to defects can be improved while avoiding false calls.

  17. Planetary Defense: Options for Deflection of Near Earth Objects

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Statham, G.; Hopkins, R.; Chapman, J.; White, S.; Bonometti, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Kalkstein, M.

    2003-01-01

    Several recent near-miss encounters with asteroids and comets have focused attention on the threat of a catastrophic impact with the Earth. This document reviews the historical impact record and current understanding of the number and location of Near Earth Objects (NEO's) to address their impact probability. Various ongoing projects intended to survey and catalog the NEO population are also reviewed. Details are then given of an MSFC-led study, intended to develop and assess various candidate systems for protection of the Earth against NEOs. An existing program, used to model the NE0 threat, was extensively modified and is presented here. Details of various analytical tools, developed to evaluate the performance of proposed technologies for protection against the NEO threat, are also presented. Trajectory tools, developed to model the outbound path a vehicle would take to intercept or rendezvous with a target asteroid or comet, are described. Also, details are given of a tool that was created to model both the un-deflected inbound path of an NE0 as well as the modified, post-deflection, path. The number of possible options available for protection against the NE0 threat was too numerous for them to all be addressed within the study; instead, a representative selection were modeled and evaluated. The major output from this work was a novel process by which the relative effectiveness of different threat mitigation concepts can be evaluated during future, more detailed, studies. In addition, several new or modified mathematical models were developed to analyze various proposed protection systems. A summary of the major lessons learned during this study is presented, as are recommendations for future work. It is hoped that this study will serve to raise the level attention about this very real threat and also demonstrate that successful defense is both possible and practicable, provided appropriate steps are taken.

  18. Small molecule organic semiconductors on the move: promises for future solar energy technology.

    PubMed

    Mishra, Amaresh; Bäuerle, Peter

    2012-02-27

    This article is written from an organic chemist's point of view and provides an up-to-date review about organic solar cells based on small molecules or oligomers as absorbers and in detail deals with devices that incorporate planar-heterojunctions (PHJ) and bulk heterojunctions (BHJ) between a donor (p-type semiconductor) and an acceptor (n-type semiconductor) material. The article pays particular attention to the design and development of molecular materials and their performance in corresponding devices. In recent years, a substantial amount of both, academic and industrial research, has been directed towards organic solar cells, in an effort to develop new materials and to improve their tunability, processability, power conversion efficiency, and stability. On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade. Approaches to enhancing the efficiency of organic solar cells are analyzed.

  19. A novel acousto-optic modulation-deflection mechanism using refractive index grating as graded index beam router

    NASA Astrophysics Data System (ADS)

    Jangjoo, Alireza; Reza Baezzat, Mohammad; Razavizadeh, Ahmad

    2014-03-01

    A novel acousto-optic modulation mechanism will be addressed in this paper. Focused Gaussian beam passing through acousto-optic media experiences different refractive index regions arising from acoustic waves generated by ultrasonic source. In this way according to the snell's law of refraction the beam propagation path will be altered when these periodic traveling waves reach the incoming radiation where a typical p-n junction photodiode located inside the rising or falling lobe of the undiffracted Gaussian beam senses these small lateral deflections. Due to small variations of the refractive index the magnitude of deflection will be up to tens of micron outside the modulator. Hence, sharp intensity gradient is required for detecting such small beam movements by appropriate lens configuration to focus the Gaussian profile on the detector junction area. In the other words intensity profile of zero order beam oscillates proportional to the time dependent amplitude of the acoustic waves versus previous methods that intensity of diffracted beam changes with applied ultrasonic intensity. The extracted signal properties depend on the beam collimation, quality of beam profile and depth of focus inside the modulator. The first experimental approach was proceeded using a collimated 532 nm diode laser source (TEM00), distilled water as interaction media and 10 MHz transducer as ultrasonic generator where a cylindrical glass column with input-output flat windows was used for liquid support. The present method has advantages over common acoustooptical techniques as low cost, simplicity of operation, direct modulation of the signal and minimum alignment requirement.

  20. Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo

    DOE PAGES

    Mayers, Matthew Z.; Berkelbach, Timothy C.; Hybertsen, Mark S.; ...

    2015-10-09

    Ground-state diffusion Monte Carlo is used to investigate the binding energies and intercarrier radial probability distributions of excitons, trions, and biexcitons in a variety of two-dimensional transition-metal dichalcogenide materials. We compare these results to approximate variational calculations, as well as to analogous Monte Carlo calculations performed with simplified carrier interaction potentials. Our results highlight the successes and failures of approximate approaches as well as the physical features that determine the stability of small carrier complexes in monolayer transition-metal dichalcogenide materials. In conclusion, we discuss points of agreement and disagreement with recent experiments.

  1. Large and small-scale structures and the dust energy balance problem in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Saftly, W.; Baes, M.; De Geyter, G.; Camps, P.; Renaud, F.; Guedes, J.; De Looze, I.

    2015-04-01

    The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a Sérsic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical input models. This factor is in agreement with previous energy balance studies of real edge-on spiral galaxies. On the other hand, fitting the same basic model to less complex input models (e.g. a smooth exponential disc with a spiral perturbation or with random clumps), does recover the dust mass of the input model almost perfectly. Thus it seems that the complex asymmetries and the inhomogeneous structure of real and hydrodynamically simulated galaxies are a lot more efficient at hiding dust than the rather contrived geometries in typical quasi-analytical models. This effect may help explain the discrepancy between the dust emission predicted by radiative transfer models and the observed emission in energy balance studies for edge-on spiral galaxies.

  2. Kinetic energy releases of small amino acids upon interaction with keV ions

    NASA Astrophysics Data System (ADS)

    Bari, S.; Alvarado, F.; Postma, J.; Sobocinski, P.; Hoekstra, R.; Schlathölter, T.

    2009-01-01

    In chromatin, DNA is tightly packed into one complex together with histone and non-histone proteins. These proteins are known to protect the DNA against indirect and to some extent even direct radiation damage. Radiation action upon amino acids is thus one of the primary steps in biological radiation action. In this paper we investigate the ionization and fragmentation of the gas-phase amino acids glycine, alanine and valine upon interaction with keV α-particles. High resolution coincidence time-of-flight mass spectrometry is used to determine the dominant fragmentation channels as well as fragment kinetic energies.

  3. Miniaturized concentration cells for small-scale energy harvesting based on reverse electrodialysis

    NASA Astrophysics Data System (ADS)

    Banan Sadeghian, Ramin; Pantchenko, Oxana; Tate, Daniel; Shakouri, Ali

    2011-10-01

    We describe experimental and theoretical results that demonstrate the feasibility of power generation using concentration cells based on ionic concentration gradients and reverse electrodialysis. A peak power density of 0.2 (0.7) μW cm-2 and a maximum energy density of 0.4 (0.4) mJ cm-3 delivered in 3 h to a 2 (5) kΩ resistor were recorded using a microfiltration (anion exchange) membrane, respectively. A comprehensive model is developed to predict the evolution of the output voltage with time in relation to the solute concentration in each cell and derive the power density and efficiency limits.

  4. Integrated energy-agro-waste systems for small-scale farms. Report on Phase I

    SciTech Connect

    Glaub, J.C.; Savage, G.M.; Lafrenz, D.J.; Diaz, L.F.

    1982-04-01

    The feasibility of integrated farming systems for small-scale farms, particularly those smaller than 100 acres, is investigated. Quantitative unit process models are developed for the following agricultural, aquacultural, and waste treatment processes: broiler chickens, layer chickens, beef cattle, dairy cattle, swine, catfish, carp, tilapia, alfalfa, barley, corn, oats, rice, sorghum, wheat, algae, and anaerobic digestion. These models are then combined into an integrated complex and mass balances of the entire complex are performed for each of the complexes considered. The most promising integrated complexes are said to be swine-algae-carp-corn; swine-digester-algae-carp-corn; layer chicken-digester-corn; and layer chicken-algae-tilapia-corn. All of the complexes are said to be technically feasible.

  5. Analysis of splitting patterns from Stern-Gerlach magnetic deflection of supersonic molecular beams: application to M J -state-resolved deflection of J=2 atoms

    NASA Astrophysics Data System (ADS)

    Weiser, C.; Siska, P. E.

    1988-06-01

    Measurements of M J -state resolved Stern-Gerlach deflection patterns for the3 P 2 states of noble gas metastable atoms in supersonic beams are analyzed using a modification of the method originally worked out by Otto Stern. Velocity distribution breadth and beam collimation required to resolve the M J states are explored, and the modeling is improved by including variation in the field gradient along the deflected atomic trajectories.

  6. Comparison between X-rays spectra and their effective energies in small animal CT tomographic imaging and dosimetry.

    PubMed

    Hamdi, Mahdjoub; Mimi, Malika; Bentourkia, M'hamed

    2017-03-01

    Small animal CT imaging and dosimetry usually rely on X-ray radiation produced by X-ray tubes. These X-rays typically cover a large energy range. In this study, we compared poly-energetic X-ray spectra against estimated equivalent (effective) mono-energetic beams with the same number of simulated photons for small animal CT imaging and dosimetry applications. Two poly-energetic X-ray spectra were generated from a tungsten anode at 50 and 120 kVp. The corresponding effective mono-energetic beams were established as 36 keV for the 50 kVp spectrum and 49.5 keV for the 120 kVp spectrum. To assess imaging applications, we investigated the spatial resolution by a tungsten wire, and the contrast-to-noise ratio in a reference phantom and in a realistic mouse phantom. For dosimetry investigation, we calculated the absorbed dose in a segmented digital mouse atlas in the skin, fat, heart and bone tissues. Differences of 2.1 and 2.6% in spatial resolution were respectively obtained between the 50 and 120 kVp poly-energetic spectra and their respective 36 and 49.5 keV mono-energetic beams. The differences in contrast-to-noise ratio between the poly-energetic 50 kVp spectrum and its corresponding mono-energetic 36 keV beam for air, fat, brain and bone were respectively -2.9, -0.2, 11.2 and -4.8%, and similarly between the 120 kVp and its effective energy 49.5 keV: -11.3, -20.2, -4.2 and -13.5%. Concerning the absorbed dose, for the lower X-ray beam energies, 50 kVp against 36 keV, the poly-energetic radiation doses were higher than the mono-energetic doses. Instead, for the higher X-ray beam energies, 120 kVp and 49.5 keV, the absorbed dose to the bones and lungs were higher for the mono-energetic 49.5 keV. The intensity and energy of the X-ray beam spectrum have an impact on both imaging and dosimetry in small animal studies. Simulations with mono-energetic beams should take into account these differences in order to study biological effects or to be compared to

  7. Optimization of the Energy Window for PETbox4, a Preclinical PET Tomograph With a Small Inner Diameter

    PubMed Central

    Gu, Z.; Bao, Q.; Taschereau, R.; Wang, H.; Bai, B.; Chatziioannou, A. F.

    2015-01-01

    Small animal positron emission tomography (PET) systems are often designed by employing close geometry configurations. Due to the different characteristics caused by geometrical factors, these tomographs require data acquisition protocols that differ from those optimized for conventional large diameter ring systems. In this work we optimized the energy window for data acquisitions with PETbox4, a 50 mm detector separation (box-like geometry) pre-clinical PET scanner, using the Geant4 Application for Tomographic Emission (GATE). The fractions of different types of events were estimated using a voxelized phantom including a mouse as well as its supporting chamber, mimicking a realistic mouse imaging environment. Separate code was developed to extract additional information about the gamma interactions for more accurate event type classification. Three types of detector backscatter events were identified in addition to the trues, phantom scatters and randoms. The energy window was optimized based on the noise equivalent count rate (NECR) and scatter fraction (SF) with lower-level discriminators (LLD) corresponding to energies from 150 keV to 450 keV. The results were validated based on the calculated image uniformity, spillover ratio (SOR) and recovery coefficient (RC) from physical measurements using the National Electrical Manufacturers Association (NEMA) NU-4 image quality phantom. These results indicate that when PETbox4 is operated with a more narrow energy window (350-650 keV), detector backscatter rejection is unnecessary. For the NEMA NU-4 image quality phantom, the SOR for the water chamber decreases by about 45% from 15.1% to 8.3%, and the SOR for the air chamber decreases by 31% from 12.0% to 8.3% at the LLDs of 150 and 350 keV, without obvious change in uniformity, further supporting the simulation based optimization. The optimization described in this work is not limited to PETbox4, but also applicable or helpful to other small inner diameter geometry

  8. Deep absorbing porphyrin small molecule for high-performance organic solar cells with very low energy losses.

    PubMed

    Gao, Ke; Li, Lisheng; Lai, Tianqi; Xiao, Liangang; Huang, Yuan; Huang, Fei; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Janssen, René A J; Peng, Xiaobin

    2015-06-17

    We designed and synthesized the DPPEZnP-TEH molecule, with a porphyrin ring linked to two diketopyrrolopyrrole units by ethynylene bridges. The resulting material exhibits a very low energy band gap of 1.37 eV and a broad light absorption to 907 nm. An open-circuit voltage of 0.78 V was obtained in bulk heterojunction (BHJ) organic solar cells, showing a low energy loss of only 0.59 eV, which is the first report that small molecule solar cells show energy losses <0.6 eV. The optimized solar cells show remarkable external quantum efficiency, short circuit current, and power conversion efficiency up to 65%, 16.76 mA/cm(2), and 8.08%, respectively, which are the best values for BHJ solar cells with very low energy losses. Additionally, the morphology of DPPEZnP-TEH neat and blend films with PC61BM was studied thoroughly by grazing incidence X-ray diffraction, resonant soft X-ray scattering, and transmission electron microscopy under different fabrication conditions.

  9. Prediction of Structures and Atomization Energies of Small Silver Clusters, (Ag)n, n < 100

    SciTech Connect

    Chen, Mingyang; Dyer, Jason E.; Li, Keijing; Dixon, David A.

    2013-08-29

    Neutral silver clusters, Agn, were studied using density functional theory (DFT) followed by high level coupled cluster CCSD(T) calculations to determine the low energy isomers for each cluster size for small clusters. The normalized atomization energy, heats of formation, and average bond lengths were calculated for each of the different isomeric forms of the silver clusters. For n = 2–6, the preferred geometry is planar, and the larger n = 7–8 clusters prefer higher symmetry, three-dimensional geometries. The low spin state is predicted to be the ground state for every cluster size. A number of new low energy isomers for the heptamer and octamer were found. Additional larger Agn structures, n < 100, were initially optimized using a tree growth-hybrid genetic algorithm with an embedded atom method (EAM) potential. Finally, for n ≤ 20, DFT was used to optimize the geometries. DFT with benchmarked functionals were used to predict that the normalized atomization energies ((AE)s) for Agn start to converge slowly to the bulk at n = 55. The (AE) for Ag99 is predicted to be ~50 kcal/mol.

  10. The fragmentation dynamics of small Cs(CsI)n+ cluster ions under low-energy multiple collision conditions

    NASA Astrophysics Data System (ADS)

    Herzschuh, Rainer; Drewello, Thomas

    2004-04-01

    The collision-induced dissociations of small caesium iodide cluster ions of the type Cs(CsI)n+ where n=3-7, have been investigated under low-energy multiple collision conditions. The collisions were performed in the rf-only quadrupole of a BEqQ hybrid mass spectrometer. Breakdown graphs of selected parent ions were obtained by varying the laboratory collision energy in the range of 0-400 eV. The fragmentation dynamic established under these conditions provides a link between the well-known decay behaviour occurring unimolecularly and the dissociations following high energy (keV) collisional activation. Of particular interest is the observation that the energy-dependent dissociation pattern supplies support for the occurrence of one-step fission reactions, featuring the evaporation of presumably intact (CsI)n neutrals as opposed to a sequential decay via nCsI losses. The breakdown graphs thus provide a valuable tool to enhance insight into the fragmentation mechanism of these clusters.

  11. Electron energy modulation with laser light using a small gap circuit a theoretical consideration

    NASA Astrophysics Data System (ADS)

    Bae, Jongsuck; Okuyama, Sumio; Akizuki, Taiji; Mizuno, Koji

    1993-07-01

    A free electron laser (FEL) using a klystron type interaction circuit is investigated. A metal slit has been considered as the circuit. From theoretical considerations on electron transition rates in a metal film gap and a dielectric (SiO 2) film, it is found that in the metal slit a transition rate above 10 -3/s could be obtained for an incident laser power density of 10 6 W/cm 2. The optimum slit dimensions have been determined for a laser wavelength of 780 nm and an initial electron energy of 80 keV. A rough estimation implies that a laser power of 30 mW will produce a signal output of 20 000 electrons/s for an electron beam density of 1 mA/cm 2 at the laser wavelength of 780 nm.

  12. Fine particle coal as a source of energy in small-user applications

    SciTech Connect

    Rajan, S.

    1990-11-01

    The use of fine particle micronized coal as a source of energy for home heating applications has been explored in previous years under this program in a 150,000 Btu/hr pulse combustor. Experimental studies have been conducted on the combustion characteristics of micronized coal and combustion efficiencies have been measured. Emission levels of NO{sub x} and SO{sub 2} have been measured. In this final year of the program, the combustion and emissions characteristics of micronized coal were further explored in terms of the influence of stoichiometric ratio and frequency effects. Also, a model has been proposed which has potential for incorporating the unsteady mixing occurring in pulse combustors. 31 refs., 21 figs., 3 tabs.

  13. Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

    SciTech Connect

    Peffer, Therese; Blumstein, Carl; Culler, David; Modera, Mark; Meier, Alan

    2015-09-10

    The Project uses state-of-the-art computer science to extend the benefits of Building Automation Systems (BAS) typically found in large buildings (>100,000 square foot) to medium-sized commercial buildings (<50,000 sq ft). The BAS developed in this project, termed OpenBAS, uses an open-source and open software architecture platform, user interface, and plug-and-play control devices to facilitate adoption of energy efficiency strategies in the commercial building sector throughout the United States. At the heart of this “turn key” BAS is the platform with three types of controllers—thermostat, lighting controller, and general controller—that are easily “discovered” by the platform in a plug-and-play fashion. The user interface showcases the platform and provides the control system set-up, system status display and means of automatically mapping the control points in the system.

  14. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    DOEpatents

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  15. Evaluation of disparate laser beam deflection technologies by means of number and rate of resolvable spots.

    PubMed

    Bechtold, Peter; Hohenstein, Ralph; Schmidt, Michael

    2013-08-15

    We introduce a method to objectively evaluate systems of differing beam deflection technologies that commonly are described by disparate technical specifications. Using our new approach based on resolvable spots we will compare commercially available random-access beam deflection technologies, namely galvanometer scanners, piezo scanners, MEMS scanners, acousto-optic deflectors, and electro-optic deflectors.

  16. Arc Deflection Length Affected by Transverse Rotating Magnetic Field with Lateral Gas

    NASA Astrophysics Data System (ADS)

    Shiino, Toru; Ishii, Yoko; Yamamoto, Shinji; Iwao, Toru; High Current Energy Laboratory (HiCEL) Team

    2016-10-01

    Gas metal arc welding using shielding gas is often used in the welding industry. However, the arc deflection affected by lateral gas is problem because of inappropriate heat transfer. Shielding gas is used in order to prevent the instability affected by the arc deflection. However, the shielding gas causes turbulence, then blowhole of weld defect occurs because the arc affected by the instability is contaminated by the air. Thus, the magnetic field is applied to the arc in order to stabilize the arc using low amount of shielding gas. The method of applying the transverse rotating magnetic field (RMF) to the arc is one of the methods to prevent the arc instability. The RMF drives the arc because of electromagnetic force. The driven arc is considered to be prevented to arc deflection of lateral gas because the arc is restrained by the magnetic field because of the driven arc. In addition, it is assume the RMF prevented to the arc deflection of lateral gas from the multiple directions. In this paper, the arc deflection length affected by the RMF with lateral gas was elucidated in order to know the effect of the RMF for arc stabilization. Specifically, the arc deflection length affected by the magnetic frequency and the magnetic flux density is measured by high speed video camera. As a result, the arc deflection length decreases with increasing magnetic frequency, and the arc deflection length increases with increasing the magnetic flux density.

  17. The buckling of a column on equally spaced deflectional and rotational springs

    NASA Technical Reports Server (NTRS)

    Budiansky, Bernard; Seide, Paul; Weinberger, Robert A

    1948-01-01

    A solution is presented for the problem of the buckling of a column on equally spaced deflectional and rotational springs. Useful charts, which relate deflectional spring stiffness, rotational spring stiffness, and buckling load, are given for columns having two, three, four, and infinite number of spans.

  18. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste.

    PubMed

    Hedman, Björn; Burvall, Jan; Nilsson, Calle; Marklund, Stellan

    2005-01-01

    In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.

  19. Effects of nutrient restriction and melatonin supplementation on maternal and foetal hepatic and small intestinal energy utilization.

    PubMed

    Prezotto, L D; Lemley, C O; Camacho, L E; Doscher, F E; Meyer, A M; Caton, J S; Awda, B J; Vonnahme, K A; Swanson, K C

    2014-08-01

    To determine how nutrient restriction and melatonin supplementation influence ewe and foetal hepatic and small intestinal energy use, 32 primiparous ewes on d 50 of gestation were fed 60% (RES) or 100% (ADQ) of NRC recommendations with 0 (CON) or 5 mg/d (MEL) of dietary melatonin. On d 130 of gestation, small intestine and liver were weighed and collected. Data were analysed as a completely randomized design with a 2 × 2 factorial arrangement of treatments. Liver weight (g/kg EBW) decreased (p = 0.02) in RES ewes. Jejunum weight (g/kg BW) increased (interaction p = 0.04) in ADQ-MEL ewes compared with all other treatments. Total in vitro O2 consumption (mol/min/tissue) and total citrate synthase activity (mol/min/tissue and mol/min/kg EBW) in liver decreased (p ≤ 0.03) in RES ewes. Oxygen consumption (mol/min/kg EBW) increased (interaction p = 0.02) in jejunum of ADQ-CON versus RES-MEL and ADQ-CON. Citrate synthase activity (mol/min/kg of EBW) increased (interaction p = 0.03) in jejunum of ADQ-MEL compared with RES-MEL and ADQ-CON. Foetal liver weight (g/kg BW) decreased (p = 0.02) in RES versus ADQ. Foetal small intestine weight (g/kg BW) decreased (interaction p = 0.05) in RES-MEL versus ADQ-MEL. Total O2 consumption (mol/min/tissue) and total citrate synthase activity (mol/min/kg of BW) in foetal liver decreased (p ≤ 0.05) in RES versus ADQ. Foetal small intestinal O2 consumption (mol/min/kg of BW) was greater (interaction p = 0.03) in RES-CON and ADQ-MEL than RES-MEL and ADQ-CON. Maternal nutrient restriction had a greater effect than melatonin supplementation on liver and jejunum mass and energy utilization in dams and foetuses. Because intestinal mass and energy utilization were more responsive to melatonin supplementation in ewes fed adequate nutrition compared with restricted ewes, melatonin may have limited use as a therapeutic supplement to help overcome potential negative effects of nutrient restriction.

  20. Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes

    NASA Technical Reports Server (NTRS)

    Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.; DeAngelis, E; Desai, M.; Goldstein, R.; Lp, W.-H.; Killen, R.; Livi, S.

    2012-01-01

    The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper

  1. Role of the density, density effect and mean excitation energy in solid-state detectors for small photon fields.

    PubMed

    Andreo, Pedro; Benmakhlouf, Hamza

    2017-02-21

    A number of recent publications on small photon beam dosimetry aim at contributing to the understanding of the response of solid-state detectors in small fields. Some of them assign the difference in response to the mass density, or to the electron density, of the sensitive detector material relative to that of water. This work analyses the role of the mass and electron density ([Formula: see text]), density effect (δ) and mean excitation energy (I-value) of some detector materials in a 6 MV photon beam of 0.5 cm radius, its rationale being that the response of a detector depends critically on the stopping-power ratio detector-to-water. The influence on the detector response of volume scaling by electron density, and of electron single and multiple scattering, is also investigated. Detector materials are water, diamond and silicon, and additional materials are included for consistency in the analysis. A detailed analysis on the ([Formula: see text]) dependence of stopping-power ratios shows that the density effect δ depends both on the electron density and on the I-value of the medium, but not on the mass density ρ alone as is usually assumed. This leads to a double dependence of stopping-power ratios on the I-value and questions the adequacy of a 'density perturbation factor' or of common interpretations of detector response in terms of ρ alone. Differences in response can be described in terms of the variation of stopping power ratios detector-to-water, mainly due to different I-values and to a lesser extent to different values of electron density. It is found that at low energies the trend of Monte Carlo-calculated electron fluence spectra inside the detector materials depends solely on their I-values. No dependence on mass density or density effect alone is observed at any energy. The trend of restricted-cema ratios to water (as a substitute of absorbed dose ratios) follows that of stopping-power ratios at 1 MeV, the most probable energy of differential

  2. A Small Protein Associated with Fungal Energy Metabolism Affects the Virulence of Cryptococcus neoformans in Mammals

    PubMed Central

    Cox, James; Nakouzi, Antonio; Prabu, Moses M.; Almo, Steven C.

    2016-01-01

    The pathogenic yeast Cryptococcus neoformans causes cryptococcosis, a life-threatening fungal disease. C. neoformans has multiple virulence mechanisms that are non-host specific, induce damage and interfere with immune clearance. Microarray analysis of C. neoformans strains serially passaged in mice associated a small gene (CNAG_02591) with virulence. This gene, hereafter identified as HVA1 (hypervirulence-associated protein 1), encodes a protein that has homologs of unknown function in plant and animal fungi, consistent with a conserved mechanism. Expression of HVA1 was negatively correlated with virulence and was reduced in vitro and in vivo in both mouse- and Galleria-passaged strains of C. neoformans. Phenotypic analysis in hva1Δ and hva1Δ+HVA1 strains revealed no significant differences in established virulence factors. Mice infected intravenously with the hva1Δ strain had higher fungal burden in the spleen and brain, but lower fungal burden in the lungs, and died faster than mice infected with H99W or the hva1Δ+HVA1 strain. Metabolomics analysis demonstrated a general increase in all amino acids measured in the disrupted strain and a block in the TCA cycle at isocitrate dehydrogenase, possibly due to alterations in the nicotinamide cofactor pool. Macrophage fungal burden experiments recapitulated the mouse hypervirulent phenotype of the hva1Δ strain only in the presence of exogenous NADPH. The crystal structure of the Hva1 protein was solved, and a comparison of structurally similar proteins correlated with the metabolomics data and potential interactions with NADPH. We report a new gene that modulates virulence through a mechanism associated with changes in fungal metabolism. PMID:27583447

  3. "I'm Not Mentally Ill": Identity Deflection as a Form of Stigma Resistance.

    PubMed

    Thoits, Peggy A

    2016-06-01

    Mental illness identity deflection refers to rebuffing the idea that one is mentally ill. Predictors of identity deflection and its consequences for well-being were examined for individuals with mental disorders in the National Comorbidity Study-Replication (N = 1,368). Respondents more often deflected a mental illness identity if they had a nonsevere disorder, had low impairment in functioning, had no treatment experience, viewed possible treatment as undesirable, and held multiple social roles, consistent with theory about stigma resistance. Persons who deflected a mental illness identity had lower distress and more positive affect than those who accepted it, even net of disorder severity, impairment level, and treatment experience. Among those who had ever been in treatment, deflection buffered the negative effects of serious impairment but exacerbated the effects of having a severe disorder on well-being, suggesting more complex consequences of formal labeling (greater stigma but helpful services), consistent with previous research.

  4. Modeling the small dark energy scale with a quintessential pseudoscalar boson

    NASA Astrophysics Data System (ADS)

    Kim, Jihn E.

    2014-03-01

    Democracy among the same type of particles is a useful paradigm in studying masses and interactions of particles with supersymmetry (SUSY) or without SUSY. This simple idea predicts the presence of massless particles. We attempt to use one of these massless pseudoscalar particles to generate the cosmological dark energy (DE) potential. To achieve the extremely shallow potential of DE, we require the pseudoscalar boson not couple to quantum chromodynamics (QCD) anomaly. Thus, we consider two pseudoscalars, one coupling to the QCD anomaly ( i.e., the QCD axion) and the other not coupling to the QCD anomaly. To obtain these two pseudoscalars, we introduce two approximate global U(1) symmetries to realize them as the pseudo-Goldstone bosons of the spontaneously broken U(1) symmetries. These global symmetries are dictated by a gravity-respecting discrete symmetry. Specifically, we consider an S 2( L) × S 2( R) × Z 10 R example and attempt to obtain the DE scale in terms of two observed fundamental mass scales, the grand unification scale M G and the electroweak scale υ ew.

  5. MASC - a small Remotely Piloted Aircraft (RPA) for wind energy research

    NASA Astrophysics Data System (ADS)

    Wildmann, N.; Hofsäß, M.; Weimer, F.; Joos, A.; Bange, J.

    2014-05-01

    Originally designed for atmospheric boundary layer research, the MASC (Multipurpose Airborne Sensor Carrier) RPA (Remotely Piloted Aircraft, also known as Unmanned Aerial Vehicle, UAV) is capable of making in-situ measurements of temperature, humidity and wind in high resolution and precision. The autopilot system ROCS (Research Onboard Computer System) enables the aircraft to fly pre-defined routes between waypoints at constant altitude and airspeed. The system manages to operate in wind speeds up to 15 m s-1 safely. It is shown that a MASC can fly as close as one rotor diameter upstream and downstream of running wind turbines at these wind speeds and take valuable data of incoming flow and wake. The flexible operation of an RPA at the size of a MASC can be a major advantage of the system compared to tower measurements and remote sensing in wind energy research. In the project "Lidar Complex" comparisons of RPA measurements with lidar systems and tower measurements are carried out at two different test sites. First results, including turbulence and wake measurements, from a campaign in autumn 2013 are presented.

  6. Analysis of wood-energy production and consumption strategies among small-scale farmers in central Kenya

    SciTech Connect

    Mwangi, A.M.

    1992-01-01

    This study focuses on wood-energy production and consumption strategies among small-scale farm households in central Kenya. The specific objective were: (1) to determine how households had responded to specific wood-energy policies; (2) to identify factors associated with household adoption or non-adoption of the strategies. Different programs aimed at addressing wood-energy shortages in Kenya were initiated or strengthened during the 1980s: fuelwood or multipurpose tree planting; development and dissemination of improved stoves and fireplaces; promotion of increased accessibility to wood-energy substitutes. Household adoption levels for policy-supported strategies have remained low despite promotion. Survey data from two villages in Nyeri district were collected to determine the factors associated with adoption of the Kenya Ceramic Jiko, the [open quotes]Kuni Mbili[close quotes] stove/fireplace, kerosene stoves, electric cookers, and fuelwood or multipurpose tree planting. Adoption rates varied from as low as 1 percent for electricity to 43 percent for the Kenya Ceramic Jiko. Important policy variables included extension visits per year, income levels, years of formal education received by head of household, access to different fuels, area of farm-land owned, household size, and locational characteristics of the villages. Policy recommendations included: use of research results to direct policy; improvement of information flows between policy makers, extension agents, and technology-users; increased support of agroforestry; and better program coordination. Recommendations for further research included: examining more areas where efficiency gains in energy production and consumption can be made, extending the study to cover the drier parts of central Kenya, and conducting regular case studies in order to better understand the adoption process over time.

  7. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches

    DOE PAGES

    Huang, Jing; Mei, Ye; König, Gerhard; ...

    2017-01-24

    Here in this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PADmore » energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other eleven solute molecules, while the PAD model has a much better performance with R2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. Lastly, this suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.« less

  8. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches.

    PubMed

    Huang, Jing; Mei, Ye; König, Gerhard; Simmonett, Andrew C; Pickard, Frank C; Wu, Qin; Wang, Lee-Ping; MacKerell, Alexander D; Brooks, Bernard R; Shao, Yihan

    2017-02-14

    In this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R(2) value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other 11 solute molecules, while the PAD model has a much better performance with R(2) values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. This suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.

  9. C-H and N-H bond dissociation energies of small aromatic hydrocarbons

    SciTech Connect

    Barckholtz, C.; Barckholtz, T.A.; Hadad, C.M.

    1999-01-27

    A survey of computational methods was undertaken to calculate the homolytic bond dissociation energies (BDEs) of the C-H and N-H bonds in monocyclic aromatic molecules that are representative of the functionalities present in coal. These include six-membered rings (benzene, pyridine, pyridazine, pyrimidine, pyrazine) and five-membered rings (furan, thiophene, pyrrole, oxazole). By comparison of the calculated C-H BDEs with the available experimental values for these aromatic molecules, the B3LYP/6-31G(d) level of theory was selected to calculate the BDEs of polycyclic aromatic hydrocarbons (PAHs), including carbonaceous PAHs (naphthalene, anthracene, pyrene, coronene) and heteroatomic PAHs (benzofuran, benzothiophene, indole, benzoxazole, quinoline, isoquinoline, dibenzofuran, carbazole). The cleavage of a C-H or a N-H bond generates a {sigma} radical that is, in general, localized at the site from which the hydrogen atom was removed. However, delocalization of the unpaired electron results in {approximately} 7 kcal {center{underscore}dot} mol{sup {minus}1} stabilization of the radical with respect to the formation of phenyl when the C-H bond is adjacent to a nitrogen atom in the azabenzenes. Radicals from five-membered rings are {approximately} 6 kcal {center{underscore}dot} mol{sup {minus}1} less stable than those formed from six-membered rings due to both localization of the spin density and geometric factors. The location of the heteroatoms in the aromatic ring affects the C-H bond strengths more significantly than does the size of the aromatic network. Therefore, in general, the monocyclic aromatic molecules can be used to predict the C-H BDE of the large PAHs within 1 kcal {center{underscore}dot} mol{sup {minus}1}.

  10. PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM

    SciTech Connect

    Chluba, Jens; Erickcek, Adrienne L.; Ben-Dayan, Ido

    2012-10-20

    In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates {mu}- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k {approx}< 10{sup 4} Mpc{sup -1}. Here, we study constraints on the primordial power spectrum derived from COBE/FIRAS and forecasted for PIXIE. We show that measurements of {mu} and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.

  11. Blow-off momentum from melt and vapor in nuclear deflection scenarios

    NASA Astrophysics Data System (ADS)

    Howley, Kirsten; Managan, Robert; Wasem, Joseph

    2014-10-01

    For Earth-impacting objects that are large in size or have short warning times nuclear explosives are an effective threat mitigation response. Nuclear-based deflection works by means of conservation of momentum: as material is heated by incoming photons and neutrons it is ejected from the body which imparts momentum to the remaining mass of the asteroid. Predicting the complete response of a particular object is difficult, since the ejecta size and velocity distributions rely heavily on the unknown, complicated internal structure of the body. However, lower bounds on the blow-off momentum can be estimated using the melted and vaporized surface material. In this paper, we model the response of a one-dimensional SiO2 surface to monoenergetic soft X-ray, hard X-ray and neutron sources using Arbitrary Lagrangian-Eulerian radiation/hydrodynamic simulations. Errors in the blow-off momentum due to our hydrodynamic mesh resolution are quantified and inform zone sizing that balances numerical discretization error with computational efficiency. We explore deposited energy densities ranging from 1.1 to 200 times the melt energy density for SiO2, and develop an approximate relation that gives the mesh resolution needed for a desired percent error in the blow-off momentum as a function of deposited energy density and melt depth. Using these mesh constraints, the response of our one-dimensional SiO2 surface to the energy sources is simulated, and lower bounds are placed on the melt/vapor blow-off momentum as a function of deposited energy density and source energy type.

  12. Development of infrared photothermal deflection spectroscopy (mirage effect) for analysis of condensed-phase aerosols collected in a micro-orifice uniform deposit impactor.

    PubMed

    Dada, Oluwatosin O; Bialkowski, Stephen E

    2008-12-01

    The potential of mid-infrared photothermal deflection spectrometry for aerosol analysis is demonstrated. Ammonium nitrate aerosols are deposited on a flat substrate using a micro-orifice uniform deposit impactor (MOUDI). Photothermal spectroscopy with optical beam deflection (mirage effect) is used to detect deposited aerosols. Photothermal deflection from aerosols is measured by using pulsed infrared laser light to heat up aerosols collected on the substrate. The deflection signal is obtained by measuring the position of a spot from a beam of light as it passes near the heated surface. The results indicate non-rotating impaction as the preferred MOUDI impaction method. Energy-dependent photothermal measurement shows a linear relationship between signal and laser intensity, and no loss of signal with time is observed. The detection limit from the signal-mass curve is 7.31 ng. For 30 minutes collection time and 30 L/min flow rate of the impactor, the limit of detection in terms of aerosol mass concentration is 0.65 microg m(-3).

  13. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches.

    PubMed

    Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W

    2016-08-25

    Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and

  14. Effect of nutrient density and energy to protein ratio on performance and carcase quality of small white turkeys.

    PubMed

    Salmon, R E

    1986-12-01

    One thousand eight hundred Small White turkeys were fed diets of 3 nutrient densities, representing approximately 0, 30 and 90 g added fat/kg of diet, or a fourth treatment which provided increasing nutrient densities from 6 weeks of age to slaughter at 12, 13 and 14 weeks. Within each nutrient density, 4 energy to protein ratios were derived by reducing dietary protein. Each increment in nutrient density resulted in increased body weights and improved efficiency of food utilisation. Increasing energy to protein ratio resulted in linear decreases in body weights, food intake and efficiency of food utilisation. Carcase quality, as measured by carcase fat scores and percentage of grade A carcases, improved with each increment in nutrient density and declined with increasing energy to protein ratio. Progressively increasing nutrient density from 6 weeks of age resulted in body weights, efficiencies of food utilisation and carcase finishes intermediate between those of the medium and high density groups. Such a programme avoids the disadvantages of feeding high nutrient density diets through much of the growing cycle, while providing growth, efficiency of food utilisation and carcase grades approaching those produced by the full high nutrient density programme.

  15. Extrapolation of G0W0 energy levels from small basis sets for elements from H to Cl

    NASA Astrophysics Data System (ADS)

    Zhu, Tong; Blum, Volker

    G0W0 calculations based on orbitals from a density-functional theory reference are widely used to predict carrier levels in molecular and inorganic materials. Their computational feasibility, however, is limited by the need to evaluate slow-converging sums over unoccupied states, requiring large basis sets paired with unfavorable scaling exponents to evaluate the self-energy. In the quantum chemistry literature, complete basis set (CBS) extrapolation strategies have been used successfully to overcome this problem for total energies. We here apply the principle of basis set extrapolation to G0W0 energy levels. For a set of 49 small molecules and clusters containing the elements H, Li through F, and Na through Cl, we test established extrapolation strategies based on Dunning's correlation-consistent (cc) basis sets (aug)-cc-pVNZ (N=2-5), as well as numeric atom-centered NAO-VCC-nZ (n=2-5) basis sets in the FHI-aims all-electron code. For the occupied and lowest unoccupied levels, different extrapolation strategies agree within +/-50 meV based on large 4Z and 5Z basis sets. We show that extrapolation based on much smaller 2Z and 3Z basis sets with largest errors +/- 100 meV based on a refinement of the NAO-VCC-nZ basis sets.

  16. Environmental swap energy and role of configurational entropy in transfer of small molecules from water into alkanes

    NASA Astrophysics Data System (ADS)

    Smejtek, Pavel; Word, Robert C.

    2004-01-01

    We studied the effect of segmented solvent molecules on the free energy of transfer of small molecules from water into alkanes (hexane, heptane, octane, decane, dodecane, tetradecane, and hexadecane). For these alkanes we measured partition coefficients of benzene, 3-methylindole (3MI), 2,3,4,6-tetrachlorophenol (TeCP), and 2,4,6-tribromophenol (TriBP) at 3, 11, 20, 3, and 47 °C. For 3MI, TeCP, and TriBP the dependence of free energy of transfer on length of alkane chains was found to be very different from that for benzene. In contrast to benzene, the energy of transfer for 3MI, TeCP, and TriBP was independent of the number of carbons in alkanes. To interpret data, we used the classic Flory-Huggins (FH) theory of concentrated polymer solutions for the alkane phase. For benzene, the measured dependence of energy of transfer on the number of carbons in alkanes agreed well with predictions based on FH model in which the size of alkane segments was obtained from the ratio of molar volumes of alkanes and the solute. We show that for benzene, the energy of transfer can be divided into two components, one called environmental swap energy (ESE), and one representing the contribution of configurational entropy of alkane chains. For 3MI, TeCP, and TriBP the contribution of configurational entropy was not measurable even though the magnitude of the effect predicted from the FH model for short chain alkanes was as much as 20 times greater than experimental uncertainties. From the temperature dependence of ESE we obtained enthalpy and entropy of transfer for benzene, 3MI, TeCP, and TriBP. Experimental results are discussed in terms of a thermodynamic cycle considering creation of cavity, insertion of solute, and activation of solute-medium attractive interactions. Our results suggest that correcting experimental free energy of transfer by Flory-Huggins configurational entropy term is not generally appropriate and cannot be applied indiscriminately.

  17. Three-dimensional parabolic equation modeling of mesoscale eddy deflection.

    PubMed

    Heaney, Kevin D; Campbell, Richard L

    2016-02-01

    The impact of mesoscale oceanography, including ocean fronts and eddies, on global scale low-frequency acoustics is examined using a fully three-dimensional parabolic equation model. The narrowband acoustic signal, for frequencies from 2 to 16 Hz, is simulated from a seismic event on the Kerguellen Plateau in the South Indian Ocean to an array of receivers south of Ascension Island in the South Atlantic, a distance of 9100 km. The path was chosen for its relevance to seismic detections from the HA10 Ascension Island station of the International Monitoring System, for its lack of bathymetric interaction, and for the dynamic oceanography encountered as the sound passes the Cape of Good Hope. The acoustic field was propagated through two years (1992 and 1993) of the eddy-permitting ocean state estimation ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) system. The range of deflection of the back-azimuth was 1.8° with a root-mean-square of 0.34°. The refraction due to mesoscale oceanography could therefore have significant impacts upon localization of distant low-frequency sources, such as seismic or nuclear test events.

  18. Moth tails divert bat attack: Evolution of acoustic deflection

    PubMed Central

    Barber, Jesse R.; Leavell, Brian C.; Keener, Adam L.; Breinholt, Jesse W.; Chadwell, Brad A.; McClure, Christopher J. W.; Hill, Geena M.; Kawahara, Akito Y.

    2015-01-01

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator–prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey. PMID:25730869

  19. GPS deflection monitoring of the West Gate Bridge

    NASA Astrophysics Data System (ADS)

    Raziq, Noor; Collier, Philip

    2007-05-01

    The achievable precision and relatively high sampling rates of currently available GPS receivers are well suited for monitoring the movements of long-span engineering structures where the amplitude of movements is often more than a few centimetres and the frequency of vibrations is low (below 10 Hz). However, engineering structures often offer non-ideal environments for GPS data collection due to high multipath interference and obstructions causing cycle slips in the GPS observations. Also, for many engineering structures such as bridge decks, vertical movements are more pronounced and more structurally critical than horizontal movements. Accuracy of GPS determined positions in the vertical direction is typically two to three times poorer than in the horizontal component. This paper describes the results of a GPS deflection monitoring trial on the West Gate Bridge in Melbourne, Australia. The results are compared to the estimated frequencies and movements from the design of the bridge and previous accelerometer campaigns. The frequency information derived from the GPS results is also compared to frequency data extracted from an accelerometer installed close to a GPS receiver. GPS results agree closely to the historical results and recent accelerometer trials for key modal frequencies. This indicates the suitability of GPS receivers to monitor engineering structures that exhibit smaller movements due to their stiffness and in environments not ideally suited to using GPS.

  20. Moth tails divert bat attack: evolution of acoustic deflection.

    PubMed

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-03

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.